
Lecture 23

Displacement current.
Maxwells equations. 
Wave equation for E and B and its solutions.



Last Time: Something is wrong with Ampere’s law!
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• Fails when charge distribution changes 
(a capacitor which is being charged)

• Noticed changing 𝐄𝐄 field through S2 –
can it help us fix Ampere’s law?

From Ampère’s law in its current form,                            , follows that                     , always:≡
≡ 0

But continuity equation (= conservation of charge!) states:

Hence, indeed, Ampère’s law breaks down when:



A hint at a solution

Calling continuity equation (expressing charge conservation) to rescue: 

We can rewrite this as:

Any current that leaves a volume 𝑑𝑑𝑑𝑑
(                 ) will result in a loss of 
charge in that volume (                    ).

In general: How do we fix this??  while it should be zero.

If                            would stay in Ampere’s law in place of    , it would work.  Always.



Maxwell’s proposal

is sometimes called the displacement current because it 
plays the role of an effective current in electrodynamics.

This form of the continuity equation led Maxwell to postulate an additional term in 
the last Maxwell equation:

or:

where

This name is terrifically misleading, since there is no current (charge flow), 
and nothing is being displaced…



Consider a charging capacitor. Show that the Maxwell correction, 

Ampere’s law revisited

removes the “ambiguity” for the 𝐁𝐁 field, i.e., using 
surfaces 𝑆𝑆1 and 𝑆𝑆2 gives the same amount of 𝐼𝐼encl
and hence the same magnetic field.

C

𝑄𝑄 = 𝑄𝑄(𝑡𝑡)

𝐼𝐼 𝐸𝐸 = 𝐸𝐸(𝑡𝑡)

𝐽𝐽𝑑𝑑 = 𝜖𝜖0
𝜕𝜕𝜕𝜕 𝑡𝑡
𝜕𝜕𝜕𝜕J

Ampere-Maxwell’s law:
S



Ampere’s law revisited

C

𝐸𝐸 = 𝐸𝐸(𝑡𝑡)

𝑄𝑄 = 𝑄𝑄(𝑡𝑡)

𝐽𝐽𝑑𝑑 = 𝜖𝜖0
𝜕𝜕𝜕𝜕 𝑡𝑡
𝜕𝜕𝜕𝜕J

𝑆𝑆 = 𝑆𝑆1:

As the capacitor charges with a quasi-steady current, 𝐼𝐼, 
the 𝐄𝐄 = 𝐄𝐄 𝑡𝑡 field builds across the plates (𝐴𝐴 = plate area):

S

S2

𝑆𝑆 = 𝑆𝑆2:

S1́
𝐵𝐵 ⋅ 2𝜋𝜋𝜋𝜋 = 𝜇𝜇0𝐼𝐼

𝐼𝐼



Example: Displacement current
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Q: A thick wire of radius 𝑎𝑎 carries a constant current 𝐼𝐼, uniformly distributed over its cross 
section.  A narrow gap in the wire, of width 𝑤𝑤 ≪ 𝑎𝑎, forms a parallel plate capacitor as 
shown.  Find the magnetic field in the gap, at a distance 𝑠𝑠 < 𝑎𝑎 from the axis.



Example: Displacement current

Q: A thick wire of radius 𝑎𝑎 carries a constant current 𝐼𝐼, uniformly distributed over its cross 
section.  A narrow gap in the wire, of width 𝑤𝑤 ≪ 𝑎𝑎, forms a parallel plate capacitor as 
shown.  Find the magnetic field in the gap, at a distance 𝑠𝑠 < 𝑎𝑎 from the axis.
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The displacement current:

This looks exactly like 
the 𝐁𝐁 field due to a 
uniform current density:

So that:

Ampère-Maxwell’s law:

where the z axis is the wire's axis. 

𝐄𝐄 field in the gap: with 𝐴𝐴 = 𝜋𝜋𝑎𝑎2



The Maxwell equations

With the addition of the displacement current, the Maxwell equations are now complete:

The final term was published by Maxwell in 1864.  The equations Maxwell 
published looked quite different than above, but they were equivalent.

The theory has stood the test of time for over 160 years.



The full system of Maxwell’s equations

Name Differential form Integral form

Gauss’ law:

Faraday’s law:

no name:

Ampère-Maxwell’s law:



Q: How will these equations transform in matter?

𝐃𝐃 = 𝜖𝜖0𝐄𝐄 + 𝐏𝐏 𝐇𝐇 = 𝐁𝐁/𝜇𝜇0 − 𝐌𝐌 𝜌𝜌𝑏𝑏 = −∇ ⋅ 𝐏𝐏 𝐉𝐉𝑏𝑏 = ∇ × 𝐌𝐌Jb

∇ ⋅ 𝐄𝐄 =
𝜌𝜌
𝜖𝜖0

∇ ⋅ 𝐁𝐁 = 0

∇ × 𝐄𝐄 = −
𝜕𝜕𝐁𝐁
𝜕𝜕𝜕𝜕

∇ × 𝐁𝐁 = 𝜇𝜇0𝐉𝐉 + 𝜇𝜇0𝜖𝜖0
𝜕𝜕𝐄𝐄
𝜕𝜕𝜕𝜕J

Maxwell’s equations in matter



Maxwell’s equations in matter

Q: How will these equations transform in matter?

∇ ⋅ 𝐃𝐃 = 𝜌𝜌f

∇ ⋅ 𝐁𝐁 = 0

∇ × 𝐄𝐄 = −
𝜕𝜕𝐁𝐁
𝜕𝜕𝜕𝜕

𝐃𝐃 = 𝜖𝜖0𝐄𝐄 + 𝐏𝐏 𝐇𝐇 = 𝐁𝐁/𝜇𝜇0 − 𝐌𝐌 𝜌𝜌𝑏𝑏 = −∇ ⋅ 𝐏𝐏

∇ ⋅ 𝐄𝐄 =
𝜌𝜌
𝜖𝜖0

→ ∇ ⋅
𝐃𝐃
𝜖𝜖0
−
𝐏𝐏
𝜖𝜖0

=
𝜌𝜌f
𝜖𝜖0

+
𝜌𝜌𝑏𝑏
𝜖𝜖0

→ ∇ ⋅ 𝐃𝐃 − ∇ ⋅ 𝐏𝐏 = 𝜌𝜌f + 𝜌𝜌𝑏𝑏 → ∇ ⋅ 𝐃𝐃 = 𝜌𝜌f

with

𝐉𝐉𝑏𝑏 = ∇ × 𝐌𝐌Jb

∇ ⋅ 𝐄𝐄 =
𝜌𝜌
𝜖𝜖0

∇ ⋅ 𝐁𝐁 = 0

∇ × 𝐄𝐄 = −
𝜕𝜕𝐁𝐁
𝜕𝜕𝜕𝜕

∇ × 𝐁𝐁 = 𝜇𝜇0𝐉𝐉 + 𝜇𝜇0𝜖𝜖0
𝜕𝜕𝐄𝐄
𝜕𝜕𝜕𝜕J

∇ × 𝐁𝐁 = 𝜇𝜇0𝐉𝐉 + 𝜇𝜇0𝜖𝜖0
𝜕𝜕𝐄𝐄
𝜕𝜕𝜕𝜕J → ∇ × 𝜇𝜇0𝐇𝐇 + 𝜇𝜇0𝐌𝐌 = 𝜇𝜇0 𝐉𝐉𝑓𝑓 + 𝐉𝐉𝑏𝑏 + 𝐉𝐉𝑝𝑝 + 𝜇𝜇0𝜖𝜖0

𝜕𝜕𝐄𝐄
𝜕𝜕𝜕𝜕Jf Jb Jp 𝐉𝐉𝑝𝑝 =

𝜕𝜕𝐏𝐏
𝜕𝜕𝜕𝜕Jp

→ ∇ × 𝐇𝐇 + ∇ × 𝐌𝐌 = 𝐉𝐉𝑓𝑓 + 𝐉𝐉𝑏𝑏 +
𝜕𝜕𝐏𝐏
𝜕𝜕𝜕𝜕

+ 𝜖𝜖0
𝜕𝜕𝐄𝐄
𝜕𝜕𝜕𝜕Jf Jb → ∇ × 𝐇𝐇 = 𝐉𝐉𝑓𝑓 +

𝜕𝜕𝐃𝐃
𝜕𝜕𝜕𝜕Jf

∇ × 𝐇𝐇 = 𝐉𝐉𝑓𝑓 +
𝜕𝜕𝐃𝐃
𝜕𝜕𝜕𝜕Jf



Let’s consider the Maxwell equations in vacuum (J = 0,𝜌𝜌 = 0).

Q: Take the curl of the first equation and eliminate 𝐁𝐁 using the second equation, 
to get one equation for 𝐄𝐄. Simplify it as much as you can.

∇ × ∇ × 𝐀𝐀 = ∇ ∇ ⋅ 𝐀𝐀 − ∇2𝐀𝐀
∇ × 𝐄𝐄 = −

𝜕𝜕𝐁𝐁
𝜕𝜕𝜕𝜕 ∇ × 𝐁𝐁 = 𝜇𝜇0𝜖𝜖0

𝜕𝜕𝐄𝐄
𝜕𝜕𝜕𝜕

The wave equation for 𝐄𝐄 in vacuum



The wave equation for 𝐄𝐄 in vacuum

Let’s consider the Maxwell equations in vacuum (J = 0,𝜌𝜌 = 0).

Q: Take the curl of the first equation and eliminate 𝐁𝐁 using the second equation, 
to get one equation for 𝐄𝐄. Simplify it as much as you can.

Time derivative of Ampère-Maxwell’s law:

Combine these results 
into a wave equation:

∇ × ∇ × 𝐀𝐀 = ∇ ∇ ⋅ 𝐀𝐀 − ∇2𝐀𝐀

Curl of Faraday’s law:

From vector calculus:

∇ × 𝐄𝐄 = −
𝜕𝜕𝐁𝐁
𝜕𝜕𝜕𝜕 ∇ × 𝐁𝐁 = 𝜇𝜇0𝜖𝜖0

𝜕𝜕𝐄𝐄
𝜕𝜕𝜕𝜕



Let’s consider the Maxwell equations in vacuum (J = 0,𝜌𝜌 = 0).

Q: Take the curl of the second equation and eliminate 𝐄𝐄 using the first equation, 
to get one equation for 𝐁𝐁. Simplify it as much as you can.

∇ × ∇ × 𝐀𝐀 = ∇ ∇ ⋅ 𝐀𝐀 − ∇2𝐀𝐀
∇ × 𝐄𝐄 = −

𝜕𝜕𝐁𝐁
𝜕𝜕𝜕𝜕 ∇ × 𝐁𝐁 = 𝜇𝜇0𝜖𝜖0

𝜕𝜕𝐄𝐄
𝜕𝜕𝜕𝜕

The wave equation for 𝐁𝐁 in vacuum



Let’s consider the Maxwell equations in vacuum (J = 0,𝜌𝜌 = 0).

Q: Take the curl of the second equation and eliminate 𝐄𝐄 using the first equation, 
to get one equation for 𝐁𝐁. Simplify it as much as you can.

Time derivative of Faraday’s law:

Combine these results 
into a wave equation:

∇ × ∇ × 𝐀𝐀 = ∇ ∇ ⋅ 𝐀𝐀 − ∇2𝐀𝐀

Curl of Ampère-Maxwell’s law:

From vector calculus:

∇ × 𝐄𝐄 = −
𝜕𝜕𝐁𝐁
𝜕𝜕𝜕𝜕 ∇ × 𝐁𝐁 = 𝜇𝜇0𝜖𝜖0

𝜕𝜕𝐄𝐄
𝜕𝜕𝜕𝜕

The wave equation for 𝐁𝐁 in vacuum



Q: consider the factor 𝜖𝜖0𝜇𝜇0 appearing in the wave equation. 

Calculate numerical value of 1
𝜖𝜖0𝜇𝜇0

, and find out its units. Does it remind you of something? 

Wave speed



𝜖𝜖0 =
1

4𝜋𝜋 ⋅ 9 ⋅ 109
𝐶𝐶2

𝑁𝑁 ⋅ 𝑚𝑚2 , 𝜇𝜇0 = 4𝜋𝜋 ⋅ 10−7
𝑇𝑇 ⋅ 𝑚𝑚
𝐴𝐴 𝑇𝑇 =

𝑁𝑁
𝐴𝐴 𝑚𝑚

1
𝜖𝜖0𝜇𝜇0

=
4𝜋𝜋 ⋅ 9 ⋅ 109

4𝜋𝜋 ⋅ 10−7
𝑁𝑁 ⋅ 𝑚𝑚2

𝐶𝐶2
𝐴𝐴

𝑇𝑇 ⋅ 𝑚𝑚
= 9 ⋅ 1016

𝑁𝑁 ⋅ 𝑚𝑚2

𝐶𝐶2
𝐴𝐴2

𝑁𝑁
= 9 ⋅ 1016

𝑁𝑁 ⋅ 𝑚𝑚2

𝐶𝐶2
𝐶𝐶2

𝑁𝑁 𝑠𝑠2

1
𝜖𝜖0𝜇𝜇0

= 3 ⋅ 108
𝑚𝑚
𝑠𝑠

𝐴𝐴 =
𝐶𝐶
𝑠𝑠

-- speed of light! = 9 ⋅ 1016
𝑚𝑚2

𝑠𝑠2

Q: consider the factor 𝜖𝜖0𝜇𝜇0 appearing in the wave equation. 

Calculate numerical value of 1
𝜖𝜖0𝜇𝜇0

, and find out its units. Does it remind you of something? 

Wave speed



The EM spectrum covers an enormous range of frequencies and wavelengths:

Electromagnetic spectrum



Flying across the room are electromagnetic waves which carry music of a jazz band. There are waves
modulated by a series of impulses representing pictures of events going on in other parts of the world, or of
imaginary aspirins dissolving in imaginary stomachs. To demonstrate the reality of these waves it is only
necessary to turn on electronic equipment that converts these waves into pictures and sounds.

If we go into further detail to analyze even the smallest wiggles, there are...

https://www.feynmanlectures.caltech.edu/II_20.html

Try to imagine what the electric and magnetic fields look like at present in the
space in this lecture room. First of all, there is a steady magnetic field; it comes from
the currents in the interior of the earth—that is, the earth’s steady magnetic field. Then
there are some irregular, nearly static electric fields produced perhaps by electric
charges generated by friction as various people move about in their chairs and rub
their coat sleeves against the chair arms. Then there are other magnetic fields
produced by oscillating currents in the electrical wiring—fields which vary at a
frequency of 60 cycles per second, in synchronism with the generator at Boulder
Dam. But more interesting are the electric and magnetic fields varying at much higher
frequencies. For instance, as light travels from window to floor and wall to wall, there

Richard Feynman

are little wiggles of the electric and magnetic fields moving along at 186,000 miles per second. Then there are
also infrared waves travelling from the warm foreheads to the cold blackboard. And we have forgotten the
ultraviolet light, the x-rays, and the radiowaves travelling through the room.

https://www.feynmanlectures.caltech.edu/II_20.html


Solution of wave equation – 1

Q: Verify that the solution of wave equation,                             ,   is:∇2𝐄𝐄 =
1
𝑐𝑐2
𝜕𝜕2𝐄𝐄
𝜕𝜕𝑡𝑡2

𝐄𝐄 𝐫𝐫, 𝑡𝑡 = 𝐄𝐄0𝑒𝑒𝑖𝑖(𝐤𝐤⋅𝐫𝐫−𝜔𝜔𝜔𝜔)

What is 𝐤𝐤? How is it related to the parameters of the wave? Where is 𝑐𝑐?



Solution of wave equation – 1

Q: Verify that the solution of wave equation,                             ,   is:∇2𝐄𝐄 =
1
𝑐𝑐2
𝜕𝜕2𝐄𝐄
𝜕𝜕𝑡𝑡2

𝐄𝐄 𝐫𝐫, 𝑡𝑡 = 𝐄𝐄0𝑒𝑒𝑖𝑖(𝐤𝐤⋅𝐫𝐫−𝜔𝜔𝜔𝜔)

What is 𝐤𝐤? How is it related to the parameters of the wave? Where is 𝑐𝑐?

This is called the “dispersion relation” for electromagnetic waves in vacuum.  
It relates the wavelength 𝜆𝜆 = 2𝜋𝜋

𝑘𝑘
and the frequency 𝑓𝑓 = 𝜔𝜔

2𝜋𝜋
to each other.

The two second derivatives are:

Thus, our travelling wave will be a solution if:

Let us choose 𝑧𝑧 axis along 𝐤𝐤. Then:

𝑘𝑘2 = 𝜇𝜇0𝜖𝜖0 𝜔𝜔2 =
𝜔𝜔2

𝑐𝑐2



∇2𝐄𝐄 =
1
𝑐𝑐2
𝜕𝜕2𝐄𝐄
𝜕𝜕𝑡𝑡2

• 𝐄𝐄0 is a constant that gives the amplitude and polarization of the wave 

• 𝐤𝐤 is the “wave vector” with magnitude  𝑘𝑘 = 2𝜋𝜋/𝜆𝜆 (defines propagation direction)               

• 𝜔𝜔 is the (angular) frequency of the wave, and 𝜔𝜔 = 2𝜋𝜋𝜋𝜋 = 2𝜋𝜋/𝑇𝑇

• The phase of the wave is 𝐤𝐤 ⋅ 𝐫𝐫 − 𝜔𝜔𝜔𝜔 . “Wave fronts” are planes of constant phase.

Solution of

Solution of wave equation – 2

• Let a wave be travelling in +𝑧𝑧 direction. Let’s look 
at the wavefront with zero phase (where 𝐄𝐄 = 𝐄𝐄0):

A wave and a theoretical physicist

is a plane 
travelling wave: 𝐄𝐄 𝐫𝐫, 𝑡𝑡 = 𝐄𝐄0𝑒𝑒𝑖𝑖(𝐤𝐤⋅𝐫𝐫−𝜔𝜔𝜔𝜔)

• Hence, the crest is travelling along 𝑧𝑧 with speed 𝑐𝑐.

with 𝑘𝑘 = 𝜔𝜔/𝑐𝑐



Solution of wave equation – 3

Exercise 1:    Prove that, if 𝐄𝐄 𝐫𝐫, 𝑡𝑡 = 𝐄𝐄0𝑒𝑒𝑖𝑖(𝐤𝐤⋅𝐫𝐫−𝜔𝜔𝜔𝜔), then ∇ ⋅ 𝐄𝐄 = 𝑖𝑖 𝐤𝐤 ⋅ 𝐄𝐄

Exercise 2:    Prove that, if 𝐄𝐄 𝐫𝐫, 𝑡𝑡 = 𝐄𝐄0𝑒𝑒𝑖𝑖(𝐤𝐤⋅𝐫𝐫−𝜔𝜔𝜔𝜔), then ∇ × 𝐄𝐄 = 𝑖𝑖 𝐤𝐤 × 𝐄𝐄

Also note that:   𝐁𝐁 𝐫𝐫, 𝑡𝑡 = 𝐁𝐁0𝑒𝑒𝑖𝑖(𝐤𝐤⋅𝐫𝐫−𝜔𝜔𝜔𝜔) →
𝜕𝜕𝐁𝐁
𝜕𝜕𝜕𝜕

= −𝑖𝑖𝑖𝑖𝐁𝐁(𝐫𝐫, 𝑡𝑡)

How are 𝐄𝐄,𝐁𝐁 and 𝐤𝐤 organized in an electromagnetic wave?



Solution of wave equation – 3

∇ ⋅ 𝐄𝐄0𝑒𝑒𝑖𝑖(𝐤𝐤⋅𝐫𝐫−𝜔𝜔𝜔𝜔) =
𝜕𝜕
𝜕𝜕𝜕𝜕

𝐸𝐸0,𝑥𝑥 𝑒𝑒𝑖𝑖(𝑘𝑘𝑥𝑥𝑥𝑥+𝑘𝑘𝑦𝑦𝑦𝑦+𝑘𝑘𝑧𝑧𝑧𝑧−𝜔𝜔𝜔𝜔)

+
𝜕𝜕
𝜕𝜕𝑦𝑦

𝐸𝐸0,𝑦𝑦 𝑒𝑒𝑖𝑖(𝑘𝑘𝑥𝑥𝑥𝑥+𝑘𝑘𝑦𝑦𝑦𝑦+𝑘𝑘𝑧𝑧𝑧𝑧−𝜔𝜔𝜔𝜔)

+
𝜕𝜕
𝜕𝜕𝑧𝑧

𝐸𝐸0,𝑧𝑧 𝑒𝑒𝑖𝑖(𝑘𝑘𝑥𝑥𝑥𝑥+𝑘𝑘𝑦𝑦𝑦𝑦+𝑘𝑘𝑧𝑧𝑧𝑧−𝜔𝜔𝜔𝜔)

= 𝐸𝐸0,𝑥𝑥 𝑖𝑖𝑖𝑖𝑥𝑥𝑒𝑒𝑖𝑖(𝐤𝐤⋅𝐫𝐫−𝜔𝜔𝜔𝜔)

+ 𝐸𝐸0,𝑦𝑦 𝑖𝑖𝑖𝑖𝑦𝑦𝑒𝑒𝑖𝑖(𝐤𝐤⋅𝐫𝐫−𝜔𝜔𝜔𝜔)

+ 𝐸𝐸0,𝑧𝑧 𝑖𝑖𝑖𝑖𝑧𝑧𝑒𝑒𝑖𝑖(𝐤𝐤⋅𝐫𝐫−𝜔𝜔𝜔𝜔)

= 𝑖𝑖 𝐄𝐄 ⋅ 𝐤𝐤

Exercise 1:    Prove that, if 𝐄𝐄 𝐫𝐫, 𝑡𝑡 = 𝐄𝐄0𝑒𝑒𝑖𝑖(𝐤𝐤⋅𝐫𝐫−𝜔𝜔𝜔𝜔), then ∇ ⋅ 𝐄𝐄 = 𝑖𝑖 𝐤𝐤 ⋅ 𝐄𝐄

Exercise 2:    Prove that, if 𝐄𝐄 𝐫𝐫, 𝑡𝑡 = 𝐄𝐄0𝑒𝑒𝑖𝑖(𝐤𝐤⋅𝐫𝐫−𝜔𝜔𝜔𝜔), then ∇ × 𝐄𝐄 = 𝑖𝑖 𝐤𝐤 × 𝐄𝐄

How are 𝐄𝐄,𝐁𝐁 and 𝐤𝐤 organized in an electromagnetic wave?



Solution of wave equation – 3

∇ × 𝐄𝐄0𝑒𝑒𝑖𝑖(𝐤𝐤⋅𝐫𝐫−𝜔𝜔𝜔𝜔)
+�𝐱𝐱

𝜕𝜕𝐸𝐸𝑧𝑧
𝜕𝜕𝜕𝜕

−
𝜕𝜕𝐸𝐸𝑦𝑦
𝜕𝜕𝑧𝑧

= 𝑖𝑖 𝐤𝐤 × 𝐄𝐄
=

�𝐱𝐱 �𝐲𝐲 �𝐳𝐳
𝜕𝜕
𝜕𝜕𝜕𝜕

𝜕𝜕
𝜕𝜕𝑦𝑦

𝜕𝜕
𝜕𝜕𝑧𝑧

𝐸𝐸𝑥𝑥 𝐸𝐸𝑦𝑦 𝐸𝐸𝑧𝑧

=

𝐸𝐸𝑖𝑖 = 𝐸𝐸0,𝑖𝑖 𝑒𝑒𝑖𝑖(𝑘𝑘𝑥𝑥𝑥𝑥+𝑘𝑘𝑦𝑦𝑦𝑦+𝑘𝑘𝑧𝑧𝑧𝑧−𝜔𝜔𝜔𝜔)

−�𝐲𝐲
𝜕𝜕𝐸𝐸𝑧𝑧
𝜕𝜕𝑥𝑥

−
𝜕𝜕𝐸𝐸𝑥𝑥
𝜕𝜕𝑧𝑧

+�𝐳𝐳
𝜕𝜕𝐸𝐸𝑦𝑦
𝜕𝜕𝑥𝑥

−
𝜕𝜕𝐸𝐸𝑥𝑥
𝜕𝜕𝜕𝜕

+�𝐱𝐱 𝑖𝑖𝑘𝑘𝑦𝑦𝐸𝐸𝑧𝑧 − 𝑖𝑖𝑘𝑘𝑧𝑧𝐸𝐸𝑦𝑦

= −�𝐲𝐲 𝑖𝑖𝑘𝑘𝑥𝑥𝐸𝐸𝑧𝑧 − 𝑖𝑖𝑘𝑘𝑧𝑧𝐸𝐸𝑥𝑥

+�𝐳𝐳 𝑖𝑖𝑘𝑘𝑥𝑥𝐸𝐸𝑦𝑦 − 𝑖𝑖𝑘𝑘𝑦𝑦𝐸𝐸𝑥𝑥

=
�𝐱𝐱 �𝐲𝐲 �𝐳𝐳
𝑖𝑖𝑖𝑖𝑥𝑥 𝑖𝑖𝑖𝑖𝑦𝑦 𝑖𝑖𝑖𝑖𝑧𝑧
𝐸𝐸𝑥𝑥 𝐸𝐸𝑦𝑦 𝐸𝐸𝑧𝑧

Exercise 1:    Prove that, if 𝐄𝐄 𝐫𝐫, 𝑡𝑡 = 𝐄𝐄0𝑒𝑒𝑖𝑖(𝐤𝐤⋅𝐫𝐫−𝜔𝜔𝜔𝜔), then ∇ ⋅ 𝐄𝐄 = 𝑖𝑖 𝐤𝐤 ⋅ 𝐄𝐄

Exercise 2:    Prove that, if 𝐄𝐄 𝐫𝐫, 𝑡𝑡 = 𝐄𝐄0𝑒𝑒𝑖𝑖(𝐤𝐤⋅𝐫𝐫−𝜔𝜔𝜔𝜔), then ∇ × 𝐄𝐄 = 𝑖𝑖 𝐤𝐤 × 𝐄𝐄

How are 𝐄𝐄,𝐁𝐁 and 𝐤𝐤 organized in an electromagnetic wave?



How are 𝐄𝐄,𝐁𝐁 and 𝐤𝐤 organized in an electromagnetic wave?

Solution of wave equation – 3

1) ∇ ⋅ 𝐄𝐄 = 𝑖𝑖 𝐤𝐤 ⋅ 𝐄𝐄 = 0

∇ × 𝐄𝐄 = −
𝜕𝜕𝐁𝐁
𝜕𝜕𝜕𝜕

→ 𝐄𝐄 ⊥ 𝐤𝐤

𝑥𝑥

𝑦𝑦

𝑧𝑧

𝐤𝐤

𝐄𝐄
𝐁𝐁

2) 

Since 𝑘𝑘 = 𝜔𝜔𝜔𝜔:

→ 𝑖𝑖𝐤𝐤 × 𝐄𝐄 = 𝑖𝑖𝑖𝑖 𝐁𝐁 → 𝐤𝐤 × 𝐄𝐄 = 𝜔𝜔 𝐁𝐁

→ 𝐁𝐁 = 1
𝑐𝑐
𝐤̂𝐤 × 𝐄𝐄 → ⊥ 𝐄𝐄,𝐤𝐤

Note the handedness of electromagnetic waves:    

𝐁𝐁 → 𝐤̂𝐤 × 𝐄𝐄,     𝐄𝐄 → 𝐁𝐁 × 𝐤̂𝐤,     𝐤̂𝐤 → 𝐄𝐄 × 𝐁𝐁

→ 𝐄𝐄 = −𝑐𝑐 𝐤̂𝐤 × 𝐁𝐁 = 𝑐𝑐 𝐁𝐁 × 𝐤̂𝐤

right-handed light



Q: Since 𝑐𝑐 is the largest possible speed in Nature, does it mean that the magnetic “part” of 
the electromagnetic wave is always much weaker than its electric “part”?

We found that the amplitudes of the electric and the magnetic “parts” of the 
electromagnetic wave are related by: 

𝐸𝐸0 =
𝜔𝜔
𝑘𝑘
𝐵𝐵0 = 𝑐𝑐 𝐵𝐵0

Amplitudes 𝐸𝐸0 and 𝐵𝐵0

A. Yes!

B. No!



Q: Since 𝑐𝑐 is the largest possible speed in Nature, does it mean that the magnetic “part” of 
the electromagnetic wave is always much weaker than its electric “part”?

We found that the amplitudes of the electric and the magnetic “parts” of the 
electromagnetic wave are related by: 

𝐸𝐸0 =
𝜔𝜔
𝑘𝑘
𝐵𝐵0 = 𝑐𝑐 𝐵𝐵0

Amplitudes 𝐸𝐸0 and 𝐵𝐵0

A. Yes!

B. No!

No. Note that 𝐄𝐄 field and 𝐁𝐁 field have different units in SI unit 
system: [E] = N/C, [B] = T. It makes no sense to compare them 
directly; it would be the same as comparing 1 s with 1 km! 



By Lookang - Own work, CC BY-SA 3.0, 
https://commons.wikimedia.org/w/index.php

?curid=16874302

https://en.wikipedia.org/wiki/Electromagnetic_r
adiation#/media/File:Electromagneticwave3D.gif

Make a new friend: Electromagnetic wave

𝑦𝑦

𝑥𝑥

𝑧𝑧

• Done! That’s how a plane 
electromagnetic wave looks like…

Direction of 
propagation

• The direction of propagation is 
given by the cross product 𝐸𝐸 × 𝐵𝐵



"It's of no use whatsoever [...] this is just an experiment that proves Maestro 
Maxwell was right - we just have these mysterious electromagnetic waves that 
we cannot see with the naked eye. But they are there.”     

Heinrich Hertz, on measuring EM wave properties:

Asked about the ramifications of his discoveries, Hertz replied:

"Nothing, I guess.”

- Heinrich Hertz, 1888

Marconi’s first wireless radio transmission over large distances occurred in 1897 
(~6 km over water).

Historical perspective

https://en.wikipedia.org/wiki/Heinrich_Hertz

https://en.wikipedia.org/wiki/Heinrich_Hertz


This barely scratches the surface:

• Electromagnetic waves in free space (e.g. astronomy)
• Radio, television broadcasts, communications, wi-fi, GPS, …
• Microwave ovens, cellular communications, …
• Heat lamps, night-vision goggles, masers, …
• Vision, light bulbs, LEDs, lasers, …
• X-rays, …
• Light/matter interactions

Applications of electromagnetic waves:

You can study them your whole life; this is what happened to me.



All these objects (and many others) are described by simply solving Maxwell’s equations. 
(with fair addition of quantum mechanics, in many cases)

Polar molecules in 
an optical lattice

Polaritons (light hybridized with 
atomic transitions in a crystal)

Negative refraction (light that bends “wrongly”)

Light interacting with the waves in the 
“sea of electrons”



Scottish 1831-1879

"From a long view of the history of mankind –
seen from, say, ten thousand years from now –
there can be little doubt that the most 
significant event of the 19th century will be 
judged as Maxwell’s discovery of the laws of 
electrodynamics. The American Civil War will 
pale into provincial insignificance in comparison 
with this important scientific event of the same 
decade."

– R.P. Feynman 

James Clerk Maxwell



…and there was light.  

The Maxwell’s equations
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