Lecture 14

Edge effects. Energy stored in a dielectric.
Boundary Conditions for Dielectrics.

Method of images.



Last Time:

Frozen / permanent / built-in polarization: Tricks E plays to comply with V. X E =0

e //; : \ %Cz E-dl >0 (large)

<0 (small)
VxD=VxP - VxD#0

<0 (very small)
<0 (small)

+++
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* Non-linear dielectrics VXE=0 Net: Zero!!




Edge Effects and Force on Dielectric

* Edge effects are responsible for a force that pulls a dielectric into a capacitor.

Fif

Gy /+/+ o e aa * Fringe electric field from the capacitor polarizes
Dicleciric the dielectric, and then interacts with the
I BERERERRREE ’% induced charge distribution. As you can see from
o NG, 7Z4 1 I the figure, the force has a non-zero horizontal
g ﬁ\\ component pointing into the capacitor.

* The simplest way to find the force that saves you from computing the
field at the edge is applying the work-energy principle (see next slide): F=-VI¥
. L Q* CV?
where the potential energy of a capacitor is, as before, W = °C = -
with C being the actual capacitance of the capacitor with the dielectric partially inside,
as in the figure above.



Edge Effects and Force on Dielectric

Now let’s see how the equation F = - VI comes about.

* Assume | apply a force F,,. on a dielectric, and shift it by ds. The change
in the potential energy of the dielectric is equal to the work | did on it:

dW = F.-ds = —F - ds
(here F is the electric force against which | did the work, so that F = —F,,).

Hence, if there are no other agents which did the work on the system, we have:

F=-VW

You will explore this further in Tutorial 6 and in HW 4.



Logic of problems with dielectrics: Summary

* Linear dielectrics:

s AV(@r)=-JE-dl = capacitance..

o = D = E=D/e
gf;?:eutgrh) (if linear) N P(r) = ey E) = op=P-i
y Y (if linear) pp=—-V-P
* Non-Linear dielectrics:
P(r) = o =P-n —,  E(r) using Couloml?’s lawor _, p_ T
pp=—V-P Gauss’ law (as we did before)

(see HW 4).



Displacement D: Summary

If we don’t know P ahead of time, knowing just the free charge .
CAUTION

distribution isn’t enough to determine D, in general.

* There is no analogue of Coulomb’s law for D.
* There is no scalar potential for D.
* There is no force law arising from D.

 If E and P are known, then D is known (but not especially interesting).
So one often finds that one has to compute E first to find D, which is
of no interest if one already knows E.

* Frequently one can benefit from D when there is no permanent polarization and
there is spherical, cylindrical or planar symmetry, but otherwise it’s not that helpful.

A

If we know P ahead of time, we can find bound charge distribution cp=P-n
and use it to find E using all our previous machinery (see HW 4). pp=-V-P



Energy in Dielectrics

(Ch 4.4.3)

* Energy in dielectrics



Energy in a Capacitor—1

Recall that the energy stored in a capacitor can be written as:

= Ad
2 2 v Vup
q Q CoAV €0 -
W=1 dqgAV(q) = d =— | E%?d with Cp =
[Caqav= [ aq L= =2 =2 e ;
Let’s check that the last equality indeed holds:
Q €o € [ Q ; Q*( d Q*
Ecoh=—-—" - —|E?dt = Ad = = _
P~ Ae, 2 ), " T2 e, 2 \Aeg 2C,
+ o
How does this change if we fill the capacitor with a dielectric? s,
’——"> Eoér 1 fo
| | Q Ae ©
We derived last time: C = = Cy €

AV d



Energy in a Capacitor — 2 As

Neglecting edges effects, the field in a dielectric capacitor are:

D|=g=Q/A |E|=|D|/e=0/e=Q/Ae AV =[E|-d

So we can rewrite the expression for the stored energy as:
Vc.,

W = %C’szz 1AE]E|2dZ_ —e]E[z(Ad) —/E-DdT
JV

This expression is true not only for capacitors, but is general, in presence of dielectrics:

W = 1/E-Dd’r
2 Jv




Example: Dielectric Energy

Q: A spherical conductor of radius a with charge Q surrounded by linear dielectric of outer
radius b and permittivity €. What is the stored energy of the system?

1 Q
W= 5 /a,ll Space(E | D) i €F ) 4wat

s;:“wa&—a:l; - E > W



Example: Dielectric Energy

Q: A spherical conductor of radius a with charge Q surrounded by linear dielectric of outer
radius b and permittivity €. What is the stored energy of the system?

1
— _ . - a
W= 2 /all space(E D) ar Acr: D= € E

 E and D are both radial. The energy expression is:

1 b oo
W = - / drrdr (E - D) + €0 f drridr |E|?
2 2 Jp .
a 0((.0( acl
E il
| Q . Q . { ,
* The fields: D = — — -
Amr2 E =D/e(r) 47re(7")fr2r E(r) o, air
5P
. . Q% fldr | Q* (™dr _ Q@ (1 1 1AL
The energy: W = ey ) ) + o ) e \ae  Be + beq = P-n




Boundary Conditions for Dielectrics

(Ch 4.3.3, 4.4.2)

* Boundary conditions for E and D

* Boundary conditions for I/ and dV /on



Boundary Conditions for D

The boundary conditions for D are a bit different than for E because D can have a
non-zero curl.

> Of +63
o
Recall that for E: IAE, | = — and ]AE“] —
(N EOJ . J
Y Y
Gusan From V-E = p/e¢, From VXE=0
‘é (Week 4)

What are the IAD | =0r and |AD||=|AP]
corresponding N J . g

conditions for D? h v
From V-D = pg From VXD =VXP




Dielectric Boundary: D and E

You have a straight boundary between two linear dielectric materials with
permittivities €; and €,. There are no free charges in the region considered.

Which of E, E,, D; and D must be continuous across the boundary?

| ~
YyE = o
P
3.
U 7 o
c' /
A (& ndD)) €3
B. E, andD; S
C. E” and EJ_ g( E\ S
D. D” and DL / ’D‘

E. Some other combination



Dielectric Boundary: D and E

You have a straight boundary between two linear dielectric materials with

permittivities €; and €,. There are no free charges in the region considered.

Which of E, E,, D; and D must be continuous across the boundary?

E“ (V X B = 0)
DJ_ (O’F — 0)

A. E” and D”

B. EJ_ and DJ_ A‘D-L = G'F

C. E” and EJ_

D. D” and DL

@ Some other combination
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Dielectric Boundary: V

Two different dielectrics meet at a straight boundary, as shown. What is the correct
boundary condition on the (scalar) potential V'?

Hint: recall that AV = _/
C

Vo —=V,y=0

V, =V, =0/¢g
eV, —eVy; =0
eV, — eV =0/€g
None of the above

E - dl

V;

region 2 (€,)

Vi

region 1 (¢)



Dielectric Boundary: V

Two different dielectrics meet at a straight boundary, as shown. What is the correct
boundary condition on the (scalar) potential V'?

Hint: recall that AV = _/

D
C.
D.
E.

V]_ — 0
V, =V, =0/¢g
eV, —eVy; =0

eV, — eV =0a/egg

None of the above

C

E.dl

V;

region 2 (€,)

AVZ—/E-CZI—)O&SCH—)O
C

Vi

region 1 (¢)



Dielectric Boundary: dV /on

Two different dielectrics meet at a straight boundary, as shown. What is the correct
boundary condition on the derivative of the (scalar) potential, oV /dn?

Hint: recall that E = —VV

C.

D.

6V2 6V1 _ OF

on an €0

6V2 _ 6V1 _ OF+0p
on an €o

€Er— — — = —0
2 9n 1 on F

av, aVy

€Er— — — = —0
2 9n 1 on B

E. None of these, or more than one

V;

region 2 (€,)

Vi

region 1 (¢)



Dielectric Boundary: dV /on

Two different dielectrics meet at a straight boundary, as shown. What is the correct
boundary condition on the derivative of the (scalar) potential, 0V /onE - E;

Hint: recall that E = —VV v, region 2 (¢,)

V; region 1 (¢)

* Boundary condition for E :
6V2 6V1 _ OF

A. — - - aV av. op+o
on on €0 ElZ_Ell:_az-l_al: FTOB
« B av, _ A% _ Orp+0p n n €o
'~ on on €0 * Boundary condition for D :
v, vy ,
v C g ——6_—=—0; D,—D4=¢6E ,—¢eE This one can.be
av, v, more useful if
D. €Er————€1——— = —0p lv h
on on aV, oV, only Tree cnharges

=—€;--tT€ =0
@ None of these, or more than one 2 9n 1 on F are known!



Method of Images

(Ch 4.4.3)

* Potential created by charges near a
grounded conductor

* Charge induced on the conductor




Poisson Equation — Redux

V2V (r) = —”E(r) s V2V(r)=0 (p=0)

The 2nd-order Poisson equation (p # 0) and Laplace equation (o = 0) encode the pair of
1st-order Maxwell equations:

Since its solutions are unique, clever methods may be used to find solutions:

* Method of images (today) A technique for solving a subset of electrostatics problems
involving charges and conductors with certain symmetry.

» Separation of variables (next time) A widely useful technique for solving partial (i.e.,
multi-dimensional) differential equations. Closely related to the method of multipole
moments and orthogonal function expansions.



Poisson Equation — Uniqueness

o
Poisson equation: VAV = e

Uniqueness theorem: there is only one solution for Poisson equation in a region
with specified boundary conditions (i.e. for given V at the boundary of the region).

Suppose there are two solutions to the Poisson equation, V;(r) and I/5(r), with V; = 1/,
on the boundary of the region. Then AV = V; — V, satisfies Laplace’s equation with
boundary conditions AV = 0, and since AV cannot have a local maximum or minimum, it
must be zero everywhere, hence V;(r) = V,(r).

Note - this means that however you find a solution (e.g. the method of images),
it is guaranteed to be the unique solution.



Classic Method of Images

A point charge +q is placed a distance d above an infinite, grounded conductor.
What is the potential I/ (r) above the conductor (z > 0) ?

Boundary conditions:

V(z=0) =0 (grounded)

V(z —>00)=0

— V=0

E|(z=0) =0 (conductor)



Classic Method of Images

Try replacing the conductor with an image charge and inspect the solution.

image charge



Classic Method of Images

aan \\

Boundary conditions: E(z =0 (conductor)

V(z=0)=0 (grounded)
V(z—o0)=0




Example: Induced Surface Charge

For the configuration we just sketched, calculate the induced surface charge on
the conductor and integrate it to find the total induced charge on the plate.

Voo = 1 : - "
dmeo \ /22 +y2 + (2 —d)?2 /22 + 9%+ (2 +d)?

oV
o(@,y) = —€0 —— (why?) .
z=0 1,
Q-‘— E_‘_ - [ —‘i




Example: Induced Surface Charge

For the configuration we just sketched, calculate the induced surface charge on
the conductor and integrate it to find the total induced charge on the plate.

v q —(z—d) N (z+d)
Y0z, Am \(@2+2+(z—d)2)32 " (22 +y2+ (2 +d)2)32 )|,
— o(s) = g 2d (s* = z° + y%)

Tdn (2 + d2)/

| _/ (s)da——ﬂ > 2msds
(ind = AO‘ — o ; (82+d2)3/2




Example: Force on the Charge

A point charge +q is placed a distance d above an infinite, grounded conductor.
What is the force on this charge?




Example: Force on the Charge

A point charge +q is placed a distance d above an infinite, grounded conductor.
What is the force on this charge?

A. 0 Force due to the image charge

qZ
B. ATTEHd > up

q° ’
C. down '

4-7T€0d2 ’
q2 - 7= .

D 41rE((2d)? P —
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Image Charges Practice — 1

Q: Two semi-infinite conducting planes meet at right angles and a charge is placed near
the vertex of the conductors. How many image charges are needed to solve for I/ (r)?

A W N -

None of the above



Image Charges Practice —1

Q: Two semi-infinite conducting planes meet at right angles and a charge is placed near
the vertex of the conductors. How many image charges are needed to solve for I/ (r)?

A1
B. 2
(©s
D. 4

E. None of the above
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Image Charges Practice — 2

Q: We have two charges above an infinite grounded plane. Can we use the method of
images to solve for V(1) in this case?

+2q

Yes, with 1 charge image
Yes, with 2 charge images
Yes, with more than 2 charge images

No, this problem cannot be solved using the method of images



Image Charges Practice — 2

Q: We have two charges above an infinite grounded plane. Can we use the method of
images to solve for V(1) in this case?

+2q

—q

A. Yes, with 1 charge image —2g

Yes, with 2 charge images

C. Yes, with more than 2 charge images

D. No, this problem cannot be solved using the method of images



Example: Method of Images

Point charge near a grounded conducting sphere:

1) What are the boundary conditions?
2) Try an image solution: replace the conductor by an image charge g’ atz = b < a.

3) What is the potential outside the sphere? What is ¢'? What is b in terms of a and d?



Example: Method of Images

Point charge near a grounded conducting sphere: P

rl
r2

1 (q (
V(I‘) - 471'60 (Tl + 7‘2)

r? =r? 4+ d* — 2rdcosd ra =12 +b*> — 2rbcosf



Example: Method of Images

V)= ( 7 " 7

471'60

Need to solve for g’ and b in terms of g, d, and a.

Two variables, two conditions. Try constraints at 8 = 0, m:

V12 +d? —2rdcos  Vr?2+b2 — 2'rbcost9>

vmﬁ:oy:]'( : + 7 ) (cosf = 1)

Va2 +d? —2ad Va2 + b2 — 2ab

a—d ra—b|) ’

4meg

47T€0

/

47T€0 Vva? —|—d2—|—2ad Va2 + b2 + 2ab

~ Ireg \latal T ya+m) 0

(=
V(a0 =) = ( + 1 ) (cosf = —1)
e (et




e: Method of Images

i ==t
&&Z b

-~ T

-2.5 0.0

[
< 1 < N o n p " s

OOOOO
'_' —

z



Method of Images: Summary

* Use image charges to find a potential that satisfies the Poisson equation with
boundary conditions. If you find a solution, it is guaranteed to be unique.

* The solution is only valid in the region outside the conductor (where there are no
image charges). In particular, the field is still zero, and the potential is still constant,
inside the conductor. You cannot use image charges in the solution region.

* The image charges don’t really exist so you cannot use them to calculate the
potential energy of the charge + conductor system.

* You can use image charges to calculate force on a charge and the induced charge on
the surface of the grounded conductor.
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