Lecture 16

Separation of variables: Spherical and Cylindrical coordinates
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by a substitution V(z,y,2) = X(z) Y (y) Z(2)

with X(x), Y (y) and Z(z) being exponential / harmonic / const
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Fourier “trick”: — Am = sin V(y) dy
h Jo h

We use the fact that sin%y form a full and orthogonal basis set:
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Example 2: Open Channel

Now, as an example, take V(y) = V,. Then:

) h 1 — 4V,
Amzﬂ sinmwydy:2VO ORI —>An=—0 (n=1,3,5,...)
h Jo h mim nmw
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 Note that our solution satisfies the Laplace equation for any choice of V(y) = any A,;:

V2 — Z A, V2(e™5n% sin k,y) = Z Ay (k2 — E2)(e " sink,y) =0

n=1

* The choice of A4,, only fixes the boundary condition at x = 0.



For boundary condition V(y) = Vj: V(z,y,z) = Z

* [t is an infinite series, but
still it is our answer! By the
uniqueness theorem, we
should take it for what it is.

* We can plot a number of
terms corresponding to
partial sums to finite 1y,

* Due to e ™/ a3t large x only the
terms with large n will play role

e At small x, we will need to
account for terms with all n




Summary

Open Channel

V=

ForV(y) =V,




Laplace Operator and Uniqueness Theorem

Wait a minute...

00)
We represented potential as a linear combination: V(x,y,z) = z Aye " n¥sink,y

n=1

Q: How is this compatible with the Uniqueness Theorem? It tells us that there is
only one solutions to Laplace's equation, V2V = 0, and here we are representing
the potential as a sum of infinite number of functions e ~*n* sin k,,y, each of which
satisfies the Laplace equation!!

A: No worries, everything is fine. The Uniqueness Theorem only applies when
specific boundary conditions are given. By choosing appropriate coefficients, 4,,,
we are narrowing the solution down to that only form which is allowed by the
specific boundary conditions given to us.



Laplace Equation in Spherical Coordinates

Q: Given the Laplace equation with rectangular boundary conditions, we tried the separation:
V(z,y,2) = X(2) Y (y) Z(2)
Will this approach work in spherical coordinates? i.e. can we try the separation:

V(r,0,¢9) =R(r)6(0) P(¢)

A. Sure, we can try it
B. No, the angular components cannot be separated.

C. No, because the spherical form of Laplace’s equation has
cross terms (see, e.g., the inside cover of Griffiths)



Laplace Equation in Spherical Coordinates

Q: Given the Laplace equation with rectangular boundary conditions, we tried the separation:
V(z,y,2) = X(2) Y (y) Z(2)
Will this approach work in spherical coordinates? i.e. can we try the separation:

V(r,0,¢9) =R(r)6(0) P(¢)

* Applicable if the boundary conditions are specified as functions of 7, 8, and ¢.

‘Sure we can try it

. No, the angular components cannot be separated.

C. No, because the spherical form of Laplace’s equation has
cross terms (see, e.g., the inside cover of Griffiths)



Separation of Variables:
Spherical Coordinates

(Ch 3.3.2)

* |dea: Reducing one differential equation in partial
derivatives to a set of ordinary differential equations

* Types of boundary conditions and corresponding
solutions

 Completeness and orthogonality of separable
solutions

R(r)

0(

6

)
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Laplace Equation in Spherical Coordinates

The full Laplace equation in spherical coordinates is:
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If the problem has axial symmetry, the last term vanishes:

18 [ ,0V 1 8 oV
2 _ - v 277 3 — ) =
ViVIn6) = 55, (T ar) T 256 09 (Smeae> 0

So if we stick with axial symmetry, we can try a solution of the form:  V(r,0) = R(r) ©(0)
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Laplace Equation in Spherical Coordinates

The radial and angular term must be separately constant: a+tb o
1 d [ ,dR 1 d dO©
= —— — | =1l(l+1 inf— | = — =
17 Rar (r dfr) (C+1) O sin 6 b (Smgde) (t+1) = €

The choice [(l + 1) is a convention that simplifies later expressions. The radial equation
may be rewritten:

d’R dR
28 1 4 0n 8T 1111
r T + Td'r I+ 1R

with solutions: (verify by direct substitution)
R(r) = Art + Br~(+1)

This should remind you of the I/ (r) dependence for multipoles of order L.



Laplace Equation in Spherical Coordinates

The angular equation may be rewritten:

L d (sin9@> =—-l(l+1)0

sin @ df do
. _ . d dwd : d
Define w = cos @, then note: 0= 0 dw sdew
d doe
so that: a2 22| —
o [(1 w )dw] [(1+1)0

This is called Legendre’s differential equation, and the solutions are Legendre polynomials:

O(f) = P(cosf) = P(w) (1=0,1,2,...)



Pj(w) = Pj(cos )

Legendre Polynomials
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Adrien-Marie Legendre

Watercolor caricature by Julien-Léopold Boilly
(see § Mistaken portrait), the only known
portrait of Legendrel?!



Legendre Polynomials: Properties

+1
2
* Orthogonality: / P(w) Py (w) dw = 9N+ 1 o
~1

+1 T
note: / P (w) Py (w) dw = / Pi(cos ) Py(cos @) sinf db
0

—1

* Completeness:

Flw) = gal A (=250 [ P R @)

—1

for any F defined on [—1, +1].



Summary

For problems with azimuthal symmetry:  V(r,0,¢9) = R(r) 0(6)

with R,(r) = Ajrt + B;r—(+D)
(1=0,1,2,..)
©,(0) = P;(cos9)

Hence: V(r,0,p) = E(Alrl + Br~(* D) P (cos 0)

l=o

011/

+1 m
Orthogonality: / Py (w) Pr(w) dw Z/ Pi(cos ) Py(cosf) sinfdf = 2+ 1
0



Spherical Boundary Conditions

Q: Suppose we have a charged spherical shell of radius R with no charge inside and

a constant potential on the surface, so that:
V2V (r,6)

Which terms appear in the solution forr < R?

A. Many A; terms, but no B;’s
B. Many B; terms, but no 4;’s
C. Justan 4, term

D. Justa By term

E. None of the above

=0 (r < R)

Po(’w =1
V(R,0) = Vq Py (w) = w
Py (w) = %(3102 _ 1)

Note: V must be finite where p = 0.
= O

V() =3 (' + ﬁj Pi(cos6)

=0



Spherical Boundary Conditions

Q: Suppose we have a charged spherical shell of radius R with no charge inside and
a constant potential on the surface, so that:

P()(’w) =1
VV(r,0) =0 (r<R) V(R,0) =1V, Py (w) = w

| | | Py(w) = ~(3w? — 1)
Which terms appear in the solution forr < R? 2

Py(w) =  (5u° — 3uw)
V(0,0) = finite — B; =0 ete. ..
V(R,0) = const. forany § — [ =0 —V(r,0) =V, (ie. Ag=Vy, r<R)
A. Many A; terms, but no B;’s
Many B; terms, but no A;’s
@Just an 4, term Note: V must be finite where p = 0.
D. Just a By term - B,
0 V(T,H):Z(Al'r + l+1)Pl(COSQ)
E. None of the above —o



Spherical Boundary Conditions

Q: Suppose we have a charged spherical shell of radius R with no charge inside and

a constant potential on the surface, so that:
V2V (r,6)

Which terms appear in the solution forr > R?

A. Many A; terms, but no B;’s
B. Many B; terms, but no 4;’s
C. Justan 4, term

D. Justa By term

E. None of the above

=0 (r < R)

Po(’w =1
V(R,0) = Vq Py (w) = w
Py (w) = %(3102 _ 1)

Note: V must be finite where p = 0.
[

o0 /4 B,
Vr,0) = Z (Al'r + l+1) P;(cos 0)
1=0



Spherical Boundary Conditions

Q: Suppose we have a charged spherical shell of radius R with no charge inside and
a constant potential on the surface, so that:

Po(’w) =1
V2V(r,0) =0 (r<R) V(R,0) =V, Pl(w)=w = cosO
_ L2
Which terms appear in the solution forr > R? FPolw) = 2(3w 1)
Py(w) = =(50° — 3uw)
(W) = - _
V(ir—o00,0) -0 - A; =0 2
R etc...
V(R,0) =const. forany § — =0 — V(r,0) = VO? (i.e. B = VoR, 7> R)
A. Many A; terms, but no B;’s
B. Many B; terms, but no 4;’s
C. Justan 4, term Note: V must be finite where p = 0.
taBt i ”’o BN
ust a erm
0 Vir,0) = Z (A rt+ ﬁ) P;(cos 0)
E. None of the above —o

Po-/



Example: Grounded Sphere in Uniform Field

A grounded, metal sphere of radius a is placed in a uniform external electric field, E;.

Find the potential everywhere outside the sphere.

oo

V(r,0)=>_ (Al rl + fﬂ) P;(cos 6)

[=0

* Write down the boundary conditions for V(r,0) atr = a, .

* Solve for 4;’s and B;’s.

V(a,8) =0

(r—)oo)?

E(r,0) "5\ Bz — V(r,0)

—VV = E,Z > V(r—>0,0)=—-Eyz = =—Ey rcos®




Series solution:

At large r:

Atr = a:

So:

Example: Grounded Sphere in Uniform Field

®.

V(r,g) =>_ (Al'r +

[=0

V(r,0) =—FEyz

B;
l+1) Pi(cos )

= —Fyr cosf = —FEyr Pi(cos8)

— A :—anndAl:O(l;«él)

AlaCOSO—I—Z
TS =0

—~ Aja+Bi/a>=0and B =0 (I #1)

— By

al+1

:EO CL3

Py(cosf) =0

- 6 (coso)

a3
— V(r,0) = —Egrcost (1 — —)

r3
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Example: Dielectric Sphere in Uniform Field

Now let’s replace the grounded, metal sphere of radius a with a neutral, linear, dielectric
sphere, in a uniform external electric field, E,. Find the potential everywhere outside the

sphere.

(a) polarization

Q: Do we need to find the potential inside the sphere, too? 5 1

A. No. We are asked to find it outside!!
B. Yes. We will have to!



Example: Dielectric Sphere in Uniform Field

Now let’s replace the grounded, metal sphere of radius a with a neutral, linear, dielectric
sphere, in a uniform external electric field, E,. Find the potential everywhere outside the

sphere.

* We will have to find it inside the sphere, too. Without it, we cannot figure out what
the boundary condition on the surface of the sphere will be. We understand that
there will be some bound charge — but what is our boundary condition V(a, 8),
which we need to specify to make Laplace’s equation meaningful?

* What we can dois to find V;,,(7,0) and V,,,; (7, 8) (each of these two
regions does not contain charges => Laplace equation is valid), and then

“glue” the two solution at r = a.

(a) polarization

Q: Do we need to find the potential inside the sphere, too? =1

A. No. We are asked to find it outside!!

Yes. We will have to!



Example: Dielectric Sphere in Uniform Field

Now let’s replace the grounded, metal sphere of radius a with a neutral, linear, dielectric
sphere, in a uniform external electric field, E,. Find the potential everywhere outside the

sphere.

1. Write down the boundary conditions for IV atr = 0, a and co.

2. Write down boundary conditions at r = a for the field (D or E?).
Rewrite them for V.

3. Write down the form of the solution in spherical coordinates.

D«

4. Determine the coefficients of the solution by applying the ,=|

boundary conditions. \ |/

(a) polarization

Note: unlike the previous case with the conductor, we will need ]
additional boundary conditions at 7 = a because E is not zero
inside the dielectric.



Recap: Boundary Conditions in Dielectrics:

You have a straight boundary between two linear dielectric materials with
permittivities €; and €,. There are no free charges in the region considered.

Which of E, E;, D and D, are continuous across the boundary (assume no free charges)?

VXE=0 - AE; = 0 (E, is continuous across the boundary)

VXD:/:O —)D":/:O

A. E" and D" n
B. E; andD, V-E = Pe T PF not very useful (og = 7?)
@ E" and DJ_ EO
D" andEl VD:pF _)ADJ_:O-F

E. Some other combination



Example: Dielectric Sphere in Uniform Field

(a) polarization (b) Electric field due to surface charge

L D, = :

V(r,0)=>" (Al rt + %) Py(cos 0)

B —

2V

We can write down 4 boundary conditions: ¢ - AN
1. V(r = 0,0) is finite, Q - =

. .  WRAA ?- = 8 Ei,o‘
2. V(a,0) is continuous, n
3. V(r,0) > —Eyz = —E,rcos@ atlarger, i o

. . . —DOVA- = E~ b‘mﬁ
4. Finally, a condition on the field at r = a: AD, = op =
dVi.(a, 0O av. ,0
- cEn(@,0) = €obou(@6) - —en ) o g Tow 00

nr ar 0 or



Example: Dielectric Sphere in Uniform Field

>0 4 ont
Outside: V. —FE v B P, 0

utside: out — 0T CosSU + g Pl l(COS ) .

czo V 00 i Z(A T +ﬁ> .Pl(COSO)
Inside: Vin — ZAl frl .Pl(COS 9) [=0

[=0

Potential continuous atr = a:

ou+ au"-
B
A0+A1(LC(}6/9—|— :—Egacg§9+—0—|—— 9494— [=0
D field continuous at r = a: =1
. o"'{ 2B0u‘(~
e By 1
_er(Al(;)S’g—F.. Eog)S'HI—F——FFCO + ...

Match up terms [ by [ : 2 equations and 2 unknowns (4;, B;) per L.



Example: Dielectric Sphere in Uniform Field

B B
[=0: Ajp=—and — =0 — Ay=By=0
a a

[ >1,canshow: A; =B; =0

[ = 1, left as an exercise. Result: 3
Vip = — Eqorcosb
€r + 2
Err - 1 CL3
Vour = — (1 — E 0
out ( €r+27“3> o 7T COS

E is uniform along z inside, and approaches Ej, at large .



Laplace Equation in Cylindrical Coordinates

The full Laplace equation in cylindrical coordinates is:

10 ( 0V 1 9°V 9%V
2 _ - = - —
vv_838(888)+828¢2+8z2 0

If the problem is translation invariant in z, the last term vanishes:

10 [ oV 1 9%V
oy, _ 29 .9V v
v V_s8s (883>+82 0¢?

=0
Try a solution of the form: V' (s,¢) = S(s) ®(¢)

2 2
S gry = 54 (95) LA
53" V= Sds (Sds>+é[>dqb2 =0

\ /
f(s)+g(¢) =0



Laplace Equation in Cylindrical Coordinates

The radial and angular term must be separately constant:

sd ([ dSY _ o, 1de o,
Sds \"ds )~ &dpz

The choice n? is a convention. The radial equation may be rewritten:

d?s dS
2470 o 2
S 72 —I—Sds n<S

with solutions: (verify by direct substitution)

S(s) =Aps"+ Bps™ " (n>0) and Aglns+ By (n =0)



Laplace Equation in Cylindrical Coordinates

The angular equation may be rewritten:

i
2

— —nd
with solutions:

®(p) = Cre™ + D,e "  C,cosne+ D, sinne
so that:

V(s,¢) = Aglns + By + Z(Ansn + Bps ")(Cy, cosng + D, sinne)

n=1

Reminder: this solutions assumes I/ is independent of z.

Coefficients are set by boundary conditions. Examples in HW #5.



Separation of Variables:

You should be able to...

* Recognize where separation of variables (SOV) solves Laplace’s equation and the
potential in a region given the potential or charge distribution at the boundary and
chose a coordinate system.

* Apply the physics and symmetry of a problem to state appropriate boundary conditions.

* Outline the general steps necessary for solving a problem using separation of variables.
State what the basis sets are for SOV in Cartesian, spherical, and cylindrical coordinates
(i.e., exponentials, sin/cos, and Legendre polynomials.)

* Solve for the coefficients in the series solution for V, by expanding the potential or
charge distribution in terms of special functions and using completeness/orthogonality
of the special functions, and express the final answer as a sum over these functions and
coefficients.
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