
Lecture 9

Capacitors.

Multipole expansion: Key idea.



Capacitors

• Definition
• Capacitance
• Energy stored in a capacitor
• Which equation for energy to use?

(Ch. 2.5.4)



Capacitors in the wild
• Electronics

• Membranes / nerve cells

Dresden high magnetic field laboratory

Camera flash

Defibrillator

Wikipedia: The aim is to achieve a 
field of 100 teslas over a pulse 
duration of 10 milliseconds. The 
required energy of 50 MJ is provided 
by the world's largest capacitor bank, 
custom-made for this laboratory.



Capacitance: Definition
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• Suppose you have two conductors labelled A and B with net charge +𝑄𝑄 and −𝑄𝑄, 
respectively. 

• The potential difference between them may be written as:

• The electric field is linearly proportional to the charge, 𝑄𝑄, so we may define 
the capacitance, 𝐶𝐶, to be: 



Q: Calculate the capacitance of a plane parallel plate capacitor with area 𝐴𝐴 and 
plate separation 𝑑𝑑. Neglect edge effects. 

1. Compute the E-field between the plates in terms of 𝑞𝑞 and 𝐴𝐴. 

2. Compute the voltage difference in terms of 𝐸𝐸 and 𝑑𝑑. 

3. Compute the capacitance in terms of 𝑞𝑞 and 𝑉𝑉. 

Exercise: Capacitance
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Exercise: Capacitance
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• The electric field is:

E

• The potential difference is:

• The capacitance is: (!) Note that capacitance is 
entirely determined by the 
geometry of the capacitor (!)



Other capacitor geometries

𝐶𝐶 = 2𝜋𝜋𝜖𝜖0
𝑙𝑙

ln(𝑏𝑏/𝑎𝑎)𝐶𝐶 = 4𝜋𝜋𝜖𝜖0
𝑎𝑎𝑎𝑎
𝑏𝑏 − 𝑎𝑎

Spherical / cylindrical capacitor consists of two concentric metal shells / cylinders with 
radii 𝑎𝑎 and 𝑏𝑏, carrying charge +𝑄𝑄 and −𝑄𝑄, respectively. The gap between the shells / 
cylinders is filled by air. 

Exercise: Compute their capacitances.  

Answers:



Exercise: Capacitance (spherical capacitor)

Spherical capacitor consists of two concentric metal shells with radii 𝑎𝑎 and 𝑏𝑏, carrying 
charge +𝑄𝑄 and −𝑄𝑄, respectively. The gap between the shells is filled by air. 

Q: Compute its capacitance.



Exercise: Capacitance (spherical capacitor)

Spherical capacitor consists of two concentric metal shells with radii 𝑎𝑎 and 𝑏𝑏, carrying 
charge +𝑄𝑄 and −𝑄𝑄, respectively. The gap between the shells is filled by air. 

Q: Compute its capacitance.

• E field between the plates: 𝐄𝐄(𝐫𝐫) =
1

4𝜋𝜋𝜖𝜖0
𝑄𝑄
𝑟𝑟2

�𝐫𝐫

• Potential difference between the plates:

Δ𝑉𝑉 = −�
𝑎𝑎

𝑏𝑏 𝑄𝑄
4𝜋𝜋𝜖𝜖0

𝑑𝑑𝑑𝑑
𝑟𝑟2

=
𝑄𝑄

4𝜋𝜋𝜖𝜖0
1
𝑏𝑏
−

1
𝑎𝑎

= −
𝑄𝑄

4𝜋𝜋𝜖𝜖0
𝑏𝑏 − 𝑎𝑎
𝑎𝑎𝑎𝑎

< 0

𝐶𝐶 =
𝑄𝑄

|Δ𝑉𝑉|
= 4𝜋𝜋𝜖𝜖0

𝑎𝑎𝑎𝑎
(𝑏𝑏 − 𝑎𝑎)

• Capacitance:



Energy Stored in a Capacitor

• To charge up a capacitor, you need to remove charges from the positive conductor and 
carry them to the negative conductor (working against electric field). How much work 
does it take to charge a capacitor from 0 to 𝑄𝑄? 

so:

• During the charging process, suppose the conductor charge is 𝑞𝑞(𝑡𝑡), and the voltage 
across the conductors is 𝑉𝑉(𝑞𝑞(𝑡𝑡)). The work required to move an additional charge 𝑑𝑑𝑑𝑑
to the positive terminal is:



Energy Stored in a Capacitor – 2 

• Why more than one expression, 
and when to use which?

• 𝐶𝐶 is related to the geometry of the capacitor 
(including filling it with a dielectric; stay tuned!)

• Who of 𝑄𝑄 and 𝑉𝑉 changes and who remains constant depends on the conditions 
of the experiment 



Q: A parallel plate capacitor is attached to a battery which maintains a constant voltage 
difference 𝑉𝑉 across the capacitor plates. While the battery is attached, the plates are 
pulled apart. What happens to the electrostatic energy stored in the capacitor? 

A. It increases
B. It decreases
C. It stays constant

Energy Stored in a Capacitor – 3 

V



Q: A parallel plate capacitor is attached to a battery which maintains a constant voltage 
difference 𝑉𝑉 across the capacitor plates. While the battery is attached, the plates are 
pulled apart. What happens to the electrostatic energy stored in the capacitor? 

A. It increases
B. It decreases
C. It stays constant

𝐶𝐶 = 𝜖𝜖0𝐴𝐴
𝑑𝑑

decreases

𝑊𝑊 =
𝑄𝑄2

2𝐶𝐶
=
𝐶𝐶𝑉𝑉2

2

Energy Stored in a Capacitor – 3 

V

𝑉𝑉 = const (held const by battery)

𝑊𝑊 =
𝐶𝐶𝑉𝑉2

2
⇒ decreases



Q: After charging the capacitor, the battery is detached, and then the plates are pulled 
apart. What happens to the electrostatic energy stored in the capacitor? 

A. It increases
B. It decreases
C. It stays constant

Energy Stored in a Capacitor – 4 

V



Q: After charging the capacitor, the battery is detached, and then the plates are pulled 
apart. What happens to the electrostatic energy stored in the capacitor? 

A. It increases
B. It decreases
C. It stays constant

𝐶𝐶 = 𝜖𝜖0𝐴𝐴
𝑑𝑑

decreases

𝑊𝑊 =
𝑄𝑄2

2𝐶𝐶
=
𝐶𝐶𝑉𝑉2

2

Energy Stored in a Capacitor – 4 

V

𝑄𝑄 = const (no place for charges to go to)

𝑊𝑊 =
𝑄𝑄2

2𝐶𝐶
⇒ increases



Multipole Expansion

• The key idea
• Monopole, dipole, 

quadrupole: definitions

(Ch. 3.4.1-3.4.3)

Today:



Suppose we have a known charge distribution, 𝜌𝜌(𝐫𝐫), for which we want to know 𝑉𝑉(𝐫𝐫)
and/or 𝐄𝐄(𝐫𝐫) outside the charge region, where 𝜌𝜌(𝐫𝐫) = 0. If 𝜌𝜌(𝐫𝐫) is simple enough we 
could find the answer by several means:

Multipole Expansions

• Direct calculation using Coulomb’s law, 
• Using Gauss’ law (if “enough symmetry”), 
• Solving Laplace’s equation. 

However, if 𝜌𝜌(𝐫𝐫) is complicated and/or we don’t need an exact solution for the field(s), 
we can use series expansion techniques to simplify the problem and give us intuitive 
insight about the fields. 

This technique is called expanding the field in “multipole moments”, and it is a 
form of a Taylor series technique. 



r-rʹ

V

The potential, 𝑉𝑉(𝐫𝐫), produced at a location 𝐫𝐫 by a charge 
distribution is given by Coulomb’s law:

Idea: expand in powers of 𝑟𝑟′/𝑟𝑟

The quantity in parentheses is called the 𝑙𝑙-th multipole moment of the charge distribution 
𝜌𝜌(𝐫𝐫). It is a weighted average of the charge distribution that is independent of the position 
of the observation point, 𝐫𝐫. 

𝛼𝛼

In a moment we will show that: 

𝛼𝛼

We can then expand the potential in powers of 1
𝑟𝑟𝑙𝑙+1

: 

𝛼𝛼 O



The potential, 𝑉𝑉(𝐫𝐫), produced at a location 𝐫𝐫 by a charge 
distribution is given by Coulomb’s law:

We wish to find the approximate potential, far from the 
charge, specifically when 𝐫𝐫 ≫ |𝐫𝐫′|. 

1. Use the law of cosines (below) to write |𝐫𝐫 − 𝐫𝐫′| in terms of 
the magnitude of the vectors and the angle between them.

2. Then expand 1/|𝐫𝐫 − 𝐫𝐫′| using the binomial expansion, to 
second order in (𝑟𝑟′/𝑟𝑟).  

r-rʹ

V

Exercise: Approximate Potential

1.

2.

𝛼𝛼

𝛼𝛼

O



1.

2.

1
𝐫𝐫−𝐫𝐫′

=

𝛼𝛼



We get:

Now we can expand Coulomb’s law in powers of 1/𝑟𝑟𝑙𝑙+1:  

Multipole Expansion: …poles

monopole dipole quadrupole octupole+

…

• The 𝑙𝑙 = 0 term is called the monopole potential:

𝑄𝑄 is called the monopole moment of 
the charge distribution 𝜌𝜌(𝐫𝐫). It is just 
the total charge of the distribution.

𝛼𝛼𝛼𝛼



Multipole Expansion: Dipole

• The 𝑙𝑙 = 1 term is called the dipole potential:

and the integral is called the dipole moment of 𝜌𝜌(𝐫𝐫). 

𝐫𝐫

𝐫𝐫𝐫

𝐫𝐫 − 𝐫𝐫𝐫

so that:

Here 𝐩𝐩 is the dipole moment of 𝜌𝜌(𝐫𝐫). Note: it is a vector.

Here 𝛼𝛼 is the angle 
between 𝐫𝐫 and 𝐫𝐫′ ⇒
it depends on the 
observation point

�𝐫𝐫
𝛼𝛼

𝛼𝛼

• Let us “split” 𝐫𝐫 and 𝐫𝐫′: 𝛼𝛼



Multipole Expansion: Quadrupole – 1

• The 𝑙𝑙 = 2 term is called the quadrupole potential:

and the integral is called the quadrupole moment of 𝜌𝜌(𝐫𝐫). 

3 𝐫𝐫′ ⋅ �𝐫𝐫 2

𝑟𝑟′2 �𝐫𝐫 ⋅ �𝐫𝐫

= 3 𝐫𝐫′ ⋅ �𝐫𝐫 𝐫𝐫′ ⋅ �𝐫𝐫 = 3 �
𝑖𝑖

𝑟𝑟𝑖𝑖′ 𝑟̂𝑟𝑖𝑖 �
𝑗𝑗

𝑟𝑟𝑗𝑗′ 𝑟̂𝑟𝑗𝑗 = 3�
𝑖𝑖𝑗𝑗

𝑟𝑟𝑖𝑖′𝑟𝑟𝑗𝑗′𝑟̂𝑟𝑖𝑖 𝑟̂𝑟𝑗𝑗

= 𝑟𝑟′2�
𝑖𝑖

𝑟̂𝑟𝑖𝑖 𝑟̂𝑟𝑖𝑖 ≡ 𝑟𝑟′2�
𝑖𝑖𝑗𝑗

𝑟̂𝑟𝑖𝑖 𝑟̂𝑟𝑗𝑗 𝛿𝛿𝑖𝑖𝑖𝑖𝑟𝑟′2 =

3𝑟𝑟′2cos2𝛼𝛼 =

𝛼𝛼

• Now we want to separate                                into a piece that depends on 𝐫𝐫 and 
a piece that depends on 𝐫𝐫′. This will take time and patience. 

𝛼𝛼

Hence: 3𝑟𝑟′2cos2𝜃𝜃 − 𝑟𝑟′2 = �
𝑖𝑖𝑗𝑗

3𝑟𝑟𝑖𝑖′𝑟𝑟𝑗𝑗′ − 𝑟𝑟′2𝛿𝛿𝑖𝑖𝑖𝑖 𝑟̂𝑟𝑖𝑖 𝑟̂𝑟𝑗𝑗𝛼𝛼



Multipole Expansion: Quadrupole – 2

Now we can write:

where 𝑄𝑄𝑖𝑖𝑖𝑖 is the quadrupole moment of 𝜌𝜌(𝐫𝐫). Note: it is a tensor.

Q: What to do with a tensor?? A: Compute its elements!



etc.

𝑖𝑖 = 1, 𝑗𝑗 = 1:

𝑖𝑖 = 1, 𝑗𝑗 = 2:

𝐴𝐴𝑖𝑖𝑖𝑖 = 3𝑟𝑟𝑖𝑖′𝑟𝑟𝑗𝑗′ − 𝑟𝑟′2𝛿𝛿𝑖𝑖𝑖𝑖 𝑟̂𝑟𝑖𝑖𝑟̂𝑟𝑗𝑗.Given is a tensor: Compute its elements 𝐴𝐴11 and 𝐴𝐴12



Multipole Expansions: Math Note

The binomial expansion of the 1/𝑟𝑟 potential has the general form:

The generalization to non-azimuthally symmetric systems gives rise to spherical harmonic 
functions. These are examples of orthogonal function expansions that appear throughout 
physics. 

where 𝑃𝑃𝑙𝑙(𝑥𝑥) is the Legendre polynomial of order 𝑙𝑙. 

The Legendre polynomial appear in solutions of Laplace’s equation for systems that 
have azimuthally symmetric boundary conditions (coming soon, stay tuned): 

𝛼𝛼



Legendre polynomials

𝛼𝛼
𝛼𝛼



Multipole Moments: Summary – 1

The first 3 moments of a charge distribution, 𝜌𝜌(𝐫𝐫), and the resulting potential fields, 𝑉𝑉(𝐫𝐫): 

• Monopole (𝑙𝑙 = 0)

• Dipole (𝑙𝑙 = 1)

• Quadrupole (𝑙𝑙 = 2)



Multipole Moments: Summary – 2

The multipole moments for a system of point charges have similar expressions. 

• Monopole (𝑙𝑙 = 0)

• Dipole (𝑙𝑙 = 1)

• Quadrupole (𝑙𝑙 = 2)

Let
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