Lecture 6

Boundary conditions for E field.

Poisson and Laplace equations



Q: How was the homework?

A. Piece of cake! Give me more!

B. Impossible. Inspiration never came.
C. With time, it went ok

Check updated formula sheet on Canvas!



E-field Near a Charged Disk
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Boundary Conditions

(Ch 2.3.5)

above

* Boundary conditions for electric field and potential
* Difference between g and p

e Examples



Boundary conditions: What is it about?

We will resolve E into components parallel

Medium 1 Ei E and perpendicular to the interface...
...and will derive certain
conclusions about these
components right above /
right below the interface.

Medium 2

Basically, we want to know if are they the same (continuous across the boundary)
or different (have a jump at the boundary).



We will do it using Maxwell’s Equations for E-field

Vv f E - da = Genc v f E-dl=0 integral version
A €0 C
V- -E= ﬁ VXE=0 differential version
€0
N J N J
Y Y

Electric charges create Electric field is

electric field conservative

Now we will use Integral theorems to show that:
-

1. The transverse component of the E field is continuous across a charged boundary (o) E,
-3
2. The normal component of electric field has a jump across a charged boundary (o) E,

3. The potential is continuous across a charged boundary.



Maxwell’s Equations and Boundary Conditions for E-field

* Consider an interface with a surface charge density, o.

* For the perpendicular component, we invoke a tiny Gaussian pillbox, which has top and
bottom surfaces that are infinitesimally close to the surface charge sheet:

=2 > In 0 o | | o Gaussian )
ﬁE -da = (Eabove - Ebelow)ﬂt/: %M — Eabove — Ehelow = — -

AN =
'|'o(b siJel Lo’“ou siJQ

* For the parallel component, we invoke a tiny loop, which has top and bottom sides
that are infinitesimally close to the surface charge sheet and parallel to it:

below

%Edl:o _>E2L|b0ve:E“
C

« Written together: | Eabove — Ebelow =




Maxwell’s Equations and Boundary Conditions for potential

* The electric potential is related to electric field as follows:

b
Vabove — Vbelow — / E-dl

Gaussian

pillbox

* But the right hand side goes to zero as
a — b. Hence, the electric potential is
always continuous at a boundary:

Vabove — Vbelow

* Note that it is true even if the surface is E,(2) V(z)
charged (o): integral of a function with a " /\
jump exists, and has a kink (see, e.g., our ‘ z
charged disk problem). ‘




Boundary Conditions and Volume Charge Density, p(T)

1
I E above

Q: What can you say about perpendicular
components of E field at the surface of an
object with a volume charge density p(r)?

o

1 1 _
Eabove o Ebelow — E_

A. E, hasajump
B. E, iscontinuous
C. Itdepends



Boundary Conditions and Volume Charge Density, p(T)

1
I E above

Q: What can you say about perpendicular
components of E field at the surface of an
object with a volume charge density p(r)?

o

Eabove Efl)_elow —

2D: d? = 6'alq

Here, the charge enclosed in the Gaussian pillbox dq =pdrt=pdads
tends to zero as the thickness shrinks to zero! dg - 0ifpds - 0

E, hasajump

‘ E, is continuous * Therefore: Eavove = Ebelow
C. Itdepends




Example 1: Co-centric Spherical Shells

Q: Recall spherical shells from Lecture 4:

A hollow spherical shell of radius b carries charge density p = 0 in the regionr < a and
p(r) = k/r?inthe region a < r < b. Electric field in 3 regions is:

) )

E(r) =0 x<a A umP39

B.) Coufin !

E(r)—k(r_a)f a<x<b
- 607“2 k.>, f ! x
r

E(r) = 47:_]6 3 b<x 7= jf(g) AT
’ Skol G dr.r2 sin0dBd?
T vy
Is this electric field continuous across the boundaries, or does it have jumps? & Ar

Yy
Start with what you expect from general principles. Then check your guess by figuring out

what g is. Finally, sketch the graph of E(7).



Example 1: Co-centric Spherical Shells

Q: Recall spherical shells from Lecture 4:

A hollow spherical shell of radius b carries charge density p = 0 in the regionr < a and
p(r) = k/r? inthe region a < r < b. Electric field in 3 regions is:

b
k
q = fp(r) dt = 4n J — r?dr = 4nk(b — a)
V a r
E.(r
(1) E.(r) = 0
k (r—a)
EZ(T) — €, 72
k (b—a)
EB(T) - €, 72
1 a (2 b (3)



Example 2: Cylindrical Shell

Q: A thin, long cylindrical shell (a pipe) of radius R has a uniform surface charge density o.

1) Find the electric field inside and outside the cylinder using Gauss’ law.
Check that the field satisfies the boundary conditions at the surface.

2) Find the electric potential everywhere, including a suitable choice for the
zero point of the potential.



Example 2: Cylindrical Shell: 1) E-field

* p(r) is independent of ¢ and z, so the symmetry of the charge distribution requires:
V(r) =V(s) and E(r) = E4(s)S§

e Construct Gaussian surfaces that are concentric cylinders.

1. Inside, s < R: }{E.da:qem:o —|E=0 — V =k (k = const.)
A €0

2. Outside, s > R: y{ E.da= 20
A €0 * Note:
2rRL
— FE(s)2nsL = il Fs(9)
€0

oR .
— 38

€S

E(s) =




Example 2: Cylindrical Shell: 2) Potential . a

r'p > Sb
e First recall that: Visp) — V(sa) = -f E(r')edl’ = —/ E,(s") ds'
rg S

a

* Outside the cylinder (s > R): V(s)—-V(R)=—— — = —— lnE

e Where to choose V = 0?

* In(x) divergesatx = 0andx = oo; In(1) =0
2 . () * Note: V(s) is

e Let’s choose V = 0 ats = R: continuous
V(s)

ﬁv(s)z—fRsEs(s’)dsE—%lﬂ% (s> R) \

=0 (s<R)




Poisson Equation and Laplace Equation

(Ch. 2.3.3,3.1.1-2, 3.1.5)




* Hence:

* So:

Poisson & Laplace Equations for V

E=_-VV (since V X E =0)
v.E="2
€0
V.V =V =_F
€0
V2V = _eﬁ Poisson’s equation
0

V2V =0 (if p=0)

Laplace’s equation




Laplacian operator: Review

Q: What does it mean, V4V (r)?

A 6x+6y+az
oV A
B. aX‘F y+

a%v a%v %V A
D. —X — — Z
0x2 T dy? y T

E. Something else



Laplacian operator: Review

Q: What does it mean, V4V (r)? ViV (r) =V -VW(x,y,z)
\ J
Y
A
A W v
ox 0Oy 0z e Here V is a scalar, hence, VV is a vector:
v .. AV . V..
B. aX-l-Ey*‘a_ZZ av. oV _ adV _
VW=—X+—V+—Z=A
0x2  0y?  0z2
0%V, OV 9V, eV:-(A=VV)isascalar:
D. ax2X+ay2y+azzz ( )
E. Something else VA= 04y + o4y + 04,



Properties of Laplace Equation: 1D

* Consider the potential in regions where there is no charge, i.e. where I/ (1)
obeys Laplace’s equation, V2V = 0. In 1D, V(r) = V(x):

5 d*V
\% V=0—>W=0—>V(x)=mx—|—b

* So V(x) has no local extrema (max. or min.) within this interval. Okay.

* Furthermore, for any given interval of x where p = 0, V in the middle of the interval
is the average of V at the end points:

Viz) = % V(z—10)4+V(zx+1)] since V(z)=mz+b

for any [ in which p = 0.



Properties of Laplace Equation: 3D

* In 3D a similar property holds. V' (r) can have no local maxima or minima in regions
where p = 0 since:
o’V 0%V 9’V _ 0
[ A
* Also, for any given sphere centered on a point r, for which p = 0 and V2V = 0,
the value of V(1) is equal to the average of I on the sphere:

1
2
VV(r)=0—V(r) = poe jér V(r")da'

where S is a sphere of radius R centered on r. The proof of this is left as an
optional exercise.

¢ Solutions of Laplace’s eq. are “boring”...



Properties of Laplace Equation: Uniqueness
AT

...however, their “boringness” results in a very important property:

* Solutions of Laplace’s equation, V(1) are unique in regions where p = 0 and
the boundary conditions are specified.

* Suppose there were two solutions, I/; and I/,, which satisfy Laplace’s equation
in a region where V is specified on the boundary. Then:

V2V — W) =V, — V21, =0

including the boundary.

* Butif V; —V, = 0 on the boundary, hence V; — V, = 0 everywhere within, since it
obeys Laplace equation and hence can have no local extrema inside the boundary.



Laplace Equation: Summary

* I/ has no local maxima or minima inside a boundary. These are located on the boundary.

* I/ is smooth & continuous everywhere. (“Boring”)

* V(r) is the average of I/ over any sphere centeredonr: ¢

1
V(r) = 47TR2£ V(r')da'

* I/ is unique within a volume if V is specified on the boundary of the volume.



Example: Potential of a Charged Sphere

Q: Use Poisson’s equation to compute the potential everywhere
in space due to a uniformly charged (solid) sphere of radius Ry.

Assume V (o0) = 0.

S PLY = ¢,

Strategy:

0.

1.
2.
3

Invoke spherical symmetry: V(r) - V()
Find solution forr > R,

Find solution forr < R,

Determine integration constants.

(How many are there? What conditions fix them?)

V2V (r) —




Example: Potential of a Charged Sphere

Q: Use Poisson’s equation to compute the potential everywhere
in space due to a uniformly charged (solid) sphere of radius R,.

Assume V (o0) = 0. 90.)
V2V =- g
Qutside the sphere, the Inside the sphere, the
potential obeys the equation: potential obeys the equation:
A. V2V, =0 A. V2V, =0
B. V2V, =—2° B. V2V, =-—£¢
€0 €0
C. VVour = L C. V%V, = + 2o
€0 €0

D. None of the above D. None of the above




Example: Potential of a Charged Sphere

Q: Use Poisson’s equation to compute the potential everywhere
in space due to a uniformly charged (solid) sphere of radius R,.
Assume V (o0) = 0.

QOutside the sphere, the Inside the sphere, the
potential obeys the equation: potential obeys the equation:
‘ (A) V2Vt = 0 A V2V =0
27— _Po 2. = _Po
B. V°V, out — €0 e v Vln €0
C. V2V, =+2 C. V2V, =+£°
€0 €0

D. None of the above D. None of the above



1) r > R, Example: Potential of a Charged Sphere: Exterior

Q: Use Poisson’s equation to compute the potential everywhere 0
in space due to a uniformly charged (solid) sphere of radius R,. KO'
Assume V (o0) = 0.

V3V ﬁ;d(rﬂ>:o %i(rﬂ):o

N dr dr
dV k
— t. n _ _
( ) coms d'r T2 (k= const.) BTW, that’s what

we expect to get:

V=—E+b but V(co) =0—5b6=0 b. coud. 0 1
" Vi) =13

Ameg T

k We will determine
__r 4
Vir) r k later (Q = §”TRSP)




2)r < Ry

Q: Use Poisson’s equation to compute the potential everywhere
in space due to a uniformly charged (solid) sphere of radius R,.

d ( 24V _po
dr dr €0

T €0
av por  C
— — = —
dr 3eo T r2

with p, = const

Example: Potential of a Charged Sphere: Interior

po /'
R,

davi\ por3

o
9 7
Sy =P _° +d
660 T
V(rze) £onnite

* Now, set ¢ = 0 to remove singularity at the origin =>

B /00"“2

660

V= +d

with d being another const



Example: Potential of a Charged Sphere: Whole Space

* To find the constants k and d, we will apply boundary conditions atr = R

Q: Which boundary conditions will you apply?

Vin(Ro) = Vout (Rp)
dVin . dVout

ar Ig, ar |g, outside insids
k vV — __ por d
Both Vir) = —= b +
. Something else




Example: Potential of a Charged Sphere: Whole Space

* To find the constants k and d, we will apply boundary conditions atr = R

Q: Which boundary conditions will you apply?
* Two unknowns (k and d) => need two equations!

* Potential is a continuousw> E,= Er

* The jump of electric field must be proportional to surface
charge density =0 => dVI//dr must be continuous, too!

A. Vin(RO) — Vout(RO)

B dVin _ dVout : —
" odr lg,  dr g, outside |n5|d§
k poT
@ © Vi(r)= - 6eq
D. Something else




Example: Potential of a Charged Sphere: Whole Space

* To find the constants k and d, we will apply boundary conditions at r = R,

po /'
R,

‘/in (RO) — Vout (RO) and dV;n — dV;)ut
dr |g, dr |g,
* Matching slopes gives:
k pRo . poR§  Q . _ 4
R2 R k= 3¢ Ame with @ = pol = pogﬂRO outside
k
« Matching values gives: Vir)=—1
1 1 1 3 1
“ - 1@ +d —d= - ©
dmeg Ro 2 4meg Ry 2 4meg Ry inside
2
-
- . V= —”g +d
Q1 L, Q13 1r €0
V:)ut(r) N 47‘(‘60 (A V;n(r) N 47‘(‘60 Ro (2 2 R%)
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