Lecture 22

Dynamics!!!

Electromotive force.
Faraday’s law. Lenz’s law.

What is wrong with Ampere’s law?



Electromotive force & Electromagnetic Induction

(Ch7.1-2)

 Electromotive force (force definition and flux definition)
* Faraday’s law
* Lenz’s law



The Maxwell equations for statics

Here is what we have to date:

v-E=F VxE=0
€0
V-B=0 VXBZ/.L()J

Note that E and B are completely independent (decoupled) in this system of equations.

It is time to connect them through the time-dependent phenomenon called induction.



The full Maxwell equations (dynamics)

Here is where we’re headed:

vV-E=" VxE=_22
€0 8t

OE

V-B=0 VXB:qu—l—[JJ()EOE

Importantly, this explicitly couples E to B and vice-versa, when these
fields are time-dependent.



Induced current

Q: One end of rectangular metal loop enters a region of constant uniform magnetic field B
with speed v, as shown.

In which direction is current induced to flow?

© © B (out)
l 0 - ®
0 ® ®

A. Clockwise
Hint - think about the direction of the Lorentz
force on fictious positive charge carriers in the
C. No current, since there is no battery! loop (they move to the right with the wire).

B. Counter-clockwise



Induced current

Q: One end of rectangular metal loop enters a region of constant uniform magnetic field B
with speed v, as shown.

In which direction is current induced to flow?

Note that:
1) the fact of motion of a loop in B © O B (out)
field creates current in that loop;
0

2) It’s important that the loop sticks
out, otherwise no force (check!).

F=0 X% B (down)
© © O,

Iockwise
. Hint - think about the direction of the Lorentz
B. Counter-clockwise

What’s going on??

force on fictious positive charge carriers in the
C. No current, since there is no battery! loop (they move to the right with the wire).



Electromotive force

Electromotive force (emf) is defined generically to be the force per unit charge, f,
integrated around a closed circuit loop:

Sz%f-dl
C

—
Q: What are its units? F _ é
I F=1

If the only force on a charge is due to an electric field, E, then this becomes:

E —>% E - dl 3 units = Volts
C



Motional emf emf = ElectroMotive Force

We can define “motional emf” to be the integral of the magnetic force per unit charge

around the loop: — - =
FM = 1‘(’ LRJE
Force rU|e 8 _ f fma,g . dl — f (V X B) . dl © ©) B (out) ©
for emf: C C
I © ©) i - ©
= — fg B (v xdl) (triple product rule) i 2 -
d
= — /A B- ﬁda (area swept by loop per unit time)
:_ifB.daE_d_‘I’ 4o
dt J 4 dt E = o Flux rule for emf




m O O © >

emf (1)

Q: One end of rectangular metal loop enters a region of constant uniform magnetic field B
with speed v, as shown.

What is the magnetic flux through the loop at the moment shown?

+IlwB
—IlwB
+IxB
—IxB

Chosen + direction along the loop

After that, find induced current.



emf (1)

Q: One end of rectangular metal loop enters a region of constant uniform magnetic field B
with speed v, as shown.

What is the magnetic flux through the loop at the moment shown?

Hint: <I>:/B-da
A

da is oriented in a

right-hand sense O)
relative to dl, so
¢ <0
©
Then emf is: * Changing magnetic flux induces emf ¢
dd dx around this closed loop
£ = o = ld—B =[wvB >0 e £ creates a CW current I = I;,,; = lvB/R

(consistent with the Lorentz force)



emf (2)

Q: Now compare two cases: 1) the loop moves to the right with speed v, 2) the magnet
moves to the left with speed v.

What can we expect about the induced currents, I; and I,, in the two cases?

Positive I is clockwise.

W ® N ©
l 2 : ol 1 .
A I, >01,=0 : . ..
B. I; <0,I, =0 s - .
C. I, =1,
D. I, = —1I,
E. I, =01, =0



emf (2)

Q: Now compare two cases: 1) the loop moves to the right with speed v, 2) the magnet
moves to the left with speed v.

What can we expect about the induced currents, I; and I,, in the two cases?

Positive I is clockwise.

Using flux rule: It does not ) W © Q B (out)
matter who actually moves (the
change of the flux is the same)

A. 11>O,12:0
B. 11<O,12:0

©i-

D. I = —1I, ...which is strange, since in case 2 the charges are stationary,
. . so there should be no force on them in B field...
E. ,=0,1,=0




emf (3)

Q: One end of stationary rectangular metal loop is in a region of uniform magnetic field B,
which has magnitude increasing with time as B = B + kt.

Will there be current in the loop?

. i © S B (out)
Al © ® — 0
© © ©

A. Yes
B. No



emf (3)

Q: One end of stationary rectangular metal loop is in a region of uniform magnetic field B,
which has magnitude increasing with time as B = B + kt.

Will there be current in the loop?

@:/B-da
A

Assume:
do d O
= +lxk
+lx o
Yes Experiment indeed shows a Here emf appears due to change of B field, not
CW current I = Ixk/R due to relative motion of charges and B field

B. No



Faraday’s law

* Changing B field creates E field!

* |t is this electric field which created emf in our previous example:

dd
£ = §£f-d1 = §£E-dl:— L
- - dt

/ N

Q: What is Faraday’s law in differential form?

- N\

Stokes

_9 [g.g4q definition
theorem L(V x E) - da ot T of flux

VXE = oB
ot




Faraday’s law

The first modification of Maxwell’s equations is called Faraday’s law:

B
V- -E= Ld VXE= _8_

€0 ot E is not curl-less anymore!
V-B=0 V XBZ[,LoJ

Fara.day s law |nd|cate§ that time-dependent magneUF fields VxE#£0 — j{ E.dl+0
can induce a voltage difference around a closed path in space: C

Recall that the condition V X E = 0 allowed us to define the
electric potential V. In electrodynamics, electric potential E(r,t) - —VV — T
alone cannot express electric field: t




Changing magnetic flux

dd,, Changing magnetic flux through
E-dl .
c dt a loop creates emf in that loop

Magnetic flux ®,,, = gﬁB - da can change in different ways:

* Changing magnetic field B = B(t)
* Changing area of the loop exposed to B: A = A(t)

» Changing the physical size of the loop immersed in B

» Changing orientation between B and the area vector of the loop, da



Example: AC generator

Q: A square loop with sides b is mounted on a vertical shaft and rotated at a constant
angular velocity w. A uniform magnetic field B is perpendicular to the rotation axis.

1) Find the emf in the loop.

2) Find the current through a resistor R in series with the loop. [ Dw
.__-—-———'—'_'T_—'_'—_
B
b
B —

R
Top view Side view



Example: AC generator

Q: A square loop with sides b is mounted on a vertical shaft and rotated at a constant
angular velocity w. A uniform magnetic field B is perpendicular to the rotation axis.

1) Find the emf in the loop.

2) Find the current through a resistor R in series with the loop.

The flux through the loop is: @ = / B.-da=B-a= Bb’coswt
A

B
. . dd 5 . —
The electromotive force is: E = = wB b sin wt
é B wBb*

and the current through Ris: T = B sin wt

R Top view



Induced current & Direction of the force

Q: One end of rectangular metal loop enters a region of constant uniform magnetic field B
with speed v, as shown.

Given the induced current, what is the direction of the net force on the loop? ,?\')u-"'
I © © B (out)
— ©
. up
down I @ © ©
left
. right
none of the above

m o O W »



Induced current & Direction of the force

Q: One end of rectangular metal loop enters a region of constant uniform magnetic field B
with speed v, as shown.

Given the induced current, what is the direction of the net force on the loop?

Once the charges are in motion,
@ ®

the Lorentz force acts to retard [ B (out)
the motion of the loop into B.
0
Q: What happens ©
A. up if you flip v?
B. down ©

- A: I flips => F flips => Lorentz force
@IEft acts to retard loop’s escape from B

=> Lorentz force always tries to
E. none of the above  oppose the change of the flux



Lenz’s law

—l-ex£ (Jc) — Bew‘:({') Induced current always creates
L _ magnetic flux that tries to make up
> 1ind for the change in the external flux.

Nature abhors a
change in flux.

Byt (t) decreases —  Biyg TT Bext

Byt (t) increases —  Biyg TV Bext



Llenz’ law -1

Q: The current in an infinite solenoid is increasing with time, I = Iy + k;t, producing a
uniform magnetic field that is also increasing with time as B = By + kgt. A small
detached loop of radius 7 is positioned coaxially inside the solenoid.

Without calculating anything, determine the direction of the B field created by the
induced current in the inner loop, in the plane region inside the loop.

(L.kcf)Bexé(-E:) o L)
LS Bind Tl Pext —= Bind
A. into the page 0) ®
B. out of the page \l'
C. clockwise
D. counter-clockwise Tine Q)
E. not enough information

1(2)

ext



Llenz’ law -1

Q: The current in an infinite solenoid is increasing with time, I = Iy + k;t, producing a
uniform magnetic field that is also increasing with time as B = By + kgt. A small
detached loop of radius 7 is positioned coaxially inside the solenoid.

Without calculating anything, determine the direction of the B field created by the
induced current in the inner loop, in the plane region inside the loop.

Lenz’ law: The induced field tries
to annul the change in flux.

nto the page Nature abhors a change in flux.
B. out of the page

® B (out) increasing

1)

C. clockwise
D. counter-clockwise
E

. not enough information



Lenz’ law — 2

Q: The current in an infinite solenoid is increasing with time, I = Iy + k;t, producing a
uniform magnetic field that is also increasing with time as B = By + kgt. A large
detached loop of radius r is positioned coaxially outside the solenoid.

Without calculating anything, in what direction is the induced E field around the outer
loop?

© B (out)

1)

. Zero
clockwise

counter-clockwise

O 0 @ >

. hot enough information



Lenz’ law — 2

Q: The current in an infinite solenoid is increasing with time, I = Iy + k;t, producing a
uniform magnetic field that is also increasing with time as B = By + kgt. A large
detached loop of radius r is positioned coaxially outside the solenoid.

Without calculating anything, in what direction is the induced E field around the outer
loop?

Lenz’ law: the induced voltage &
field & current (if the current exists!)
tries to annul the changing flux.

. Lenz’ law helps you track the
e lockwise . .
sign of the induced effect.
C. counter-clockwise

D. not enough information



Example: Induced E field

Q: The current in an infinite solenoid is increasing with time, I = Iy + k;t, producing a
uniform magnetic field that is also increasing with time as B = By + kgt. A large
detached loop of radius 7 is positioned coaxially outside the solenoid.

Compute the induced E field around the outer loop due to the changing B field
(magnitude and direction).

© B (out)



Example: Induced E field

Q: The current in an infinite solenoid is increasing with time, I = Iy + k;t, producing a
uniform magnetic field that is also increasing with time as B = By + kgt. A large
detached loop of radius r is positioned coaxially outside the solenoid.

Compute the induced E field around the outer loop due to the changing B field

(magnitude and direction). o g\ {v;a
4P . :
EZ%E.CZI:_E CID(t):/B-da
© A ol B gt
o~ ~— / //
Q: What is the flux through the loop? "
| ( I(t
A. Zero \Q
B(t)nR2

C. B(t)ms?

D. Something else



Example: Induced E field

Q: The current in an infinite solenoid is increasing with time, I = Iy + k;t, producing a
uniform magnetic field that is also increasing with time as B = By + kgt. A large
detached loop of radius 7 is positioned coaxially outside the solenoid.

Compute the induced E field around the outer loop due to the changing B field
(magnitude and direction).

The flux through the outer loop is:  ®(¢) = / B - da = B(t)nR?
A

= (Bgy + kt)mR? © B (out)
dd

The induced emf is: & = = —kmR?

Since we chose da to be out of the paper, C is oriented
counter-clockwise, with:

R? R?
j{ E.dl = —knR? — B = ki _ K (clockwise)
C 27S 28



The Maxwell equations so far

1
vV.E="2 VxE=_8
€0 8t
V-B=0 V xB=puyJ ?

Footnotes:

1. Changing magnetic field acts like a source to electric field

2. In a moment we will see that we need to revisit Ampere’s law when E is
time-dependent. This will lead us to the concept of displacement current.



A problem with Ampere’s law (15 year E&M)

Consider the moment while we’re charging a capacitor with a current I:

(a) Cross section through a closed fB -dl =B (T') 2mr
curve.C ar()lfnd the wire C Am pere S |aW
Current / . No current passes c
passes through .+ ~ through surface S..
surface S;. " S %) W B dl = H OI encl
L ] ] .:I [ J : _— [ J L] o ® U)H
L ] @ ® [ + — L] ® @ ® Iu
— | —— == | |—- With I, being current
X x x| x . - BEEETE - . ' encl g
x x x| x [#) Bl x x x x —F piercing any surface
A ¢ Y y
I ! bounded by the curve C

III‘

This is the magnetic field of the
current / that is charging the capacitor.

I —
encl J lenca = x

I
Bwire (r) = % BWiFe(r) =0



A problem with Ampere’s law (15 year E&M)

Generating hypotheses: is there anything at all piercing through S,?

(a) Cross section through a closed
curve C around the wire

Current / . No current passes
passes through " through surface S,.
surface S;. . ¢
“, ®
Qd A — e —
o o of o [T | e e o @
_|_ i
L J @ ® [ ] + = @ ® @ ®
> + e,
X X X| X ¥ X X X X
X X X| X |+ B <X X X X
. 5N =
Al ¢ IY
3 v

I -
| | -

This is the magnetic field of the
current / that is charging the capacitor.

b

I

Q = Q(t)

A

——

\

—_—
E —
1 — — >
—_—
. il

E = E(t)

There is electric field, E!

Note that this electric field
generates a changing
electric flux through S, :

As the charge accumulates
at the capacitor’s plates,
the electric field inside the
capacitor grows

Maybe we somehow need to account for the changing E field inside the capacitor?



A hole in the armour
Ampere’slaw:  V X B = pod
Then: V- (VxB)=puV-J

From vector calculus we know: V. (V x F) =0 for any vector field F.

Q:lsittruethat V . J = 0, always? Any current that leaves a

volume dV (V - J > 0) will
result in a loss of charge in
that volume (9p/0t < 0).

A: Absolutely not. In contrast, we know Hp
that J must obey continuity equation: V-J= 5t

Hence, indeed, Ampére’s law breaks down when: 0p/0t # 0.
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