Lecture 7

Electrostatic Potential Energy (Ch2.4)



Electrostatic Potential Energy — 1

* How much work does it take to move a point charge along some path in an E field?

* First recall that the work you do is related to the force you must apply, and is given by:
b
W = f F-dl
where the integral is along a path from a to b.

* The force exerted on a charge g by a field E is F = gE, so the work you must do against
this force is:

W=-q | B-dl=q[V(b)-V(a)

* The work you do on the system of charges results in electric potential energy stored in
this charge configuration.

* If the charge is brought in from co and /(o) = 0, then: W =qV(b)



Electrostatic Potential Energy — 2

 How much work does it take to assemble a set of point charges?

* First compute the work to bring g, into the region where g4 sits alone, then to bring g,
into the q4,q, system:

ql : 92,73,?? e o W: 1 [qz(q_l)_I_qg(q_l_l_q_Z)]
_ 4eg T12 r13  T23
9.. P, P -
* Generalizing from there: 1 MX we 11 Gd;
W — y\ y\ t1J = — Z t1j
47eg =1 Sy T 2 4meg iy T
|
q1 712 92
* The first equality is a sum over all unique pairs of charges.
713 o3 * The second expression is the same as the first, but double

counts all pairs, hence the factor of 1/2 in front.

q3 * We'll discuss the lack of j = i terms in them shortly.



Electrostatic Potential Energy — 3

L %
47’(’60 iz Tij

. o 1
* We can pull the g; term out in front to rewrite this as: W = 5 Z g
i

...and we recognize the expression in parentheses as the electric potential, so that:
W= > @V (r:)
— . r.
9 : q; i

* We can generalize this to a continuous volume charge density as follows:

W = %/Vp(r)V(r)d’r

* Note that in the latter expression, we do not omit what corresponds to the
diagonal term in the discrete charge sum.



Electrostatic Field Energy and Superposition

Q: Does electrostatic energy obey principle of superposition? Which means:

* Suppose you have one system of charges with stored energy W, and a second
system with energy W, . If you superpose these charge distributions, is the total
energy of the new system W, + W,?

A. Yes
B. No
C. Depends

D. Not sure



Electrostatic Field Energy and Superposition

Q: Does electrostatic energy obey principle of superposition? Which means:

* Suppose you have one system of charges with stored energy W, and a second
system with energy W, . If you superpose these charge distributions, is the total
energy of the new system W, + W,?

In words: You have done the work W; and W, to assemble these configurations,
but you still need to do work to bring these two configurations together!

In equations: The E field is a linear function of the charge distribution, but the
potential energy is a quadratic function of the charge distribution. That means:

A. Yes

I{r § : QZQJ qz’q
j
i=1 j#i erosrs - ~Ier.,‘ 13 #1/

C. Depends W -
| w1 1 quz,thzzqz/qj # Wi+ Wo

i Qi
2547%0 quqj +ZZ TJ,

| i=1 j#i i=1 51 i'=1 j#£4/ i'=1 j'F#£4’

D. Not sure




Electrostatic Potential Energy: 3 charges

Q: Three identical charges +q form an equilateral triangle. If you released one of the
charges (while at rest) while holding the remaining two fixed, what would the kinetic
energy of the released charge be when it was far from the triangle?

1 g*
4mey a

1 2q°
" 4me, 3a

1 2q°
" 4mey, a

A

C

1 3g°
| dtey a

D

E. Something else



Electrostatic Potential Energy: 3 charges

Q: Three identical charges +q form an equilateral triangle. If you released one of the
charges (while at rest) while holding the remaining two fixed, what would the kinetic
energy of the released charge be when it was far from the triangle?

A 1 q° Reasoning 1 - Think of the released charge as a test particle in
4mey a the potential field of the other two charges. By superposition,
1 2g the potentials add, so:
B. B 1 rq ¢
ATe, 3a V() = Va(r) + Va(r) = (E n 5)
1 2q° The initial potential energy of the test particle is:
dtey a 9
W=qV(r)= ! 2i
1 3q2 dmeg a
. ATe, a This potential energy is converted to

kinetic energy as the particle escapes
E. Something else the potential of the other two charges.



Electrostatic Potential Energy: 3 charges

Q: Three identical charges +q form an equilateral triangle. If you released one of the
charges (while at rest) while holding the remaining two fixed, what would the kinetic
energy of the released charge be when it was far from the triangle?

A 1 q° Reasoning 2 - The initial potential energy of the charge system is:
47TEO a 1 q2
W=Wip +Wis + Wos =3 2y
. 1 2q2 0
" 4me, 3a When the charge is released, and has travelled away,
1 2g2 the remaining potential energy is:
4 1 ¢
T[EO Cl W:W12 = —
dmeg a
D 1 3g* The difference went into the kinetic energy
' 4e, a of the released charge:
. 1 2¢°
E. Something else AW = —

dTmeng a



Electrostatic Potential Energy: 3 charges

Q: Three identical charges +q form an equilateral triangle. If you released all three charges
from rest, what would the kinetic energy of any single released charge be when it was far
from the triangle?

1 g*

4mey a
1 2q°
4ey 3a
1 2q°

" 4mey, a

A

B.

C

1 3g°

D.
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E. Something else



Electrostatic Potential Energy: 3 charges

Q: Three identical charges +q form an equilateral triangle. If you released all three charges
from rest, what would the kinetic energy of any single released charge be when it was far
from the triangle?

0 1 q° The initial potential energy of the charge system is:
4ey a o 1 32
3 1 Zqz P drey a
" 4me, 3a
0 When the charges are released, the potential
C 1 2q° energy is converted to kinetic energy that is
" 4mey, a shared equally among the 3 charges, so that:
1 3q° 1 ¢
D. o a . _
4mey a B iteo a 12,3

E. Something else



Laplace Equation and Electrostatic Equilibrium

Q: If you put a positive test charge at the center of this cube of charges, could
it be in stable equilibrium?

A. Yes
B. No



Laplace Equation and Electrostatic Equilibrium

Q: If you put a positive test charge at the center of this cube of charges, could
it be in stable equilibrium?

* Way 1: net flux through any Gaussian surface surrounding the test
charge must be positive (Gauss’ law) => there must be an escape path!

* Way 2: Stable equilibrium = local minimum of energy, W = qV

* There can be no local minimum of IV in the center of
the cube where p = 0 and Laplace equation holds =>

* The center of the cube is a saddle point of the potential! O CPM@ > °qu
A Yes Earnshaw's Theorem: a collection of point charges cannot be
| \ maintained in a stable stationary equilibrium configuration solely
© by the electrostatic interaction of the charges



* Unstable equilibrium > Local Maximum inone ¢ Saddle point

direction, and Local
Minimum in another

> Local Maximum
> Small deflection => force

carries the object away \

from equilibrium position Q

e Stable equilibrium

» Local Minimum

» Small deflection =>
force carries the object
back to its equilibrium
position

Another proof: http://www.feynmanlectures.caltech.edu/Il 05.html



http://www.feynmanlectures.caltech.edu/II_05.html

Electrostatic Field Energy — 1 V-E = g*')

* Recall the expression we had for the potential energy of a volume charge distribution:

W — %f o(r)V (r)dr V‘(,é’v) v (Vg) V % E vV -
|4

* We can rewrite this in terms of E as follows. Use Maxwell's eq. to write p(r) = ey-/E.
Then:

W:%O/VV-E(I')V(I')dT = % [ S V-Cév)&t

v v
ml\nm
* Integrate by parts to move V from E to V, and apply the divergence theorem: ..,2'/2_

W:%O[—/‘/E(r)-VV(r)dT+jéVE-da] =%°U‘/E2(r)dfr+fVE-da]

where we have used E = —VV, and S is a surface that bounds the volume V. -



Electrostatic Field Energy — 2

* Consider the surface integral in this expression:

W:%MEz(r)dﬁuj{gVE-da]

e For a compact charge distribution, V = 1/r and E > 1/r? at large 1, hence the
surface integral vanishes at the volume grows to infinity. Thus:

w=22 / E?(r) dr
2 all space

* We can interpret the potential energy stored in the charge distribution as
residing in the E field itself.



Electrostatic Field Energy: Two Representations

* We have two expressions for the potential energy stored in a static charge distribution:

1
W=D aV(r) w=2[ B
2 i 2 all space

Q: The first expression can be negative (depending on the sign of the g;), but
the second one is always positive (or zero). How might we reconcile this?

. We made a mistake in the derivation.

. The second expression also contains the
energy required to make the charges.

. Energy is always a positive quantity, which
we express by squaring the E field.

. None of the above.



Electrostatic Field Energy: Two Representations

* We have two expressions for the potential energy stored in a static charge distribution:

1
W=D aV(r) w=2[ B
2 i 2 all space

Q: The first expression can be negative (depending on the sign of the g;), but
the second one is always positive (or zero). How might we reconcile this?

A. We made a mistake in the derivation.

he second expression also contains the
energy required to make the charges.

C. Energy is always a positive quantity, which
we express by squaring the E field.

D. None of the above.



Exercise: Energy of a Point Charge

Let’s model a point charge as a uniform sphere of radius Ry with charge density p,
and total charge q.

Q: Find potential and electric field outside the sphere.

Q: Calculate the energy stored in the field outside the sphere using the expression:

_ % 2
0 % W = 2/7~>R0E(r)dT
0

How does your result behave in the limit that Ry, —» 0
with g held constant?



Exercise: Energy of a Point Charge

Let’s model a point charge as a uniform sphere of radius Ry with charge density p,

and total charge q.
: : . g , Use Gauss’s law to find field,
Q: Find potential and electric field outside the sphere. which appears to be the same
as for a point charge.

A

V(’r _ q l E(?“ — q % (7« > RO) The field outside “does not know”
dmeg T deg T whether the Gaussian surface encloses
a point charge or a charged sphere.

Q: Calculate the energy stored in the field outside the sphere using the expression:

A . FDOMQ—

€0

W = / E?(r)dr
y2lo) % 2 T->RO ( )
0

How does your result behave in the limit that Ry, —» 0
with g held constant?



Exercise: Energy of a Point Charge

A

Start with: W = E_Of E%(r)dr | DI
2 r>Ro 47'('60 T2
°1
E’=E-E = d — dr = 4nridr
Arreg ) T4
Then: W — q° /Ocd’r: q° _loo:qzi
en: 8meo Jr, ¢ 8meo | r]|p, 8meo Ro
* This diverges as Ry — 0.
ol
4 * Classically, the self-energy of a point charge is infinite.

This is not resolved until we get to renormalization
theory in quantum electrodynamics.



Potential and Energy of a Shell — 1

Q: Two isolated spherical shells of charge, labeled A and B, are far apart and each
has charge +(Q. Sphere B is bigger than sphere A. Which shell has a higher voltage
(i.e. potential)? Assume V(r = o) = 0.

+Q
ks
( a
\l(l—t—(- <F> = \u:& v
A. A
B. B

C. They have same voltage



Potential and Energy of a Shell — 1

Q: Two isolated spherical shells of charge, labeled A and B, are far apart and each
has charge +(Q. Sphere B is bigger than sphere A. Which shell has a higher voltage
(i.e. potential)? Assume V(r = o) = 0.

+0
+0

&

* Potential of a sphere outside it, including its surface: V(r)

O
B. B

C. They have same voltage

Q@ 1 .
- |
dregr (explain why!)

* For same charge, smaller radius means larger potential at the surface:

V(Ra) > V(Rp) since Ry < Rp



Potential and Energy of a Shell — 2

Q: Two isolated spherical shells of charge, labeled A and B, are far apart and each has charge
+ (0. Sphere B is bigger than sphere A. Which shell would take more energy to assemble,
assuming you were to bring all the charge elements in from infinity? Assume V(r = o) = 0.

+0
+0

&

A. A
B. B
C. They have same voltage



Potential and Energy of a Shell — 2

Q: Two isolated spherical shells of charge, labeled A and B, are far apart and each has charge
+ (. Sphere B is bigger than sphere A. Which shell would take more energy to assemble,
assuming you were to bring all the charge elements in from infinity? Assume V(r = o) = 0.

+0
+0

&

* The charge is more tightly packed in shell A, so it requires us to do
more work against the repulsive electrostatic forces in shell A.

O
B. B

C. They have same voltage

* Let’s find energy stored in a spherical shell!



Potential and Energy of a Shell =2 ¢ Griffiths, Example 2.9

Q: Two isolated spherical shells of charge, labeled A and B, are far apart and each has charge
+ (. Sphere B is bigger than sphere A. Which shell would take more energy to assemble,
assuming you were to bring all the charge elements in from infinity? Assume V(r = o) = 0.

1 e

+0 * As we said, potential V = 1 Q V=

R
@ outside is: dmeg T

* What is the potential inside and atr = R?

/ " 4meg R

* Which equation for energy to use? W = %f V(r)p(r)dt
%

Now, p(r)dt — oda.

Indeed,
1 Qz smaller R

Th W 1 f ( 1 Q) d 1 < 1 Q) (4R%) means larger
en: =5 Sloaa =3 ) n =
2 ) .—p\4meg R 2\4mey R 8mey R stored energy.




Exercise: Energy of a Charged Sphere

Calculate the energy of a uniformly charged sphere of radius R, carrying charge q.

You can use the following expressions for potential of the sphere
(derive them on your own as an exercise!)

1
Vir>R) = 41e % 1
0 — _ : :
2 W= ZqzV(rz)
vor <Ry =— 1 (31 L
81e, Ry RZ 1 - ©
p W = 5/ p(r)V(r)dr
|4

. / /
Ry Wside €
W= — f E*(r)dr
all space




Exercise: Energy of a Charged Sphere

Calculate the energy of a uniformly charged sphere of radius R, carrying charge q.

q
8meg R

2
<3 — —2> (since p(r > Ry) = 0)
Rj

2 3 1 2 r
W:1 f 1 1 4 3_r_ dr == 1 7 f (3——2> Amrr?dr
2 4-T[Rg/3 87TEO RO R(Z) 2 87TEO 4'T[RO RO

spere spere

3 1 g2 3r3 1r5R°_3 1 qz1 1
 28megRE\" 3 RZS ) 2 8mey Ry 5

W = —/ p(r)V(r)dr V(r <Rg) =
v

Po /
RO




Electrostatic energy

W = o / E? (r)dr
2 all space




The Electrostatic Triad
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