Lecture 23

Displacement current.
Maxwells equations.

Wave equation for E and B and its solutions.



Last Time: Something is wrong with Ampere’s law!

—

j[ B-dl = poly, fB .dl = B(r) 2nr
C C
* Fails when charge distribution changes
(a capacitor which is being charged) v Ienct =1
Uol
* Noticed changing E field through S2 — Byire(r) = 2—;

can it help us fix Ampere’s law?

2

x Ienag =0
C / Bwire(r) =0
U(J\I Y

™~

— >

—— R
CQU

From Ampere’s law in its current form, V X B = ugod, follows that ¥V - J = 0, always:

V- (VxB)=pV-J=0

But continuity equation (= conservation of charge!) states:

V.-J=

Hence, indeed, Ampére’s law breaks down when: 0p/0t # O.
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A hint at a solution

In general: VYV - (V X B) = oV -J #£ 0 whileitshould be zero. How do we fix this??

Calling continuity equation (expressing charge conservation) to rescue:

Op Any current that leaves a volume dV

Ot =0 (V -J > 0) will result in a loss of

charge in that volume (9p/dt < 0).

V-J+

We can rewrite this as:

G, OF
V-J+ o («V-E) =V (J—|—eo 8t) =0

OE
If (J + €0 E) would stay in Ampere’s law in place of J, it would work. Always.



Maxwell’s proposal

This form of the continuity equation led Maxwell to postulate an additional term in
the last Maxwell equation:

OE
V X B = puod +M0éo—
ot
or:
V xB=pu(J+Ja)
_ OE is sometimes called the displacement current because it
where  Jg =€y— . . .
Ot plays the role of an effective current in electrodynamics.

This name is terrifically misleading, since there is no current (charge flow),
and nothing is being displaced...



Ampere’s law revisited Q =Q()

Consider a charging capacitor. Show that the Maxwell correction, ¢ / \
L

OE 2
VXB:MOJ‘FNOEOE Q
removes the “ambiguity” for the B field, i.e., using T;—’ 77:_’
surfaces §; and S, gives the same amount of I, W
and hence the same magnetic field. I
Ampere-Maxwell’s law: j[ B -dl = po / (J+Jg) - da : E=E()

¢ e 9E®

Ja = €o ot
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Ampere’s law revisited

fCB-dl: /S(VXB)-da:,uo./:g(J—de)-da

As the capacitor charges with a quasi-steady current, I,

the E = E(t) field builds across the plates (A = plate area):

o(t) _ q(t) OB _dg/dt T

E(t)_ €0 _AEO Jd—EQ ot - A _A

S=25: #0/(J+Jd)°da=:uof+0=uof A
S,

I

1

> | B-2nR = ugl

S=SZ: ,(L()/(J-I-Jd)-da:/.LQ(O-I-I/A)-A:/.LOIJ
S2

La B(r) - Zar

E = E(t)
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Example: Displacement current

Q: A thick wire of radius a carries a constant current I, uniformly distributed over its cross
section. A narrow gap in the wire, of width w < a, forms a parallel plate capacitor as
shown. Find the magnetic field in the gap, at a distance s < a from the axis.



Example: Displacement current

Q: A thick wire of radius a carries a constant current I, uniformly distributed over its cross
section. A narrow gap in the wire, of width w < a, forms a parallel plate capacitor as
shown. Find the magnetic field in the gap, at a distance s < a from the axis.

E field inthe gap: E(t) = olt) = alt) with A = ma? d
EO Ae() —1 = I
OE I «*
The displacement current: J; = ¢ 5 = a2 Zz where the z axis is the wire's axis.
1 A.=1
Ampeére-Maxwell’s law: f B-dl=po(I+1i)enc — B(s)2ms = &2 s S o
C Ta 0 B. >1
tols W = C.<T
. —_ 0 - «—> °
Sothat: B(s) = 502 P . +6 | —G
| | s §B-de
This looks exactly like J {5 J
he B field d L TR ENEYSWN
the B field due to a Jd—W—E . Bls)- 2rs

uniform current density:



The Maxwell equations

With the addition of the displacement current, the Maxwell equations are now complete:

v.E-? vxg-_9B
€0 8t

| OF
V-B=0 VXB:/.LOJ—F/JJOGOE

The final term was published by Maxwell in 1864. The equations Maxwell
published looked quite different than above, but they were equivalent.

The theory has stood the test of time for over 160 years.



The full system of Maxwell’s equations

Integral form

Name Differential form
Gauss’ law: v.E=" ]{ _ Genc

€0 A
Faraday’s law: VX E= —%—]? ng dl = / %_]? da = _g
no name: V-B=0 ﬁB da =0
Ampere-Maxwell’s law: V xB=poJ+ uoeo%—]f fCB dl = / (J + €0 %?) - da




Maxwell’s equations in matter

p 0B
V-E=— VUxE=-—
€o ot

OE |
V-B=0 VXB=ﬂ0J+ﬂ060§

i il e — - e p— - i i i i e —

Q: How will these equations transform in matter?

D=¢E+P H=B/u, — M pp=—V-P




Maxwell’s equations in matter

P 0B | 0B
V°E=_ = —-_——-— ] V-D: VXE=__
— UXE=-o o o

0E | oD |

Q: How will these equations transform in matter?

D=¢c,E+P H=B/u— M pp=—V-P J,=VxM
p D P Pt Pb ~
V.-E=— Vi l——— =2+ 22 V-D-V'P= V-D =
€ - <Eo Eo) o g - Ps T Pp - P
0E OE _ oP
VX B = pod+ to€o 5 —>V><(uoH+qu)=uo(Jf+Jb+Jp)+uoe‘o§ with J, =

) OF D ,@
SVXH+VXM=(J+ ]+ +eo  SVxH=Jpt——



0B

The wave equation for E in vacuum VB VxB=-G

oE
V-B=0 VXBZ/L()J—}-,U/()GOE

Let’s consider the Maxwell equations in vacuum (J = 0, p = 0).

_ . w2
OB OF Vx(VxA)=V(V-A) —V°A

ot v Ho€o5¢

Q: Take the curl of the first equation and eliminate B using the second equation,
to get one equation for E. Simplify it as much as you can.



The wave equation for E in vacuum

Let’s consider the Maxwell equations in vacuum (J = 0, p = 0).

UxE=_B VxB OE
R X — _
ot Ho€o5¢

0 0B
E= E=_——
v - V x T

OE
V-B=0 VXBZ,U()J‘F,U/oGOE

Vx(VxA)=V(V-A)—V?A

Q: Take the curl of the first equation and eliminate B using the second equation,

to get one equation for E. Simplify it as much as you can.

OB 0
Curl of Faraday’s law: Vx(VXE)=-Vx a5 = —E(V x B)
: — X ) s, O’E
Time derivative of Ampere-Maxwell’s law: —E(V x B) = ~Ho€o 55

From vector calculus: VvV x (VxE)=V(V-E) - V2E = —-V2E

Combine these results 5 O*E
. . V°E = po€o 5
into a wave equation: ot?

(V- E =0 in vacuum)




vE=" vyxp-_0B

The wave equation for B in vacuum o ai

OE
V-B=0 VXB=/L0J+M0€0E

Let’s consider the Maxwell equations in vacuum (J = 0, p = 0).

Vx(VxA)=V(V-A)—V?A

0B OE

ot v Ho€o5¢

Q: Take the curl of the second equation and eliminate E using the first equation,
to get one equation for B. Simplify it as much as you can.



vE=" vyxp-_0B

The wave equation for B in vacuum o o

OE
V-B=0 VXB=/L0J+M0€0E

Let’s consider the Maxwell equations in vacuum (J = 0, p = 0).
0B )

Vx(VxA)=V(V-A)—V?A

VXE= — — XB = U eq—
ot v Ho€o5¢

Q: Take the curl of the second equation and eliminate E using the first equation,
to get one equation for B. Simplify it as much as you can.

Curl of Ampere-Maxwell’s law: Vx(VxB)= ,uoe()%(v x E)
: - ) s, 0’B
Time derivative of Faraday’s law: uoeoa(v x E) = —Ho€0 55

From vector calculus: vV x (V xB)=V(V-B)-V?’B =-V’B (V-B =0)

Combine these results 0 0°B
. . VB = poeo
into a wave equation: ot?




Wave speed

Q: consider the factor €yuuy appearing in the wave equation.

1

€oMo

Calculate numerical value of , and find out its units. Does it remind you of something?

0’E 2B

2 2p
V°E = Mo €0 o2 VB = HO€Q 512




Wave speed

Q: consider the factor €yuuy appearing in the wave equation.

1

Calculate numerical value of , and find out its units. Does it remind you of something?

€oMo
O’E 2B
VQE:MOGOW V2B = ppe 572
1 C? T -m [N] |C]
= , = 471077 —— T = Al = —
0T 4r-9-109N - m? Ho = =T A 7] [A][m] A1 5]
1 4r-9-10° N -m? A N - m? A2 N -m? (C?
— = 9.10%¢ = 9.10%°
Eolo 4m-10=7 C? T-m C2 N C? N s?
m2 1

m
=9-10" — = 3.10% — --speed of light!
S VEoHo S



Electromagnetic spectrum

The EM spectrum covers an enormous range of frequencies and wavelengths:

102 10 10" 100 08 108 10° 102 10° v (Hz)
| I £ | . | T | | |
Y rays X rays uv IR Microwave | FM AM Long radio waves
Radio waves
| | | | | e ] | | | | | [ |
107 ™ e o 0% & 110 10 162 10° 102 104 106 108 A (m)

Increasing wavelength (A) —

-
-~ -
-~
-
-
-
L
-
-
-~
-
-~

~ -
-

400 500 600 700

—
Increasing wavelength (1) in nm



Try to imagine what the electric and magnetic fields look like at present in the :
space in this lecture room. First of all, there is a steady magnetic field; it comes from = =,
the currents in the interior of the earth—that is, the earth’s steady magnetic field. Then = &
there are some irregular, nearly static electric fields produced perhaps by electric
charges generated by friction as various people move about in their chairs and rub
their coat sleeves against the chair arms. Then there are other magnetic fields -
produced by oscillating currents in the electrical wiring—fields which vary at a
frequency of 60 cycles per second, in synchronism with the generator at Boulder
Dam. But more interesting are the electric and magnetic fields varying at much higher
frequencies. For instance, as light travels from window to floor and wall to wall, there
are little wiggles of the electric and magnetic fields moving along at 186,000 miles per second. Then there are
also infrared waves travelling from the warm foreheads to the cold blackboard. And we have forgotten the
ultraviolet light, the x-rays, and the radiowaves travelling through the room.

Flying across the room are electromagnetic waves which carry music of a jazz band. There are waves
modulated by a series of impulses representing pictures of events going on in other parts of the world, or of
imaginary aspirins dissolving in imaginary stomachs. To demonstrate the reality of these waves it is only
necessary to turn on electronic equipment that converts these waves into pictures and sounds.

If we go into further detail to analyze even the smallest wiggles, there are...

U -
i e

Richard Feynman

https://www.feynmanlectures.caltech.edu/ll 20.html



https://www.feynmanlectures.caltech.edu/II_20.html

Solution of wave equation — 1

2
Q: Verify that the solution of wave equation, V2E = lzg f
cc ot

What is K? How is it related to the parameters of the wave? Where is c?

’ is E(r, t) — Eoei(k-l‘—a)t)



Solution of wave equation —1

2
Q: Verify that the solution of wave equation, V2E = lzg f
cc ot

, S E(r, t) — Eoei(k-r—a)t)[

What is K? How is it related to the parameters of the wave? Where is c?
Let us choose z axis along K. Then: k=kz —+ k- -r=%kz E(z,t) = Eqetfz—t)

The two second derivatives are:

2 0 i(kz—wt) 2 0? 0’ i(kz—wt) 2
V7E(z,t) = @E 0€ = —k“E(z,1) 8t2E(z t) = WE 0e = —w* E(z, )
| . . 72 ,
Thus, our travelling wave will be a solution if: k? = ugep w? = = Aj; = C

* gE——

This is called the “dispersion relation” for electromagnetic waves in vacuum. L
2
It relates the wavelength A = 7” and the frequency f = = to each other. k.

2T

=W
C



Solution of wave equation - 2 (Rt )
B(RH)= Bo e

1 0%E is aplane  (Kep— .
Solution of V2EF = ——— travelling wave: E(r,t) = Eje k=w/c

c? dt?
* E, is a constant that gives the amplitude and polarization of the wave

* kK is the “wave vector” with magnitude k = 2m/A (defines propagation direction)

* w is the (angular) frequency of the wave, and w = 2nf = 2n/T

* The phase of the wave is (K- r — wt). “Wave fronts” are planes of constant phase.

* Let a wave be travelling in 42z direction. Let’s look
at the wavefront with zero phase (where E = E;):

kz—wt=0—>z=%tzct

BENTINESS

T r———

V/\,..,Tfm‘lf"lém VJ“U‘E N~

A wave and a theoretical physicist * Hence, the crest is travelling along z with speed c.



Solution of wave equation — 3

How are E, B and K organized in an electromagnetic wave?

Exercise 1: Prove that, if E(r,t) = Eqe!®T=®Y thenV - -E = i(k - E)
Exercise 2: Prove that, if E(r,t) = Eye!®T=®%) thenV X E = i(k X E)

0B ,
Also note that: B(r,t) = Byeltkr-ot) = FI —lwB(r, 1)



Solution of wave equation — 3

How are E, B and K organized in an electromagnetic wave?

Exercise 1: Prove that, if E(r, t) = Eqe!®T=®0 thenV - -E = i(k - E)
Exercise 2: Prove that, if E(r,t) = Eye!®T=®%) thenV X E = i(k X E)

I I
V- (Eoei(kT—wt)) i aax (EOx i(kyxX+kyy+k,z— a)t)) i = Eo 4 ik elkr=—0t) i
| |
| | |
| | |
0 kyx+kyy+kyz—wt)) | : |
X z . k- r— | s .
i 3y (EOy i(kxx+kyy+kzz—w )) i + EO,y lkyel( r-wt) i _iE
I I
0 i i
T : :
|

(Eo pllkxx+kyy+kzz— a)t)) +E,, ikzei(k-r—wt)
Z ’
Z

9z



Solution of wave equation — 3

How are E, B and K organized in an electromagnetic wave?

Exercise 1: Prove that, if E(r,t) = Eqe!®T=®Y thenV - -E = i(k - E)
Exercise 2: Prove that, if E(r,t) = Eye!®T=®Y thenV X E = i(k X E)

V X (Eoe i(k-l‘—a)t))

X VvV 1z
d d 0
~|ox 0y o0z
E. E, E

Ei — EOi ei(kxx+kyy+kzz—a)t)

+R(ikyE, — ik,E,)
— _y(iksz - iszx)

+2(ikyEy — ikyEy)

Xy

= |ik, iky
E, E,

=i Kk XE




Solution of wave equation — 3

How are E, B and K organized in an electromagnetic wave? X
1)V-E=i(k-E)=0 - ELlLKk

0B
2) VXE:_E —»kXE=iwB - KkXE=wB

Since k = wc: —>B=%RXE—> 1 EKkK

S>E=—-—ckxB=cBxk

Note the handedness of electromagnetic waves:

B> kxE, E-Bxk k->ExB right-handed light



Amplitudes Ey and B,

We found that the amplitudes of the electric and the magnetic “parts” of the
electromagnetic wave are related by:
W

E():kB():CBO

Q: Since c is the largest possible speed in Nature, does it mean that the magnetic “part” of
the electromagnetic wave is always much weaker than its electric “part”?

A. Yes!
B. No!



Amplitudes Ey and B,

We found that the amplitudes of the electric and the magnetic “parts” of the
electromagnetic wave are related by:

E “ B B
= — =C
0 = 7 Po 0
Q: Since c is the largest possible speed in Nature, does it mean that the magnetic “part” of

the electromagnetic wave is always much weaker than its electric “part”?

No. Note that E field and B field have different units in Sl unit
system: [E] = N/C, [B] = T. It makes no sense to compare them
A. Yes! directly; it would be the same as comparing 1 s with 1 km!



Make a new friend: Electromagnetic wave

Electric field
P—Wavelength 4>|
£ Magnetic field Direction
B ‘
/
/
B
E

* Done! That’s how a plane
electromagnetic wave looks like...

* The direction of propagation is
given by the cross product ExB

2T 2m w A 1
A: _— T: _— C—  — — — —
k W k T 7/ H0€0

https://en.wikipedia.org/wiki/Electromagnetic_r
adiation#t/media/File:Electromagneticwave3D.gif

=

Direction of
propagation

By Lookang - Own work, CC BY-SA 3.0,
https://commons.wikimedia.org/w/index.php
?curid=16874302



Historical perspective

Heinrich Hertz, on measuring EM wave properties:

"It's of no use whatsoever [...] this is just an experiment that proves Maestro
Maxwell was right - we just have these mysterious electromagnetic waves that
we cannot see with the naked eye. But they are there.”

Asked about the ramifications of his discoveries, Hertz replied:

"Nothing, | guess.”

- Heinrich Hertz, 1888

https://en.wikipedia.org/wiki/Heinrich Hertz

Marconi’s first wireless radio transmission over large distances occurred in 1897
(~6 km over water).


https://en.wikipedia.org/wiki/Heinrich_Hertz

Applications of electromagnetic waves:
This barely scratches the surface:

 Electromagnetic waves in free space (e.g. astronomy)

e Radio, television broadcasts, communications, wi-fi, GPS, ...
* Microwave ovens, cellular communications, ...

* Heat lamps, night-vision goggles, masers, ...

* Vision, light bulbs, LEDs, lasers, ...

o X-rays, ...

* Light/matter interactions

You can study them your whole life; this is what happened to me.



All these objects (and many others) are described by simply solving Maxwell’s equations.

(with fair addition of quantum mechanics, in many cases)

Flasmon

[ e
Fhoton out
&t\w ] A

4
Photons in P
AFECarnin Cain
Light interacting with the waves in the
“sea of electrons”

Polar molecules in
an optical lattice R s

d)

(
25 pm

n
i |

Polaritons (light hybridized with - '
atomic transitions in a crystal)

Negative refraction (light that bends “wrongly”)



James Clerk Maxwell

Scottish 1831-1879

"From a long view of the history of mankind —
seen from, say, ten thousand years from now —
there can be little doubt that the most
significant event of the 19th century will be
judged as Maxwell’s discovery of the laws of
electrodynamics. The American Civil War will
pale into provincial insignificance in comparison
with this important scientific event of the same
decade."

— R.P. Feynman



The Maxwell’s equations

0B
ot

V X E =

OF
ot |

V x B = pod + po€o

...and there was light.
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