Lecture 11
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Multipole expansion: Examples



Last Time: Multipole Expansion

* Monopole (I = 0)

1
Vo(r) = 47reog %

* Dipole (I = 1)
1 p-r
Vals) = Ameg T2

* Quadrupole (I = 2)
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Last Time: Multipole Expansion

Q: What can you say about the potential of the following charge distribution?
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A. V(r) = Vy(r) + higher-order terms

B. V(r)=V,(r)+ higher-order terms
@ V(r) = V,(r) + higher-order terms

D. V(r)=0

E. None of the above.
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Quadrupole Moment & Potential

Q: Compute the quadrupole moment, Q;;. Say we have point charges with (x,y) = (+d, £d):
I
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el | e Q= [ P @rtr o) ar 3 Braurag i)
: N _— a
"""" R 2
§ €
i Qxx Qxy Qxz a = index counting charges; a = 1,2,3,4
azg' """""" @a=4 Q=|Qx Qyy r,= position of a-th charge
' ' Qzx  Qzy  Qu T, = i-th coordinate of a-th charge, i = x,y,z

: R { L=1
PQ“ ., J -43 > 5 gxx’\

"
A. Got dhe val«e S 8*(] =0

B. Set +he sum vp krovu.c(ur'.s deltq

c. =
k —= Q53 —_—3 Gez-



Quadrupole Moment & Potential

Q: Compute the quadrupole moment, Q;;. Say we have point charges with (x,y) = (+d, £d):

; ; Qi —/ 'O(r/)(3r'7“’ — 728;;) dr’ —>Zq—a(3r Ta i — DEBis)
a=2 a=1 v, 2 g g Nt >§w
_______ Gl @ @ 3 XaYy Xy= 0
..... : 0(94 raz — xczx + yc% + Zczl = 2d* (Xq =Yg = d, Zg = 0)
a= A=
2
q d
0= ) @) = 5 ) da =0
a a  All diagonal elements of

the quadrupole moment

* Similarly, @y, = 0 are equal to zero!
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Quadrupole Moment & Potential

Q: Compute the quadrupole moment, Q;;. Say we have point charges with (x,y) = (+d, £d):

4= =1 Qij = /V ,0(;' ) (37‘27“3 /257;j) dr’ — Z q—a(gTa,iTa,j — 7“257;]')
_______ @ @ @ 2 o
q Qua: I Xa 2 1 K2
5 5 da x2
a=3‘ ............ @a=4 * Qxy — 27 3%XqYa = ny —
z [(=g)(d)(d) + (@)(=d)(d) + (=q)(=d)(=d) + (q)(d)(—d)]
L ng X3 G:x hRa :
4re, rs rs _(f = —6qd* 0 -6 0
Q= (-6 0 O) C[d2 (zq =0)
Ly = XY2 0 0 0
* Potential: “d 2l
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— Va(r) = Z M =: _12qd 4 X L at large r
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Quadrupole Field Geometry

The electric field is readily obtained by taking the gradient of V(r):

E(r) = -VVi(r) (1=0,1,2,...)
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Exercise 1: Multipoles of a Charged Ring

A circular ring of charge centered at the origin with radius R

carries a linear charge density A. Find the first three terms » (5.0:2)
(L = 0,1,2) in the multipole expansion for V(r). /
//
. (! = A-de /
Reminder: R=Qu¢ = A- R 9 // P

. @zfvp(r'mfr' Vo(r) = 9 - ﬁ

- 41reg r /

_ p(r') 0, / / 1 QiiTiT
C. Qi :/V 5 (Brir’ — r'%8;5) dr Va(r) = Z J



Exercise 1: Multipoles of a Charged Ring

A circular ring of charge centered at the origin with radius R
carries a linear charge density A. Find the first three terms » (5.0:2)
(L = 0,1,2) in the multipole expansion for V(r). /

Monopole (I = 0): /

Q= /V p(r') dr’ - e

21
— f Ndll = / Rd¢' = 21nR )\
0

1 @ A R
Vo(r) = Ameg T 2¢q V82 + 22




Exercise 1: Multipoles of a Charged Ring

Z A

A circular ring of charge centered at the origin with radius R
carries a linear charge density A. Find the first three terms » (5,0.2)
(L = 0,1,2) in the multipole expansion for V(r). /

/
Dipole (I = 1): PE/Pr' r' dr’ //

pole (1 = 1) P S
//
Q: Which coordinate system do you prefer to express p? g

* Cartesian coordinate system

=>you will get (py, Py, Pz) r=xXTyyTaz

o _ A. Zero
. Cyllndr|c§l coordinate system = s'§4 2’3 8 27R218
=>you will get (pg, p,)
C. Something else
Q: Pick a coordinate system, compute p and submit your answer D. ®



Exercise 1: Multipoles of a Charged Ring

Z A
Dipole (I = 1): p= / p(r') r dr’ p(r')dt' =Adl=AR d¢
g 7V » (5.6.2)
p ’ :
//
e Cartesian: r' = x'R+y'y+27'Z //
\[—___’ 2'z0 o x' dl' ///
Pz = / Ax") 2'dl’ = )\f Rcos¢’ Rd¢' =0 / /
c Y 0 Sings _ <
Similarly for p,,. And p, = O sincez’ = 0. / K

e Cylindrical:  r'=5s'8 +§é

2T
Ds = j/l(l")S'dl' = AJ R-Rd¢ = ).21R? a Zero
C 0

@ 2mR21 §

..and p, = 0 since z" = 0. C. Something else

Q1: What’s going on ??? Q2: Which answer you expect is true? D. ®



Exercise 1: Multipoles of a Charged Ring

Warning
° We nee d * Cartesian coordinate system:
r = (x,51,7) n = nl = [xf+y] +2zf
to recall TR R
r; = (x2,¥2,22) R=1 +1 = (x; + X3, Y1 +Y2, 21 +25)
what we
ta I ke d * Cylindrical coordinate system:
r, = (5,60,,2;) =G sZ+6%+2z2
about at
r = (52,603, 2) T+ #(sy+5y 0,40, )
Lecture 1:
* Spherical coordinate system: it does not work the “Cartesian” way either!

* Integration is a form of vector addition. We only can add

components of Cartesian vectors, to find theirs sum
(since this coordinate system has fixed unit vectors).

* You can carry integration out in any coordinate system,
but you need to set up integrals for Cartesian component

of the vector you are looking for.

C. Something else

D. ®

v



Exercise 1: Multipoles of a Charged Ring

A circular ring of charge centered at the origin with radius R
carries a linear charge density A. Find the first three terms » (5,0.2)
(L = 0,1,2) in the multipole expansion for V(r). /

Quadrupole (I = 2): :R‘”’v u' :

A(r) x' ¥ R® &xx /
Qij — /(; 9 (37’;7‘; — 'r’zéz-j) dll dl’ = quﬁ’ N é

Inthe ring: 7o = = Rcos¢’, ry =y' = Rsin¢’
/z — = 0, P2 — 2 4 y/2 4 A2 — R2 ny — erx; by symmetry

— )‘_R3 27T(3 cos2 ¢ — 1) do — TAR? * Exercise:

Qe =5 | =

Work out Q,,




Exercise 1: Multipoles of a Charged Ring

Z A
A circular ring of charge centered at the origin with radius R
carries a linear charge density A. Find the first three terms » (5,0.2)
(L = 0,1,2) in the multipole expansion for V(r). /
Quadrupole (I = 2): ///
)Y 3 27 ///
sz: f (3'0—1)d¢,:—7T)\R3 <
0 —
R
Quy = Qzz = @y, =0 (left as an exercise) /
_ 1 waxz nyyz szzz
= Valr) = 41eg ( 7o + 7o + o
_ MRy o2 | @ R ST -2 (Q = 27R))
~ 8mep 7o Ameg 4 (82 + z2)5/2

* Now let’s see what this looks like in the x-y plane, and along the z axis.



1 A R R? §2— 222
VU(I') = Q = Q -

o 2 ves| Exercise 1: Multipoles of a Charged Ring Va(t) = e T (1 2

A circular ring of charge centered at the origin with radius R

carries a linear charge density A. Find the first three terms » (5.0:2)
(I =0,1,2) in the multipole expansion for V(r). y
° - . 1 2N o e /
In the x-y plane: Vir) - Q (_ N R_) > Vo(r) e

z=0ands =r: dmeg \ S 4s° 7
_ é .

* Along the z axis: Vir) - Q (1 R? ) < W(r) /

s=0and|z| =7: ATeg \|2| 2|2

* In the x-y plane, the quadrupole term gives an increment to the monopole potential
at a given r, while along the z axis it gives a decrement to the monopole potential.

* This is because this charge distribution differs from a “point-like” charge at the origin
by “spilling” the charge density out in the x-y plane and away from the z-axis.



A Slightly Different Approach

e Recall: We started from here...

11
e—r/| 7

We get:

Now we can expand Coulomb’s lav

in pou%iof 1/rt+1: ‘

- S vt e e ()

monopol dlpole guadrupole octupole+

» ...and split V;(r) into two parts, one depends only on r’ (moments) and the other only on r:

/
Q = / p(r’) dT, P = A/VP(I‘,) r' dr’ Q’ij = fv p(; ) (BT:JTJ ’257;3') dr’
\%
Vo(r) = dneq 1 Vi(r) = yP——; Va(r) = ye— Z 3



A Slightly Different Approach

* We did this to eliminate the angle a, which is NOT the integration
angle, 8'. This angle complicates the integration over r’ considerably.

* But, what if we rotate the z-axis towards the observation point?

* Now a = @', and our original expansion can be used directly:

1 1 r! 17?2 o r'3
P - +[; 6059]0»[2 3 (3(:05 0'— )]+CJ (fr?’)]

0= 5 i) s ()

=0 ,
monopole dipole  quadrupole octupole+

V(r) 1 / p(r’) dr! Don’t need to worry about, e.g., which
v |t =1/ components of p to take, just compute these integrals!




Z 4 Exercise 2: Multipoles of a Charged Sphere

A uniformly charged sphere carries a volume charge density p. Find

= the first three terms (Il = 0,1,2) in the multipole expansion for V(r).
\
[ Um'-forw\ ‘
@-Rsf * Due to the central symmetry of the charge
S L .
distribution, we can assume that our observation
point is on the z-axis — the answer that we will
47T€0 r f get would be the same for all other directions
Vi(r) = 47T€0 7"2 Vp(r') r’ cos 0'dr’
1 1 N 2 9! /
Va(r) = yP—— Vp(r ) - (3cos®0—1) dr



Z 4 Exercise 2: Multipoles of a Charged Sphere

A uniformly charged sphere carries a volume charge density p. Find

= the first three terms (Il = 0,1,2) in the multipole expansion for V(r).
\
11 1 0 _
i V I', dTl = — - ‘.(_” 3
o) = oo [ otyar =22 qup i
* Vi(r) : i p(r")r’ cos0dr" = j(pr cos @) (r'?sin@' dr'd8'd¢’) =0
i 47‘[60 r2
1 1 T 2 ) ,
* Va(r) Imeo 13 /. p(r’) 5 (3cos® §'— 1) dr
1 1 (p r'’ ) =0
S —_ / 12 < / / / / -
47‘[60 3 > 5 (3cos?0’'—1) |(r'?sin@' dr'd0'd¢") Why 2?7



Choice of Origin in Multipole Expansion

* Consider a point charge at the origin:

k
V(r) = Tq (Monopole only, of course)

ke _ kq
...and one not at the origin, say at (r,8,¢9 ) = (a,0,,0): Vi) = ;{‘? =

Ir‘;/

N2 3
V= q{1+ﬂcasﬁo +{£J P, (CDSBO)—I—(E) P; (cos@o)nt..}

¥ ¥ r ¥

Q: What is going on here? Why does a point charge have so many
non-zero moments all of a sudden?

* Changing the origin doesn’t change the physics (and you will show * Dipole moment
it in HW-3!), but it can radically change the terms in the series. independent of

e It’s really important to specify origin when calculating moments! origin only if Q = 0!
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