
Lecture 14

Edge effects. Energy stored in a dielectric.
Boundary Conditions for Dielectrics.
Method of images.



Last Time:

P

+++

− − −

Frozen / permanent / built-in polarization:

• Non-linear dielectrics

Tricks 𝐄𝐄 plays to comply with

1. > 0 (large)
2. < 0 (small)
3. < 0 (very small)
4. < 0 (small)Net: Zero!!



𝐅𝐅 = –∇𝑊𝑊

• Fringe electric field from the capacitor polarizes 
the dielectric, and then interacts with the 
induced charge distribution. As you can see from 
the figure, the force has a non-zero horizontal 
component pointing into the capacitor.

Edge Effects and Force on Dielectric

• Edge effects are responsible for a force that pulls a dielectric into a capacitor.

• The simplest way to find the force that saves you from computing the 
field at the edge is applying the work-energy principle (see next slide):

where the potential energy of a capacitor is, as before, 𝑊𝑊 =
𝑄𝑄2

2𝐶𝐶
=
𝐶𝐶𝑉𝑉2

2

with 𝐶𝐶 being the actual capacitance of the capacitor with the dielectric partially inside, 
as in the figure above.

−

+

−

++

−



𝑑𝑑𝑑𝑑 = 𝐅𝐅me ⋅ 𝑑𝑑𝐬𝐬 = −𝐅𝐅 ⋅ 𝑑𝑑𝐬𝐬

Edge Effects and Force on Dielectric

Now let’s see how the equation 𝐅𝐅 = –∇𝑊𝑊 comes about.                       

• Assume I apply a force 𝐅𝐅me on a dielectric, and shift it by 𝑑𝑑𝐬𝐬. The change 
in the potential energy of the dielectric is equal to the work I did on it:

(here 𝐅𝐅 is the electric force against which I did the work, so that 𝐅𝐅 = −𝐅𝐅me). 

You will explore this further in Tutorial 6 and in HW 4.

𝐅𝐅 = –∇𝑊𝑊

Hence, if there are no other agents which did the work on the system, we have: 



Logic of problems with dielectrics: Summary 

• Linear dielectrics:

(see HW 4). 

𝜎𝜎𝐹𝐹 ⇒ 𝐃𝐃
(if enough 
symmetry)

Δ𝑉𝑉 𝐫𝐫 = −∫ 𝐄𝐄 ⋅ 𝑑𝑑𝐥𝐥
⇒ 𝐄𝐄 = 𝐃𝐃/𝜖𝜖

(if linear) 𝐏𝐏 𝐫𝐫 = 𝜖𝜖0𝜒𝜒𝑒𝑒𝐄𝐄 𝐫𝐫
(if linear)

⇒ capacitance …

⇒

• Non-Linear dielectrics:

𝐏𝐏 𝐫𝐫 ⇒ ⇒ 𝐄𝐄 𝐫𝐫 using Coulomb’s law or 
Gauss’ law (as we did before)

⇒ 𝐃𝐃 = 𝜖𝜖0𝐄𝐄tot + 𝐏𝐏



Displacement 𝐃𝐃: Summary 
If we don’t know 𝐏𝐏 ahead of time, knowing just the free charge 
distribution isn’t enough to determine 𝐃𝐃, in general. 

• There is no analogue of Coulomb’s law for 𝐃𝐃.

• There is no scalar potential for 𝐃𝐃. 

• There is no force law arising from 𝐃𝐃.

• If 𝐄𝐄 and 𝐏𝐏 are known, then 𝐃𝐃 is known (but not especially interesting).                                                       
So one often finds that one has to compute 𝐄𝐄 first to find 𝐃𝐃, which is                                                                     
of no interest if one already knows 𝐄𝐄.

• Frequently one can benefit from 𝐃𝐃 when there is no permanent polarization and
there is spherical, cylindrical or planar symmetry, but otherwise it’s not that helpful. 

If we know 𝐏𝐏 ahead of time, we can find bound charge distribution 
and use it to find 𝐄𝐄 using all our previous machinery (see HW 4). 



Energy in Dielectrics

• Energy in dielectrics

(Ch 4.4.3)



Energy in a Capacitor – 1

Recall that the energy stored in a capacitor can be written as:

𝑊𝑊 = �
0

𝑄𝑄
𝑑𝑑𝑑𝑑 Δ𝑉𝑉 𝑞𝑞 = �

0

𝑄𝑄
𝑑𝑑𝑑𝑑

𝑞𝑞
𝐶𝐶0

=
𝑄𝑄2

2𝐶𝐶0
=
𝐶𝐶0Δ𝑉𝑉2

2
≡
𝜖𝜖0
2
�
𝑉𝑉
𝐄𝐄2 𝑑𝑑𝑑𝑑

Let’s check that the last equality indeed holds:

𝐸𝐸cap =
𝑄𝑄
𝐴𝐴 𝜖𝜖0

→
𝜖𝜖0
2
�
𝑉𝑉
𝐄𝐄2 𝑑𝑑𝑑𝑑 =

𝜖𝜖0
2

𝑄𝑄
𝐴𝐴 𝜖𝜖0

2

𝐴𝐴𝐴𝐴 =
𝑄𝑄2

2
𝑑𝑑
𝐴𝐴 𝜖𝜖0

=
𝑄𝑄2

2𝐶𝐶0

with 𝐶𝐶0 =
𝐴𝐴 𝜖𝜖0
𝑑𝑑

How does this change if we fill the capacitor with a dielectric? 

𝐶𝐶 =
𝑄𝑄
Δ𝑉𝑉

=
𝐴𝐴 𝜖𝜖
𝑑𝑑

= 𝐶𝐶0 𝜖𝜖𝑟𝑟We derived last time:



Energy in a Capacitor – 2

So we can rewrite the expression for the stored energy as: 

Neglecting edges effects, the field in a dielectric capacitor are: 

This expression is true not only for capacitors, but is general, in presence of dielectrics:



Q: A spherical conductor of radius 𝑎𝑎 with charge 𝑄𝑄 surrounded by linear dielectric of outer 
radius 𝑏𝑏 and permittivity 𝜖𝜖. What is the stored energy of the system? 

Q

a b
𝜖𝜖

Example: Dielectric Energy



Example: Dielectric Energy

Q: A spherical conductor of radius 𝑎𝑎 with charge 𝑄𝑄 surrounded by linear dielectric of outer 
radius 𝑏𝑏 and permittivity 𝜖𝜖. What is the stored energy of the system? 

Q

a b
𝜖𝜖

• 𝐄𝐄 and 𝐃𝐃 are both radial. The energy expression is:

• The fields:

• The energy: 



Boundary Conditions for Dielectrics

• Boundary conditions for 𝐄𝐄 and 𝐃𝐃
• Boundary conditions for 𝑉𝑉 and 𝜕𝜕𝑉𝑉/𝜕𝜕𝜕𝜕

(Ch 4.3.3, 4.4.2)



Boundary Conditions for 𝐃𝐃

The boundary conditions for 𝐃𝐃 are a bit different than for 𝐄𝐄 because 𝐃𝐃 can have a 
non-zero curl. 

What are the 
corresponding 
conditions for 𝐃𝐃?

Recall that for 𝐄𝐄: 

From  ∇ ⋅ 𝐄𝐄 = 𝜌𝜌/𝜖𝜖0 From  ∇ × 𝐄𝐄 = 0

From  ∇ ⋅ 𝐃𝐃 = 𝜌𝜌𝐹𝐹 From  ∇ × 𝐃𝐃 = ∇ × 𝐏𝐏

(Week 4)



You have a straight boundary between two linear dielectric materials with 
permittivities 𝜖𝜖1 and 𝜖𝜖2. There are no free charges in the region considered.

Which of 𝐄𝐄∥, 𝐄𝐄⊥,𝐃𝐃∥ and 𝐃𝐃⊥ must be continuous across the boundary? 

A. 𝐄𝐄∥ and 𝐃𝐃∥
B. 𝐄𝐄⊥ and 𝐃𝐃⊥
C. 𝐄𝐄∥ and 𝐄𝐄⊥
D. 𝐃𝐃∥ and 𝐃𝐃⊥
E. Some other combination

Dielectric Boundary: 𝐃𝐃 and 𝐄𝐄



Dielectric Boundary: 𝐃𝐃 and 𝐄𝐄

You have a straight boundary between two linear dielectric materials with 
permittivities 𝜖𝜖1 and 𝜖𝜖2. There are no free charges in the region considered.

Which of 𝐄𝐄∥, 𝐄𝐄⊥,𝐃𝐃∥ and 𝐃𝐃⊥ must be continuous across the boundary? 

A. 𝐄𝐄∥ and 𝐃𝐃∥
B. 𝐄𝐄⊥ and 𝐃𝐃⊥
C. 𝐄𝐄∥ and 𝐄𝐄⊥
D. 𝐃𝐃∥ and 𝐃𝐃⊥
E. Some other combination



Dielectric Boundary: 𝑉𝑉

Two different dielectrics meet at a straight boundary, as shown. What is the correct 
boundary condition on the (scalar) potential 𝑉𝑉?

A. 𝑉𝑉2 − 𝑉𝑉1 = 0
B. 𝑉𝑉2 − 𝑉𝑉1 = 𝜎𝜎/𝜖𝜖0
C. 𝜖𝜖2𝑉𝑉2 − 𝜖𝜖1𝑉𝑉1 = 0
D. 𝜖𝜖2𝑉𝑉2 − 𝜖𝜖1𝑉𝑉1 = 𝜎𝜎/𝜖𝜖0
E. None of the above

Hint: recall that

region 1 (𝜖𝜖1) 

V2

V1

region 2 (𝜖𝜖2) 



Dielectric Boundary: 𝑉𝑉

Two different dielectrics meet at a straight boundary, as shown. What is the correct 
boundary condition on the (scalar) potential 𝑉𝑉?

A. 𝑉𝑉2 − 𝑉𝑉1 = 0
B. 𝑉𝑉2 − 𝑉𝑉1 = 𝜎𝜎/𝜖𝜖0
C. 𝜖𝜖2𝑉𝑉2 − 𝜖𝜖1𝑉𝑉1 = 0
D. 𝜖𝜖2𝑉𝑉2 − 𝜖𝜖1𝑉𝑉1 = 𝜎𝜎/𝜖𝜖0
E. None of the above

Hint: recall that

region 1 (𝜖𝜖1) 

V2

V1

region 2 (𝜖𝜖2) 



Dielectric Boundary: 𝜕𝜕𝜕𝜕/𝜕𝜕𝜕𝜕

Two different dielectrics meet at a straight boundary, as shown. What is the correct 
boundary condition on the derivative of the (scalar) potential, 𝜕𝜕𝑉𝑉/𝜕𝜕𝜕𝜕?

A. 𝜕𝜕𝑉𝑉2
𝜕𝜕𝜕𝜕

− 𝜕𝜕𝑉𝑉1
𝜕𝜕𝜕𝜕

= − 𝜎𝜎𝐹𝐹
𝜖𝜖0

B. 𝜕𝜕𝑉𝑉2
𝜕𝜕𝜕𝜕

− 𝜕𝜕𝑉𝑉1
𝜕𝜕𝜕𝜕

= −𝜎𝜎𝐹𝐹+𝜎𝜎𝐵𝐵
𝜖𝜖0

C. 𝜖𝜖2
𝜕𝜕𝑉𝑉2
𝜕𝜕𝜕𝜕

− 𝜖𝜖1
𝜕𝜕𝑉𝑉1
𝜕𝜕𝜕𝜕

= −𝜎𝜎𝐹𝐹

D. 𝜖𝜖2
𝜕𝜕𝑉𝑉2
𝜕𝜕𝜕𝜕

− 𝜖𝜖1
𝜕𝜕𝑉𝑉1
𝜕𝜕𝜕𝜕

= −𝜎𝜎𝐵𝐵
E. None of these, or more than one

region 1 (𝜖𝜖1) 

V2

V1

region 2 (𝜖𝜖2) Hint: recall that 𝐄𝐄 = −∇𝑉𝑉



Dielectric Boundary: 𝜕𝜕𝜕𝜕/𝜕𝜕𝜕𝜕

Two different dielectrics meet at a straight boundary, as shown. What is the correct 
boundary condition on the derivative of the (scalar) potential, 𝜕𝜕𝑉𝑉/𝜕𝜕𝜕𝜕?

A. 𝜕𝜕𝑉𝑉2
𝜕𝜕𝜕𝜕

− 𝜕𝜕𝑉𝑉1
𝜕𝜕𝜕𝜕

= − 𝜎𝜎𝐹𝐹
𝜖𝜖0

B. 𝜕𝜕𝑉𝑉2
𝜕𝜕𝜕𝜕

− 𝜕𝜕𝑉𝑉1
𝜕𝜕𝜕𝜕

= −𝜎𝜎𝐹𝐹+𝜎𝜎𝐵𝐵
𝜖𝜖0

C. 𝜖𝜖2
𝜕𝜕𝑉𝑉2
𝜕𝜕𝜕𝜕

− 𝜖𝜖1
𝜕𝜕𝑉𝑉1
𝜕𝜕𝜕𝜕

= −𝜎𝜎𝐹𝐹

D. 𝜖𝜖2
𝜕𝜕𝑉𝑉2
𝜕𝜕𝜕𝜕

− 𝜖𝜖1
𝜕𝜕𝑉𝑉1
𝜕𝜕𝜕𝜕

= −𝜎𝜎𝐵𝐵
E. None of these, or more than one

region 1 (𝜖𝜖1) 

V2

V1

region 2 (𝜖𝜖2) Hint: recall that 𝐄𝐄 = −∇𝑉𝑉

• Boundary condition for 𝐃𝐃⊥:

𝐷𝐷⊥2 − 𝐷𝐷⊥1 = 𝜖𝜖2𝐸𝐸⊥2 − 𝜖𝜖1𝐸𝐸⊥1

• Boundary condition for 𝐄𝐄⊥:

𝐸𝐸⊥2 − 𝐸𝐸⊥1 = −𝜕𝜕𝑉𝑉2
𝜕𝜕𝜕𝜕

+ 𝜕𝜕𝑉𝑉1
𝜕𝜕𝜕𝜕

= 𝜎𝜎𝐹𝐹+𝜎𝜎𝐵𝐵
𝜖𝜖0

= −𝜖𝜖2
𝜕𝜕𝑉𝑉2
𝜕𝜕𝜕𝜕

+ 𝜖𝜖1
𝜕𝜕𝑉𝑉1
𝜕𝜕𝜕𝜕

= 𝜎𝜎𝐹𝐹

This one can be 
more useful if 
only free charges 
are known!



Method of Images

• Potential created by charges near a 
grounded conductor

• Charge induced on the conductor

(Ch 4.4.3)



Poisson Equation – Redux 

The 2nd-order Poisson equation (𝜌𝜌 ≠ 0) and Laplace equation (𝜌𝜌 = 0) encode the pair of 
1st-order Maxwell equations: 

Since its solutions are unique, clever methods may be used to find solutions:

• Method of images (today) A technique for solving a subset of electrostatics problems 
involving charges and conductors with certain symmetry. 

• Separation of variables (next time) A widely useful technique for solving partial (i.e., 
multi-dimensional) differential equations. Closely related to the method of multipole 
moments and orthogonal function expansions. 



Poisson Equation – Uniqueness 

Poisson equation: 

Suppose there are two solutions to the Poisson equation, 𝑉𝑉1(𝐫𝐫) and 𝑉𝑉2(𝐫𝐫), with 𝑉𝑉1 = 𝑉𝑉2
on the boundary of the region. Then Δ𝑉𝑉 = 𝑉𝑉1 − 𝑉𝑉2 satisfies Laplace’s equation with 
boundary conditions Δ𝑉𝑉 = 0, and since Δ𝑉𝑉 cannot have a local maximum or minimum, it 
must be zero everywhere, hence 𝑉𝑉1 𝐫𝐫 = 𝑉𝑉2(𝐫𝐫). 

Uniqueness theorem: there is only one solution for Poisson equation in a region 
with specified boundary conditions (i.e. for given 𝑉𝑉 at the boundary of the region). 

Note - this means that however you find a solution (e.g. the method of images), 
it is guaranteed to be the unique solution. 



Classic Method of Images 

+q

d
z

x

y
−
−
−

−

−
−
−

− −
−−

− −

A point charge +𝑞𝑞 is placed a distance 𝑑𝑑 above an infinite, grounded conductor. 
What is the potential 𝑉𝑉(𝐫𝐫) above the conductor (𝑧𝑧 > 0) ? 

Boundary conditions:



+q

d
z

x

y

Try replacing the conductor with an image charge and inspect the solution. 

−q

d

image charge

Classic Method of Images 



Boundary conditions:

Classic Method of Images 



Example: Induced Surface Charge

For the configuration we just sketched, calculate the induced surface charge on 
the conductor and integrate it to find the total induced charge on the plate. 

(why?)



Example: Induced Surface Charge

For the configuration we just sketched, calculate the induced surface charge on 
the conductor and integrate it to find the total induced charge on the plate. 



Example: Force on the Charge

A point charge +𝑞𝑞 is placed a distance 𝑑𝑑 above an infinite, grounded conductor. 
What is the force on this charge? 

A. 0

B. 𝑞𝑞2

4𝜋𝜋𝜖𝜖0𝑑𝑑2
up 

C. 𝑞𝑞2

4𝜋𝜋𝜖𝜖0𝑑𝑑2
down

D. 𝑞𝑞2

4𝜋𝜋𝜖𝜖0(2𝑑𝑑)2
up 

E. 𝑞𝑞2

4𝜋𝜋𝜖𝜖0(2𝑑𝑑)2
down



Example: Force on the Charge

A point charge +𝑞𝑞 is placed a distance 𝑑𝑑 above an infinite, grounded conductor. 
What is the force on this charge? 

A. 0

B. 𝑞𝑞2

4𝜋𝜋𝜖𝜖0𝑑𝑑2
up 

C. 𝑞𝑞2

4𝜋𝜋𝜖𝜖0𝑑𝑑2
down

D. 𝑞𝑞2

4𝜋𝜋𝜖𝜖0(2𝑑𝑑)2
up 

E. 𝑞𝑞2

4𝜋𝜋𝜖𝜖0(2𝑑𝑑)2
down

Force due to the image charge



Image Charges Practice – 1

Q: Two semi-infinite conducting planes meet at right angles and a charge is placed near 
the vertex of the conductors. How many image charges are needed to solve for 𝑉𝑉(𝐫𝐫)? 

A. 1

B. 2

C. 3

D. 4

E. None of the above

+q



Image Charges Practice – 1

Q: Two semi-infinite conducting planes meet at right angles and a charge is placed near 
the vertex of the conductors. How many image charges are needed to solve for 𝑉𝑉(𝐫𝐫)? 

A. 1

B. 2

C. 3

D. 4

E. None of the above

+q



Image Charges Practice – 2

Q: We have two charges above an infinite grounded plane. Can we use the method of 
images to solve for 𝑉𝑉(𝐫𝐫) in this case? 

A. Yes, with 1 charge image

B. Yes, with 2 charge images

C. Yes, with more than 2 charge images

D. No, this problem cannot be solved using the method of images

+q

+2q



Image Charges Practice – 2

Q: We have two charges above an infinite grounded plane. Can we use the method of 
images to solve for 𝑉𝑉(𝐫𝐫) in this case? 

A. Yes, with 1 charge image

B. Yes, with 2 charge images

C. Yes, with more than 2 charge images

D. No, this problem cannot be solved using the method of images

+q

+2q

−q

−2q



Example: Method of Images

Point charge near a grounded conducting sphere: 

1) What are the boundary conditions? 

2) Try an image solution: replace the conductor by an image charge 𝑞𝑞𝑞 at 𝑧𝑧 = 𝑏𝑏 < 𝑎𝑎. 

3) What is the potential outside the sphere? What is 𝑞𝑞𝑞? What is 𝑏𝑏 in terms of 𝑎𝑎 and 𝑑𝑑? 

q
a

y

dz



Point charge near a grounded conducting sphere: 

Example: Method of Images

q
a

y

r1

r

qʹ

r2

b

dz

θ

P



Need to solve for 𝑞𝑞′ and 𝑏𝑏 in terms of 𝑞𝑞,𝑑𝑑, and 𝑎𝑎.

Example: Method of Images

Two variables, two conditions. Try constraints at 𝜃𝜃 = 0,𝜋𝜋: 



Example: Method of Images



Method of Images: Summary

• Use image charges to find a potential that satisfies the Poisson equation with 
boundary conditions. If you find a solution, it is guaranteed to be unique. 

• The solution is only valid in the region outside the conductor (where there are no 
image charges). In particular, the field is still zero, and the potential is still constant, 
inside the conductor. You cannot use image charges in the solution region. 

• The image charges don’t really exist so you cannot use them to calculate the 
potential energy of the charge + conductor system. 

• You can use image charges to calculate force on a charge and the induced charge on 
the surface of the grounded conductor. 
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