
Lecture 7

Electrostatic Potential Energy (Ch 2.4)



Electrostatic Potential Energy – 1 

• How much work does it take to move a point charge along some path in an 𝐄𝐄 field?

• First recall that the work you do is related to the force you must apply, and is given by:

• The force exerted on a charge 𝑞𝑞 by a field 𝐄𝐄 is 𝐅𝐅 = 𝑞𝑞𝐄𝐄, so the work you must do against 
this force is:

where the integral is along a path from 𝐚𝐚 to 𝐛𝐛. 

• If the charge is brought in from ∞ and 𝑉𝑉(∞) = 0, then: 

• The work you do on the system of charges results in electric potential energy stored in 
this charge configuration.   



Electrostatic Potential Energy – 2 

• How much work does it take to assemble a set of point charges? 

• First compute the work to bring 𝑞𝑞2 into the region where 𝑞𝑞1 sits alone, then to bring 𝑞𝑞2
into the 𝑞𝑞1,𝑞𝑞2 system: 

• Generalizing from there: 

• The first equality is a sum over all unique pairs of charges.

• The second expression is the same as the first, but double 
counts all pairs, hence the factor of 1/2 in front. 

• We’ll discuss the lack of 𝑗𝑗 = 𝑖𝑖 terms in them shortly. 

q1 q2

q3



Electrostatic Potential Energy – 3 

• We can pull the 𝑞𝑞𝑖𝑖 term out in front to rewrite this as: 

…and we recognize the expression in parentheses as the electric potential, so that: 

• We can generalize this to a continuous volume charge density as follows: 

• Note that in the latter expression, we do not omit what corresponds to the 
diagonal term in the discrete charge sum. 



A. Yes

B. No

C. Depends

D. Not sure 

Electrostatic Field Energy and Superposition

Q: Does electrostatic energy obey principle of superposition? Which means: 

• Suppose you have one system of charges with stored energy 𝑊𝑊1, and a second 
system with energy 𝑊𝑊2. If you superpose these charge distributions, is the total 
energy of the new system 𝑊𝑊1 + 𝑊𝑊2? 



A. Yes

B. No

C. Depends

D. Not sure 

Electrostatic Field Energy and Superposition

Q: Does electrostatic energy obey principle of superposition? Which means: 

• Suppose you have one system of charges with stored energy 𝑊𝑊1, and a second 
system with energy 𝑊𝑊2. If you superpose these charge distributions, is the total 
energy of the new system 𝑊𝑊1 + 𝑊𝑊2? 

In equations: The E field is a linear function of the charge distribution, but the 
potential energy is a quadratic function of the charge distribution. That means: 

In words: You have done the work 𝑊𝑊1 and 𝑊𝑊2 to assemble these configurations,
but you still need to do work to bring these two configurations together!



Electrostatic Potential Energy: 3 charges

Q: Three identical charges +𝑞𝑞 form an equilateral triangle. If you released one of the 
charges (while at rest) while holding the remaining two fixed, what would the kinetic 
energy of the released charge be when it was far from the triangle? 

A.

B.

C.

D.

E. Something else

1
4𝜋𝜋𝜖𝜖0

𝑞𝑞2

𝑎𝑎

1
4𝜋𝜋𝜖𝜖0

2𝑞𝑞2

3𝑎𝑎

1
4𝜋𝜋𝜖𝜖0

2𝑞𝑞2

𝑎𝑎

1
4𝜋𝜋𝜖𝜖0

3𝑞𝑞2

𝑎𝑎



Electrostatic Potential Energy: 3 charges

Q: Three identical charges +𝑞𝑞 form an equilateral triangle. If you released one of the 
charges (while at rest) while holding the remaining two fixed, what would the kinetic 
energy of the released charge be when it was far from the triangle? 

A.

B.

C.

D.

E. Something else

1
4𝜋𝜋𝜖𝜖0

𝑞𝑞2

𝑎𝑎

1
4𝜋𝜋𝜖𝜖0

2𝑞𝑞2

3𝑎𝑎

1
4𝜋𝜋𝜖𝜖0

2𝑞𝑞2

𝑎𝑎

1
4𝜋𝜋𝜖𝜖0

3𝑞𝑞2

𝑎𝑎

Reasoning 1 - Think of the released charge as a test particle in 
the potential field of the other two charges. By superposition, 
the potentials add, so: 

The initial potential energy of the test particle is: 

This potential energy is converted to 
kinetic energy as the particle escapes 
the potential of the other two charges. 

𝑊𝑊



Electrostatic Potential Energy: 3 charges

Q: Three identical charges +𝑞𝑞 form an equilateral triangle. If you released one of the 
charges (while at rest) while holding the remaining two fixed, what would the kinetic 
energy of the released charge be when it was far from the triangle? 

A.

B.

C.

D.

E. Something else

1
4𝜋𝜋𝜖𝜖0
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1
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2𝑞𝑞2

𝑎𝑎

1
4𝜋𝜋𝜖𝜖0

3𝑞𝑞2

𝑎𝑎

Reasoning 2 - The initial potential energy of the charge system is: 

When the charge is released, and has travelled away, 
the remaining potential energy is: 

The difference went into the kinetic energy 
of the released charge: 

𝑊𝑊 𝑊𝑊12 𝑊𝑊13 𝑊𝑊23

𝑊𝑊12𝑊𝑊

Δ𝑊𝑊



Electrostatic Potential Energy: 3 charges

Q: Three identical charges +𝑞𝑞 form an equilateral triangle. If you released all three charges 
from rest, what would the kinetic energy of any single released charge be when it was far 
from the triangle? 

A.

B.

C.

D.

E. Something else

1
4𝜋𝜋𝜖𝜖0

𝑞𝑞2

𝑎𝑎

1
4𝜋𝜋𝜖𝜖0

2𝑞𝑞2

3𝑎𝑎

1
4𝜋𝜋𝜖𝜖0

2𝑞𝑞2

𝑎𝑎

1
4𝜋𝜋𝜖𝜖0

3𝑞𝑞2

𝑎𝑎



Electrostatic Potential Energy: 3 charges

Q: Three identical charges +𝑞𝑞 form an equilateral triangle. If you released all three charges 
from rest, what would the kinetic energy of any single released charge be when it was far 
from the triangle? 

A.

B.

C.

D.

E. Something else

1
4𝜋𝜋𝜖𝜖0

𝑞𝑞2

𝑎𝑎

1
4𝜋𝜋𝜖𝜖0

2𝑞𝑞2

3𝑎𝑎

1
4𝜋𝜋𝜖𝜖0

2𝑞𝑞2

𝑎𝑎

1
4𝜋𝜋𝜖𝜖0

3𝑞𝑞2

𝑎𝑎

The initial potential energy of the charge system is: 

When the charges are released, the potential 
energy is converted to kinetic energy that is 
shared equally among the 3 charges, so that: 

𝑊𝑊𝑝𝑝



A. Yes
B. No

Q: If you put a positive test charge at the center of this cube of charges, could 
it be in stable equilibrium?

Laplace Equation and Electrostatic Equilibrium



A. Yes
B. No

Earnshaw's Theorem: a collection of point charges cannot be 
maintained in a stable stationary equilibrium configuration solely 
by the electrostatic interaction of the charges

Q: If you put a positive test charge at the center of this cube of charges, could 
it be in stable equilibrium?

Laplace Equation and Electrostatic Equilibrium

• Way 2: Stable equilibrium = local minimum of energy, 𝑊𝑊 = 𝑞𝑞𝑞𝑞

• There can be no local minimum of 𝑉𝑉 in the center of 
the cube where 𝜌𝜌 ≡ 0 and Laplace equation holds =>

• The center of the cube is a saddle point of the potential!

• Way 1: net flux through any Gaussian surface surrounding the test 
charge must be positive (Gauss’ law) => there must be an escape path!



• Stable equilibrium

• Unstable equilibrium
 Local Maximum
 Small deflection => force 

carries the object away 
from equilibrium position

 Local Minimum
 Small deflection => 

force carries the object 
back to its equilibrium 
position

• Saddle point Local Maximum in one 
direction, and Local 
Minimum in another

Another proof: http://www.feynmanlectures.caltech.edu/II_05.html

http://www.feynmanlectures.caltech.edu/II_05.html


Electrostatic Field Energy – 1 

• Recall the expression we had for the potential energy of a volume charge distribution: 

• We can rewrite this in terms of 𝐄𝐄 as follows. Use Maxwell's eq. to write 𝜌𝜌 𝐫𝐫 = 𝜖𝜖0∇ ⋅ 𝐄𝐄.
Then: 

• Integrate by parts to move ∇ from 𝐄𝐄 to 𝑉𝑉, and apply the divergence theorem: 

where we have used 𝐄𝐄 = −∇𝑉𝑉, and 𝑆𝑆 is a surface that bounds the volume 𝑉𝑉. 



Electrostatic Field Energy – 2 

• Consider the surface integral in this expression: 

• For a compact charge distribution, 𝑉𝑉 → 1/𝑟𝑟 and 𝐸𝐸 → 1/𝑟𝑟2 at large 𝑟𝑟, hence the 
surface integral vanishes at the volume grows to infinity. Thus: 

• We can interpret the potential energy stored in the charge distribution as 
residing in the 𝐄𝐄 field itself. 



A. We made a mistake in the derivation. 

B. The second expression also contains the 
energy required to make the charges. 

C. Energy is always a positive quantity, which 
we express by squaring the 𝐄𝐄 field. 

D. None of the above. 

Electrostatic Field Energy: Two Representations

• We have two expressions for the potential energy stored in a static charge distribution: 

Q: The first expression can be negative (depending on the sign of the 𝑞𝑞𝑖𝑖), but 
the second one is always positive (or zero). How might we reconcile this? 



A. We made a mistake in the derivation. 

B. The second expression also contains the 
energy required to make the charges. 

C. Energy is always a positive quantity, which 
we express by squaring the 𝐄𝐄 field. 

D. None of the above. 

Electrostatic Field Energy: Two Representations

• We have two expressions for the potential energy stored in a static charge distribution: 

Q: The first expression can be negative (depending on the sign of the 𝑞𝑞𝑖𝑖), but 
the second one is always positive (or zero). How might we reconcile this? 



Exercise: Energy of a Point Charge

Let’s model a point charge as a uniform sphere of radius 𝑅𝑅0 with charge density 𝜌𝜌0
and total charge 𝑞𝑞. 

Q: Calculate the energy stored in the field outside the sphere using the expression: 

How does your result behave in the limit that 𝑅𝑅0 → 0
with 𝑞𝑞 held constant? 

ρ0

R0

Q: Find potential and electric field outside the sphere.



Exercise: Energy of a Point Charge

Let’s model a point charge as a uniform sphere of radius 𝑅𝑅0 with charge density 𝜌𝜌0
and total charge 𝑞𝑞. 

Q: Calculate the energy stored in the field outside the sphere using the expression: 

How does your result behave in the limit that 𝑅𝑅0 → 0
with 𝑞𝑞 held constant? 

ρ0

R0

Q: Find potential and electric field outside the sphere.
Use Gauss’s law to find field, 
which appears to be the same 
as for a point charge.  

The field outside “does not know” 
whether the Gaussian surface encloses 
a point charge or a charged sphere.



Exercise: Energy of a Point Charge

Start with:

Then:

• This diverges as 𝑅𝑅0 → 0. 

• Classically, the self-energy of a point charge is infinite. 
This is not resolved until we get to renormalization 
theory in quantum electrodynamics. 

ρ0

R0



Potential and Energy of a Shell – 1 

A. A
B. B
C. They have same voltage

Q: Two isolated spherical shells of charge, labeled A and B, are far apart and each 
has charge +𝑄𝑄. Sphere B is bigger than sphere A. Which shell has a higher voltage 
(i.e. potential)? Assume 𝑉𝑉(𝑟𝑟 = ∞) = 0. 

+Q

A

+Q

B



Potential and Energy of a Shell – 1 

A. A
B. B
C. They have same voltage

Q: Two isolated spherical shells of charge, labeled A and B, are far apart and each 
has charge +𝑄𝑄. Sphere B is bigger than sphere A. Which shell has a higher voltage 
(i.e. potential)? Assume 𝑉𝑉(𝑟𝑟 = ∞) = 0. 

• Potential of a sphere outside it, including its surface: (explain why!)

• For same charge, smaller radius means larger potential at the surface:

+Q

A

+Q

B



Potential and Energy of a Shell – 2 

A. A
B. B
C. They have same voltage

Q: Two isolated spherical shells of charge, labeled A and B, are far apart and each has charge 
+ 𝑄𝑄. Sphere B is bigger than sphere A. Which shell would take more energy to assemble, 
assuming you were to bring all the charge elements in from infinity? Assume 𝑉𝑉(𝑟𝑟 = ∞) = 0. 

+Q

A

+Q

B



Potential and Energy of a Shell – 2 

A. A
B. B
C. They have same voltage

Q: Two isolated spherical shells of charge, labeled A and B, are far apart and each has charge 
+ 𝑄𝑄. Sphere B is bigger than sphere A. Which shell would take more energy to assemble, 
assuming you were to bring all the charge elements in from infinity? Assume 𝑉𝑉(𝑟𝑟 = ∞) = 0. 

• The charge is more tightly packed in shell A, so it requires us to do 
more work against the repulsive electrostatic forces in shell A. 

+Q

A

+Q

B

• Let’s find energy stored in a spherical shell!



Potential and Energy of a Shell – 2 
Q: Two isolated spherical shells of charge, labeled A and B, are far apart and each has charge 
+ 𝑄𝑄. Sphere B is bigger than sphere A. Which shell would take more energy to assemble, 
assuming you were to bring all the charge elements in from infinity? Assume 𝑉𝑉(𝑟𝑟 = ∞) = 0. 

• As we said, potential 
outside is: 

• Griffiths, Example 2.9

+Q

A

=
1

8𝜋𝜋𝜖𝜖0
𝑄𝑄2

𝑅𝑅

R 𝑉𝑉 =
1

4𝜋𝜋𝜖𝜖0
𝑄𝑄
𝑟𝑟

• What is the potential inside and at 𝑟𝑟 = 𝑅𝑅? 

𝑉𝑉 =
1

4𝜋𝜋𝜖𝜖0
𝑄𝑄
𝑟𝑟

𝑉𝑉 =
1

4𝜋𝜋𝜖𝜖0
𝑄𝑄
𝑅𝑅

• Which equation for energy to use? 𝑊𝑊 =
1
2
�
𝑉𝑉
𝑉𝑉 𝐫𝐫 𝜌𝜌 𝐫𝐫 𝑑𝑑𝑑𝑑

Now,    𝜌𝜌 𝐫𝐫 𝑑𝑑𝑑𝑑 → 𝜎𝜎𝜎𝜎𝜎𝜎.

𝑊𝑊 =
1
2
�
𝑟𝑟=𝑅𝑅

1
4𝜋𝜋𝜖𝜖0

𝑄𝑄
𝑅𝑅

𝜎𝜎 𝑑𝑑𝑑𝑑 =
1
2

1
4𝜋𝜋𝜖𝜖0

𝑄𝑄
𝑅𝑅

𝜎𝜎 4𝜋𝜋𝑅𝑅2Then: 

Indeed, 
smaller 𝑅𝑅
means larger 
stored energy. 



Exercise: Energy of a Charged Sphere

Calculate the energy of a uniformly charged sphere of radius 𝑅𝑅0 carrying charge 𝑞𝑞. 

ρ0

R0

You can use the following expressions for potential of the sphere 
(derive them on your own as an exercise!)

𝑉𝑉 𝑟𝑟 > 𝑅𝑅 =
1

4𝜋𝜋𝜖𝜖0
𝑞𝑞
𝑟𝑟

𝑉𝑉 𝑟𝑟 < 𝑅𝑅 =
1

8𝜋𝜋𝜖𝜖0
𝑞𝑞
𝑅𝑅0

3 −
𝑟𝑟2

𝑅𝑅02



Exercise: Energy of a Charged Sphere

Calculate the energy of a uniformly charged sphere of radius 𝑅𝑅0 carrying charge 𝑞𝑞. 

ρ0

R0

𝑉𝑉 𝑟𝑟 < 𝑅𝑅0 =
1

8𝜋𝜋𝜖𝜖0
𝑞𝑞
𝑅𝑅0

3 −
𝑟𝑟2

𝑅𝑅02

𝑊𝑊 =
1
2 �
spere

𝑞𝑞
4𝜋𝜋𝜋𝜋03/3

1
8𝜋𝜋𝜖𝜖0

𝑞𝑞
𝑅𝑅0

3 −
𝑟𝑟2

𝑅𝑅02
𝑑𝑑𝑑𝑑 =

3
2

1
8𝜋𝜋𝜖𝜖0

𝑞𝑞2

4𝜋𝜋𝜋𝜋04
�

spere

3 −
𝑟𝑟2

𝑅𝑅02
4𝜋𝜋𝑟𝑟2𝑑𝑑𝑑𝑑

=
3
2

1
8𝜋𝜋𝜖𝜖0

𝑞𝑞2

𝑅𝑅04
3
𝑟𝑟3

3
−

1
𝑅𝑅02

𝑟𝑟5

5 0

𝑅𝑅0
=

3
2

1
8𝜋𝜋𝜖𝜖0

𝑞𝑞2

𝑅𝑅0
1 −

1
5

𝑊𝑊 =
1

4𝜋𝜋𝜖𝜖0
3𝑞𝑞2

5𝑅𝑅0

(since 𝜌𝜌 𝑟𝑟 > 𝑅𝑅0 ≡ 0)



Electrostatic energy



The Electrostatic Triad

V E
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