Lecture 9

Capacitors.

Multipole expansion: Key idea.



Capacitors
(Ch. 2.5.4)

* Definition
* Capacitance
* Energy stored in a capacitor

* Which equation for energy to use?



_ Capacitors in the wild
* Electronics

Wikipedia: The aim is to achieve a
field of 100 teslas over a pulse
duration of 10 milliseconds. The
required energy of 50 MJ is provided
by the world's largest capacitor bank,
custom-made for this laboratory.

O[K*|=20 mMm
o [Na‘]=450 mM

Camera flash

©[K* =400 mM ] o ©
» [Na*]=50 mM o .

Defibrillator

* Membranes / nerve cells



Capacitance: Definition

* Suppose you have two conductors labelled A and B with net charge +Q and —0,
respectively.

+0 B
4 —0 V. Uy

* The potential difference between them may be written as:

B

AV=V+—V_=—/ E-dl = Q- Swth
A

* The electric field is linearly proportional to the charge, Q, so we may define
the capacitance, C, to be:

_ 1@l — = C -aV
C_’AW (C >0) Q=0 -4



Exercise: Capacitance

Q: Calculate the capacitance of a plane parallel plate capacitor with area A and

plate separation d. Neglect edge effects. . .
Al = - gE.JC

AZ

1. Compute the E-field between the plates in terms of g and A. q=2CaV
2. Compute the voltage difference in terms of E and d. U

3. Compute the capacitance in terms of g and V.



Exercise: Capacitance

* The electric field is: P

- NREARGINNNED

* The potential difference is:

AEQ AEO
* The capacitance is: A (!) Note that capacitance is
q €0 . .
C = N2 entirely determined by the
geometry of the capacitor (!)




Other capacitor geometries

Spherical / cylindrical capacitor consists of two concentric metal shells / cylinders with

radii a and b, carrying charge +Q and —Q, respectively. The gap between the shells /
cylinders is filled by air.

Exercise: Compute their capacitances.

‘ﬂ N E
ab [

Answers: C = 4meg P = 2T€ In(b/a)



Exercise: Capacitance (spherical capacitor)

Spherical capacitor consists of two concentric metal shells with radii a and b, carrying
charge +Q and —Q, respectively. The gap between the shells is filled by air.

Q: Compute its capacitance.




Exercise: Capacitance (spherical capacitor)

Spherical capacitor consists of two concentric metal shells with radii a and b, carrying
charge +Q and —Q, respectively. The gap between the shells is filled by air.

Q: Compute its capacitance.

v 10
— - * E field between the plates: E(r) = r

ATEy T2
b !
= * Potential difference between the plates:
b dr 1 1 b—a
sz—f Q 2: Q <___>:_ e -9
g, Amegr 4teg \b a 4tey ab
. Q ab
* Capacitance: C = 41€

~ AV (b — a)



Energy Stored in a Capacitor

* To charge up a capacitor, you need to remove charges from the positive conductor and
carry them to the negative conductor (working against electric field). How much work
does it take to charge a capacitor from 0 to Q?

* During the charging process, suppose the conductor charge is q(t), and the voltage
across the conductors is V(g (t)). The work required to move an additional charge dg
to the positive terminal is:

( B
AW =V(Qdg=;dg 7 B
- _ 9
o) AV--C:
W Q 2
q 192 1., 1
— — —d = = — — = —
W fo aw /0 cU=5 o=tV =50V

Q=CV



Energy Stored in a Capacitor — 2

* Why more than one expression, 1 Q2
and when to use which? 2 C

 C is related to the geometry of the capacitor
(including filling it with a dielectric; stay tuned!)

* Who of Q and V changes and who remains constant depends on the conditions
of the experiment



Energy Stored in a Capacitor — 3

Q: A parallel plate capacitor is attached to a battery which maintains a constant voltage
difference V across the capacitor plates. While the battery is attached, the plates are
pulled apart. What happens to the electrostatic energy stored in the capacitor?

A. Itincreases
B. It decreases
C. It stays constant



Energy Stored in a Capacitor — 3

Q: A parallel plate capacitor is attached to a battery which maintains a constant voltage
difference V across the capacitor plates. While the battery is attached, the plates are
pulled apart. What happens to the electrostatic energy stored in the capacitor?

@ =lcV
y |
. ' W Q% CV?
| \ 4 A 4 A 4 \ 4 v A 4 \ 4 h 4 v A 4 A 4 A 4 | N ZC N 2
C = % decreases I/ = const (held const by battery)
It increases
‘ It decreases o CV*? . decreases
It stays constant 2



Energy Stored in a Capacitor — 4

Q: After charging the capacitor, the battery is detached, and then the plates are pulled
apart. What happens to the electrostatic energy stored in the capacitor?

A. Itincreases
B. It decreases
C. It stays constant



Energy Stored in a Capacitor — 4

Q: After charging the capacitor, the battery is detached, and then the plates are pulled
apart. What happens to the electrostatic energy stored in the capacitor?

It iIncreases

B. It decreases

C. It stays constant

C

EoA

decreases
QZ

W =—
2C

=

() = const (no place for charges to go to)

increases



Multipole Expansion

(Ch. 3.4.1-3.4.3)

Today: " T
* The key idea ) . .

1
quadrupole octupole

* Monopole, dipole,
quadrupole: definitions



Multipole Expansions

Suppose we have a known charge distribution, p(r), for which we want to know V (r)
and/or E(r) outside the charge region, where p(r) = 0. If p(r) is simple enough we
could find the answer by several means:

e Direct calculation using Coulomb’s law,
e Using Gauss’ law (if “enough symmetry”),

e Solving Laplace’s equation.

However, if p(r) is complicated and/or we don’t need an exact solution for the field(s),
we can use series expansion techniques to simplify the problem and give us intuitive
insight about the fields.

This technique is called expanding the field in “multipole moments”, and itis a
form of a Taylor series technique.



Idea: expand in powers of r’ /7

The potential, V (1), produced at a location r by a charge
distribution is given by Coulomb’s law:

_ 1 p(r)
Vir) = Ameg /V r —r/| ar

In a moment we will show that:

= Zf’ (%)

We can then expand the potential in powers of

l+1

oo

Vir) = ;ﬁozr%‘( | o) i) )

[=0

O

The quantity in parentheses is called the [-th multipole moment of the charge distribution

p(r). Itis a weighted average of the charge distribution that is independent of the position
of the observation point, r.



Exercise: Approximate Potential

The potential, V (1), produced at a location r by a charge
distribution is given by Coulomb’s law:

/
Vi) = — / P g
dmeg Jy |r — 1|

We wish to find the approximate potential, far from the
charge, specifically when |r| > [r].

1. Use the law of cosines (below) to write |r — r’| in terms of
the magnitude of the vectors and the angle between them.

2. Then expand 1/|r — r'| using the binomial expansion, to
second order in (1'/r).

1. |I'—I"|2:7“2-|-7"'2—2rr’cosa — ,l': '\!rz_:lrr'co-\d-‘-l"z

—1
2. (1—|—w)":1—|—nx—|—n(n2 ):c2+...



1. r—r'|? =72 +7% - 2r' cosa

—1
2. (1—|—:c)”:1—|—n:c—|—n(n2 ):c2—|—...

=l

I 1,|: (f’z-lrr' cos A +r'7')—‘/?- = T‘__(|_3_";Co$o(+ G:')z>
r—r

= \? | + -% -2‘;cesd+(?)9 + "i"li -% (_zg'coa+
b e (5)( (DD Ry

- n
= -:_-.&\'\' ‘;‘_'COSol - lz(r';)l+ %%ﬂ(rﬁ)lcos‘elg

e o G oY



Multipole Expansion: ...poles VE) = o |

74/ 17,/2 ) /3
+[?cos%-l— 52 (SCOS a — 1) + O (r?’ )]

[+1.

Now we can expand Coulomb’s law in powers of 1/r

S R T T R L

monopole dipole  quadrupole octupole+

* The [ = 0 term is called the monopole potential:

1 1 1 o Q is called the monopole moment of
Vo(r) = - [ p(x)dr'|= the charge distribution p(r). It is just
dmeg 7| )y, Admmeg T
the total charge of the distribution.




Multipole Expansion: Dipole

* The [l = 1 term is called the dipole potential:

1 1
Vi(r) = o ? |, p(r") ' cosadr’

and the integral is called the dipole moment of p(r). \

Here a is the angle

betweenrandr’ =

‘. ten , p P it depends on the

* Let us “split” rand r: rcosa=r -r . .
observation point

so that: Vi(r) = L -/p(r’)r'dr’: 1l pr pE/p(r’)r'd’r'
v v

4dmeg 12

Here p is the dipole moment of p(r). Note: it is a vector.



Multipole Expansion: Quadrupole — 1

* The [ = 2 term is called the quadrupole potential: ; f’[ ,;"
11 r’? 2 =l
— ! /
Va(r) = p—— Vp(r)?(?)cos a—1)dr
and the integral is called the quadrupole moment of p(r). rx"ﬁx N ra/ "_\a el &

* Now we want to separate 7"’2(3 cos’a — 1) into a piece that depends on r and
a piece that depends on r’. This will take time and patience.

3r'2cos?a = 30" -t)? =30"-)@’-f) =3 (E T 7ai)(E T 73) =3 E :Tilﬁlfﬂifj
i j ]

, 2 oy 2 Q) a s =2\ A A A

r'2= r2(F-f) =T Zriri =7 E’”i’"j&'j rxrx+r‘7ra+rer2

Lj

Hence: | 3r'%cos?a —1r'? = 2(37}’7}-’ —1'28;; )F; T
ij




Multipole Expansion: Quadrupole — 2

Now we can write:

7“,257;3') dT, =

1 'rzfrj
47 Z

1 Z Qij’l’ﬂ“j
2 4Ae rs

!/
Qi = /v p(;‘ ) (3rirs — r'26:;) dr’

where @Q;; is the quadrupole moment of p(r). Note: it is a tensor.

Q: What to do with a tensor??  A: Compute its elements!



. . . _ 1.1
Givenis atensor: A;; = (3ri7"]-

— r’26ij)fl-7“"j. Compute its elements A;; and A,

(3z"% —r'?) . (

etc.



. . ;,21[1+T—ICOSQ+%§(SCOSQQ—1)+O(§)]
Multipole Expansions: Math Note -l r r

The binomial expansion of the 1/r potential has the general form:

1 = 7l ,
= Pi(cosa) (converges for r' < r)
— = 2 b
r — /| T

where P;(x) is the Legendre polynomial of order L.

The Legendre polynomial appear in solutions of Laplace’s equation for systems that
have azimuthally symmetric boundary conditions (coming soon, stay tuned):

V2®(r,0) =0
O(r,0) = Z (Alfr'l + Blfr'_(lﬂ)) Pi(cosf) (A; — 0 for most E&M problems)

[=0

The generalization to non-azimuthally symmetric systems gives rise to spherical harmonic
functions. These are examples of orthogonal function expansions that appear throughout
physics.



0.5

-0.5

Legendre polynomials

Po(x)
Pi(x)
Pz(x)
Pi(x)
Pa(x)
Ps(x)

r = CoOS

Adrien-Marie Legendre

‘l_‘\

Watercolor caricature by Julien-Léopold Boilly
(see § Mistaken portrait), the only known
portrait of Legendre!?!

Vir) = fﬂdﬂ

 dmey Jy v — 1/

1 .

o]~ 2 g Fi(eosa)
[=0



Multipole Moments: Summary — 1

The first 3 moments of a charge distribution, p(r), and the resulting potential fields, V' (r):

1 Q
* Monopole (I = 0) Q = /Vp(r’) dr’ Vo(r) = e
* Dipole (I = 1) p E/ p(r') ' dr’ Vi(r) = 1l p-r
14 dmeg T2

Quadrupole (1=2) Q= [ P @~ Vaw) = o 3 4



Multipole Moments: Summary — 2

The multipole moments for a system of point charges have similar expressions.

Let p(r) — an53 r—rg)
* Monopole (I = 0) Q = / dr' — Z da
* Dipole (I = 1) p= / p(xYr' dr' — anra
4 a

I', a
» Quadrupole (I = 2) Qij = / p(2 )(3""z"”3 r28;) dr’ — ) %(37’@,@'7"@,3' — 720i5)
Vv a
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