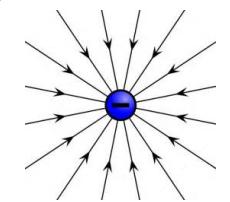
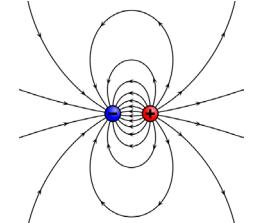


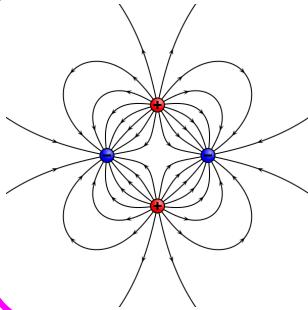
# Lecture 11

$$V(\mathbf{r}) = \sum_{l=0}^{\infty} V_l(\mathbf{r}) = \boxed{V_0(\mathbf{r})} + \boxed{V_1(\mathbf{r})} + \boxed{V_2(\mathbf{r})} + \dots$$

monopole      dipole      quadrupole


$$V_0(\mathbf{r}) = \frac{1}{4\pi\epsilon_0} \frac{Q}{r}$$


$$V_1(\mathbf{r}) = \frac{1}{4\pi\epsilon_0} \frac{\mathbf{p} \cdot \hat{\mathbf{r}}}{r^2}$$

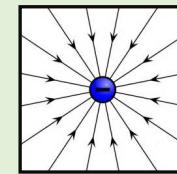

$$V_2(\mathbf{r}) = \frac{1}{4\pi\epsilon_0} \sum_{ij} \frac{Q_{ij} \hat{r}_i \hat{r}_j}{r^3}$$

Multipole expansion: Examples

# Last Time: Multipole Expansion

- Monopole ( $l = 0$ )

$$V_0(\mathbf{r}) = \frac{1}{4\pi\epsilon_0} \frac{Q}{r}$$

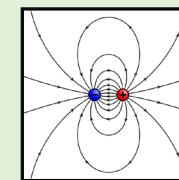


$$Q = \int_V \rho(\mathbf{r}') d\tau' \rightarrow \sum_a q_a$$

$$\mathbf{E}_0(\mathbf{r})$$

- Dipole ( $l = 1$ )

$$V_1(\mathbf{r}) = \frac{1}{4\pi\epsilon_0} \frac{\mathbf{p} \cdot \hat{\mathbf{r}}}{r^2}$$

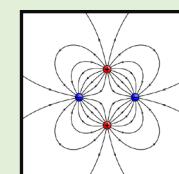


$$\mathbf{p} = \int_V \rho(\mathbf{r}') \mathbf{r}' d\tau' \rightarrow \sum_a q_a \mathbf{r}_a$$

$$\mathbf{E}_1(\mathbf{r})$$

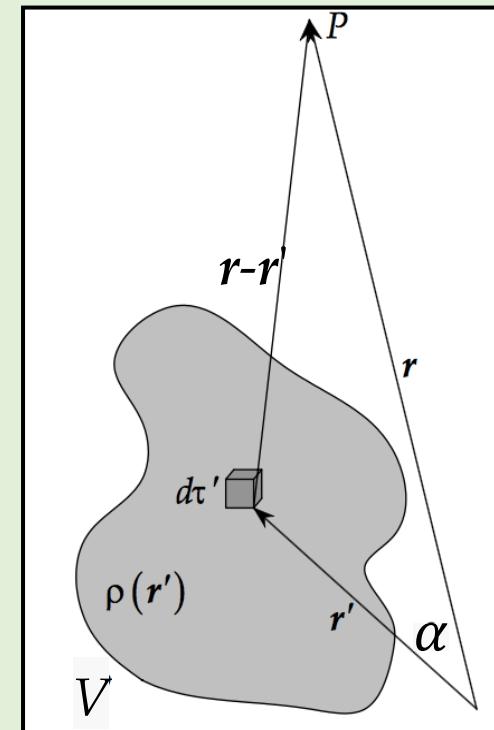
- Quadrupole ( $l = 2$ )

$$V_2(\mathbf{r}) = \frac{1}{4\pi\epsilon_0} \sum_{ij} \frac{Q_{ij} \hat{r}_i \hat{r}_j}{r^3}$$



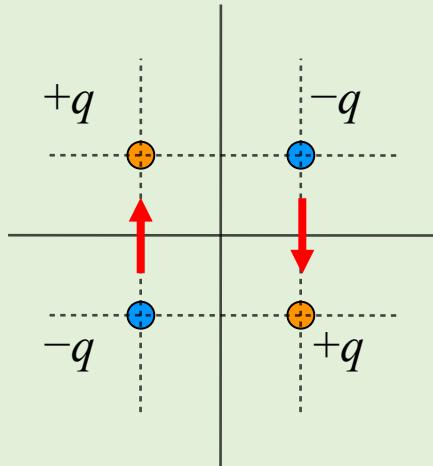
$$Q_{ij} = \int_V \frac{\rho(\mathbf{r}')}{2} (3r'_i r'_j - r'^2 \delta_{ij}) d\tau' \rightarrow \sum_a \frac{q_a}{2} (3r_{a,i} r_{a,j} - r_a^2 \delta_{ij})$$

$$\mathbf{E}_2(\mathbf{r})$$



# Last Time: Multipole Expansion

Q: What can you say about the potential of the following charge distribution?



$$Q = \sum_a q_a = 0 \rightarrow V_0(\mathbf{r}) = 0$$

$$\mathbf{p} = \sum_a q_a \mathbf{r}_a = 0 \rightarrow V_1(\mathbf{r}) = 0$$

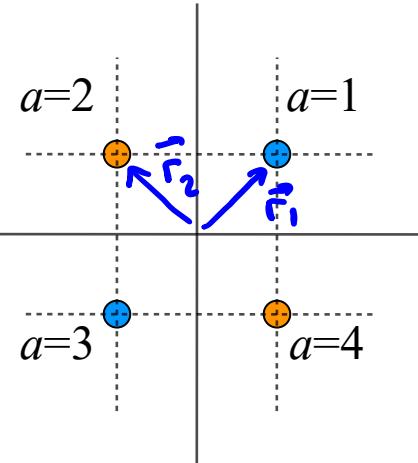
- A.  $V(\mathbf{r}) = V_0(\mathbf{r}) + \text{higher-order terms}$
- B.  $V(\mathbf{r}) = V_1(\mathbf{r}) + \text{higher-order terms}$
- C.  $V(\mathbf{r}) = V_2(\mathbf{r}) + \text{higher-order terms}$
- D.  $V(\mathbf{r}) = 0$
- E. None of the above.

$$Q_{ij} = \sum_a \frac{q_a}{2} (3r_{a,i}r_{a,j} - r_a^2 \delta_{ij})$$

$$V_2(\mathbf{r}) = \frac{1}{4\pi\epsilon_0} \sum_{ij} \frac{Q_{ij} \hat{r}_i \hat{r}_j}{r^3}$$

# Quadrupole Moment & Potential

Q: Compute the quadrupole moment,  $Q_{ij}$ . Say we have point charges with  $(x, y) = (\pm d, \pm d)$ :



$$Q_{ij} = \int_V \frac{\rho(\mathbf{r}')}{2} (3r'_i r'_j - r'^2 \delta_{ij}) d\tau' \rightarrow \sum_a \frac{q_a}{2} (3r_{a\mathbf{x}} r_{a\mathbf{x}} - r_a^2 \delta_{\mathbf{xx}})$$

$$\mathbf{Q} = \begin{pmatrix} Q_{xx} & Q_{xy} & Q_{xz} \\ Q_{yx} & Q_{yy} & Q_{yz} \\ Q_{zx} & Q_{zy} & Q_{zz} \end{pmatrix}$$

$a$  = index counting charges;  $a = 1, 2, 3, 4$

$\mathbf{r}_a$  = position of  $a$ -th charge

$r_{a,i}$  =  $i$ -th coordinate of  $a$ -th charge,  $i = x, y, z$

$$\delta_{ij} = \begin{cases} 1, & i=j \\ 0, & i \neq j \end{cases} \quad \begin{array}{l} \delta_{xx} = 1 \\ \delta_{xy} = 0 \end{array}$$

Kronecker's delta

$Q_{xx}$ :

A. Got the value

$i=x \quad j=x$

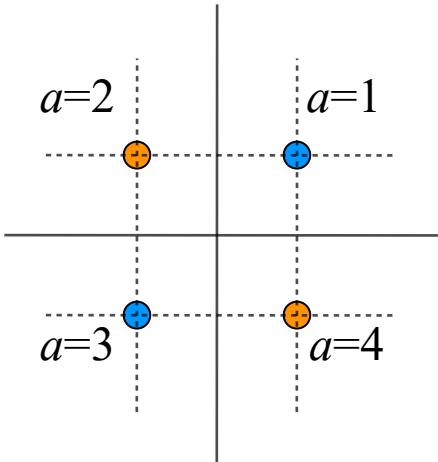
B. Set the sum up

C.  $\ddots$

$\rightarrow Q_{yy} \rightarrow Q_{zz}$

## Quadrupole Moment & Potential

Q: Compute the quadrupole moment,  $Q_{ij}$ . Say we have point charges with  $(x, y) = (\pm d, \pm d)$ :



$$Q_{ij} = \int_V \frac{\rho(\mathbf{r}')}{2} (3r'_i r'_j - r'^2 \delta_{ij}) d\tau' \rightarrow \sum_a \frac{q_a}{2} (3r_{a,i} r_{a,j} - \cancel{r_a^2 \delta_{ij}}) \quad \mathbf{3} \cdot \mathbf{x}_a \cdot \mathbf{y}_a \quad \cancel{\delta_{xy} \equiv 0}$$

$$r_a^2 = x_a^2 + y_a^2 + z_a^2 = 2d^2 \quad (x_a = y_a = d, \quad z_a = 0)$$

- $Q_{xx} = \sum_a \frac{q_a}{2} (3x_a^2 - r_a^2) = \frac{d^2}{2} \sum_a q_a = 0$

- Similarly,  $Q_{yy} = 0$

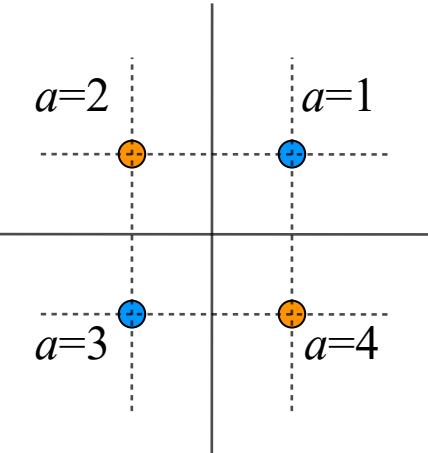
- $Q_{zz} = \sum_a \frac{q_a}{2} (0 - r_a^2) = -2d^2 \sum_a \frac{q_a}{2} = 0$

- All diagonal elements of the quadrupole moment are equal to zero!

✓  $Q_{xy}$   $Q_{xz}$   $Q_{yz}$

## Quadrupole Moment & Potential

Q: Compute the quadrupole moment,  $Q_{ij}$ . Say we have point charges with  $(x, y) = (\pm d, \pm d)$ :



$$\frac{1}{4\pi\epsilon_0} \left\{ \frac{Q_{xy} x y}{r^5} + \frac{Q_{yx} y x}{r^5} \right\}$$

$$i, j = x, y, z$$

• Potential:

$$\rightarrow V_2(\mathbf{r}) = \frac{1}{4\pi\epsilon_0} \sum_{ij} \frac{Q_{ij} r_i r_j}{r^5} = -\frac{12qd^2}{4\pi\epsilon_0} \frac{xy}{r^5} \propto \frac{1}{r^3} \text{ at large } r$$

$$Q_{ij} = \int_V \frac{\rho(\mathbf{r}')}{2} (3r'_i r'_j - r'^2 \delta_{ij}) d\tau' \rightarrow \sum_a \frac{q_a}{2} (3r_{a,i} r_{a,j} - r_a^2 \delta_{ij})$$

$$Q_{xz} : 3 \cdot x_a \cdot z_a - r_a^2 \cdot \delta_{xz}$$

$$\bullet Q_{xy} = \sum_{a=1}^4 \frac{q_a}{2} 3x_a y_a = Q_{yx} =$$

$$= \sum_{\alpha} \frac{3}{2} [(-q)(d)(d) + (q)(-d)(d) + (-q)(-d)(-d) + (q)(d)(-d)] \\ = -6qd^2$$

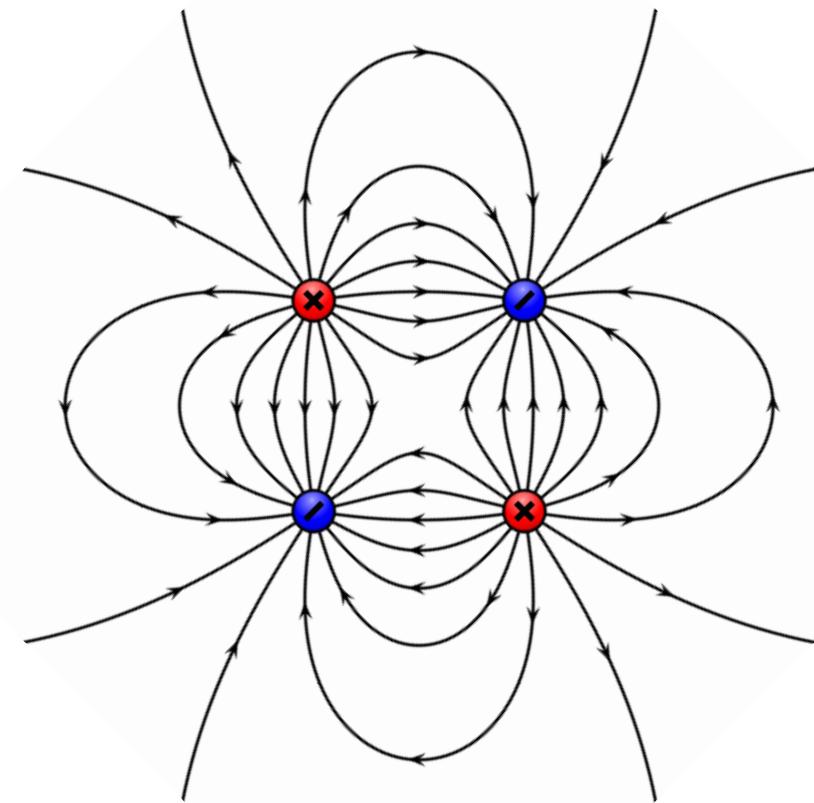
$$\boxed{\mathbf{Q} = \begin{pmatrix} 0 & -6 & 0 \\ -6 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} qd^2}$$

$$(z_a = 0)$$

## Quadrupole Field Geometry

The electric field is readily obtained by taking the gradient of  $V(\mathbf{r})$ :

$$\mathbf{E}_l(\mathbf{r}) = -\nabla V_l(\mathbf{r}) \quad (l = 0, 1, 2, \dots)$$



## Exercise 1: Multipoles of a Charged Ring

A circular ring of charge centered at the origin with radius  $R$  carries a linear charge density  $\lambda$ . Find the first three terms ( $l = 0, 1, 2$ ) in the multipole expansion for  $V(\mathbf{r})$ .

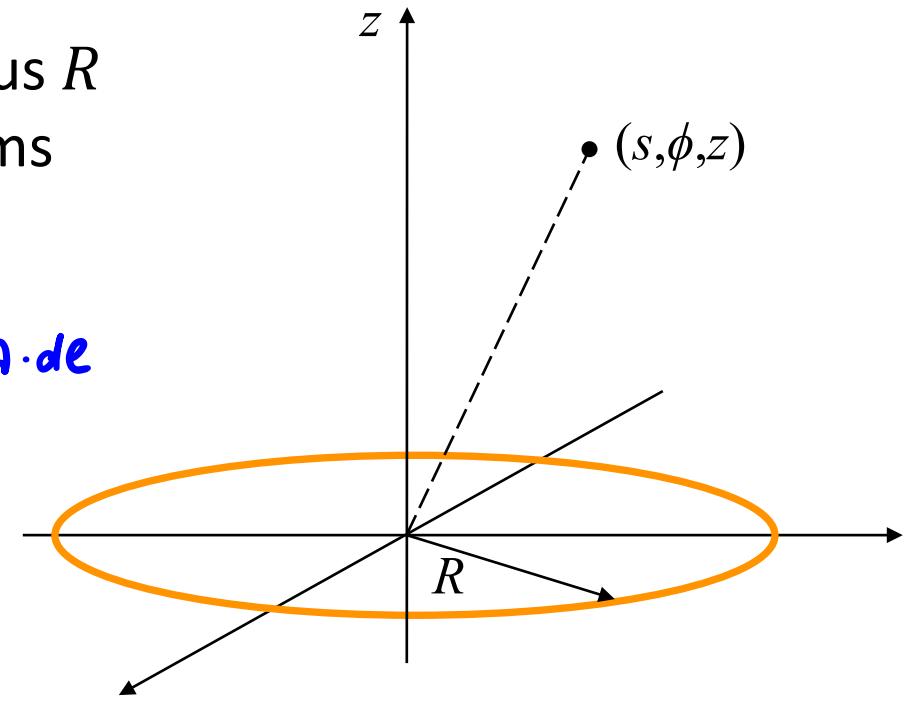
Reminder:

$$Q = Q_{\text{tot}} = \lambda \cdot 2\pi R$$

A.  $Q \equiv \int_V \rho(\mathbf{r}') d\tau' \quad V_0(\mathbf{r}) = \frac{1}{4\pi\epsilon_0} \frac{Q}{r}$

B.  $\mathbf{p} \equiv \int_V \rho(\mathbf{r}') \mathbf{r}' d\tau' \quad V_1(\mathbf{r}) = \frac{1}{4\pi\epsilon_0} \frac{\mathbf{p} \cdot \hat{\mathbf{r}}}{r^2}$

C.  $Q_{ij} \equiv \int_V \frac{\rho(\mathbf{r}')}{2} (3r'_i r'_j - r'^2 \delta_{ij}) d\tau' \quad V_2(\mathbf{r}) = \frac{1}{4\pi\epsilon_0} \sum_{ij} \frac{Q_{ij} \hat{r}_i \hat{r}_j}{r^3}$



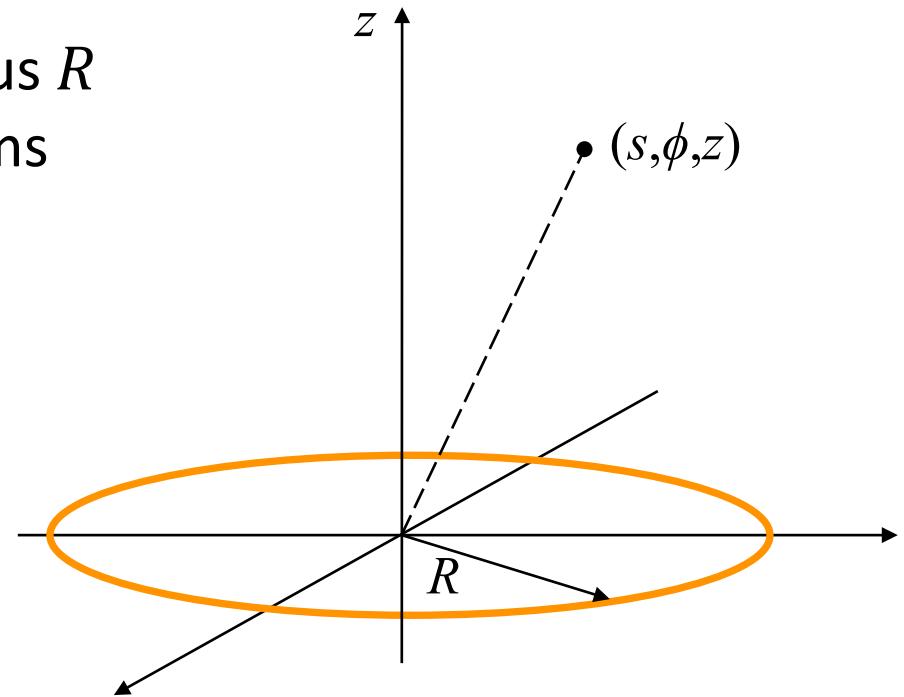
## Exercise 1: Multipoles of a Charged Ring

A circular ring of charge centered at the origin with radius  $R$  carries a linear charge density  $\lambda$ . Find the first three terms ( $l = 0, 1, 2$ ) in the multipole expansion for  $V(\mathbf{r})$ .

Monopole ( $l = 0$ ):

$$Q = \int_V \rho(\mathbf{r}') d\tau'$$

$$\rightarrow \int_C \lambda(\mathbf{r}') dl' = \lambda \int_0^{2\pi} R d\phi' = 2\pi R \lambda$$



$$V_0(\mathbf{r}) = \frac{1}{4\pi\epsilon_0} \frac{Q}{r} = \frac{\lambda}{2\epsilon_0} \frac{R}{\sqrt{s^2 + z^2}}$$

## Exercise 1: Multipoles of a Charged Ring

A circular ring of charge centered at the origin with radius  $R$  carries a linear charge density  $\lambda$ . Find the first three terms ( $l = 0,1,2$ ) in the multipole expansion for  $V(\mathbf{r})$ .

Dipole ( $l = 1$ ):  $\mathbf{p} \equiv \int_V \rho(\mathbf{r}') \mathbf{r}' d\tau'$

Q: Which coordinate system do you prefer to express  $\mathbf{p}$ ?

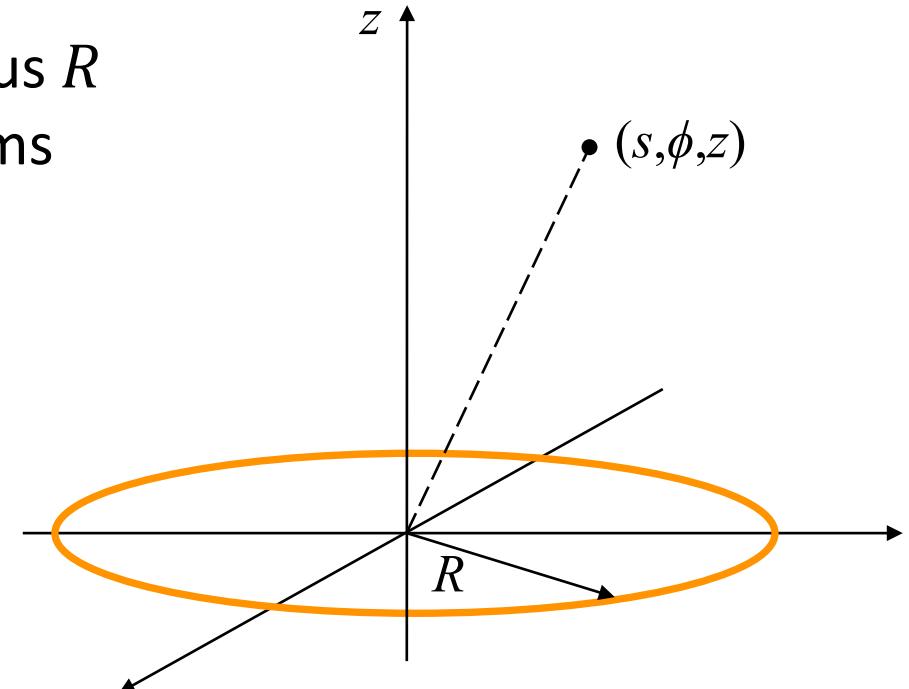
- Cartesian coordinate system  
=> you will get  $(p_x, p_y, p_z)$

$$\mathbf{r}' = x' \hat{\mathbf{x}} + y' \hat{\mathbf{y}} + z' \hat{\mathbf{z}}$$

- Cylindrical coordinate system  
=> you will get  $(p_s, p_z)$

$$\mathbf{r}' = s' \hat{\mathbf{s}} + z' \hat{\mathbf{z}}$$

Q: Pick a coordinate system, compute  $\mathbf{p}$  and submit your answer



- A. Zero
- B.  $2\pi R^2 \lambda \hat{\mathbf{s}}$
- C. Something else
- D. ☺

# Exercise 1: Multipoles of a Charged Ring

Dipole ( $l = 1$ ):  $\mathbf{p} \equiv \int_V \rho(\mathbf{r}') \mathbf{r}' d\tau'$   $\rho(r') d\tau' = \lambda dl = \lambda R d\phi$

• Cartesian:  $\mathbf{r}' = x' \hat{\mathbf{x}} + y' \hat{\mathbf{y}} + z' \hat{\mathbf{z}}$

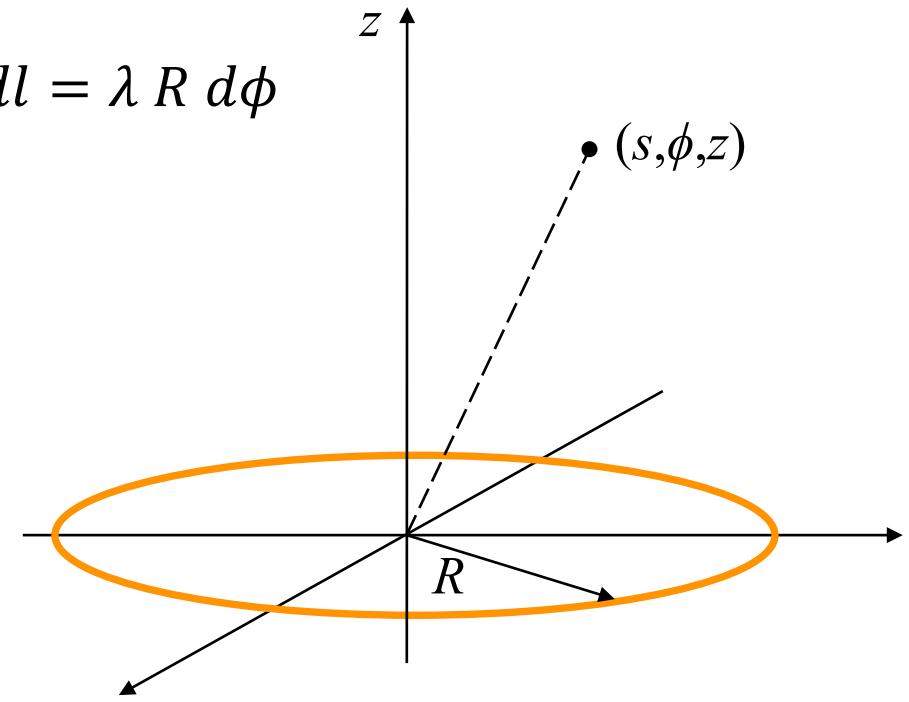
$$p_x = \int_C \lambda(\mathbf{r}') x' dl' = \lambda \int_0^{2\pi} \frac{R \cos \phi'}{\sin \phi'} R d\phi' = 0$$

Similarly for  $p_y$ . And  $p_z \equiv 0$  since  $z' \equiv 0$ .

• Cylindrical:  $\mathbf{r}' = s' \hat{\mathbf{s}} + z' \hat{\mathbf{z}}$

$$p_s = \int_C \lambda(\mathbf{r}') s' dl' = \lambda \int_0^{2\pi} R \cdot R d\phi' = \lambda \cdot 2\pi R^2$$

...and  $p_z \equiv 0$  since  $z' \equiv 0$ .



- A. Zero
- B.  $2\pi R^2 \lambda \hat{\mathbf{s}}$
- C. Something else
- D. ☹

Q1: What's going on ???

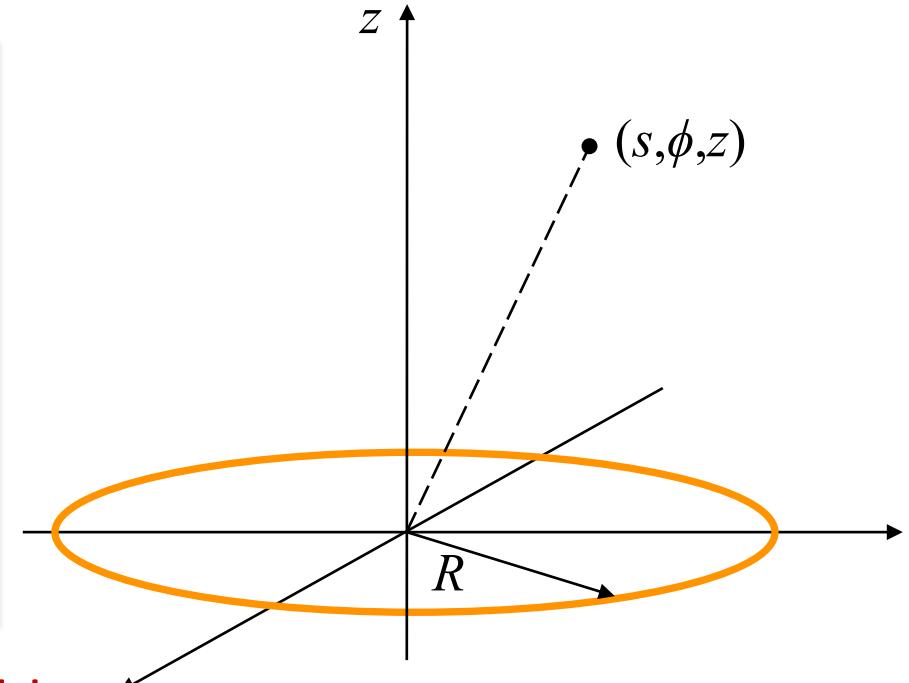
Q2: Which answer you expect is true?

# Exercise 1: Multipoles of a Charged Ring

- We need to recall what we talked about at Lecture 1:

**Warning**

- Cartesian coordinate system:  
 $\mathbf{r}_1 = (x_1, y_1, z_1)$        $r_1 \equiv |\mathbf{r}_1| = \sqrt{x_1^2 + y_1^2 + z_1^2}$   
 $\mathbf{r}_2 = (x_2, y_2, z_2)$        $\mathbf{R} = \mathbf{r}_1 + \mathbf{r}_2 = (x_1 + x_2, y_1 + y_2, z_1 + z_2)$
- Cylindrical coordinate system:  
 $\mathbf{r}_1 = (s_1, \theta_1, z_1)$        ~~$r_1 \equiv |\mathbf{r}_1| \neq \sqrt{s_1^2 + \theta_1^2 + z_1^2}$~~   
 $\mathbf{r}_2 = (s_2, \theta_2, z_2)$        ~~$\mathbf{R} = \mathbf{r}_1 + \mathbf{r}_2 \neq (s_1 + s_2, \theta_1 + \theta_2, z_1 + z_2)$~~
- Spherical coordinate system: it does **not** work the “Cartesian” way either!



- Integration is a form of vector addition. We only can add components of **Cartesian vectors**, to find theirs sum (since this coordinate system has fixed unit vectors).
- You can carry integration out in any coordinate system, but you need to set up integrals for **Cartesian component** of the vector you are looking for.



A.

B.

C.

D.

Zero

$2\pi R^2 \lambda \hat{\mathbf{s}}$

Something else

:(

## Exercise 1: Multipoles of a Charged Ring

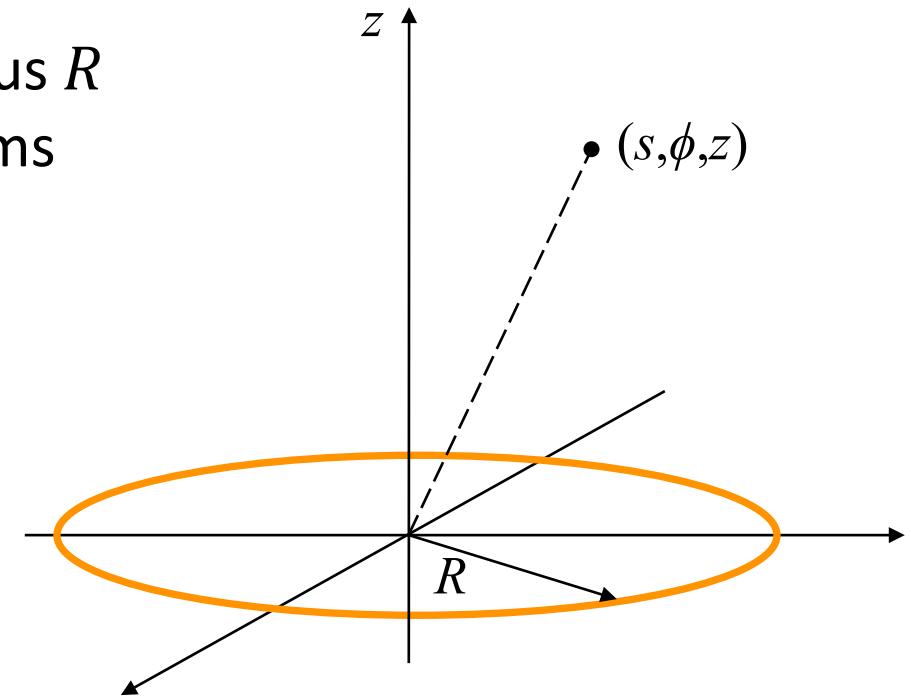
A circular ring of charge centered at the origin with radius  $R$  carries a linear charge density  $\lambda$ . Find the first three terms ( $l = 0, 1, 2$ ) in the multipole expansion for  $V(\mathbf{r})$ .

Quadrupole ( $l = 2$ ):  $\int_C \frac{\lambda(\mathbf{r}')}{2} (3r'_i r'_j - r'^2 \delta_{ij}) dl'$

$$Q_{ij} = \int_C \frac{\lambda(\mathbf{r}')}{2} (3r'_i r'_j - r'^2 \delta_{ij}) dl' \quad dl' = R d\phi'$$

In the ring:  $r'_x = x' = R \cos \phi'$ ,  $r'_y = y' = R \sin \phi'$   
 $r'_z = z' = 0$ ,  $r'^2 = x'^2 + y'^2 + z'^2 = R^2$

$$Q_{xx} = \frac{\lambda R^3}{2} \int_0^{2\pi} (3 \cos^2 \phi' - 1) d\phi' = \boxed{\frac{\pi \lambda R^3}{2}}$$



$$Q_{yy} = Q_{xx} \quad \text{by symmetry}$$

- Exercise:  
Work out  $Q_{zz}$

## Exercise 1: Multipoles of a Charged Ring

A circular ring of charge centered at the origin with radius  $R$  carries a linear charge density  $\lambda$ . Find the first three terms ( $l = 0, 1, 2$ ) in the multipole expansion for  $V(\mathbf{r})$ .

Quadrupole ( $l = 2$ ):

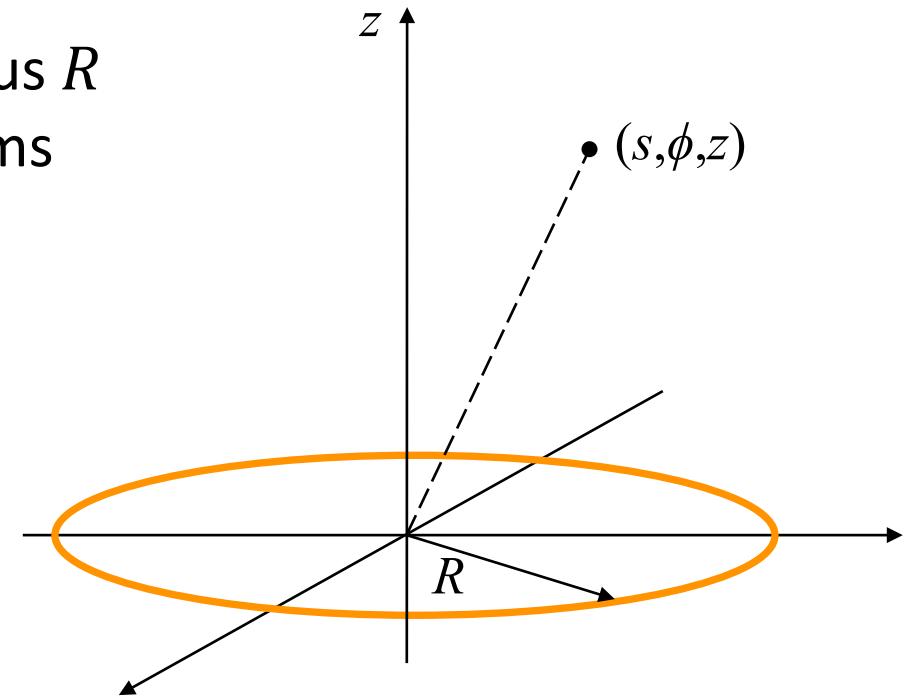
$$Q_{zz} = \frac{\lambda R^3}{2} \int_0^{2\pi} (3 \cdot 0 - 1) d\phi' = \boxed{-\pi \lambda R^3}$$

$$Q_{xy} = Q_{xz} = Q_{yz} = 0 \quad \text{(left as an exercise)}$$

$$\rightarrow V_2(\mathbf{r}) = \frac{1}{4\pi\epsilon_0} \left( \frac{Q_{xx}x^2}{r^5} + \frac{Q_{yy}y^2}{r^5} + \frac{Q_{zz}z^2}{r^5} \right)$$

$$= \frac{\pi \lambda R^3}{8\pi\epsilon_0} \frac{x^2 + y^2 - 2z^2}{r^5}$$

$$= \frac{Q}{4\pi\epsilon_0} \frac{R^2}{4} \frac{s^2 - 2z^2}{(s^2 + z^2)^{5/2}} \quad (Q = 2\pi R \lambda)$$



- Now let's see what this looks like in the x-y plane, and along the z axis.

$$V_0(\mathbf{r}) = \frac{1}{4\pi\epsilon_0} \frac{Q}{r} = \frac{\lambda}{2\epsilon_0} \frac{R}{\sqrt{s^2 + z^2}}$$

## Exercise 1: Multipoles of a Charged Ring

$$V_2(\mathbf{r}) = \frac{Q}{4\pi\epsilon_0} \frac{R^2}{4} \frac{s^2 - 2z^2}{(s^2 + z^2)^{5/2}}$$

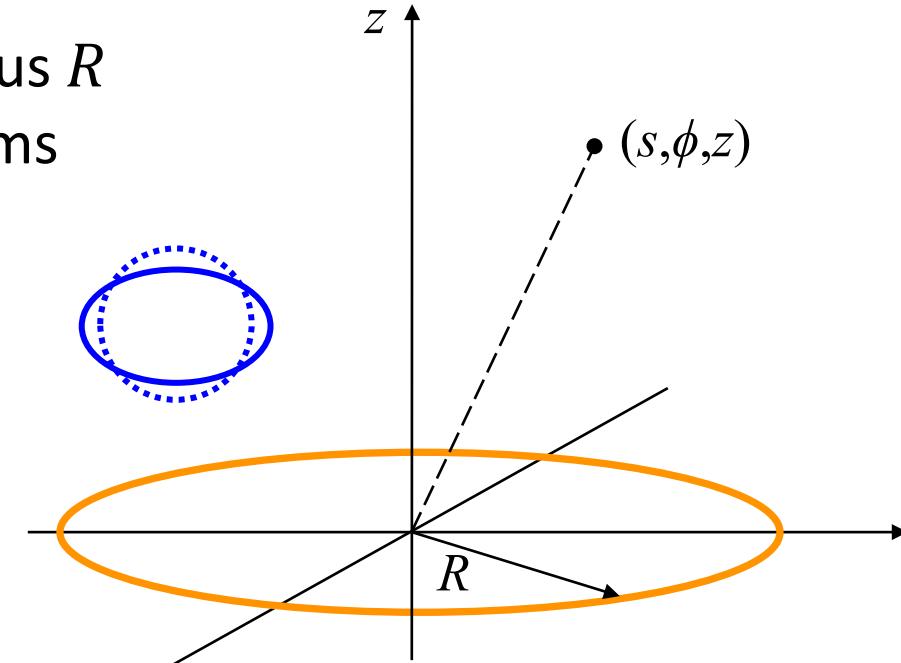
A circular ring of charge centered at the origin with radius  $R$  carries a linear charge density  $\lambda$ . Find the first three terms ( $l = 0, 1, 2$ ) in the multipole expansion for  $V(\mathbf{r})$ .

- In the  $x$ - $y$  plane:  
 $z = 0$  and  $s = r$ :

$$V(\mathbf{r}) \rightarrow \frac{Q}{4\pi\epsilon_0} \left( \frac{1}{s} + \frac{R^2}{4s^3} \right) > V_0(\mathbf{r})$$

- Along the  $z$  axis:  
 $s = 0$  and  $|z| = r$ :

$$V(\mathbf{r}) \rightarrow \frac{Q}{4\pi\epsilon_0} \left( \frac{1}{|z|} - \frac{R^2}{2|z|^3} \right) < V_0(\mathbf{r})$$



- In the  $x$ - $y$  plane, the quadrupole term gives an **increment** to the monopole potential at a given  $r$ , while along the  $z$  axis it gives a **decrement** to the monopole potential.
- This is because this charge distribution differs from a “point-like” charge at the origin by “spilling” the charge density out in the  $x$ - $y$  plane and away from the  $z$ -axis.

# A Slightly Different Approach

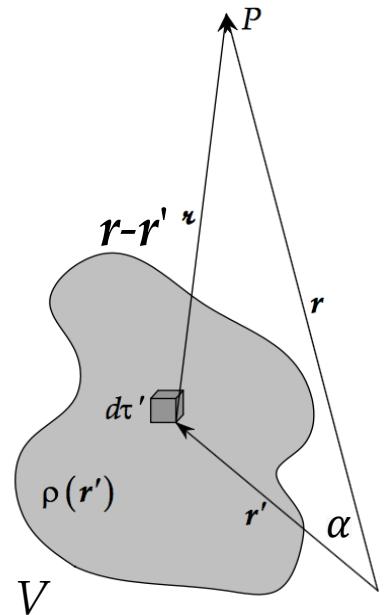
- Recall: We started from here...

We get: 
$$\frac{1}{|\mathbf{r} - \mathbf{r}'|} = \frac{1}{r} \left[ 1 + \frac{r'}{r} \cos\alpha + \frac{1}{2} \frac{r'^2}{r^2} (3 \cos^2 \alpha - 1) + \mathcal{O}\left(\frac{r'^3}{r^3}\right) \right]$$

Now we can expand Coulomb's law in powers of  $1/r^{l+1}$ :

$$V(\mathbf{r}) = \sum_{l=0}^{\infty} V_l(\mathbf{r}) = V_0(\mathbf{r}) + V_1(\mathbf{r}) + V_2(\mathbf{r}) + \dots$$

monopole      dipole      quadrupole      octupole+      ...



- ...and split  $V_l(\mathbf{r})$  into two parts, one depends only on  $\mathbf{r}'$  (moments) and the other only on  $\mathbf{r}$ :

$$Q \equiv \int_V \rho(\mathbf{r}') d\tau'$$

$$\mathbf{p} \equiv \int_V \rho(\mathbf{r}') \mathbf{r}' d\tau'$$

$$Q_{ij} \equiv \int_V \frac{\rho(\mathbf{r}')}{2} (3r'_i r'_j - r'^2 \delta_{ij}) d\tau'$$

$$V_0(\mathbf{r}) = \frac{1}{4\pi\epsilon_0} \frac{Q}{r}$$

$$V_1(\mathbf{r}) = \frac{1}{4\pi\epsilon_0} \frac{\mathbf{p} \cdot \hat{\mathbf{r}}}{r^2}$$

$$V_2(\mathbf{r}) = \frac{1}{4\pi\epsilon_0} \sum_{ij} \frac{Q_{ij} \hat{r}_i \hat{r}_j}{r^3}$$

## A Slightly Different Approach

- We did this to eliminate the angle  $\alpha$ , which is NOT the integration angle,  $\theta'$ . This angle complicates the integration over  $\mathbf{r}'$  considerably.
- But, what if we rotate the z-axis towards the observation point?
- Now  $\alpha = \theta'$ , and our original expansion can be used directly:

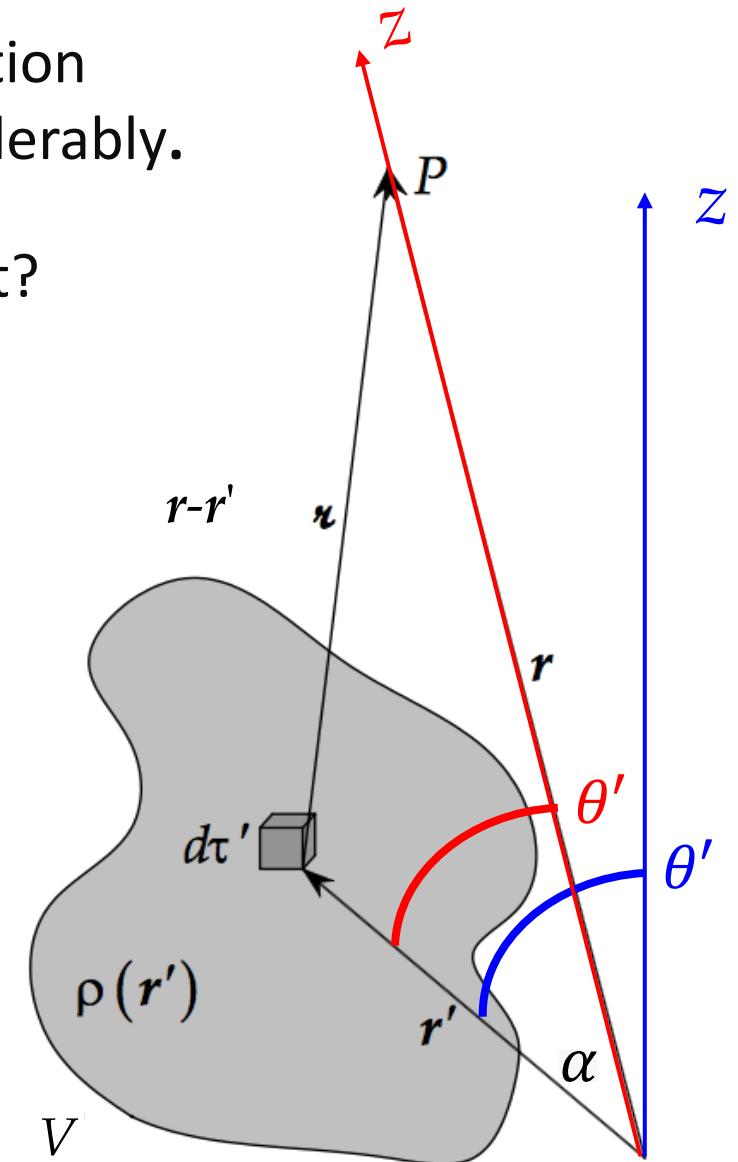
$$\frac{1}{|\mathbf{r} - \mathbf{r}'|} = \frac{1}{r} \left[ 1 + \frac{r'}{r} \cos \theta' + \frac{1}{2} \frac{r'^2}{r^2} (3 \cos^2 \theta' - 1) + \mathcal{O} \left( \frac{r'^3}{r^3} \right) \right]$$

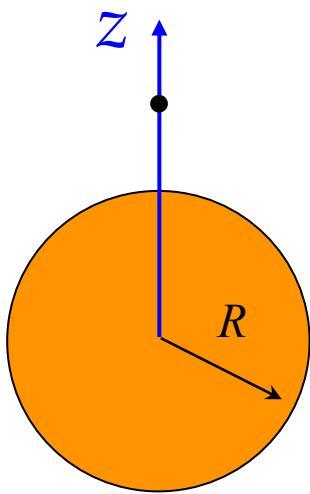
$$V(\mathbf{r}) = \sum_{l=0}^{\infty} V_l(\mathbf{r}) = V_0(\mathbf{r}) + V_1(\mathbf{r}) + V_2(\mathbf{r}) + \dots$$

monopole
dipole
quadrupole
octupole+

$$V(\mathbf{r}) = \frac{1}{4\pi\epsilon_0} \int_V \frac{\rho(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|} d\tau'$$

Don't need to worry about, e.g., which components of  $\mathbf{p}$  to take, just compute these integrals!





## Exercise 2: Multipoles of a Charged Sphere

A uniformly charged sphere carries a volume charge density  $\rho$ . Find the first three terms ( $l = 0, 1, 2$ ) in the multipole expansion for  $V(\mathbf{r})$ .

$$\frac{4\pi}{3} R^3 \rho$$

uniform !

$$V_0(\mathbf{r}) = \frac{1}{4\pi\epsilon_0} \frac{1}{r} \left( \int_V \rho(\mathbf{r}') d\tau' \right)$$

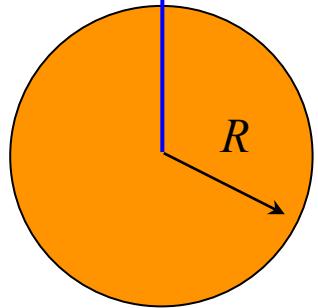
$$V_1(\mathbf{r}) = \frac{1}{4\pi\epsilon_0} \frac{1}{r^2} \int_V \rho(\mathbf{r}') r' \cos\theta' d\tau'$$

$$V_2(\mathbf{r}) = \frac{1}{4\pi\epsilon_0} \frac{1}{r^3} \int_V \rho(\mathbf{r}') \frac{r'^2}{2} (3\cos^2\theta' - 1) d\tau'$$

- Due to the central symmetry of the charge distribution, we can assume that our observation point is on the z-axis – the answer that we will get would be the same for all other directions

$z$

## Exercise 2: Multipoles of a Charged Sphere



A uniformly charged sphere carries a volume charge density  $\rho$ . Find the first three terms ( $l = 0, 1, 2$ ) in the multipole expansion for  $V(\mathbf{r})$ .

- $V_0(\mathbf{r}) = \frac{1}{4\pi\epsilon_0} \frac{1}{r} \int_V \rho(\mathbf{r}') d\tau' = \frac{1}{4\pi\epsilon_0} \frac{Q}{r}$        $Q = \rho \frac{4\pi}{3} R^3$
- $V_1(\mathbf{r}) = \frac{1}{4\pi\epsilon_0} \frac{1}{r^2} \int_V \rho(\mathbf{r}') r' \cos\theta' d\tau' = \frac{1}{4\pi\epsilon_0} \frac{1}{r^2} \int_V (\rho r' \cos\theta') (r'^2 \sin\theta' dr' d\theta' d\phi') = 0$
- $V_2(\mathbf{r}) = \frac{1}{4\pi\epsilon_0} \frac{1}{r^3} \int_V \rho(\mathbf{r}') \frac{r'^2}{2} (3\cos^2\theta' - 1) d\tau'$   
 $= \frac{1}{4\pi\epsilon_0} \frac{1}{r^3} \int_V \left( \frac{\rho}{2} \frac{r'^2}{2} (3\cos^2\theta' - 1) \right) (r'^2 \sin\theta' dr' d\theta' d\phi') = 0$       Why ???

## Choice of Origin in Multipole Expansion

- Consider a point charge at the origin:

$$V(r) = \frac{kq}{r} \quad (\text{Monopole only, of course})$$

...and one not at the origin, say at  $(r, \theta, \varphi) = (a, \theta_0, 0)$ :

$$V(r) = \frac{kq}{d} = \frac{kq}{|\vec{r} - \vec{r}_a|}$$

$$V = \frac{q}{r} \left[ 1 + \frac{a}{r} \cos\theta_0 + \left(\frac{a}{r}\right)^2 P_2(\cos\theta_0) + \left(\frac{a}{r}\right)^3 P_3(\cos\theta_0) + \dots \right]$$

Q: What is going on here? Why does a point charge have so many non-zero moments all of a sudden?

- Changing the origin doesn't change the physics (and you will show it in HW-3!), but it can radically change the terms in the series.
- It's really important to specify origin when calculating moments!

- Dipole moment independent of origin only if  $Q = 0$ !