Lecture 19

Magnetic potential.

Boundary conditions for B and A.
Multipole expansion for A. B —= V X A



Last Time:

Since B is divergence-free, we
can define a vector potential:

V-B=0 & B=VxA

We can alwa ' at (Coulomb gauge): V-:-A =1(
that A obeys Poisson equation:| | in cartesian Ai(r) = 4—/ ’ - q dr’ (i = z,y, 2)
T r—r
VA = —pod coordinates: v

If B is “too curly”, but I is straight: |

* Current I is a source of A (simple component-to-component /f*”"'.}f;:_ii'—;.{—_;;—;;;“;'\'l i
correspondence) N L o S

* Know I=>find A=>findB=V XA ol




Example: Vector potential for a wire —1

Q: The vector potential, A, due to a long straight wire carrying a current,
I, along the z axis is parallel to:

S (radial)
@ (azimuthal)
7 (axial)

. More than one




Example: Vector potential for a wire —1

Q: The vector potential, A, due to a long straight wire carrying a current,
I, along the z axis is parallel to:

Ag(r) = Z—;/V ) g (i =m,y,2)

v —r/

J; sources A;, so A || J

A. S (radial)
B. ¢ (azimuthal)

@ 7 (axial)

D. More than one




Example: Vector potential for a wire — 2

Q: Find the vector potential, A, a distance s from a wire carrying a current [ along the z axis.

A

* Write down the Coulomb-law-like integral for each component of A. z
* Evaluate the components as you would in electrostatics.
Ko Ji (I") I 1
AZ(I'):E/‘; dr (z:x,y,Z) 2\ ] !

r —r/| y 2

1D : ?At' = Jda




Example: Vector potential for a wire—2 4

_ Mo Ji(r")
41 )y |r — 1|

dr’ (i =z,y,2)

Q: Find the vector potential, A, a distance s from a wire carrying a current I along the z axis.

The currentis along the zaxis,so: J=J,z > A = A,zZ

Since itis aline current:  J,(r')dr’ — I d7

Let the observation point r A (e — wol [T d7
be (s,0,0), then: 2(r) = Ar J_ /22 §2
A +o00 dz' A g
Compare: Vir) = — _ In —
P (r) dmeg J_o V22 + 52 2Tep " a
B=VxA 42 &
Bonus: = ==
>0: | A(r) ol 2 Find B pol 8
2w @ = 2—7TS<I> as it should be!

A

Zz



Example: Vector potential for a loop—1

Q: A circular wire of radius a carries current I in the (x,y) plane. What can you say
about the vector potential A at the point on the z axis as shown?

(Assume the Coulomb gauge and that A vanishes at large r.)

|I'—I'l’ 'l_.’L'y, )

A. A=0 Iz
B. A | X A /
X Y
C. Ay e N
A \ /
D. Az e f
E. None of the above




Example: Vector potential for a loop—1

Q: A circular wire of radius a carries current I in the (x, y) plane. What can you say
about the vector potential A at the point on the z axis as shown?

(Assume the Coulomb gauge, and that A vanishes at large r.)

) (=0,
2T
B. Al X Jy ¢ —sin —>/
=
C. Ay .
(similar for J,))
D. Az
E.

dp =0

Jdt' =1dl=1Rdo ¢

$=—-sinpR+cosgpy

J X sin ¢ J, X cos ¢
A}
/y
el N :
\/ 7 X
I




Example: Vector potential for a loop — 1

Q: A circular wire of radius a carries current I in the (x, y) plane. What can you say
about the vector potential A at the point on the z axis as shown?

(Assume the Coulomb gauge, and that A vanishes at large r.)

oy o [ L)
Az(r)_4w/‘/|r—r’]d7- (t =2,y,2)

A. A=0 z

B. Al x y
) . / A
A \ /

D. Az e f

E. None of the above




Example: Vector potential for a loop — 1

Q: A circular wire of radius a carries current I in the (x,y) plane. What can you say
about the vector potential A at the point on the z axis as shown?

(Assume the Coulomb gauge, and that A vanishes at large r.) Jdo' = Idl=1Rd$ &

/ R . A A
Ai(r) = o Jilr’) dr’ (i=1z,y,2) ¢ =-sinpX+cosgpy
A Jy |r — /|
J X sin ¢ J, o« cos ¢
, sin ¢ ,
z X — dd;
AL A=0 Jy X —sin¢ — \/a2—|-:c2—2axcosqﬁlso '
B. A|lx cos & SR
Jy o< cos g — is even — A
@ Aly Va2 + 22 — 2ax cos ¢ — ‘
\ X
D. Al z — =
E. None of the above




Potential and field of two wires

Two wires, a distance d apart, carry equal & opposite current, I.
1. Find the vector potential, A(x, y).
2. Find magnetic field, B(x, y).

Sa

Hint: use superposition for A. For one wire: A(r) = _pol n

Z
27

3
a



with sq = Vz2 +42 sp = /22 + (y — d)?

Note that A changes sign at the mid-plane: A(zx,d/2) =0

To compute B, switch to Cartesian coordinates and use:

Xy z
B=VxA=|08, 0, 0, |=0,A,X—0,A,y
0 0 A,




A

I S
Potential and field of two wires A(r) = % n (i) Z

Two wires, a distance d apart, carry equal & opposite current, I. Find A(x,y) and B(x, y).

Then: Sb = \/932 +(y—d)? 1, E
I/1 1 Sa = V22 + 12 ;
2T\ Sp Sa 9 Ins — 1 ;
yIns = —Bys :
i oA Wi
and 5,5 = % E
Y Y — d CIVE—
_ — p— S(l ! L”
: y
So that: C . D
pol (y—d y ol [z = d
B — — — —_— - — -
Co2m ( Sh 33) By 2 \ sz 2 I' 1



Canadian Border Ports of Entry 5]

Port Name
Crossing Name

GENERAL

Passenger Vehicles

READYLANE

Boundary conditions

Blaine
Peace Arch

(Ch 5.4.2)

Blaine
Point Roberts

* Boundary conditions for B, B, A and dA/on

El 24 hrs/day 7

11/16/2025

B 24 hrs/day 10
11/16/2025

B 24 hrs/day 3
11/16/2025

At 400 pm PST
30 min delay
2 lanes open

At 4:00 pm PST
30 min delay
4 lanes open

Update Pending

Lanes Closed
Lanes Closed

Update Pending

At 4:00 pm PST

no delay
1 lanes open

At 4:00 pm PST
no delay
1 lanes open

Update Pending




Boundary conditions on B

Q: Suppose we have a current sheet, K(r). Which vector operator do you need to set
boundary conditions on Byand B, ?

Bl
A. VX B forB;, V-B forB, i
Babove" —
B. V-B for By, VX B forB, _ g
'l
\ Bbelow
o B“



Boundary conditions on B

Q: Suppose we have a current sheet, K(r). Which vector operator do you need to set
boundary conditions on Byand B, ?

V X B forB;, V-B forB, i f//' :
Bl —

B. V-B forB;, VXB forB,

____________

V><B=,u0J—>j£B-dlz,uoIenC—>(B“
C

above

- B'll)elow)/z /'LOK/é — (Blal,bove o B‘|t|)elow)J—K = po K

j(V-B>dr=jﬂB-da > B, (pillbox)  V-B=0 = ¢ Bda= (Bl ~ Bluow)d =0
A



Boundary conditions on B

_gl

(B“ below)J—K — /”LOK

above

We can combine these results into a single vector expression: BL B, )=0
apove clow

A o .
AB = Babove — Bbelow = ,LL()(K X 1’1) (C.f. : AE = —1’1)

K(r) ,:74

Think of the surface current as a bunch of parallel wires running along the surface, each
carrying a current. Each wire contributes a bit of magnetic field that circulates around it

per the right hand rule. This produces some (extra) B into the page below the surface and
out of the page above it => surface current creates a jump in B




Boundary conditions on A

Which of the following quantities is continuous across a current sheet boundary?

Aab ove

»

K(r) —
Abelow

A. Aabove — Abelow

4 . 1

B. Aabove — Abelow
[ oAl

C. Aabove T Abelow

D. none of the above



Boundary conditions on A

Which of the following quantities is continuous across a current sheet boundary?

Aabove
K(r) —
Abelow
Similar to the electric <o sh OA . bove OApbelow
potential continuity We can also show on  on —HoK
that:
Aabove — Abelow
B. AL =Ag * Boundary conditions for A: Aabove = Abelow
| _ Al
C. Aabove T Abelow 8Aabove aAbelow
_ = —uoK
D. none of the above on on




Multipole expansion of A

(Ch 5.4.3)

* General idea

* Magnetic monopoles do not exist

* Magnetic dipoles, magnetic moments, and loops of current
* Practice



Multipole expansion of A

Consider an arbitrary, finite current distribution J(r). Its vector potential at point r is:

J(r’ | dl’
A(r) = .Uof ( ), dt’ - Fo % , (for a loop of current)
4t J, [r — 1’| 4t J.|r —r'|

As with V', we can expand A in a power series of
orthogonal functions that also form a useful
approximation scheme:

1 1 o o & 3. .
]r—r’] ; 1+—cosa+ 3

i (%) Py(cos a)

[=0

tle

ﬂlr—\



Monopole contribution to A A;(r) = Z—;

The leading term in the multipole expansion of A for a loop of current is:

Ho 1 , , Hol 1 .
|4 C

What is the magnitude of the integralj{ dal' ?
C

2TR
0
It depends

© O W P

J

Ji (I'/)

v —r'|

dr’ (i =1z,y,2)



Monopole contribution to A Ai(r) = Z—O/ Ji("/),| dr' (i= .y, 2)
T Jv

Ir—r

The leading term in the multipole expansion of A for a loop of current is:
1 I 1
AO(r) = = —fJ(r') dt’ - o fdl’
TTr c

What is the magnitude of the integralj{ dl' ? Vector sum over a closed path.
C

There is no monopole contribution to A! ‘

“there are no magnetic monopoles”

A R Note the parallel to \
B 7R electric potential: 1 Q 4 Q
. 2T . Q.
Vo(r) = & Ag(r) = —0
@O ofx) dmeg 7 o(r) 4T 7

D. It depends



Monopole contribution to A

(0) _ ﬂ - / / _ g (0) _ Ho Q_m:
A% (1) 4nrJVJ(r)dT Vo(r) dnel T o AW(r) 4z 7 Y
* For a loop of current I: J(r')dt - I1dl

Hol 1

AO(r) = — — fdl’ =0 (vector sum over a closed path)
AT r ),

* General (steady, bounded) volume current density, J(1'):
’ ’ (continuity equation, divergence
Qm = jVJ(r )dt' =0 theorem and a bit of vector calculus)

“there are no magnetic monopoles” <> no monopole contribution to A



Dipole contribution to A ]

The next term in the multipole expansion of A is the dipole. For a loop: 0 a
I1 ) TN gepr
AD(r) = Fo? — r' cosadl r'cosa =1 -1 )
4t ¢ ),
tol 1 o~ N adopted from
=~ = ¢ (F r)dl %(c r)dl” = LC Xda  Griffiths, (1.108)
A 1 J,
ol 1 [ o T f ,uO ' Xm L,uo mXr
=——— {Prxda =———>< da =
4t 4 ), A1t 1?2 r2 A 12
m

where m is magnetic dipole moment:

\ m=Ifda—>Ia
S




Dipole contribution to A

1 . f N
(1) :ﬂ_ 1\ 4 ' _ p-r () _ Mo MXT
A (1) i VJ(r )r cosadrt vV, (r) e 2 © A = — —;
* For a loop of current I:
m = ]fda - Ja (see previous slide)
S

* General (steady, bounded) volume current density, J(1'):

1
m =~ fr’ X J(r') dt’ (relatively tricky derivation)
%



Example: dipole moment of a current loop

Find the magnetic dipole moment of a current loop of radius R carrying a steady current I.

T ote’
1 ~" t,
Start with: m=—- | r xJ)dr
5 | ¥ x3w) s
and reduce this to a line integral: o g < T
. - I
m — — ygr X dl’ (¢!l = R

= —R 2rRn = IGTR)n (perpendicular to plane of loop)
A

a is a vector with direction n and

—m = Ja ,
magnitude equal to the area of the loop.




Dipole contribution to A

Compare with electric dipole:

*q
S
1 r 1 P r — AN / -
V _ / ldI: pzfp(r)l‘d‘[ q
1(r) 4meg 12 /Vp(r)r ! deg 12 % o= ga
a




Magnetic dipole fields

The A and B fields due to a current distribution with a dipole moment, m, is given by:

 Mom XT
Al(r)_47r r2
1
Bl(r):VXAl—Z—;r—g[S(m #)# — m]

For the special case where m is along the z axis, (e.g. a current loop in the x-y plane)
these fields become:

Lo msin @ A
A =20 (m = ma)

_ HoMm

By (r) = 43

(2cos¢9f'+sin6’é)



Magnetic dipole field

The “ideal” dipole fields for E and B have the same form:

L p (QCOSHr—I—smHG) Bi(r) = "— Al (2C089r+8m90)

E —
1(r) = 4A7eg r3 AT r3

But the “real” dipoles are different up close:

Note that the B
E field lines do not

start or stop

since V.-B =0




Working with magnetic dipole fields — 1

Q: Two current loops with the same magnetic dipole moment (in magnitude)

are oriented in three different ways, as shown.

Which configurations produce a
dipole field at large distances?

A. None of them
B. All of them

C. 1 only

D. 1and 2 only
E. 1and 3 only




Working with magnetic dipole fields — 1

Q: Two current loops with the same magnetic dipole moment (in magnitude)
are oriented in three different ways, as shown.

Dipole moments add as vectors.

Which configurations produce a
dipole field at large distances?

A. None of them
B. All of them

C. 1 only

D. 1and 2 only

@1 and 3 only

Loop #2 will have quadrupole
as the leading term for A

jm
2. /I 7 /
+Im
m
3. 4 m




Working with magnetic dipole fields — 2

Q: A single current is in a uniform B field, as shown.

The force on a given segment of the wireis: F =1L x B

mooOwp

What is the direction of the torque, due to B, on the loop?

z 1 z
k I
I (out)
m O\ m
a \ [
. Zero vy ~ y
. it ®
X o I (in)

N> <

none of the above

(T=rxF)



Working with magnetic dipole fields — 2

Q: A single current is in a uniform B field, as shown.
The force on a given segment of the wireis: F =1L x B

What is the direction of the torque, due to B, on the loop? (r=rxF)
Z A B Z IB
Tends to align m and B. I
I (out)
£ m —a m
- N
A. zero T Vo N )
X I (in)
C.y
D. z The magnetic torque on m has the same form Compare:
E. none of the above as for the electric dipole, p: 7,,, = m X B To =p XE



Vector potential of a dipole
Q: A small current loop is a magnetic dipole. Sketch its vector potential A.
= = — — A® < Jo mxp
i) o= & %

Q: In which direction
does it point?

A. 42 Q!

—7
+¢
. —¢

Something else

m o O



Vector potential of a dipole

Q: A small current loop is a magnetic dipole. Sketch its vector potential A.

Uo M X T
4t r?

A(l) (r) —

Q: In which direction
does it point?

_|_
ND

©- »
_|_
<) S N

D. —
E.

Something else Decays as 1/72
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