
Lecture 22

Electromotive force.
Faraday’s law. Lenz’s law.
What is wrong with Ampere’s law?

Dynamics!!!



Electromotive force & Electromagnetic Induction

(Ch 7. 1-2)

• Electromotive force (force definition and flux definition)
• Faraday’s law
• Lenz’s law



The Maxwell equations for statics

Here is what we have to date:

Note that 𝐄𝐄 and 𝐁𝐁 are completely independent (decoupled) in this system of equations.

It is time to connect them through the time-dependent phenomenon called induction.



The full Maxwell equations (dynamics)

Here is where we’re headed:

Importantly, this explicitly couples 𝐄𝐄 to 𝐁𝐁 and vice-versa, when these 
fields are time-dependent.



Induced current

Q: One end of rectangular metal loop enters a region of constant uniform magnetic field 𝐁𝐁
with speed 𝑣𝑣, as shown.
In which direction is current induced to flow?

A. Clockwise

B. Counter-clockwise

C. No current, since there is no battery!

B (out)

vl

Hint - think about the direction of the Lorentz 
force on fictious positive charge carriers in the 
loop (they move to the right with the wire).



Induced current

Q: One end of rectangular metal loop enters a region of constant uniform magnetic field 𝐁𝐁
with speed 𝑣𝑣, as shown.
In which direction is current induced to flow?

B (out)

vl

F = v × B (down)

A. Clockwise

B. Counter-clockwise

C. No current, since there is no battery!

Note that:
1) the fact of motion of a loop in 𝐁𝐁

field creates current in that loop; 
2) It’s important that the loop sticks 

out, otherwise no force (check!). 
What’s going on??

F = v × B = 0

Hint - think about the direction of the Lorentz 
force on fictious positive charge carriers in the 
loop (they move to the right with the wire).



Electromotive force

Electromotive force (emf) is defined generically to be the force per unit charge, 𝐟𝐟, 
integrated around a closed circuit loop:

If the only force on a charge is due to an electric field, 𝐄𝐄, then this becomes:

Q: What are its units?

units = Volts



Motional emf

We can define “motional emf” to be the integral of the magnetic force per unit charge 
around the loop:

(triple product rule)

(area swept by loop per unit time)

emf = ElectroMotive Force

𝑑𝑑𝑑𝑑

𝑥𝑥

Flux rule for emf

Force rule 
for emf:



Q: One end of rectangular metal loop enters a region of constant uniform magnetic field 𝐁𝐁
with speed 𝑣𝑣, as shown.
What is the magnetic flux through the loop at the moment shown?

B (out)

vl

w

xA. +𝑙𝑙𝑙𝑙𝑙𝑙

B. −𝑙𝑙𝑙𝑙𝑙𝑙

C. +𝑙𝑙𝑥𝑥𝐵𝐵

D. −𝑙𝑙𝑥𝑥𝐵𝐵

E. 0

emf (1)  

𝑑𝑑𝐥𝐥

Chosen + direction along the loop

After that, find induced current.



𝑑𝑑𝐥𝐥

Q: One end of rectangular metal loop enters a region of constant uniform magnetic field 𝐁𝐁
with speed 𝑣𝑣, as shown.
What is the magnetic flux through the loop at the moment shown?

B (out)

vl

w

xA. +𝑙𝑙𝑙𝑙𝑙𝑙

B. −𝑙𝑙𝑙𝑙𝑙𝑙

C. +𝑙𝑙𝑥𝑥𝐵𝐵

D. −𝑙𝑙𝑥𝑥𝐵𝐵

E. 0

𝑑𝑑𝐚𝐚 is oriented in a 
right-hand sense 
relative to 𝑑𝑑𝐥𝐥, so

Hint:

𝑑𝑑𝐚𝐚

Then emf is:  

𝜀𝜀 = −
𝑑𝑑Φ
𝑑𝑑𝑑𝑑

• Changing magnetic flux induces emf 𝜀𝜀
around this closed loop

• 𝜀𝜀 creates a CW current 𝐼𝐼 = 𝐼𝐼𝑖𝑖𝑖𝑖𝑖𝑖 = 𝑙𝑙𝑙𝑙𝑙𝑙/𝑅𝑅
(consistent with the Lorentz force)

emf (1)

= 𝑙𝑙
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑
𝐵𝐵 = 𝑙𝑙𝑙𝑙𝑙𝑙 > 0



Q: Now compare two cases: 1) the loop moves to the right with speed 𝑣𝑣, 2) the magnet 
moves to the left with speed 𝑣𝑣.
What can we expect about the induced currents, 𝐼𝐼1 and 𝐼𝐼2, in the two cases?

Positive 𝐼𝐼 is clockwise.

A. 𝐼𝐼1 > 0, 𝐼𝐼2 = 0

B. 𝐼𝐼1 < 0, 𝐼𝐼2 = 0

C. 𝐼𝐼1 = 𝐼𝐼2
D. 𝐼𝐼1 = −𝐼𝐼2
E. 𝐼𝐼1 = 0, 𝐼𝐼2 = 0

B (out)

l

w

x

2)  v 1)  v

emf (2)



Using flux rule: It does not 
matter who actually moves (the 
change of the flux is the same)

Q: Now compare two cases: 1) the loop moves to the right with speed 𝑣𝑣, 2) the magnet 
moves to the left with speed 𝑣𝑣.
What can we expect about the induced currents, 𝐼𝐼1 and 𝐼𝐼2, in the two cases?

Positive 𝐼𝐼 is clockwise.

A. 𝐼𝐼1 > 0, 𝐼𝐼2 = 0

B. 𝐼𝐼1 < 0, 𝐼𝐼2 = 0

C. 𝐼𝐼1 = 𝐼𝐼2
D. 𝐼𝐼1 = −𝐼𝐼2
E. 𝐼𝐼1 = 0, 𝐼𝐼2 = 0

B (out)

l

w

x

2)  v 1)  v

emf (2)

…which is strange, since in case 2 the charges are stationary, 
so there should be no force on them in B field…



Q: One end of stationary rectangular metal loop is in a region of uniform magnetic field 𝐁𝐁, 
which has magnitude increasing with time as 𝐵𝐵 = 𝐵𝐵0 + 𝑘𝑘𝑘𝑘. 
Will there be current in the loop?

B (out)

vl

w

x

A. Yes

B. No

𝑑𝑑𝐥𝐥

emf (3)



Q: One end of stationary rectangular metal loop is in a region of uniform magnetic field 𝐁𝐁, 
which has magnitude increasing with time as 𝐵𝐵 = 𝐵𝐵0 + 𝑘𝑘𝑘𝑘. 
Will there be current in the loop?

B (out)

vl

w

x

A. Yes

B. No

𝑑𝑑𝐥𝐥

emf (3)

𝑰𝑰

Experiment indeed shows a 
CW current 𝐼𝐼 = 𝑙𝑙𝑙𝑙𝑙𝑙/𝑅𝑅

Assume:

Here emf appears due to change of B field, not 
due to relative motion of charges and B field



Faraday’s law

• Changing B field creates E field!
• It is this electric field which created emf in our previous example:

𝜀𝜀 = �
𝐶𝐶
𝐟𝐟 ⋅ 𝑑𝑑𝐥𝐥 = �

𝐶𝐶
𝐄𝐄 ⋅ 𝑑𝑑𝐥𝐥 = −

𝑑𝑑Φ𝑚𝑚

𝑑𝑑𝑑𝑑

Stokes
theorem

definition 
of flux

Q: What is Faraday’s law in differential form?

�
𝐴𝐴
∇ × 𝐄𝐄 ⋅ 𝑑𝑑𝐚𝐚 −

𝜕𝜕
𝜕𝜕𝜕𝜕

�𝐁𝐁 ⋅ 𝑑𝑑𝐚𝐚

∇ × 𝐄𝐄 = −
𝜕𝜕𝐁𝐁
𝜕𝜕𝜕𝜕



Faraday’s law

Recall that the condition ∇ × 𝐄𝐄 = 0 allowed us to define the 
electric potential 𝑉𝑉.  In electrodynamics, electric potential 
alone cannot express electric field:

The first modification of Maxwell’s equations is called Faraday’s law:

Faraday’s law indicates that time-dependent magnetic fields 
can induce a voltage difference around a closed path in space:

𝐄𝐄(𝐫𝐫, 𝑡𝑡) → −∇𝑉𝑉 −
𝜕𝜕𝐀𝐀
𝜕𝜕𝜕𝜕

𝐄𝐄 is not curl-less anymore!



Changing magnetic flux through 
a loop creates emf in that loop

Magnetic flux Φ𝑚𝑚 = ∮𝐁𝐁 ⋅ 𝑑𝑑𝐚𝐚 can change in different ways:

Changing magnetic flux

𝜀𝜀 = �
𝐶𝐶
𝐄𝐄 ⋅ 𝑑𝑑𝐥𝐥 = −

𝑑𝑑Φ𝑚𝑚

𝑑𝑑𝑑𝑑

• Changing magnetic field 𝐁𝐁 = 𝐁𝐁(𝑡𝑡)

• Changing area of the loop exposed to 𝐁𝐁: 𝐴𝐴 = 𝐴𝐴(𝑡𝑡)

 Changing the physical size of the loop immersed in 𝐁𝐁
 Changing orientation between 𝐁𝐁 and the area vector of the loop, 𝑑𝑑𝐚𝐚



Top view Side view

Q: A square loop with sides 𝑏𝑏 is mounted on a vertical shaft and rotated at a constant 
angular velocity 𝜔𝜔.  A uniform magnetic field 𝐁𝐁 is perpendicular to the rotation axis. 

1) Find the emf in the loop.
2) Find the current through a resistor 𝑅𝑅 in series with the loop.

Example: AC generator



Q: A square loop with sides 𝑏𝑏 is mounted on a vertical shaft and rotated at a constant 
angular velocity 𝜔𝜔.  A uniform magnetic field 𝐁𝐁 is perpendicular to the rotation axis. 

1) Find the emf in the loop.
2) Find the current through a resistor 𝑅𝑅 in series with the loop.

Top view

Example: AC generator

The flux through the loop is:

The electromotive force is:

and the current through R is:



Q: One end of rectangular metal loop enters a region of constant uniform magnetic field 𝐁𝐁
with speed 𝑣𝑣, as shown.
Given the induced current, what is the direction of the net force on the loop?

B (out)

vl
I

I

I

I

A. up

B. down

C. left

D. right

E. none of the above

Induced current & Direction of the force



Induced current & Direction of the force

Q: One end of rectangular metal loop enters a region of constant uniform magnetic field 𝐁𝐁
with speed 𝑣𝑣, as shown.
Given the induced current, what is the direction of the net force on the loop?

B (out)

vl
I

I

I

I

A. up

B. down

C. left

D. right

E. none of the above

Once the charges are in motion, 
the Lorentz force acts to retard 
the motion of the loop into 𝐁𝐁.  

F

Q: What happens 
if you flip 𝐯𝐯?  

A: 𝐈𝐈 flips => 𝐅𝐅 flips => Lorentz force 
acts to retard loop’s escape from 𝐁𝐁

=> Lorentz force always tries to 
oppose the change of the flux



Lenz’s law

Nature abhors a 
change in flux.

Induced current always creates 
magnetic flux that tries to make up 
for the change in the external flux.

𝐁𝐁𝐞𝐞𝐞𝐞𝐞𝐞 𝑡𝑡 decreases    → 𝐁𝐁𝐢𝐢𝐢𝐢𝐢𝐢 ↑↑ 𝐁𝐁𝐞𝐞𝐞𝐞𝐞𝐞

𝐁𝐁𝐞𝐞𝐞𝐞𝐞𝐞 𝑡𝑡 increases    → 𝐁𝐁𝐢𝐢𝐢𝐢𝐢𝐢 ↑↓ 𝐁𝐁𝐞𝐞𝐞𝐞𝐞𝐞



Lenz’ law – 1

Q: The current in an infinite solenoid is increasing with time, 𝐼𝐼 = 𝐼𝐼0 + 𝑘𝑘𝐼𝐼𝑡𝑡, producing a 
uniform magnetic field that is also increasing with time as 𝐵𝐵 = 𝐵𝐵0 + 𝑘𝑘𝐵𝐵𝑡𝑡.  A small 
detached loop of radius 𝑟𝑟 is positioned coaxially inside the solenoid.  
Without calculating anything, determine the direction of the 𝐁𝐁 field created by the 
induced current in the inner loop, in the plane region inside the loop.

A. into the page

B. out of the page

C. clockwise

D. counter-clockwise

E. not enough information

r

B (out)

I(t)
𝐵𝐵ind ?



Lenz’ law – 1

Q: The current in an infinite solenoid is increasing with time, 𝐼𝐼 = 𝐼𝐼0 + 𝑘𝑘𝐼𝐼𝑡𝑡, producing a 
uniform magnetic field that is also increasing with time as 𝐵𝐵 = 𝐵𝐵0 + 𝑘𝑘𝐵𝐵𝑡𝑡.  A small 
detached loop of radius 𝑟𝑟 is positioned coaxially inside the solenoid.  
Without calculating anything, determine the direction of the 𝐁𝐁 field created by the 
induced current in the inner loop, in the plane region inside the loop.

A. into the page

B. out of the page

C. clockwise

D. counter-clockwise

E. not enough information

r

B (out)

I(t)
𝐵𝐵ind ?

Lenz’ law: The induced field tries 
to annul the change in flux. 
Nature abhors a change in flux.

increasing



Lenz’ law – 2

r

B (out)

I(t)
A. zero

B. clockwise

C. counter-clockwise

D. not enough information

Q: The current in an infinite solenoid is increasing with time, 𝐼𝐼 = 𝐼𝐼0 + 𝑘𝑘𝐼𝐼𝑡𝑡, producing a 
uniform magnetic field that is also increasing with time as 𝐵𝐵 = 𝐵𝐵0 + 𝑘𝑘𝐵𝐵𝑡𝑡.  A large 
detached loop of radius 𝑟𝑟 is positioned coaxially outside the solenoid.  
Without calculating anything, in what direction is the induced 𝐄𝐄 field around the outer 
loop?



Lenz’ law – 2

r

B (out)

I(t)
A. zero

B. clockwise

C. counter-clockwise

D. not enough information

Q: The current in an infinite solenoid is increasing with time, 𝐼𝐼 = 𝐼𝐼0 + 𝑘𝑘𝐼𝐼𝑡𝑡, producing a 
uniform magnetic field that is also increasing with time as 𝐵𝐵 = 𝐵𝐵0 + 𝑘𝑘𝐵𝐵𝑡𝑡.  A large 
detached loop of radius 𝑟𝑟 is positioned coaxially outside the solenoid.  
Without calculating anything, in what direction is the induced 𝐄𝐄 field around the outer 
loop?

Lenz’ law: the induced voltage & 
field & current (if the current exists!)
tries to annul the changing flux.

Lenz’ law helps you track the 
sign of the induced effect.



Example: Induced 𝐄𝐄 field

r

B (out)

I(t)

s

Q: The current in an infinite solenoid is increasing with time, 𝐼𝐼 = 𝐼𝐼0 + 𝑘𝑘𝐼𝐼𝑡𝑡, producing a 
uniform magnetic field that is also increasing with time as 𝐵𝐵 = 𝐵𝐵0 + 𝑘𝑘𝐵𝐵𝑡𝑡.  A large 
detached loop of radius 𝑟𝑟 is positioned coaxially outside the solenoid.  
Compute the induced 𝐄𝐄 field around the outer loop due to the changing 𝐁𝐁 field 
(magnitude and direction).



Example: Induced 𝐄𝐄 field

s

B (out)

I(t)

R

Q: The current in an infinite solenoid is increasing with time, 𝐼𝐼 = 𝐼𝐼0 + 𝑘𝑘𝐼𝐼𝑡𝑡, producing a 
uniform magnetic field that is also increasing with time as 𝐵𝐵 = 𝐵𝐵0 + 𝑘𝑘𝐵𝐵𝑡𝑡.  A large 
detached loop of radius 𝑟𝑟 is positioned coaxially outside the solenoid.  
Compute the induced 𝐄𝐄 field around the outer loop due to the changing 𝐁𝐁 field 
(magnitude and direction).

Q: What is the flux through the loop? 

A. Zero

B. 𝐵𝐵 𝑡𝑡 𝜋𝜋𝑅𝑅2

C. 𝐵𝐵 𝑡𝑡 𝜋𝜋𝑠𝑠2

D. Something else



Example: Induced 𝐄𝐄 field

s

B (out)

I(t)

R

Q: The current in an infinite solenoid is increasing with time, 𝐼𝐼 = 𝐼𝐼0 + 𝑘𝑘𝐼𝐼𝑡𝑡, producing a 
uniform magnetic field that is also increasing with time as 𝐵𝐵 = 𝐵𝐵0 + 𝑘𝑘𝐵𝐵𝑡𝑡.  A large 
detached loop of radius 𝑟𝑟 is positioned coaxially outside the solenoid.  
Compute the induced 𝐄𝐄 field around the outer loop due to the changing 𝐁𝐁 field 
(magnitude and direction).

The flux through the outer loop is:

The induced emf is:

Since we chose 𝑑𝑑𝐚𝐚 to be out of the paper, 𝐶𝐶 is oriented 
counter-clockwise, with:

R2

R2

R2

R2 R2 R2

s s



Footnotes:

1. Changing magnetic field acts like a source to electric field

1

2. In a moment we will see that we need to revisit Ampère’s law when 𝐄𝐄 is 
time-dependent.  This will lead us to the concept of displacement current.

2

The Maxwell equations so far



A problem with Ampere’s law (1st year E&M)

Consider the moment while we’re charging a capacitor with a current 𝐼𝐼:

C

With 𝐼𝐼encl being current 
piercing any surface 
bounded by the curve 𝐶𝐶

Ampere’s law:

encl

𝐼𝐼encl = 𝐼𝐼

𝐵𝐵wire 𝑟𝑟 =
𝜇𝜇0𝐼𝐼
2𝜋𝜋𝑟𝑟

𝐼𝐼encl = 0

𝐵𝐵wire 𝑟𝑟 = 0

�
𝐶𝐶
𝐵𝐵 ⋅ 𝑑𝑑𝑑𝑑 = 𝐵𝐵 𝑟𝑟 2𝜋𝜋𝜋𝜋



There is electric field, 𝐄𝐄!

C

𝐼𝐼
𝐸𝐸 = 𝐸𝐸(𝑡𝑡)

𝑄𝑄 = 𝑄𝑄(𝑡𝑡)

Note that this electric field 
generates a changing
electric flux through S2 : 
As the charge accumulates 
at the capacitor’s plates, 
the electric field inside the 
capacitor grows  

A problem with Ampere’s law (1st year E&M)

Generating hypotheses: is there anything at all piercing through S2?

Maybe we somehow need to account for the changing 𝐄𝐄 field inside the capacitor?



A hole in the armour

Ampère’s law:

From vector calculus we know: for any vector field 𝐅𝐅. 

Hence, indeed, Ampère’s law breaks down when:

Then:

Q: Is it true that                       , always? =

A: Absolutely not. In contrast, we know 
that J must obey continuity equation: 

Any current that leaves a 
volume 𝑑𝑑𝑑𝑑 (                 ) will 
result in a loss of charge in 
that volume (                    ).
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