
Lecture 19

Magnetic potential. 
Boundary conditions for B and A. 
Multipole expansion for A. 𝐁𝐁 = 𝛁𝛁 × 𝐀𝐀



Last Time:
Since 𝐁𝐁 is divergence-free, we 
can define a vector potential:

We can always chose the vector potential so that (Coulomb gauge):

From ∇ × 𝐁𝐁 = 𝜇𝜇0J we find 
that 𝐀𝐀 obeys Poisson equation: 

Its solution 
in Cartesian 
coordinates:

If 𝐁𝐁 is “too curly”, but 𝐈𝐈 is straight:

• Current 𝐈𝐈 is a source of 𝐀𝐀 (simple component-to-component 
correspondence)

• Know 𝐈𝐈 => find 𝐀𝐀 => find 𝐁𝐁 = ∇ × 𝐀𝐀



Example: Vector potential for a wire – 1

Q: The vector potential, 𝐀𝐀, due to a long straight wire carrying a current, 
𝐼𝐼, along the 𝑧𝑧 axis is parallel to:

z

I

A. (radial)
B. (azimuthal)
C. (axial)
D. More than one



Example: Vector potential for a wire – 1

Q: The vector potential, 𝐀𝐀, due to a long straight wire carrying a current, 
𝐼𝐼, along the 𝑧𝑧 axis is parallel to:

z

I

A. (radial)
B. (azimuthal)
C. (axial)
D. More than one



Example: Vector potential for a wire – 2

z

I

s

Q: Find the vector potential, 𝐀𝐀, a distance 𝑠𝑠 from a wire carrying a current 𝐼𝐼 along the 𝑧𝑧 axis.

• Write down the Coulomb-law-like integral for each component of 𝐀𝐀.

• Evaluate the components as you would in electrostatics.



Example: Vector potential for a wire – 2

z

I

s

Q: Find the vector potential, 𝐀𝐀, a distance 𝑠𝑠 from a wire carrying a current 𝐼𝐼 along the 𝑧𝑧 axis.

The current is along the z axis, so:

Since it is a line current:

Let the observation point 𝐫𝐫
be (𝑠𝑠, 0,0), then:

Compare:

So: Bonus: 
Find 𝐁𝐁

= −
𝜕𝜕𝐴𝐴𝑧𝑧
𝜕𝜕𝜕𝜕

�𝛟𝛟

=
𝜇𝜇0𝐼𝐼
2𝜋𝜋𝜋𝜋

�𝛟𝛟 as it should be!

𝐁𝐁 = ∇ × 𝐀𝐀



Example: Vector potential for a loop – 1

Q: A circular wire of radius 𝑎𝑎 carries current 𝐼𝐼 in the (𝑥𝑥,𝑦𝑦) plane.  What can you say 
about the vector potential 𝐀𝐀 at the point on the 𝑧𝑧 axis as shown?

(Assume the Coulomb gauge, and that 𝐀𝐀 vanishes at large 𝑟𝑟.)

A.

B.

C.

D.

E. None of the above

x

y

z

I
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�𝛟𝛟 = −sin 𝜙𝜙 �𝐱𝐱 + cos 𝜙𝜙 �𝐲𝐲

𝐉𝐉 𝑑𝑑𝜏𝜏′ = 𝐼𝐼 𝑑𝑑𝐥𝐥 = 𝐼𝐼 𝑅𝑅𝑅𝑅𝑅𝑅 �𝛟𝛟J

Jx∝ sin𝜙𝜙 Jy ∝ cos𝜙𝜙
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Two wires, a distance 𝑑𝑑 apart, carry equal & opposite current, 𝐼𝐼.
1. Find the vector potential, 𝐀𝐀(𝑥𝑥,𝑦𝑦).
2. Find magnetic field, 𝐁𝐁(𝑥𝑥,𝑦𝑦). z

I
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I

sa

d

y

Potential and field of two wires

Hint: use superposition for 𝐀𝐀.  For one wire:



Potential and field of two wires

Two wires, a distance 𝑑𝑑 apart, carry equal & opposite current, 𝐼𝐼.   Find 𝐀𝐀(𝑥𝑥,𝑦𝑦) and 𝐁𝐁(𝑥𝑥,𝑦𝑦).

z

I
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I

sa

d

y

The vector potential fields superpose:

To compute 𝐁𝐁, switch to Cartesian coordinates and use:

Note that 𝐀𝐀 changes sign at the mid-plane:

with



Potential and field of two wires

Two wires, a distance 𝑑𝑑 apart, carry equal & opposite current, 𝐼𝐼.   Find 𝐀𝐀(𝑥𝑥,𝑦𝑦) and 𝐁𝐁(𝑥𝑥,𝑦𝑦).
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Then:

and

So that:



Boundary conditions

(Ch 5.4.2)

• Boundary conditions for 𝐁𝐁∥,𝐁𝐁⊥, 𝐀𝐀 and 𝜕𝜕𝐀𝐀/𝜕𝜕𝜕𝜕



Boundary conditions on 𝐁𝐁

Q: Suppose we have a current sheet, 𝐊𝐊(𝐫𝐫).  Which vector operator do you need to set 
boundary conditions on 𝐁𝐁∥ and 𝐁𝐁⊥?

K(r)
⊥

⊥

A. ∇ × 𝐁𝐁 for 𝐁𝐁∥, ∇ ⋅ 𝐁𝐁 for 𝐁𝐁⊥

B. ∇ ⋅ 𝐁𝐁 for 𝐁𝐁∥, ∇ × 𝐁𝐁 for 𝐁𝐁⊥



Boundary conditions on 𝐁𝐁

Q: Suppose we have a current sheet, 𝐊𝐊(𝐫𝐫).  Which vector operator do you need to set 
boundary conditions on 𝐁𝐁∥ and 𝐁𝐁⊥?

K(r)
⊥

⊥

� ∇ × 𝐁𝐁 ⋅ 𝑑𝑑𝐚𝐚 = �𝐁𝐁 ⋅ 𝑑𝑑𝐥𝐥

� ∇ ⋅ 𝐁𝐁 𝑑𝑑𝑑𝑑 = �𝐁𝐁 ⋅ 𝑑𝑑𝐚𝐚

→ 𝐵𝐵∥ (loop)

→ 𝐵𝐵⊥ (pillbox)

A. ∇ × 𝐁𝐁 for 𝐁𝐁∥, ∇ ⋅ 𝐁𝐁 for 𝐁𝐁⊥

B. ∇ ⋅ 𝐁𝐁 for 𝐁𝐁∥, ∇ × 𝐁𝐁 for 𝐁𝐁⊥



Boundary conditions on 𝐁𝐁

Think of the surface current as a bunch of parallel wires running along the surface, each 
carrying a current.  Each wire contributes a bit of magnetic field that circulates around it 
per the right hand rule.  This produces some (extra) 𝐁𝐁 into the page below the surface and 
out of the page above it => surface current creates a jump in 𝐁𝐁∥

𝐊𝐊(𝐫𝐫)

We can combine these results into a single vector expression:



Boundary conditions on 𝐀𝐀

𝐊𝐊(𝐫𝐫)

Which of the following quantities is continuous across a current sheet boundary?

A.

B.

C.

D. none of the above



Boundary conditions on 𝐀𝐀

Which of the following quantities is continuous across a current sheet boundary?

A.

B.

C.

D. none of the above

We can also show 
that:

Similar to the electric 
potential continuity

• Boundary conditions for 𝐀𝐀:

𝐊𝐊(𝐫𝐫)



Multipole expansion of 𝐀𝐀

(Ch 5.4.3)

• General idea
• Magnetic monopoles do not exist
• Magnetic dipoles, magnetic moments, and loops of current
• Practice

rʹ

r

r−rʹ

dl

I
⍺



Consider an arbitrary, finite current distribution J(𝐫𝐫). Its vector potential at point 𝐫𝐫 is:

As with 𝑉𝑉, we can expand 𝐀𝐀 in a power series of 
orthogonal functions that also form a useful 
approximation scheme:

rʹ

r

r−rʹ

dl

I
⍺

Multipole expansion of 𝐀𝐀

𝐀𝐀 𝐫𝐫 =
𝜇𝜇0
4𝜋𝜋

�
𝑉𝑉

𝐉𝐉(𝐫𝐫′)
𝐫𝐫 − 𝐫𝐫′

𝑑𝑑𝜏𝜏′ →
𝜇𝜇0𝐼𝐼
4𝜋𝜋

�
𝐶𝐶

𝑑𝑑𝐥𝐥′
𝐫𝐫 − 𝐫𝐫′

J
(for a loop of current)



Monopole contribution to 𝐀𝐀

A. 𝑅𝑅
B. 2𝜋𝜋𝑅𝑅
C. 0

D. It depends

What is the magnitude of the integral        ' ?

𝐀𝐀(0) 𝐫𝐫 =
𝜇𝜇0
4𝜋𝜋

1
𝑟𝑟
�
𝑉𝑉
𝐉𝐉 𝐫𝐫′ 𝑑𝑑𝜏𝜏′ →

𝜇𝜇0𝐼𝐼
4𝜋𝜋

1
𝑟𝑟
�
𝐶𝐶
𝑑𝑑𝐥𝐥′J

The leading term in the multipole expansion of 𝐀𝐀 for a loop of current is:



Monopole contribution to 𝐀𝐀

A. 𝑅𝑅
B. 2𝜋𝜋𝑅𝑅
C. 0

D. It depends

Vector sum over a closed path.

Note the parallel to 
electric potential:

“there are no magnetic monopoles”

There is no monopole contribution to 𝐀𝐀!

What is the magnitude of the integral        ' ?

𝐀𝐀(0) 𝐫𝐫 =
𝜇𝜇0
4𝜋𝜋

1
𝑟𝑟
�
𝑉𝑉
𝐉𝐉 𝐫𝐫′ 𝑑𝑑𝜏𝜏′ →

𝜇𝜇0𝐼𝐼
4𝜋𝜋

1
𝑟𝑟
�
𝐶𝐶
𝑑𝑑𝐥𝐥′J

The leading term in the multipole expansion of 𝐀𝐀 for a loop of current is:



Monopole contribution to 𝐀𝐀

• For a loop of current 𝐼𝐼:

(vector sum over a closed path)

“there are no magnetic monopoles”  no monopole contribution to 𝐀𝐀

𝐀𝐀(0) 𝐫𝐫 =
𝜇𝜇0𝐼𝐼
4𝜋𝜋

1
𝑟𝑟
�
𝐶𝐶
𝑑𝑑𝐥𝐥′ = 0

𝐀𝐀(0) 𝐫𝐫 =
𝜇𝜇0
4𝜋𝜋

1
𝑟𝑟
�
𝑉𝑉
𝐉𝐉 𝐫𝐫′ 𝑑𝑑𝜏𝜏′J

𝐉𝐉 𝐫𝐫′ 𝑑𝑑𝜏𝜏′ → 𝐼𝐼𝐼𝐼𝐥𝐥′J

• General (steady, bounded) volume current density, 𝐼𝐼(𝐫𝐫′):J

𝐐𝐐𝒎𝒎 = �
𝑉𝑉
𝐉𝐉 𝐫𝐫′ 𝑑𝑑𝜏𝜏′ = 0J

(continuity equation, divergence 
theorem and a bit of vector calculus)

𝑉𝑉0 𝐫𝐫 =
1

4𝜋𝜋𝜖𝜖0
𝑄𝑄
𝑟𝑟

↔ 𝐀𝐀(0) 𝐫𝐫 =
𝜇𝜇0
4𝜋𝜋

𝐐𝐐𝒎𝒎
𝑟𝑟

= 0



Dipole contribution to 𝐀𝐀

The next term in the multipole expansion of 𝐀𝐀 is the dipole. For a loop:

𝐀𝐀(1) 𝐫𝐫 =
𝜇𝜇0𝐼𝐼
4𝜋𝜋

1
𝑟𝑟2

�
𝐶𝐶
𝑟𝑟′ cos𝛼𝛼 𝑑𝑑𝐥𝐥′

=
𝜇𝜇0𝐼𝐼
4𝜋𝜋

1
𝑟𝑟2

�
𝐶𝐶
�𝐫𝐫 ⋅ 𝐫𝐫′ 𝑑𝑑𝐥𝐥′ � 𝐜𝐜 ⋅ 𝐫𝐫′ 𝑑𝑑𝐥𝐥′ = −�

𝑺𝑺
𝐜𝐜 × 𝑑𝑑𝐚𝐚

adopted from 
Griffiths, (1.108)

r

rʹ

⍺

J(rʹ)

𝑂𝑂

= −
𝜇𝜇0𝐼𝐼
4𝜋𝜋

1
𝑟𝑟2

�
𝐶𝐶
�𝐫𝐫 × 𝑑𝑑𝐚𝐚 = −

𝜇𝜇0
4𝜋𝜋

�𝐫𝐫
𝑟𝑟2

× 𝐼𝐼 �
𝑆𝑆
𝑑𝑑𝐚𝐚 = −

𝜇𝜇0
4𝜋𝜋

�𝐫𝐫 × 𝐦𝐦
𝑟𝑟2

where 𝐦𝐦 is magnetic dipole moment:

𝐦𝐦 = 𝐼𝐼 �
𝑆𝑆
𝑑𝑑𝐚𝐚 → 𝐼𝐼𝐚𝐚

𝐦𝐦

=
𝜇𝜇0
4𝜋𝜋

𝐦𝐦 × �𝐫𝐫
𝑟𝑟2



Dipole contribution to 𝐀𝐀

• For a loop of current 𝐼𝐼:

(see previous slide)

𝐀𝐀(1) 𝐫𝐫 =
𝜇𝜇0
4𝜋𝜋

1
𝑟𝑟2
�
𝑉𝑉
𝐉𝐉 𝐫𝐫′ 𝑟𝑟′ cos𝛼𝛼 𝑑𝑑𝜏𝜏′J

• General (steady, bounded) volume current density, 𝐼𝐼(𝐫𝐫′):J

𝐦𝐦 =
1
2
�
𝑉𝑉
𝐫𝐫′ × 𝐉𝐉 𝐫𝐫′ 𝑑𝑑𝜏𝜏′J (relatively tricky derivation)

𝑉𝑉1 𝐫𝐫 =
1

4𝜋𝜋𝜖𝜖0
𝐩𝐩 ⋅ �𝐫𝐫
𝑟𝑟2

↔ 𝐀𝐀(1) 𝐫𝐫 =
𝜇𝜇0
4𝜋𝜋

𝐦𝐦 × �𝐫𝐫
𝑟𝑟2

𝐦𝐦 = 𝐼𝐼 �
𝑆𝑆
𝑑𝑑𝐚𝐚 → 𝐼𝐼𝐚𝐚



Example: dipole moment of a current loop

Find the magnetic dipole moment of a current loop of radius 𝑅𝑅 carrying a steady current 𝐼𝐼.  

x

y

z

I

rʹ dl'

(perpendicular to plane of loop)

𝐚𝐚 is a vector with direction     and 
magnitude equal to the area of the loop.

and reduce this to a line integral: 

Start with:



Dipole contribution to 𝐀𝐀

Compare with electric dipole:

𝐩𝐩 ≡ �
𝑉𝑉
𝜌𝜌 𝐫𝐫′ 𝐫𝐫′𝑑𝑑𝜏𝜏′

𝐦𝐦 ≡ 𝐼𝐼�
𝑆𝑆
𝑑𝑑𝐚𝐚𝐀𝐀(1) 𝐫𝐫 =

𝜇𝜇0
4𝜋𝜋

�𝐫𝐫
𝑟𝑟2
�
𝑉𝑉

𝐫𝐫′ 𝐫𝐫′ 𝑑𝑑𝜏𝜏′ =
𝜇𝜇0
4𝜋𝜋

𝐦𝐦 × �𝐫𝐫
𝑟𝑟2J



Magnetic dipole fields

The 𝐀𝐀 and 𝐁𝐁 fields due to a current distribution with a dipole moment, 𝐦𝐦, is given by:

For the special case where 𝐦𝐦 is along the 𝑧𝑧 axis, (e.g. a current loop in the 𝑥𝑥-𝑦𝑦 plane) 
these fields become:



Magnetic dipole field

The “ideal” dipole fields for 𝐄𝐄 and 𝐁𝐁 have the same form:

m
p E B

But the “real” dipoles are different up close:

Note that the 𝐁𝐁
field lines do not 
start or stop 
since



Working with magnetic dipole fields – 1

m

1.

2.

3.

Which configurations produce a 
dipole field at large distances?

A. None of them
B. All of them
C. 1 only
D. 1 and 2 only
E. 1 and 3 only

Q: Two current loops with the same magnetic dipole moment (in magnitude) 
are oriented in three different ways, as shown.  

m

m

m

m
m



Working with magnetic dipole fields – 1

m

1.

2.

3.

Which configurations produce a 
dipole field at large distances?

A. None of them
B. All of them
C. 1 only
D. 1 and 2 only
E. 1 and 3 only

Q: Two current loops with the same magnetic dipole moment (in magnitude) 
are oriented in three different ways, as shown.  

m

m

m

m
m

Dipole moments add as vectors.

Loop #2 will have quadrupole 
as the leading term for 𝐀𝐀



Working with magnetic dipole fields – 2

Q: A single current is in a uniform 𝐁𝐁 field, as shown. 
The force on a given segment of the wire is:

x

B

I

y

z

m
I (out)

B

I (in)

z

y

m

A. zero
B.
C.
D.
E. none of the above

What is the direction of the torque, due to 𝐁𝐁, on the loop?



Working with magnetic dipole fields – 2

Q: A single current is in a uniform 𝐁𝐁 field, as shown. 
The force on a given segment of the wire is:

x

B

I

y

z

m
I (out)

B

I (in)

z

y

m

A. zero
B.
C.
D.
E. none of the above

What is the direction of the torque, due to 𝐁𝐁, on the loop?

F

Tends to align 𝐦𝐦 and 𝐁𝐁.

The magnetic torque on 𝐦𝐦 has the same form 
as for the electric dipole, 𝐩𝐩:  𝜏𝜏𝑚𝑚 = 𝐦𝐦 × 𝐁𝐁

τ

Compare:
𝜏𝜏𝑒𝑒 = 𝐩𝐩 × 𝐄𝐄



Vector potential of a dipole

Q: A small current loop is a magnetic dipole. Sketch its vector potential 𝐀𝐀.

A. +�𝐳𝐳
B. −�𝐳𝐳
C. +�𝝓𝝓
D. −�𝝓𝝓
E. Something else

I

Q: In which direction 
does it point?



Vector potential of a dipole

A

Q: A small current loop is a magnetic dipole. Sketch its vector potential 𝐀𝐀.

A. +�𝐳𝐳
B. −�𝐳𝐳
C. +�𝝓𝝓
D. −�𝝓𝝓
E. Something else

I

𝐀𝐀(1) 𝐫𝐫 =
𝜇𝜇0
4𝜋𝜋

𝐦𝐦 × �𝐫𝐫
𝑟𝑟2

Q: In which direction 
does it point?

Decays as 1/𝑟𝑟2
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