
Lecture 6

Boundary conditions for E field.
Poisson and Laplace equations



A. Piece of cake!  Give me more!
B. Impossible. Inspiration never came.
C. With time, it went ok

Q: How was the homework?

Check updated formula sheet on Canvas!



Last TimeE-field Near a Charged Disk

𝑧𝑧

𝑉𝑉(𝑧𝑧)

𝑧𝑧

𝐸𝐸𝑧𝑧(𝑧𝑧)

E-field Near a 
Charged Pipe

(Tutorial 2)



• Boundary conditions for electric field and potential
• Difference between 𝜎𝜎 and 𝜌𝜌
• Examples 

(Ch 2.3.5)

Boundary Conditions



Medium 1

Medium 2

Boundary conditions: What is it about? 

We will resolve 𝐄𝐄 into components parallel 
and perpendicular to the interface…

Basically, we want to know if are they the same (continuous across the boundary) 
or different (have a jump at the boundary).

…and will derive certain 
conclusions about these 
components right above / 
right below the interface. 



We will do it using Maxwell’s Equations for E-field

Now we will use Integral theorems to show that: 

1. The transverse component of the 𝐄𝐄 field is continuous across a charged boundary (𝜎𝜎)

2. The normal component of electric field has a jump across a charged boundary (𝜎𝜎)

3. The potential is continuous across a charged boundary. 

differential version

integral version

Electric charges create 
electric field

Electric field is 
conservative



Maxwell’s Equations and Boundary Conditions for E-field

• For the perpendicular component, we invoke a tiny Gaussian pillbox, which has top and 
bottom surfaces that are infinitesimally close to the surface charge sheet: 

• For the parallel component, we invoke a tiny loop, which has top and bottom sides 
that are infinitesimally close to the surface charge sheet and parallel to it:

• Written together:

• Consider an interface with a surface charge density, 𝜎𝜎.



Maxwell’s Equations and Boundary Conditions for potential

• The electric potential is related to electric field as follows:

• But the right hand side goes to zero as 
𝐚𝐚 → 𝐛𝐛. Hence, the electric potential is 
always continuous at a boundary:

• Note that it is true even if the surface is 
charged (𝜎𝜎): integral of a function with a 
jump exists, and has a kink (see, e.g., our 
charged disk problem). 𝑧𝑧

𝑉𝑉(𝑧𝑧)

𝑧𝑧

𝐸𝐸𝑧𝑧(𝑧𝑧)

𝑉𝑉above

𝑉𝑉below



Boundary Conditions and Volume Charge Density, 𝜌𝜌(𝐫𝐫)

Q: What can you say about perpendicular 
components of E field at the surface of an 
object with a volume charge density 𝜌𝜌 𝐫𝐫 ?

A. 𝐸𝐸⊥ has a jump
B. 𝐸𝐸⊥ is continuous
C. It depends



Boundary Conditions and Volume Charge Density, 𝜌𝜌(𝐫𝐫)

Q: What can you say about perpendicular 
components of E field at the surface of an 
object with a volume charge density 𝜌𝜌 𝐫𝐫 ?

Here, the charge enclosed in the Gaussian pillbox 
tends to zero as the thickness shrinks to zero!

• Therefore: 

A. 𝐸𝐸⊥ has a jump
B. 𝐸𝐸⊥ is continuous
C. It depends

𝑑𝑑𝑑𝑑 = 𝜌𝜌 𝑑𝑑𝑑𝑑 = 𝜌𝜌 𝑑𝑑𝑑𝑑 𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑 → 0 if 𝜌𝜌 𝑑𝑑𝑑𝑑 → 0



Example 1: Co-centric Spherical Shells

Q: Recall spherical shells from Lecture 4:

A hollow spherical shell of radius 𝑏𝑏 carries charge density 𝜌𝜌 = 0 in the region 𝑟𝑟 < 𝑎𝑎 and
𝜌𝜌(𝑟𝑟) = 𝑘𝑘/𝑟𝑟2 in the region 𝑎𝑎 < 𝑟𝑟 < 𝑏𝑏.  Electric field in 3 regions is:

Is this electric field continuous across the boundaries, or does it have jumps? 

Start with what you expect from general principles. Then check your guess by figuring out 
what 𝑞𝑞 is. Finally, sketch the graph of 𝐄𝐄(𝑟𝑟).

a

b

𝐄𝐄 𝐫𝐫 = 0 𝑥𝑥 < 𝑎𝑎

𝑎𝑎 < 𝑥𝑥 < 𝑏𝑏

𝑏𝑏 < 𝑥𝑥



Example 1: Co-centric Spherical Shells

Q: Recall spherical shells from Lecture 4:

A hollow spherical shell of radius 𝑏𝑏 carries charge density 𝜌𝜌 = 0 in the region 𝑟𝑟 < 𝑎𝑎 and
𝜌𝜌(𝑟𝑟) = 𝑘𝑘/𝑟𝑟2 in the region 𝑎𝑎 < 𝑟𝑟 < 𝑏𝑏.  Electric field in 3 regions is:

a

b

𝑞𝑞 = �
𝑉𝑉
𝜌𝜌 𝑟𝑟 𝑑𝑑𝑑𝑑 = 4𝜋𝜋 �

𝑎𝑎

𝑏𝑏 𝑘𝑘
𝑟𝑟2

𝑟𝑟2𝑑𝑑𝑑𝑑 = 4𝜋𝜋𝜋𝜋(𝑏𝑏 − 𝑎𝑎)

𝐸𝐸1(𝑟𝑟) = 0

𝑎𝑎 𝑏𝑏
𝑟𝑟

𝑘𝑘
𝜖𝜖0

𝑏𝑏 − 𝑎𝑎
𝑏𝑏2

𝐸𝐸𝑟𝑟(𝑟𝑟)

(1) (2) (3)

𝐸𝐸2(𝑟𝑟) =
𝑘𝑘
𝜖𝜖0

𝑟𝑟 − 𝑎𝑎
𝑟𝑟2

𝐸𝐸3(𝑟𝑟) =
𝑘𝑘
𝜖𝜖0

𝑏𝑏 − 𝑎𝑎
𝑟𝑟2



Example 2: Cylindrical Shell

Q: A thin, long cylindrical shell (a pipe) of radius 𝑅𝑅 has a uniform surface charge density 𝜎𝜎. 

1) Find the electric field inside and outside the cylinder using Gauss’ law. 
Check that the field satisfies the boundary conditions at the surface. 

2) Find the electric potential everywhere, including a suitable choice for the 
zero point of the potential. 

𝜎𝜎



Example 2: Cylindrical Shell: 1) E-field

• 𝜌𝜌(𝐫𝐫) is independent of 𝜙𝜙 and 𝑧𝑧, so the symmetry of the charge distribution requires: 

• Construct Gaussian surfaces that are concentric cylinders. 

1. Inside, 𝑠𝑠 < 𝑅𝑅: 

2. Outside, 𝑠𝑠 > 𝑅𝑅: 

s

𝐸𝐸𝑠𝑠(𝑠𝑠)

• Note: 

𝜎𝜎



Example 2: Cylindrical Shell: 2) Potential

• First recall that: 

• Outside the cylinder (𝑠𝑠 > 𝑅𝑅): 

• Let’s choose 𝑉𝑉 = 0 at 𝑠𝑠 = 𝑅𝑅: 

s
𝑉𝑉(𝑠𝑠)

• Note: 𝑉𝑉(𝑠𝑠) is 
continuous 

𝜎𝜎

• Where to choose 𝑉𝑉 = 0? 

• ln(𝑥𝑥) diverges at 𝑥𝑥 = 0 and 𝑥𝑥 = ∞;   ln 1 = 0

𝑅𝑅

𝑠𝑠
𝑅𝑅𝑠𝑠

𝑠𝑠
𝑅𝑅



Poisson Equation and Laplace Equation

(Ch. 2.3.3, 3.1.1-2, 3.1.5)



Poisson & Laplace Equations for 𝑉𝑉

• We have: (since                           )

and

• Hence:

• So: Poisson’s equation

Laplace’s equation



Laplacian operator: Review

Q: What does it mean, ∇2𝑉𝑉(𝐫𝐫)?

A. 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝜕𝜕𝜕𝜕
𝜕𝜕𝑦𝑦

+ 𝜕𝜕𝜕𝜕
𝜕𝜕𝑧𝑧

B. 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
�𝐱𝐱 + 𝜕𝜕𝜕𝜕

𝜕𝜕𝑦𝑦
�𝐲𝐲 + 𝜕𝜕𝜕𝜕

𝜕𝜕𝑧𝑧
�𝐳𝐳

C. 𝜕𝜕2𝑉𝑉
𝜕𝜕𝑥𝑥2

+ 𝜕𝜕2𝑉𝑉
𝜕𝜕𝑦𝑦2

+ 𝜕𝜕2𝑉𝑉
𝜕𝜕𝑧𝑧2

D. 𝜕𝜕2𝑉𝑉
𝜕𝜕𝑥𝑥2

�𝐱𝐱 + 𝜕𝜕2𝑉𝑉
𝜕𝜕𝑦𝑦2

�𝐲𝐲 + 𝜕𝜕2𝑉𝑉
𝜕𝜕𝑧𝑧2

�𝐳𝐳

E. Something else



Laplacian operator: Review

Q: What does it mean, ∇2𝑉𝑉(𝐫𝐫)?

A. 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝜕𝜕𝜕𝜕
𝜕𝜕𝑦𝑦

+ 𝜕𝜕𝜕𝜕
𝜕𝜕𝑧𝑧

B. 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
�𝐱𝐱 + 𝜕𝜕𝜕𝜕

𝜕𝜕𝑦𝑦
�𝐲𝐲 + 𝜕𝜕𝜕𝜕

𝜕𝜕𝑧𝑧
�𝐳𝐳

C. 𝜕𝜕2𝑉𝑉
𝜕𝜕𝑥𝑥2

+ 𝜕𝜕2𝑉𝑉
𝜕𝜕𝑦𝑦2

+ 𝜕𝜕2𝑉𝑉
𝜕𝜕𝑧𝑧2

D. 𝜕𝜕2𝑉𝑉
𝜕𝜕𝑥𝑥2

�𝐱𝐱 + 𝜕𝜕2𝑉𝑉
𝜕𝜕𝑦𝑦2

�𝐲𝐲 + 𝜕𝜕2𝑉𝑉
𝜕𝜕𝑧𝑧2

�𝐳𝐳

E. Something else

∇2𝑉𝑉 𝐫𝐫 = ∇ ⋅ ∇𝑉𝑉(𝑥𝑥,𝑦𝑦, 𝑧𝑧)

• Here 𝑉𝑉 is a scalar, hence, ∇𝑉𝑉 is a vector: 

∇𝑉𝑉 =
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

�𝐱𝐱 +
𝜕𝜕𝑉𝑉
𝜕𝜕𝑦𝑦

�𝐲𝐲 +
𝜕𝜕𝑉𝑉
𝜕𝜕𝑧𝑧

�𝐳𝐳 ≡ 𝐀𝐀

• ∇ ⋅ (𝐀𝐀 = ∇𝑉𝑉) is a scalar:

∇ ⋅ 𝐀𝐀 =
𝜕𝜕𝐴𝐴𝑥𝑥
𝜕𝜕𝜕𝜕

+
𝜕𝜕𝐴𝐴𝑦𝑦
𝜕𝜕𝑦𝑦

+
𝜕𝜕𝐴𝐴𝑧𝑧
𝜕𝜕𝑧𝑧

𝐀𝐀



Properties of Laplace Equation: 1D

• Consider the potential in regions where there is no charge, i.e. where 𝑉𝑉(𝐫𝐫)
obeys Laplace’s equation, ∇2𝑉𝑉 = 0.  In 1D, 𝑉𝑉(𝐫𝐫) = 𝑉𝑉(𝑥𝑥): 

• So 𝑉𝑉(𝑥𝑥) has no local extrema (max. or min.) within this interval. Okay. 

• Furthermore, for any given interval of 𝑥𝑥 where 𝜌𝜌 = 0, 𝑉𝑉 in the middle of the interval 
is the average of 𝑉𝑉 at the end points: 

for any 𝑙𝑙 in which 𝜌𝜌 = 0. 



Properties of Laplace Equation: 3D

• In 3D a similar property holds. 𝑉𝑉(𝐫𝐫) can have no local maxima or minima in regions 
where 𝜌𝜌 = 0 since: 

• Also, for any given sphere centered on a point 𝐫𝐫, for which 𝜌𝜌 = 0 and ∇2𝑉𝑉 = 0, 
the value of 𝑉𝑉(𝐫𝐫) is equal to the average of 𝑉𝑉 on the sphere: 

where 𝑆𝑆𝐫𝐫 is a sphere of radius 𝑅𝑅 centered on 𝐫𝐫. The proof of this is left as an 
optional exercise. 

 Solutions of Laplace’s eq. are “boring”… 



Properties of Laplace Equation: Uniqueness

…however, their “boringness” results in a very important property:

• Solutions of Laplace’s equation, 𝑉𝑉(𝐫𝐫) are unique in regions where 𝜌𝜌 = 0 and 
the boundary conditions are specified. 

• Suppose there were two solutions, 𝑉𝑉1 and 𝑉𝑉2, which satisfy Laplace’s equation 
in a region where 𝑉𝑉 is specified on the boundary. Then:

• But if 𝑉𝑉1 − 𝑉𝑉2 = 0 on the boundary, hence 𝑉𝑉1 − 𝑉𝑉2 = 0 everywhere within, since it
obeys Laplace equation and hence can have no local extrema inside the boundary. 

including the boundary.



Laplace Equation: Summary

• 𝑉𝑉 has no local maxima or minima inside a boundary. These are located on the boundary.

• 𝑉𝑉 is smooth & continuous everywhere. (“Boring”)

• 𝑉𝑉(𝐫𝐫) is the average of 𝑉𝑉 over any sphere centered on 𝐫𝐫: 

• 𝑉𝑉 is unique within a volume if 𝑉𝑉 is specified on the boundary of the volume. 



Example: Potential of a Charged Sphere

Q: Use Poisson’s equation to compute the potential everywhere 
in space due to a uniformly charged (solid) sphere of radius 𝑅𝑅0. 
Assume 𝑉𝑉 ∞ = 0.

Strategy: 

0.   Invoke spherical symmetry: 𝑉𝑉(𝐫𝐫) → 𝑉𝑉(𝑟𝑟)
1. Find solution for 𝑟𝑟 > 𝑅𝑅0
2. Find solution for 𝑟𝑟 < 𝑅𝑅0
3. Determine integration constants. 

(How many are there? What conditions fix them?) 

ρ0

R0



Example: Potential of a Charged Sphere

A. ∇2𝑉𝑉out = 0

B. ∇2𝑉𝑉out = −𝜌𝜌0
𝜖𝜖0

C. ∇2𝑉𝑉out = + 𝜌𝜌0
𝜖𝜖0

D. None of the above

Outside the sphere, the 
potential obeys the equation:

ρ0

R0

A. ∇2𝑉𝑉in = 0

B. ∇2𝑉𝑉in = −𝜌𝜌0
𝜖𝜖0

C. ∇2𝑉𝑉in = + 𝜌𝜌0
𝜖𝜖0

D. None of the above

Inside the sphere, the 
potential obeys the equation:

Q: Use Poisson’s equation to compute the potential everywhere 
in space due to a uniformly charged (solid) sphere of radius 𝑅𝑅0. 
Assume 𝑉𝑉 ∞ = 0.



Example: Potential of a Charged Sphere

A. ∇2𝑉𝑉out = 0

B. ∇2𝑉𝑉out = −𝜌𝜌0
𝜖𝜖0

C. ∇2𝑉𝑉out = + 𝜌𝜌0
𝜖𝜖0

D. None of the above

Outside the sphere, the 
potential obeys the equation:

ρ0

R0

A. ∇2𝑉𝑉in = 0

B. ∇2𝑉𝑉in = −𝜌𝜌0
𝜖𝜖0

C. ∇2𝑉𝑉in = + 𝜌𝜌0
𝜖𝜖0

D. None of the above

Inside the sphere, the 
potential obeys the equation:

Q: Use Poisson’s equation to compute the potential everywhere 
in space due to a uniformly charged (solid) sphere of radius 𝑅𝑅0. 
Assume 𝑉𝑉 ∞ = 0.



Example: Potential of a Charged Sphere: Exterior1) 𝑟𝑟 > 𝑅𝑅0

We will determine 
𝑘𝑘 later

ρ0

R0

Q: Use Poisson’s equation to compute the potential everywhere 
in space due to a uniformly charged (solid) sphere of radius 𝑅𝑅0. 
Assume 𝑉𝑉 ∞ = 0.

BTW, that’s what 
we expect to get:



Example: Potential of a Charged Sphere: Interior

with 𝜌𝜌0 = const

with 𝑑𝑑 being another const• Now, set 𝑐𝑐 = 0 to remove singularity at the origin =>

Q: Use Poisson’s equation to compute the potential everywhere 
in space due to a uniformly charged (solid) sphere of radius 𝑅𝑅0. 

ρ0

R0

2) 𝑟𝑟 < 𝑅𝑅0



Example: Potential of a Charged Sphere: Whole Space

• To find the constants 𝑘𝑘 and 𝑑𝑑, we will apply boundary conditions at 𝑟𝑟 = 𝑅𝑅0

insideoutside

A. 𝑉𝑉in(𝑅𝑅0) = 𝑉𝑉out(𝑅𝑅0)

B. �𝑑𝑑𝑉𝑉in
𝑑𝑑𝑑𝑑 𝑅𝑅0

= �𝑑𝑑𝑉𝑉out
𝑑𝑑𝑑𝑑 𝑅𝑅0

C. Both

D. Something else

ρ0

R0Q: Which boundary conditions will you apply?



Example: Potential of a Charged Sphere: Whole Space

• To find the constants 𝑘𝑘 and 𝑑𝑑, we will apply boundary conditions at 𝑟𝑟 = 𝑅𝑅0

insideoutside

A. 𝑉𝑉in(𝑅𝑅0) = 𝑉𝑉out(𝑅𝑅0)

B. �𝑑𝑑𝑉𝑉in
𝑑𝑑𝑑𝑑 𝑅𝑅0

= �𝑑𝑑𝑉𝑉out
𝑑𝑑𝑑𝑑 𝑅𝑅0

C. Both

D. Something else

Q: Which boundary conditions will you apply?

• Potential is a continuous function

• The jump of electric field must be proportional to surface 
charge density = 0    =>    𝑑𝑑𝑑𝑑/𝑑𝑑𝑑𝑑 must be continuous, too!

ρ0

R0

• Two unknowns (𝑘𝑘 and 𝑑𝑑) => need two equations!



Example: Potential of a Charged Sphere: Whole Space

• To find the constants 𝑘𝑘 and 𝑑𝑑, we will apply boundary conditions at 𝑟𝑟 = 𝑅𝑅0

inside

outside

ρ0

R0

• Matching slopes gives:

• Matching values gives:

and
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