

Lecture 12

Polarization.

Displacement (if time permits).

Q: How do you feel about the midterm?

- A. Please don't remind
- B. Unreasonable. It tested the material which we never practiced.
- C. Not bad, but not enough time
- D. Challenging, but doable.
- E. It was quite easy.

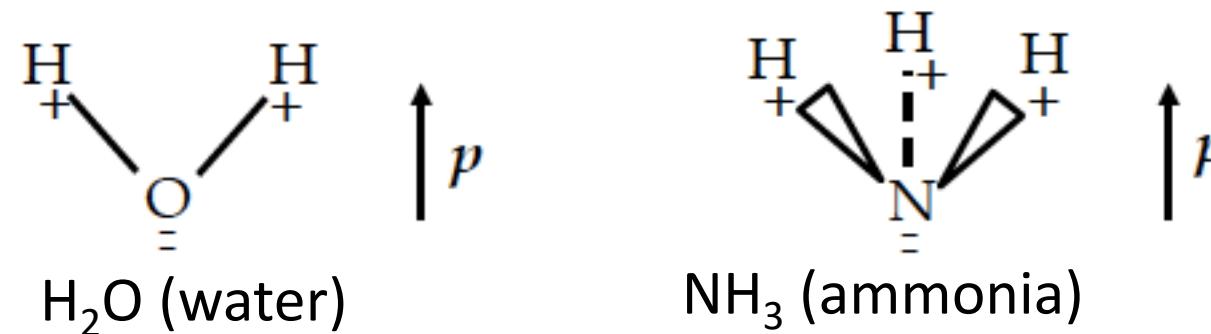
Polarization in materials

(Ch 4.1-2)

- Permanent polarization
- Induced polarization
- Bound charges (surface and volume)

Polar Molecules & Polarization

Many naturally-occurring molecules have permanent, built-in dipole moments, p , due to the segregation of positive and negative charge:

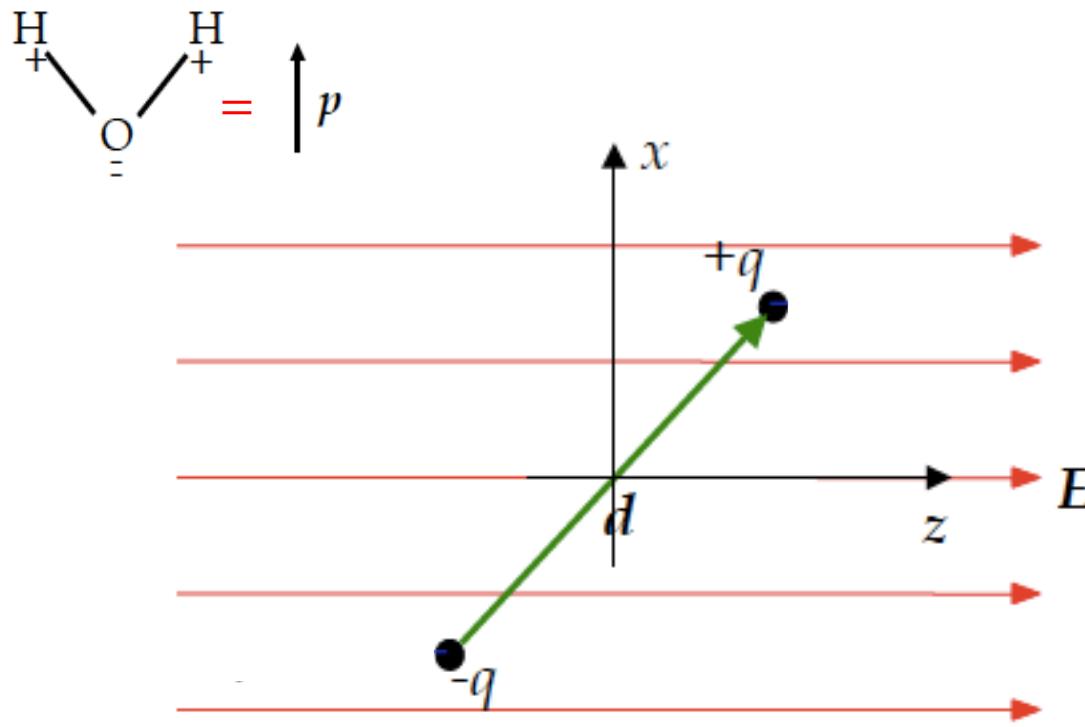


In general, the dipole moments of each molecule will be randomly oriented in a material, so that the net dipole moment is zero.

However, if an external electric field is applied, the dipole moments can orient themselves along the field direction, creating a macroscopic effect, called *polarization*.

Dipoles in External Field: Review

Suppose we place a neutral, dipolar molecule in an external uniform electric field, \mathbf{E} . The charge separation, d , is fixed by chemistry, so the magnitude of the dipole will not change in the field.

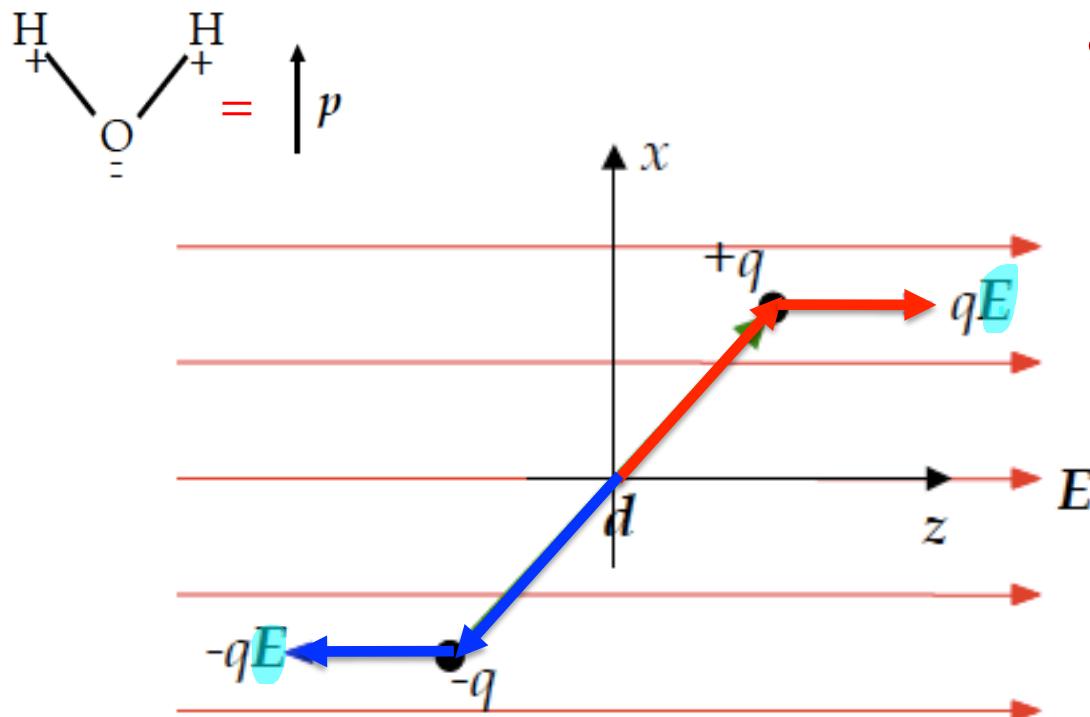


Q: What will this molecule experience?

- A. Only net force
- B. Only torque
- C. Both net force and torque
- D. Neither force nor torque

Dipoles in External Field: Review

Suppose we place a neutral, dipolar molecule in an external **uniform** electric field, \mathbf{E} . The charge separation, d , is fixed by chemistry, so the magnitude of the dipole will not change in the field.



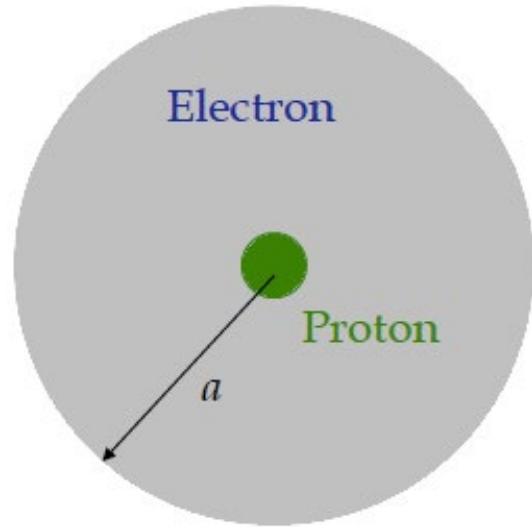
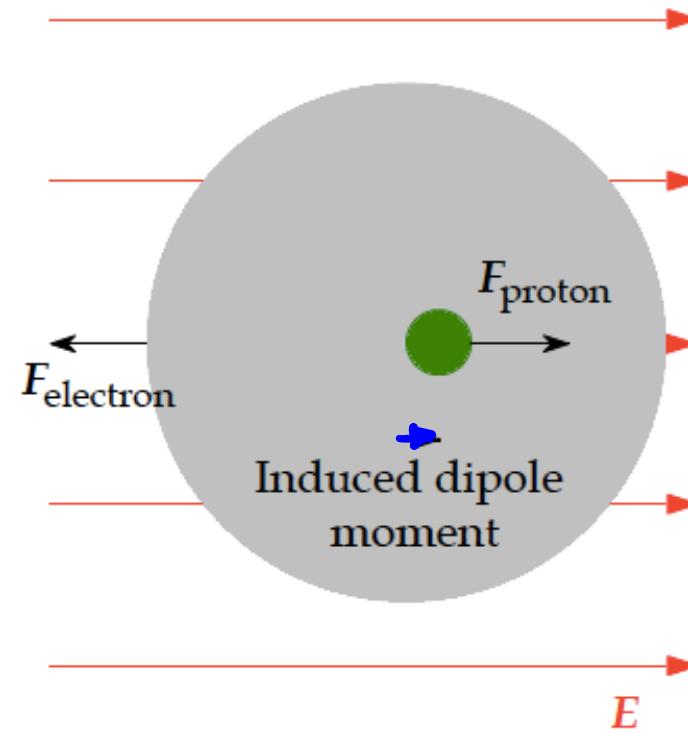
- Since the two forces have the same magnitude and opposite directions, they add up to zero
- Torque, \mathbf{N} , is non-zero:

$$\begin{aligned}\mathbf{N} &= \mathbf{r}_+ \times \mathbf{F}_+ + \mathbf{r}_- \times \mathbf{F}_- \\ &= \frac{\mathbf{d}}{2} \times q\mathbf{E} - \frac{\mathbf{d}}{2} \times (-q\mathbf{E}) \\ &= q\mathbf{d} \times \mathbf{E}\end{aligned}$$

\mathbf{N} points into the page

$$\rightarrow \mathbf{N} = \mathbf{p} \times \mathbf{E}$$

Non-polar Molecules / Atoms: Induced Polarization



- Suppose we apply an external field \mathbf{E} to an **atom** (no built-in dipole moment).
- The electron cloud and proton move in opposite directions until the force on the proton by the displaced electron balances the force on the proton by the external field. This **induces a dipole moment** in the atom. This dipole will experience a torque, too...

Polarization Field

- Rather than tracking the microscopic properties of each dipole in the material (whether permanent or induced), we define a macroscopic “polarization” field, \mathbf{P} , with units of dipole moment per unit volume:

$$\mathbf{P} \equiv N\mathbf{p}$$

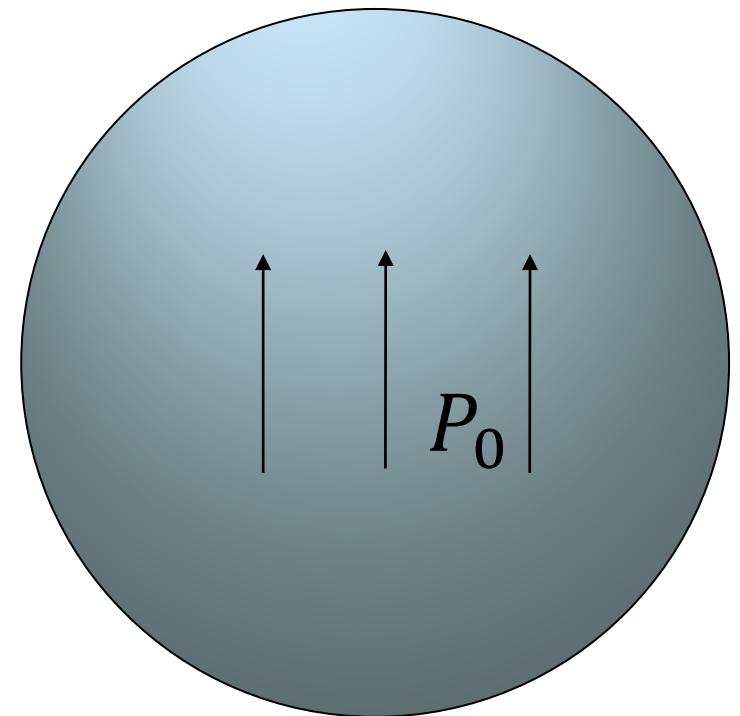
where N is the number of microscopic dipoles, \mathbf{p} , per unit volume.

Note: units of polarization are $[\mathbf{P}] = (\text{charge} \times \text{length})/\text{length}^3 = \text{charge}/\text{area}$.

Polarization Field

Q: A sphere of radius a has uniform polarization field \mathbf{P}_0 which points in the z direction. What is the total dipole moment of this sphere?

- A. 0
- B. $a^3 P_0 \hat{\mathbf{z}}$
- C. $(4\pi a^3/3) P_0 \hat{\mathbf{z}}$
- D. $P_0 \hat{\mathbf{z}}$
- E. None of the above

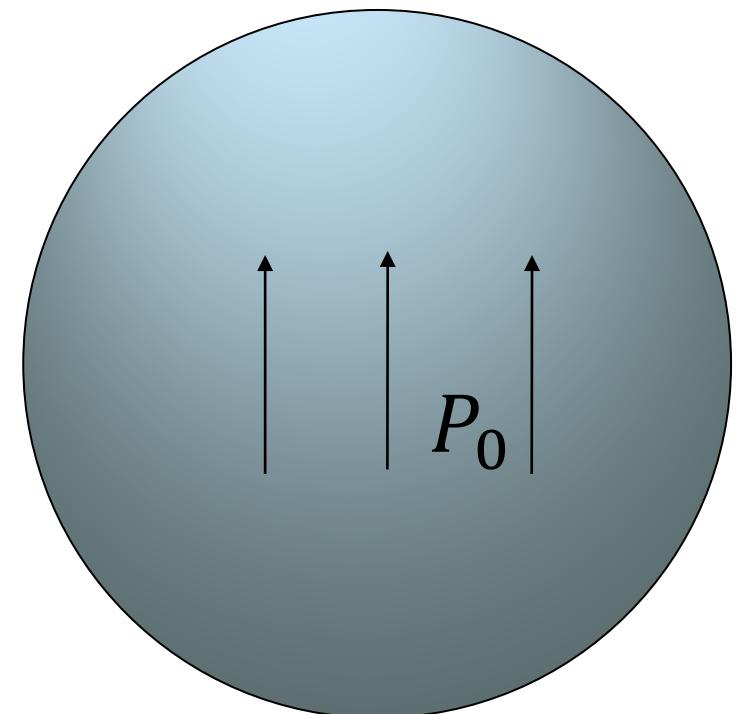


Polarization Field

Q: A sphere of radius a has uniform polarization field \mathbf{P}_0 which points in the z direction. What is the total dipole moment of this sphere?

- Polarization = dipole moment per unit volume

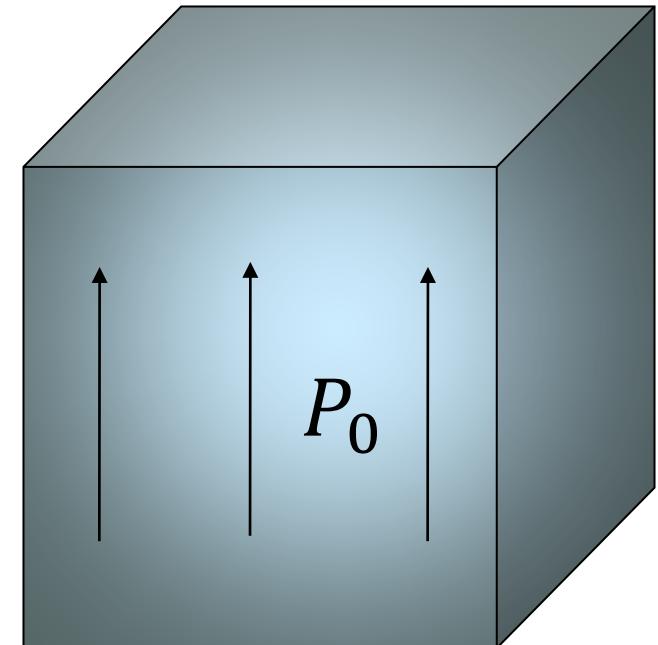
- A. 0
- B. $a^3 P_0 \hat{\mathbf{z}}$
- C. $(4\pi a^3/3) P_0 \hat{\mathbf{z}}$
- D. $P_0 \hat{\mathbf{z}}$
- E. None of the above



Polarization Field

Q: A cube of side a has uniform polarization field \mathbf{P}_0 which points in the z direction. What is the total dipole moment of this cube?

- A. 0
- B. $a^3 P_0 \hat{\mathbf{z}}$
- C. $P_0/a^3 \hat{\mathbf{z}}$
- D. $P_0 \hat{\mathbf{z}}$
- E. None of the above

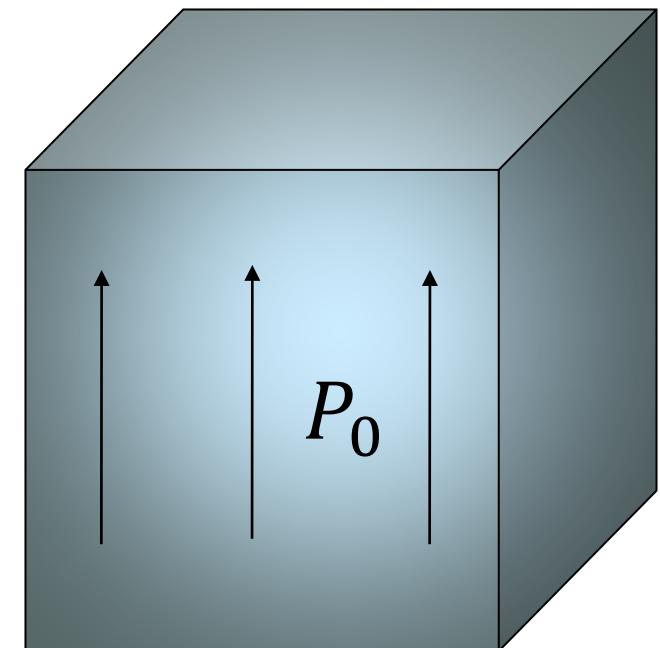


Polarization Field

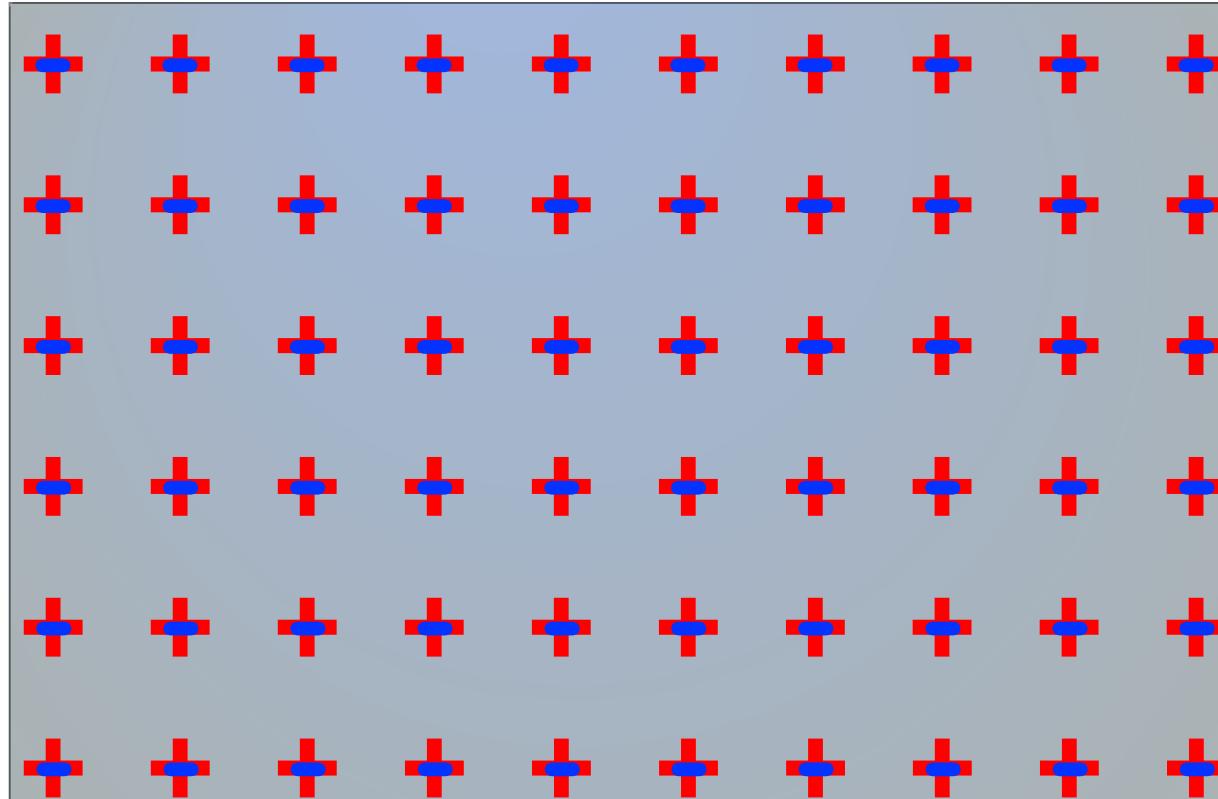
Q: A cube of side a has uniform polarization field \mathbf{P}_0 which points in the z direction. What is the total dipole moment of this cube?

- Polarization = dipole moment per unit volume

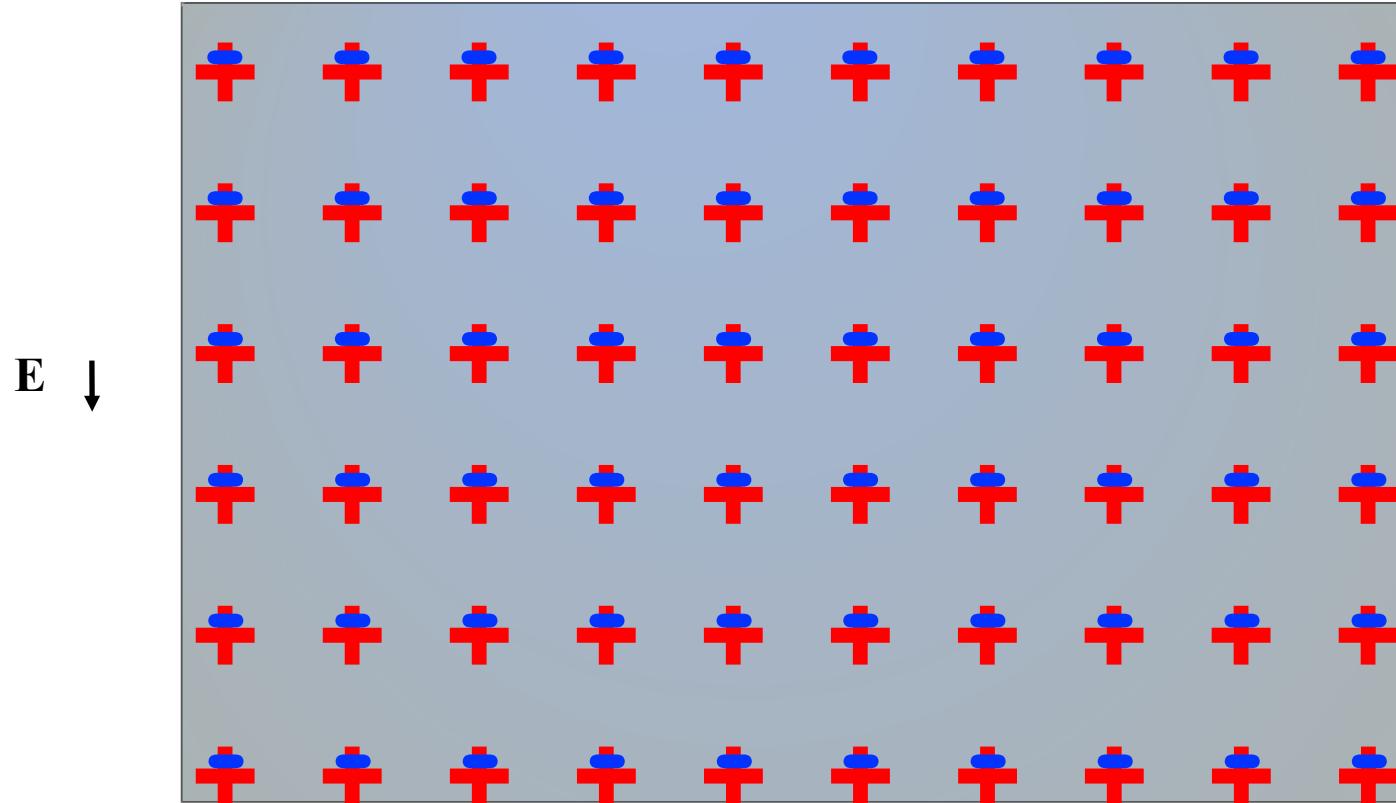
- A. 0
- B. $a^3 P_0 \hat{\mathbf{z}}$**
- C. $P_0/a^3 \hat{\mathbf{z}}$
- D. $P_0 \hat{\mathbf{z}}$
- E. None of the above



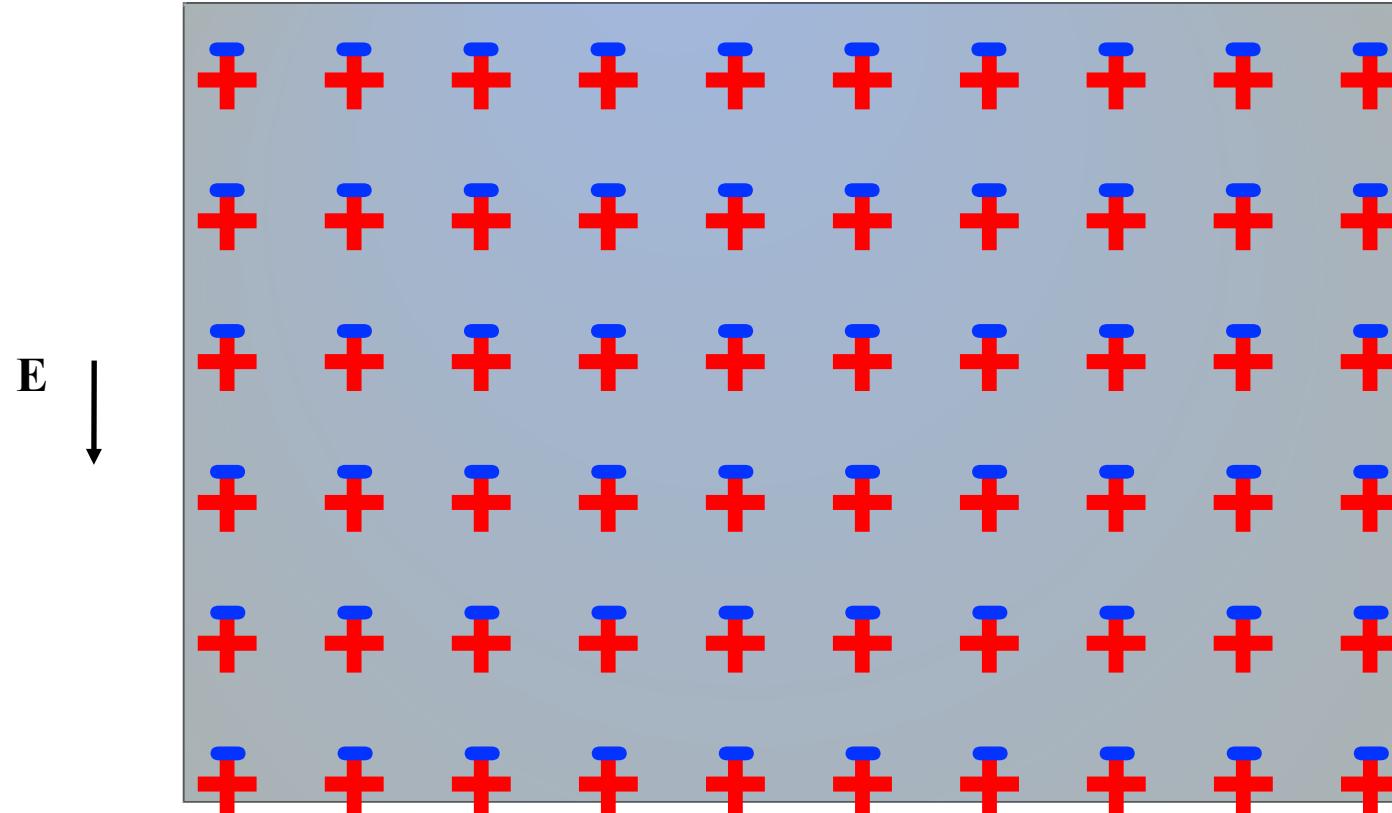
Induced Polarization & Surface Charge



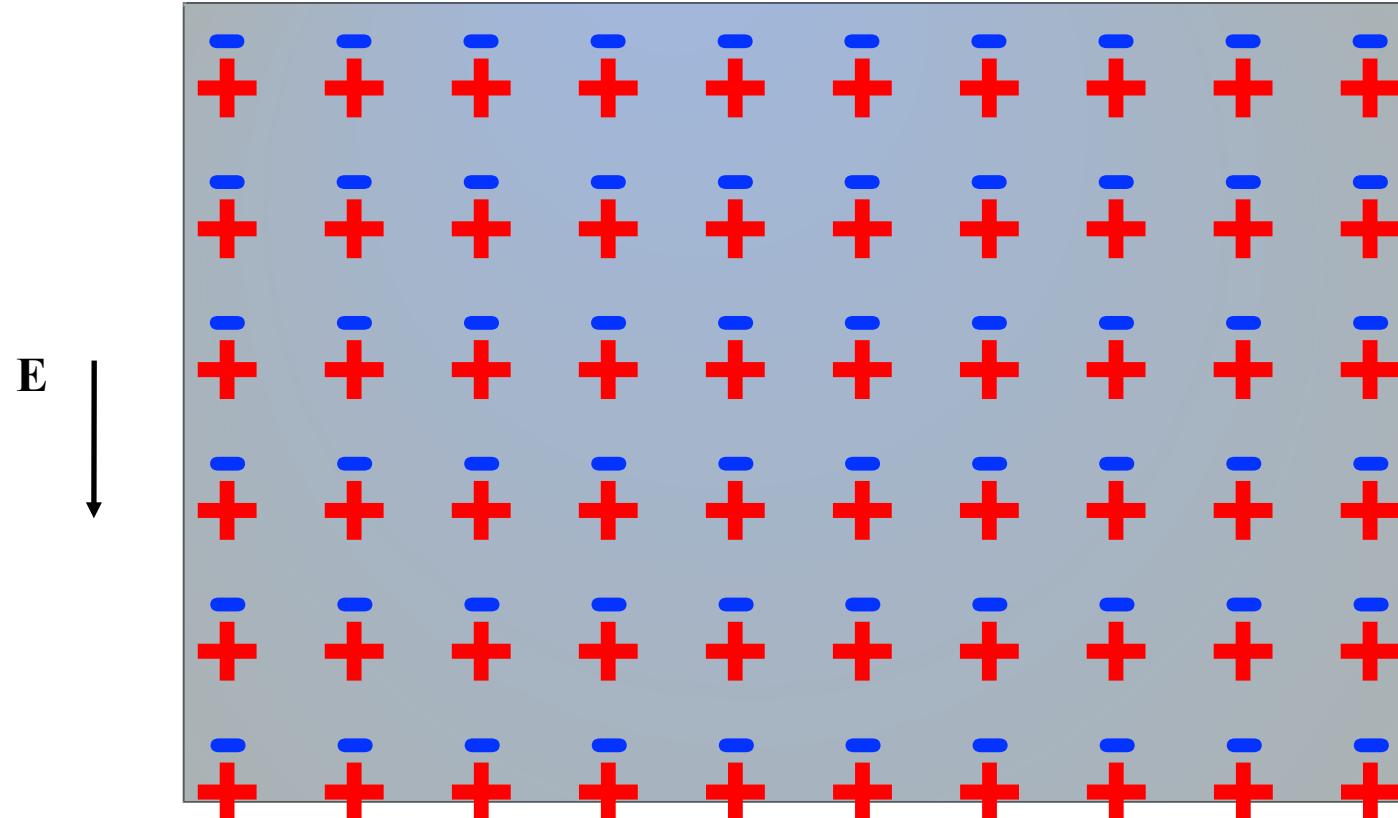
Induced Polarization & Surface Charge



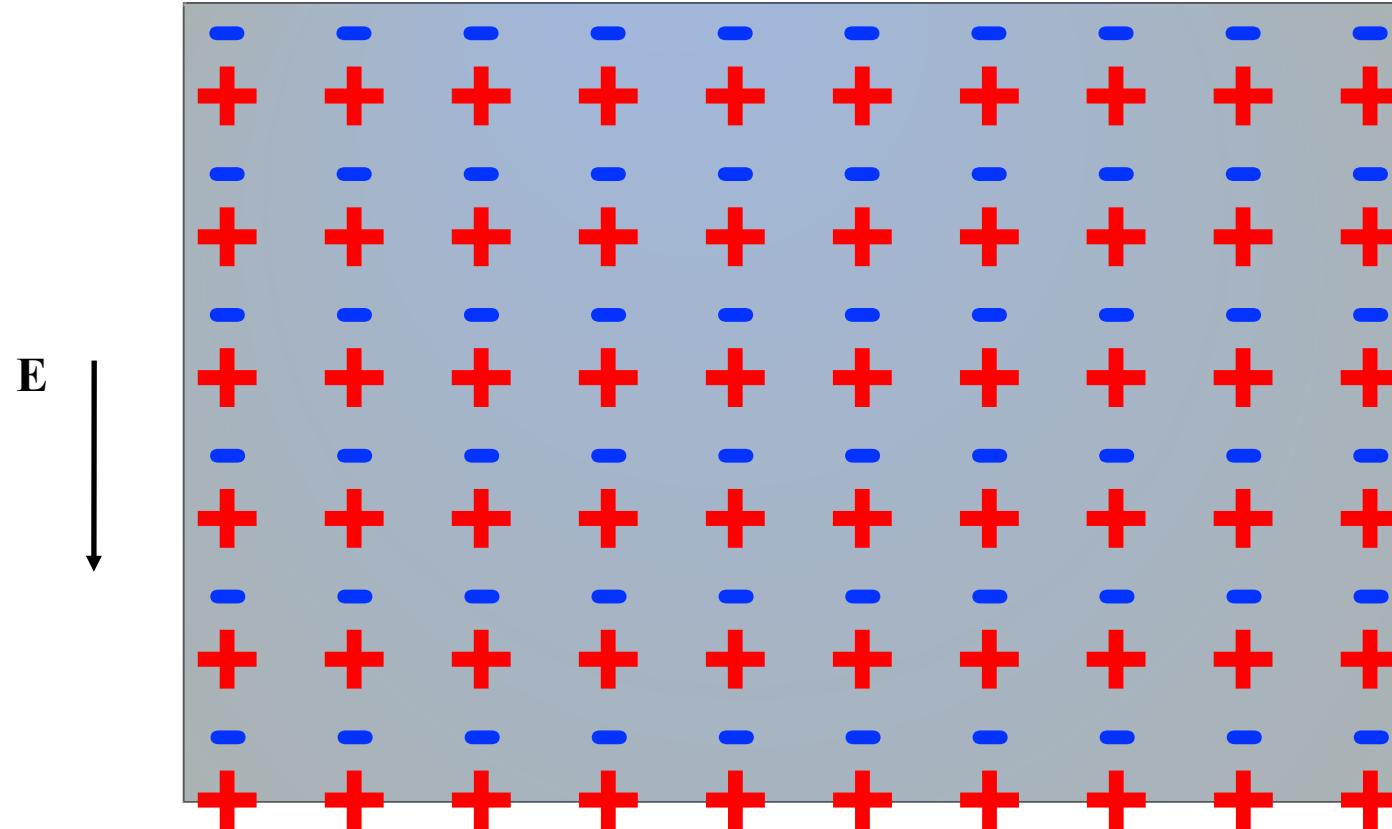
Induced Polarization & Surface Charge



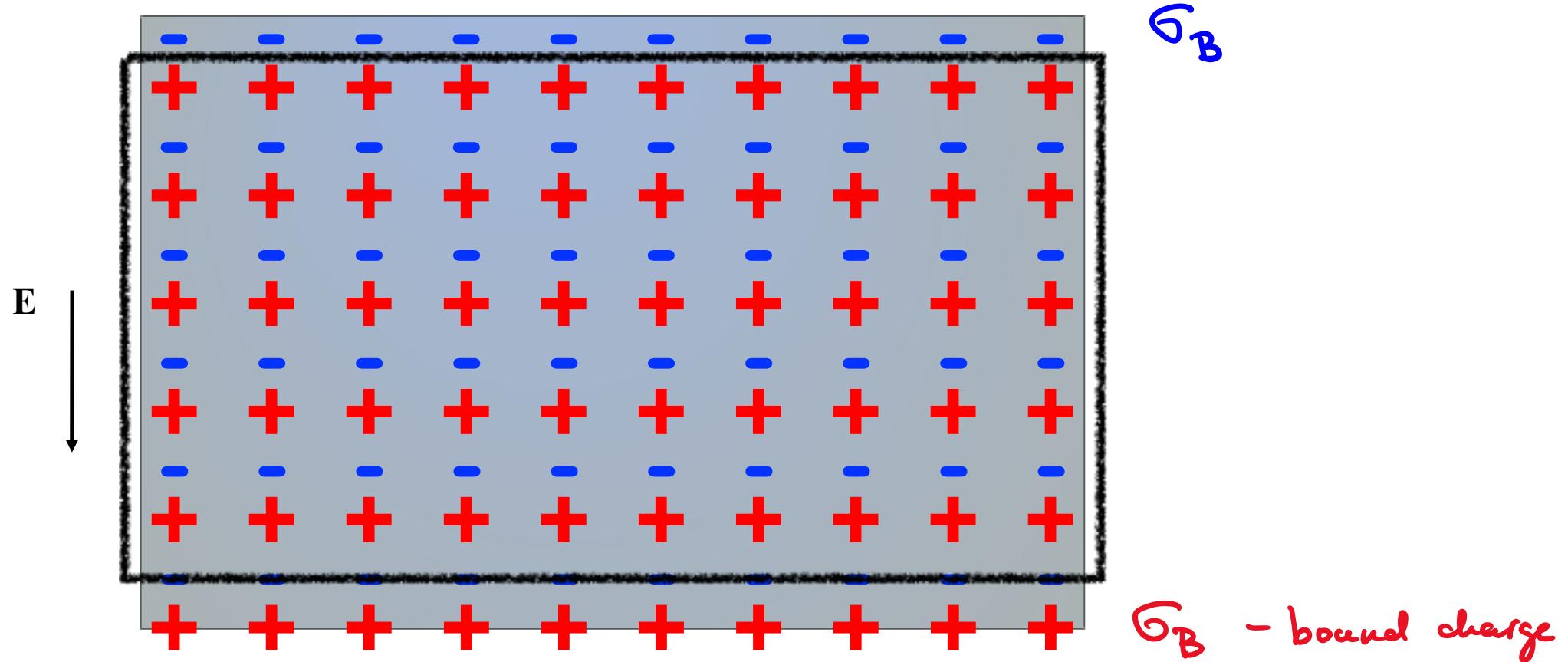
Induced Polarization & Surface Charge



Induced Polarization & Surface Charge



Induced Polarization & Surface Charge



There will be a **net surface charge** induced along the surface elements that are not parallel to \mathbf{E} (top & bottom, here). The bulk material (inside the outlined region) will remain neutral if the polarization is uniform.

Bound Surface Charge – 1

- The induced surface charge in a dielectric is similar to that in a conductor. The difference is one of degree: in a conductor, electrons are free to move in response to an applied field, until they reach a surface. This redistribution proceeds until the electric field within the conductor is zero.
- In a dielectric, electrons are bound to their atoms, so they're only free to move a little bit. As with a conductor, there will be un-cancelled surface charge, **but the electric field within the material will *not*, in general, be zero**. We call the un-cancelled surface charge in a dielectric **bound surface charge**, σ_B .

Bound Surface Charge – 2

- Let the induced dipole in each atom be $\mathbf{p} = q\mathbf{d}$. Find surface charge density.
- Thickness of the surface charge layer:

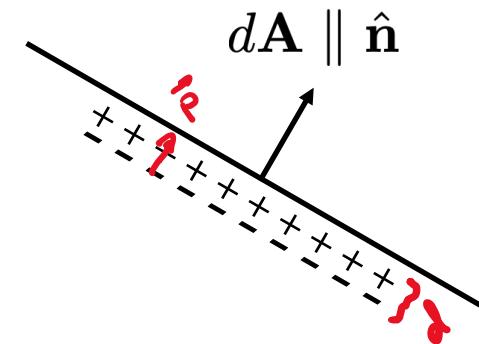
$t = \mathbf{d} \cdot \hat{\mathbf{n}}$, where $\hat{\mathbf{n}}$ is the unit vector normal to the surface.

- Amount of charge in the surface layer t :

$$\begin{aligned} dq &= qNdV = qN(dA t) = qN dA \mathbf{d} \cdot \hat{\mathbf{n}} \\ &= dA N(q\mathbf{d}) \cdot \hat{\mathbf{n}} = dA \mathbf{Np} \cdot \hat{\mathbf{n}} = dA \mathbf{P} \cdot \hat{\mathbf{n}} \end{aligned}$$

- Hence, the surface charge density is given by:

$$\rightarrow \sigma_B = dq/dA = \mathbf{P} \cdot \hat{\mathbf{n}}$$

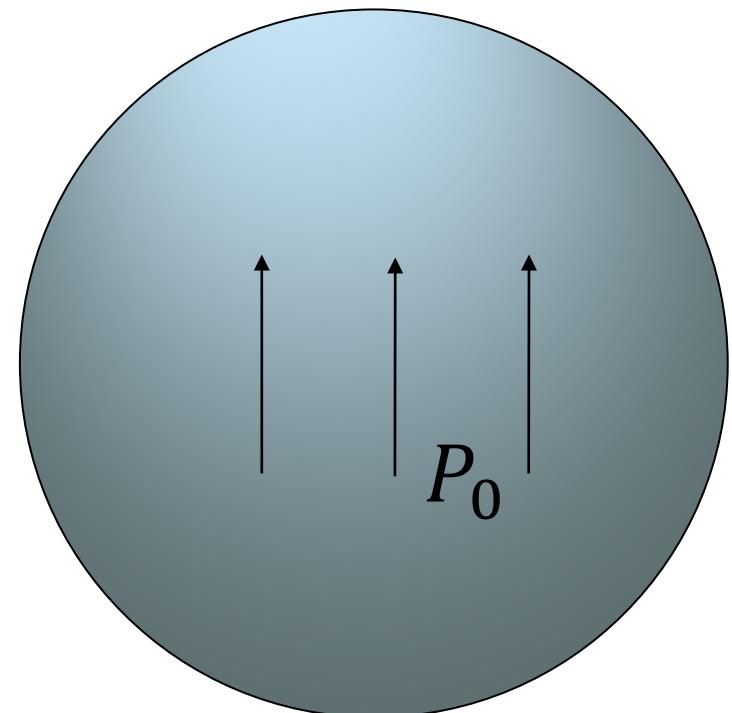


Bound Surface Charge – 3

Q: A sphere of radius a has uniform polarization field \mathbf{P}_0 which points in the z direction. What is the bound surface charge density on the surface of this sphere? Here θ is the usual polar angle off the z axis.

- A. 0
- B. P_0
- C. $P_0 \sin \theta$
- D. $P_0 \cos \theta$
- E. None of the above

$$\sigma_B(\vec{r}) = \sigma_B(r, \theta, \varphi) = ?$$



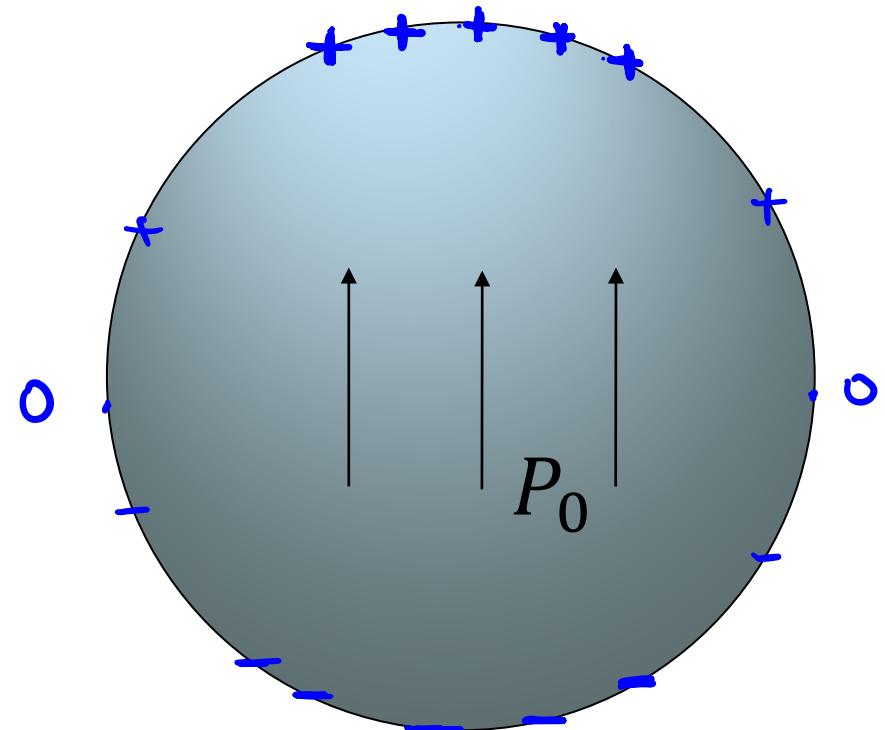
Bound Surface Charge – 3

Q: A sphere of radius a has uniform polarization field \mathbf{P}_0 which points in the z direction.

What is the bound surface charge density on the surface of this sphere? Here θ is the usual polar angle off the z axis.

- A. 0
- B. P_0
- C. $P_0 \sin \theta$
- D. $P_0 \cos \theta$
- E. None of the above

$$\sigma_B = \mathbf{P} \cdot \hat{\mathbf{n}} = \mathbf{P} \cdot \hat{\mathbf{r}}$$



Bound Volume Charge – 1

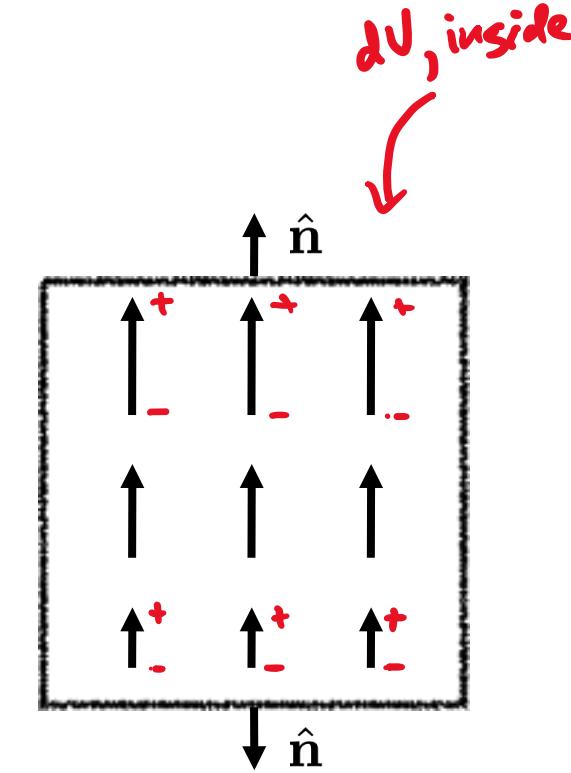
If the induced dipole moment per unit volume, \mathbf{P} , is **not uniform** within the material, there will also be a “bound volume charge”, ρ_B . For now, let’s not worry about how non-uniform \mathbf{P} comes about.

Suppose we have a volume element of material with a **non-uniform** field \mathbf{P} , as shown in the diagram at right.

Within this volume, there is more positive charge leaving the top surface than there is entering the bottom surface, so there is a **net negative charge density** within this volume.

We call this **bound volume charge**, ρ_B , and relate it to the divergence of \mathbf{P} as follows:

$$\rightarrow \rho_B = -\nabla \cdot \mathbf{P}$$



Bound Volume Charge – 2

- Charge conservation: $q_V + q_S = 0$

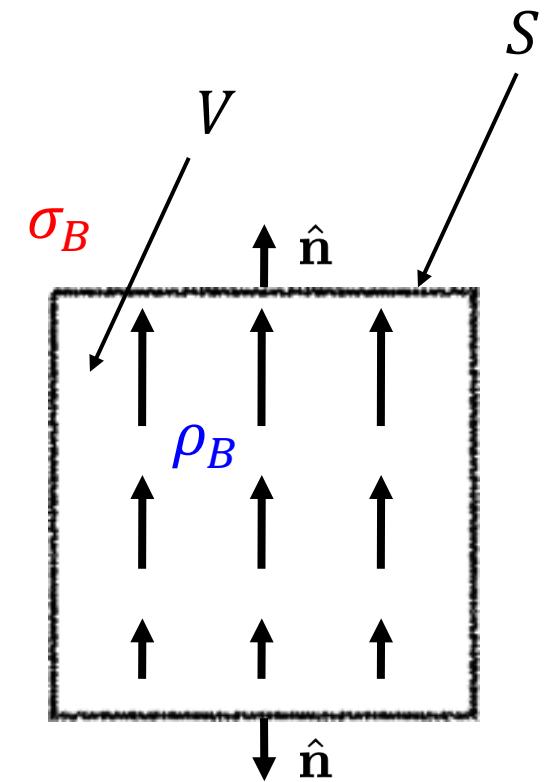
$$q_V = \int_V \rho_B d\tau$$

$$q_S = \int_S \sigma_B dA = \int_S (\mathbf{P} \cdot \hat{\mathbf{n}}) dA = \int_S \mathbf{P} \cdot d\mathbf{A} = \int_V \nabla \cdot \mathbf{P} d\tau$$

- For arbitrary volume:

$$\int_V (\nabla \cdot \mathbf{P} + \rho_B) d\tau = 0$$

$$\rightarrow \rho_B = -\nabla \cdot \mathbf{P}$$



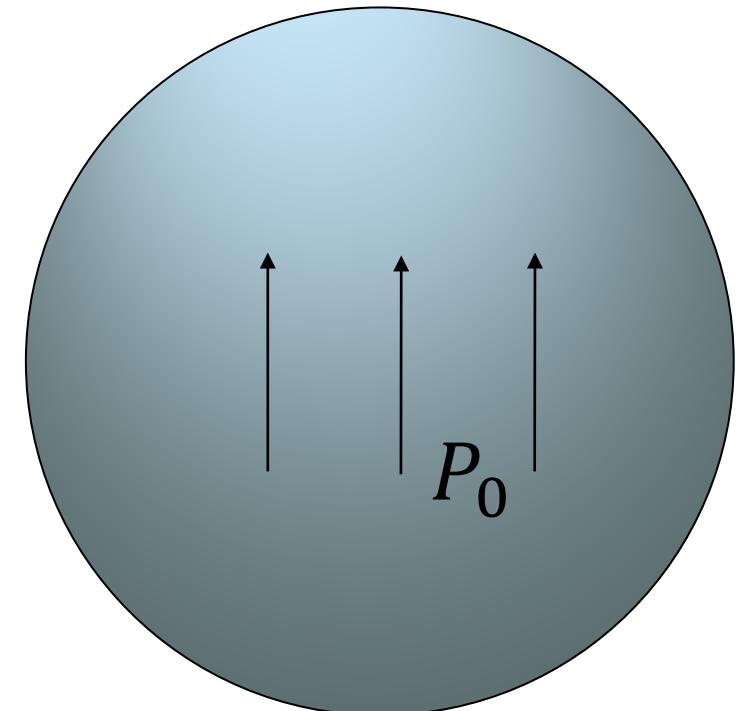
- Check alternative derivation in Griffiths. He starts with potential of a collection of dipoles and shows that it naturally reduces to a sum of two terms:

$$V(\mathbf{r}) = \frac{1}{4\pi\epsilon_0} \int_S \frac{(\mathbf{P} \cdot \hat{\mathbf{n}})}{d} dA + \frac{1}{4\pi\epsilon_0} \int_V \frac{(-\nabla \cdot \mathbf{P})}{d} d\tau$$

Bound Volume Charge – 3

Q: A sphere of radius a has uniform polarization field \mathbf{P}_0 which points in the z direction. What is the bound **volume** charge density within this sphere? Here θ is the usual polar angle off the z axis.

- A. 0
- B. None-zero constant
- C. Depends on r , but not on θ
- D. Depends on θ , but not on r
- E. None of the above

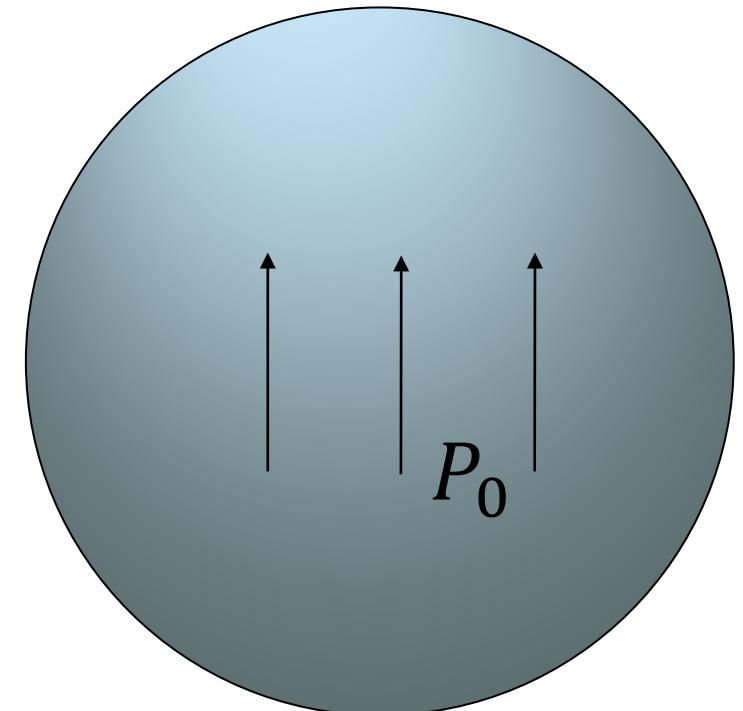


Bound Volume Charge – 3

Q: A sphere of radius a has uniform polarization field \mathbf{P}_0 which points in the z direction. What is the bound **volume** charge density within this sphere? Here θ is the usual polar angle off the z axis.

$$\nabla \cdot \mathbf{P} = 0$$

- A. 0
- B. None-zero constant
- C. Depends on r , but not on θ
- D. Depends on θ , but not on r
- E. None of the above



Example: Bound Charge

A sphere of radius R has a polarization field $\mathbf{P}(\mathbf{r}) = k\mathbf{r}$ where k is a constant, and \mathbf{r} is the position vector from the centre of the sphere.

- a) Find the bound charge σ_B and ρ_B in the sphere. A.
- b) Find the electric field outside the sphere. B.

\vec{E} : A. zero

C. \propto

B. $\sim 1/r^2$

C. $\sim 1/r$

D. Smith else

Reminder: for a spherically symmetric field, $\mathbf{A}(\mathbf{r}) = A_r \hat{\mathbf{r}}$, we have:

$$\nabla \cdot \mathbf{A} = \frac{1}{r^2} \frac{\partial}{\partial r} (r^2 A_r)$$

Example: Bound Charge

a) The polarization field is: $\mathbf{P}(\mathbf{r}) = k \mathbf{r} = kr \hat{\mathbf{r}}$

$$\rightarrow \sigma_B = \mathbf{P}(R) \cdot \hat{\mathbf{n}} = kR \hat{\mathbf{r}} \cdot \hat{\mathbf{r}} = kR$$

$$\rightarrow \nabla \cdot \mathbf{P}(\mathbf{r}) = \frac{1}{r^2} \frac{\partial}{\partial r} (kr^3) = \frac{1}{r^2} 3kr^2 = 3k \quad \rightarrow \rho_B = -\nabla \cdot \mathbf{P} = -3k$$

b) By Gauss's law, the field outside the sphere is: $\mathbf{E}(r) = \frac{q_B}{4\pi\epsilon_0} \frac{\hat{\mathbf{r}}}{r^2}$

$$q_B = 4\pi R^2 \sigma_B + \frac{4\pi R^3}{3} \rho_B = 4\pi R^2 (kR) + \frac{4\pi R^3}{3} (-3k) = 0 \quad \rightarrow \mathbf{E}(r) = 0$$

Q: Would the field inside the sphere be zero?

A: No, since $\rho_B \neq 0$ inside the sphere.

Bound Charges

Q: Are σ_B and ρ_B due to real charges?

- A. No. They are as fictitious as ghosts at Halloween.
- B. Yes. They are just as real as σ and ρ in Chapter 2.
- C. I have no idea.

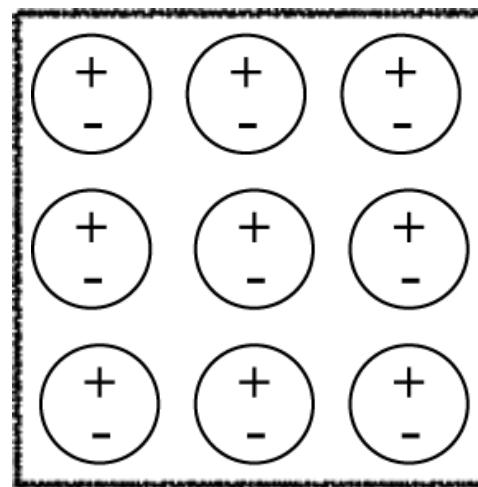
Bound Charges

Q: Are σ_B and ρ_B due to real charges?

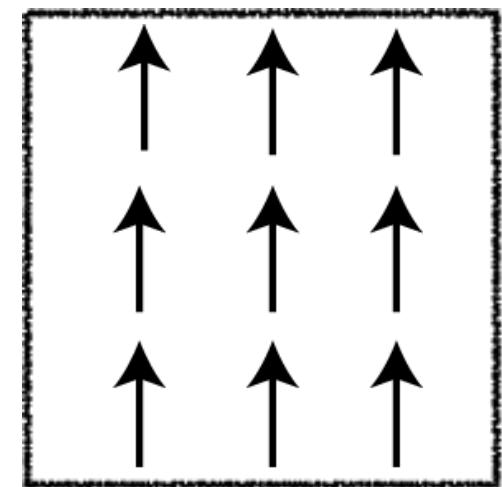
- A. No. They are as fictitious as ghosts at Halloween.
- B.** Yes. They are just as real as σ and ρ in Chapter 2.
- C. I have no idea.

Induced Polarization – 1

Q: In the system shown below, what can you say about the bound charge?
Assume uniform polarization within the material.



physical dipoles



ideal dipoles

- A. $\sigma_B = 0, \rho_B \neq 0$
- B. $\sigma_B \neq 0, \rho_B \neq 0$
- C. $\sigma_B = 0, \rho_B = 0$
- D. $\sigma_B \neq 0, \rho_B = 0$

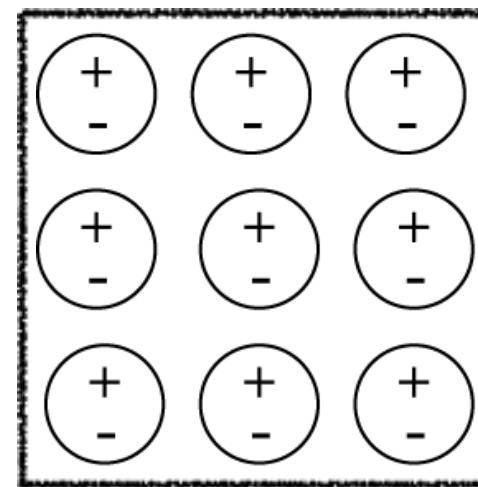
Induced Polarization – 1

Q: In the system shown below, what can you say about the bound charge?
Assume uniform polarization within the material.

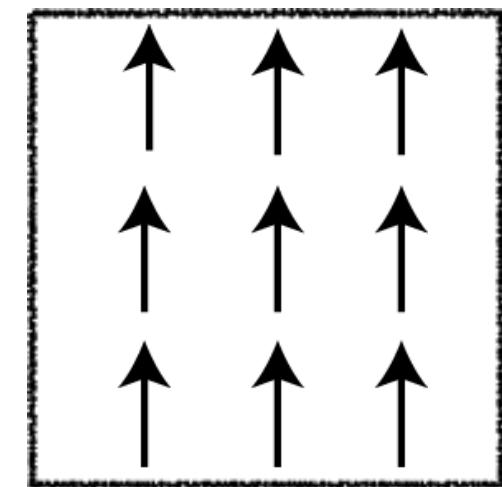
$\mathbf{P} \cdot \hat{\mathbf{n}} \neq 0$ along the top and bottom

$\nabla \cdot \mathbf{P} = 0$

- A. $\sigma_B = 0, \rho_B \neq 0$
- B. $\sigma_B \neq 0, \rho_B \neq 0$
- C. $\sigma_B = 0, \rho_B = 0$
- D. $\sigma_B \neq 0, \rho_B = 0$



physical dipoles

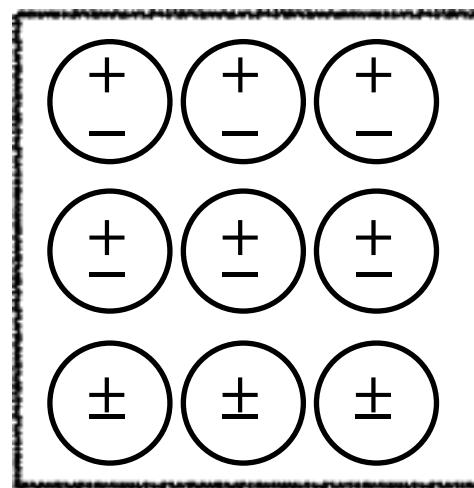


ideal dipoles

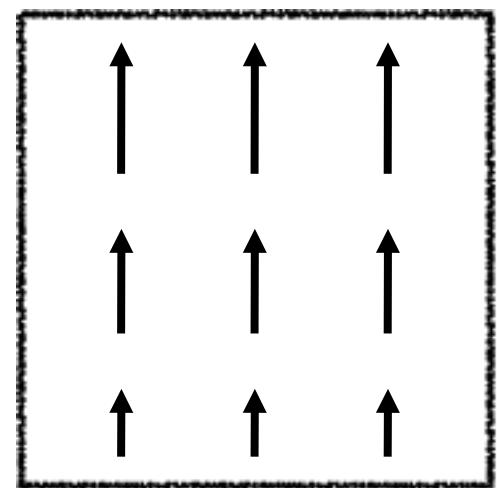
Uniform $\mathbf{P} \Rightarrow$ no bound volume charge

Induced Polarization – 2

Q: In the system shown below, what can you say about the bound charge?



physical dipoles



ideal dipoles

- A. $\sigma_B = 0, \rho_B \neq 0$
- B. $\sigma_B \neq 0, \rho_B \neq 0$
- C. $\sigma_B = 0, \rho_B = 0$
- D. $\sigma_B \neq 0, \rho_B = 0$

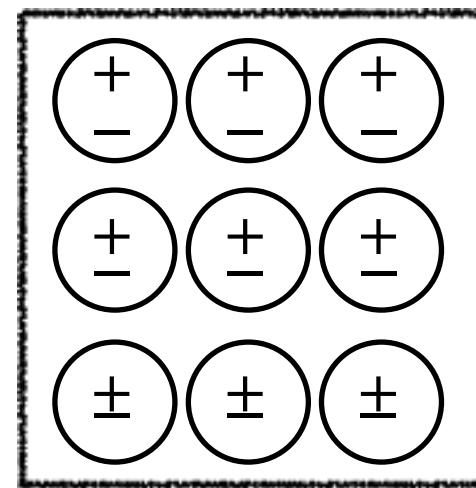
Induced Polarization – 2

Q: In the system shown below, what can you say about the bound charge?

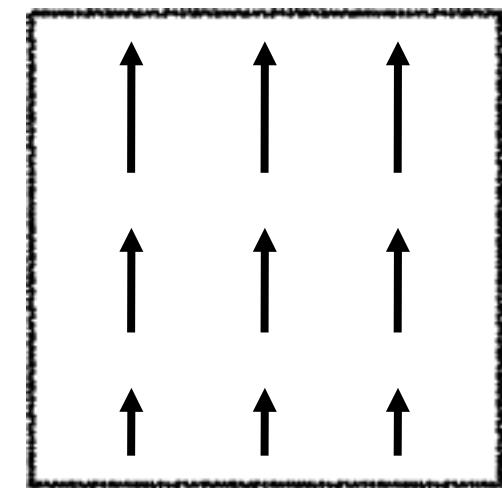
$\mathbf{P} \cdot \hat{\mathbf{n}} \neq 0$ along the top and bottom

$$\frac{\partial P_z}{\partial z} > 0 \rightarrow \nabla \cdot \mathbf{P} > 0$$

- A. $\sigma_B = 0, \rho_B \neq 0$
- B. $\sigma_B \neq 0, \rho_B \neq 0$
- C. $\sigma_B = 0, \rho_B = 0$
- D. $\sigma_B \neq 0, \rho_B = 0$



physical dipoles



ideal dipoles

Non-uniform $\mathbf{P} \Rightarrow$ expect bound volume charge

Induced Polarization – 3

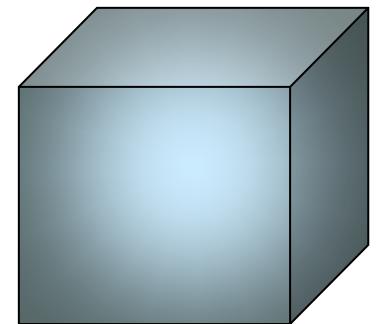
Q: An external point charge $+Q$ is placed near a block of polarizable material. Assume the polarization in the block is proportional to the external electric field ($\mathbf{P} \sim \mathbf{E}_{\text{ext}}$, a so-called **linear dielectric**; more on this later). The net electrostatic force on the block due to the point charge will be:

Hint: think about the bound charge induced in the block.

What's σ_B ? What's ρ_B ?

$+Q$

⊕



- { A. $\rho_B = 0$
- B. $\rho_B \neq 0$

- { A. Attractive (to the left)
- B. Repulsive (to the right)
- C. Zero

Induced Polarization – 3

Q: An external point charge $+Q$ is placed near a block of polarizable material. Assume the polarization in the block is proportional to the external electric field ($\mathbf{P} \sim \mathbf{E}_{\text{ext}}$, a so-called **linear dielectric**; more on this later). The net electrostatic force on the block due to the point charge will be:

Hint: think about the bound charge induced in the block.

What's σ_B ? What's ρ_B ?

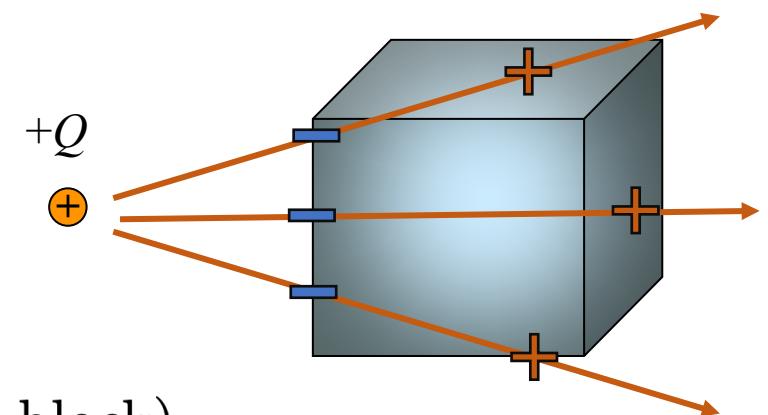
$$\nabla \cdot \tilde{\mathbf{E}} = \frac{\rho(r)}{\epsilon_0}$$

$\delta(\text{charge})$

A. $\rho_B = 0$

B. $\rho_B \neq 0$

$$\mathbf{P}(\mathbf{r}) \propto \mathbf{E}_{\text{ext}}(\mathbf{r}) \rightarrow \rho_B = 0 \text{ (since } \nabla \cdot \mathbf{E}_{\text{ext}} = 0 \text{ in block)}$$



A. Attractive (to the left)

B. Repulsive (to the right)

C. Zero

Negative charges are closer to $+Q$ than positive charges
→ net force to the left

Polarization: Summary

- Solids are generally composed of neutral atoms and molecules; some have built-in, permanent dipole moments and some are simply polarizable.
- For non-conducting solids, the orientation of permanent dipoles is generally random, giving $\mathbf{P} = 0$.
- In **dielectric** materials, application of an external electric field polarizes atoms and molecules, and aligns their permanent dipole moments in the direction of the applied field.
- This **polarization** is characterized by a dipole moment per unit volume and leads to bound charges:

$$\sigma_B = \mathbf{P} \cdot \hat{\mathbf{n}}$$

$$\rho_B = -\nabla \cdot \mathbf{P}$$

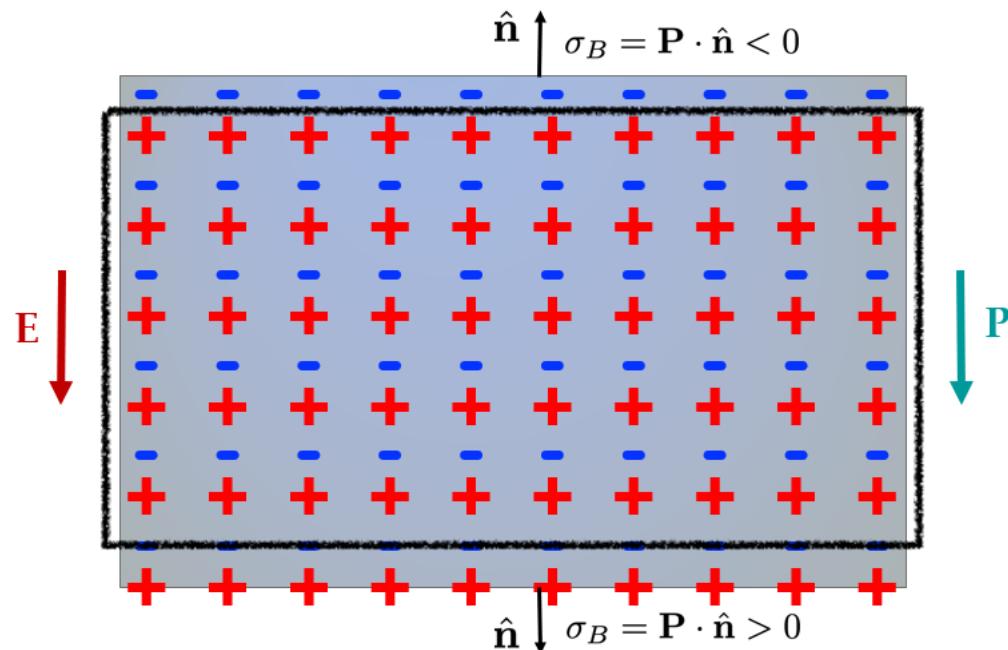
$$\nabla \cdot \mathbf{P} = \frac{\partial P_x}{\partial x} + \frac{\partial P_y}{\partial y} + \frac{\partial P_z}{\partial z}.$$

$$\sigma_B = \mathbf{P} \cdot \hat{\mathbf{n}}$$

Polarization: Summary

$$\rho_B = -\nabla \cdot \mathbf{P}$$

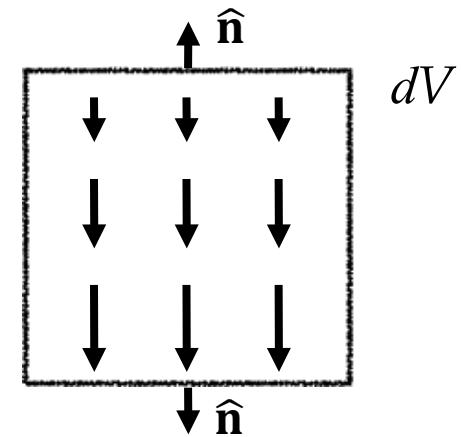
- Bound surface charge:



External electric field creates polarization

- Bound volume charge:

Here the spatially varying polarization pushes more positive charge *out* of dV at the bottom than it pushes positive charge *into* dV at the top, hence $\rho_B < 0$.



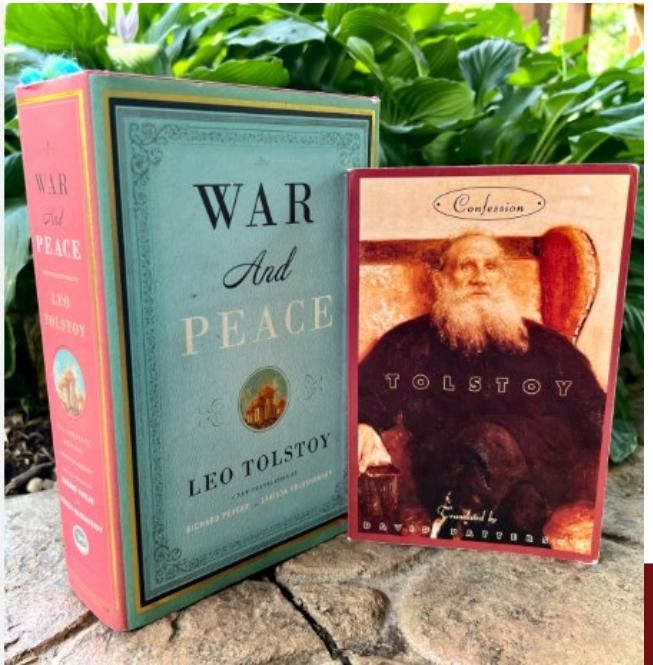
In a volume element, dV , within a dielectric, there will be bound charge associated with a divergence of \mathbf{P}

Electric Displacement

(Ch 4.3)

- \mathbf{D} , \mathbf{P} , \mathbf{E}
- Induced field, external field, total field
- Using Gauss's law in dielectrics
- $\nabla \times \mathbf{D}$, $\nabla \times \mathbf{P}$, $\nabla \times \mathbf{E}$

...or the art of bookkeeping
fields and charges in dielectrics



Natasha, Pierre & The Great Comet of 1812

Natasha, Pierre & The Great Comet of 1812 (or simply ***The Great Comet***) is a [sung-through musical](#) adaptation of a 70-page segment from [Leo Tolstoy](#)'s 1869 novel [War and Peace](#). The show was written by composer, lyricist, playwright, orchestrator [Dave Malloy](#) and originally directed by [Rachel Chavkin](#). It is based on Volume II, Part V of Tolstoy's novel, focusing on Natasha's romance with Anatole and Pierre's search for meaning in his life.[\[1\]](#)[\[2\]](#)

[ALL]

*Marya is old-school
Sonya is good
Natasha is young
And Andrey isn't here*

[ALL]

*And this is all in your program
You are at the opera
Gonna have to study up a little bit
If you wanna keep with the plot
'Cause it's a complicated Russian novel
Everyone's got nine different names
So look it up in your program
We'd appreciate it, thanks a lot*

Displacement Field

In a material, we might have both free and bound charges:

$$\rho(\mathbf{r}) = \rho_F(\mathbf{r}) + \rho_B(\mathbf{r})$$

Hence, $\nabla \cdot E = \frac{\rho}{\epsilon_0} = \frac{\rho_F + \rho_B}{\epsilon_0} = \frac{\rho_F - \nabla \cdot \mathbf{P}}{\epsilon_0}$ $\rightarrow \nabla \cdot (\epsilon_0 \mathbf{E} + \mathbf{P}) = \rho_F$

Let's call this \mathbf{D}

$$\mathbf{D} \equiv \epsilon_0 \mathbf{E} + \mathbf{P} \rightarrow \nabla \cdot \mathbf{D} = \rho_F$$

(Maxwell's equation)

\mathbf{D} , aka **displacement field**, has a physical meaning of the field due *only* to the free charges:

$$\int_V \nabla \cdot \mathbf{D} d\tau = \int_V \rho_F d\tau = Q_F \quad (\text{Gauss' law})$$

Linear Dielectrics

In many insulating (dielectric) materials, there is a linear relation between the polarization of the material, \mathbf{P} , and the electric field, \mathbf{E} , in the material. (We will try to be very clear about what \mathbf{E} actually means here, see the following pages.) We write:

$$\mathbf{P} = \epsilon_0 \chi_e \mathbf{E}$$

where χ_e is the **electric susceptibility** of the dielectric. It is a measure of how polarizable the material is. Then:

$$\mathbf{D} = \epsilon_0 \mathbf{E} + \mathbf{P} \quad (\text{always})$$

$$= \epsilon_0 \mathbf{E} + \epsilon_0 \chi_e \mathbf{E} \quad (\text{linear})$$

$$= \epsilon_0 (1 + \chi_e) \mathbf{E} \equiv \epsilon_0 \epsilon_r \mathbf{E}$$

$\epsilon_r = (1 + \chi_e)$ is the **dielectric constant** or **relative permittivity**, $\epsilon_0 \epsilon_r$ is the **permittivity**.