Lecture 13

Displacement field & Applications.

Permanent (frozen) polarization.



Electric Displacement

(Ch 4.3)

...or the art of bookkeeping
fields and charges in dielectrics

D, P, E
* Induced field, external field, total field

* Using Gauss’s law in dielectrics
VXD, VXP, VXE




LLast Tlme Displacement Field

In a material, we might have both free and bound charges: p(r) = pr(r) + pp(r)

-V P
Hence, V-EzﬁzpF+pB:pF — V- (e0E+P) =pFr
€0 €0 €0 I\ ~ J

Let’s call this D

D=¢cE+P — V.-D=pp

(Maxwell’s equation)

D, aka displacement field, has a physical meaning of the field due only to the free charges:

/V-Dde/ppdeQF (Gauss’ law)
|%4 |4



Linear Dielectrics

In many insulating (dielectric) materials, there is a linear relation between the polarization
of the material, P, and the electric field, E, in the material. (We will try to be very clear
about what E actually means here, see the following pages.) We write:

P = oneE

where y, is the electric susceptibility of the dielectric. It is a measure of how polarizable
the material is. Then:

D=¢E+P

Last Time
EoE - EOXe:E

= €0(1 + xe)E = g€, E

e, = (1 + x,) is the dielectric constant or relative permittivity, €5€,-is the permittivity.



Eiot, Eext OF Ejng?

If we put a dielectric in an external field E., it polarizes the material, causing a new
induced field inside it, E;,4, due to the bound charges. These two fields superpose,
making a total field Ei;t = Eoxt + Eing-

* We defined the electric displacement or D field to be: D = ¢,E + P.

* We also defined polarization in a linear dielectricas P = €y x,E.

Q: What is the meaning of E in these equations?

A. Eiot
B. Eqxt
C. Eing
D. |have noidea



free charges

ry A

>0

Displacement Field — 2

Eext

Eind

3

_ D field due to
€0 free charges

P field due to
eo induced dipoles

Hence,

+ ++++++ + + +

free charges

D:EOE+P

P=¢€px.E

Now:

Etot — Eext + Eind

D-—P
€o

D —_ EOEtOt + P

(always)

P =¢€yx.Eiot (forlinear dielectrics)

* It makes sense: what we need to know

in practice is E¢¢!




E,P,D: Summary Etot = Eext + Eing
Always: [D = €9Eior + P] y

/ susceptibility

For linear dielectrics: P = €px.Etot permittivity

/

D = €o(1+ xe)Eiot = € Etor = €9Eext

Y

>
.
>
B
»
[
-
[
>

€, dielectric constant (relative permittivity)

E, P, D: Outlook ++ ++++++++

* We usually know free charges (and don’t
know bound charges, pg and o) =>

fVDdTZ/ deTZQF
Can use Gauss’ law to relate D with Qf 1% 1%

*Find D => find E{,¢ => Find V(I), etc.



Dielectric sphere

A point charge +q is placed at the centre of a dielectric sphere of radius R.
There are no other free charges anywhere.

Find D(7) everywhere in space.

Q: Whatis |[D(7)]?

q
A.
41T 2
B. ——
4TTEYT
C. d forr < R and 1 _forr >R
ATTET 2 ATTEQT 2

D. None of the above.



. . 6o
Dielectric sphere ‘

N

A point charge +q is placed at the centre of a dielectric sphere of radius R.
There are no other free charges anywhere.

Find D(r) here | =~ o kst
ind D(r) everywhere in space. D
- = £ E OW‘: £.=£.

* Recallthat V- D = pp. — f;‘D -da=QF * From here we can find E = E;
s |D(r) 4712 = g (assume linear dielectric):

Inside Egiog = D/€ = D/€ye,

Q: What is |D(r)|? Outside E,;r = D/€

q * Check Example 4.5
amr? from Griffiths
3 q

ATTEGT?

e BTHW: is E(r) continuous, or does
it have a jump? __
LP! — 6 !

q q
S forr <R and Aeqr? forr >R« From E we can find P(r) = €, x.E(r),

D. None of the above. and V(1) from [ E - dl — we know everything!



m O O = >

Dielectric Capacitor —1

A parallel plate capacitor has charge £0Q. A neutral, linear dielectric is inserted into the plate
gap, and we want to find D and E in the dielectric.

Q: For the Gaussian pillbox shown in red, with cap area a, what is Qg enc?

+ora

—0rpa

(o — 0p)a

(oF + 0p)a

None of the above



Dielectric Capacitor —1

A parallel plate capacitor has charge £0Q. A neutral, linear dielectric is inserted into the plate
gap, and we want to find D and E in the dielectric.

Q: For the Gaussian pillbox shown in red, with cap area a, what is Qg enc?

Q: What are we going to do with this information?

A: We can try to find D: f D -da = QFenc
A

\—op=—Q/A

3 Evaluating this integral will give us Dgje; and Dyetal:
C. (or —op)a Ddielﬂ — Dmetal?{ — O-Fﬂ

D. (or +0p)a
E. None of the above

What can we say about them?



Dielectric Capacitor — 2

A parallel plate capacitor has charge £0Q. A neutral, linear dielectric is inserted into the plate
gap, and we want to find D and E in the dielectric.

a) What is D inside the metal?
b) What is D inside the dielectric?




Dielectric Capacitor — 2

A parallel plate capacitor has charge £0Q. A neutral, linear dielectric is inserted into the plate
gap, and we want to find D and E in the dielectric.

a) What is D inside the metal? D =¢€yE;t + P =0 Enetas = 0, Peta =0

b) What is D inside the dielectric? S+or =+Q/A

¥

fD - da = Qpenc " V—op = —Q/A
A

F/EO Ddiela — Dmetala = Opda

B
C
D.
@ Dpetal = 0 — Dgiel = OF
Zero



Dielectric Capacitor — 3

A parallel plate capacitor has charge £0Q. A neutral, linear dielectric is inserted into the plate
gap, and we want to find D and E in the dielectric.

What is E inside the dielectric?

¥/+UF:+Q/A
€ = €g€p
X
VN—op =—-Q/A
A. E = Deg
B. E=D/¢
C. E =De
D. E=DJ/e
E. Zero



Dielectric Capacitor — 3

A parallel plate capacitor has charge £0Q. A neutral, linear dielectric is inserted into the plate
gap, and we want to find D and E in the dielectric.

What is E inside the dielectric?

The E field in the dielectric is diminished /+JF — +Q/4
by the shielding effect of the induced
polarization. This always partially £ = toSa
cancels the “external” field D. R
VN—op =—-Q/A
A. E —_ DEO el -
. : permittivity
B. E=D/e, Remember:
C. E=De D = €oEot + P = €0(1 + Xe)Eror = € Etor = €0Eext

€r dielectric constant



Dielectric Capacitor —4

A parallel plate capacitor has charge £0Q. A neutral, linear dielectric is inserted into the plate
gap, and we want to find D and E in the dielectric.

What is E inside the air gap? Assume €, = 1 for air.

E = D¢
E=D/e¢
E = De

E=D/e

Zero



Dielectric Capacitor —4

A parallel plate capacitor has charge £0Q. A neutral, linear dielectric is inserted into the plate

gap, and we want to find D and E in the dielectric. )
[}
What is E inside the air gap? Assume €, = 1 for air. D= E&& E
* D is the same as before (free charge /+0F = +Q/A
distribution did not change) E=D/fo _..
* There is no polarization in the gap €= _D/e - € = €€y .
=> we have simply D = €yE;t N—op=—Q/A
. E —_ DEO el -
. : permittivity
e E=D/e, Remember: /
E = De D = €oEior + P = €0(1 + xe)Eor = € Etor = €9Ecxs
D. E=D/e —

€r dielectric constant



m O O ® >

Dielectric Capacitor — 5

A parallel plate capacitor has charge £0Q. A neutral, linear dielectric is inserted into the plate
gap, and we want to find D and E in the dielectric.

Where is D discontinuous? Ignore edge effects.

(i) across the surface charge on the plates. ,t+or =+Q/A

(i) across the bound surface charge on the
dielectric surface.

Only (i)

Only (ii)

(i) and (ii), and nowhere else
(i) and (ii), and other places
Nowhere



Dielectric Capacitor — 5

A parallel plate capacitor has charge £0Q. A neutral, linear dielectric is inserted into the plate
gap, and we want to find D and E in the dielectric.

Where is D discontinuous? Ignore edge effects.

(i) across the surface charge on the plates. ,t+or =+Q/A

(i) across the bound surface charge on the
dielectric surface.

Only (ii) The D field is always discontinuous

(i) and (ii), and nowhere else across a surface charge g only:

(i) and (ii), and other places V-D=py = ¢D-da = Qpena
Nowhere
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Dielectric Capacitor — 6

A parallel plate capacitor has charge £0Q. A neutral, linear dielectric is inserted into the plate
gap, and we want to find D and E in the dielectric.

Where is E discontinuous? Ignore edge effects.

(i) across the surface charge on the plates. ,t+or =+Q/A

(i) across the bound surface charge on the
dielectric surface.

Only (i)

Only (ii)

(i) and (ii), and nowhere else
(i) and (ii), and other places
Nowhere



Dielectric Capacitor — 6

A parallel plate capacitor has charge £0Q. A neutral, linear dielectric is inserted into the plate
gap, and we want to find D and E in the dielectric.

Where is E discontinuous? Ignore edge effects.

(i) across the surface charge on the plates. ,t+or =+Q/A

(i) across the bound surface charge on the
dielectric surface.

A. Only (') The E field is always discontinuous
B. Only (ii) across a surface charge, free or bound.
(i) and (ii), and nowhere else

.Y r-di i~
E. Nowhere metal-air and air-dielectric!



Dielectric Capacitor — 6

+op * Metal-air interface:

- Dabove Dbelow = 0

e Air-dielectric interface:
phelow _ _ﬁ as before

above below __ —

0 = EOEabove EEbelow — EOEabove . (E — €y + EO)Ebelow
above below) _ below _ below _ —
EO(EJ_ — k7 ) (€ — €)ET = €oXekEl =P, =o0p

Eabove Eabove _ G_B
€o

as before



Dielectric Capacitor — Summary

+or = +Q/A

—op =—-Q/A

* For linear dielectrics:

D E P
0 0 0
OF or /€ 0
OF op/€ Op — Of /€
o or/€g 0
0 0 0
P =¢x.E D =¢yc,E =¢cE



Example: Dielectric Capacitance

A parallel plate capacitor with plate area A and separation d has a neutral, linear dielectric
of thickness t < d inserted between the plates. What is the capacitance before and after
the dielectric is inserted? The permittivity of the dielectric is €.




Example: Dielectric Capacitance

A parallel plate capacitor with plate area A and separation d has a neutral, linear dielectric
of thickness t < d inserted between the plates. What is the capacitance before and after

the dielectric is inserted? The permittivity of the dielectric is €.
A

D=0or=Q/A (downward, between the plates) +0I '

D/ey in air

E:D/e(r):{ D/e in dielectric a/, —Ql |
D| D v a-t ¢y 7Y
AV]:fCE-dI:g(d—tH—?t:op( - +E)
ré‘.fr
oA A o
C:ﬁ/:UF(d{EOt‘Fz):deot_Fz Ift - d: O%% Cpir = ,i{_e

* To get large C: seek large A and €, and small d.




Example: Dielectric Capacitance

A parallel plate capacitor with plate area A and separation d has a neutral, linear dielectric
of thickness t < d inserted between the plates. What is the capacitance before and after
the dielectric is inserted? The permittivity of the dielectric is €

* Interpretation: Adding a dielectric to a capacitor - ;
increases its capacitance because the polarized '
dielectric material shields the field and decreases —Ql |

the voltage drop between the plates, for a given
amount of (free) charge on the plates.

_|AV‘_O.F(d—t_|_§)_d€_0t_|_§ ft >d: |C— —

* To get large C: seek large A and €, and small d.




Home Exercise: Coaxial cable

A coaxial cable consists of a copper wire, radius a, surrounded by a concentric copper tube
of inner radius d. The space between is partially filled (from b out to d) with material of
dielectric constant €, as shown. The inner and outer conductors have charge per unit length
+ Q" and —Q’, respectively. Find the capacitance per unit length of this cable.

e Start with the Gauss’ law for D:

j{ D.-da=QL— D(s)2rsL = Q'L
A

an =
S e
LT EE—

* Solution: on the next page



Home Exercise: Coaxial cable

=9 AV—/dE( d
= AT = s)ds

% D-da=Q'L— D(s)2nsL=Q'L
A

— E(s) = D(s)/ey = 27?6;3 (a < s<b)
— E(s) = D(s)/e = 2?;9 (b<s<d)

Q' (1 1 , @
- AV = - (5 In(b/a) + - ln(d/b)) C'= 7




Curlof Dand P

Q: What can we say about V X D? Is it always zero, or can it be non-zero?

A. It must always be zero
B. It can be non-zero



Curlof Dand P

Q: What can we say about V X D? Is it always zero, or can it be non-zero?

e We knowthat VX E =0

* At the first glance: VX E =0,and E =D/e  =>The correct answer is Al

* BUT: E = D/€ only for linear dielectrics!
* MOREOVER: if e = €(r),thenV XD =V X (e(r)E) # e(r)V X E ...

=>V X D = 0 only for linear homogeneous (uniform) dielectrics.

=> For non-linear or non-uniform dielectrics, V X D can be non-zero

It must always be zero

‘ It canh be non-zero



Non-linear dielectrics

A simple example of a non-linear dielectric is the permanent bar electret, the electric
analogue of a permanent bar magnet. It has a permanent, uniform polarization within
the material. We will call permanent polarization “built in”, or “frozen” polarization.

This object has bound surface charge at it ends, but no other bound or free charge.
The E field is that of a finite dipole and satisfies V X E = 0 everywhere.

+++

But on the contour shown in red:

jl{P-dl;é0—>/(V><P)-da7é0—>V><P7é0 tHe
C A 4

and since D = ¢,E + P we get:

VxD=VxP - VxXxDH#0 -




Reminders: What we know about E

The electrostatic field has two properties:

V-E=" and VXE=0
€0

The general solution of these two equations is Coulomb’s l[aw:

E(r) ! /Vp(r') r-r dr’

"~ 4reg r—r/|3

We also can write E in terms of a potential (since V X E = 0)

E(r) = -VV(r)

Knowing divergence and curl (+ boundary conditions) defines a vector field



But: Use D with caution

The displacement field only has one property, in general:

V-D =pp|but VxD #0

So there is no analogue of Coulomb’s law for D (in general):
* In fact, the permanent

p electret has:

1 / /
D(r)%E/VPF(I')’r_r/PdT pr =0 but D #0

Finally, there is also no potential defined for D, since it is not (always) conservative.

* If we don’t know P (or bound charge distribution) ahead of time, we can’t make
very general statements about D.
* D is most useful in highly symmetric case, when we can make use of Gauss’s law!



Fields for a Permanent Electret
..orcombiningVXP=VXD#0withVXE=0

* “Frozen”, or “built-in” o
polarization inside: % * Here pr = 0, but D # 0

=> No Coulomb law for D

c$dP-dl#0 = VxXP=#0

* Still, §ﬁ E-dl =0 (and henceV X E = 0):
negative contribution over inner side of
the red loop, positive contribution over
its outer and vertical sides => they
perfectly balance each other!




Edge Effectsand VX E =0

In reality, physical systems have edge effects that arrange the field(s) sothat V X E =0
(and V. X D =V X P).
f E - dl
C;

1. >0 (large)

2. <0 (small)

3. <0 (very small)
4

5

. <0 (small)
. Net: Zero!!

If the field just abruptly ended at the edge of the plate, then we would have:

V x E # 0 around the contour. But in reality: => E field adjusts and keeps it curl zero!

* For many applications, we ignore edge effects (e.g. in HW4, Q5)



NCXt Tlme Edge Effects and Force on Dielectric

* Edge effects are responsible for a force that pulls a dielectric into a capacitor.

Fif

/+/+ o e aa * Fringe electric field from the capacitor polarizes
Dicleciric the dielectric, and then interacts with the
BERERERRREE ’% induced charge distribution. As you can see from
o NG, 7Z4 1 I the figure, the force has a non-zero horizontal
ﬁ\\ component pointing into the capacitor.

* The simplest way to find the force that saves you from computing the
field at the edge is applying the work-energy principle (see next slide): F=-VI¥
. L Q* CV?
where the potential energy of a capacitor is, as before, W = °C = -
with C being the actual capacitance of the capacitor with the dielectric partially inside,
as in the figure above.



NCXt Tlme Edge Effects and Force on Dielectric

Now let’s see how the equation F = - VI comes about.

* Assume | apply a force F,,. on the dielectric, and shift it by ds. The change
in the potential energy of the dielectric is equal to the work | did on it:

dW = F.-ds = —F - ds
(here F is the electric force against which | did the work, so that F = —F,,).

Hence, if there are no other agents which did the work on the system, we have:

F=-VW

You will explore this further in Tutorial 6 and in HW 4.
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