
Lecture 5

Electric Potential



Announcement:

• TA-led office hours today will be shifted 5-10 mins forward:

Hebb 112, 1:05 – 2:05 pm, or 1:10 – 2:10 pm



Last Time

Integral form (1st year)

Gauss’ Law

Differential form

Review:

• If (and only if) the charge distribution has high symmetry, you can 
come up with a “useful” Gaussian surface, and use Gauss Law to 
compute E-filed created by this charge distribution.

𝜌𝜌(𝑟𝑟)



Electric Potential: Definition

• Curl of electric field
• Consequences of the above

(Ch. 2.2.4, 2.3.1)



Potential   energy
Never ever mix them up:

adjective                            noun

Electric   potential
adjective                            noun

(sometimes called “electric 
potential energy”, to distinguish 
it from e.g. gravitational 
potential energy – it adds to 
confusion!)

Electric potential vs Electric potential energy

𝑈𝑈 [J]

𝑉𝑉 [V]



Electric Potential: 1st year version

• Electric potential is electric potential energy per unit charge:    𝑉𝑉 = 𝑈𝑈/𝑞𝑞

equipotential
lines

electric field
lines

• For a point charge:    𝑉𝑉 𝑟𝑟 = 1
4𝜋𝜋𝜖𝜖0

𝑞𝑞
𝑟𝑟

• Δ𝑉𝑉 is path-independent (conservative force) 

• Connection between potential and field:

𝐸𝐸𝑟𝑟 = −
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

Δ𝑉𝑉 = −�
𝑖𝑖

𝑓𝑓
𝐄𝐄 ⋅ 𝑑𝑑𝐫𝐫

• Now let’s see how all this is connected with what we did here so far.



Electric Potential: 3rd year version

• We know that electric field obeys Gauss’ law,                                  ,  

and that its general solution is expressed by Coulomb’s law:  

• Now let us think about what we can say about the curl of 𝐄𝐄:  

 Let us start with a point charge sitting at the origin, and then 
try to generalize this for an arbitrary charge distribution, 𝜌𝜌(𝐫𝐫)



curl of �𝐫𝐫/𝑟𝑟2

Q: The curl of this vector field is: 

A. Zero everywhere
B. Zero everywhere except at the origin
C. None-zero everywhere 
D. Non-zero everywhere, but zero at the origin 



curl of �𝐫𝐫/𝑟𝑟2

Q: The curl of this vector field is: 

A. Zero everywhere
B. Zero everywhere except at the origin
C. None-zero everywhere 
D. Non-zero everywhere, but zero at the origin 

• By superposition, this is also true for any
distribution of static charges:



Electric Potential: 3rd year version

• Hence, the curl of any electrostatic field is zero:

• Hence, E-field can be expressed as a gradient of some regular scalar field [see HW-1 5(b)]:

 E-field is 
conservative!

• By Stokes theorem, the integral of an electrostatic field over any closed path is zero:

 Negative of this regular 
scalar field is what we 
call electric potential!

𝑑𝑑𝐥𝐥′



Constant Electric Potential

A. Nothing
B. The field has a constant magnitude everywhere in that region
C. The field is zero everywhere in that region

Q: Suppose the potential for a given charge distribution is constant within some 
region of space. What can you say about the electric field in that region? 



Constant Electric Potential

A. Nothing
B. The field has a constant magnitude everywhere in that region
C. The field is zero everywhere in that region

Q: Suppose the potential for a given charge distribution is constant within some 
region of space. What can you say about the electric field in that region? 



Zero Electric Potential

A. Nothing special about this point
B. The field is non-zero at this point
C. The field is zero at this point

Q: The potential is zero at some point in space. What can you conclude 
about the electric field at that point? 



A. Nothing special about this point
B. The field is non-zero at this point
C. The field is zero at this point

• The zero-point of the potential is 
arbitrary (chosen by convention). 
Adding an arbitrary constant to 
𝑉𝑉(𝐫𝐫) everywhere in space does 
not change the electric field. 𝑥𝑥

𝑉𝑉(𝑥𝑥) 𝐸𝐸𝑥𝑥 = −𝑑𝑑𝑑𝑑 𝑥𝑥 /𝑑𝑑𝑑𝑑

Zero Electric Potential

Q: The potential is zero at some point in space. What can you conclude 
about the electric field at that point? 



Potential and Continuity 

 

𝑟𝑟

Q: Could this graph plausibly represent 
𝐸𝐸(𝑟𝑟) or 𝑉𝑉(𝑟𝑟), in some physical situation? 

A. Could be 𝐸𝐸(𝑟𝑟) or 𝑉𝑉(𝑟𝑟)
B. Could be 𝐸𝐸(𝑟𝑟) but not 𝑉𝑉(𝑟𝑟)
C. Can’t be 𝐸𝐸(𝑟𝑟) but could 𝑉𝑉(𝑟𝑟)
D. Can’t be either
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Potential and Continuity 

 

𝑟𝑟

Q: Could this graph plausibly represent 
𝐸𝐸(𝑟𝑟) or 𝑉𝑉(𝑟𝑟), in some physical situation? 

A. Could be 𝐸𝐸(𝑟𝑟) or 𝑉𝑉(𝑟𝑟)
B. Could be 𝐸𝐸(𝑟𝑟) but not 𝑉𝑉(𝑟𝑟)
C. Can’t be 𝐸𝐸(𝑟𝑟) but could 𝑉𝑉(𝑟𝑟)
D. Can’t be either

This cannot be 𝑉𝑉(𝑟𝑟):

• Derivative of a jump is a delta function 
(i.e. infinity – unphysical!)

•𝑉𝑉(𝐫𝐫) is a continuous scalar field. Always.

This can be 𝐸𝐸(𝑟𝑟):

• Integral of a jump simply gives a kink (corner)




r













Potential and Principle of Superposition

A. Yes
B. No
C. Sometimes

Q: Does the principle of superposition apply to the electric potential? 

That is, if we have a charge distribution: 

Does it follow that: 



Potential and Principle of Superposition

A. Yes
B. No
C. Sometimes

Q: Does the principle of superposition apply to the electric potential? 

That is, if we have a charge distribution: 

Does it follow that: 



Electric Potential: Summary

• Definition:

• How to compute it:

• Where did it come from?



Electric Potential: Things to remember

• E field always points in the direction of 
decreasing potential:

• Integrating “outwards” vs “inwards”:

𝑉𝑉(𝑥𝑥,𝑦𝑦)

𝐄𝐄

𝑉𝑉f − 𝑉𝑉𝑖𝑖 = −�
𝑖𝑖

f
𝐄𝐄 ⋅ 𝑑𝑑𝐥𝐥

𝑥𝑥
𝐄𝐄

𝑎𝑎 𝑏𝑏𝑑𝑑𝐥𝐥
𝑉𝑉𝑏𝑏 − 𝑉𝑉𝑎𝑎 = −�

𝑎𝑎

𝑏𝑏
𝐄𝐄 ⋅ 𝑑𝑑𝐥𝐥 =

𝑥𝑥
𝐄𝐄

𝑎𝑎 𝑏𝑏𝑑𝑑𝐥𝐥

= −�
𝑏𝑏

𝑎𝑎
𝐸𝐸 ⋅ 𝑑𝑑𝑑𝑑𝑉𝑉𝑎𝑎 − 𝑉𝑉𝑏𝑏 = −�

𝑏𝑏

𝑎𝑎
𝐄𝐄 ⋅ 𝑑𝑑𝐥𝐥 =

𝑖𝑖 f

f 𝑖𝑖

−�
𝑎𝑎

𝑏𝑏
𝐸𝐸 𝑑𝑑𝑙𝑙 = −�

𝑎𝑎

𝑏𝑏
𝐸𝐸 𝑑𝑑𝑑𝑑

+�
𝑏𝑏

𝑎𝑎
𝐸𝐸 𝑑𝑑𝑙𝑙



Electric Potential of Macroscopic Charged Objects

• 𝑉𝑉(𝐫𝐫) for a plane of charge and a disk of charge
• Art of making approximations
• 𝑉𝑉 𝐫𝐫 ⇒ 𝐄𝐄(𝐫𝐫)

(Ch 2.3.4 – look at Ex. 7 there, too)

𝑉𝑉 𝐫𝐫 = ?



Charged Ring Potential 

A. 𝑘𝑘𝑘𝑘
𝑎𝑎

B. 𝑘𝑘𝑘𝑘
𝑧𝑧

C. 𝑘𝑘𝑘𝑘
𝑎𝑎2+𝑧𝑧2

D. 𝑘𝑘𝑘𝑘
𝑎𝑎2+𝑧𝑧2

E. None of the above

Q: A uniformly charged ring in the x,y plane, centered on the origin, has radius 𝑎𝑎 and 
total charge 𝑄𝑄. What is the potential at a point on the z-axis? 

a

z

𝑘𝑘 =
1

4𝜋𝜋𝜖𝜖0



Charged Ring Potential 

A. 𝑘𝑘𝑘𝑘
𝑎𝑎

B. 𝑘𝑘𝑘𝑘
𝑧𝑧

C. 𝑘𝑘𝑘𝑘
𝑎𝑎2+𝑧𝑧2

D. 𝑘𝑘𝑘𝑘
𝑎𝑎2+𝑧𝑧2

E. None of the above

Q: A uniformly charged ring in the x,y plane, centered on the origin, has radius 𝑎𝑎 and 
total charge 𝑄𝑄. What is the potential at a point on the z-axis? 

a

z

𝑘𝑘 =
1

4𝜋𝜋𝜖𝜖0

𝑑𝑑𝑑𝑑

𝑑𝑑

𝑑𝑑𝑑𝑑 =
𝑘𝑘 𝑑𝑑𝑑𝑑
𝑑𝑑 𝑑𝑑 = 𝑎𝑎2 + 𝑧𝑧2

• Superposition:

𝑉𝑉 = ∫ 𝑑𝑑𝑑𝑑,  with ∫ 𝑑𝑑𝑑𝑑 = 𝑄𝑄



Charged Disk Potential 

a

z

σ

1) Draw a coordinate system & identify variables

2) Determine |𝐫𝐫 − 𝐫𝐫ʹ| as a function of 𝑎𝑎. 

3) Write down the integral and evaluate it, if time permits 

Q: Find electric potential at a point along the z-axis above a charged disc of radius 𝑎𝑎
with surface charge density 𝜎𝜎.



Charged Disk Potential 

Q: Find electric potential at a point along the z-axis above a charged disc of radius 𝑎𝑎
with surface charge density 𝜎𝜎.

a

z

σ



Charged Disk Potential: Limiting Cases 

a

z

σ

• How does the potential of the 
charged disc behave when 𝑧𝑧 ≫ 𝑎𝑎? 

Figure out how potential behaves in the 
following limiting cases:

• How does the potential of the 
charged disc behave when 𝑧𝑧 ≪ 𝑎𝑎? 



Charged Disk Potential: Limiting Cases 

a

z

σ

How does the potential of the charged 
disc behave when 𝑧𝑧 ≫ 𝑎𝑎? 

• This is technically correct, to some extent, 
but we can do much better!

• It is tempting to neglect 𝑎𝑎2 in comparison with 𝑧𝑧2 and say: 



Taylor Series in Physics

• Often used to approximate solutions, e.g.: when one scale in the problem is much larger 
or smaller than another. This can be expressed as “very far away”, “very close”, etc.

• These polynomial approximations can be easier to work with and interpret, 
if we use them wisely. 

• Taylor’s Theorem states that most functions (including the ones in this class) can be 
expressed as an infinite sum of polynomials:



Taylor Series FAQs

• Why use Taylor Series? 

 Polynomials are nice - we can easily take their derivatives or manipulate 
them algebraically, so replacing a complicated function by the first few 
terms in its Taylor series often greatly simplifies a problem 

• How many terms do you usually need to keep in your series?

 It depends (see HW-1 Q6), but rarely more than the first 2 (or 3) terms. 
This is because we usually expand a function over a small parameter, and 
the role of next-order terms becomes increasingly smaller.

• When does it fail?

 Function with undefined derivatives at the point of interest



Taylor Series: Example

Q: What is the Taylor expansion for 𝑎𝑎2 + 𝑧𝑧2 when 𝑧𝑧 ≫ 𝑎𝑎?

A. 𝑧𝑧 1 + 𝑎𝑎
𝑧𝑧

B. 𝑧𝑧 1 + 𝑎𝑎2

𝑧𝑧2

C. 𝑧𝑧 1 + 𝑎𝑎
2𝑧𝑧

D. 𝑧𝑧 1 + 𝑎𝑎2

2𝑧𝑧2

E. Something else (what?)



Taylor Series: Example

A. 𝑧𝑧 1 + 𝑎𝑎
𝑧𝑧

B. 𝑧𝑧 1 + 𝑎𝑎2

𝑧𝑧2

C. 𝑧𝑧 1 + 𝑎𝑎
2𝑧𝑧

D. 𝑧𝑧 1 + 𝑎𝑎2

2𝑧𝑧2

E. Something else (what?)

⇒ get our small parameter, 𝑎𝑎
𝑧𝑧

2
≡ 𝑥𝑥

aka ‘binomial 
expansion’

𝑎𝑎2 + 𝑧𝑧2 = 𝑧𝑧 1 +
𝑎𝑎2

𝑧𝑧2

1/2

≡ 𝑧𝑧 1 + 𝑥𝑥 1/2

𝑓𝑓 𝑥𝑥 = 𝑓𝑓 0 + 𝑥𝑥 ⋅
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

�
𝑥𝑥=0

+
𝑥𝑥2

2
⋅
𝑑𝑑2𝑓𝑓
𝑑𝑑𝑥𝑥2

�
𝑥𝑥=0

+ …

1 + 𝑥𝑥 𝑟𝑟 = 1 + 𝑥𝑥 ⋅ 𝑟𝑟 1 + 𝑥𝑥 𝑟𝑟−1
𝑥𝑥=0 +

𝑥𝑥2

2
⋅ 𝑟𝑟(𝑟𝑟 − 1) 1 + 𝑥𝑥 𝑟𝑟−2

𝑥𝑥=0

= 1 + 𝑟𝑟𝑟𝑟 +
𝑟𝑟 𝑟𝑟 − 1

2
𝑥𝑥2 + ⋯ with 𝑥𝑥 = 𝑎𝑎/𝑧𝑧 2

and 𝑟𝑟 = 1/2

Q: What is the Taylor expansion for 𝑎𝑎2 + 𝑧𝑧2 when 𝑧𝑧 ≫ 𝑎𝑎?



Charged Disk Potential: Limiting Cases (1) 

a

z

σ

How does the potential of the charged 
disc behave when 𝑧𝑧 ≫ 𝑎𝑎? 

• Note that it reduces to the potential of a 
point charge placed at the origin! 

• Can you explain why?

• Total charge on the disk:



Charged Disk Potential: Limiting Cases (2) 

a

z

σ

• Is it consisted with what you have learned so far?

Now, how does the potential of the 
charged disc behave when 𝑧𝑧 ≪ 𝑎𝑎? 

• In the limit 𝑧𝑧 → 0 we have:



Charged Disk Potential: Limiting Cases (2) 

a

z

σ

• Is it consisted with what you have learned so far?

Now, how does the potential of the 
charged disc behave when 𝑧𝑧 ≪ 𝑎𝑎? 

• In the limit 𝑧𝑧 → 0 we have: 𝐄𝐄 = −∇ 𝑉𝑉 𝐫𝐫 = 0



Charged Disk Potential: Limiting Cases (2) 

• Let’s use the binomial expansion again. What will we bring out of the square root now?

so that 

• Note that here 𝑉𝑉(𝑧𝑧) is defined with the reference point (i.e. 𝑉𝑉 𝑧𝑧 = 0) at 𝑧𝑧 = 𝑎𝑎.

Now, how does the potential of the 
charged disc behave when 𝑧𝑧 ≪ 𝑎𝑎? 



E-field Near a Charged Disk

Q: Now let us derive the E-field near the disk ( 𝑧𝑧 ≪ 𝑎𝑎). Let’s start with the 
expression for the potential: 

and use the connection between the potential and the field:

• Neglect the small 𝑥𝑥 and 𝑦𝑦 dependence near the disk, so that: 



E-field Near a Charged Disk

• Gradient of 𝑉𝑉(𝑧𝑧): 

𝑧𝑧 > 0:

𝑧𝑧 < 0:
𝑧𝑧

𝑉𝑉(𝑧𝑧)

𝑧𝑧

𝐸𝐸𝑧𝑧(𝑧𝑧)• Note the discontinuity of  𝐄𝐄: 
it turns out to be a general 
future of 𝐄𝐄 in the vicinity of 
surface charges

• Continuous!
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