
Lecture 16

Separation of variables: Spherical and Cylindrical coordinates



𝑘𝑘𝑛𝑛 =
𝑛𝑛𝑛𝑛
ℎ

with𝑉𝑉 𝑥𝑥,𝑦𝑦, 𝑧𝑧 = �
𝑛𝑛=1

∞

𝐴𝐴𝑛𝑛𝑒𝑒−𝑘𝑘𝑛𝑛𝑥𝑥 sin𝑘𝑘𝑛𝑛𝑦𝑦

Last Time:
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with 𝑋𝑋 𝑥𝑥 ,𝑌𝑌(𝑦𝑦) and 𝑍𝑍(𝑧𝑧) being exponential / harmonic / const 

Solving:

by a substitution

Fourier “trick”:
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We use the fact that sin 𝑛𝑛𝑛𝑛
ℎ
𝑦𝑦 form a full and orthogonal basis set:



Example 2: Open Channel

Now, as an example, take 𝑉𝑉(𝑦𝑦) = 𝑉𝑉0.  Then:

• Note that our solution satisfies the Laplace equation for any choice of 𝑉𝑉 𝑦𝑦 ⇒ any 𝐴𝐴𝑛𝑛:

• The choice of 𝐴𝐴𝑛𝑛 only fixes the boundary condition at 𝑥𝑥 = 0.



• It is an infinite series, but 
still it is our answer! By the 
uniqueness theorem, we 
should take it for what it is.

For boundary condition 𝑉𝑉(𝑦𝑦) = 𝑉𝑉0:

• Due to 𝑒𝑒−𝑛𝑛𝑛𝑛𝑛𝑛/ℎ at large 𝑥𝑥 only the 
terms with large 𝑛𝑛 will play role

• We can plot a number of 
terms corresponding to 
partial sums to finite 𝑛𝑛max

• At small 𝑥𝑥, we will need to 
account for terms with all 𝑛𝑛



Open Channel: Summary

h

For 𝑉𝑉(𝑦𝑦) = 𝑉𝑉0:



Q: How is this compatible with the Uniqueness Theorem? It tells us that there is 
only one solutions to Laplace's equation,                  , and here we are representing 
the potential as a sum of infinite number of functions 𝑒𝑒−𝑘𝑘𝑛𝑛𝑥𝑥 sin𝑘𝑘𝑛𝑛𝑦𝑦, each of which
satisfies the Laplace equation!!  

Laplace Operator and Uniqueness Theorem

𝑉𝑉 𝑥𝑥,𝑦𝑦, 𝑧𝑧 = �
𝑛𝑛=1

∞

𝐴𝐴𝑛𝑛𝑒𝑒−𝑘𝑘𝑛𝑛𝑥𝑥 sin𝑘𝑘𝑛𝑛𝑦𝑦We represented potential as a linear combination:

Wait a minute…

A: No worries, everything is fine. The Uniqueness Theorem only applies when 
specific boundary conditions are given. By choosing appropriate coefficients, 𝐴𝐴𝑛𝑛,
we are narrowing the solution down to that only form which is allowed by the 
specific boundary conditions given to us.



A. Sure, we can try it
B. No, the angular components cannot be separated.
C. No, because the spherical form of Laplace’s equation has 

cross terms (see, e.g., the inside cover of Griffiths)

Q: Given the Laplace equation with rectangular boundary conditions, we tried the separation:

Laplace Equation in Spherical Coordinates

Will this approach work in spherical coordinates? i.e. can we try the separation:

𝑉𝑉 𝑟𝑟,𝜃𝜃,𝜑𝜑 = 𝑅𝑅 𝑟𝑟 Θ 𝜃𝜃 Φ(𝜙𝜙)



A. Sure, we can try it
B. No, the angular components cannot be separated.
C. No, because the spherical form of Laplace’s equation has 

cross terms (see, e.g., the inside cover of Griffiths)

Q: Given the Laplace equation with rectangular boundary conditions, we tried the separation:

Laplace Equation in Spherical Coordinates

Will this approach work in spherical coordinates? i.e. can we try the separation:

• Applicable if the boundary conditions are specified as functions of 𝑟𝑟,𝜃𝜃, and 𝜑𝜑.

𝑉𝑉 𝑟𝑟,𝜃𝜃,𝜑𝜑 = 𝑅𝑅 𝑟𝑟 Θ 𝜃𝜃 Φ(𝜙𝜙)



Separation of Variables: 
Spherical Coordinates

(Ch 3.3.2)

• Idea: Reducing one differential equation in partial 
derivatives to a set of ordinary differential equations

• Types of boundary conditions and corresponding 
solutions

• Completeness and orthogonality of separable 
solutions

𝑅𝑅(𝑟𝑟)

Θ(𝜃𝜃)

Φ(𝜙𝜙)



If the problem has axial symmetry, the last term vanishes:

Laplace Equation in Spherical Coordinates

The full Laplace equation in spherical coordinates is:

So if we stick with axial symmetry, we can try a solution of the form:



The radial and angular term must be separately constant:

This should remind you of the 𝑉𝑉(𝐫𝐫) dependence for multipoles of order 𝑙𝑙.

Laplace Equation in Spherical Coordinates

The choice 𝑙𝑙(𝑙𝑙 + 1) is a convention that simplifies later expressions.  The radial equation 
may be rewritten:

with solutions: (verify by direct substitution)



The angular equation may be rewritten:

Laplace Equation in Spherical Coordinates

Define 𝑤𝑤 = cos 𝜃𝜃, then note:

so that:

This is called Legendre’s differential equation, and the solutions are Legendre polynomials:



Legendre Polynomials



for any 𝐹𝐹 defined on [−1, +1].

Legendre Polynomials: Properties

• Orthogonality:

note:

• Completeness:



Summary

For problems with azimuthal symmetry: 𝑉𝑉 𝑟𝑟,𝜃𝜃,𝜑𝜑 = 𝑅𝑅 𝑟𝑟 Θ 𝜃𝜃

with

Orthogonality: 

𝑅𝑅𝑙𝑙 𝑟𝑟 = 𝐴𝐴𝑙𝑙𝑟𝑟𝑙𝑙 + 𝐵𝐵𝑙𝑙𝑟𝑟−(𝑙𝑙+1)

Θ𝑙𝑙 𝜃𝜃 = 𝑃𝑃𝑙𝑙(cos 𝜃𝜃)

𝑉𝑉 𝑟𝑟,𝜃𝜃,𝜑𝜑 = �
𝑙𝑙

𝐴𝐴𝑙𝑙𝑟𝑟𝑙𝑙 + 𝐵𝐵𝑙𝑙𝑟𝑟−(𝑙𝑙+1) 𝑃𝑃𝑙𝑙(cos 𝜃𝜃)Hence:



Q: Suppose we have a charged spherical shell of radius 𝑅𝑅 with no charge inside and 
a constant potential on the surface, so that:

A. Many 𝐴𝐴𝑙𝑙 terms, but no 𝐵𝐵𝑙𝑙’s
B. Many 𝐵𝐵𝑙𝑙 terms, but no 𝐴𝐴𝑙𝑙’s
C. Just an 𝐴𝐴0 term
D. Just a 𝐵𝐵0 term
E. None of the above

Note: 𝑉𝑉 must be finite where 𝜌𝜌 = 0.

Spherical Boundary Conditions

Which terms appear in the solution for 𝑟𝑟 < 𝑅𝑅?



Q: Suppose we have a charged spherical shell of radius 𝑅𝑅 with no charge inside and 
a constant potential on the surface, so that:

A. Many 𝐴𝐴𝑙𝑙 terms, but no 𝐵𝐵𝑙𝑙’s
B. Many 𝐵𝐵𝑙𝑙 terms, but no 𝐴𝐴𝑙𝑙’s
C. Just an 𝐴𝐴0 term
D. Just a 𝐵𝐵0 term
E. None of the above

Note: 𝑉𝑉 must be finite where 𝜌𝜌 = 0.

Spherical Boundary Conditions

Which terms appear in the solution for 𝑟𝑟 < 𝑅𝑅?



Q: Suppose we have a charged spherical shell of radius 𝑅𝑅 with no charge inside and 
a constant potential on the surface, so that:

A. Many 𝐴𝐴𝑙𝑙 terms, but no 𝐵𝐵𝑙𝑙’s
B. Many 𝐵𝐵𝑙𝑙 terms, but no 𝐴𝐴𝑙𝑙’s
C. Just an 𝐴𝐴0 term
D. Just a 𝐵𝐵0 term
E. None of the above

Note: 𝑉𝑉 must be finite where 𝜌𝜌 = 0.

Spherical Boundary Conditions

Which terms appear in the solution for 𝑟𝑟 > 𝑅𝑅?



Q: Suppose we have a charged spherical shell of radius 𝑅𝑅 with no charge inside and 
a constant potential on the surface, so that:

A. Many 𝐴𝐴𝑙𝑙 terms, but no 𝐵𝐵𝑙𝑙’s
B. Many 𝐵𝐵𝑙𝑙 terms, but no 𝐴𝐴𝑙𝑙’s
C. Just an 𝐴𝐴0 term
D. Just a 𝐵𝐵0 term
E. None of the above

Note: 𝑉𝑉 must be finite where 𝜌𝜌 = 0.

Spherical Boundary Conditions

Which terms appear in the solution for 𝑟𝑟 > 𝑅𝑅?



A grounded, metal sphere of radius 𝑎𝑎 is placed in a uniform external electric field, 𝐄𝐄0.
Find the potential everywhere outside the sphere.

a

z

Example: Grounded Sphere in Uniform Field

• Write down the boundary conditions for 𝑉𝑉(𝑟𝑟,𝜃𝜃) at 𝑟𝑟 = 𝑎𝑎,∞.

• Solve for 𝐴𝐴𝑙𝑙’s and 𝐵𝐵𝑙𝑙’s.

−∇𝑉𝑉 = 𝐸𝐸0�𝐳𝐳 → 𝑉𝑉 𝑟𝑟 → ∞,𝜃𝜃 = −𝐸𝐸0𝑧𝑧

𝑉𝑉 𝑎𝑎,𝜃𝜃 = 0



a

z

Example: Grounded Sphere in Uniform Field

Series solution:

At large 𝑟𝑟:

At 𝑟𝑟 = 𝑎𝑎:

So:



Example: Dielectric Sphere in Uniform Field

Now let’s replace the grounded, metal sphere of radius 𝑎𝑎 with a neutral, linear, dielectric 
sphere, in a uniform external electric field, 𝐸𝐸0. Find the potential everywhere outside the 
sphere.

Q: Do we need to find the potential inside the sphere, too? 

A. No. We are asked to find it outside!!
B. Yes. We will have to!



Example: Dielectric Sphere in Uniform Field

Now let’s replace the grounded, metal sphere of radius 𝑎𝑎 with a neutral, linear, dielectric 
sphere, in a uniform external electric field, 𝐸𝐸0. Find the potential everywhere outside the 
sphere.

Q: Do we need to find the potential inside the sphere, too? 

A. No. We are asked to find it outside!!
B. Yes. We will have to!

• We will have to find it inside the sphere, too. Without it, we cannot figure out what 
the boundary condition on the surface of the sphere will be. We understand that 
there will be some bound charge – but what is our boundary condition 𝑉𝑉 𝑎𝑎,𝜃𝜃 , 
which we need to specify to make Laplace’s equation meaningful?

• What we can do is to find 𝑉𝑉𝑖𝑖𝑖𝑖(𝑟𝑟,𝜃𝜃) and 𝑉𝑉𝑜𝑜𝑜𝑜𝑜𝑜(𝑟𝑟,𝜃𝜃) (each of these two 
regions does not contain charges => Laplace equation is valid), and then 
“glue” the two solution at 𝑟𝑟 = 𝑎𝑎.



Example: Dielectric Sphere in Uniform Field

1. Write down the boundary conditions for 𝑉𝑉 at 𝑟𝑟 = 0,𝑎𝑎 and ∞.
2. Write down boundary conditions at 𝑟𝑟 = 𝑎𝑎 for the field (𝐃𝐃 or 𝐄𝐄?). 

Rewrite them for 𝑉𝑉.
3. Write down the form of the solution in spherical coordinates.
4. Determine the coefficients of the solution by applying the 

boundary conditions.

Now let’s replace the grounded, metal sphere of radius 𝑎𝑎 with a neutral, linear, dielectric 
sphere, in a uniform external electric field, 𝐸𝐸0. Find the potential everywhere outside the 
sphere.

Note: unlike the previous case with the conductor, we will need 
additional boundary conditions at 𝑟𝑟 = 𝑎𝑎 because 𝐄𝐄 is not zero 
inside the dielectric.



You have a straight boundary between two linear dielectric materials with             
permittivities 𝜖𝜖1 and 𝜖𝜖2. There are no free charges in the region considered.

Which of 𝐄𝐄∥, 𝐄𝐄⊥,𝐃𝐃∥ and 𝐃𝐃⊥ are continuous across the boundary (assume no free charges)? 

A. 𝐄𝐄∥ and 𝐃𝐃∥
B. 𝐄𝐄⊥ and 𝐃𝐃⊥
C. 𝐄𝐄∥ and 𝐃𝐃⊥
D. 𝐃𝐃∥ and 𝐄𝐄⊥
E. Some other combination

∇ × 𝐄𝐄 = 0 → Δ𝐸𝐸∥ = 0 (𝐸𝐸∥ is continuous across the boundary)

Recap: Boundary Conditions in Dielectrics:

∇ × 𝐃𝐃 ≠ 0 → 𝐷𝐷∥ ≠ 0

∇ ⋅ 𝐄𝐄 =
𝜌𝜌𝐵𝐵 + 𝜌𝜌𝐹𝐹
𝜖𝜖0

→ not very useful (𝜎𝜎𝐵𝐵 = ?)

∇ ⋅ 𝐃𝐃 = 𝜌𝜌𝐹𝐹 → Δ𝐷𝐷⊥ = 𝜎𝜎𝐹𝐹



We can write down 4 boundary conditions:

Example: Dielectric Sphere in Uniform Field

1. 𝑉𝑉(𝑟𝑟 = 0,𝜃𝜃) is finite,
2. 𝑉𝑉(𝑎𝑎,𝜃𝜃) is continuous,
3. 𝑉𝑉 𝑟𝑟,𝜃𝜃 → −𝐸𝐸0𝑧𝑧 = −𝐸𝐸0𝑟𝑟 cos 𝜃𝜃 at large 𝑟𝑟,
4. Finally, a condition on the field at 𝑟𝑟 = 𝑎𝑎: Δ𝐷𝐷⊥ = 𝜎𝜎𝐹𝐹 = 0

→ 𝜖𝜖𝐸𝐸in(𝑎𝑎,𝜃𝜃) = 𝜖𝜖0𝐸𝐸out(𝑎𝑎,𝜃𝜃) → −𝜖𝜖
𝜕𝜕𝑉𝑉in(𝑎𝑎,𝜃𝜃)

𝜕𝜕𝜕𝜕
= −𝜖𝜖0

𝜕𝜕𝑉𝑉out (𝑎𝑎,𝜃𝜃)
𝜕𝜕𝜕𝜕



Outside:

Example: Dielectric Sphere in Uniform Field

Inside:

Potential continuous at 𝑟𝑟 = 𝑎𝑎:

𝐃𝐃 field continuous at 𝑟𝑟 = 𝑎𝑎:

Match up terms 𝑙𝑙 by 𝑙𝑙 :  2 equations and 2 unknowns (𝐴𝐴𝑙𝑙 ,𝐵𝐵𝑙𝑙) per 𝑙𝑙.

𝑙𝑙 = 0

𝑙𝑙 = 1



𝑙𝑙 = 0:

𝐄𝐄 is uniform along 𝑧𝑧 inside, and approaches 𝐸𝐸0 at large 𝑟𝑟.

Example: Dielectric Sphere in Uniform Field

𝑙𝑙 > 1, can show:

𝑙𝑙 = 1, left as an exercise.  Result:



The full Laplace equation in cylindrical coordinates is:

Laplace Equation in Cylindrical Coordinates

If the problem is translation invariant in 𝑧𝑧, the last term vanishes:

Try a solution of the form:



The radial and angular term must be separately constant:

Laplace Equation in Cylindrical Coordinates

The choice 𝑛𝑛2 is a convention.  The radial equation may be rewritten:

with solutions: (verify by direct substitution)



The angular equation may be rewritten:

Laplace Equation in Cylindrical Coordinates

with solutions:

Reminder: this solutions assumes 𝑉𝑉 is independent of 𝑧𝑧.

Coefficients are set by boundary conditions.  Examples in HW #5.

so that:



• Recognize where separation of variables (SOV) solves Laplace’s equation and the 
potential in a region given the potential or charge distribution at the boundary and 
chose a coordinate system.

• Apply the physics and symmetry of a problem to state appropriate boundary conditions.

• Outline the general steps necessary for solving a problem using separation of variables.  
State what the basis sets are for SOV in Cartesian, spherical, and cylindrical coordinates 
(i.e., exponentials, sin/cos, and Legendre polynomials.)

• Solve for the coefficients in the series solution for 𝑉𝑉, by expanding the potential or 
charge distribution in terms of special functions and using completeness/orthogonality 
of the special functions, and express the final answer as a sum over these functions and 
coefficients.

Separation of Variables: 

You should be able to…
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