
Lecture 15

Separation of variables: Cartesian coordinates



Separation of Variables: 
Cartesian Coordinates

(Ch 3.3.1)

• Idea: Reducing one differential equation in partial 
derivatives to a set of ordinary differential equations

• Types of boundary conditions and corresponding 
solutions

• Completeness and orthogonality of separable 
solutions

𝑋𝑋(𝑥𝑥)

𝑌𝑌(𝑦𝑦)

𝑍𝑍(𝑧𝑧)



• Separation of variables (next time) A widely useful technique for solving partial (i.e., 
multi-dimensional) differential equations. Closely related to the method of multipole 
moments and orthogonal function expansions.

Poisson Equation – Redux 

The 2nd-order Poisson equation (𝜌𝜌 ≠ 0) and Laplace equation (𝜌𝜌 = 0) encode the pair of 
1st-order Maxwell equations: 

Since its solutions are unique, clever methods may be used to find solutions:

• Method of images (today) A technique for solving a subset of electrostatics problems 
involving charges and conductors with certain symmetry.  

Last 
Time:



There are numerous other important equations in physics that contain the 
Laplacian that can be solved with separation of variables techniques.  For example:

Other Examples in Physics

The heat equation:

The Schrödinger equation:



Separation of variables – 1

An important technique which relies on uniqueness of solution of Laplace equation is 
separation of variables, which can give a direct solution of the Laplace equation, subject to 
boundary conditions on 𝑉𝑉 and/or 𝜕𝜕𝑉𝑉/𝜕𝜕𝜕𝜕.

The technique trades one partial differential equation for 𝑁𝑁 ordinary differential equations 
(in 𝑁𝑁 dimensions).

Let’s first illustrate the method in Cartesian coordinates:

Guess a solution of the form:



Substitute this into the Laplace equation:

Separation of variables – 2

Divide by 𝑋𝑋𝑋𝑋𝑋𝑋:

This has the form:



A. All three functions are zero everywhere.
B. At least one of these functions is zero everywhere.
C. All three functions are constant, independent of 𝑥𝑥,𝑦𝑦, 𝑧𝑧, respectively.
D. All three functions are linear, e.g. 𝑓𝑓(𝑥𝑥) = 𝑎𝑎𝑎𝑎 + 𝑏𝑏, and so forth.
E. None of the above.

Q: Consider the equation:

Separation Math

where each function depends only on a single Cartesian coordinate for all 𝑥𝑥,𝑦𝑦, 𝑧𝑧.  
Which of the following conclusions about 𝑓𝑓,𝑔𝑔, and ℎ can we make?



A. All three functions are zero everywhere.
B. At least one of these functions is zero everywhere.
C. All three functions are constant, independent of 𝑥𝑥,𝑦𝑦, 𝑧𝑧, respectively.
D. All three functions are linear, e.g. 𝑓𝑓(𝑥𝑥) = 𝑎𝑎𝑎𝑎 + 𝑏𝑏, and so forth.
E. None of the above.

Q: Consider the equation:

Separation Math

where each function depends only on a single Cartesian coordinate for all 𝑥𝑥,𝑦𝑦, 𝑧𝑧.  
Which of the following conclusions about 𝑓𝑓,𝑔𝑔, and ℎ can we make?

• Hence, using the 
definitions from the 
previous slide we get:



Q: What is the solution of this differential equation?

Differential Equations: Recap

A. 𝑋𝑋 𝑥𝑥 = 𝑋𝑋0𝑒𝑒 𝑎𝑎 𝑥𝑥 + 𝑋𝑋1𝑒𝑒− 𝑎𝑎 𝑥𝑥

B. 𝑋𝑋(𝑥𝑥) = 𝑋𝑋0 sin( 𝑎𝑎 𝑥𝑥) + 𝑋𝑋1 cos( 𝑎𝑎 𝑥𝑥)
C. A if 𝑎𝑎 > 0, and B if 𝑎𝑎 < 0
D. A if 𝑎𝑎 < 0, and B if 𝑎𝑎 > 0
E. Both A and B for all 𝑎𝑎



A. 𝑋𝑋(𝑥𝑥) = 𝑋𝑋0𝑒𝑒 𝑎𝑎 𝑥𝑥 + 𝑋𝑋1𝑒𝑒− 𝑎𝑎 𝑥𝑥

B. 𝑋𝑋(𝑥𝑥) = 𝑋𝑋0 sin( 𝑎𝑎 𝑥𝑥) + 𝑋𝑋1 cos( 𝑎𝑎 𝑥𝑥)
C. A if 𝑎𝑎 > 0, and B if 𝑎𝑎 < 0
D. A if 𝑎𝑎 < 0, and B if 𝑎𝑎 > 0
E. Both A and B for all 𝑎𝑎

Q: What is the solution of this differential equation?

Differential Equations: Recap

if 𝑎𝑎 is positive
𝑑𝑑2

𝑑𝑑𝑥𝑥2
𝑋𝑋0𝑒𝑒 |𝑎𝑎|𝑥𝑥 = |𝑎𝑎|

2
𝑋𝑋0𝑒𝑒 𝑎𝑎𝑥𝑥 = 𝑎𝑎 𝑋𝑋

𝑑𝑑2

𝑑𝑑𝑥𝑥2
𝑋𝑋0 sin( |𝑎𝑎|𝑥𝑥) = − |𝑎𝑎|

2
𝑋𝑋0 sin( |𝑎𝑎|𝑥𝑥) = − 𝑎𝑎 𝑋𝑋 if 𝑎𝑎 is negative

• The sign of 𝑎𝑎 determines whether 
we have an exponential or harmonic 
(sin/cos) solution

= 𝑎𝑎𝑎𝑎

= 𝑎𝑎𝑎𝑎



Hyperbolic Functions: Recap

𝑋𝑋 𝑥𝑥 = 𝑋𝑋0𝑒𝑒 𝑎𝑎𝑥𝑥 + 𝑋𝑋1𝑒𝑒− 𝑎𝑎𝑥𝑥

Sometimes it is more convenient to use hyperbolic functions
instead of exponents as solutions of the differential equation 

𝑑𝑑2𝑋𝑋
𝑑𝑑𝑥𝑥2

= 𝑎𝑎 𝑋𝑋 with 𝑎𝑎 > 0.

Exponents:

𝑋𝑋 𝑥𝑥 = 𝑋𝑋0′ sinh 𝑎𝑎𝑥𝑥 + 𝑋𝑋1′ cosh 𝑎𝑎𝑥𝑥
Hyperbolic 
functions:

with sinh(𝑥𝑥) =
𝑒𝑒𝑥𝑥 − 𝑒𝑒−𝑥𝑥

2
and cosh(𝑥𝑥) =

𝑒𝑒𝑥𝑥 + 𝑒𝑒−𝑥𝑥

2

𝑒𝑒−𝑥𝑥 𝑒𝑒+𝑥𝑥

sinh(𝑥𝑥)
cosh 𝑥𝑥



A. 𝑋𝑋 and 𝑌𝑌 sinusoidal, 𝑍𝑍 constant,

B. 𝑋𝑋 and 𝑌𝑌 exponential, 𝑍𝑍 constant,

C. 𝑋𝑋 sinusoidal, 𝑌𝑌 exponential, 𝑍𝑍 constant,

D. 𝑋𝑋 exponential, 𝑌𝑌 sinusoidal, 𝑍𝑍 constant,

E. Something else

Choosing Appropriate Function (a)

y

x

V=V0V=V0

V=0

V=0
z

The rectangular channel is infinite along 𝑧𝑧 and has the boundary condition shown in the 
picture. What kind of functions are likely to be solutions for 𝑋𝑋,𝑌𝑌, and 𝑍𝑍?



A. 𝑋𝑋 and 𝑌𝑌 sinusoidal, 𝑍𝑍 constant,

B. 𝑋𝑋 and 𝑌𝑌 exponential, 𝑍𝑍 constant,

C. 𝑋𝑋 sinusoidal, 𝑌𝑌 exponential, 𝑍𝑍 constant,

D. 𝑋𝑋 exponential, 𝑌𝑌 sinusoidal, 𝑍𝑍 constant,

E. Something else

Choosing Appropriate Function (a)

y

x

V=V0V=V0

V=0

V=0
z

The rectangular channel is infinite along 𝑧𝑧 and has the boundary condition shown in the 
picture. What kind of functions are likely to be solutions for 𝑋𝑋,𝑌𝑌, and 𝑍𝑍?

• Hence,• We can’t have both 𝑋𝑋 and 𝑌𝑌 exponential or both sinusoidal, 
since then we will have that  𝑎𝑎 + 𝑏𝑏 ≠ 0. 

• We can’t have an exponential solution for 𝑌𝑌, since we won’t be 
able to satisfy boundary condition, 𝑉𝑉 = 0, at 𝑦𝑦 = 0 and 𝑦𝑦 = ℎ.

𝑎𝑎 > 0, 𝑏𝑏 < 0, 𝑐𝑐 = 0



A. 𝑋𝑋 and 𝑌𝑌 sinusoidal, 𝑍𝑍 constant,

B. 𝑋𝑋 and 𝑌𝑌 exponential, 𝑍𝑍 constant,

C. 𝑋𝑋 sinusoidal, 𝑌𝑌 exponential, 𝑍𝑍 constant,

D. 𝑋𝑋 exponential, 𝑌𝑌 sinusoidal, 𝑍𝑍 constant,

E. Something else

Choosing Appropriate Function (b)

y

x

V=V0V=V0

V= V0

V= V0
z

The rectangular channel is infinite along 𝑧𝑧 and has the boundary condition shown in the 
picture. What kind of functions are likely to be solutions for 𝑋𝑋,𝑌𝑌, and 𝑍𝑍?



A. 𝑋𝑋 and 𝑌𝑌 sinusoidal, 𝑍𝑍 constant,

B. 𝑋𝑋 and 𝑌𝑌 exponential, 𝑍𝑍 constant,

C. 𝑋𝑋 sinusoidal, 𝑌𝑌 exponential, 𝑍𝑍 constant,

D. 𝑋𝑋 exponential, 𝑌𝑌 sinusoidal, 𝑍𝑍 constant,

E. Something else

Choosing Appropriate Function (b)

y

x

V=V0V=V0

V= V0

V= V0
z

The rectangular channel is infinite along 𝑧𝑧 and has the boundary condition shown in the 
picture. What kind of functions are likely to be solutions for 𝑋𝑋,𝑌𝑌, and 𝑍𝑍?

• Hence,Consider 𝑉𝑉 𝑥𝑥,𝑦𝑦 = 𝑉𝑉0 everywhere inside.

• This solution works, hence, by virtue of 
uniqueness theorem it is what we have!

𝑎𝑎 = 𝑏𝑏 = 𝑐𝑐 = 0



Q: Consider a large parallel plate capacitor (neglect edge effects) with the lower plate in 
the (𝑥𝑥, 𝑧𝑧) plane (𝑦𝑦 = 0) with 𝑉𝑉 = 0, and the upper plate at 𝑦𝑦 = 𝑑𝑑 with 𝑉𝑉 = 𝑉𝑉0.

Find the potential 𝑉𝑉(𝑥𝑥,𝑦𝑦, 𝑧𝑧) between the plates by solving the Laplace equation,

y

x

d

0

V=V0

V=0

Example 1: Capacitor Potential

1) Set up equations for 𝑋𝑋 𝑥𝑥 ,𝑌𝑌 𝑦𝑦 ,𝑍𝑍(𝑧𝑧)

2) Set up boundary conditions

3) Solve for 𝑋𝑋 𝑥𝑥 ,𝑌𝑌 𝑦𝑦 ,𝑍𝑍(𝑧𝑧)



Example 1: Capacitor Potential
The general solution:

Boundary conditions in 𝑥𝑥, 𝑧𝑧: translation invariance in both 𝑥𝑥 and 𝑧𝑧 for an infinite capacitor, 
hence 𝑋𝑋(𝑥𝑥) is independent of 𝑥𝑥, and 𝑍𝑍(𝑧𝑧) is independent of 𝑧𝑧:

Boundary conditions in 𝑦𝑦 (taking 𝑋𝑋(𝑥𝑥) = 1 and 𝑍𝑍(𝑧𝑧) = 1):

and the same for 𝑍𝑍(𝑧𝑧)



Two semi-infinite (𝑥𝑥 > 0), grounded, metal plates lie parallel to the (𝑥𝑥, 𝑧𝑧) plane, one 
at 𝑦𝑦 = 0, the other at 𝑦𝑦 = ℎ.  The left end at 𝑥𝑥 = 0 is closed off with an infinite strip 
insulated from the two plates and maintained at a specified potential 𝑉𝑉(𝑦𝑦).  

Find the potential inside the slot.

Assume:

h

Example 2: Open Channel



Q: Think about the boundary conditions in each dimension. What kind of functions are likely 
to be solutions for 𝑋𝑋,𝑌𝑌, and 𝑍𝑍? Assume the channel is infinite along 𝑧𝑧.

A. 𝑋𝑋 and 𝑌𝑌 sinusoidal, 𝑍𝑍 constant,

B. 𝑋𝑋 and 𝑌𝑌 exponential, 𝑍𝑍 constant,

C. 𝑋𝑋 sinusoidal, 𝑌𝑌 exponential, 𝑍𝑍 constant,

D. 𝑋𝑋 exponential, 𝑌𝑌 sinusoidal, 𝑍𝑍 constant,

E. 𝑋𝑋,𝑌𝑌, and 𝑍𝑍 sinusoidal.

h

Example 2: Open Channel



Q: Think about the boundary conditions in each dimension. What kind of functions are likely 
to be solutions for 𝑋𝑋,𝑌𝑌, and 𝑍𝑍? Assume the channel is infinite along 𝑧𝑧.

A. 𝑋𝑋 and 𝑌𝑌 sinusoidal, 𝑍𝑍 constant,

B. 𝑋𝑋 and 𝑌𝑌 exponential, 𝑍𝑍 constant,

C. 𝑋𝑋 sinusoidal, 𝑌𝑌 exponential, 𝑍𝑍 constant,

D. 𝑋𝑋 exponential, 𝑌𝑌 sinusoidal, 𝑍𝑍 constant,

E. 𝑋𝑋,𝑌𝑌, and 𝑍𝑍 sinusoidal.

h

Example 2: Open Channel

• Hence,

• We can’t have both 𝑋𝑋 and 𝑌𝑌 exponential or both sinusoidal, 
since then we will have that  𝑎𝑎 + 𝑏𝑏 ≠ 0. 

• We can’t have an exponential solution for 𝑌𝑌, since we won’t be 
able to satisfy boundary condition, 𝑉𝑉 = 0, at 𝑦𝑦 = 0 and 𝑦𝑦 = ℎ.



• The boundary conditions:

Example 2: Open Channel (z)

• The differential equation:

• Conditions / constraints on 𝑐𝑐
(and other constants if they exist):

• Guess a solution:

Write down the differential equation for 𝑍𝑍(𝑧𝑧), and the boundary conditions on 𝑍𝑍.
What are the constraints on 𝑐𝑐 (and other constants, if they exist?)

𝑍𝑍(𝑧𝑧) = 𝑍𝑍0

𝑍𝑍(𝑧𝑧) = 𝑍𝑍0

(due to translational symmetry 
of the problem in 𝑧𝑧 direction)

• Hence:



• The boundary conditions:

Example 2: Open Channel (y)

• The differential equation:

• Conditions / constraints on 𝑏𝑏
(and other constants if they exist):

• Guess a solution:

Other constants: 
𝑘𝑘,𝑌𝑌0 and 𝑌𝑌1

with 𝑘𝑘2 = −𝑏𝑏

Write down the differential equation for 𝑌𝑌(𝑦𝑦), and the boundary conditions on 𝑌𝑌.
What are the constraints on 𝑏𝑏 (and other constants, if they exist?)

𝑌𝑌 𝑦𝑦 = 𝑌𝑌0 sin 𝑘𝑘𝑛𝑛𝑦𝑦 = 𝑌𝑌0 sin
𝑛𝑛𝑛𝑛𝑛𝑛
ℎ• Hence:

𝑏𝑏 < 0



• The boundary conditions:

Example 2: Open Channel (x)

• The differential equation:

• Conditions / constraints on 𝑎𝑎
(and other constants if they exist):

• Guess a solution:

Other constants: 
𝛼𝛼,𝑋𝑋0 and 𝑋𝑋1

with 𝛼𝛼2 = 𝑎𝑎

Write down the differential equation for 𝑋𝑋(𝑥𝑥), and the boundary conditions on 𝑋𝑋.
What are the constraints on 𝑎𝑎 (and other constants, if they exist?)

𝑋𝑋 𝑥𝑥 = 𝑋𝑋1𝑒𝑒−𝑘𝑘𝑛𝑛𝑥𝑥

𝑎𝑎 + 𝑏𝑏 + 𝑐𝑐 = 0

𝛼𝛼2 − 𝑘𝑘2 + 0 = 0

𝛼𝛼 = 𝑘𝑘

𝛼𝛼𝑛𝑛 = 𝑘𝑘𝑛𝑛 =
𝜋𝜋𝜋𝜋
ℎ

• Hence:

𝑎𝑎 > 0



Now let’s put everything together:

Example 2: Open Channel

We have a solution of the form:

…and we can find the coefficients 𝐴𝐴𝑛𝑛 from our last boundary condition, 𝑉𝑉 0,𝑦𝑦, 𝑧𝑧 = 𝑉𝑉(𝑦𝑦).

𝑉𝑉 𝑥𝑥,𝑦𝑦, 𝑧𝑧 = �
𝑛𝑛=1

∞

𝐴𝐴𝑛𝑛𝑒𝑒−𝑘𝑘𝑛𝑛𝑥𝑥 sin𝑘𝑘𝑛𝑛𝑦𝑦

Q: How ??? We have just one boundary condition and infinite set of 𝐴𝐴𝑛𝑛 !!!

𝑉𝑉 𝑥𝑥,𝑦𝑦, 𝑧𝑧 = 𝑋𝑋 𝑥𝑥 𝑌𝑌 𝑦𝑦 𝑍𝑍 𝑧𝑧 = 𝑋𝑋1𝑌𝑌0𝑍𝑍0 𝑒𝑒−𝑘𝑘𝑛𝑛𝑥𝑥 sin𝑘𝑘𝑛𝑛𝑦𝑦

Combining 𝑋𝑋1𝑌𝑌0𝑍𝑍0 into one single constant, 
we get the potential in the most general 
form as a sum over the index 𝑛𝑛:

𝑘𝑘𝑛𝑛 =
𝑛𝑛𝑛𝑛
ℎ

with



Example 2: Open Channel

Boundary condition: 𝑉𝑉 0,𝑦𝑦, 𝑧𝑧 = 𝑉𝑉(𝑦𝑦).

𝑉𝑉 𝑥𝑥,𝑦𝑦, 𝑧𝑧 = �
𝑛𝑛=1

∞

𝐴𝐴𝑛𝑛𝑒𝑒−𝑘𝑘𝑛𝑛𝑥𝑥 sin𝑘𝑘𝑛𝑛𝑦𝑦We have:

Q: What to do if we are not that lucky, and 𝑉𝑉(𝑦𝑦) is some other function?

• What if we are lucky and 𝑉𝑉 𝑦𝑦 = 𝑉𝑉0 sin 2𝜋𝜋𝜋𝜋
ℎ

?

𝐴𝐴2 = 𝑉𝑉0,    and    𝐴𝐴𝑖𝑖≠2 ≡ 0Then

• What if, again, we are lucky and 𝑉𝑉 𝑦𝑦 = 𝑉𝑉1 sin 7𝜋𝜋𝜋𝜋
ℎ

+ 𝑉𝑉2 sin 132 𝜋𝜋𝜋𝜋
ℎ

?

𝐴𝐴7 = 𝑉𝑉1,  𝐴𝐴132 = 𝑉𝑉2 and       𝐴𝐴𝑖𝑖≠7,132 ≡ 0Then

A: We always can represent any 𝑉𝑉(𝑦𝑦) as a sum of appropriate sines!

𝑘𝑘𝑛𝑛 =
𝑛𝑛𝑛𝑛
ℎ

(𝑛𝑛 = 1,2,3,4 … )



Fourier Trick - 1

Our goal is to expand the boundary condition in the Fourier series:

To find appropriate 𝐴𝐴𝑚𝑚 we should multiply both sides of Eq.(*) by sin 𝑚𝑚𝑚𝑚𝑚𝑚
ℎ

and integrate!

The functions                                              form a 
complete, orthogonal basis on the interval [0,ℎ]
for functions 𝑉𝑉(𝑦𝑦) that are zero at 𝑦𝑦 = 0,ℎ. 

(*) 

"Orthogonal" means:

Q: This is one equation in an infinite number of unknowns, 𝐴𝐴𝑛𝑛. How can we find them?

A: We can use orthogonality of the functions sin 𝑛𝑛𝑛𝑛𝑛𝑛/ℎ on the segment 0 < 𝑦𝑦 < ℎ!



Bound. Cond.:         𝑉𝑉 0,𝑦𝑦, 𝑧𝑧 = 𝑉𝑉 𝑦𝑦 = A1 sin 𝜋𝜋𝜋𝜋
ℎ

+ A2 sin 2𝜋𝜋𝜋𝜋
ℎ

+ A3 sin 3𝜋𝜋𝜋𝜋
ℎ

+ …

sin 𝑛𝑛𝑛𝑛𝑛𝑛: orthogonal and full set on 0,ℎ :

𝑉𝑉 𝑦𝑦 = A1 sin
𝜋𝜋𝜋𝜋
ℎ

+ A2 sin
2𝜋𝜋𝜋𝜋
ℎ

+ … + A𝑚𝑚 sin
𝑚𝑚𝜋𝜋𝜋𝜋
ℎ

+ …sin
𝑚𝑚𝜋𝜋𝜋𝜋
ℎ

sin
𝑚𝑚𝜋𝜋𝜋𝜋
ℎ�

0

ℎ
𝑑𝑑𝑑𝑑 �

0

ℎ
𝑑𝑑𝑑𝑑

1 if 𝑛𝑛 = 𝑚𝑚 and 
0 otherwise

𝑉𝑉 𝑦𝑦 = A1 sin
𝜋𝜋𝜋𝜋
ℎ

+ A2 sin
2𝜋𝜋𝜋𝜋
ℎ

+ … + A𝑚𝑚 sin
𝑚𝑚𝜋𝜋𝜋𝜋
ℎ

+ …sin
𝑚𝑚𝜋𝜋𝜋𝜋
ℎ�

0

ℎ
𝑑𝑑𝑑𝑑 ℎ

2

Fourier Trick - 2
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