

Lecture 19

Magnetic potential.

Boundary conditions for B and A .

Multipole expansion for A .

$$\mathbf{B} = \nabla \times \mathbf{A}$$

Last Time:

Since \mathbf{B} is divergence-free, we can define a vector potential:

$$\nabla \cdot \mathbf{B} = 0 \leftrightarrow \mathbf{B} = \nabla \times \mathbf{A}$$

We can always ~~choose the vector potential~~ so that (Coulomb gauge): $\nabla \cdot \mathbf{A} = 0$

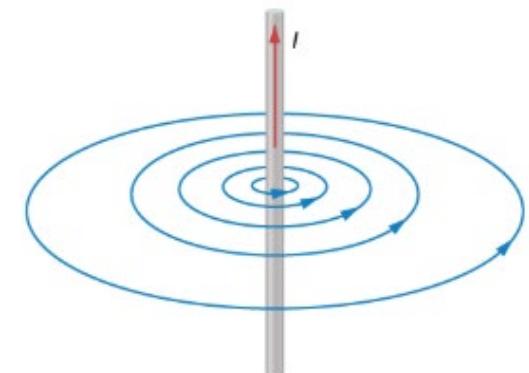
From $\nabla \times \mathbf{B} = \mu_0 \mathbf{J}$ we find that \mathbf{A} obeys Poisson equation:

$$\nabla^2 \mathbf{A} = -\mu_0 \mathbf{J}$$

Its solution in Cartesian coordinates: $A_i(\mathbf{r}) = \frac{\mu_0}{4\pi} \int_V \frac{J_i(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|} d\tau'$ ($i = x, y, z$)

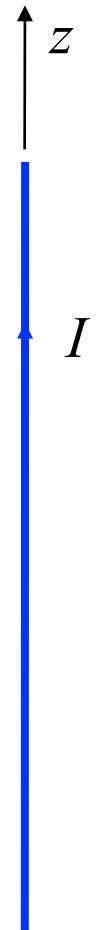
If \mathbf{B} is “too curly”, but \mathbf{I} is straight:

- Current \mathbf{I} is a source of \mathbf{A} (simple component-to-component correspondence)
- Know $\mathbf{I} \Rightarrow$ find $\mathbf{A} \Rightarrow$ find $\mathbf{B} = \nabla \times \mathbf{A}$



Example: Vector potential for a wire – 1

Q: The vector potential, \mathbf{A} , due to a long straight wire carrying a current, I , along the z axis is parallel to:



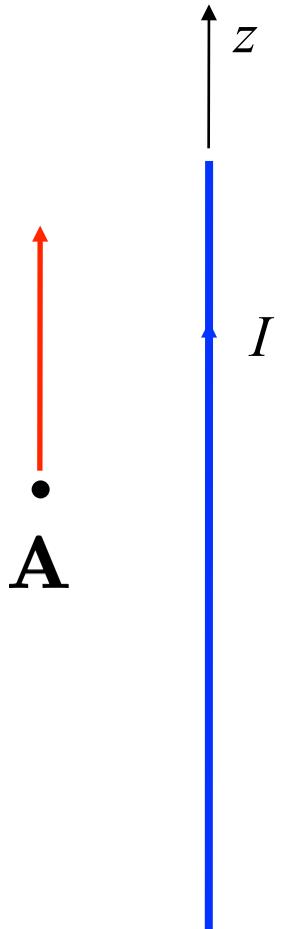
- A. $\hat{\mathbf{s}}$ (radial)
- B. $\hat{\varphi}$ (azimuthal)
- C. $\hat{\mathbf{z}}$ (axial)
- D. More than one

Example: Vector potential for a wire – 1

Q: The vector potential, \mathbf{A} , due to a long straight wire carrying a current, I , along the z axis is parallel to:

$$A_{\mathbf{z}}(\mathbf{r}) = \frac{\mu_0}{4\pi} \int_V \frac{J_{\mathbf{z}}(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|} d\tau' \quad (i = x, y, z)$$

J_i sources A_i , so $\mathbf{A} \parallel \mathbf{J}$



- A. $\hat{\mathbf{s}}$ (radial)
- B. $\hat{\varphi}$ (azimuthal)
- C. $\hat{\mathbf{z}}$ (axial)
- D. More than one

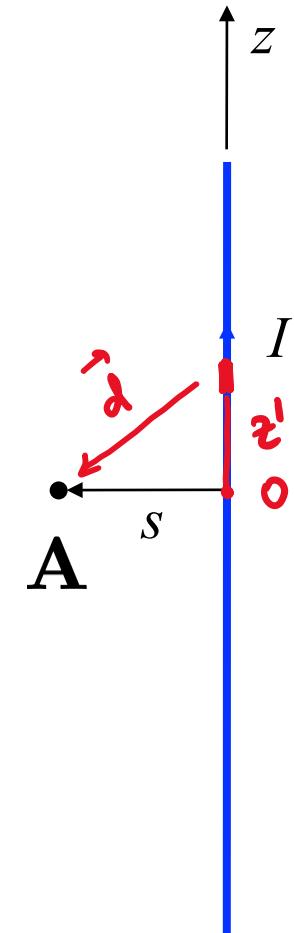
Example: Vector potential for a wire – 2

Q: Find the vector potential, \mathbf{A} , a distance s from a wire carrying a current I along the z axis.

- Write down the Coulomb-law-like integral for each component of \mathbf{A} .
- Evaluate the components as you would in electrostatics.

$$A_i(\mathbf{r}) = \frac{\mu_0}{4\pi} \int_V \frac{J_i(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|} d\tau' \quad (i = x, y, z)$$

ID: $\vec{J} d\tau' = I dz$



Example: Vector potential for a wire – 2

$$A_i(\mathbf{r}) = \frac{\mu_0}{4\pi} \int_V \frac{J_i(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|} d\tau' \quad (i = x, y, z)$$

Q: Find the vector potential, \mathbf{A} , a distance s from a wire carrying a current I along the z axis.

The current is along the z axis, so: $\mathbf{J} = J_z \hat{\mathbf{z}} \rightarrow \mathbf{A} = A_z \hat{\mathbf{z}}$

Since it is a line current: $J_z(\mathbf{r}') d\tau' \rightarrow I dz'$

Let the observation point \mathbf{r} be $(s, 0, 0)$, then:

$$A_z(\mathbf{r}) = \frac{\mu_0 I}{4\pi} \int_{-\infty}^{+\infty} \frac{dz'}{\sqrt{z'^2 + s^2}}$$

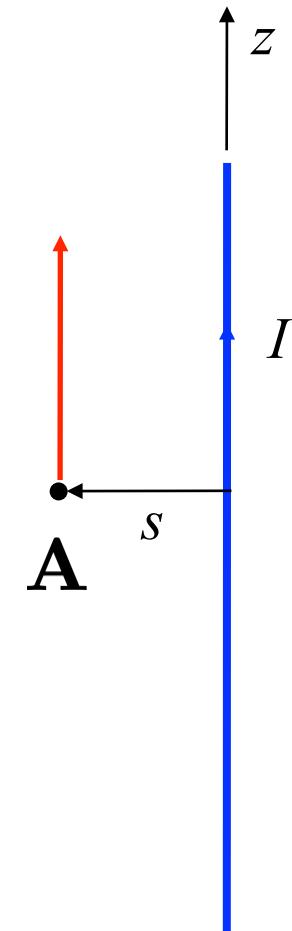
Compare: $V(\mathbf{r}) = \frac{\lambda}{4\pi\epsilon_0} \int_{-\infty}^{+\infty} \frac{dz'}{\sqrt{z'^2 + s^2}} = -\frac{\lambda}{2\pi\epsilon_0} \ln \frac{s}{a}$

So:

$$\mathbf{A}(\mathbf{r}) = -\frac{\mu_0 I}{2\pi} \ln \frac{s}{a} \hat{\mathbf{z}}$$

Bonus:
Find \mathbf{B}

$$\begin{aligned} \mathbf{B} &= \nabla \times \mathbf{A} = -\frac{\partial A_z}{\partial s} \hat{\Phi} \\ &= \frac{\mu_0 I}{2\pi s} \hat{\Phi} \quad \text{as it should be!} \end{aligned}$$



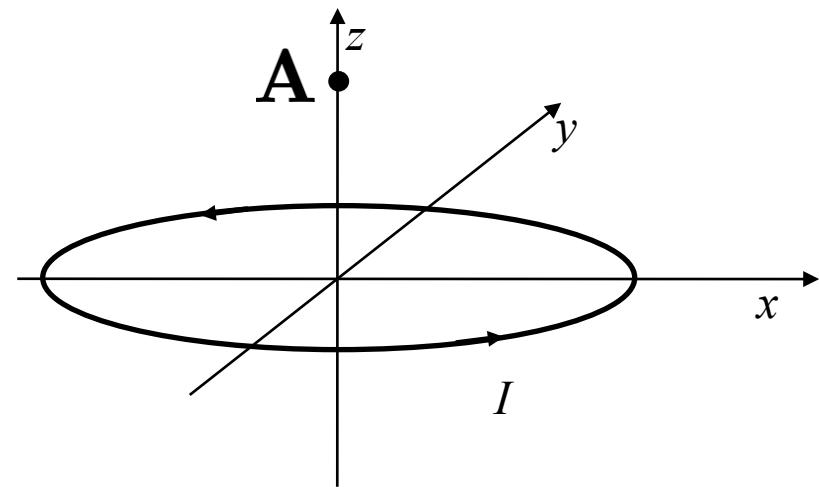
Example: Vector potential for a loop – 1

Q: A circular wire of radius a carries current I in the (x, y) plane. What can you say about the vector potential \mathbf{A} at the point on the z axis as shown?

(Assume the Coulomb gauge, and that \mathbf{A} vanishes at large r .)

$$A_i(\mathbf{r}) = \frac{\mu_0}{4\pi} \int_V \frac{J_i(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|} d\tau' \quad (i = x, y, z)$$

- A. $\mathbf{A} = 0$
- B. $\mathbf{A} \parallel \hat{\mathbf{x}}$
- C. $\mathbf{A} \parallel \hat{\mathbf{y}}$
- D. $\mathbf{A} \parallel \hat{\mathbf{z}}$
- E. None of the above



Example: Vector potential for a loop – 1

Q: A circular wire of radius a carries current I in the (x, y) plane. What can you say about the vector potential \mathbf{A} at the point on the z axis as shown?

(Assume the Coulomb gauge, and that \mathbf{A} vanishes at large r .)

$$\mathbf{J} d\tau' = I d\mathbf{l} = I R d\phi \hat{\Phi}$$

$$A_i(\mathbf{r}) = \frac{\mu_0}{4\pi} \int_V \frac{J_i(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|} d\tau' \quad (i = x, y, z)$$

$$\hat{\Phi} = -\sin \phi \hat{\mathbf{x}} + \cos \phi \hat{\mathbf{y}}$$

$$J_x \propto \sin \phi \quad J_y \propto \cos \phi$$

A. $\mathbf{A} = 0$

$$J_z = 0,$$

$$J_x \propto -\sin \phi \rightarrow \int_0^{2\pi} \frac{J_x(\phi)}{\sqrt{a^2 + z^2}} d\phi = 0$$

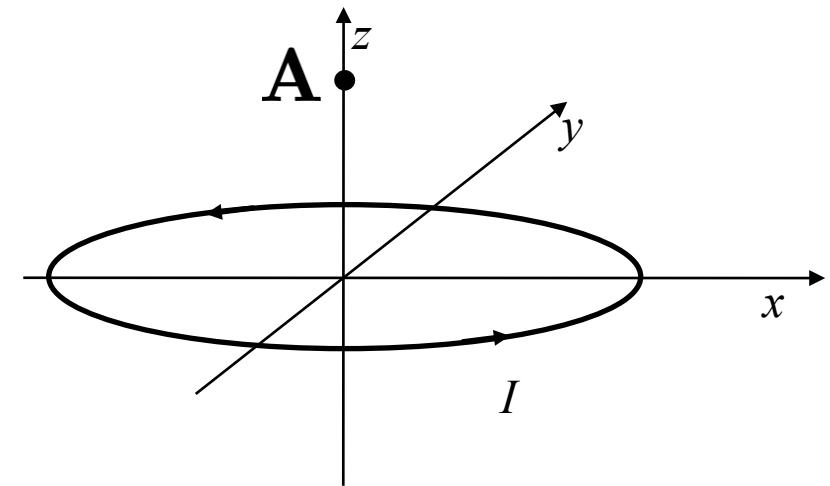
B. $\mathbf{A} \parallel \hat{\mathbf{x}}$

$$(similar for J_y)$$

C. $\mathbf{A} \parallel \hat{\mathbf{y}}$

E. None of the above

E. None of the above



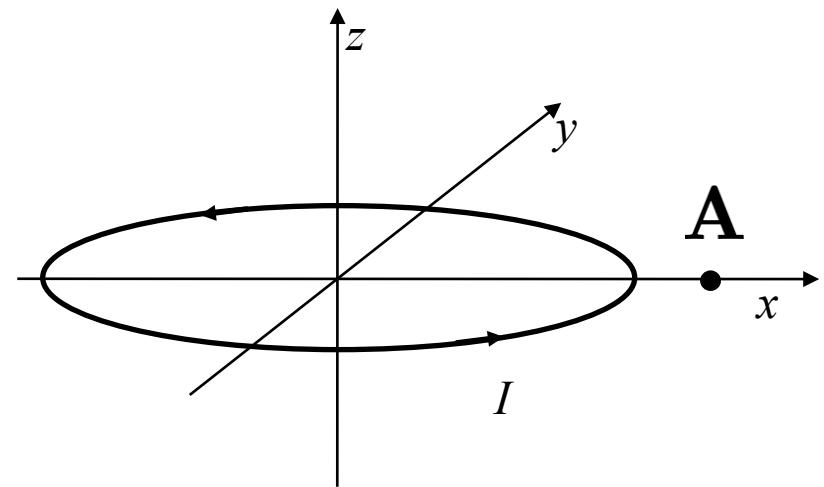
Example: Vector potential for a loop – 1

Q: A circular wire of radius a carries current I in the (x, y) plane. What can you say about the vector potential \mathbf{A} at the point on the z axis as shown?

(Assume the Coulomb gauge, and that \mathbf{A} vanishes at large r .)

$$A_i(\mathbf{r}) = \frac{\mu_0}{4\pi} \int_V \frac{J_i(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|} d\tau' \quad (i = x, y, z)$$

- A. $\mathbf{A} = 0$
- B. $\mathbf{A} \parallel \hat{\mathbf{x}}$
- C. $\mathbf{A} \parallel \hat{\mathbf{y}}$
- D. $\mathbf{A} \parallel \hat{\mathbf{z}}$
- E. None of the above



Example: Vector potential for a loop – 1

Q: A circular wire of radius a carries current I in the (x, y) plane. What can you say about the vector potential \mathbf{A} at the point on the z axis as shown?

(Assume the Coulomb gauge, and that \mathbf{A} vanishes at large r .)

$$\mathbf{J} d\tau' = I d\mathbf{l} = I R d\phi \hat{\Phi}$$

$$A_i(\mathbf{r}) = \frac{\mu_0}{4\pi} \int_V \frac{J_i(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|} d\tau' \quad (i = x, y, z)$$

$$\hat{\Phi} = -\sin \phi \hat{x} + \cos \phi \hat{y}$$

$$J_x \propto \sin \phi \quad J_y \propto \cos \phi$$

A. $\mathbf{A} = 0$

$$J_x \propto -\sin \phi \rightarrow \frac{\sin \phi}{\sqrt{a^2 + x^2 - 2ax \cos \phi}} \text{ is odd;}$$

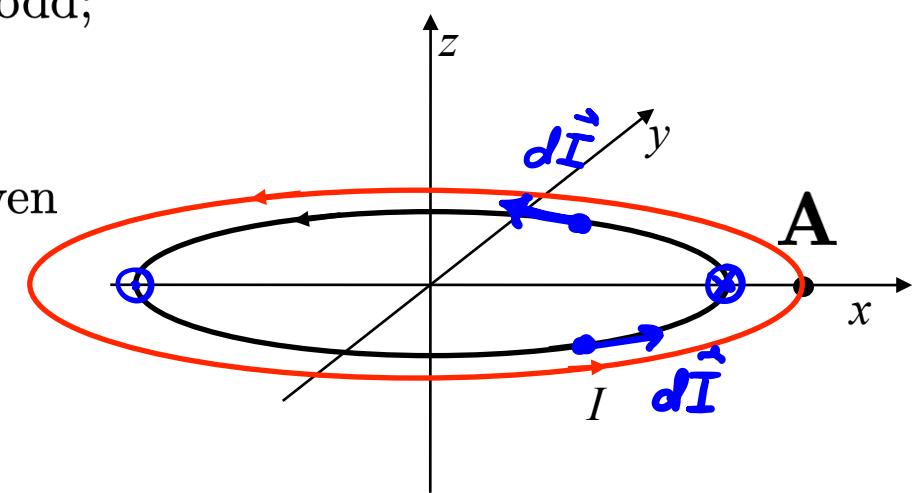
B. $\mathbf{A} \parallel \hat{x}$

$$J_y \propto \cos \phi \rightarrow \frac{\cos \phi}{\sqrt{a^2 + x^2 - 2ax \cos \phi}} \text{ is even}$$

C. $\mathbf{A} \parallel \hat{y}$

D. $\mathbf{A} \parallel \hat{z}$

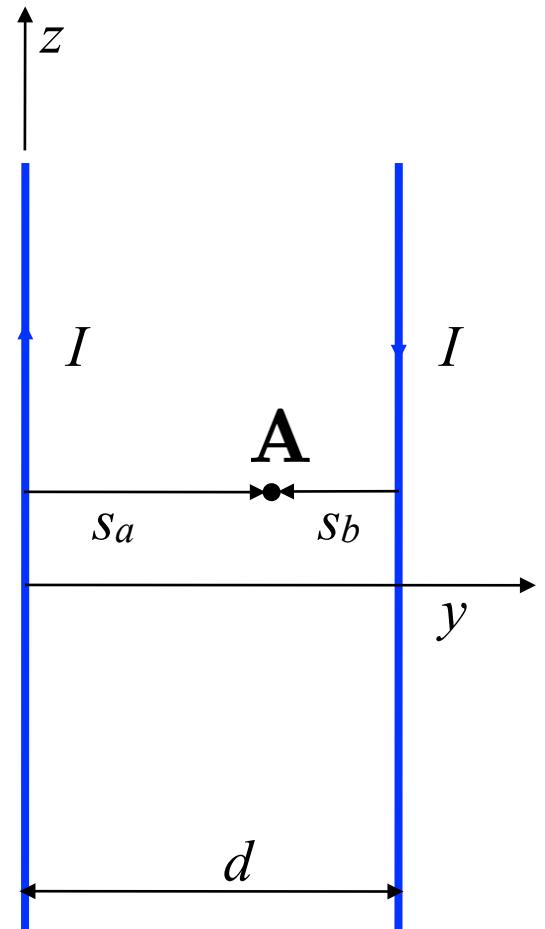
E. None of the above



Potential and field of two wires

Two wires, a distance d apart, carry equal & opposite current, I .

1. Find the vector potential, $\mathbf{A}(x, y)$.
2. Find magnetic field, $\mathbf{B}(x, y)$.



Hint: use superposition for \mathbf{A} . For one wire: $\mathbf{A}(\mathbf{r}) = -\frac{\mu_0 I}{2\pi} \ln \frac{s}{a} \hat{\mathbf{z}}$

Potential and field of two wires

$$\mathbf{A}(\mathbf{r}) = -\frac{\mu_0 I}{2\pi} \ln s \hat{\mathbf{z}}$$

Two wires, a distance d apart, carry equal & opposite current, I . Find $\mathbf{A}(x, y)$ and $\mathbf{B}(x, y)$.

The vector potential fields superpose:

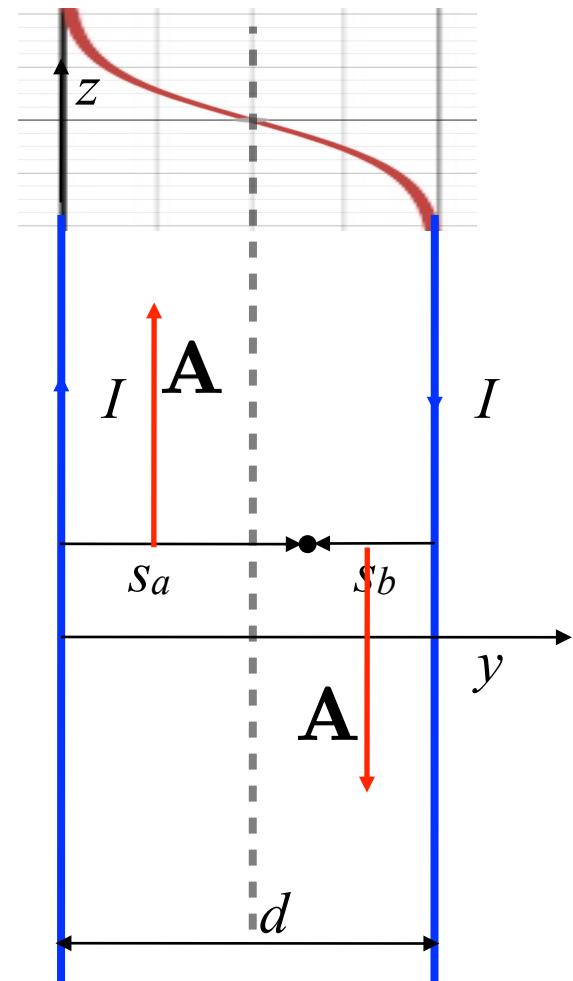
$$\mathbf{A}(\mathbf{r}) = -\frac{\mu_0 I}{2\pi} (\ln s_a - \ln s_b) \hat{\mathbf{z}} = \frac{\mu_0 I}{2\pi} \ln \left(\frac{s_b}{s_a} \right) \hat{\mathbf{z}}$$

with $s_a = \sqrt{x^2 + y^2}$ $s_b = \sqrt{x^2 + (y - d)^2}$

Note that \mathbf{A} changes sign at the mid-plane: $\mathbf{A}(x, d/2) = 0$

To compute \mathbf{B} , switch to Cartesian coordinates and use:

$$\mathbf{B} = \nabla \times \mathbf{A} = \begin{vmatrix} \hat{\mathbf{x}} & \hat{\mathbf{y}} & \hat{\mathbf{z}} \\ \partial_x & \partial_y & \partial_z \\ 0 & 0 & A_z \end{vmatrix} = \partial_y A_z \hat{\mathbf{x}} - \partial_x A_z \hat{\mathbf{y}}$$



Potential and field of two wires

$$\mathbf{A}(\mathbf{r}) = \frac{\mu_0 I}{2\pi} \ln\left(\frac{s_b}{s_a}\right) \hat{\mathbf{z}}$$

Two wires, a distance d apart, carry equal & opposite current, I . Find $\mathbf{A}(x, y)$ and $\mathbf{B}(x, y)$.

Then:

$$\partial_y A_z = \frac{\mu_0 I}{2\pi} \left(\frac{1}{s_b} \partial_y s_b - \frac{1}{s_a} \partial_y s_a \right)$$

and

$$\partial_y s_a = \frac{y}{s_a} \quad \partial_y s_b = \frac{y-d}{s_b}$$

So that:

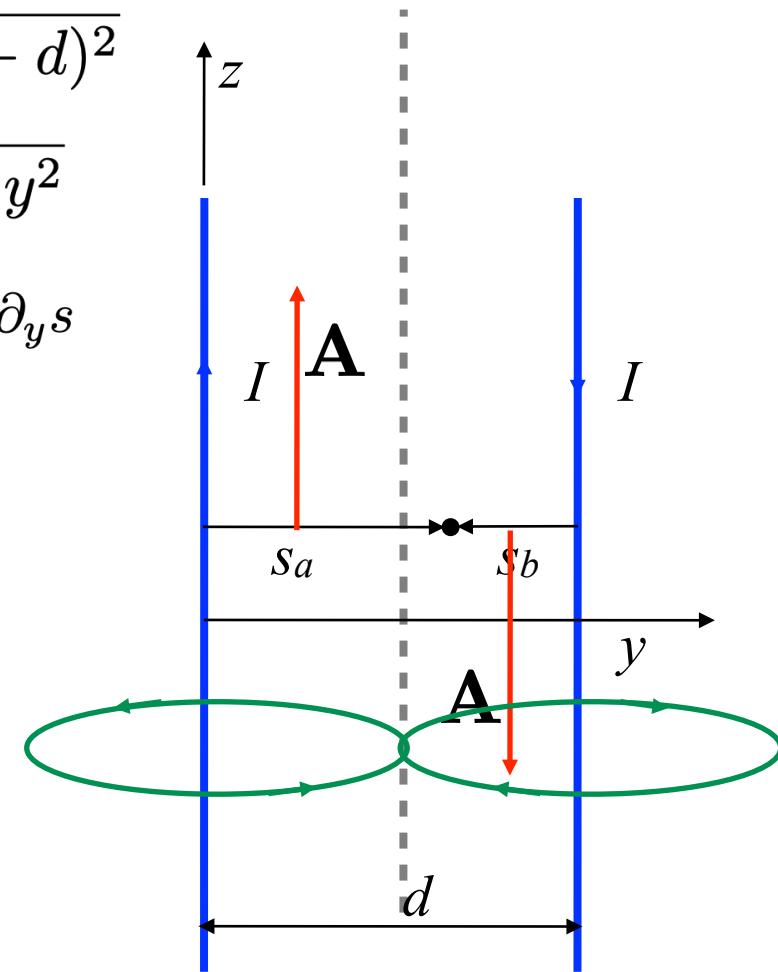
$$B_x = \frac{\mu_0 I}{2\pi} \left(\frac{y-d}{s_b^2} - \frac{y}{s_a^2} \right) \quad B_y = -\frac{\mu_0 I}{2\pi} \left(\frac{x}{s_b^2} - \frac{x}{s_a^2} \right)$$

$$s_b = \sqrt{x^2 + (y-d)^2}$$

$$s_a = \sqrt{x^2 + y^2}$$

$$\partial_y \ln s = \frac{1}{s} \partial_y s$$

$$\partial_y s = \frac{y}{s}$$



Boundary conditions

(Ch 5.4.2)

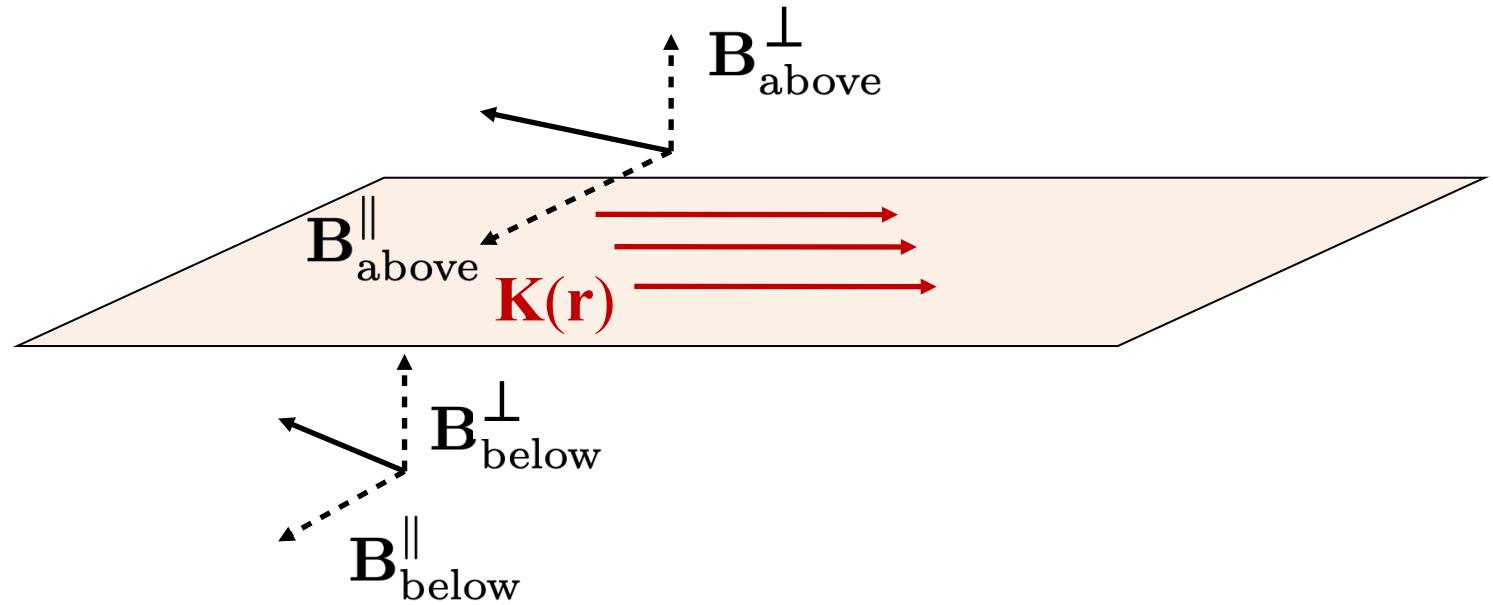
- Boundary conditions for \mathbf{B}_{\parallel} , \mathbf{B}_{\perp} , \mathbf{A} and $\partial\mathbf{A}/\partial n$

Canadian Border Ports of Entry						
Port Name Crossing Name	Passenger Vehicles					
	Hours	Max Lns	General	ReadyLane	Nexus	
Blaine Pacific Highway	24 hrs/day 11/16/2025	7	At 4:00 pm PST 30 min delay 2 lanes open	Lanes Closed	At 4:00 pm PST no delay 1 lanes open	
Blaine Peace Arch	24 hrs/day 11/16/2025	10	At 4:00 pm PST 30 min delay 4 lanes open	Lanes Closed	At 4:00 pm PST no delay 1 lanes open	
Blaine Point Roberts	24 hrs/day 11/16/2025	3	Update Pending	Update Pending	Update Pending	

Boundary conditions on \mathbf{B}

Q: Suppose we have a current sheet, $\mathbf{K}(\mathbf{r})$. Which vector operator do you need to set boundary conditions on \mathbf{B}_{\parallel} and \mathbf{B}_{\perp} ?

- A. $\nabla \times \mathbf{B}$ for \mathbf{B}_{\parallel} , $\nabla \cdot \mathbf{B}$ for \mathbf{B}_{\perp}
- B. $\nabla \cdot \mathbf{B}$ for \mathbf{B}_{\parallel} , $\nabla \times \mathbf{B}$ for \mathbf{B}_{\perp}



Boundary conditions on \mathbf{B}

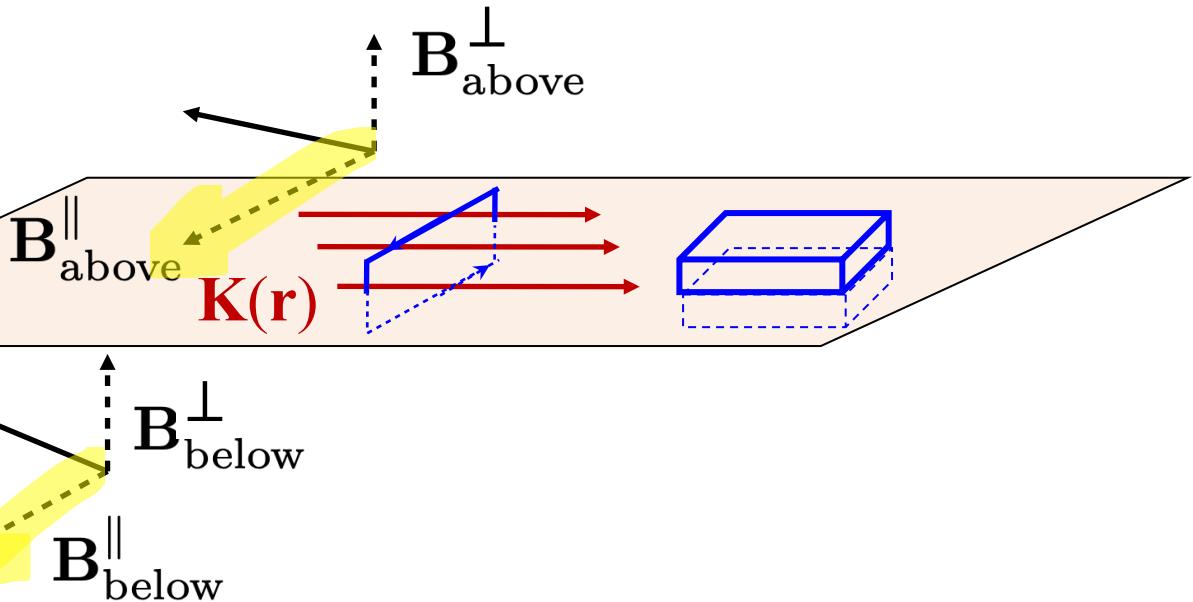
Q: Suppose we have a current sheet, $\mathbf{K}(\mathbf{r})$. Which vector operator do you need to set boundary conditions on \mathbf{B}_{\parallel} and \mathbf{B}_{\perp} ?

- A. $\nabla \times \mathbf{B}$ for \mathbf{B}_{\parallel} , $\nabla \cdot \mathbf{B}$ for \mathbf{B}_{\perp}
- B. $\nabla \cdot \mathbf{B}$ for \mathbf{B}_{\parallel} , $\nabla \times \mathbf{B}$ for \mathbf{B}_{\perp}

$$\int (\nabla \times \mathbf{B}) \cdot d\mathbf{a} = \oint \mathbf{B} \cdot d\mathbf{l} \rightarrow B_{\parallel} \text{ (loop)}$$

$$\nabla \times \mathbf{B} = \mu_0 \mathbf{J} \rightarrow \oint_C \mathbf{B} \cdot d\mathbf{l} = \mu_0 I_{\text{enc}} \rightarrow (\mathbf{B}_{\parallel \text{ above}} - \mathbf{B}_{\parallel \text{ below}}) L = \mu_0 K \rightarrow (\mathbf{B}_{\parallel \text{ above}} - \mathbf{B}_{\parallel \text{ below}}) \perp \mathbf{K} = \mu_0 K$$

$$\int (\nabla \cdot \mathbf{B}) d\tau = \oint \mathbf{B} \cdot d\mathbf{a} \rightarrow B_{\perp} \text{ (pillbox)}$$



$$\nabla \cdot \mathbf{B} = 0 \rightarrow \oint_A \mathbf{B} \cdot d\mathbf{a} = (\mathbf{B}_{\perp \text{ above}} - \mathbf{B}_{\perp \text{ below}}) A = 0$$

Boundary conditions on \mathbf{B}

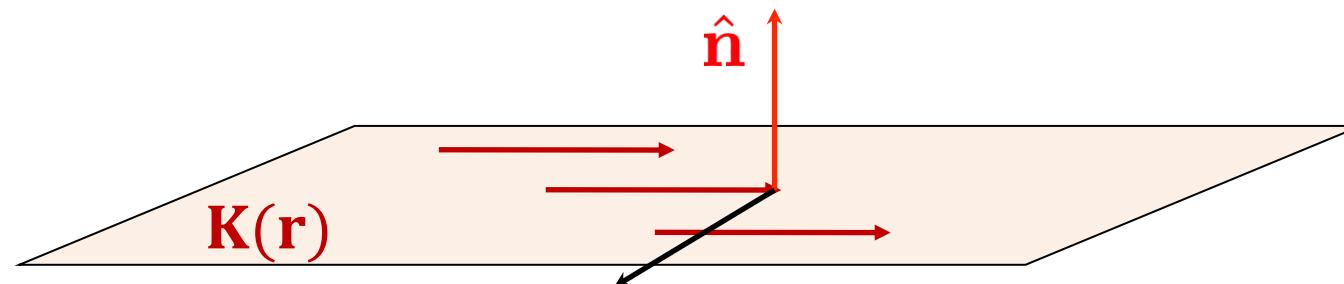
We can combine these results into a single vector expression:

$$\Delta\mathbf{B} = \mathbf{B}_{\text{above}} - \mathbf{B}_{\text{below}} = \mu_0(\mathbf{K} \times \hat{\mathbf{n}})$$

$$(\text{c.f.} : \Delta\mathbf{E} = \frac{\sigma}{\epsilon_0}\hat{\mathbf{n}})$$

$$(\mathbf{B}_{\text{above}}^{\parallel} - \mathbf{B}_{\text{below}}^{\parallel})_{\perp\mathbf{K}} = \mu_0 K$$

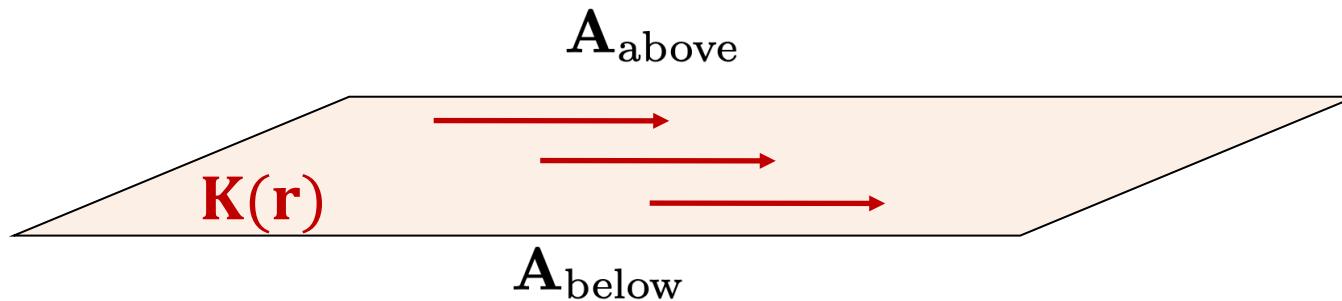
$$(\mathbf{B}_{\text{above}}^{\perp} - \mathbf{B}_{\text{below}}^{\perp}) = 0$$



Think of the surface current as a bunch of parallel wires running along the surface, each carrying a current. Each wire contributes a bit of magnetic field that circulates around it per the right hand rule. This produces some (extra) \mathbf{B} into the page below the surface and out of the page above it => surface current creates a jump in \mathbf{B}_{\parallel}

Boundary conditions on \mathbf{A}

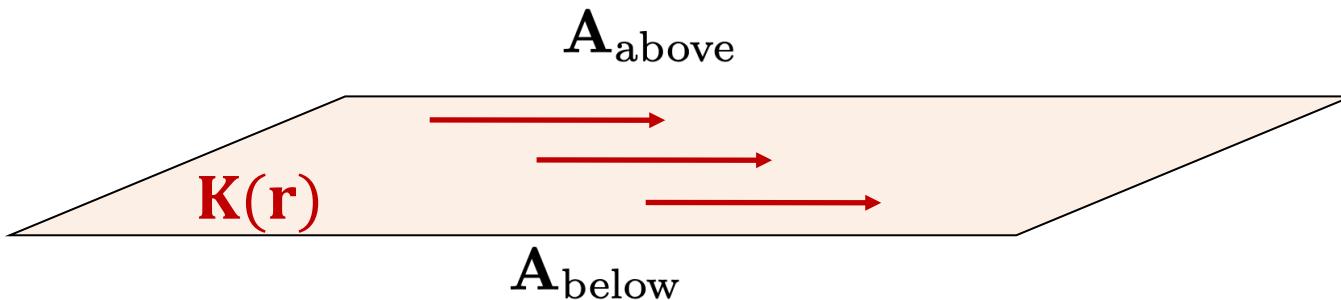
Which of the following quantities is continuous across a current sheet boundary?



- A. $\mathbf{A}_{\text{above}} = \mathbf{A}_{\text{below}}$
- B. $\mathbf{A}_{\text{above}}^\perp = \mathbf{A}_{\text{below}}^\perp$
- C. $\mathbf{A}_{\text{above}}^\parallel = \mathbf{A}_{\text{below}}^\parallel$
- D. none of the above

Boundary conditions on \mathbf{A}

Which of the following quantities is continuous across a current sheet boundary?



Similar to the electric potential continuity

We can also show that:

$$\frac{\partial \mathbf{A}_{\text{above}}}{\partial n} - \frac{\partial \mathbf{A}_{\text{below}}}{\partial n} = -\mu_0 \mathbf{K}$$

- A. $\mathbf{A}_{\text{above}} = \mathbf{A}_{\text{below}}$
- B. $\mathbf{A}_{\text{above}}^\perp = \mathbf{A}_{\text{below}}^\perp$
- C. $\mathbf{A}_{\text{above}}^\parallel = \mathbf{A}_{\text{below}}^\parallel$
- D. none of the above

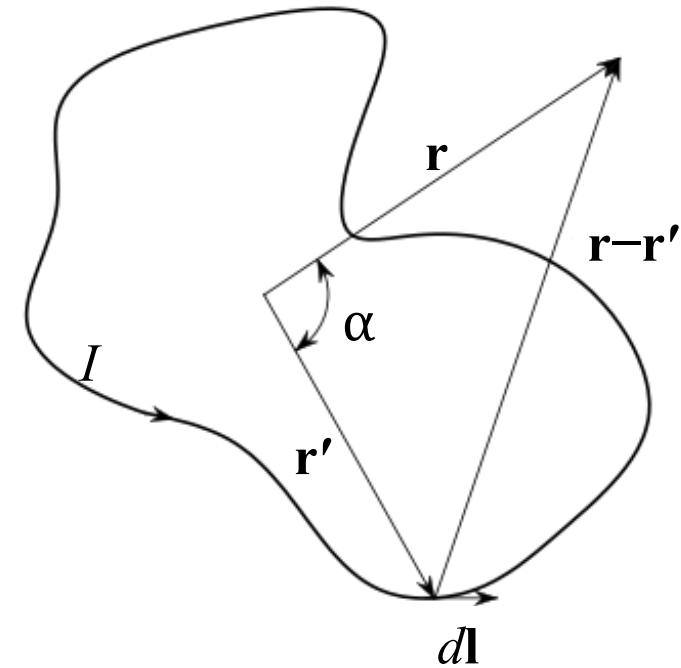
- Boundary conditions for \mathbf{A} :

$$\mathbf{A}_{\text{above}} = \mathbf{A}_{\text{below}}$$

$$\frac{\partial \mathbf{A}_{\text{above}}}{\partial n} - \frac{\partial \mathbf{A}_{\text{below}}}{\partial n} = -\mu_0 \mathbf{K}$$

Multipole expansion of \mathbf{A}

(Ch 5.4.3)



- General idea
- Magnetic monopoles do not exist
- Magnetic dipoles, magnetic moments, and loops of current
- Practice

Multipole expansion of \mathbf{A}

Consider an arbitrary, finite current distribution $\mathbf{J}(\mathbf{r})$. Its vector potential at point \mathbf{r} is:

$$\mathbf{A}(\mathbf{r}) = \frac{\mu_0}{4\pi} \int_V \frac{\mathbf{J}(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|} d\tau' \rightarrow \frac{\mu_0 I}{4\pi} \oint_C \frac{d\mathbf{l}'}{|\mathbf{r} - \mathbf{r}'|} \quad (\text{for a loop of current})$$

As with V , we can expand \mathbf{A} in a power series of orthogonal functions that also form a useful approximation scheme:

$$\frac{1}{|\mathbf{r} - \mathbf{r}'|} = \frac{1}{r} \left(1 + \frac{r'}{r} \cos \alpha + \dots \right)$$

$\ell=0$ $\ell=1$ $\ell=2, 3, 4 \dots$

$r' \ll r$

$$= \frac{1}{r} \sum_{l=0}^{\infty} \left(\frac{r'}{r} \right)^l P_l(\cos \alpha)$$



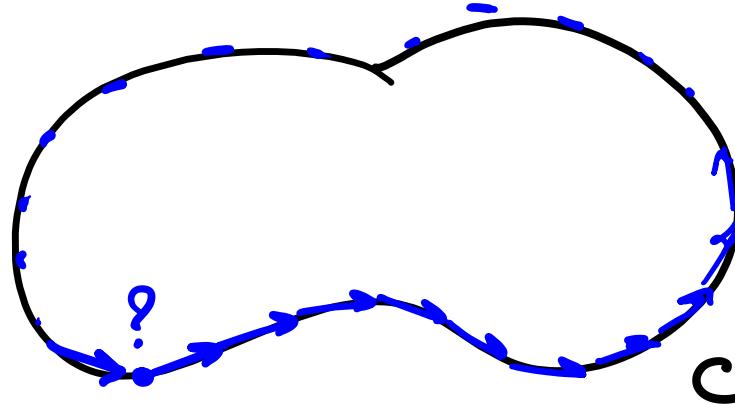
Monopole contribution to \mathbf{A}

$$A_i(\mathbf{r}) = \frac{\mu_0}{4\pi} \int_V \frac{J_i(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|} d\tau' \quad (i = x, y, z)$$

The leading term in the multipole expansion of \mathbf{A} for a loop of current is:

$$\mathbf{A}^{(0)}(\mathbf{r}) = \frac{\mu_0}{4\pi} \frac{1}{r} \int_V \mathbf{J}(\mathbf{r}') d\tau' \quad \rightarrow \quad \frac{\mu_0 I}{4\pi} \frac{1}{r} \oint_C d\mathbf{l}'$$

What is the magnitude of the integral $\oint_C d\mathbf{l}'$?



- A. R
- B. $2\pi R$
- C. 0
- D. It depends

Monopole contribution to \mathbf{A}

$$A_i(\mathbf{r}) = \frac{\mu_0}{4\pi} \int_V \frac{J_i(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|} d\tau' \quad (i = x, y, z)$$

The leading term in the multipole expansion of \mathbf{A} for a loop of current is:

$$\mathbf{A}^{(0)}(\mathbf{r}) = \frac{\mu_0}{4\pi} \frac{1}{r} \int_V \mathbf{J}(\mathbf{r}') d\tau' \rightarrow \frac{\mu_0 I}{4\pi} \frac{1}{r} \oint_C d\mathbf{l}'$$

What is the magnitude of the integral $\oint_C d\mathbf{l}'$? **Vector sum over a closed path.**

There is no monopole contribution to \mathbf{A} !

- A. R
- B. $2\pi R$
- C. 0
- D. It depends

Note the parallel to electric potential:

“there are no magnetic monopoles”

$$V_0(\mathbf{r}) = \frac{1}{4\pi\epsilon_0} \frac{Q}{r} \leftrightarrow \mathbf{A}_0(\mathbf{r}) = \frac{\mu_0}{4\pi} \frac{\mathbf{Q}_m}{r} = 0$$

Monopole contribution to \mathbf{A}

$$\mathbf{A}^{(0)}(\mathbf{r}) = \frac{\mu_0}{4\pi} \frac{1}{r} \int_V \mathbf{J}(\mathbf{r}') d\tau'$$

$$V_0(\mathbf{r}) = \frac{1}{4\pi\epsilon_0} \frac{Q}{r} \leftrightarrow \mathbf{A}^{(0)}(\mathbf{r}) = \frac{\mu_0}{4\pi} \frac{\mathbf{Q}_m}{r} = 0$$

- For a loop of current I : $\mathbf{J}(\mathbf{r}') d\tau' \rightarrow I d\mathbf{l}'$

$$\mathbf{A}^{(0)}(\mathbf{r}) = \frac{\mu_0 I}{4\pi} \frac{1}{r} \oint_C d\mathbf{l}' = 0 \quad (\text{vector sum over a closed path})$$

- General (steady, bounded) volume current density, $\mathbf{J}(\mathbf{r}')$:

$$\mathbf{Q}_m = \int_V \mathbf{J}(\mathbf{r}') d\tau' = 0 \quad (\text{continuity equation, divergence theorem and a bit of vector calculus})$$

“there are no magnetic monopoles” \Leftrightarrow no monopole contribution to \mathbf{A}

Dipole contribution to \mathbf{A}

The next term in the multipole expansion of \mathbf{A} is the dipole. For a loop:

$$\mathbf{A}^{(1)}(\mathbf{r}) = \frac{\mu_0 I}{4\pi} \frac{1}{r^2} \oint_C r' \cos \alpha d\mathbf{l}' \quad r' \cos \alpha = \hat{\mathbf{r}} \cdot \mathbf{r}'$$

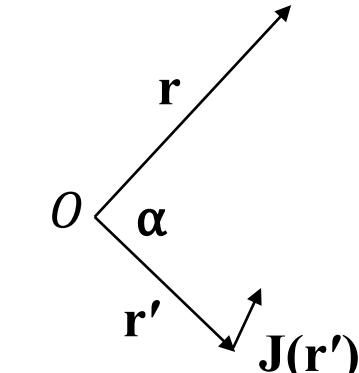
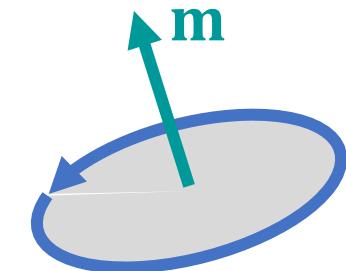
$$= \frac{\mu_0 I}{4\pi} \frac{1}{r^2} \oint_C (\hat{\mathbf{r}} \cdot \mathbf{r}') d\mathbf{l}' \quad \oint (\mathbf{c} \cdot \mathbf{r}') d\mathbf{l}' = - \int_S \mathbf{c} \times d\mathbf{a}$$

adopted from
Griffiths, (1.108)

$$= - \frac{\mu_0 I}{4\pi} \frac{1}{r^2} \oint_C \hat{\mathbf{r}} \times d\mathbf{a} = - \frac{\mu_0}{4\pi} \frac{\hat{\mathbf{r}}}{r^2} \times \left(I \oint_S d\mathbf{a} \right) = - \frac{\mu_0}{4\pi} \frac{\hat{\mathbf{r}} \times \mathbf{m}}{r^2} \quad \left| \begin{array}{l} = \frac{\mu_0}{4\pi} \frac{\mathbf{m} \times \hat{\mathbf{r}}}{r^2} \end{array} \right.$$

where \mathbf{m} is magnetic dipole moment:

$$\mathbf{m} = I \oint_S d\mathbf{a} \rightarrow I\mathbf{a}$$



Dipole contribution to \mathbf{A}

$$\mathbf{A}^{(1)}(\mathbf{r}) = \frac{\mu_0}{4\pi} \frac{1}{r^2} \int_V \mathbf{J}(\mathbf{r}') r' \cos \alpha d\tau'$$

$$V_1(\mathbf{r}) = \frac{1}{4\pi\epsilon_0} \frac{\mathbf{p} \cdot \hat{\mathbf{r}}}{r^2} \quad \leftrightarrow \quad \mathbf{A}^{(1)}(\mathbf{r}) = \frac{\mu_0}{4\pi} \frac{\mathbf{m} \times \hat{\mathbf{r}}}{r^2}$$

- For a loop of current I :

$$\mathbf{m} = I \oint_S d\mathbf{a} \rightarrow I\mathbf{a} \quad \text{(see previous slide)}$$

- General (steady, bounded) volume current density, $\mathbf{J}(\mathbf{r}')$:

$$\mathbf{m} = \frac{1}{2} \int_V \mathbf{r}' \times \mathbf{J}(\mathbf{r}') d\tau' \quad \text{(relatively tricky derivation)}$$

Example: dipole moment of a current loop

Find the magnetic dipole moment of a current loop of radius R carrying a steady current I .

Start with:
$$\mathbf{m} \equiv \frac{1}{2} \int_V \mathbf{r}' \times \underbrace{\mathbf{J}(\mathbf{r}') d\tau'}_{I d\hat{\mathbf{e}}'}$$

and reduce this to a line integral:

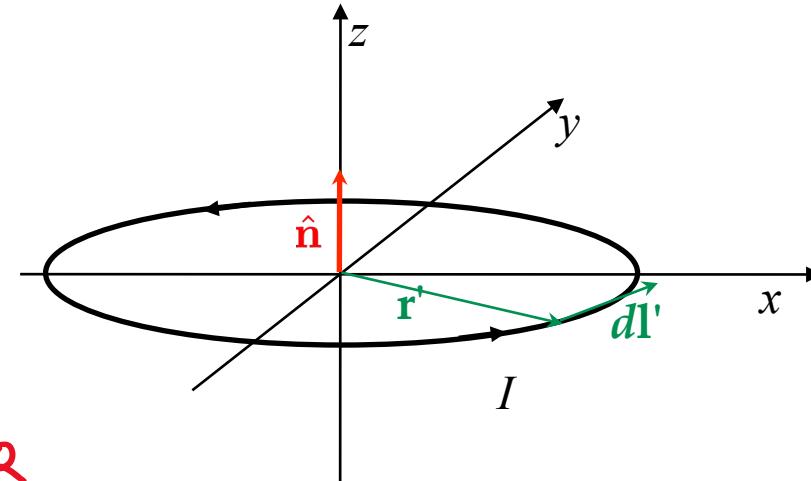
along z

$$\mathbf{m} \rightarrow \frac{I}{2} \oint_C \mathbf{r}' \times d\mathbf{l}' \quad . \quad |\vec{r}'| = R$$

$$= \frac{I}{2} R \cdot 2\pi R \hat{\mathbf{n}} = I(\pi R^2) \hat{\mathbf{n}} \quad (\text{perpendicular to plane of loop})$$

$$\rightarrow \mathbf{m} = I \mathbf{a}$$

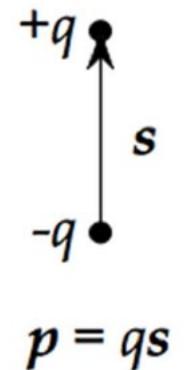
\mathbf{a} is a vector with direction $\hat{\mathbf{n}}$ and magnitude equal to the area of the loop.



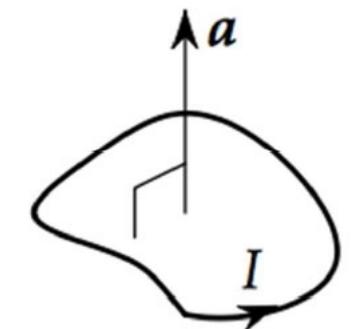
Dipole contribution to \mathbf{A}

Compare with electric dipole:

$$V_1(\mathbf{r}) = \frac{1}{4\pi\epsilon_0} \frac{\hat{\mathbf{r}}}{r^2} \cdot \int_V \rho(\mathbf{r}') \mathbf{r}' d\tau' = \frac{1}{4\pi\epsilon_0} \frac{\mathbf{p} \cdot \hat{\mathbf{r}}}{r^2} \quad \mathbf{p} \equiv \int_V \rho(\mathbf{r}') \mathbf{r}' d\tau'$$



$$\mathbf{A}^{(1)}(\mathbf{r}) = \frac{\mu_0}{4\pi} \frac{\hat{\mathbf{r}}}{r^2} \int_V \mathbf{J}(\mathbf{r}') \mathbf{r}' d\tau' = \frac{\mu_0}{4\pi} \frac{\mathbf{m} \times \hat{\mathbf{r}}}{r^2} \quad \mathbf{m} \equiv I \oint_S d\mathbf{a}$$



Magnetic dipole fields

The **A** and **B** fields due to a current distribution with a dipole moment, **m**, is given by:

$$\mathbf{A}_1(\mathbf{r}) = \frac{\mu_0}{4\pi} \frac{\mathbf{m} \times \hat{\mathbf{r}}}{r^2}$$

$$\mathbf{B}_1(\mathbf{r}) = \nabla \times \mathbf{A}_1 = \frac{\mu_0}{4\pi} \frac{1}{r^3} [3(\mathbf{m} \cdot \hat{\mathbf{r}})\hat{\mathbf{r}} - \mathbf{m}]$$

For the special case where **m** is along the z axis, (e.g. a current loop in the *x*-*y* plane) these fields become:

$$\mathbf{A}_1(\mathbf{r}) = \frac{\mu_0}{4\pi} \frac{m \sin \theta}{r^2} \hat{\varphi} \quad (\mathbf{m} = m\hat{\mathbf{z}})$$

$$\mathbf{B}_1(\mathbf{r}) = \frac{\mu_0 m}{4\pi r^3} (2 \cos \theta \hat{\mathbf{r}} + \sin \theta \hat{\theta})$$

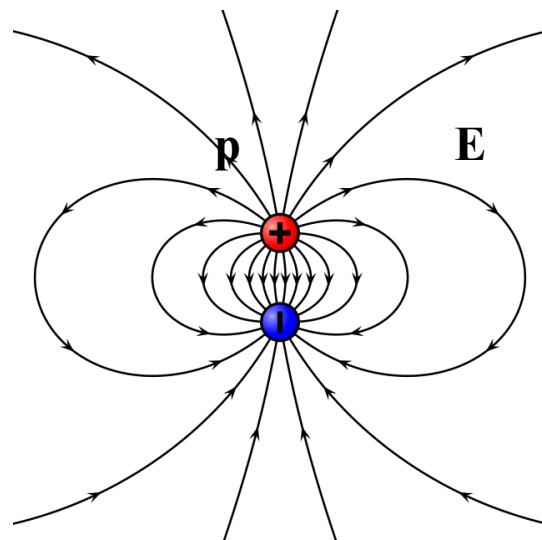
Magnetic dipole field

The “ideal” dipole fields for \mathbf{E} and \mathbf{B} have the same form:

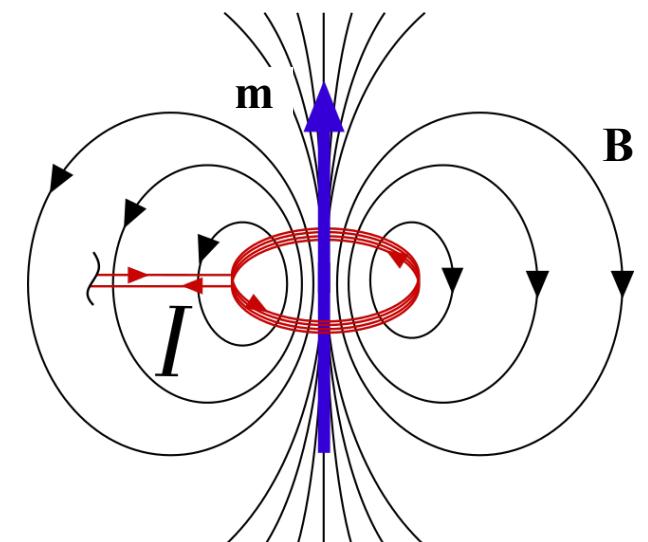
$$\mathbf{E}_1(\mathbf{r}) = \frac{1}{4\pi\epsilon_0} \frac{p}{r^3} \left(2 \cos \theta \hat{\mathbf{r}} + \sin \theta \hat{\theta} \right)$$

$$\mathbf{B}_1(\mathbf{r}) = \frac{\mu_0 m}{4\pi r^3} \left(2 \cos \theta \hat{\mathbf{r}} + \sin \theta \hat{\theta} \right)$$

But the “real” dipoles are different up close:



Note that the \mathbf{B} field lines do not start or stop since $\nabla \cdot \mathbf{B} = 0$

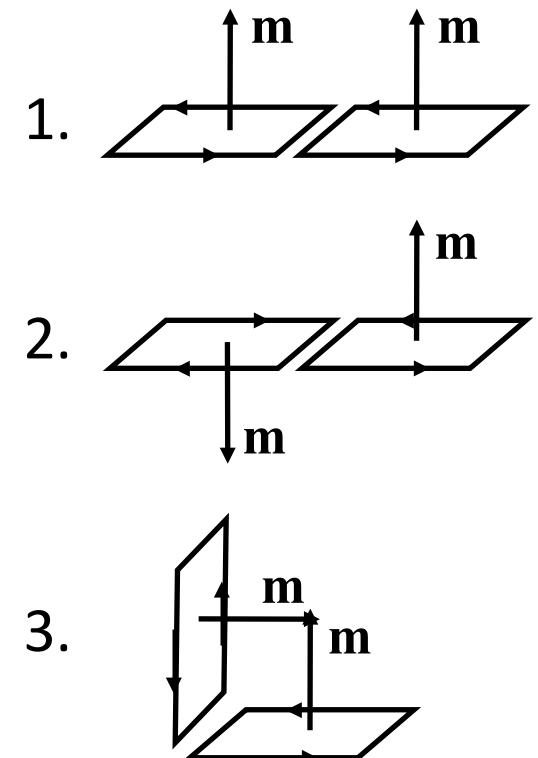


Working with magnetic dipole fields – 1

Q: Two current loops with the same magnetic dipole moment (in magnitude) are oriented in three different ways, as shown.

Which configurations produce a dipole field at large distances?

- A. None of them
- B. All of them
- C. 1 only
- D. 1 and 2 only
- E. 1 and 3 only



Working with magnetic dipole fields – 1

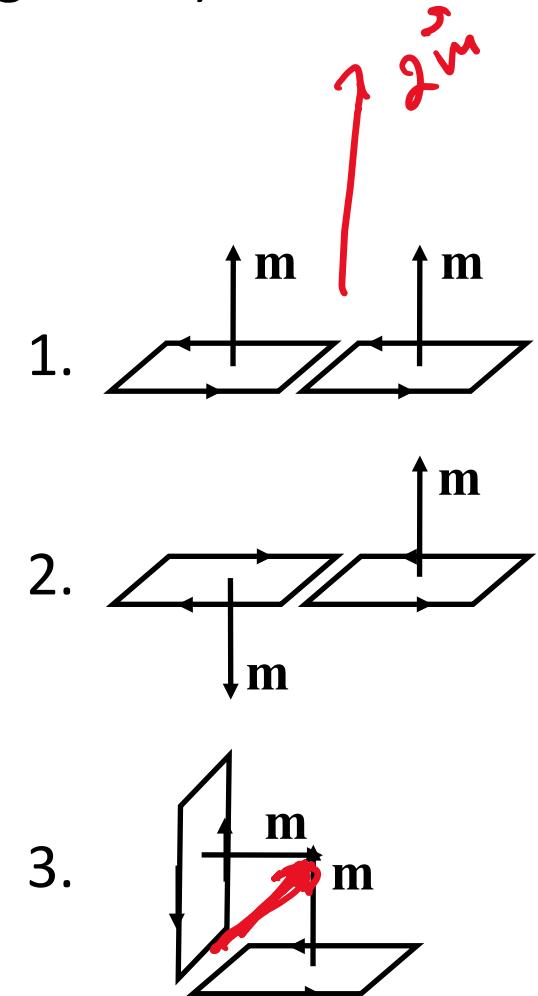
Q: Two current loops with the same magnetic dipole moment (in magnitude) are oriented in three different ways, as shown.

Dipole moments add as vectors.

Which configurations produce a dipole field at large distances?

- A. None of them
- B. All of them
- C. 1 only
- D. 1 and 2 only
- E. 1 and 3 only

Loop #2 will have quadrupole as the leading term for \mathbf{A}



Working with magnetic dipole fields – 2

Q: A single current is in a uniform \mathbf{B} field, as shown.

The force on a given segment of the wire is: $\mathbf{F} = I\mathbf{L} \times \mathbf{B}$

What is the direction of the torque, due to \mathbf{B} , on the loop?

$$(\boldsymbol{\tau} = \mathbf{r} \times \mathbf{F})$$

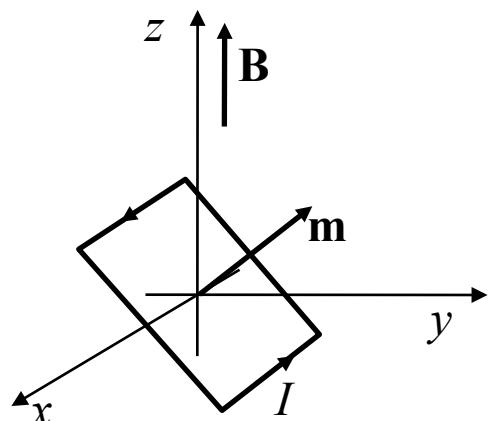
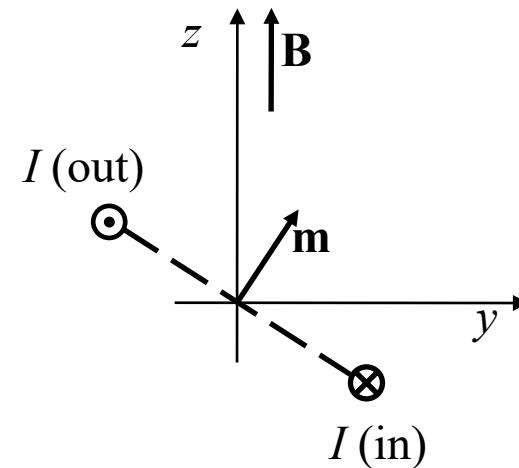
A. zero

B. $\hat{\mathbf{x}}$

C. $\hat{\mathbf{y}}$

D. $\hat{\mathbf{z}}$

E. none of the above



Working with magnetic dipole fields – 2

Q: A single current is in a uniform \mathbf{B} field, as shown.

The force on a given segment of the wire is: $\mathbf{F} = I\mathbf{L} \times \mathbf{B}$

What is the direction of the torque, due to \mathbf{B} , on the loop?

$(\tau = \mathbf{r} \times \mathbf{F})$

Tends to align \mathbf{m} and \mathbf{B} .

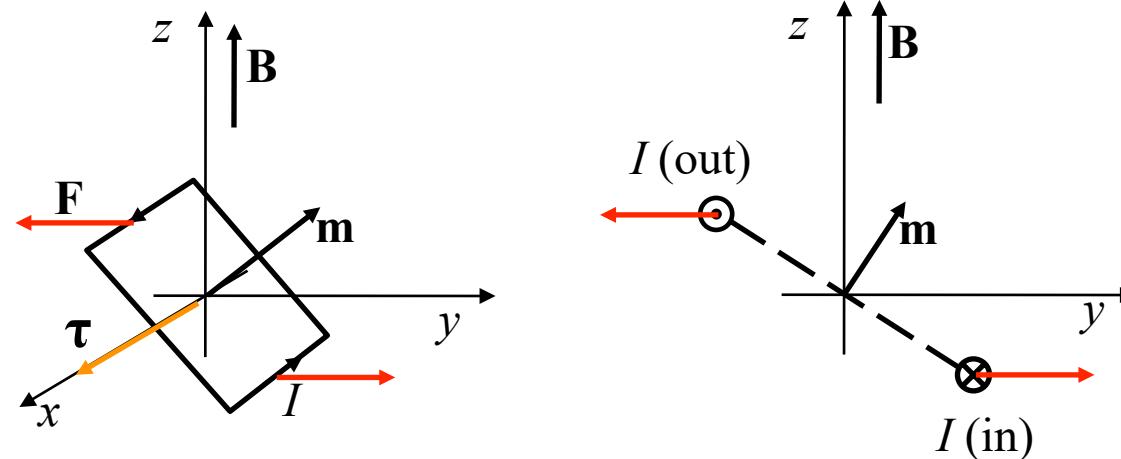
A. zero

B. $\hat{\mathbf{x}}$

C. $\hat{\mathbf{y}}$

D. $\hat{\mathbf{z}}$

E. none of the above



The magnetic torque on \mathbf{m} has the same form as for the electric dipole, \mathbf{p} : $\tau_m = \mathbf{m} \times \mathbf{B}$

Compare:
 $\tau_e = \mathbf{p} \times \mathbf{E}$

Vector potential of a dipole

Q: A small current loop is a magnetic dipole. Sketch its vector potential \mathbf{A} .

$$\vec{A} = \frac{\mu_0}{4\pi} \int \frac{\vec{J} d\tau}{r} \quad \longrightarrow \quad \vec{A}^{(1)} = \frac{\mu_0}{4\pi} \frac{\vec{m} \times \vec{r}}{r^2}$$

Q: In which direction does it point?

- A. $+\hat{z}$
- B. $-\hat{z}$
- C. $+\hat{\phi}$
- D. $-\hat{\phi}$
- E. Something else

Vector potential of a dipole

Q: A small current loop is a magnetic dipole. Sketch its vector potential \mathbf{A} .

$$\mathbf{A}^{(1)}(\mathbf{r}) = \frac{\mu_0}{4\pi} \frac{\mathbf{m} \times \hat{\mathbf{r}}}{r^2}$$

Q: In which direction does it point?

- A. $+\hat{\mathbf{z}}$
- B. $-\hat{\mathbf{z}}$
- C. $+\hat{\phi}$
- D. $-\hat{\phi}$
- E. Something else

