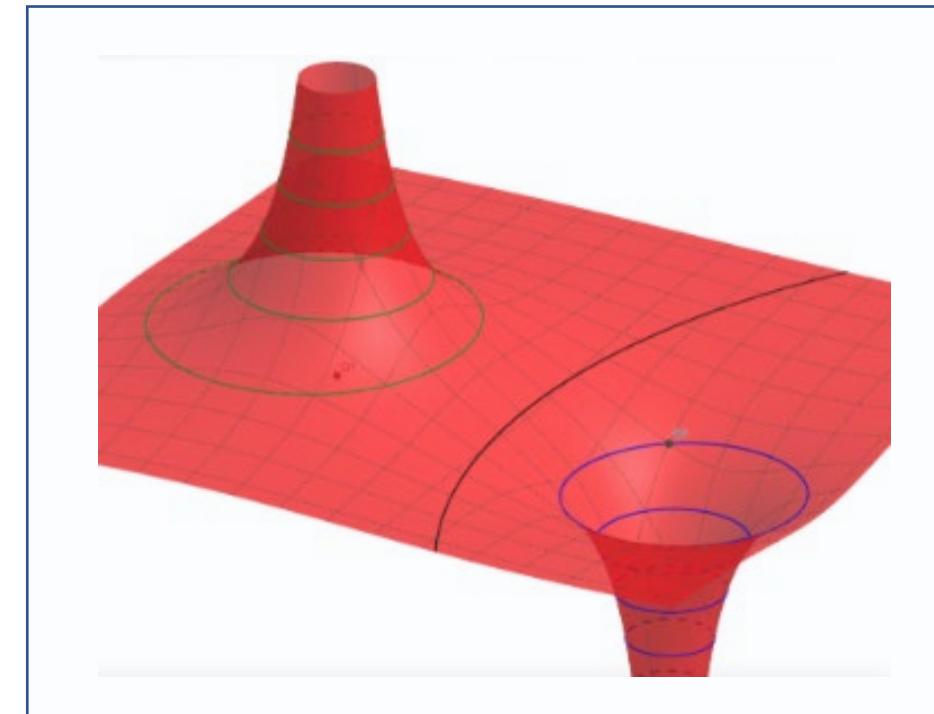


Lecture 5

Electric Potential



Announcement:

- TA-led office hours today will be shifted 5-10 mins forward:

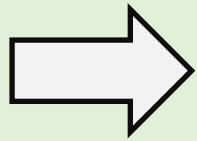
Hebb 112, 1:05 – 2:05 pm, or 1:10 – 2:10 pm

Last Time

Gauss' Law

$$\iint_S \mathbf{E} \cdot d\mathbf{a} = \frac{Q_V}{\epsilon_0}$$

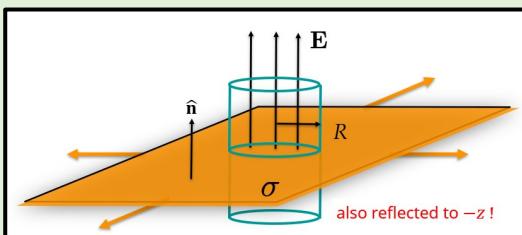
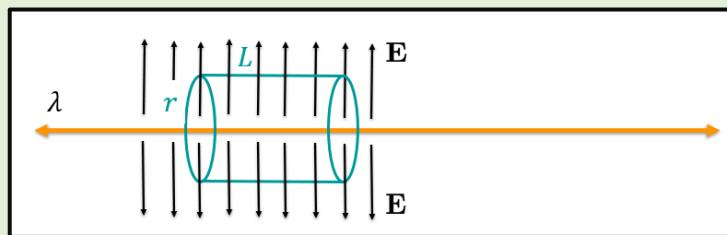
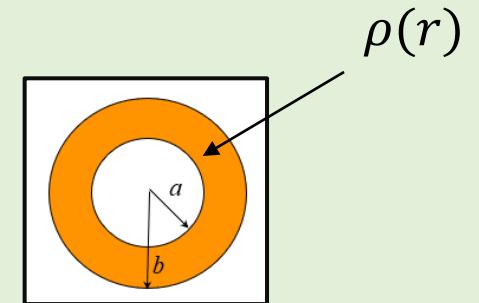
Integral form (1st year)



$$\nabla \cdot \mathbf{E}(\mathbf{r}) = \frac{\rho(\mathbf{r})}{\epsilon_0}$$

Differential form

Review:

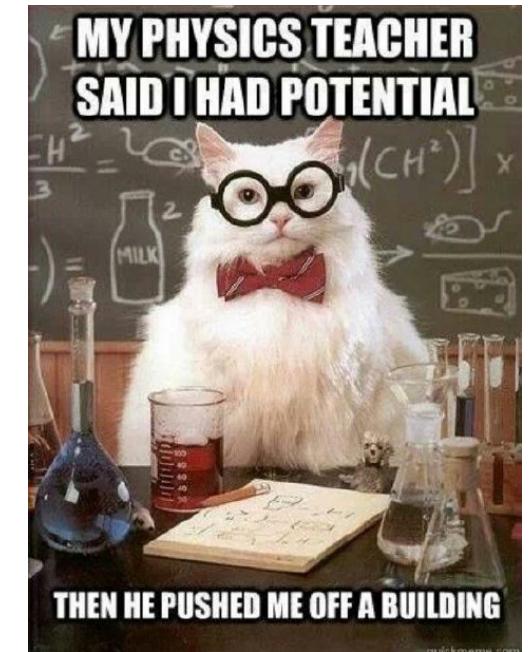


- If (and only if) the **charge distribution has high symmetry**, you can come up with a “useful” Gaussian surface, and use Gauss Law to compute E-field created by this charge distribution.

Electric Potential: Definition

(Ch. 2.2.4, 2.3.1)

- Curl of electric field
- Consequences of the above



Electric potential vs Electric potential energy

Never ever mix them up:

Potential energy U [J]

adjective

noun

Electric potential V [V]

adjective

noun

(sometimes called “electric potential energy”, to distinguish it from e.g. gravitational potential energy – it adds to confusion!)

Electric Potential: 1st year version

- Electric potential is electric potential energy per unit charge: $V = U/q$

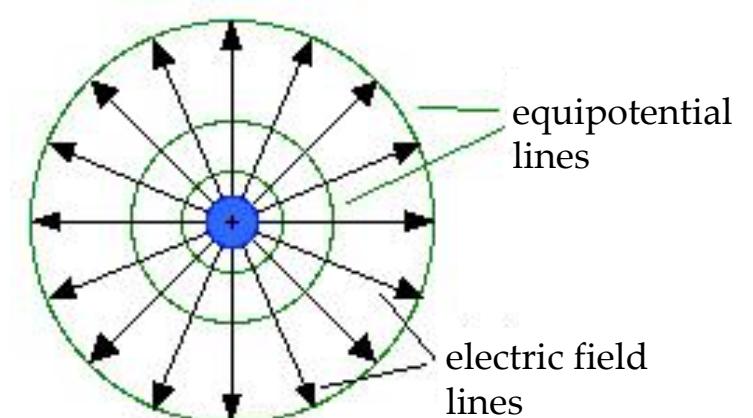
- For a point charge: $V(r) = \frac{1}{4\pi\epsilon_0} \frac{q}{r}$

- ΔV is path-independent (conservative force)

- Connection between potential and field:

$$E_r = -\frac{dV}{dr}$$

$$\Delta V = - \int_i^f \mathbf{E} \cdot d\mathbf{r}$$



- Now let's see how all this is connected with what we did here so far.

Electric Potential: 3rd year version

- We know that electric field obeys Gauss' law, $\nabla \cdot \mathbf{E}(\mathbf{r}) = \frac{\rho(\mathbf{r})}{\epsilon_0}$,

and that its general solution is expressed by Coulomb's law:

$$\mathbf{E}(\mathbf{r}) = \frac{q}{4\pi\epsilon_0} \frac{\hat{\mathbf{r}}}{r^2} \quad \rightarrow \sum_{i=1}^N \frac{q_i}{4\pi\epsilon_0} \frac{\mathbf{r} - \mathbf{r}_i}{|\mathbf{r} - \mathbf{r}_i|^3} \quad \rightarrow \int_V \frac{\rho(\mathbf{r}')}{4\pi\epsilon_0} \frac{\mathbf{r} - \mathbf{r}'}{|\mathbf{r} - \mathbf{r}'|^3} d^3\mathbf{r}'$$

- Now let us think about what we can say about the curl of \mathbf{E} : $\nabla \times \mathbf{E}(\mathbf{r}) = ?$

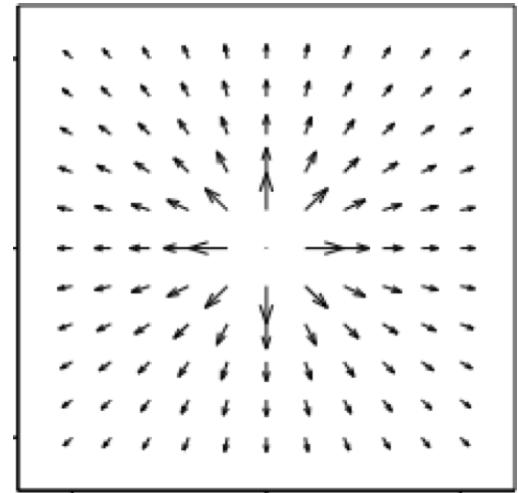
❖ Let us start with a point charge sitting at the origin, and then try to generalize this for an arbitrary charge distribution, $\rho(\mathbf{r})$

curl of $\hat{\mathbf{r}}/r^2$

Q: The curl of this vector field is:

- A. Zero everywhere
- B. Zero everywhere except at the origin
- C. None-zero everywhere
- D. Non-zero everywhere, but zero at the origin

$$\mathbf{E}(\mathbf{r}) = \frac{q}{4\pi\epsilon_0} \frac{\hat{\mathbf{r}}}{r^2}$$

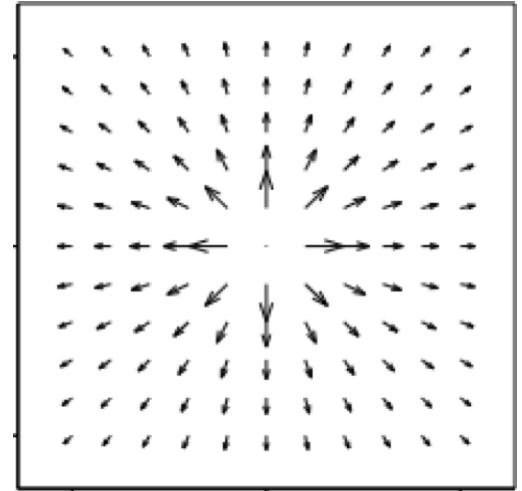


curl of $\hat{\mathbf{r}}/r^2$

Q: The curl of this vector field is:

- A. Zero everywhere
- B. Zero everywhere except at the origin
- C. None-zero everywhere
- D. Non-zero everywhere, but zero at the origin

$$\mathbf{E}(\mathbf{r}) = \frac{q}{4\pi\epsilon_0} \frac{\hat{\mathbf{r}}}{r^2}$$



$$\begin{aligned}
 \nabla \times \mathbf{E}(\mathbf{r}) &= \frac{1}{r \sin \theta} \left[\frac{\partial}{\partial \theta} (\sin \theta E_\phi) - \frac{\partial E_\theta}{\partial \phi} \right] \hat{\mathbf{r}} + \frac{1}{r} \left[\frac{1}{\sin \theta} \frac{\partial E_r}{\partial \phi} - \frac{\partial}{\partial r} (r E_\phi) \right] \hat{\theta} + \frac{1}{r} \left[\frac{\partial}{\partial r} (r E_\theta) - \frac{\partial E_r}{\partial \theta} \right] \hat{\phi} \\
 &= \frac{1}{r \sin \theta} [0 - 0] \hat{\mathbf{r}} + \frac{1}{r} [0 - 0] \hat{\theta} + \frac{1}{r} [0 - 0] \hat{\phi}
 \end{aligned}$$

- By superposition, this is also true for any distribution of static charges:

$$\nabla \times \left(\sum_i \mathbf{E}_i \right) = \sum_i (\nabla \times \mathbf{E}_i) = 0$$

Electric Potential: 3rd year version

- Hence, the curl of any electrostatic field is zero:

$$\nabla \times \mathbf{E} = 0$$

- By Stokes theorem, the integral of an electrostatic field over any closed path is zero:

$$\vec{E} \equiv \nabla \phi$$

$$\nabla \times \mathbf{E} = 0 \rightarrow \oint_C \mathbf{E} \cdot d\mathbf{l} = 0$$

❖ E-field is conservative!

$$\curvearrowright \nabla \times \nabla \phi = 0$$

- Hence, E-field can be expressed as a gradient of some regular scalar field [see HW-1 5(b)]:

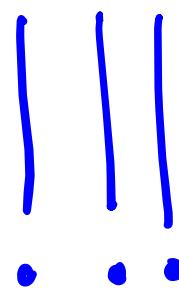
$$\mathbf{E}(\mathbf{r}) \equiv -\nabla V(\mathbf{r})$$

$$V(\mathbf{r}) = - \int_{\mathbf{r}_0}^{\mathbf{r}} \mathbf{E}(\mathbf{r}') \cdot d\mathbf{l}'$$

❖ Negative of this regular scalar field is what we call electric potential!

Constant Electric Potential

Q: Suppose the potential for a given charge distribution is constant within some region of space. What can you say about the electric field in that region?

$$\vec{E} = -\nabla V$$


- A. Nothing
- B. The field has a constant magnitude everywhere in that region
- C. The field is zero everywhere in that region

Constant Electric Potential

Q: Suppose the potential for a given charge distribution is constant within some region of space. What can you say about the electric field in that region?

$$\mathbf{E}(\mathbf{r}) \equiv -\nabla V(\mathbf{r})$$

- A. Nothing
- B. The field has a constant magnitude everywhere in that region
- C. The field is zero everywhere in that region

Zero Electric Potential

Q: The potential is zero at some point in space. What can you conclude about the electric field at that point?

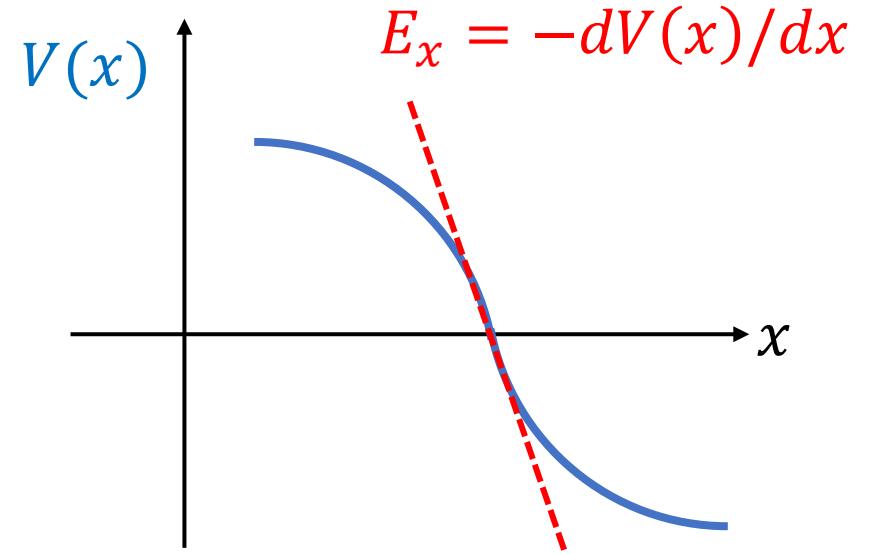
$$\vec{E} = -\nabla V !$$

- A. Nothing special about this point
- B. The field is non-zero at this point
- C. The field is zero at this point

Zero Electric Potential

Q: The potential is zero at some point in space. What can you conclude about the electric field at that point?

- The zero-point of the potential is arbitrary (chosen by convention). Adding an arbitrary constant to $V(\mathbf{r})$ everywhere in space does not change the electric field.



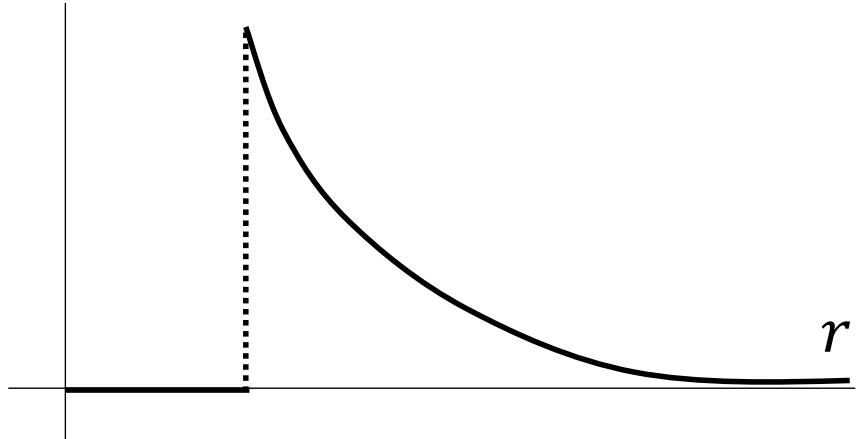
- A. Nothing special about this point
- B. The field is non-zero at this point
- C. The field is zero at this point

Potential and Continuity

Q: Could this graph plausibly represent $E(r)$ or $V(r)$, in some physical situation?

$\times \quad \vec{E} = - \nabla \underline{V}$

$\checkmark \quad \Delta V = - \int \underline{\underline{E}} \cdot d\vec{e}$



- A. Could be $E(r)$ or $V(r)$
- B. Could be $E(r)$ but not $V(r)$
- C. Can't be $E(r)$ but could $V(r)$
- D. Can't be either

Potential and Continuity

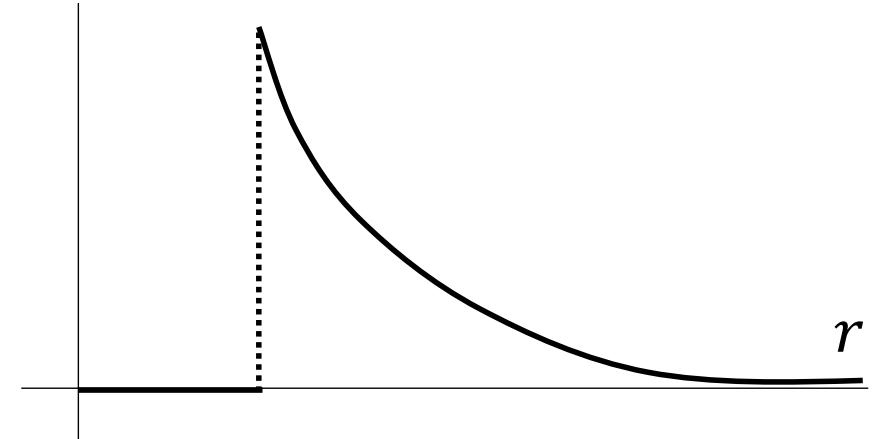
Q: Could this graph plausibly represent $E(r)$ or $V(r)$, in some physical situation?

This **can** be $E(r)$:

- Integral of a jump simply gives a kink (corner)

$$V(\mathbf{r}) = - \int_{\mathbf{r}_0}^{\mathbf{r}} \mathbf{E}(\mathbf{r}') \cdot d\mathbf{l}'$$

- A. Could be $E(r)$ or $V(r)$
- B. Could be $E(r)$ but not $V(r)$
- C. Can't be $E(r)$ but could $V(r)$
- D. Can't be either



This **cannot** be $V(r)$:

- Derivative of a jump is a delta function (i.e. infinity – unphysical!)

$$\mathbf{E}(\mathbf{r}) \equiv -\nabla V(\mathbf{r})$$

- $V(\mathbf{r})$ is a continuous scalar field. Always.

Potential and Principle of Superposition

Q: Does the principle of superposition apply to the electric potential?

That is, if we have a charge distribution:

$$\rho(\mathbf{r}) = \sum_i \rho_i(\mathbf{r}) = \rho_1(\mathbf{r}) + \rho_2(\mathbf{r}) + \rho_3(\mathbf{r}) + \dots$$

Does it follow that:

$$V(\mathbf{r}) = \sum_i V_i(\mathbf{r}) = V_1(\mathbf{r}) + V_2(\mathbf{r}) + V_3(\mathbf{r}) + \dots?$$

- A. Yes
- B. No
- C. Sometimes

Potential and Principle of Superposition

Q: Does the principle of superposition apply to the electric potential?

That is, if we have a charge distribution:

$$\rho(\mathbf{r}) = \sum_i \rho_i(\mathbf{r}) = \rho_1(\mathbf{r}) + \rho_2(\mathbf{r}) + \rho_3(\mathbf{r}) + \dots$$

Does it follow that:

$$V(\mathbf{r}) = \sum_i V_i(\mathbf{r}) = V_1(\mathbf{r}) + V_2(\mathbf{r}) + V_3(\mathbf{r}) + \dots?$$

$$V(\mathbf{r}) = - \int_{\mathbf{r}_0}^{\mathbf{r}} \mathbf{E}(\mathbf{r}') \cdot d\mathbf{l}' = - \int_{\mathbf{r}_0}^{\mathbf{r}} \sum_i \mathbf{E}_i(\mathbf{r}') \cdot d\mathbf{l}'$$

$$= - \sum_i \int_{\mathbf{r}_0}^{\mathbf{r}} \mathbf{E}_i(\mathbf{r}') \cdot d\mathbf{l}' = \sum_i V_i(\mathbf{r})$$

A. Yes

B. No

C. Sometimes

Electric Potential: Summary

- Definition:

$$\mathbf{E}(\mathbf{r}) \equiv -\nabla V(\mathbf{r})$$

$$V(\mathbf{r}) = - \int_{\mathbf{r}_0}^{\mathbf{r}} \mathbf{E}(\mathbf{r}') \cdot d\mathbf{l}'$$

- How to compute it:

$$V(r) = \frac{1}{4\pi\epsilon_0} \frac{q}{r} \quad \rightarrow \frac{1}{4\pi\epsilon_0} \sum_i \frac{q_i}{|\mathbf{r} - \mathbf{r}_i|} \quad \rightarrow \frac{1}{4\pi\epsilon_0} \iiint_V \frac{\rho(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|} d\tau'$$

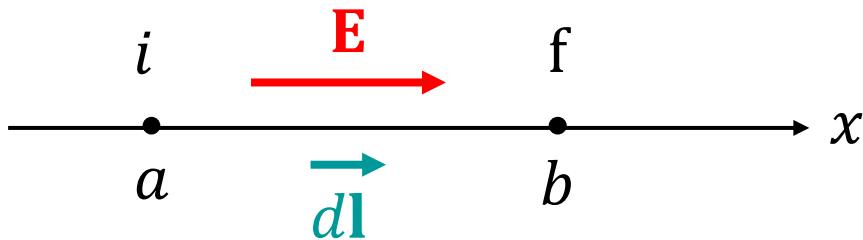
- Where did it come from? $\nabla \times \mathbf{E} = 0$

Electric Potential: Things to remember

- E field always points in the direction of decreasing potential:

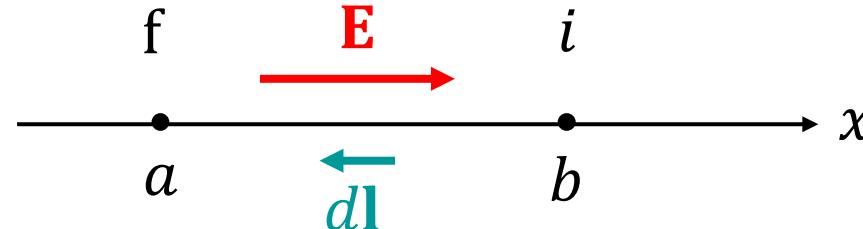
$$\mathbf{E}(\mathbf{r}) \equiv -\nabla V(\mathbf{r})$$

- Integrating “outwards” vs “inwards”:



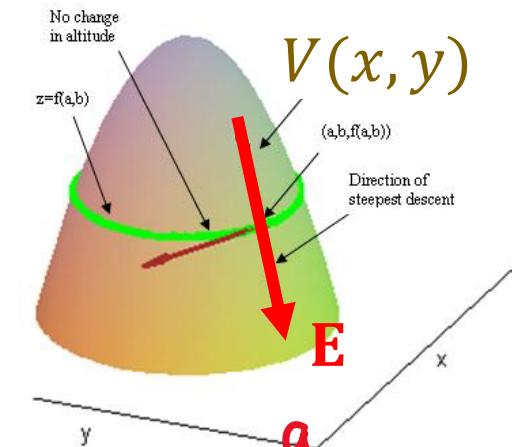
$$V_f - V_i = - \int_i^f \mathbf{E} \cdot d\mathbf{l}$$

$$A \pm \int E dx$$



$$V_a - V_b = - \int_b^a \mathbf{E} \cdot d\mathbf{l} = + \int_b^a |E| |dl| = - \int_b^a E dx$$

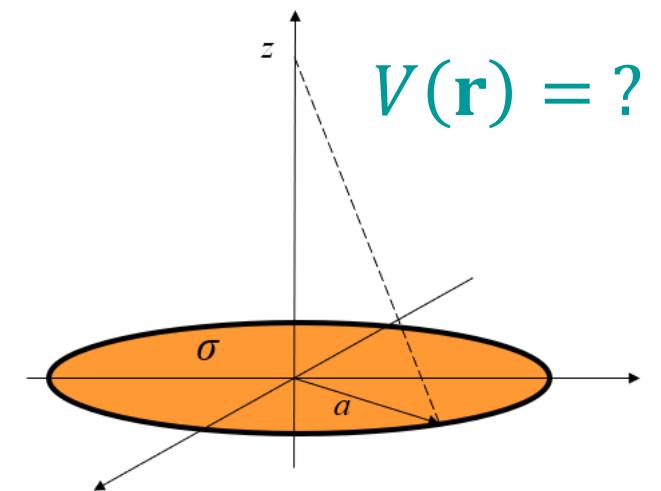
$$|dl| > 0 \quad dx < 0$$



Electric Potential of Macroscopic Charged Objects

(Ch 2.3.4 – look at Ex. 7 there, too)

- $V(\mathbf{r})$ for a plane of charge and a disk of charge
- Art of making approximations
- $V(\mathbf{r}) \Rightarrow \mathbf{E}(\mathbf{r})$



Charged Ring Potential

Q: A uniformly charged ring in the x,y plane, centered on the origin, has radius a and total charge Q . What is the potential at a point on the z -axis?

A. $\frac{kQ}{a}$

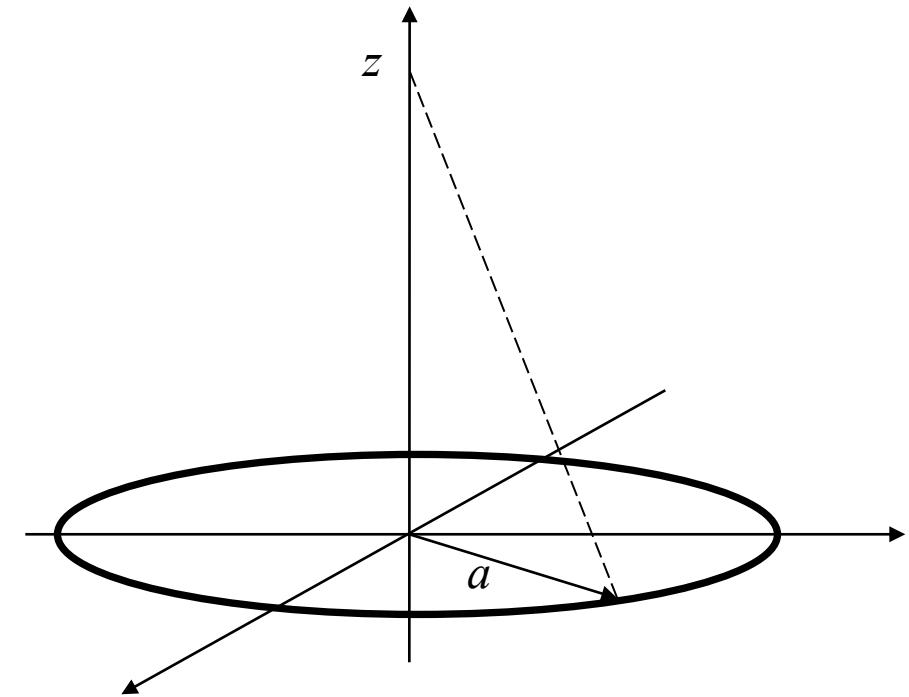
B. $\frac{kQ}{z}$

C. $\frac{kQ}{\sqrt{a^2+z^2}}$

D. $\frac{kQ}{a^2+z^2}$

E. ~~None of the above~~

Not sure how to do it



Charged Ring Potential

Q: A uniformly charged ring in the x,y plane, centered on the origin, has radius a and total charge Q . What is the potential at a point on the z -axis?

A. $\frac{kQ}{a}$

B. $\frac{kQ}{z}$

C. $\frac{kQ}{\sqrt{a^2+z^2}}$

D. $\frac{kQ}{a^2+z^2}$

E. None of the above

$$\int_{\text{ring}} dV = \int_{\text{ring}} \frac{k dq}{d}$$

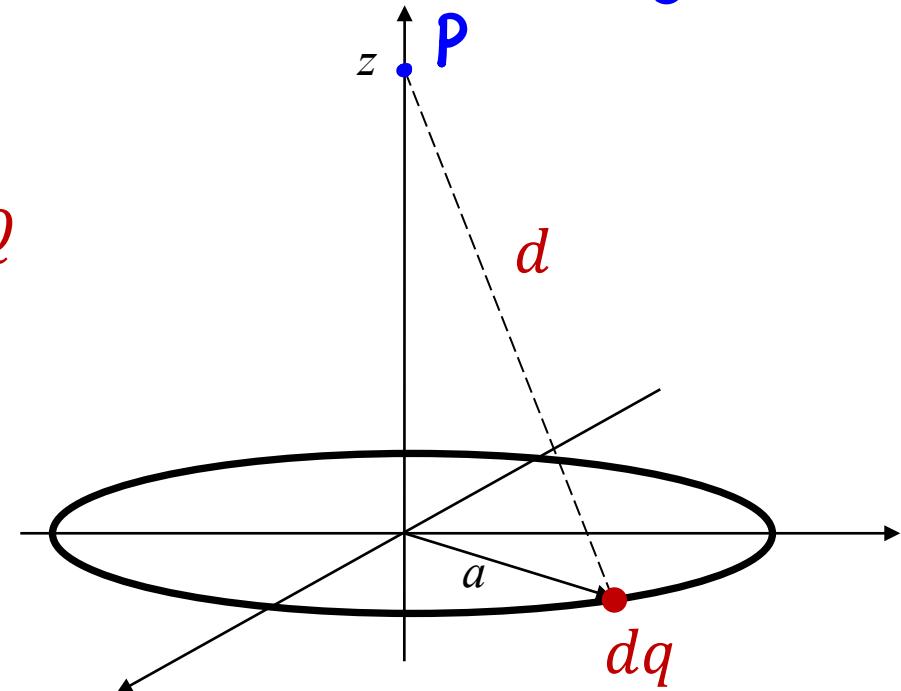
• Superposition:

$$d = \sqrt{a^2 + z^2}$$

$$V = \int dV, \text{ with } \int dq = Q$$

~~$$V = \frac{kq}{d}$$~~

$$\rightarrow V = \int dV$$



Charged Disk Potential

Q: Find electric potential at a point along the z-axis above a charged disc of radius a with surface charge density σ .

A. \int set up!

B. I have answer!

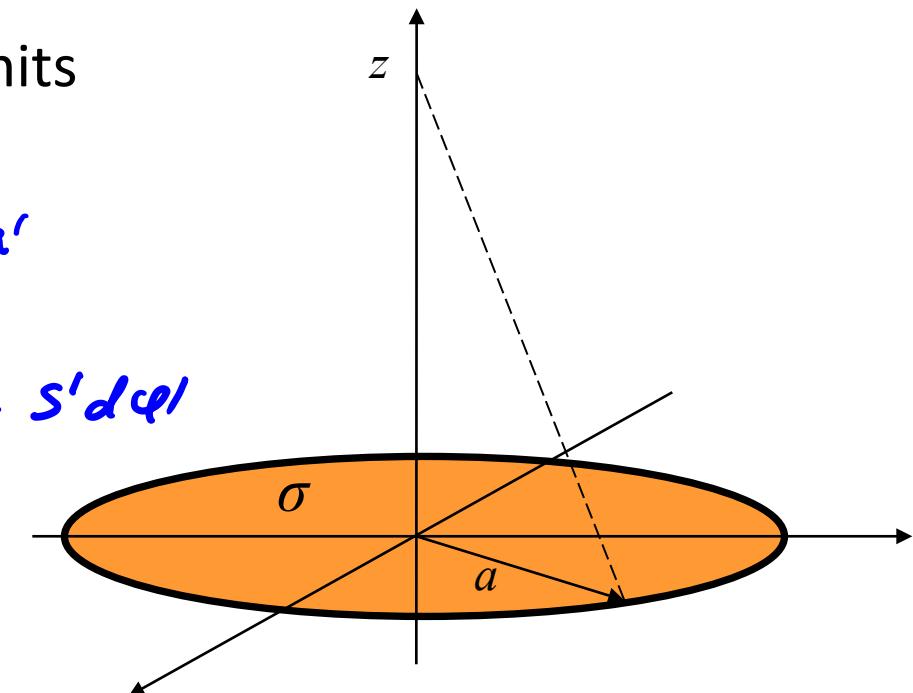
- 1) Draw a coordinate system & identify variables
- 2) Determine $|\mathbf{r} - \mathbf{r}'|$ as a function of a .
- 3) Write down the integral and evaluate it, if time permits

C. I'm stuck.

$$\rho(r') d\tau' \xrightarrow{2D} \underline{\underline{d\alpha'}}$$

$$\rightarrow \frac{1}{4\pi\epsilon_0} \iiint_V \frac{\rho(r')}{|\mathbf{r} - \mathbf{r}'|} d\tau'$$

$$d\alpha' = ds' \cdot s' d\varphi$$



Charged Disk Potential

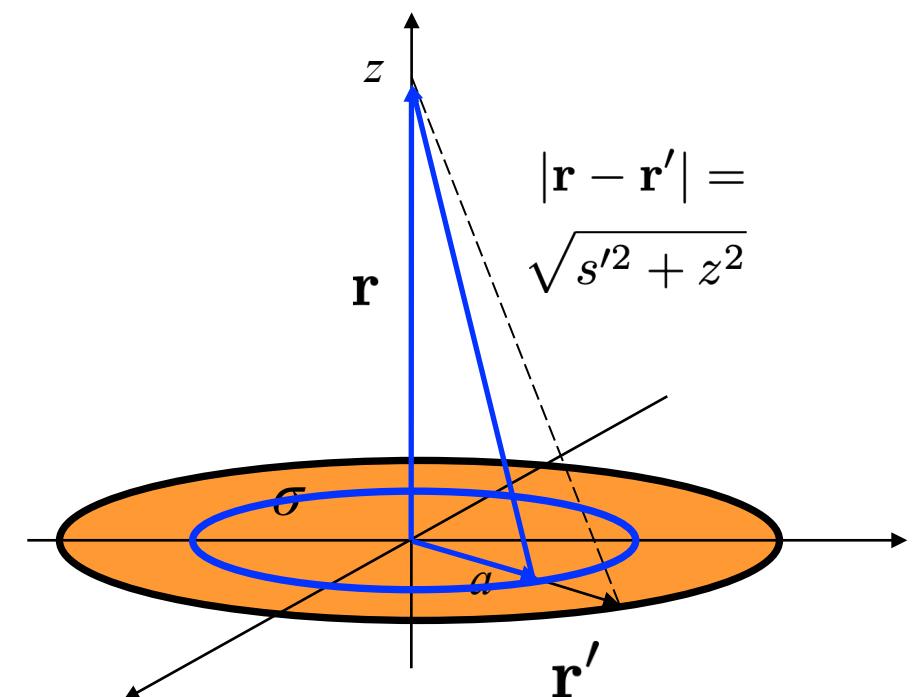
Q: Find electric potential at a point along the z-axis above a charged disc of radius a with surface charge density σ .

$$d\tau' \rightarrow da' = ds' s' d\varphi' \quad |r - r'| = \sqrt{s'^2 + z^2}$$

$$V(z) = \frac{1}{4\pi\epsilon_0} \int_0^{2\pi} d\varphi' \int_0^a \frac{\sigma}{\sqrt{s'^2 + z^2}} s' ds'$$

$$= \frac{2\pi\sigma}{4\pi\epsilon_0} \sqrt{s'^2 + z^2} \Big|_0^a$$

$$V(z) = \frac{\sigma}{2\epsilon_0} \left(\sqrt{a^2 + z^2} - |z| \right)$$



Charged Disk Potential: Limiting Cases

Figure out how potential behaves in the following limiting cases:

$$V(z) = \frac{\sigma}{2\epsilon_0} \left(\sqrt{a^2 + z^2} - |z| \right)$$

- How does the potential of the charged disc behave when $|z| \gg a$?
- How does the potential of the charged disc behave when $|z| \ll a$?



Charged Disk Potential: Limiting Cases

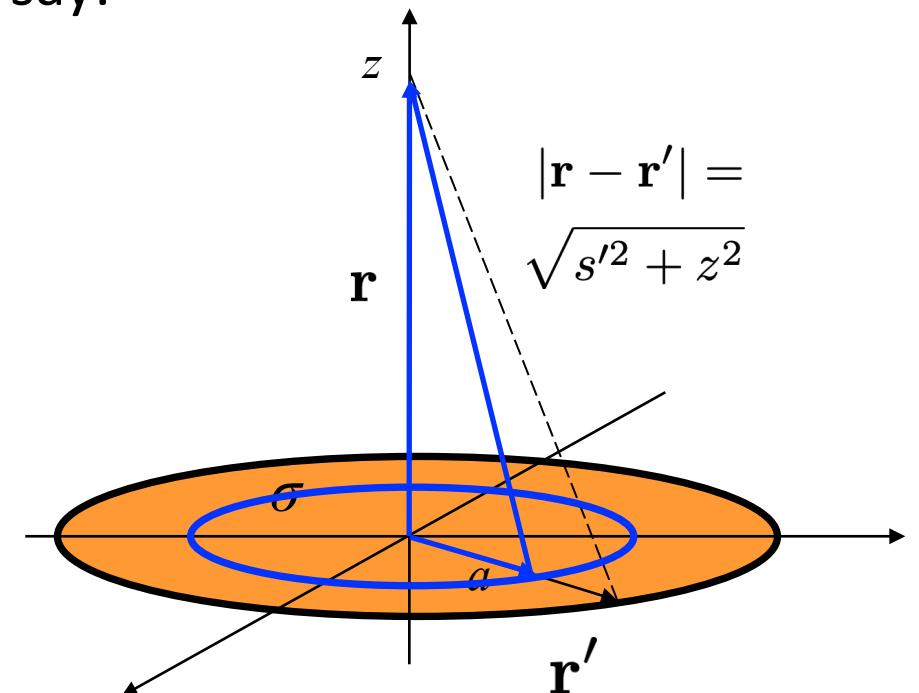
How does the potential of the charged disc behave when $|z| \gg a$?

$$V(z) = \frac{\sigma}{2\epsilon_0} \left(\sqrt{a^2 + z^2} - |z| \right)$$

- It is tempting to neglect a^2 in comparison with z^2 and say:

$$V(z) \rightarrow \frac{\sigma}{2\epsilon_0} (|z| - |z|) = 0$$

- This is technically correct, to some extent, but we can do much better!



Taylor Series in Physics

- Often used to approximate solutions, e.g.: when one scale in the problem is much larger or smaller than another. This can be expressed as “**very far away**”, “**very close**”, etc.
- Taylor’s Theorem states that most functions (including the ones in this class) can be expressed as an infinite sum of polynomials:

$$f(x) = \sum_{n=0}^{\infty} c_n (x - x_0)^n \quad c_n = \frac{1}{n!} \left. \frac{d^n f}{dx^n} \right|_{x=x_0}$$

- These polynomial approximations can be easier to work with and interpret, if we use them wisely.

Taylor Series FAQs

- Why use Taylor Series?
 - ❖ Polynomials are nice - we can easily take their derivatives or manipulate them algebraically, so replacing a complicated function by the first few terms in its Taylor series often greatly simplifies a problem
- How many terms do you usually need to keep in your series?
 - ❖ It depends (see HW-1 Q6), but rarely more than the first 2 (or 3) terms.
This is because we usually expand a function over a small parameter, and the role of next-order terms becomes increasingly smaller.
- When does it fail?
 - ❖ Function with undefined derivatives at the point of interest

Taylor Series: Example

Q: What is the Taylor expansion for $\sqrt{a^2 + z^2}$ when $z \gg a$?

- A. $|z| \left(1 + \frac{a}{z}\right)$
- B. $|z| \left(1 + \frac{a^2}{z^2}\right)$
- C. $|z| \left(1 + \frac{a}{2z}\right)$
- D. $|z| \left(1 + \frac{a^2}{2z^2}\right)$
- E. Something else (what?)

$$z \sqrt{1 + \underbrace{\left(\frac{a}{z}\right)^2}_x}$$

$$\sqrt{1 + x}$$

$$(1 + x)^r = \dots$$

Binomial
expansion

$$= (1 + x)^{1/2}$$

$$f(x) = \sum_{n=0}^{\infty} c_n (x - x_0)^n \quad c_n = \frac{1}{n!} \left. \frac{d^n f}{dx^n} \right|_{x=x_0}$$

Taylor Series: Example

Q: What is the Taylor expansion for $\sqrt{a^2 + z^2}$ when $z \gg a$?

$$\sqrt{a^2 + z^2} = |z| \left(1 + \frac{a^2}{z^2} \right)^{1/2} \equiv |z| (1 + x)^{1/2} \quad \Rightarrow \text{get our small parameter, } \left(\frac{a}{z} \right)^2 \equiv x$$

$$f(x) = f(0) + x \cdot \frac{df}{dx} \Big|_{x=0} + \frac{x^2}{2} \cdot \frac{d^2f}{dx^2} \Big|_{x=0} + \dots$$

aka 'binomial expansion'

A. $|z| \left(1 + \frac{a}{z} \right)$ $(1 + x)^r = 1 + x \cdot [r(1 + x)^{r-1}]_{x=0} + \frac{x^2}{2} \cdot [r(r-1)(1 + x)^{r-2}]_{x=0}$

B. $|z| \left(1 + \frac{a^2}{z^2} \right)$

C. $|z| \left(1 + \frac{a}{2z} \right) = 1 + rx + \frac{r(r-1)}{2} x^2 + \dots$ with $x = (a/z)^2$
and $r = 1/2$

D. $|z| \left(1 + \frac{a^2}{2z^2} \right)$

E. Something else (what?)

$$f(x) = \sum_{n=0}^{\infty} c_n (x - x_0)^n \quad c_n = \frac{1}{n!} \left. \frac{d^n f}{dx^n} \right|_{x=x_0}$$

Charged Disk Potential: Limiting Cases (1)

How does the potential of the charged disc behave when $|z| \gg a$?

$$V(z) = \frac{\sigma}{2\epsilon_0} \left(\sqrt{a^2 + z^2} - |z| \right)$$

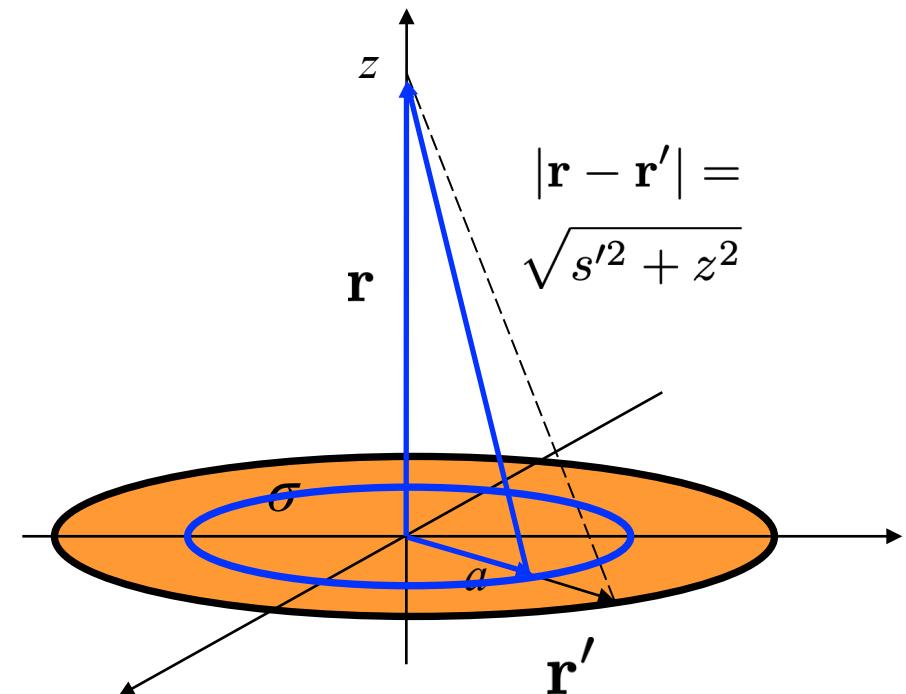
$$V(z) \rightarrow \frac{\sigma}{2\epsilon_0} \left[|z| \left(1 + \frac{1}{2} \frac{a^2}{z^2} \right) - |z| \right] = \frac{\sigma a^2}{4\epsilon_0} \frac{1}{|z|} \cancel{\frac{1}{\pi}} = Q$$

- Total charge on the disk:

$$q \equiv \sigma \pi a^2$$

$$V(z) = \frac{q}{4\pi\epsilon_0} \frac{1}{|z|}$$

- Note that it reduces to the potential of a point charge placed at the origin!
- Can you explain why?



Charged Disk Potential: Limiting Cases (2)

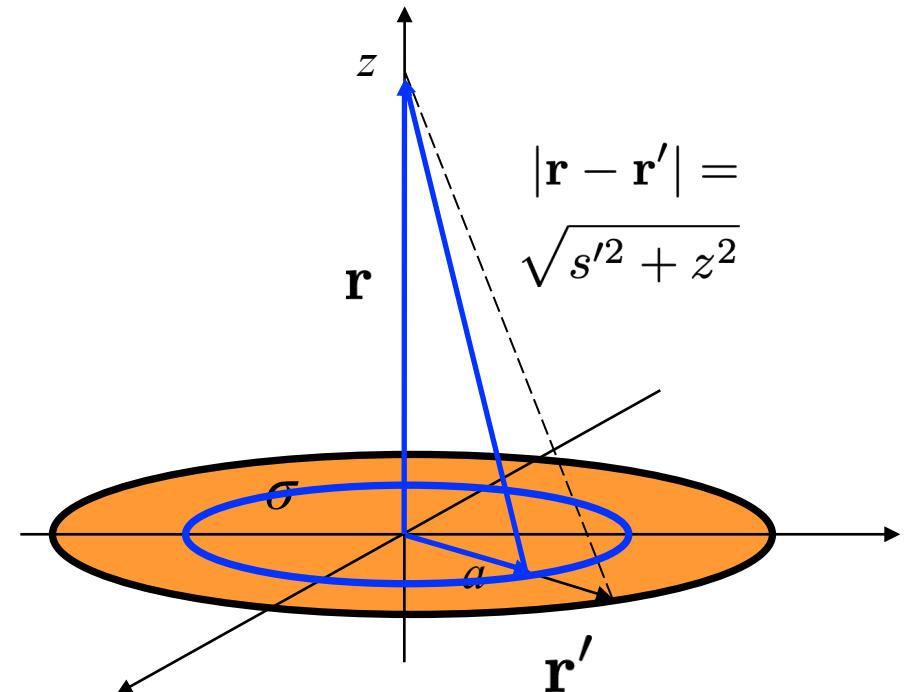
Now, how does the potential of the charged disc behave when $|z| \ll a$?

$$V(z) = \frac{\sigma}{2\epsilon_0} \left(\sqrt{a^2 + \cancel{z^2}} - \cancel{\frac{|z|}{a}} \right)$$

- In the limit $z \rightarrow 0$ we have:

$$V(z) \rightarrow \frac{\sigma a}{2\epsilon_0}$$

- Is it consistent with what you have learned so far?



Charged Disk Potential: Limiting Cases (2)

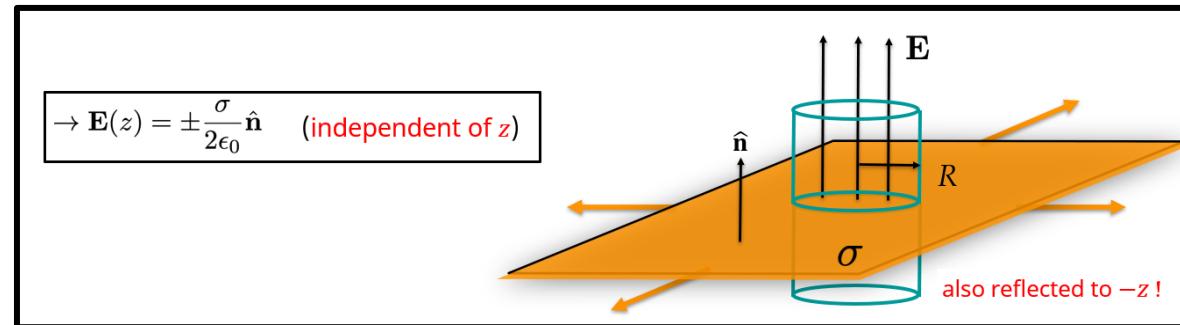
Now, how does the potential of the charged disc behave when $|z| \ll a$?

$$V(z) = \frac{\sigma}{2\epsilon_0} \left(\sqrt{a^2 + z^2} - |z| \right)$$

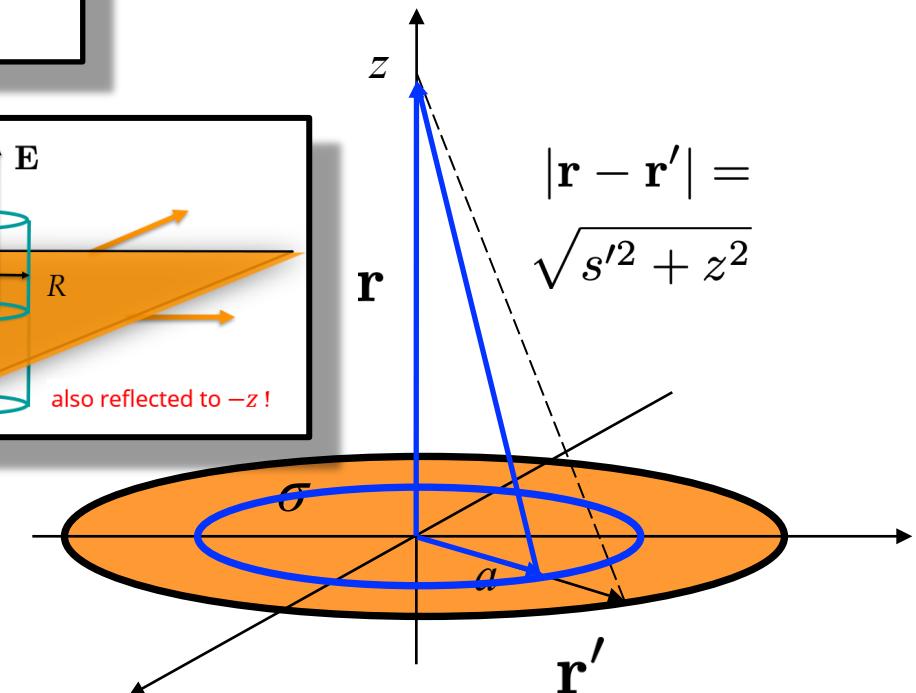
- In the limit $z \rightarrow 0$ we have:

$$V(z) \rightarrow \frac{\sigma a}{2\epsilon_0}$$

$$\mathbf{E} = -\nabla V(\mathbf{r}) = 0$$



- Is it consistent with what you have learned so far?



Charged Disk Potential: Limiting Cases (2)

Now, how does the potential of the charged disc behave when $|z| \ll a$?

$$V(z) = \frac{\sigma}{2\epsilon_0} \left(\sqrt{a^2 + z^2} - |z| \right)$$

- Let's use the binomial expansion again. What will we bring out of the square root now?

$$\sqrt{a^2 + z^2} = a \left(1 + \frac{z^2}{a^2} \right)^{1/2} = a \left(1 + \frac{z^2}{2a^2} + \dots \right)$$

$\mathcal{O}(z^2)$ so neglect

so that $V(z) \rightarrow \frac{\sigma a}{2\epsilon_0} \left(1 + \frac{z^2}{2a^2} - \frac{|z|}{a} \right)$

$$V(z) \rightarrow \frac{\sigma a}{2\epsilon_0} \left(1 - \frac{|z|}{a} \right) + \text{Const}$$

- Note that here $V(z)$ is defined with the **reference point** (i.e. $V(z) = 0$) at $z = a$.

E-field Near a Charged Disk

Q: Now let us derive the E-field near the disk ($|z| \ll a$). Let's start with the expression for the potential:

$$V(z) \rightarrow \frac{\sigma a}{2\epsilon_0} \left(1 - \frac{|z|}{a}\right) \quad (z \ll a)$$

and use the connection between the potential and the field: $\mathbf{E} = -\nabla V$

- Neglect the small x and y dependence near the disk, so that: $\mathbf{E} \rightarrow -\frac{\partial V}{\partial z} \hat{\mathbf{z}}$

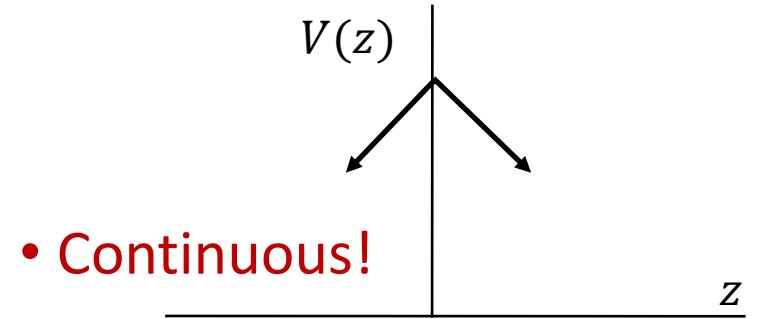
E-field Near a Charged Disk

- Gradient of $V(z)$: $\mathbf{E} = -\nabla V \rightarrow -\frac{\partial V}{\partial z} \hat{\mathbf{z}}$

$$V(z) \rightarrow \frac{\sigma a}{2\epsilon_0} \left(1 - \frac{|z|}{a} \right)$$

$z > 0$: $\mathbf{E} = -\frac{\sigma a}{2\epsilon_0} \frac{\partial}{\partial z} \left(1 - \frac{z}{a} \right) \hat{\mathbf{z}} = +\frac{\sigma}{2\epsilon_0} \hat{\mathbf{z}}$

$z < 0$: $\mathbf{E} = -\frac{\sigma a}{2\epsilon_0} \frac{\partial}{\partial z} \left(1 + \frac{z}{a} \right) \hat{\mathbf{z}} = -\frac{\sigma}{2\epsilon_0} \hat{\mathbf{z}}$



- Note the discontinuity of \mathbf{E} : it turns out to be a general future of \mathbf{E} in the vicinity of surface charges

$$\Delta E_z|_0 = \frac{\sigma}{\epsilon_0}$$

