Lecture 18

Ampere’s law. Vector potential. Coulomb gauge.



Force on a wire

We have two very long, parallel wires carrying a current I; and I,, respectively.

Q: What is the direction of the force on the wire with I,?
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Force on a wire

We have two very long, parallel wires carrying a current I; and I,, respectively.

Q: What is the direction of the force on the wire with I,?

Two-step logic:

* B at location of wire 2 is due to I; =>B = B into the page
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A. up _ Bl
B. down
C. right
|eft “Like currents attract,
E. into the page Unlike currents repel” Cource of Batthe  “Test” current in

location of I, external B field



Ampere’s Law

(Ch 5.3)

current

e Ampere’slaw & V X B

* Flux of the current & choice of the surface
V-B=0

* B field of linear and toroidal solenoids




Ampere’s Law: Integral form

Ampere’s [aw is the magnetic analogue of Gauss’ law. It relates
an integral of B to the current “enclosed” by the integral.

po I,

For the field of the wire, B = 0 s P note that the line integral
along a field line is: e
I [ sd <
]g B .4l = Hot 2 ol
C 27T 0 S <
s 3 Tenc

More generally, Ampere’s law states that:

f B-dl = /JJOIenC
C

where C is any contour and I, is the current flux through C.



Another Maxwell equation

We can use another fundamental theorem of calculus to express

Ampere’s law, j{ B - dl = pglenc, in differential form.
C

Apply Stokes' theorem to the left-hand side: f B.dl = / (VxB)-da
C A

——

Express the right-hand side in terms of current density: polenec = Ho / J - da
A

——

Now assert that A is arbitrary, so that the integrands may be equated:

VXBZ,LLQJ

This is the third Maxwell equation, for magnetostatics.



Gauss’s law vs Ampere’s law

Note the parallels between electrostatics, with Gauss’ law:

v E=F & %E-da:qenc
A

€0 €0
] ] Ienc
and magnetostatics, with Ampere’s law:
. along C
VxB=pud & B dl = pglene Sign
C convention:

* The former relates the net flux of E through a closed surface to the charge
enclosed by that surface.

* The latter relates the circulation of B around a path to the flux of current
though any surface bounded by that path.



Flux of a current & Amperian loops — 2

Q: What is f{ B -dl around the purple dashed Amperian loop?
C
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Flux of a current & Amperian loops — 2

Q: What is }{ B -dl around the purple dashed Amperian loop?
C P

o
/! ~ /
[ ] \ I
I, is out of the page, A %‘ ™M
\ ] \
/

I; is into the page at an angle 6. \ ) \\l K
; / & -
IBHC
I+ |1
e Ho(ll 1) along C * By our sign convention, both
— Sign . .
/B-/#o( I, I1]) i currents are positive for this dl.

C. uo(|l| + |11]| cosB)

: I, —|I{| cos @
/D/MO( 2 1 ) e “...current through any surface bounded
E. Something else by that path” — angle does not matter!




The Maxwell equations for statics

Here is what we have to date:

V- -E=— VE=0

,p VXBZLLQJ

There is still one missing, which we can “derive” from the Biot-Savart law.



Yet another Maxwell equation - 1

Biot-Savart law (analogue of Coulomb's law) B(r) — po [ J(') x(r—r') 5
for the B field due to a current density: T v r —r/|3 4
Take the divergence of both sides (r — 1)
with respecttor: / V- dr’
' |r — /|3
Use the product rule V- (AxB)=B-(VxA)—A-(V xB)

from vector calculus:

o

v-B(r):ﬂ/V[ ror .(v?xuii(r'))—J(r')- (VX ror )] ar’

47 r —r/|3 r —r/|3

to write:

B-(VxA) A - (V xB)



Yet another Maxwell equation - 2

V-B(r)=1°

/ r—r
v Llr—1r'3

(V% 3@) - 36) - (v x

r—r

TP

7)) o

The first term is zero because the derivative is with respect to r:

The second term is also zero (left as an
exercise - try Cartesian coordinates):

So that:

Ve x J(r)
r—r’
V. X
r—1r/|3

This is a statement that there are no magnetic monopoles.

=0

=0



The Maxwell equations for statics

V-Ezﬁ VXE=0
€0

Note the independent nature of E and B. Strictly speaking, it’s a bit fallacious.

Later, we’ll couple the two curl equations on the right through time-dependent
induction to connect E and B and complete the system of equations.



Solenoid — 1

Q: A solenoid is a wire wound into N loops of radius R formed into a tight helix of total
length L. If we model this as a cylindrical tube of the same size, what is the relationship

between the wire’s current, I, and the equivalent surface current density, K?
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Solenoid — 1

Q: A solenoid is a wire wound into N loops of radius R formed into a tight helix of total
length L. If we model this as a cylindrical tube of the same size, what is the relationship
between the wire’s current, I, and the equivalent surface current density, K?

Recall: 1= fK dl,

—
I,y = IN = KL f =
A K=1 R o 5
d— P | N turns Koldl =L
B. K=IN S g g
e o
C. K=1/L B T8, :
!

1( = IN/L

E. None of the above



Solenoid — 2

Q: A very long solenoid with surface current density, K, is oriented along the z axis.
Which component or components B(r) can have inside the solenoid?

B(s)Z —

B(s) ¢ —

A
B. B(s)S
C
D

. Both AandB _

E. Allthe three: A,BandC




Solenoid — 2

Q: A very long solenoid with surface current density, K, is oriented along the z axis.

Which component or components B(r) can have inside the solenoid?

* Assume B exists and points, say, outwards.

* Then, on one hand, reversing the direction of I flips the
direction of B (right hand rule) => it would change B, to inward.

* On the other hand, reversing the direction of I corresponds to
turning the solenoid upside down => B, should remain outward.

e B(s)z . Contradiction! There is no radial component.

B. B(s)S
C. B(s)o |

* No angular component: Integrating By overa
D. Both AandB concentric loop gives:

E. Allthe three: A,BandC $B-dl = By 2ms = polenc =0 = By =0

----------
----------




Solenoid - 3

Q: Apply Ampere's law to the rectangular Amperian loop, as shown.

What does this tell you about B, the z component of the B field outside the solenoid?

Ampere'slaw: V xB = pyJ & j{ B - dl = polenc
C
L
N
S——
S—
K
S——
A. B, is constant outside
S——
B. B, is not constant outside NG
C. B, iszero outside s
D. Not enough information

r—— "1

__ .



Solenoid - 3

Q: Apply Ampere's law to the rectangular Amperian loop, as shown.

What does this tell you about B, the z component of the B field outside the solenoid?

Ampere'slaw: V xB=pgJ j{ B - dl = polenc
C

BHL — BYL = meTewel =0

0
Becsr) = Bg (Qg)

B, is constant outside f{ B-dl=0 — B, = const.
C

B. B, is not constant outside

@ B, is zero outside if we want it to be zero far away from solenoid

-
_
j%u =V
I ~

3

o

>

D. Not enough information https://pubs.aip.org/aapt/ajp/article/69/7/751/1043277/Field-just-outside-a-long-solenoid



https://pubs.aip.org/aapt/ajp/article/69/7/751/1043277/Field-just-outside-a-long-solenoid

Solenoid — 4

Apply Ampere's law to the rectangular Amperian loop, as shown.

Find B field inside the solenoid, assuming it is zero outside.

fB -dl = B,(s)L
C

Holenc = oKL = poNI = poniy/

> B,(X) = uonl where n is the number
’ of turns per unit length.

Note that B, does NOT depend on s => it’s a uniform field.



Solenoid-toroid — 1

Q: Consider a toroid, which is like a finite solenoid connected end to end.

In which direction do you expect the B field to point along the dashed purple curve?

Assume cylindrical coordinates with z the symmetry axis of the toroid.

A. +7
B. £S
C. ¢
D. A mix of the above




Solenoid-toroid — 1

Q: Consider a toroid, which is like a finite solenoid connected end to end.

In which direction do you expect the B field to point along the dashed purple curve?

Assume cylindrical coordinates with z the symmetry axis of the toroid.

Formal proof:
Example 5.7 in Griffiths

A. 47
B. £S
O
D. A mix of the above




Solenoid-toroid — 2

Q: Use the Amperian loop shown in blue to find the B field inside the toroid.
Let z point out of the page, and @ increase counterclockwise.

jf B - dl = 1o Tonc B, 2 = poNT
C

B =

polNIT
27T L

Note that one could also use the Biot-Savart law:

po [ K(r')da' x (r — ')
CAm J, r — /|3

where K = NI, but the integral would be complicated.



Magnetostatics: Summary

You should be able to:
* Describe the trajectory of a charged particle in a given magnetic field.

* Explain why the magnetic field does no work using concepts and mathematics
from this course.

* Explain, in words, what the charge continuity equation means.

 Calculate the current I, K and J in terms of the velocity of the particles and
know the units for each.

 State when the Biot-Savart Law applies (magnetostatics; steady currents).

* Compare similarities and differences between the Biot-Savart law and
Coulomb’s law.



Magnetic Potential

(Ch 5.4.1-2)

B=VXA

* Magnetic vector potential, A
* Coulomb gauge
* Computing magnetic potential in simple geometries



Magnetic potential

Q: One of Maxwell’s equations made it useful for us to define a scalar potential V/:

VXE=0 < E=-VV

Similarly, another one of Maxwell’s equations makes it useful for us to define a vector
“magnetic” potential, A. Which one?

A V.E=PL

€0
B. VXE=0
C. V-B=0

D. VXB=pupJ



Magnetic potential

Q: One of Maxwell’s equations made it useful for us to define a scalar potential V/:

HW-1: VX (Vf)=0 - VXE=0 & E=-VV

Similarly, another one of Maxwell’s equations makes it useful for us to define a vector
“magnetic” potential, A. Which one?

A V.E=PL HW-1: V- (VXA)=0 -
€
’ We can define vector potential for magnetic field, A:
B. VXE=0
B=VxA
©v-B=o

V- (VXA =0
D. VXB=pupJ



“Gauge” freedom -1

The electric potential is only defined up to a constant. ThatisV = V + ¢, where ¢
is a constant, leaves the electric field, E, unchanged, because E is a derivative of V.

This is an example of a “gauge” degree of freedom in physics. There are many
examples in field theory where the physical fields are defined as derivatives of
potential fields.

The vector potential possesses a similar gauge freedom. We can add any curl-free
vector field, a, to A and leave B unchanged:

A'=A+a (suchthatV X a = 0)
0
Then: B'=VX(A+a)=VXxA+VXa =B --nothingchanges!



“Gauge” freedom — 2

Important: it is always possible to chose a in such a way that

V- A'=0 | (Coulomb gauge) A=A+a with Vxa=0

* Specifying both divergence and curl of A defines it uniquely
* Purpose: Coulomb gauge simplifies Maxwell’s equation

HW-1: VX (Vf)=0, and Vxa=0- a = —Viy, with Y = some scalar function
The “gauge transformation” of A - A’ then becomes: A’ =A —Vy
Now, we can find ¥ such that it will eliminate V - A". Note that:

V-A=V-A-V-(VWY) =V-A-VZx

Pick 1 such that: V2 = V- A (we can find such a ¥ by solving Poisson equation with “old” A)



Interpretation of A?

Unlike V, which we interpret as potential energy per unit charge,
there is no similar interpretation of A.

Since the Lorentz force does no work on a test charge, there is no
analog of “magnetic potential energy.”

For what it’s worth, A has limited use in magnetostatics. But it will
prove to be very useful in relativistic electrodynamics, so it gets an
honorable mention here.



Circulation of A

Q: What is the interpretation of:f A-dl?
c

Hint: take a moment to write down Stokes theorem and then Ampere’s law.

A. The current density J
B. The magnetic field B
C. The magnetic flux

D. Something else, but simple and concrete



Circulation of A

Q: What is the interpretation of:f A-dl?
c

Hint: take a moment to write down Stokes theorem and then Ampere’s law.

fA-dI:/(VxA)-da ZfB'da:(DB
C / A A /
Stokes theorem /

definition of flux
definition of A

A. The current density J
B. The magnetic field B

@The magnetic flux

D. Something else, but simple and concrete



Maxwell’s equations in terms of A

Since B is divergence-free,

we can define a vector potential:

It follows that the other Maxwell equation

(Ampere’s law) becomes:

V-B=0 & B=VxA

VxB=Vx(VxA)=pugJ

But we can use the “BAC-CAB” rule in vector calculus:

Ax(BxC)=B(A-C)-C(A-B)

%VX(VXA):%A)—VZA

In the Coulomb gauge (V- A
the first term is zero, so:

©
0)

4

VXBZ/,L()J < VZA:—/J()J




Vector Laplacian -1

Q: The second order differential equation for A is the magnetic
analog of the Poisson equation in electrostatics.

VZA = —/,L()J

What is the Laplacian of a vector field, in Cartesian coordinates?

A VPA=0]A,+0,A, +0.A,
B. VPA=07A,%x+0.A4,5+97A.2
C. VPA =V34, +V?A, +V?A,

D. VA =V?A, %+ VA, y+V?A4,2

E. None of the above - it’s all a hoax! Ox



Vector Laplacian -1

Q: The second order differential equation for A is the magnetic

24 —
analog of the Poisson equation in electrostatics. VA, = o,
VZA = —/,L()J — Vsz = —Ho Jy
2 —
What is the Laplacian of a vector field, in Cartesian coordinates? VeA, = —Ho J,
V\/\M/\.’\’\

A VPA=0]A,+0,A, +0.A,

* Just treat this vector equation as three
2 24 & 24 4 24 4 | tions, V2A; = —ug J.
B. VIA=0;A,X+ ayAyy +0%A, % scalar equations, i Ho J.

* |f you're still skeptical, you can verify
C. V2ZA =V?4 2A 2A /
v Vids +Vidy + VA, this by writing out the components of

(D) VA = V24, 5%+ V24,5 + V24,2 VTN

0
E. None of the above - it’s all a hoax! Or = 57 etc.



Vector Laplacian — 2

Q: In Cartesian coordinates the vector Laplacian has a simple form:

(V?A); =V?4; (i=uw,y,2)
Does the same relation hold in spherical coordinates?

M e——————
(VPA); = V?4; (i=r,0,0)

A. Yes
B. No -it’s more complicated

C. None of the above (what?)



Vector Laplacian — 2

Q: In Cartesian coordinates the vector Laplacian has a simple form:

A. Yes

No - it’s more complicated

C. None of the above (what?)

(V2A); = V?A; (i==z,y,2)

Does the same relation hold in spherical coordinates?

(VPA); = V?4; (i=r,0,0)

e (LO(,0), 1
“\rzor\" or/) " r2sin0 90

...because unit
vectors T, 8 and P
depend on 8 and ¢!

02) + o (A, F+ AgB + Apd)
00 )  1Z%sin% 0 0¢>2 T a9 »®P

(V2A | 24, 2  0(Aysinb) 2 8A¢)A
' r2 72 sin 6 00 r2sin@ Op
0A,\ .
N (V2A9 A N 2 A,  2cosf 90)9
r2sin’@ r? 00 r2sin® @ Oy
A, 2

+ (V'?Acp —

r2 sin2 6 r2 sin 6 (990

OA, N 2cosf 0Ay )ﬁﬁ
r2sin? @ O




Coulomb’s law for A

Q: Each Cartesian component of A satisfies a Poisson equation, so we can write down
a general solution for the vector potential using Coulomb’s law:

ko [ RO
A =4 [ 2 (= w2

Does the same expression hold for the components in spherical coordinates?

(ile.i=xv,z > i=r1,0,0)

A. Yes
B. No -it’s more complicated

C. None of the above (what?)



Coulomb’s law for A

Q: Each Cartesian component of A satisfies a Poisson equation, so we can write down
a general solution for the vector potential using Coulomb’s law:

A -2 [ B 4o (i = 2,y 2)

Ar fy | -1

Does the same expression hold for the components in spherical coordinates?
(ile.i=xv,z > i=r1,0,0)

Because, e.g., VZ2A, # —ugJ,
However, the integral could be
evaluated in spherical coordinates,

A. Yes e.g. with: . (r,6,4) ,

P r*sin 6 dr df do.
No - it’s more complicated

C. None of the above (what?)




Application of A

This equation

po [ Six) o, .
Ai(r) = — dr’ (1 ==x,9,%
71( ) 471'[;’1‘—1‘” ( ' Y )
gives us a simple and intuitive component-to-component connection between A and J

— it might be a good idea to find A from J, and then find BfromB =V X A

Simply put: when B is too “curly”,
it might be easier to find its curl!

Line of
a" .
motion
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