
Review



Which approach to use? That is the question… 

 Brute-force integration 

 Gauss’s law & Ampere’s law �
𝐶𝐶
𝐁𝐁 ⋅ 𝑑𝑑𝐥𝐥 = 𝜇𝜇0𝐼𝐼encl �

𝐴𝐴
𝐄𝐄 ⋅ 𝑑𝑑𝐚𝐚 =

𝑄𝑄encl
𝜖𝜖0

(always works, but might be tedious)

(must have enough symmetry)

 Principle of superposition

(if you know the field of the 
constituents of a more 
complex system)

+𝜌𝜌

(in the region where 𝜌𝜌 = 0)

 Multipole expansion

(charges & conductors)
 Laplace equation for potential

(large distance from a compact 
charge distribution)

 Method of images



1. Half-filled capacitor

Q: Determine the following quantities everywhere: the fields 𝐃𝐃, 𝐄𝐄, and 𝐏𝐏, the free and 
bound charge densities, 𝜎𝜎𝐹𝐹 , 𝜎𝜎𝐵𝐵, and 𝜌𝜌𝐵𝐵, and the capacitance, 𝐶𝐶, of this capacitor. 
Neglect edge effects at the equator.

• Which approach to use?

• We usually know free charges (and don’t know bound charges, 
𝜌𝜌𝐵𝐵 and 𝜎𝜎𝐵𝐵)            =>       Can use Gauss’ law to relate 𝐃𝐃 with 𝑄𝑄𝐹𝐹

• Find 𝐃𝐃 =>   find 𝐄𝐄𝐭𝐭𝐭𝐭𝐭𝐭 =>   Find 𝐕𝐕(𝐫𝐫), etc.

Q: What is wrong with this approach?



1. Half-filled capacitor
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bound charge densities, 𝜎𝜎𝐹𝐹 , 𝜎𝜎𝐵𝐵, and 𝜌𝜌𝐵𝐵, and the capacitance, 𝐶𝐶, of this capacitor. 
Neglect edge effects at the equator.

• Which approach to use?

• We usually know free charges (and don’t know bound charges, 
𝜌𝜌𝐵𝐵 and 𝜎𝜎𝐵𝐵)            =>       Can use Gauss’ law to relate 𝐃𝐃 with 𝑄𝑄𝐹𝐹

• Find 𝐃𝐃 =>   find 𝐄𝐄𝐭𝐭𝐭𝐭𝐭𝐭 =>   Find 𝐕𝐕(𝐫𝐫), etc.

Q: What is wrong with this approach?

A: You cannot state that a field has enough symmetry 
unless you can prove that.

BTW, “symmetry arguments” can be pretty involved. 



Spin-off. Symmetry arguments in the wild

Not this one. These two observers see 
quite different charge distributions => 
they feel different electric fields => 
concentric ellipsoid is NOT a “useful” 
Gaussian surface!

• Is this charge distribution symmetric enough to use Gauss’s law?

𝜌𝜌0

• Symmetry arguments can be pretty involved: 

Lecture 4



Spin-off. Symmetry arguments in the wild

• Symmetry arguments can be pretty involved: 
Tut 9:

 No z-component: 

𝐁𝐁 = �
𝐼𝐼𝐼𝐼𝐥𝐥 × �𝒅𝒅
𝑑𝑑2

(Biot-Savart)

 s-component: 

→ 𝐁𝐁 ⊥ 𝐈𝐈

Assume 𝐵𝐵𝑠𝑠 ≠ 0 and points e.g. outwards. If we flip the direction of the current, it must 
become inwards (from Biot-Savart). But flipping the current is equivalent to rotating the 
solenoid upside down, which cannot change the direction of 𝐵𝐵𝑠𝑠 => 𝐵𝐵𝑠𝑠 ≡ 0.



1. Half-filled capacitor

Q: Determine the following quantities everywhere: the fields 𝐃𝐃, 𝐄𝐄, and 𝐏𝐏, the free and 
bound charge densities, 𝜎𝜎𝐹𝐹 , 𝜎𝜎𝐵𝐵, and 𝜌𝜌𝐵𝐵, and the capacitance, 𝐶𝐶, of this capacitor. 
Neglect edge effects at the equator.

• What do we know for a fact? Plates are conductors, and each conductor in 
electrostatic equilibrium is an equipotential object

=> Δ𝑉𝑉 is the same for all these paths

=> 𝐄𝐄 is the same between the plates, since Δ𝑉𝑉 = −�𝐄𝐄 ⋅ 𝑑𝑑𝐥𝐥

Q: Can you see a flaw in this logic?

A: We need to first prove that 𝐄𝐄 is radial…



Spin-off. Symmetry arguments in the wild

• Symmetry arguments can be pretty involved: • Let us show that 𝐄𝐄 can only be radial.

Q: What do we know about volume charge density?

𝜌𝜌𝑏𝑏 ≡ 0





 Hence,   ∇2𝑉𝑉 𝑟𝑟,𝜃𝜃,𝜑𝜑 = 0 everywhere in  , , 

• No 𝜑𝜑-dependence: rotational symmetry of the system about 𝑧𝑧

𝑧𝑧

⇒ 𝑉𝑉 𝑟𝑟 =
𝑐𝑐1
𝑟𝑟

+ 𝑐𝑐2

• No 𝜃𝜃-dependence: boundary conditions 𝑉𝑉 𝑎𝑎,𝜃𝜃 = 𝑉𝑉1 and 
𝑉𝑉 𝑏𝑏,𝜃𝜃 = 𝑉𝑉2 plus Uniqueness Theorem

⇒ 𝐄𝐄 𝑟𝑟 =
𝐶𝐶
𝑟𝑟2
�𝐫𝐫 in  , , 



1. Half-filled capacitor

Q: Determine the following quantities everywhere: the fields 𝐃𝐃, 𝐄𝐄, and 𝐏𝐏, the free and 
bound charge densities, 𝜎𝜎𝐹𝐹 , 𝜎𝜎𝐵𝐵, and 𝜌𝜌𝐵𝐵, and the capacitance, 𝐶𝐶, of this capacitor. 
Neglect edge effects at the equator.

• So this is the picture which we start getting:

• 𝐄𝐄 is the same across both hemispheres

• …which 𝐄𝐄 means that 𝐃𝐃 = 𝜖𝜖𝐄𝐄 is different in the two hemispheres!

• Since 𝐄𝐄 is sourced by free and bound charges, 𝜎𝜎𝑡𝑡𝑡𝑡𝑡𝑡 = 𝜎𝜎f + 𝜎𝜎𝑏𝑏
is distributed uniformly across the spheres

• …and 𝜎𝜎f is distributed non-uniformly across the spheres 
(how?? Assume positive free charge is on the inner plate)
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1. Half-filled capacitor

• 𝐄𝐄 = 𝐃𝐃 = 𝐏𝐏 = 𝟎𝟎 in the cavity and outside the capacitor

• Since we know that E is spherically symmetric, we can use Gauss’s law for 𝐄𝐄 (but not for 𝐃𝐃!!!)  

• Inside the capacitor: Shortest approach:

→ 𝐄𝐄 =
1

4𝜋𝜋𝜖𝜖0
2𝑄𝑄/(𝜖𝜖𝑟𝑟 + 1)

𝑟𝑟2
�𝐫𝐫, 𝐏𝐏 = 𝜒𝜒𝑒𝑒𝜖𝜖0𝐄𝐄

+

++

+

+ +

+

+

+

+

+

+
+

+
− −

−

−

−

−

𝐶𝐶bot = 𝜖𝜖𝑟𝑟𝐶𝐶top

Verify: 𝜎𝜎𝑏𝑏 = 𝐏𝐏 ⋅ (−�𝐫𝐫)

Using 𝑄𝑄 = 𝐶𝐶Δ𝑉𝑉: 𝑄𝑄f,bot = 𝜖𝜖𝑟𝑟𝑄𝑄f,top and 𝑄𝑄f,bot+𝑄𝑄f,top= 𝑄𝑄

→ 𝑄𝑄f,bot =
𝑄𝑄𝜖𝜖𝑟𝑟
𝜖𝜖𝑟𝑟 + 1 𝑄𝑄f,top =

𝑄𝑄
𝜖𝜖𝑟𝑟 + 1

𝑄𝑄f,bot + 𝑄𝑄𝑏𝑏 = 𝑄𝑄f,top → 𝑄𝑄𝑏𝑏 = −𝑄𝑄
𝜖𝜖𝑟𝑟 − 1
𝜖𝜖𝑟𝑟 + 1

𝑄𝑄encl = 2𝑄𝑄f,top



1. Half-filled capacitor

Q: Determine the following quantities everywhere: the fields 𝐃𝐃, 𝐄𝐄, and 𝐏𝐏, the free and 
bound charge densities, 𝜎𝜎𝐹𝐹 , 𝜎𝜎𝐵𝐵, and 𝜌𝜌𝐵𝐵, and the capacitance, 𝐶𝐶, of this capacitor. 
Neglect edge effects at the equator.

Q: Does this logic depend on whether the capacitor 
is attached to a battery or detached from it?
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A: No, the solution will be the same, since its cornerstone is 
𝑉𝑉 = const on each surface, and it is a fundamental 
property of a conductor in electrostatic equilibrium (does 
not depend on whether the battery is attached or not)

Attached or detached battery starts playing role when we 
need to figure out what (charge or voltage across the plates) 
conserves when we do some changes to the capacitor



1. Half-filled capacitor

Q: Determine the following quantities everywhere: the fields 𝐃𝐃, 𝐄𝐄, and 𝐏𝐏, the free and 
bound charge densities, 𝜎𝜎𝐹𝐹 , 𝜎𝜎𝐵𝐵, and 𝜌𝜌𝐵𝐵, and the capacitance, 𝐶𝐶, of this capacitor. 
Neglect edge effects at the equator.

Q: Does this logic apply to a parallel-
plate capacitor with a dielectric 
occupying 1/3 of its volume?

A: Yes, the logic dos not change. 



2. Calculating 𝑉𝑉 from 𝐄𝐄

• “Integrate outwards” , i.e. in the positive direction of your integration variable 
(NOT mandatory, but IS convenient!)

𝑑𝑑𝐥𝐥′

𝑥𝑥

𝐄𝐄

𝑎𝑎 𝑏𝑏𝑑𝑑𝐥𝐥
𝑉𝑉𝑏𝑏 − 𝑉𝑉𝑎𝑎 = −�

𝑎𝑎

𝑏𝑏
𝐄𝐄 ⋅ 𝑑𝑑𝐥𝐥 =

𝑥𝑥
𝐄𝐄

𝑎𝑎 𝑏𝑏
= −�

𝑏𝑏

𝑎𝑎
𝐸𝐸 𝑑𝑑𝑑𝑑𝑉𝑉𝑎𝑎 − 𝑉𝑉𝑏𝑏 = −�

𝑏𝑏

𝑎𝑎
𝐄𝐄 ⋅ 𝑑𝑑𝐥𝐥 =

𝑖𝑖 f

f 𝑖𝑖

−�
𝑎𝑎

𝑏𝑏
𝐸𝐸 𝑑𝑑𝑙𝑙 = −�

𝑎𝑎

𝑏𝑏
𝐸𝐸 𝑑𝑑𝑑𝑑

+�
𝑏𝑏

𝑎𝑎
𝐸𝐸 𝑑𝑑𝑙𝑙

Δ



2. Calculating 𝑉𝑉 from 𝐄𝐄

• “Have a point within your integration region at which you know the potential” , 
(IS mandatory)

𝑑𝑑𝐥𝐥′

• This is because by integrating 𝐄𝐄 you get potential difference between two points 
=> if you want to know the value of the potential at point 1, you need to know its 
value at point 2!

Δ

𝑉𝑉𝑏𝑏 − 𝑉𝑉𝑎𝑎 = −�
𝑎𝑎

𝑏𝑏
𝐄𝐄 ⋅ 𝑑𝑑𝐥𝐥 𝑉𝑉𝑏𝑏 = 𝑉𝑉𝑎𝑎 − �

𝑎𝑎

𝑏𝑏
𝐸𝐸 𝑑𝑑𝑑𝑑



2. Calculating 𝑉𝑉 from 𝐄𝐄

Q: Find 𝑉𝑉(𝑟𝑟) with the 
reference point being infinity.

Start with interval 3 (since we know that 𝑉𝑉3 ∞ = 0)

𝑉𝑉f − 𝑉𝑉𝑖𝑖 = −�
𝑖𝑖

f
𝐄𝐄 ⋅ 𝑑𝑑𝐥𝐥

𝑉𝑉3 𝑟𝑟 = �
𝑟𝑟

∞
𝐸𝐸3 𝑟𝑟 𝑑𝑑𝑑𝑑

𝑉𝑉3 ∞ − 𝑉𝑉3 𝑟𝑟 = −�
𝑟𝑟

∞
𝐸𝐸3 𝑟𝑟 𝑑𝑑𝑑𝑑

and 𝑉𝑉3 2𝑎𝑎 = smth

𝑉𝑉3 2𝑎𝑎 − 𝑉𝑉2 𝑟𝑟 = −�
𝑟𝑟

2𝑎𝑎
𝐸𝐸2 𝑟𝑟 𝑑𝑑𝑑𝑑

𝑉𝑉2 𝑟𝑟 = 𝑉𝑉3 2𝑎𝑎 + �
𝑟𝑟

2𝑎𝑎
𝐸𝐸2 𝑟𝑟 𝑑𝑑𝑑𝑑 and 𝑉𝑉2 𝑎𝑎 = smth else

HW 2

𝑉𝑉2 𝑎𝑎 − 𝑉𝑉1 𝑟𝑟 = −�
𝑟𝑟

𝑎𝑎
𝐸𝐸1 𝑟𝑟 𝑑𝑑𝑑𝑑

𝑉𝑉1 𝑟𝑟 = 𝑉𝑉2 𝑎𝑎 + �
𝑟𝑟

𝑎𝑎
𝐸𝐸1 𝑟𝑟 𝑑𝑑𝑑𝑑 , including 𝑉𝑉1 0



2. Calculating 𝑉𝑉 from 𝐄𝐄

• The outcome is a continuous potential 𝑉𝑉(𝑟𝑟) satisfying the given boundary condition.

• Its kinks correspond to the jumps of E, which, in turn, correspond to non-zero 
surface charge density.



is satisfied automatically by virtue of                                   .  

3. Vector Potential & Coulomb Gauge

We can write B as a curl of some vector field because then ∇ ⋅ 𝐁𝐁 = 0

• Is 𝐀𝐀 uniquely defined? No. We only need that ∇ × 𝐀𝐀 = 𝐁𝐁, and this is not specific enough. 
For example, we can add to 𝐀𝐀 a constant vector field. Or we can add a gradient of arbitrary 
scalar function 𝑓𝑓, since ∇ × ∇𝑓𝑓 ≡ 0. This gives us some freedom in choosing 𝐀𝐀.

• We showed that by making a proper choice of 𝑓𝑓 we can always find such 𝐀𝐀 that its 
curl is equal to 𝐁𝐁, and its divergence is equal to zero: ∇ ⋅ 𝐀𝐀 ≡ 0 (Coulomb gauge).

• Why Coulomb gauge? 



3. Vector Potential & Coulomb Gauge

• We can use 𝐀𝐀 to conveniently find 𝐁𝐁

Since 𝐀𝐀 is parallel to J, it might be much easier to find 𝐀𝐀 from one of these equations:  

and then apply 𝐁𝐁 = ∇ × 𝐀𝐀 rather then use Biot-Savart’s

• In fact, you will need 𝐀𝐀 mainly in electrodynamics (PHYS 401) 

• We can use 𝐀𝐀 to find Φ𝐵𝐵: 



4. Boundary condition for dielectric and magnetics

Medium 1

Medium 2

𝜖𝜖1, 𝜇𝜇1

𝜖𝜖2, 𝜇𝜇2

𝐁𝐁1,𝐌𝐌1,𝐇𝐇1𝐄𝐄1,𝐏𝐏1,𝐃𝐃1

𝐁𝐁2,𝐌𝐌2,𝐇𝐇2𝐄𝐄2,𝐏𝐏2,𝐃𝐃2



Medium 1

Medium 2

𝜖𝜖1, 𝜇𝜇1

𝜖𝜖2, 𝜇𝜇2

𝐁𝐁1,𝐌𝐌1,𝐇𝐇1𝐄𝐄1,𝐏𝐏1,𝐃𝐃1

𝐁𝐁2,𝐌𝐌2,𝐇𝐇2𝐄𝐄2,𝐏𝐏2,𝐃𝐃2

𝐅𝐅1

𝐅𝐅1,∥

𝐅𝐅1,⊥

Φ𝐅𝐅 = �
box

𝐅𝐅 ⋅ 𝑑𝑑𝐚𝐚

Φ𝐄𝐄 =
𝑄𝑄encl
𝜖𝜖0

Φ𝐃𝐃 = 𝑄𝑄f,encl = 𝜎𝜎f𝐴𝐴side

Φ𝐁𝐁 = 0

𝐸𝐸1,⊥ − 𝐸𝐸2,⊥ =
𝜎𝜎
𝜖𝜖0

𝐷𝐷1,⊥ − 𝐷𝐷2,⊥ = 𝜎𝜎f

𝐵𝐵1,⊥ − 𝐵𝐵2,⊥ = 0

4. Boundary condition for dielectric and magnetics

= 𝐹𝐹1,⊥ − 𝐹𝐹2,⊥ 𝐴𝐴side

𝑧𝑧

=
𝜎𝜎𝐴𝐴side
𝜖𝜖0

𝐅𝐅2,∥

𝐅𝐅2𝐅𝐅2,⊥

�
box

𝐅𝐅 ⋅ 𝑑𝑑𝐚𝐚 = �
𝑉𝑉
∇ ⋅ 𝐅𝐅 𝑑𝑑𝑑𝑑



𝐻𝐻1,∥ − 𝐻𝐻2,∥ = 𝐾𝐾f, ⊥ to loop

𝐵𝐵1,∥ − 𝐵𝐵2,∥ = 𝜇𝜇0𝐾𝐾⊥ to loopL𝐁𝐁 = 𝜇𝜇0𝐼𝐼encl

= 𝐹𝐹1,∥ − 𝐹𝐹2,∥ 𝐿𝐿loop

L𝐅𝐅 = �
loop

𝐅𝐅 ⋅ 𝑑𝑑𝐥𝐥

Medium 1

Medium 2

𝜖𝜖1, 𝜇𝜇1

𝜖𝜖2, 𝜇𝜇2

𝐁𝐁1,𝐌𝐌1,𝐇𝐇1𝐄𝐄1,𝐏𝐏1,𝐃𝐃1

4. Boundary condition for dielectric and magnetics

𝑧𝑧 𝐅𝐅1

𝐅𝐅1,∥

𝐅𝐅1,⊥

𝐅𝐅2

𝐅𝐅2,∥

𝐅𝐅2,⊥

L𝐄𝐄 = 0

L𝐇𝐇 = 𝐼𝐼f,encl

𝐸𝐸1,∥ − 𝐸𝐸2,∥ = 0

𝐁𝐁2,𝐌𝐌2,𝐇𝐇2𝐄𝐄2,𝐏𝐏2,𝐃𝐃2

�
loo[

𝐅𝐅 ⋅ 𝑑𝑑𝐥𝐥 = �
𝐴𝐴
∇ × 𝐅𝐅 ⋅ 𝑑𝑑𝐚𝐚



𝐸𝐸∥above = 𝐸𝐸∥below 𝐵𝐵∥above − 𝐵𝐵∥below ⊥𝐊𝐊 = 𝜇𝜇0𝐾𝐾

𝐸𝐸⊥above − 𝐸𝐸⊥below =
𝜎𝜎
𝜖𝜖0 𝐵𝐵⊥above = 𝐵𝐵⊥below

With the account of polarization / magnetization:

𝐸𝐸∥above = 𝐸𝐸∥below 𝐻𝐻∥above − 𝐻𝐻∥below ⊥𝐊𝐊 = 𝐾𝐾f

𝐷𝐷⊥above − 𝐷𝐷⊥below = 𝜎𝜎f 𝐵𝐵⊥above = 𝐵𝐵⊥below

Without polarization / magnetization:

4. Boundary condition for dielectric and magnetics

𝐀𝐀above = 𝐀𝐀below

−
𝜕𝜕𝐀𝐀above

𝜕𝜕𝜕𝜕
+
𝜕𝜕𝐀𝐀below

𝜕𝜕𝜕𝜕
= 𝜇𝜇0𝑲𝑲𝑉𝑉above = 𝑉𝑉below −

𝜕𝜕𝜕𝜕above

𝜕𝜕𝜕𝜕
+
𝜕𝜕𝜕𝜕below

𝜕𝜕𝜕𝜕
=
𝜎𝜎
𝜖𝜖0

−𝜖𝜖above
𝜕𝜕𝜕𝜕above

𝜕𝜕𝜕𝜕
+ 𝜖𝜖below

𝜕𝜕𝜕𝜕below

𝜕𝜕𝜕𝜕
= 𝜎𝜎f −

1
𝜇𝜇above

𝜕𝜕𝐀𝐀above

𝜕𝜕𝜕𝜕
+

1
𝜇𝜇below

𝜕𝜕𝐀𝐀below

𝜕𝜕𝜕𝜕
= 𝑲𝑲𝐟𝐟



Applications:
• Relate E field and charge density

3. Boundary condition for dielectric and magnetics

• Predict behavior of fields • Find potential 𝑉𝑉 using SOV

MT-1:



If you are not one of those 7 well-organized people – please fill it out NOW!

Please fill 
me out !!!Please fill 

me out !!!



The End
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