
Lecture 18

Ampere’s law. Vector potential. Coulomb gauge.



Force on a wire

I1 I2

We have two very long, parallel wires carrying a current 𝐼𝐼1 and 𝐼𝐼2, respectively.

Q: What is the direction of the force on the wire with 𝐼𝐼2?

A. up
B. down
C. right
D. left
E. into the page



Force on a wire

I1 I2

We have two very long, parallel wires carrying a current 𝐼𝐼1 and 𝐼𝐼2, respectively.

Q: What is the direction of the force on the wire with 𝐼𝐼2?

A. up
B. down
C. right
D. left
E. into the page

• 𝐁𝐁 at location of wire 2 is due to 𝐼𝐼1 => 𝐁𝐁 = 𝐁𝐁𝟏𝟏 into the page

“Like currents attract,

Unlike currents repel”

• 𝐈𝐈𝟐𝟐 × 𝐁𝐁𝟏𝟏 to the left

Two-step logic:

Source of 𝐁𝐁 at the 
location of 𝐼𝐼2

“Test” current in 
external 𝐁𝐁 field

⊗𝐁𝐁1
𝐅𝐅



Ampere’s Law

(Ch 5.3)

• Ampere’s law & ∇ × 𝐁𝐁
• Flux of the current & choice of the surface
• ∇ ⋅ 𝐁𝐁 = 0
• B field of linear and toroidal solenoids

current



Ienc

Ampere’s Law: Integral form

Ampere’s law is the magnetic analogue of Gauss’ law.  It relates 
an integral of 𝐁𝐁 to the current “enclosed” by the integral.

For the field of the wire,                         , note that the line integral 
along a field line is:

More generally, Ampere’s law states that:

where 𝐶𝐶 is any contour and 𝐼𝐼enc is the current flux through 𝐶𝐶.



Another Maxwell equation

We can use another fundamental theorem of calculus to express 

Ampere’s law, , in differential form. 

Apply Stokes' theorem to the left-hand side:

This is the third Maxwell equation, for magnetostatics.

Express the right-hand side in terms of current density:

Now assert that 𝐴𝐴 is arbitrary, so that the integrands may be equated:



Gauss’s law vs Ampere’s law

Note the parallels between electrostatics, with Gauss’ law:

and magnetostatics, with Ampere’s law:

• The former relates the net flux of 𝐄𝐄 through a closed surface to the charge 
enclosed by that surface.  

• The latter relates the circulation of 𝐁𝐁 around a path to the flux of current 
though any surface bounded by that path.

𝐼𝐼enc

𝑑𝑑𝐥𝐥 along 𝐶𝐶Sign 
convention:



Flux of a current & Amperian loops – 2

Q: What is                   around the purple dashed Amperian loop?

A. 𝜇𝜇0(|𝐼𝐼2| + |𝐼𝐼1|)

B. 𝜇𝜇0( 𝐼𝐼2 − |𝐼𝐼1|)

C. 𝜇𝜇0(|𝐼𝐼2| + 𝐼𝐼1 cos 𝜃𝜃)

D. 𝜇𝜇0( 𝐼𝐼2 − 𝐼𝐼1 cos 𝜃𝜃)

E. Something else

𝐼𝐼2 is out of the page, 
𝐼𝐼1 is into the page at an angle 𝜃𝜃.

𝐼𝐼2

𝐼𝐼1



Flux of a current & Amperian loops – 2

Q: What is                   around the purple dashed Amperian loop?

A. 𝜇𝜇0(|𝐼𝐼2| + |𝐼𝐼1|)

B. 𝜇𝜇0( 𝐼𝐼2 − |𝐼𝐼1|)

C. 𝜇𝜇0(|𝐼𝐼2| + 𝐼𝐼1 cos 𝜃𝜃)

D. 𝜇𝜇0( 𝐼𝐼2 − 𝐼𝐼1 cos 𝜃𝜃)

E. Something else

𝐼𝐼2 is out of the page, 
𝐼𝐼1 is into the page at an angle 𝜃𝜃.

𝐼𝐼2

𝐼𝐼1

• By our sign convention, both 
currents are positive for this 𝑑𝑑𝐥𝐥.

• “…current through any surface bounded 
by that path” – angle does not matter!



The Maxwell equations for statics

Here is what we have to date:

There is still one missing, which we can “derive” from the Biot-Savart law.



Yet another Maxwell equation - 1

Biot-Savart law (analogue of Coulomb's law) 
for the B field due to a current density:

Take the divergence of both sides 
with respect to 𝐫𝐫:

Use the product rule 
from vector calculus:

to write:



Yet another Maxwell equation - 2

The first term is zero because the derivative is with respect to 𝐫𝐫:

The second term is also zero (left as an 
exercise - try Cartesian coordinates):

So that:

This is a statement that there are no magnetic monopoles.



The Maxwell equations for statics

Note the independent nature of 𝐄𝐄 and 𝐁𝐁. Strictly speaking, it’s a bit fallacious.  

Later, we’ll couple the two curl equations on the right through time-dependent 
induction to connect 𝐄𝐄 and 𝐁𝐁 and complete the system of equations.



Solenoid – 1

Q: A solenoid is a wire wound into 𝑁𝑁 loops of radius 𝑅𝑅 formed into a tight helix of total 
length 𝐿𝐿.  If we model this as a cylindrical tube of the same size, what is the relationship 
between the wire’s current, 𝐼𝐼, and the equivalent surface current density, 𝛫𝛫?

A. 𝐾𝐾 = 𝐼𝐼

B. 𝐾𝐾 = 𝐼𝐼𝐼𝐼

C. 𝐾𝐾 = 𝐼𝐼/𝐿𝐿

D. 𝐾𝐾 = 𝐼𝐼𝐼𝐼/𝐿𝐿

E. None of the above



Solenoid – 1

Q: A solenoid is a wire wound into 𝑁𝑁 loops of radius 𝑅𝑅 formed into a tight helix of total 
length 𝐿𝐿.  If we model this as a cylindrical tube of the same size, what is the relationship 
between the wire’s current, 𝐼𝐼, and the equivalent surface current density, 𝛫𝛫?

A. 𝐾𝐾 = 𝐼𝐼

B. 𝐾𝐾 = 𝐼𝐼𝐼𝐼

C. 𝐾𝐾 = 𝐼𝐼/𝐿𝐿

D. 𝐾𝐾 = 𝐼𝐼𝐼𝐼/𝐿𝐿

E. None of the above

𝐿𝐿
𝑑𝑑𝑙𝑙⊥ = 𝐿𝐿

𝐼𝐼𝑡𝑡𝑡𝑡𝑡𝑡 = 𝐼𝐼𝐼𝐼 = 𝐾𝐾𝐾𝐾

𝐈𝐈 = �𝐊𝐊 𝑑𝑑𝑙𝑙⊥Recall:

𝑁𝑁 turns



Solenoid – 2

Q: A very long solenoid with surface current density, 𝐾𝐾, is oriented along the 𝑧𝑧 axis.  
Which component or components 𝐁𝐁(𝐫𝐫) can have inside the solenoid?

A. 𝐵𝐵 𝑠𝑠 �𝐳𝐳

B. 𝐵𝐵 𝑠𝑠 �𝐬𝐬

C. 𝐵𝐵 𝑠𝑠 �𝝋𝝋

D. Both A and B

E. All the three: A, B and C

z

K
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z

K

• Assume 𝐵𝐵𝑠𝑠 exists and points, say, outwards.

• No angular component: Integrating 𝐵𝐵𝜙𝜙 over a 
concentric loop gives: 

∮ 𝐁𝐁 ⋅ 𝑑𝑑𝐥𝐥 = 𝐵𝐵𝜙𝜙 2𝜋𝜋𝜋𝜋 = 𝜇𝜇0𝐼𝐼enc = 0 ⇒ 𝐵𝐵𝜙𝜙 = 0

𝐶𝐶

• Then, on one hand, reversing the direction of 𝐼𝐼 flips the 
direction of 𝐁𝐁 (right hand rule) => it would change 𝐵𝐵𝑠𝑠 to inward.

• Contradiction! There is no radial component.

• On the other hand, reversing the direction of 𝐼𝐼 corresponds to 
turning the solenoid upside down => 𝐵𝐵𝑠𝑠 should remain outward.



Solenoid – 3

z

K

Q: Apply Ampere's law to the rectangular Amperian loop, as shown.  
What does this tell you about 𝐵𝐵𝑧𝑧, the 𝑧𝑧 component of the 𝐁𝐁 field outside the solenoid?

A. 𝐵𝐵𝑧𝑧 is constant outside

B. 𝐵𝐵𝑧𝑧 is not constant outside

C. 𝐵𝐵𝑧𝑧 is zero outside

D. Not enough information

Ampere's law:



Solenoid – 3

z

K

Q: Apply Ampere's law to the rectangular Amperian loop, as shown.  
What does this tell you about 𝐵𝐵𝑧𝑧, the 𝑧𝑧 component of the 𝐁𝐁 field outside the solenoid?

A. 𝐵𝐵𝑧𝑧 is constant outside

B. 𝐵𝐵𝑧𝑧 is not constant outside

C. 𝐵𝐵𝑧𝑧 is zero outside

D. Not enough information

Ampere's law:

if we want it to be zero far away from solenoid

https://pubs.aip.org/aapt/ajp/article/69/7/751/1043277/Field-just-outside-a-long-solenoid

https://pubs.aip.org/aapt/ajp/article/69/7/751/1043277/Field-just-outside-a-long-solenoid


Solenoid – 4

z

K

Apply Ampere's law to the rectangular Amperian loop, as shown.  
Find 𝐁𝐁 field inside the solenoid, assuming it is zero outside.

where 𝑛𝑛 is the number 
of turns per unit length.

L

�
𝐶𝐶
𝐁𝐁 ⋅ 𝑑𝑑𝐥𝐥 = 𝐵𝐵𝑧𝑧 𝑠𝑠 𝐿𝐿

𝜇𝜇0𝐼𝐼enc = 𝜇𝜇0𝛫𝛫𝛫𝛫 = 𝜇𝜇0𝑁𝑁𝑁𝑁 = 𝜇𝜇0𝑛𝑛𝑛𝑛𝑛𝑛

Note that 𝐵𝐵𝑧𝑧 does NOT depend on 𝑠𝑠 => it’s a uniform field. 

→ 𝐵𝐵𝑧𝑧 𝑠𝑠 = 𝜇𝜇0𝑛𝑛𝑛𝑛



Solenoid-toroid – 1

Q: Consider a toroid, which is like a finite solenoid connected end to end.  
In which direction do you expect the 𝐁𝐁 field to point along the dashed purple curve?  

A.
B.
C.
D. A mix of the above

Assume cylindrical coordinates with 𝑧𝑧 the symmetry axis of the toroid.



Solenoid-toroid – 1

Q: Consider a toroid, which is like a finite solenoid connected end to end.  
In which direction do you expect the 𝐁𝐁 field to point along the dashed purple curve?  

A.
B.
C.
D. A mix of the above

Assume cylindrical coordinates with 𝑧𝑧 the symmetry axis of the toroid.

Formal proof: 
Example 5.7 in Griffiths



Solenoid-toroid – 2

Q: Use the Amperian loop shown in blue to find the 𝐁𝐁 field inside the toroid.  
Let 𝑧𝑧 point out of the page, and 𝜑𝜑 increase counterclockwise.

Note that one could also use the Biot-Savart law:

where 𝐾𝐾 = 𝑁𝑁𝑁𝑁, but the integral would be complicated.

𝐁𝐁

�𝝋𝝋



Magnetostatics: Summary

You should be able to:

• Describe the trajectory of a charged particle in a given magnetic field.

• Explain why the magnetic field does no work using concepts and mathematics 
from this course.

• Explain, in words, what the charge continuity equation means.

• Calculate the current 𝐈𝐈,𝐊𝐊 and 𝐉𝐉 in terms of the velocity of the particles and 
know the units for each.

• State when the Biot-Savart Law applies (magnetostatics; steady currents).

• Compare similarities and differences between the Biot-Savart law and 
Coulomb’s law.

J



Magnetic Potential

(Ch 5.4.1-2)

• Magnetic vector potential, 𝐀𝐀
• Coulomb gauge
• Computing magnetic potential in simple geometries

𝐁𝐁 = 𝛁𝛁 × 𝐀𝐀



Magnetic potential

Q: One of Maxwell’s equations made it useful for us to define a scalar potential 𝑉𝑉:

A.

B.

C.

D.

Similarly, another one of Maxwell’s equations makes it useful for us to define a vector 
“magnetic” potential, 𝐀𝐀.  Which one? 



Magnetic potential

Q: One of Maxwell’s equations made it useful for us to define a scalar potential 𝑉𝑉:

A.

B.

C.

D.

Similarly, another one of Maxwell’s equations makes it useful for us to define a vector 
“magnetic” potential, 𝐀𝐀.  Which one? 

We can define vector potential for magnetic field, 𝐀𝐀:

HW-1:   ∇ × ∇𝑓𝑓 ≡ 0 →

HW-1:    ∇ ⋅ ∇ × 𝐀𝐀 ≡ 0 →



“Gauge” freedom – 1

The electric potential is only defined up to a constant.  That is 𝑉𝑉 → 𝑉𝑉 + 𝑐𝑐, where 𝑐𝑐
is a constant, leaves the electric field, 𝐄𝐄, unchanged, because 𝐄𝐄 is a derivative of 𝑉𝑉.

This is an example of a “gauge” degree of freedom in physics.  There are many 
examples in field theory where the physical fields are defined as derivatives of 
potential fields.

The vector potential possesses a similar gauge freedom.  We can add any curl-free
vector field, 𝐚𝐚, to 𝐀𝐀 and leave E unchanged:

𝐀𝐀′ = 𝐀𝐀 + 𝐚𝐚 (such that ∇ × 𝐚𝐚 = 0)

Then:    𝐁𝐁′ = ∇ × 𝐀𝐀 + 𝐚𝐚 = ∇ × 𝐀𝐀 + ∇ × 𝐚𝐚
0

= 𝐁𝐁 -- nothing changes!



“Gauge” freedom – 2

The “gauge transformation” of 𝐀𝐀 → 𝐀𝐀′ then becomes:

Now, we can find 𝜓𝜓 such that it will eliminate ∇ ⋅ 𝐀𝐀′. Note that:

𝐀𝐀′ = 𝐀𝐀 − ∇𝜓𝜓

∇ ⋅ 𝐀𝐀′ = ∇ ⋅ 𝐀𝐀 − ∇ ⋅ (∇𝜓𝜓) = ∇ ⋅ 𝐀𝐀 − ∇2𝜓𝜓

Pick 𝜓𝜓 such that: ∇2𝜓𝜓 = ∇ ⋅ 𝐀𝐀 (we can find such a 𝜓𝜓 by solving Poisson equation with “old” 𝐀𝐀) 

Important: it is always possible to chose 𝐚𝐚 in such a way that

• Specifying both divergence and curl of 𝐀𝐀 defines it uniquely
• Purpose: Coulomb gauge simplifies Maxwell’s equation

HW-1:   ∇ × ∇𝑓𝑓 ≡ 0,   and    ∇ × 𝐚𝐚 = 0 → 𝐚𝐚 = −∇𝜓𝜓, with 𝜓𝜓 = some scalar function

𝐀𝐀′ = 𝐀𝐀 + 𝐚𝐚 with  ∇ × 𝐚𝐚 = 0′



Interpretation of 𝐀𝐀?

Unlike 𝑉𝑉, which we interpret as potential energy per unit charge, 
there is no similar interpretation of 𝐀𝐀. 

Since the Lorentz force does no work on a test charge, there is no 
analog of “magnetic potential energy.”

For what it’s worth, 𝐀𝐀 has limited use in magnetostatics.  But it will 
prove to be very useful in relativistic electrodynamics, so it gets an 
honorable mention here.



Circulation of 𝐀𝐀

Q: What is the interpretation of:

Hint: take a moment to write down Stokes theorem and then Ampère’s law.

A. The current density 𝐉𝐉

B. The magnetic field 𝐁𝐁

C. The magnetic flux 

D. Something else, but simple and concrete

J



Circulation of 𝐀𝐀

Q: What is the interpretation of:

Hint: take a moment to write down Stokes theorem and then Ampère’s law.

Stokes theorem
definition of 𝐀𝐀

definition of flux

A. The current density 𝐉𝐉

B. The magnetic field 𝐁𝐁

C. The magnetic flux 

D. Something else, but simple and concrete

J



Maxwell’s equations in terms of 𝐀𝐀

Since 𝐁𝐁 is divergence-free, 
we can define a vector potential:

In the Coulomb gauge                      , 
the first term is zero, so:

It follows that the other Maxwell equation 
(Ampere’s law) becomes:

But we can use the “BAC−CAB” rule in vector calculus:



Vector Laplacian – 1

Q: The second order differential equation for 𝐀𝐀 is the magnetic 
analog of the Poisson equation in electrostatics.

What is the Laplacian of a vector field, in Cartesian coordinates?

A.

B.

C.

D.

E. None of the above - it’s all a hoax!



Vector Laplacian – 1

Q: The second order differential equation for 𝐀𝐀 is the magnetic 
analog of the Poisson equation in electrostatics.

What is the Laplacian of a vector field, in Cartesian coordinates?

A.

B.

C.

D.

E. None of the above - it’s all a hoax!

• If you’re still skeptical, you can verify 
this by writing out the components of 
∇ × ∇ × 𝐀𝐀

• Just treat this vector equation as three 
scalar equations, ∇2𝐴𝐴𝑖𝑖 = −𝜇𝜇0𝐽𝐽𝑖𝑖Ji

∇2𝐴𝐴𝑥𝑥 = −𝜇𝜇0
→ ∇2𝐴𝐴𝑦𝑦 = −𝜇𝜇0

∇2𝐴𝐴𝑧𝑧 = −𝜇𝜇0

Jx

Jy

Jz



A. Yes
B. No - it’s more complicated
C. None of the above (what?)

Vector Laplacian – 2

Q: In Cartesian coordinates the vector Laplacian has a simple form:

Does the same relation hold in spherical coordinates?



A. Yes
B. No - it’s more complicated
C. None of the above (what?)

Vector Laplacian – 2

Q: In Cartesian coordinates the vector Laplacian has a simple form:

Does the same relation hold in spherical coordinates?

∇2𝐀𝐀 =
1
𝑟𝑟2

𝜕𝜕
𝜕𝜕𝜕𝜕

𝑟𝑟2
𝜕𝜕
𝜕𝜕𝜕𝜕

+
1

𝑟𝑟2 sin𝜃𝜃
𝜕𝜕
𝜕𝜕𝜃𝜃

sin𝜃𝜃
𝜕𝜕
𝜕𝜕𝜃𝜃

+
1

𝑟𝑟2 sin2 𝜃𝜃
𝜕𝜕2

𝜕𝜕𝜙𝜙2
𝐴𝐴𝑟𝑟�𝐫𝐫 + 𝐴𝐴𝜃𝜃�𝜽𝜽 + 𝐴𝐴𝜙𝜙�𝝓𝝓

…because unit 
vectors �𝐫𝐫, �𝜽𝜽 and �𝝋𝝋
depend on 𝜃𝜃 and 𝜑𝜑!



A. Yes
B. No - it’s more complicated
C. None of the above (what?)

Coulomb’s law for 𝐀𝐀

Q: Each Cartesian component of 𝐀𝐀 satisfies a Poisson equation, so we can write down 
a general solution for the vector potential using Coulomb’s law:

Does the same expression hold for the components in spherical coordinates?  

(i.e. 𝑖𝑖 = 𝑥𝑥,𝑦𝑦, 𝑧𝑧 → 𝑖𝑖 = 𝑟𝑟,𝜃𝜃,𝜑𝜑)



A. Yes
B. No - it’s more complicated
C. None of the above (what?)

Coulomb’s law for 𝐀𝐀

Q: Each Cartesian component of 𝐀𝐀 satisfies a Poisson equation, so we can write down 
a general solution for the vector potential using Coulomb’s law:

Does the same expression hold for the components in spherical coordinates?  

(i.e. 𝑖𝑖 = 𝑥𝑥,𝑦𝑦, 𝑧𝑧 → 𝑖𝑖 = 𝑟𝑟,𝜃𝜃,𝜑𝜑)

Because, e.g.,                            .  
However, the integral could be 
evaluated in spherical coordinates, 
e.g. with: 



Application of 𝐀𝐀
This equation

gives us a simple and intuitive component-to-component connection between 𝐀𝐀 and 𝐉𝐉J

→ it might be a good idea to find 𝐀𝐀 from 𝐉𝐉 , and then find 𝐁𝐁 from 𝐁𝐁 = ∇ × 𝐀𝐀J

Simply put: when 𝐁𝐁 is too “curly”, 
it might be easier to find its curl!
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