Lecture 5

Electric Potential




Announcement:

* TA-led office hours today will be shifted 5-10 mins forward:

Hebb 112, 1:05 - 2:05 pm, or 1:10 - 2:10 pm



Last Time

i

E-dazﬁ

€0

Integral form (15t year)

Review:

Gauss’ Law

—

E

R

o
- d also reflected to —z'!

A

B

|

;

E

Differential form

p(r)

* If (and only if) the charge distribution has high symmetry, you can
come up with a “useful” Gaussian surface, and use Gauss Law to
compute E-filed created by this charge distribution.



Electric Potential: Definition

(Ch. 2.2.4,2.3.1)

“ MY PHYSICS TEACHER
' SAIDTHAD POTENTIAL

e Curl of electric field

* Consequences of the above THEN HE PUSHED ME OFF A BUILDING




Electric potential vs Electric potential energy (sometimes called “electric
potential energy”, to distinguish
it from e.g. gravitational

potential energy — it adds to
Never ever mix them up: / confusion!)

Potential energy [ [J1

adjective noun

STOP

AND THINK

Electric potential V [V]

adjective noun



Electric Potential: 15 year version

* Electric potential is electric potential energy per unit charge: V =U/q

* For a point charge: V(r) = 47:(; %
0

* AV is path-independent (conservative force)

equipotential
lines

* Connection between potential and field:

electric field
lines

av AV ffE d
= —_—— = — - ar
’ dr ;

* Now let’s see how all this is connected with what we did here so far.



Electric Potential: 3™ year version

* We know that electric field obeys Gauss’ law, V - E(r) = p(r)’

and that its general solution is expressed by Coulomb’s [aw:

A

Er)= -1 —>Z L —>/ S N

Amreq 12 dmey |r — ry3 47T€0 r—r/|3

* Now let us think about what we can say about the curlof E:  V X E(r) =7

s Let us start with a point charge sitting at the origin, and then
try to generalize this for an arbitrary charge distribution, p(r)



curl of £/r?

Q: The curl of this vector field is:

A. Zero everywhere
Zero everywhere except at the origin
None-zero everywhere

O 0O ®

Non-zero everywhere, but zero at the origin
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curl of £/r?

Q: The curl of this vector field is: g v vt ot
U T T S B R

E(r): 2 - %W %N %N e . . .

‘Zero everywhere dmeg T AN * A

Zero everywhere except at the origin

A SN
C. None-zero everywhere A N
D. Non-zero everywhere, but zero at the origin R LI B
18_?/8EA115\ET(9 . 178/ WNET -
VB = g {ae(sme A ] Ty Lina ¥ ar(r%)] s [87«(7"79/) _\%%] ¢
= 00+ [0-0]0+ [0-0]d
~ rsinf
* By superposition, this is also true for any v x (Z Ez) _ Z (V x E;) =0
distribution of static charges: i i



Electric Potential: 3™ year version

* Hence, the curl of any electrostatic field is zero: | V X E =0

e e e )

* By Stokes theorem, the integral of an electrostatic field over any closed path is zero:

E=vt
) VxE:O%j{E-cﬂ:O e Efeldls
C conservative!
> Ux It = o
* Hence, E-field can be expressed as a gradient of some regular scalar field [see HW-1 5(b)]:

r ** Negative of this regular

E(r) = -VV(r) Vir) = —/ E(r') - dl’ scalar field is what we

r'o call electric potentiall!




Constant Electric Potential

Q: Suppose the potential for a given charge distribution is constant within some
region of space. What can you say about the electric field in that region?

E=-VYV

A. Nothing
B. The field has a constant magnitude everywhere in that region
C. The field is zero everywhere in that region



Constant Electric Potential

Q: Suppose the potential for a given charge distribution is constant within some
region of space. What can you say about the electric field in that region?

A. Nothing
B. The field has a constant magnitude everywhere in that region
@ The field is zero everywhere in that region



Zero Electric Potential

Q: The potential is zero at some point in space. What can you conclude
about the electric field at that point?

]

Y

AR

A. Nothing special about this point
B. The field is non-zero at this point
C. The field is zero at this point



Zero Electric Potential

Q: The potential is zero at some point in space. What can you conclude
about the electric field at that point?

* The zero-point of the potential is V(x) | Ey = —dV(x)/dx
arbitrary (chosen by convention). \
Adding an arbitrary constant to \
V(r) everywhere in space does
not change the electric field. "X

Nothing special about this point ‘

B. The field is non-zero at this point
C. The field is zero at this point



o 0O W P

Potential and Continuity

Q: Could this graph plausibly represent
E(r) or V(r), in some physical situation?

X E:—V\:{
-~ -=
v ANV = - E.Jde

Could be E(r) or V(1)

Could be E(r) but not V(1)
Can’t be E(r) but could V' (r)
Can’t be either
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Potential and Continuity

Q: Could this graph plausibly represent
E(r) or V(r), in some physical situation?

This can be E(7):

* Integral of a jump simply gives a kink (corner)

V(r)=— /r E(r’) - dl’ This cannot be V (7):
ro  Derivative of a jump is a delta function
(i.e. infinity — unphysicall)
A. Couldbe E(r) or V(r)
Could be E(7) but not V() E(r) = -VV(r)
C. Can’tbe E(r) but could V(r)
D. Can’t be either * V(1) is a continuous scalar field. Always.
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Potential and Principle of Superposition

Q: Does the principle of superposition apply to the electric potential?

That is, if we have a charge distribution:

sz = p1(r) + pa(r) + p3(r) + ...

Does it follow that:

Zv r) + Va(r) + Va(r) +...7

A. Yes
B. No
C. Sometimes



Potential and Principle of Superposition

Q: Does the principle of superposition apply to the electric potential?

That is, if we have a charge distribution:

sz = p1(r) + pa(r) + p3(r) + ...

Does it follow that:

Zv r) + Va(r) + Va(r) +...7

V(r)=— / Ldll = / > Eqi(x')-dl
Yes ro

__Z/ Ll = ;Vi(r)

C. Sometimes



Electric Potential: Summary
e Definition:

E(r) = -VV(r) V(r) =— /r E(r') - dl

* How to compute it:

L ¢ 1 gi 1 / / / p(r')
Vir) = — » > dr’
(r) dmeg T 47eq ; r — r| 4eg v |t —1r/| !

e Where did it come from? VXE=0



Electric Potential: Things to remember

* E field always points in the direction of

decreasing potential:
E(r) = -VV(r)

f ;
* Integrating “outwards” vs “inwards”: Vf—Viz—fE-dl A
: * SE Ax
_E , , 2 b,
* — y > X Vb—Va=—jE'd1=—J|E||dl|=—fde
a b a a a
dl

f E [ a a ldel o a dx<o
P ° > X VCL—Vb:_J Edl:‘l‘f |E||dl|=_fde
a - b b b b



Electric Potential of Macroscopic Charged Objects

(Ch 2.3.4 —look at Ex. 7 there, t00)

* V(r) for a plane of charge and a disk of charge
* Art of making approximations
*V(r) = E(r)

y V()

=7

_—
~
—



Charged Ring Potential

Q: A uniformly charged ring in the x,y plane, centered on the origin, has radius a and
total charge Q. What is the potential at a point on the z-axis?

k

A =2 .
a k=

B, k_Q 4‘7TEO
Z

c. =X

Vet
kQ

D. a?+z2

Not sure [Aow —Lo &o {,-L-
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Charged Ring Potential

Q: A uniformly charged ring in the x,y plane, centered on the origin, has radius a and

total charge Q. What is the potential at a point on the z-axis? 4 Aq
ke
7 i
k dqg
dVv =4( d =+a?+ z*
S d Vat+z — V= {av
fm(j Cen P
* Sup sition: z I\
A. k7Q 1 \\\\
" ‘= e, V.=[dv, with [ dg = Q \ d
. P \\
O
VaZ+z2 W
p. K@ el LN
a’+z? \ a )
E. None of the above / dq



Charged Disk Potential

Q: Find electric potential at a point along the z-axis above a charged disc of radius a

ith surf h density o. |
with surface charge y A. S set op !

B. 1 hava auswer:

c. lu S-(-uc[c.

1) Draw a coordinate system & identify variables
2) Determine |r — r'| as a function of a.

3) Write down the integral and evaluate it, if time permits
2D
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Charged Disk Potential

Q: Find electric potential at a point along the z-axis above a charged disc of radius a
with surface charge density o.

dr’ — da’ = ds's'dy’ r—1'| = /s + 22

V(z) = ! /%d ,/a d s'ds’
dmeo Jo v 0 Vs?+ 22

a

_ 2mo \/8’2—|—Z2

41eg 0

V(iz) = 2 (\/a2 T2 |z|)

€0




Charged Disk Potential: Limiting Cases

Figure out how potential behaves in the
following limiting cases:

* How does the potential of the
charged disc behave when |z| > a?

* How does the potential of the
charged disc behave when |z| < a?

V(z)

g
260

(\/a2 + 22 — |z|)




Charged Disk Potential: Limiting Cases

How does the potential of the charged V(z) = QL (\/ﬁ 4 op2 |z|)

disc behave when |z| > a? |2

* It is tempting to neglect a? in comparison with z% and say:

o
Viz) > — — =
(2) 260(!Z! |2])
* This is technically correct, to some extent, 7
but we can do much better! ~_




Taylor Series in Physics

» Often used to approximate solutions, e.g.: when one scale in the problem is much larger

VA {]

or smaller than another. This can be expressed as “very far away”, “very close”, etc.

* Taylor’s Theorem states that most functions (including the ones in this class) can be
expressed as an infinite sum of polynomials:

- i 1 d*f
f(w):,r;ocn(w_w()) cn:adw_’nm:ﬂm

* These polynomial approximations can be easier to work with and interpret,
if we use them wisely.



Taylor Series FAQs

* Why use Taylor Series?

** Polynomials are nice - we can easily take their derivatives or manipulate
them algebraically, so replacing a complicated function by the first few
terms in its Taylor series often greatly simplifies a problem

* How many terms do you usually need to keep in your series?

** It depends (see HW-1 Q6), but rarely more than the first 2 (or 3) terms.
This is because we usually expand a function over a small parameter, and
the role of next-order terms becomes increasingly smaller.

* When does it fail?

** Function with undefined derivatives at the point of interest



C.

D.

E. Something else (what?)

Taylor Series: Example

Q: What is the Taylor expansion for Va2 + z2 when z > a?

Z

Z

(l-\-X)r':----

| ’B;mw&
2 )+ () @rpancion
1+5) X
1+“—2) _ i
’ — [ + %
L) \ 1+x = ( )
1+2a7) = 1 d*f




Taylor Series: Example

Q: What is the Taylor expansion for Va2 + z2 when z > a?

2

1/2
a 2
Ja? +z2 = |7 <1 + —2> = |z| (1 + x)1/? = get our small parameter, (g) =x
z

C. |z

OL

x2 de
flx)=£(0)+x — ‘x o T2 dx2 L:o t o aka ‘binomia
expansion
2
X
A+x)"= 1 +x-[rA+x0)" oo + = [rr=-DA+x)"?],-

2

Tf;-é) with x = (a/z)?
_ 2
= 1+ rx + 5 X + and 7 = 1/2

oo 1 n
:ch(w—xo)" Cp = — 'y

E. Something else (what?) g — n! dxm|,_.




Charged Disk Potential: Limiting Cases (1)

How does the potential of the charged V(z) = o (\/az 12 |z|)
disc behave when |z| > a? 2€0

V(z) = 5 [!zr (/m %Z_j) —/M] = Q

260

* Total charge on the disk:

qg 1
Viz) =
q = oma’ (=) dmeo |2|
* Note that it reduces to the potential of a
point charge placed at the origin! Yl
. \
e Can you explain why?




Charged Disk Potential: Limiting Cases (2)

Now, how does the potential of the
charged disc behave when |z| < a?

260

(\/a2 )

e In the limit z - 0 we have:

ga

* |s it consisted with what you have learned so far?




Charged Disk Potential: Limiting Cases (2)

Now, how'does the potential of the V(z) = o (\/a2 12 |z|)
charged disc behave when |z| < a? 2€0

* In the limit z = 0 we have: E=-V V(l') =0
aga
V(z) = o— a
260 —”E(Z)zi%ﬁ (independent of z) a

* |s it consisted with what you have learned so far?




Charged Disk Potential: Limiting Cases (2)

Now, how'does the potential of the V(2) a (\/a2 12 |z|)
charged disc behave when |z| < a? €0

* Let’s use the binomial expansion again. What will we bring out of the square root now?

2\ 1/2 2
\/&2—|—z2=a<1—|—z—) =a(1—|—z——|—...)

2a.2

O(2?%) so neglect

oa 2| oa 2| Co
so that V(Z) — % (1 ‘|‘£ — E) V(Z) — % (1 — ;) +| Coust

* Note that here VV(2) is defined with the reference point (i.e. V(z) = 0) at z = a.




E-field Near a Charged Disk

Q: Now let us derive the E-field near the disk (|z] < a). Let’s start with the
expression for the potential:

V(z)—>"—“( —@) (2 < a)

260 a

and use the connection between the potential and the field: E=-VV

oV
* Neglect the small x and y dependence near the disk, so that: E — 5, Z
2z



E-field Near a Charged Disk

. ov . oa 2|
* Gradient of V' (2): E=-VV—> 5, 7 V(z) = Se ( _ ;)
oa O 2 o
; E=———(1——)A: —7Z
z>0 2000z \ a)® T Tag,” V()
0: p__00 0 A PO /\‘
2= T 2¢Oz ( +E)Z__%z e Continuous! )
* Note the discontinuity of E: E2(2)
it turns out to be a general pu
future of E in the vicinity of AE|o = ; z
surface charges
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