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Preface

This text is intended as an introduction to elementary probability theory and stochas-
tic processes. It is particularly well suited for those wanting to see how probability
theory can be applied to the study of phenomena in fields such as engineering, com-
puter science, management science, the physical and social sciences, and operations
research.

It is generally felt that there are two approaches to the study of probability theory.
One approach is heuristic and nonrigorous and attempts to develop in the student an
intuitive feel for the subject that enables him or her to “think probabilistically.” The
other approach attempts a rigorous development of probability by using the tools of
measure theory. It is the first approach that is employed in this text. However, because
it is extremely important in both understanding and applying probability theory to be
able to “think probabilistically,” this text should also be useful to students interested
primarily in the second approach.

New to This Edition
The thirteenth edition includes new text material, examples, and exercises in almost
every chapter. For instance, record values are introduced in Example 3.9, with the
density function of the nth record value being derived. Example 3.26 on the best prize
problem is extended to the case where the number of prizes to be presented is un-
known. Example 3.27 supposes that two contestants are playing a match consisting of
a sequence of games, with each game being won by one of the players with probabil-
ity p and by the other with probability 1 − p, and with the match ending when one
of the players has had k more wins than the other. This example not only derives the
match win probabilities but also proves the interesting result that the number of games
played and the match winner are independent.

Section 3.6.4 is expanded to derive the variance, as well as a recursive equation
for the probability mass function, of the occurrence time of a pattern that does not
have any overlap, when the data consists of a sequence of independent and identically
distributed discrete random variables. The new section 7.4.1 shows how many of the
important results of Markov chains can be easily established by applying results from
Renewal Theory. Section 7.4.2 uses renewal reward processes to obtain the mean time
until a given pattern occurs when the data are generated from a Markov chain.

The biggest change in the current edition is the addition of Chapter 13 on martin-
gales. This chapter focuses on showing how martingales can be effectively used when
studying stochastic systems. For instance, the important martingale stopping theorem
is introduced and applied in a variety of situations.
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Course
Ideally, this text would be used in a one-year course in probability models. Other
possible courses would be a one-semester course in introductory probability theory
(involving Chapters 1–3 and parts of others) or a course in elementary stochastic
processes. The textbook is designed to be flexible enough to be used in a variety of
possible courses. For example, I have used Chapters 5 and 8, with smatterings from
Chapters 4 and 6, as the basis of an introductory course in queueing theory.

Examples and Exercises
Many examples are worked out throughout the text, and there are also a large num-
ber of exercises to be solved by students. More than 100 of these exercises have been
starred and their solutions provided at the end of the text. These starred problems can
be used for independent study and test preparation. An Instructor’s Manual, contain-
ing solutions to all exercises, is available free to instructors who adopt the book for
class.

Organization
Chapters 1 and 2 deal with basic ideas of probability theory. In Chapter 1, an axiomatic
framework is presented, while in Chapter 2, the important concept of a random vari-
able is introduced. Section 2.6.1 gives a simple derivation of the joint distribution of
the sample mean and sample variance of a normal data sample. Section 2.8 gives a
proof of the strong law of large numbers, with the proof assuming that both the ex-
pected value and variance of the random variables under consideration are finite.

Chapter 3 is concerned with the subject matter of conditional probability and con-
ditional expectation. “Conditioning” is one of the key tools of probability theory, and
it is stressed throughout the book. When properly used, conditioning often enables us
to easily solve problems that at first glance seem quite difficult. The final section of
this chapter presents applications to (1) a computer list problem, (2) a random graph,
and (3) the Polya urn model and its relation to the Bose–Einstein distribution. Sec-
tion 3.6.5 presents k-record values and the surprising Ignatov’s theorem.

In Chapter 4, we come into contact with our first random, or stochastic, process,
known as a Markov chain, which is widely applicable to the study of many real-world
phenomena. Applications to genetics and production processes are presented. The
concept of time reversibility is introduced and its usefulness illustrated. Section 4.5.3
presents an analysis, based on random walk theory, of a probabilistic algorithm for
the satisfiability problem. Section 4.6 deals with the mean times spent in transient
states by a Markov chain. Section 4.9 introduces Markov chain Monte Carlo methods.
In the final section, we consider a model for optimally making decisions known as a
Markovian decision process.

In Chapter 5, we are concerned with a type of stochastic process known as a count-
ing process. In particular, we study a kind of counting process known as a Poisson
process. The intimate relationship between this process and the exponential distri-
bution is discussed. New derivations for the Poisson and nonhomogeneous Poisson
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processes are discussed. Examples relating to analyzing greedy algorithms, minimiz-
ing highway encounters, collecting coupons, and tracking the AIDS virus, as well as
material on compound Poisson processes, are included in this chapter. Section 5.2.4
gives a simple derivation of the convolution of exponential random variables.

Chapter 6 considers Markov chains in continuous time with an emphasis on birth
and death models. Time reversibility is shown to be a useful concept, as it is in the
study of discrete-time Markov chains. Section 6.8 presents the computationally im-
portant technique of uniformization.

Chapter 7, the renewal theory chapter, is concerned with a type of counting process
more general than the Poisson. By making use of renewal reward processes, limit-
ing results are obtained and applied to various fields. Section 7.9 presents new results
concerning the distribution of time until a certain pattern occurs when a sequence of
independent and identically distributed random variables is observed. In Section 7.9.1,
we show how renewal theory can be used to derive both the mean and the variance of
the length of time until a specified pattern appears, as well as the mean time until
one of a finite number of specified patterns appears. In Section 7.9.2, we suppose
that the random variables are equally likely to take on any of m possible values, and
compute an expression for the mean time until a run of m distinct values occurs. In
Section 7.9.3, we suppose the random variables are continuous and derive an expres-
sion for the mean time until a run of m consecutive increasing values occurs.

Chapter 8 deals with queueing, or waiting line, theory. After some preliminaries
dealing with basic cost identities and types of limiting probabilities, we consider ex-
ponential queueing models and show how such models can be analyzed. Included in
the models we study is the important class known as a network of queues. We then
study models in which some of the distributions are allowed to be arbitrary. Included
are Section 8.6.3, dealing with an optimization problem concerning a single server,
general service time queue, and Section 8.8, concerned with a single server, general
service time queue in which the arrival source is a finite number of potential users.

Chapter 9 is concerned with reliability theory. This chapter will probably be of
greatest interest to the engineer and operations researcher. Section 9.6.1 illustrates a
method for determining an upper bound for the expected life of a parallel system of
not necessarily independent components and Section 9.7.1 analyzes a series structure
reliability model in which components enter a state of suspended animation when one
of their cohorts fails.

Chapter 10 is concerned with Brownian motion and its applications. The theory
of options pricing is discussed. Also, the arbitrage theorem is presented and its rela-
tionship to the duality theorem of linear programming is indicated. We show how the
arbitrage theorem leads to the Black–Scholes option pricing formula.

Chapter 11 deals with simulation, a powerful tool for analyzing stochastic mod-
els that are analytically intractable. Methods for generating the values of arbitrarily
distributed random variables are discussed, as are variance reduction methods for
increasing the efficiency of the simulation. Section 11.6.4 introduces the valuable
simulation technique of importance sampling, and indicates the usefulness of tilted
distributions when applying this method.
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Chapter 12 introduces the concept of coupling and shows how it can be effectively
employed in analyzing stochastic systems. Its use in showing stochastic order relations
between random variables and processes—such as showing that a birth and death pro-
cess is stochastically increasing in its initial state—is illustrated. It is also shown how
coupling can be of use in bounding the distance between distributions, in obtaining
stochastic optimization results, in bounding the error of Poisson approximations, and
in other areas of applied probability.

Chapter 13 introduces martingales, a generalization of the concept of a fair game,
and shows how it can be used as a tool in analyzing a variety of stochastic models.

Electronic instructor access available at https://inspectioncopy.elsevier.com/
9780443187612
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1Introduction to Probability Theory

1.1 Introduction
Any realistic model of a real-world phenomenon must take into account the possibil-
ity of randomness. That is, more often than not, the quantities we are interested in
will not be predictable in advance but, rather, will exhibit an inherent variation that
should be taken into account by the model. This is usually accomplished by allowing
the model to be probabilistic in nature. Such a model is, naturally enough, referred to
as a probability model.

The majority of the chapters of this book will be concerned with different probabil-
ity models of natural phenomena. Clearly, in order to master both the “model building”
and the subsequent analysis of these models, we must have a certain knowledge of ba-
sic probability theory. The remainder of this chapter, as well as the next two chapters,
will be concerned with a study of this subject.

1.2 Sample Space and Events
Suppose that we are about to perform an experiment whose outcome is not predictable
in advance. However, while the outcome of the experiment will not be known in ad-
vance, let us suppose that the set of all possible outcomes is known. This set of all
possible outcomes of an experiment is known as the sample space of the experiment
and is denoted by S.

Some examples are the following.

1. If the experiment consists of the flipping of a coin, then

S = {H,T }

where H means that the outcome of the toss is a head and T that it is a tail.
2. If the experiment consists of rolling a die, then the sample space is

S = {1,2,3,4,5,6}

where the outcome i means that i appeared on the die, i = 1,2,3,4,5,6.
3. If the experiment consists of flipping two coins, then the sample space consists of

the following four points:

S = {(H,H), (H,T ), (T,H), (T,T )}

The outcome will be (H,H) if both coins come up heads; it will be (H,T ) if the
first coin comes up heads and the second comes up tails; it will be (T,H) if the
first comes up tails and the second heads; and it will be (T,T ) if both coins come
up tails.

Introduction to Probability Models. https://doi.org/10.1016/B978-0-44-318761-2.00006-3
Copyright © 2024 Elsevier Inc. All rights reserved.
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2 Introduction to Probability Models

4. If the experiment consists of rolling two dice, then the sample space consists of
the following 36 points:

S =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(1,1), (1,2), (1,3), (1,4), (1,5), (1,6)

(2,1), (2,2), (2,3), (2,4), (2,5), (2,6)

(3,1), (3,2), (3,3), (3,4), (3,5), (3,6)

(4,1), (4,2), (4,3), (4,4), (4,5), (4,6)

(5,1), (5,2), (5,3), (5,4), (5,5), (5,6)

(6,1), (6,2), (6,3), (6,4), (6,5), (6,6)

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

where the outcome (i, j) is said to occur if i appears on the first die and j on the
second die.

5. If the experiment consists of measuring the lifetime of a car, then the sample space
consists of all nonnegative real numbers. That is,1

S = [0,∞) �

Any subset E of the sample space S is known as an event. Some examples of events
are the following.

1′. In Example (1), if E = {H }, then E is the event that a head appears on the flip of
the coin. Similarly, if E = {T }, then E would be the event that a tail appears.

2′. In Example (2), if E = {1}, then E is the event that one appears on the roll of the
die. If E = {2,4,6}, then E would be the event that an even number appears on
the roll.

3′. In Example (3), if E = {(H,H), (H,T )}, then E is the event that a head appears
on the first coin.

4′. In Example (4), if E = {(1,6), (2,5), (3,4), (4,3), (5,2), (6,1)}, then E is the
event that the sum of the dice equals seven.

5′. In Example (5), if E = (2,6), then E is the event that the car lasts between two
and six years. �

We say that the event E occurs when the outcome of the experiment lies in E. For
any two events E and F of a sample space S we define the new event E ∪F to consist
of all outcomes that are either in E or in F or in both E and F . That is, the event E ∪F

will occur if either E or F occurs. For example, in (1) if E = {H } and F = {T }, then

E ∪ F = {H,T }

That is, E ∪ F would be the whole sample space S. In (2) if E = {1,3,5} and
F = {1,2,3}, then

E ∪ F = {1,2,3,5}
1 The set (a, b) is defined to consist of all points x such that a < x < b. The set [a, b] is defined to consist

of all points x such that a � x � b. The sets (a, b] and [a, b) are defined, respectively, to consist of all
points x such that a < x � b and all points x such that a � x < b.
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and thus E ∪ F would occur if the outcome of the die is 1 or 2 or 3 or 5. The event
E ∪ F is often referred to as the union of the event E and the event F .

For any two events E and F , we may also define the new event EF, sometimes
written E ∩ F , and referred to as the intersection of E and F , as follows. EF consists
of all outcomes which are both in E and in F . That is, the event EF will occur only if
both E and F occur. For example, in (2) if E = {1,3,5} and F = {1,2,3}, then

EF = {1,3}
and thus EF would occur if the outcome of the die is either 1 or 3. In Example (1)
if E = {H } and F = {T }, then the event EF would not consist of any outcomes and
hence could not occur. To give such an event a name, we shall refer to it as the null
event and denote it by Ø. (That is, Ø refers to the event consisting of no outcomes.) If
EF = Ø, then E and F are said to be mutually exclusive.

We also define unions and intersections of more than two events in a similar man-
ner. If E1,E2, . . . are events, then the union of these events, denoted by

⋃∞
n=1 En, is

defined to be the event that consists of all outcomes that are in En for at least one value
of n = 1,2, . . . . Similarly, the intersection of the events En, denoted by

⋂∞
n=1 En,

is defined to be the event consisting of those outcomes that are in all of the events
En,n = 1,2, . . . .

Finally, for any event E we define the new event Ec, referred to as the complement
of E, to consist of all outcomes in the sample space S that are not in E. That is, Ec

will occur if and only if E does not occur. In Example (4) if E = {(1,6), (2,5), (3,4),

(4,3), (5,2), (6,1)}, then Ec will occur if the sum of the dice does not equal seven.
Also note that since the experiment must result in some outcome, it follows that
Sc = Ø.

1.3 Probabilities Defined on Events
Consider an experiment whose sample space is S. For each event E of the sample
space S, we assume that a number P(E) is defined and satisfies the following three
conditions:

(i) 0 � P(E) � 1.
(ii) P(S) = 1.

(iii) For any sequence of events E1,E2, . . . that are mutually exclusive, that is,
events for which EnEm = Ø when n �= m, then

P

( ∞⋃
n=1

En

)
=

∞∑
n=1

P(En)

We refer to P(E) as the probability of the event E.

Example 1.1. In the coin tossing example, if we assume that a head is equally likely
to appear as a tail, then we would have

P({H }) = P({T }) = 1
2
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On the other hand, if we had a biased coin and felt that a head was twice as likely to
appear as a tail, then we would have

P({H }) = 2
3 , P ({T }) = 1

3 �

Example 1.2. In the die tossing example, if we supposed that all six numbers were
equally likely to appear, then we would have

P({1}) = P({2}) = P({3}) = P({4}) = P({5}) = P({6}) = 1
6

From (iii) it would follow that the probability of getting an even number would equal

P({2,4,6}) = P({2}) + P({4}) + P({6})
= 1

2 �

Remark. We have chosen to give a rather formal definition of probabilities as being
functions defined on the events of a sample space. However, it turns out that these
probabilities have a nice intuitive property. Namely, if our experiment is repeated over
and over again then (with probability 1) the proportion of time that event E occurs
will just be P(E).

Since the events E and Ec are always mutually exclusive and since E ∪Ec = S we
have by (ii) and (iii) that

1 = P(S) = P(E ∪ Ec) = P(E) + P(Ec)

or

P(Ec) = 1 − P(E) (1.1)

In words, Eq. (1.1) states that the probability that an event does not occur is one
minus the probability that it does occur.

We shall now derive a formula for P(E ∪F), the probability of all outcomes either
in E or in F . To do so, consider P(E) + P(F), which is the probability of all out-
comes in E plus the probability of all points in F . Since any outcome that is in both
E and F will be counted twice in P(E)+ P(F) and only once in P(E ∪ F), we must
have

P(E) + P(F) = P(E ∪ F) + P(EF)

or equivalently

P(E ∪ F) = P(E) + P(F) − P(EF) (1.2)

Note that when E and F are mutually exclusive (that is, when EF = Ø), then Eq. (1.2)
states that

P(E ∪ F) = P(E) + P(F) − P(Ø)



Introduction to Probability Theory 5

= P(E) + P(F)

a result which also follows from condition (iii). (Why is P(Ø) = 0?)

Example 1.3. Suppose that we toss two coins, and suppose that we assume that each
of the four outcomes in the sample space

S = {(H,H), (H,T ), (T,H), (T,T )}
is equally likely and hence has probability 1

4 . Let

E = {(H,H), (H,T )} and F = {(H,H), (T,H)}
That is, E is the event that the first coin falls heads, and F is the event that the second
coin falls heads.

By Eq. (1.2) we have that P(E ∪ F), the probability that either the first or the
second coin falls heads, is given by

P(E ∪ F) = P(E) + P(F) − P(EF)

= 1
2 + 1

2 − P({H,H })
= 1 − 1

4 = 3
4

This probability could, of course, have been computed directly since

P(E ∪ F) = P({(H,H), (H,T ), (T,H)}) = 3
4 �

We may also calculate the probability that any one of the three events E or F or G

occurs. This is done as follows:

P(E ∪ F ∪ G) = P((E ∪ F) ∪ G)

which by Eq. (1.2) equals

P(E ∪ F) + P(G) − P((E ∪ F)G)

Now we leave it for you to show that the events (E∪F)G and EG∪FG are equivalent,
and hence the preceding equals

P(E ∪ F ∪ G)

= P(E) + P(F) − P(EF) + P(G) − P(EG ∪ FG)

= P(E) + P(F) − P(EF) + P(G) − P(EG) − P(FG) + P(EGFG)

= P(E) + P(F) + P(G) − P(EF) − P(EG) − P(FG) + P(EFG) (1.3)

In fact, it can be shown by induction that, for any n events E1,E2,E3, . . . ,En,

P(E1 ∪ E2 ∪ · · · ∪ En) =
∑

i

P (Ei) −
∑
i<j

P (EiEj ) +
∑

i<j<k

P (EiEjEk)
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−
∑

i<j<k<l

P (EiEjEkEl)

+ · · · + (−1)n+1P(E1E2 · · ·En) (1.4)

In words, Eq. (1.4), known as the inclusion–exclusion identity, states that the prob-
ability of the union of n events equals the sum of the probabilities of these events taken
one at a time minus the sum of the probabilities of these events taken two at a time
plus the sum of the probabilities of these events taken three at a time, and so on.

1.4 Conditional Probabilities
Suppose that we toss two dice and that each of the 36 possible outcomes is equally
likely to occur and hence has probability 1

36 . Suppose that we observe that the first
die is a four. Then, given this information, what is the probability that the sum of the
two dice equals six? To calculate this probability we reason as follows: Given that the
initial die is a four, it follows that there can be at most six possible outcomes of our
experiment, namely, (4,1), (4,2), (4,3), (4,4), (4,5), and (4,6). Since each of these
outcomes originally had the same probability of occurring, they should still have equal
probabilities. That is, given that the first die is a four, then the (conditional) probability
of each of the outcomes (4,1), (4,2), (4,3), (4,4), (4,5), (4,6) is 1

6 while the (condi-
tional) probability of the other 30 points in the sample space is 0. Hence, the desired
probability will be 1

6 .
If we let E and F denote, respectively, the event that the sum of the dice is six

and the event that the first die is a four, then the probability just obtained is called the
conditional probability that E occurs given that F has occurred and is denoted by

P(E|F)

A general formula for P(E|F) that is valid for all events E and F is derived in the
same manner as the preceding. Namely, if the event F occurs, then in order for E to
occur it is necessary for the actual occurrence to be a point in both E and in F , that
is, it must be in EF. Now, because we know that F has occurred, it follows that F

becomes our new sample space, and hence the probability that the event EF occurs
will equal the probability of EF relative to the probability of F . That is,

P(E|F) = P(EF)

P (F )
(1.5)

Note that Eq. (1.5) is only well defined when P(F) > 0 and hence P(E|F) is only
defined when P(F) > 0.

Example 1.4. Suppose cards numbered one through ten are placed in a hat, mixed up,
and then one of the cards is drawn. If we are told that the number on the drawn card is
at least five, then what is the conditional probability that it is ten?

Solution: Let E denote the event that the number of the drawn card is ten, and
let F be the event that it is at least five. The desired probability is P(E|F). Now,
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from Eq. (1.5)

P(E|F) = P(EF)

P (F )

However, EF = E since the number of the card will be both ten and at least five if
and only if it is number ten. Hence,

P(E|F) =
1
10
6

10

= 1

6
�

Example 1.5. A family has two children. What is the conditional probability that both
are boys given that at least one of them is a boy? Assume that the sample space S is
given by S = {(b, b), (b, g), (g, b), (g, g)}, and all outcomes are equally likely. ((b, g)

means, for instance, that the older child is a boy and the younger child a girl.)

Solution: Letting B denote the event that both children are boys, and A the event
that at least one of them is a boy, then the desired probability is given by

P(B|A) = P(BA)

P (A)

= P({(b, b)})
P ({(b, b), (b, g), (g, b)}) =

1
4
3
4

= 1

3
�

Example 1.6. Bev can either take a course in computers or in chemistry. If Bev takes
the computer course, then she will receive an A grade with probability 1

2 ; if she takes
the chemistry course, then she will receive an A grade with probability 1

3 . Bev decides
to base her decision on the flip of a fair coin. What is the probability that Bev will get
an A in chemistry?

Solution: If we let C be the event that Bev takes chemistry and A denote the
event that she receives an A in whatever course she takes, then the desired proba-
bility is P(AC). This is calculated by using Eq. (1.5) as follows:

P(AC) = P(C)P (A|C)

= 1
2

1
3 = 1

6 �

Example 1.7. Suppose an urn contains seven black balls and five white balls. We
draw two balls from the urn without replacement. Assuming that each ball in the urn
is equally likely to be drawn, what is the probability that both drawn balls are black?

Solution: Let F and E denote, respectively, the events that the first and second
balls drawn are black. Now, given that the first ball selected is black, there are
six remaining black balls and five white balls, and so P(E|F) = 6

11 . As P(F) is
clearly 7

12 , our desired probability is

P(EF) = P(F)P (E|F)

= 7
12

6
11 = 42

132 �
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Example 1.8. Suppose that each of three men at a party throws his hat into the center
of the room. The hats are first mixed up and then each man randomly selects a hat.
What is the probability that none of the three men selects his own hat?

Solution: We shall solve this by first calculating the complementary probability
that at least one man selects his own hat. Let us denote by Ei, i = 1,2,3, the event
that the ith man selects his own hat. To calculate the probability P(E1 ∪E2 ∪E3),
we first note that

P(Ei) = 1
3 , i = 1,2,3

P(EiEj ) = 1
6 , i �= j (1.6)

P(E1E2E3) = 1
6

To see why Eq. (1.6) is correct, consider first

P(EiEj ) = P(Ei)P (Ej |Ei)

Now P(Ei), the probability that the ith man selects his own hat, is clearly 1
3 since

he is equally likely to select any of the three hats. On the other hand, given that the
ith man has selected his own hat, then there remain two hats that the j th man may
select, and as one of these two is his own hat, it follows that with probability 1

2 he
will select it. That is, P(Ej |Ei) = 1

2 and so

P(EiEj ) = P(Ei)P (Ej |Ei) = 1
3

1
2 = 1

6

To calculate P(E1E2E3) we write

P(E1E2E3) = P(E1E2)P (E3|E1E2)

= 1
6P(E3|E1E2)

However, given that the first two men get their own hats it follows that the
third man must also get his own hat (since there are no other hats left). That is,
P(E3|E1E2) = 1 and so

P(E1E2E3) = 1
6

Now, from Eq. (1.4), we have that
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P(E1 ∪ E2 ∪ E3) = P(E1) + P(E2) + P(E3) − P(E1E2)

− P(E1E3) − P(E2E3) + P(E1E2E3)

= 1 − 1
2 + 1

6

= 2
3

Hence, the probability that none of the men selects his own hat is 1 − 2
3 = 1

3 . �

1.5 Independent Events
Two events E and F are said to be independent if

P(EF) = P(E)P (F )

By Eq. (1.5) this implies that E and F are independent if

P(E|F) = P(E)

(which also implies that P(F |E) = P(F)). That is, E and F are independent if knowl-
edge that F has occurred does not affect the probability that E occurs. That is, the
occurrence of E is independent of whether or not F occurs.

Two events E and F that are not independent are said to be dependent.

Example 1.9. Suppose we toss two fair dice. Let E1 denote the event that the sum of
the dice is six and F denote the event that the first die equals four. Then

P(E1F) = P({4,2}) = 1
36

while

P(E1)P (F ) = 5
36

1
6 = 5

216

and hence E1 and F are not independent. Intuitively, the reason for this is clear for
if we are interested in the possibility of throwing a six (with two dice), then we will
be quite happy if the first die lands four (or any of the numbers 1, 2, 3, 4, 5) because
then we still have a possibility of getting a total of six. On the other hand, if the first
die landed six, then we would be unhappy as we would no longer have a chance of
getting a total of six. In other words, our chance of getting a total of six depends on
the outcome of the first die and hence E1 and F cannot be independent.

Let E2 be the event that the sum of the dice equals seven. Is E2 independent of F ?
The answer is yes since

P(E2F) = P({(4,3)}) = 1
36

while

P(E2)P (F ) = 1
6

1
6 = 1

36
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We leave it for you to present the intuitive argument why the event that the sum of
the dice equals seven is independent of the outcome on the first die. �

The definition of independence can be extended to more than two events. The
events E1,E2, . . . ,En are said to be independent if for every subset E1′ ,E2′ , . . . ,Er ′ ,
r � n, of these events

P(E1′E2′ · · ·Er ′) = P(E1′)P (E2′) · · ·P(Er ′)

Intuitively, the events E1,E2, . . . ,En are independent if knowledge of the occurrence
of any of these events has no effect on the probability of any other event.

Example 1.10 (Pairwise Independent Events That Are Not Independent). Let a ball
be drawn from an urn containing four balls, numbered 1, 2, 3, 4. Let E = {1,2},F =
{1,3},G = {1,4}. If all four outcomes are assumed equally likely, then

P(EF) = P(E)P (F ) = 1
4 ,

P (EG) = P(E)P (G) = 1
4 ,

P (FG) = P(F)P (G) = 1
4

However,

1
4 = P(EFG) �= P(E)P (F )P (G)

Hence, even though the events E,F,G are pairwise independent, they are not jointly
independent. �

Example 1.11. There are r players, with player i initially having ni units, ni>0, i =
1, . . . , r . At each stage, two of the players are chosen to play a game, with the winner
of the game receiving 1 unit from the loser. Any player whose fortune drops to 0 is
eliminated, and this continues until a single player has all n ≡ ∑r

i=1 ni units, with that
player designated as the victor. Assuming that the results of successive games are in-
dependent, and that each game is equally likely to be won by either of its two players,
find the probability that player i is the victor.

Solution: To begin, suppose that there are n players, with each player initially
having 1 unit. Consider player i. Each stage she plays will be equally likely to
result in her either winning or losing 1 unit, with the results from each stage being
independent. In addition, she will continue to play stages until her fortune becomes
either 0 or n. Because this is the same for all players, it follows that each player has
the same chance of being the victor. Consequently, each player has player probabil-
ity 1/n of being the victor. Now, suppose these n players are divided into r teams,
with team i containing ni players, i = 1, . . . , r . That is, suppose players 1, . . . , n1
constitute team 1, players n1 + 1, . . . , n1 + n2 constitute team 2 and so on. Then
the probability that the victor is a member of team i is ni/n. But because team
i initially has a total fortune of ni units, i = 1, . . . , r , and each game played by
members of different teams results in the fortune of the winner’s team increasing
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by 1 and that of the loser’s team decreasing by 1, it is easy to see that the probabil-
ity that the victor is from team i is exactly the desired probability. Moreover, our
argument also shows that the result is true no matter how the choices of the players
in each stage are made. �

Suppose that a sequence of experiments, each of which results in either a “success”
or a “failure,” is to be performed. Let Ei, i � 1, denote the event that the ith experi-
ment results in a success. If, for all i1, i2, . . . , in,

P(Ei1Ei2 · · ·Ein) =
n∏

j=1

P(Eij )

we say that the sequence of experiments consists of independent trials.

1.6 Bayes’ Formula
Let E and F be events. We may express E as

E = EF ∪ EFc

because in order for a point to be in E, it must either be in both E and F , or it must
be in E and not in F . Since EF and EFc are mutually exclusive, we have that

P(E) = P(EF) + P(EFc)

= P(E|F)P (F ) + P(E|Fc)P (F c)

= P(E|F)P (F ) + P(E|Fc)(1 − P(F)) (1.7)

Eq. (1.7) states that the probability of the event E is a weighted average of the con-
ditional probability of E given that F has occurred and the conditional probability of
E given that F has not occurred, each conditional probability being given as much
weight as the event on which it is conditioned has of occurring.

Example 1.12. Consider two urns. The first contains two white and seven black balls,
and the second contains five white and six black balls. We flip a fair coin and then
draw a ball from the first urn or the second urn depending on whether the outcome
was heads or tails. What is the conditional probability that the outcome of the toss was
heads given that a white ball was selected?

Solution: Let W be the event that a white ball is drawn, and let H be the event
that the coin comes up heads. The desired probability P(H |W) may be calculated
as follows:

P(H |W) = P(HW)

P (W)
= P(W |H)P (H)

P (W)

= P(W |H)P (H)

P (W |H)P (H) + P(W |Hc)P (Hc)
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=
2
9

1
2

2
9

1
2 + 5

11
1
2

= 22

67
�

Example 1.13. In answering a question on a multiple-choice test a student either
knows the answer or guesses. Let p be the probability that she knows the answer and
1 − p the probability that she guesses. Assume that a student who guesses at the an-
swer will be correct with probability 1/m, where m is the number of multiple-choice
alternatives. What is the conditional probability that a student knew the answer to a
question given that she answered it correctly?

Solution: Let C and K denote respectively the event that the student answers the
question correctly and the event that she actually knows the answer.
Now

P(K|C) = P(KC)

P (C)
= P(C|K)P (K)

P (C|K)P (K) + P(C|Kc)P (Kc)

= p

p + (1/m)(1 − p)

= mp

1 + (m − 1)p

Thus, for example, if m = 5,p = 1
2 , then the probability that a student knew the

answer to a question she correctly answered is 5
6 . �

Example 1.14. A laboratory blood test is 95 percent effective in detecting a certain
disease when it is, in fact, present. However, the test also yields a “false positive” re-
sult for 1 percent of the healthy persons tested. (That is, if a healthy person is tested,
then, with probability 0.01, the test result will imply he has the disease.) If 0.5 percent
of the population actually has the disease, what is the probability a person has the
disease given that his test result is positive?

Solution: Let D be the event that the tested person has the disease, and E the
event that his test result is positive. The desired probability P(D|E) is obtained by

P(D|E) = P(DE)

P (E)
= P(E|D)P (D)

P (E|D)P (D) + P(E|Dc)P (Dc)

= (0.95)(0.005)

(0.95)(0.005) + (0.01)(0.995)

= 95

294
≈ 0.323

Thus, only 32 percent of those persons whose test results are positive actually have
the disease. �
Eq. (1.7) may be generalized in the following manner. Suppose that F1,F2,

. . . ,Fn are mutually exclusive events such that
⋃n

i=1 Fi = S. In other words, exactly
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one of the events F1,F2, . . . ,Fn will occur. By writing

E =
n⋃

i=1

EFi

and using the fact that the events EFi , i = 1, . . . , n, are mutually exclusive, we obtain
that

P(E) =
n∑

i=1

P(EFi )

=
n∑

i=1

P(E|Fi)P (Fi) (1.8)

Thus, Eq. (1.8) shows how, for given events F1,F2, . . . ,Fn of which one and only
one must occur, we can compute P(E) by first “conditioning” upon which one of the
Fi occurs. That is, it states that P(E) is equal to a weighted average of P(E|Fi), each
term being weighted by the probability of the event on which it is conditioned.

Suppose now that E has occurred and we are interested in determining which one
of the Fj also occurred. By Eq. (1.8) we have that

P(Fj |E) = P(EFj )

P (E)

= P(E|Fj )P (Fj )∑n
i=1 P(E|Fi)P (Fi)

(1.9)

Eq. (1.9) is known as Bayes’ formula.

Example 1.15. You know that a certain letter is equally likely to be in any one of
three different folders. Let αi be the probability that you will find your letter upon
making a quick examination of folder i if the letter is, in fact, in folder i, i = 1,2,3.
(We may have αi < 1.) Suppose you look in folder 1 and do not find the letter. What
is the probability that the letter is in folder 1?

Solution: Let Fi, i = 1,2,3 be the event that the letter is in folder i; and let E

be the event that a search of folder 1 does not come up with the letter. We desire
P(F1|E). From Bayes’ formula we obtain

P(F1|E) = P(E|F1)P (F1)

3∑
i=1

P(E|Fi)P (Fi)

= (1 − α1)
1
3

(1 − α1)
1
3 + 1

3 + 1
3

= 1 − α1

3 − α1
�
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1.7 Probability Is a Continuous Event Function
We say that the sequence of events A1,A2, . . . is an increasing sequence if An ⊂ An+1
for all n ≥ 1. If An,n ≥ 1 is an increasing sequence of events, we define its limit by

lim
n→∞An = ∪∞

i=1Ai

Similarly, we say that An,n ≥ 1 is a decreasing sequence of events if An+1 ⊂ An for
all n ≥ 1, and define its limit by

lim
n→∞An = ∩∞

i=1Ai

We now show that probability is a continuous event function.

Proposition 1.1. If An,n ≥ 1 is either an increasing or a decreasing sequence of
events, then

P( lim
n→∞An) = lim

n→∞P(An)

Proof. We will prove this when An,n ≥ 1 is an increasing sequence of events, and
leave the proof in the decreasing case as an exercise. So, suppose that An,n ≥ 1 is an
increasing sequence of events. Now, define the events Bn,n ≥ 1, by letting Bn be the
set of points that are in An but were not in any of the events A1, . . . ,An−1. That is, we
let B1 = A1, and for n > 1 let

Bn = An ∩ (∪n−1
i=1 Ai)

c

= AnA
c
n−1

where the final equality used that A1,A2, . . . being increasing implies that ∪n−1
i=1 Ai =

An−1. It is easy to see that the events Bn,n ≥ 1 are mutually exclusive, and are such
that

∪n
i=1Bi = ∪n

i=1Ai = An , n ≥ 1

and

∪∞
i=1Bi = ∪∞

i=1Ai

Hence,

P( lim
n→∞An) = P(∪∞

i=1Ai)

= P(∪∞
i=1Bi)

=
∞∑
i=1

P(Bi) since the Bi are mutually exclusive

= lim
n→∞

n∑
i=1

P(Bi)
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= lim
n→∞P(∪n

i=1Bi)

= lim
n→∞P(∪n

i=1Ai)

= lim
n→∞P(An) �

Example 1.16. Consider a population of individuals and let all individuals initially
present constitute the first generation. Let the second generation consist of all off-
spring of the first generation, and in general let the (n + 1)st generation consist of
all the offspring of individuals of the nth generation. Let An denote the event that
there are no individuals in the nth generation. Because An ⊂ An+1 it follows that
limn→∞ An = ∪∞

i=1Ai . Because ∪∞
i=1Ai is the event that the population eventually

dies out, it follows from the continuity property of probability that

lim
n→∞P(An) = P(population dies out) �

Exercises
1. A box contains three marbles: one red, one green, and one blue. Consider an

experiment that consists of taking one marble from the box then replacing it in
the box and drawing a second marble from the box. What is the sample space?
If, at all times, each marble in the box is equally likely to be selected, what is
the probability of each point in the sample space?

*2. Repeat Exercise 1 when the second marble is drawn without replacing the first
marble.

3. A coin is to be tossed until a head appears twice in a row. What is the sample
space for this experiment? If the coin is fair, what is the probability that it will
be tossed exactly four times?

4. Let E,F,G be three events. Find expressions for the events that of E,F,G

(a) only F occurs,
(b) both E and F but not G occur,
(c) at least one event occurs,
(d) at least two events occur,
(e) all three events occur,
(f) none occurs,
(g) at most one occurs,
(h) at most two occur.

*5. An individual uses the following gambling system at Las Vegas. He bets $1
that the roulette wheel will come up red. If he wins, he quits. If he loses then he
makes the same bet a second time only this time he bets $2; and then regardless
of the outcome, quits. Assuming that he has a probability of 1

2 of winning each
bet, what is the probability that he goes home a winner? Why is this system not
used by everyone?

6. Show that E(F ∪ G) = EF ∪ EG.
7. Show that (E ∪ F)c = EcF c.



16 Introduction to Probability Models

8. Show that

P

(
n⋃

i=1

Ei

)
�

n∑
i=1

P(Ei)

This is known as Boole’s inequality.

Hint: Either use Eq. (1.2) and mathematical induction, or else show that⋃n
i=1 Ei = ⋃n

i=1 Fi , where F1 = E1,Fi = Ei

⋂i−1
j=1 Ec

j , and use property (iii)
of a probability.

*9. We say that E ⊂ F if every point in E is also in F . Show that if E ⊂ F , then

P(F) = P(E) + P(FEc) � P(E)

10. If P(E) = 0.9 and P(F) = 0.8, show that P(EF)� 0.7. In general, show that

P(EF) � P(E) + P(F) − 1

More generally, show for any events E1, . . . ,En

P (E1E2 · · ·En) ≥
n∑

i=1

P(Ei) − (n − 1)

This is known as Bonferroni’s inequality.
11. If two fair dice are tossed, what is the probability that the sum is i, i =

2,3, . . . ,12?
12. Let E and F be mutually exclusive events in the sample space of an experiment.

Suppose that the experiment is repeated until either event E or event F occurs.
What does the sample space of this new super experiment look like? Show that
the probability that event E occurs before event F is P(E)/ [P(E) + P(F)].
Hint: Argue that the probability that the original experiment is performed n

times and E appears on the nth time is P(E)× (1−p)n−1, n = 1,2, . . . , where
p = P(E) + P(F). Add these probabilities to get the desired answer.

13. The dice game craps is played as follows. The player throws two dice, and if
the sum is seven or eleven, then she wins. If the sum is two, three, or twelve,
then she loses. If the sum is anything else, then she continues throwing until she
either throws that number again (in which case she wins) or she throws a seven
(in which case she loses). Calculate the probability that the player wins.

14. The probability of winning on a single toss of the dice is p. A starts, and if
he fails, he passes the dice to B, who then attempts to win on her toss. They
continue tossing the dice back and forth until one of them wins. What are their
respective probabilities of winning?

15. Argue that E = EF ∪ EFc,E ∪ F = E ∪ FEc.
16. For a given event F , let PF (E) = P(E|F).

(a) Show that PF (E) satisfies the three axioms for being a probability func-
tion on events E.
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(b) The identity PF (E) = PF (E|G)PF (G) + PF (E|Gc)PF (Gc) is seem-
ingly equivalent to

P(E|F) = P(E|FG)P (G|F) + P(E|FGc)P (Gc|F)

Give a direct proof of the preceding identity.
*17. Suppose each of three persons tosses a coin. If the outcome of one of the tosses

differs from the other outcomes, then the game ends. If not, then the persons
start over and retoss their coins. Assuming fair coins, what is the probability
that the game will end with the first round of tosses? If all three coins are bi-
ased and have probability 1

4 of landing heads, what is the probability that the
game will end at the first round?

18. Assume that each child who is born is equally likely to be a boy or a girl. If
a family has two children, what is the probability that both are girls given that
(a) the eldest is a girl, (b) at least one is a girl?

*19. Two dice are rolled. What is the probability that at least one is a six? If the two
faces are different, what is the probability that at least one is a six?

20. Three dice are thrown. What is the probability the same number appears on
exactly two of the three dice?

21. Suppose that 5 percent of men and 0.25 percent of women are colorblind. Sup-
pose that a randomly chosen person is equally likely to be either male or female.
Given that the person is colorblind, what is the conditional probability the per-
son is male.

22. A and B play until one has 2 more points than the other. Assuming that each
point is independently won by A with probability p, what is the probability they
will play a total of 2n points? What is the probability that A will win?

23. For events E1,E2, . . . ,En show that

P(E1E2 · · ·En) = P(E1)P (E2|E1)P (E3|E1E2) · · ·P(En|E1 · · ·En−1)

24. In an election, candidate A receives n votes and candidate B receives m votes,
where n > m. Assume that in the count of the votes all possible orderings of
the n+m votes are equally likely. Let Pn,m denote the probability that from the
first vote on A is always in the lead. Find

(a) P2,1 (b) P3,1 (c) Pn,1 (d) P3,2 (e) P4,2
(f) Pn,2 (g) P4,3 (h) P5,3 (i) P5,4
(j) Make a conjecture as to the value of Pn,m.

*25. Two cards are randomly selected from a deck of 52 playing cards.
(a) What is the probability they constitute a pair (that is, that they are of the

same denomination)?
(b) What is the conditional probability they constitute a pair given that they

are of different suits?
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26. A deck of 52 playing cards, containing all 4 aces, is randomly divided into 4
piles of 13 cards each. Define events E1,E2,E3, and E4 as follows:

E1 = {the first pile has exactly 1 ace},
E2 = {the second pile has exactly 1 ace},
E3 = {the third pile has exactly 1 ace},
E4 = {the fourth pile has exactly 1 ace}

Use Exercise 23 to find P(E1E2E3E4), the probability that each pile has an
ace.

*27. Suppose in Exercise 26 we had defined the events Ei, i = 1,2,3,4, by

E1 = {one of the piles contains the ace of spades},
E2 = {the ace of spades and the ace of hearts are in different piles},
E3 = {the ace of spades, the ace of hearts,

and the ace of diamonds are in different piles},
E4 = {all 4 aces are in different piles}

Now use Exercise 23 to find P(E1E2E3E4), the probability that each pile has
an ace. Compare your answer with the one you obtained in Exercise 26.

28. If the occurrence of B makes A more likely, does the occurrence of A make B

more likely?
29. Suppose that P(E) = 0.6. What can you say about P(E|F) when

(a) E and F are mutually exclusive?
(b) E ⊂ F ?
(c) F ⊂ E?

*30. Bill and George go target shooting together. Both shoot at a target at the same
time. Suppose Bill hits the target with probability 0.7, whereas George, inde-
pendently, hits the target with probability 0.4.
(a) Given that exactly one shot hit the target, what is the probability that it

was George’s shot?
(b) Given that the target is hit, what is the probability that George hit it?

31. What is the conditional probability that the first die is six given that the sum of
the dice is seven?

*32. Suppose all n men at a party throw their hats in the center of the room. Each
man then randomly selects a hat. Show that the probability that none of the n

men selects his own hat is

1

2! − 1

3! + 1

4! − +· · · (−1)n

n!
Note that as n → ∞ this converges to e−1. Is this surprising?

33. The winner of a tennis match is the first player to win 2 sets. A golden set occurs
when one of the players wins all 24 points of a set. Supposing that the results
of successive points are independent and that each point is equally likely to be
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won by either player, find the probability that at least one of the sets of a match
is golden.

34. There is a 40 percent chance that A can fix her busted computer. If A cannot,
then there is a 20 percent chance that her friend B can fix it. Find the probability
it will be fixed by either A or B.

35. There is a 40 percent chance of rain on Monday; a 30 percent chance of rain
on Tuesday; and a 20 percent chance of rain on both days. It did not rain on
Monday. What is the probability it will rain on Tuesday.

36. A fair coin is continually flipped. What is the probability that the first four
flips are
(a) H,H,H,H?
(b) T,H,H,H?
(c) What is the probability that the pattern T,H,H,H occurs before the pat-

tern H,H,H,H?
37. Consider two boxes, one containing one black and one white marble, the other,

two black and one white marble. A box is selected at random and a marble is
drawn at random from the selected box.
(a) What is the probability that the marble is black.
(b) What is the probability that the first box was the one selected given that

the marble is white.
38. Urn 1 contains two white balls and one black ball, while urn 2 contains one

white ball and five black balls. One ball is drawn at random from urn 1 and
placed in urn 2. A ball is then drawn from urn 2. It happens to be white. What
is the probability that the transferred ball was white?

39. Suppose a pair of fair dice are continually rolled until their sum is either 2 or 7.
Let A be the event that the final roll showed a sum of 2, and let B be the event
that it took 30 rolls of the dice. Do you think that B is independent of A.

Hint: Recall that independence is a symmetric relation, so that B is indepen-
dent of A is equivalent to A being independent of B. Is it intuitive that A is
independent of B.

*40. (a) A gambler has in his pocket a fair coin and a two-headed coin. He selects
one of the coins at random, and when he flips it, it shows heads. What is
the probability that it is the fair coin?

(b) Suppose that he flips the same coin a second time and again it shows
heads. Now what is the probability that it is the fair coin?

(c) Suppose that he flips the same coin a third time and it shows tails. Now
what is the probability that it is the fair coin?

41. In a certain species of rats, black dominates over brown. Suppose that a black
rat with two black parents has a brown sibling.
(a) What is the probability that this rat is a pure black rat (as opposed to being

a hybrid with one black and one brown gene)?
(b) Suppose that when the black rat is mated with a brown rat, all five of

their offspring are black. Now, what is the probability that the rat is a pure
black rat?
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42. There are three coins in a box. One is a two-headed coin, another is a fair coin,
and the third is a biased coin that comes up heads 75 percent of the time. When
one of the three coins is selected at random and flipped, it shows heads. What
is the probability that it was the two-headed coin?

*43. The blue-eyed gene for eye color is recessive, meaning that both the eye genes
of an individual must be blue for that individual to be blue eyed. Jo (F) and
Joe (M) are both brown-eyed individuals whose mothers had blue eyes. Their
daughter Flo, who has brown eyes, is expecting a child conceived with a blue-
eyed man. What is the probability that this child will be blue eyed?

44. Urn 1 has five white and seven black balls. Urn 2 has three white and twelve
black balls. We flip a fair coin. If the outcome is heads, then a ball from urn 1
is selected, while if the outcome is tails, then a ball from urn 2 is selected. Sup-
pose that a white ball is selected. What is the probability that the coin landed
tails?

*45. An urn contains b black balls and r red balls. One of the balls is drawn at ran-
dom, but when it is put back in the urn c additional balls of the same color are
put in with it. Now suppose that we draw another ball. Show that the probability
that the first ball drawn was black given that the second ball drawn was red is
b/(b + r + c).

46. Three prisoners are informed by their jailer that one of them has been chosen
at random to be executed, and the other two are to be freed. Prisoner A asks
the jailer to tell him privately which of his fellow prisoners will be set free,
claiming that there would be no harm in divulging this information, since he
already knows that at least one will go free. The jailer refuses to answer this
question, pointing out that if A knew which of his fellows were to be set free,
then his own probability of being executed would rise from 1

3 to 1
2 , since he

would then be one of two prisoners. What do you think of the jailer’s reason-
ing?

47. For a fixed event B, show that the collection P(A|B), defined for all events A,
satisfies the three conditions for a probability. Conclude from this that

P(A|B) = P(A|BC)P (C|B) + P(A|BCc)P (Cc|B)

Then directly verify the preceding equation.
*48. Sixty percent of the families in a certain community own their own car, thirty

percent own their own home, and twenty percent own both their own car and
their own home. If a family is randomly chosen, what is the probability that this
family owns a car or a house but not both?

49. Prove Proposition 1.1 for a sequence of decreasing events.
50. If A1,A2, . . . is a sequence of events then lim supn→∞ An is defined as the set of

points that are in an infinite number of the events An,n ≥ 1; and lim infn→∞ An

is defined as the set of points that are in all but a finite number of the events
An,n ≥ 1.
(a) If An,n ≥ 1 is an increasing sequence of events, show that

lim sup
n→∞

An = lim inf
n→∞ An = ∪∞

i=1Ai.
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(b) If An,n ≥ 1 is a decreasing sequence of events, show that

lim sup
n→∞

An = lim inf
n→∞ An = ∩∞

i=1Ai.
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2Random Variables

2.1 Random Variables
It frequently occurs that in performing an experiment we are mainly interested in some
functions of the outcome as opposed to the outcome itself. For instance, in tossing dice
we are often interested in the sum of the two dice and are not really concerned about
the actual outcome. That is, we may be interested in knowing that the sum is seven
and not be concerned over whether the actual outcome was (1, 6) or (2, 5) or (3, 4) or
(4, 3) or (5, 2) or (6, 1). These quantities of interest, or more formally, these real-valued
functions defined on the sample space, are known as random variables.

Since the value of a random variable is determined by the outcome of the experi-
ment, we may assign probabilities to the possible values of the random variable.

Example 2.1. Letting X denote the random variable that is defined as the sum of two
fair dice, then

P {X = 2} = P {(1,1)} = 1
36 ,

P {X = 3} = P {(1,2), (2,1)} = 2
36 ,

P {X = 4} = P {(1,3), (2,2), (3,1)} = 3
36 ,

P {X = 5} = P {(1,4), (2,3), (3,2), (4,1)} = 4
36 ,

P {X = 6} = P {(1,5), (2,4), (3,3), (4,2), (5,1)} = 5
36 ,

P {X = 7} = P {(1,6), (2,5), (3,4), (4,3), (5,2), (6,1)} = 6
36 ,

P {X = 8} = P {(2,6), (3,5), (4,4), (5,3), (6,2)} = 5
36 ,

P {X = 9} = P {(3,6), (4,5), (5,4), (6,3)} = 4
36 ,

P {X = 10} = P {(4,6), (5,5), (6,4)} = 3
36 ,

P {X = 11} = P {(5,6), (6,5)} = 2
36 ,

P {X = 12} = P {(6,6)} = 1
36 (2.1)

In other words, the random variable X can take on any integral value between two and
twelve, and the probability that it takes on each value is given by Eq. (2.1). Since X

must take on one of the values two through twelve, we must have

1 = P

{
12⋃

n=2

{X = n}
}

=
12∑

n=2

P {X = n}

which may be checked from Eq. (2.1). �

Example 2.2. For a second example, suppose that our experiment consists of tossing
two fair coins. Letting Y denote the number of heads appearing, then Y is a random
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variable taking on one of the values 0, 1, 2 with respective probabilities

P {Y = 0} = P {(T ,T )} = 1
4 ,

P {Y = 1} = P {(T ,H), (H,T )} = 2
4 ,

P {Y = 2} = P {(H,H)} = 1
4

Of course, P {Y = 0} + P {Y = 1} + P {Y = 2} = 1. �

Example 2.3. Suppose that we toss a coin having a probability p of coming up heads,
until the first head appears. Letting N denote the number of flips required, then as-
suming that the outcome of successive flips are independent, N is a random variable
taking on one of the values 1,2,3, . . . , with respective probabilities

P {N = 1} = P {H } = p,

P {N = 2} = P {(T ,H)} = (1 − p)p,

P {N = 3} = P {(T ,T ,H)} = (1 − p)2p,

...

P {N = n} = P {(T,T, . . . , T︸ ︷︷ ︸
n−1

,H)} = (1 − p)n−1p, n ≥ 1

As a check, note that

P

( ∞⋃
n=1

{N = n}
)

=
∞∑

n=1

P {N = n}

= p

∞∑
n=1

(1 − p)n−1

= p

1 − (1 − p)

= 1 �

Example 2.4. Suppose that our experiment consists of seeing how long a battery can
operate before wearing down. Suppose also that we are not primarily interested in the
actual lifetime of the battery but are concerned only about whether or not the battery
lasts at least two years. In this case, we may define the random variable I by

I =
{

1, if the lifetime of battery is two or more years
0, otherwise

If E denotes the event that the battery lasts two or more years, then the random vari-
able I is known as the indicator random variable for event E. (Note that I equals 1 or
0 depending on whether or not E occurs.) �
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Example 2.5. Suppose that independent trials, each of which results in any of m pos-
sible outcomes with respective probabilities p1, . . . , pm,

∑m
i=1 pi = 1, are continually

performed. Let X denote the number of trials needed until each outcome has occurred
at least once.

Rather than directly considering P {X = n}, we will first determine P {X > n}, the
probability that at least one of the outcomes has not yet occurred after n trials. Let-
ting Ai denote the event that outcome i has not yet occurred after the first n trials,
i = 1, . . . ,m, then

P {X > n} = P

(
m⋃

i=1

Ai

)

=
m∑

i=1

P(Ai) −
∑∑

i<j

P (AiAj )

+
∑∑∑

i<j<k

P (AiAjAk) − · · · + (−1)m+1P(A1 · · ·Am)

Now, P(Ai) is the probability that each of the first n trials results in a non-i outcome,
and so by independence

P(Ai) = (1 − pi)
n

Similarly, P(AiAj ) is the probability that the first n trials all result in a non-i and
non-j outcome, and so

P(AiAj ) = (1 − pi − pj )
n

As all of the other probabilities are similar, we see that

P {X > n} =
m∑

i=1

(1 − pi)
n −

∑∑
i<j

(1 − pi − pj )
n

+
∑∑∑

i<j<k

(1 − pi − pj − pk)
n − · · ·

Since P {X = n} = P {X > n− 1}−P {X > n}, we see, upon using the algebraic iden-
tity (1 − a)n−1 − (1 − a)n = a(1 − a)n−1, that

P {X = n} =
m∑

i=1

pi(1 − pi)
n−1 −

∑∑
i<j

(pi + pj )(1 − pi − pj )
n−1

+
∑∑∑

i<j<k

(pi + pj + pk)(1 − pi − pj − pk)
n−1 − · · · �
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In all of the preceding examples, the random variables of interest took on either a
finite or a countable number of possible values.1 Such random variables are called dis-
crete. However, there also exist random variables that take on a continuum of possible
values. These are known as continuous random variables. One example is the random
variable denoting the lifetime of a car, when the car’s lifetime is assumed to take on
any value in some interval (a, b).

The cumulative distribution function (cdf) (or more simply the distribution func-
tion) F(·) of the random variable X is defined for any real number b,−∞ < b < ∞,
by

F(b) = P {X ≤ b}
In words, F(b) denotes the probability that the random variable X takes on a value
that is less than or equal to b. Some properties of the cdf F are

(i) F(b) is a nondecreasing function of b,
(ii) limb→∞ F(b) = F(∞) = 1,

(iii) limb→−∞ F(b) = F(−∞) = 0.

Property (i) follows since for a < b the event {X ≤ a} is contained in the event
{X ≤ b}, and so it must have a smaller probability. Properties (ii) and (iii) follow
since X must take on some finite value.

All probability questions about X can be answered in terms of the cdf F(·). For
example,

P {a < X ≤ b} = F(b) − F(a) for all a < b

This follows since we may calculate P {a < X ≤ b} by first computing the probability
that X ≤ b (that is, F(b)) and then subtracting from this the probability that X ≤ a

(that is, F(a)).
If we desire the probability that X is strictly smaller than b, we may calculate this

probability by

P {X < b} = lim
h→0+ P {X ≤ b − h}

= lim
h→0+ F(b − h)

where limh→0+ means that we are taking the limit as h decreases to 0. Note that
P {X < b} does not necessarily equal F(b) since F(b) also includes the probability
that X equals b.

2.2 Discrete Random Variables
As was previously mentioned, a random variable that can take on at most a countable
number of possible values is said to be discrete. For a discrete random variable X, we

1 A set is countable if its elements can be put in a one-to-one correspondence with the sequence of positive
integers.
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define the probability mass function p(a) of X by

p(a) = P {X = a}

The probability mass function p(a) is positive for at most a countable number of val-
ues of a. That is, if X must assume one of the values x1, x2, . . . , then

p(xi) > 0, i = 1,2, . . .

p(x) = 0, all other values of x

Since X must take on one of the values xi , we have

∞∑
i=1

p(xi) = 1

The cumulative distribution function F can be expressed in terms of p(a) by

F(a) =
∑

all xi≤a

p(xi)

For instance, suppose X has a probability mass function given by

p(1) = 1
2 , p(2) = 1

3 , p(3) = 1
6

then, the cumulative distribution function F of X is given by

F(a) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0, a < 1
1
2 , 1 ≤ a < 2
5
6 , 2 ≤ a < 3

1, 3 ≤ a

This is graphically presented in Fig. 2.1.

Figure 2.1 Graph of F(x).
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Discrete random variables are often classified according to their probability mass
functions. We now consider some of these random variables.

2.2.1 The Bernoulli Random Variable

Suppose that a trial, or an experiment, whose outcome can be classified as either a
“success” or as a “failure” is performed. If we let X equal 1 if the outcome is a suc-
cess and 0 if it is a failure, then the probability mass function of X is given by

p(0) = P {X = 0} = 1 − p,

p(1) = P {X = 1} = p
(2.2)

where p,0 ≤ p ≤ 1, is the probability that the trial is a “success.”
A random variable X is said to be a Bernoulli random variable if its probability

mass function is given by Eq. (2.2) for some p ∈ (0,1).
For any event A, we define I {A}, the indicator variable for the event A, to equal

1 if A occurs or 0 if A does not occur. Consequently, I {A} is a Bernoulli random
variable for which

P(I {A} = 1) = P(A), P (I {A} = 0) = 1 − P(A)

2.2.2 The Binomial Random Variable

Suppose that n independent trials, each of which results in a “success” with probabil-
ity p and in a “failure” with probability 1−p, are to be performed. If X represents the
number of successes that occur in the n trials, then X is said to be a binomial random
variable with parameters (n,p).

The probability mass function of a binomial random variable having parameters
(n,p) is given by

p(i) =
(

n

i

)
pi(1 − p)n−i , i = 0,1, . . . , n (2.3)

where(
n

i

)
= n!

(n − i)! i!
equals the number of different groups of i objects that can be chosen from a set of
n objects. The validity of Eq. (2.3) may be verified by first noting that the probabil-
ity of any particular sequence of the n outcomes containing i successes and n − i

failures is, by the assumed independence of trials, pi(1 − p)n−i . Eq. (2.3) then fol-

lows since there are
(

n
i

)
different sequences of the n outcomes leading to i successes

and n − i failures. For instance, if n = 3, i = 2, then there are
(

3
2

)
= 3 ways in

which the three trials can result in two successes. Namely, any one of the three out-
comes (s, s, f ), (s, f, s), (f, s, s), where the outcome (s, s, f ) means that the first
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two trials are successes and the third a failure. Since each of the three outcomes
(s, s, f ), (s, f, s), (f, s, s) has a probability p2(1 − p) of occurring the desired prob-

ability is thus
(

3
2

)
p2(1 − p).

Note that, by the binomial theorem, the probabilities sum to one, that is,

∞∑
i=0

p(i) =
n∑

i=0

(
n

i

)
pi(1 − p)n−i = (p + (1 − p))n = 1

Example 2.6. Four fair coins are flipped. If the outcomes are assumed independent,
what is the probability that two heads and two tails are obtained?

Solution: Letting X equal the number of heads (“successes”) that appear, then X

is a binomial random variable with parameters (n = 4, p = 1
2 ). Hence, by Eq. (2.3),

P {X = 2} =
(

4
2

)(
1

2

)2(1

2

)2

= 3

8
�

Example 2.7. It is known that any item produced by a certain machine will be defec-
tive with probability 0.1, independently of any other item. What is the probability that
in a sample of three items, at most one will be defective?

Solution: If X is the number of defective items in the sample, then X is a bi-
nomial random variable with parameters (3, 0.1). Hence, the desired probability is
given by

P {X = 0} + P {X = 1} =
(

3
0

)
(0.1)0(0.9)3 +

(
3
1

)
(0.1)1(0.9)2 = 0.972 �

Example 2.8. Suppose that an airplane engine will fail, when in flight, with probabil-
ity 1 − p independently from engine to engine; suppose that the airplane will make a
successful flight if at least 50 percent of its engines remain operative. For what values
of p is a four-engine plane preferable to a two-engine plane?

Solution: Because each engine is assumed to fail or function independently of
what happens with the other engines, it follows that the number of engines re-
maining operative is a binomial random variable. Hence, the probability that a
four-engine plane makes a successful flight is(

4
2

)
p2(1 − p)2 +

(
4
3

)
p3(1 − p) +

(
4
4

)
p4(1 − p)0

= 6p2(1 − p)2 + 4p3(1 − p) + p4

whereas the corresponding probability for a two-engine plane is(
2
1

)
p(1 − p) +

(
2
2

)
p2 = 2p(1 − p) + p2
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Hence the four-engine plane is safer if

6p2(1 − p)2 + 4p3(1 − p) + p4 ≥ 2p(1 − p) + p2

or equivalently if

6p(1 − p)2 + 4p2(1 − p) + p3 ≥ 2 − p

which simplifies to

3p3 − 8p2 + 7p − 2 ≥ 0 or (p − 1)2(3p − 2) ≥ 0

which is equivalent to

3p − 2 ≥ 0 or p ≥ 2
3

Hence, the four-engine plane is safer when the engine success probability is at
least as large as 2

3 , whereas the two-engine plane is safer when this probability
falls below 2

3 . �

Example 2.9. Suppose that a particular trait of a person (such as eye color or left
handedness) is classified on the basis of one pair of genes and suppose that d repre-
sents a dominant gene and r a recessive gene. Thus a person with dd genes is pure
dominance, one with rr is pure recessive, and one with rd is hybrid. The pure dom-
inance and the hybrid are alike in appearance. Children receive one gene from each
parent. If, with respect to a particular trait, two hybrid parents have a total of four chil-
dren, what is the probability that exactly three of the four children have the outward
appearance of the dominant gene?

Solution: If we assume that each child is equally likely to inherit either of two
genes from each parent, the probabilities that the child of two hybrid parents will
have dd, rr , or rd pairs of genes are, respectively, 1

4 , 1
4 , 1

2 . Hence, because an off-
spring will have the outward appearance of the dominant gene if its gene pair is
either dd or rd , it follows that the number of such children is binomially distributed
with parameters (4, 3

4 ). Thus the desired probability is

(
4
3

)(
3

4

)3(1

4

)1

= 27

64
�

Remark on Terminology. If X is a binomial random variable with parameters (n,p),
then we say that X has a binomial distribution with parameters (n,p).

2.2.3 The Geometric Random Variable

Suppose that independent trials, each having probability p > 0 of being a success, are
performed until a success occurs. If we let X be the number of trials required until the
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first success, then X is said to be a geometric random variable with parameter p. Its
probability mass function is given by

p(n) = P {X = n} = (1 − p)n−1p, n = 1,2, . . . (2.4)

Eq. (2.4) follows since in order for X to equal n it is necessary and sufficient that
the first n − 1 trials be failures and the nth trial a success. Eq. (2.4) follows since the
outcomes of the successive trials are assumed to be independent.

To check that p(n) is a probability mass function, we note that

∞∑
n=1

p(n) = p

∞∑
n=1

(1 − p)n−1 = 1

Thus, with probability 1 there will eventually be a success.

2.2.4 The Poisson Random Variable

A random variable X, taking on one of the values 0,1,2, . . . , is said to be a Poisson
random variable with parameter λ, if for some λ > 0,

p(i) = P {X = i} = e−λ λi

i! , i = 0,1, . . . (2.5)

Eq. (2.5) defines a probability mass function since

∞∑
i=0

p(i) = e−λ

∞∑
i=0

λi

i! = e−λeλ = 1

The Poisson random variable has a wide range of applications in a diverse number of
areas, as will be seen in Chapter 5.

An important property of the Poisson random variable is that it may be used to
approximate a binomial random variable when the binomial parameter n is large and
p is small. To see this, suppose that X is a binomial random variable with parameters
(n,p), and let λ = np. Then

P {X = i} = n!
(n − i)! i!p

i(1 − p)n−i

= n!
(n − i)! i!

(
λ

n

)i (
1 − λ

n

)n−i

= n(n − 1) · · · (n − i + 1)

ni

λi

i!
(1 − λ/n)n

(1 − λ/n)i

Now, for n large and p small,(
1 − λ

n

)n

≈ e−λ,
n(n − 1) · · · (n − i + 1)

ni
≈ 1,

(
1 − λ

n

)i

≈ 1
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Hence, for n large and p small,

P {X = i} ≈ e−λ λi

i!
Example 2.10. Suppose that the number of typographical errors on a single page of
this book has a Poisson distribution with parameter λ = 1. Calculate the probability
that there is at least one error on this page.

Solution:

P {X ≥ 1} = 1 − P {X = 0} = 1 − e−1 ≈ 0.632 �

Example 2.11. If the number of accidents occurring on a highway each day is a Pois-
son random variable with parameter λ = 3, what is the probability that no accidents
occur today?

Solution:

P {X = 0} = e−3 ≈ 0.05 �

Example 2.12. Consider an experiment that consists of counting the number of α-
particles given off in a one-second interval by one gram of radioactive material. If we
know from past experience that, on the average, 3.2 such α-particles are given off,
what is a good approximation to the probability that no more than two α-particles will
appear?

Solution: If we think of the gram of radioactive material as consisting of a large
number n of atoms each of which has probability 3.2/n of disintegrating and send-
ing off an α-particle during the second considered, then we see that, to a very
close approximation, the number of α-particles given off will be a Poisson random
variable with parameter λ = 3.2. Hence the desired probability is

P {X ≤ 2} = e−3.2 + 3.2e−3.2 + (3.2)2

2
e−3.2 ≈ 0.380 �

2.3 Continuous Random Variables
In this section, we shall concern ourselves with random variables whose set of possible
values is uncountable. Let X be such a random variable. We say that X is a contin-
uous random variable if there exists a nonnegative function f (x), defined for all real
x ∈ (−∞,∞), having the property that for any set B of real numbers

P {X ∈ B} =
∫

B

f (x) dx (2.6)

The function f (x) is called the probability density function of the random variable X.
In words, Eq. (2.6) states that the probability that X will be in B may be obtained

by integrating the probability density function over the set B. Since X must assume
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some value, f (x) must satisfy

1 = P {X ∈ (−∞,∞)} =
∫ ∞

−∞
f (x)dx

All probability statements about X can be answered in terms of f (x). For instance,
letting B = [a, b], we obtain from Eq. (2.6) that

P {a ≤ X ≤ b} =
∫ b

a

f (x) dx (2.7)

If we let a = b in the preceding, then

P {X = a} =
∫ a

a

f (x) dx = 0

In words, this equation states that the probability that a continuous random variable
will assume any particular value is zero.

The relationship between the cumulative distribution F(·) and the probability den-
sity f (·) is expressed by

F(a) = P {X ∈ (−∞, a]} =
∫ a

−∞
f (x)dx

Differentiating both sides of the preceding yields

d

da
F(a) = f (a)

That is, the density is the derivative of the cumulative distribution function. A some-
what more intuitive interpretation of the density function may be obtained from
Eq. (2.7) as follows:

P
{
a − ε

2
≤ X ≤ a + ε

2

}
=
∫ a+ε/2

a−ε/2
f (x) dx ≈ εf (a)

when ε is small. In other words, the probability that X will be contained in an interval
of length ε around the point a is approximately εf (a). From this, we see that f (a) is
a measure of how likely it is that the random variable will be near a.

There are several important continuous random variables that appear frequently in
probability theory. The remainder of this section is devoted to a study of certain of
these random variables.

2.3.1 The Uniform Random Variable

A random variable is said to be uniformly distributed over the interval (0,1) if its
probability density function is given by

f (x) =
{

1, 0 < x < 1
0, otherwise
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Note that the preceding is a density function since f (x) ≥ 0 and

∫ ∞

−∞
f (x)dx =

∫ 1

0
dx = 1

Since f (x) > 0 only when x ∈ (0,1), it follows that X must assume a value in (0,1).
Also, since f (x) is constant for x ∈ (0,1),X is just as likely to be “near” any value in
(0, 1) as any other value. To check this, note that, for any 0 < a < b < 1,

P {a ≤ X ≤ b} =
∫ b

a

f (x) dx = b − a

In other words, the probability that X is in any particular subinterval of (0,1) equals
the length of that subinterval.

In general, we say that X is a uniform random variable on the interval (α,β) if its
probability density function is given by

f (x) =
⎧⎨
⎩

1

β − α
, if α < x < β

0, otherwise
(2.8)

Example 2.13. Calculate the cumulative distribution function of a random variable
uniformly distributed over (α,β).

Solution: Since F(a) = ∫ a

−∞ f (x)dx, we obtain from Eq. (2.8) that

F(a) =

⎧⎪⎪⎨
⎪⎪⎩

0, a ≤ α

a − α

β − α
, α < a < β

1, a ≥ β

�

Example 2.14. If X is uniformly distributed over (0,10), calculate the probability
that (a) X < 3, (b) X > 7, (c) 1 < X < 6.

Solution:

P {X < 3} =
∫ 3

0 dx

10
= 3

10
,

P {X > 7} =
∫ 10

7 dx

10
= 3

10
,

P {1 < X < 6} =
∫ 6

1 dx

10
= 1

2
�
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2.3.2 Exponential Random Variables

A continuous random variable whose probability density function is given, for some
λ > 0, by

f (x) =
{
λe−λx, if x ≥ 0
0, if x < 0

is said to be an exponential random variable with parameter λ. These random vari-
ables will be extensively studied in Chapter 5, so we will content ourselves here with
just calculating the cumulative distribution function F :

F(a) =
∫ a

0
λe−λxdx = 1 − e−λa, a ≥ 0

Note that F(∞) = ∫∞
0 λe−λxdx = 1, as, of course, it must.

2.3.3 Gamma Random Variables

A continuous random variable whose density is given by

f (x) =
⎧⎨
⎩

λe−λx(λx)α−1

�(α)
, if x ≥ 0

0, if x < 0

for some λ > 0, α > 0 is said to be a gamma random variable with parameters α,λ.
The quantity �(α) is called the gamma function and is defined by

�(α) =
∫ ∞

0
e−xxα−1 dx

It is easy to show by induction that for integral α, say, α = n,

�(n) = (n − 1)!

2.3.4 Normal Random Variables

We say that X is a normal random variable (or simply that X is normally distributed)
with parameters μ and σ 2 if the density of X is given by

f (x) = 1√
2π σ

e−(x−μ)2/2σ 2
, −∞ < x < ∞

This density function is a bell-shaped curve that is symmetric around μ (see Fig. 2.2).
An important fact about normal random variables is that if X is normally distributed

with parameters μ and σ 2 then Y = αX + β is normally distributed with parameters
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Figure 2.2 Normal density function.

αμ + β and α2σ 2. To prove this, suppose first that α > 0 and note that FY (·),2 the
cumulative distribution function of the random variable Y , is given by

FY (a) = P {Y ≤ a}
= P {αX + β ≤ a}
= P

{
X ≤ a − β

α

}

= FX

(
a − β

α

)

=
∫ (a−β)/α

−∞
1√

2π σ
e−(x−μ)2/2σ 2

dx

=
∫ a

−∞
1√

2π ασ
exp

{−(v − (αμ + β))2

2α2σ 2

}
dv (2.9)

where the last equality is obtained by the change in variables v = αx + β. However,
since FY (a) = ∫ a

−∞ fY (v) dv, it follows from Eq. (2.9) that the probability density
function fY (·) is given by

fY (v) = 1√
2πασ

exp

{−(v − (αμ + β))2

2(ασ)2

}
, −∞ < v < ∞

Hence, Y is normally distributed with parameters αμ + β and (ασ)2. A similar result
is also true when α < 0.

One implication of the preceding result is that if X is normally distributed with
parameters μ and σ 2 then Y = (X − μ)/σ is normally distributed with parameters 0
and 1. Such a random variable Y is said to have the standard or unit normal distribu-
tion.

2 When there is more than one random variable under consideration, we shall denote the cumulative distri-
bution function of a random variable Z by Fz(·). Similarly, we shall denote the density of Z by fz(·).
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2.4 Expectation of a Random Variable
2.4.1 The Discrete Case

If X is a discrete random variable having a probability mass function p(x), then the
expected value of X is defined by

E[X] =
∑

x:p(x)>0

xp(x)

In other words, the expected value of X is a weighted average of the possible values
that X can take on, each value being weighted by the probability that X assumes that
value. For example, if the probability mass function of X is given by

p(1) = 1
2 = p(2)

then

E[X] = 1
(

1
2

)
+ 2

(
1
2

)
= 3

2

is just an ordinary average of the two possible values 1 and 2 that X can assume. On
the other hand, if

p(1) = 1
3 , p(2) = 2

3

then

E[X] = 1
(

1
3

)
+ 2

(
2
3

)
= 5

3

is a weighted average of the two possible values 1 and 2 where the value 2 is given
twice as much weight as the value 1 since p(2) = 2p(1).

Example 2.15. Find E[X] where X is the outcome when we roll a fair die.

Solution: Since p(1) = p(2) = p(3) = p(4) = p(5) = p(6) = 1
6 , we obtain

E[X] = 1
(

1
6

)
+ 2

(
1
6

)
+ 3

(
1
6

)
+ 4

(
1
6

)
+ 5

(
1
6

)
+ 6

(
1
6

)
= 7

2 �

Example 2.16 (Expectation of a Bernoulli Random Variable). Calculate E[X] when
X is a Bernoulli random variable with parameter p.

Solution: Since p(0) = 1 − p,p(1) = p, we have

E[X] = 0(1 − p) + 1(p) = p

Thus, the expected number of successes in a single trial is just the probability that
the trial will be a success. �

Example 2.17 (Expectation of a Binomial Random Variable). Calculate E[X] when
X is binomially distributed with parameters n and p.
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Solution:

E[X] =
n∑

i=0

ip(i)

=
n∑

i=0

i

(
n

i

)
pi(1 − p)n−i

=
n∑

i=1

in!
(n − i)! i!p

i(1 − p)n−i

=
n∑

i=1

n!
(n − i)!(i − 1)!p

i(1 − p)n−i

= np

n∑
i=1

(n − 1)!
(n − i)!(i − 1)!p

i−1(1 − p)n−i

= np

n−1∑
k=0

(
n − 1

k

)
pk(1 − p)n−1−k

= np[p + (1 − p)]n−1

= np

where the third from the last equality follows by letting k = i − 1. Thus, the
expected number of successes in n independent trials is n multiplied by the proba-
bility that a trial results in a success. �

Example 2.18 (Expectation of a Geometric Random Variable). Calculate the expec-
tation of a geometric random variable having parameter p.

Solution: By Eq. (2.4), we have

E[X] =
∞∑

n=1

np(1 − p)n−1

= p

∞∑
n=1

nqn−1

where q = 1 − p,

E[X] = p

∞∑
n=1

d

dq
(qn)

= p
d

dq

( ∞∑
n=1

qn

)



Random Variables 39

= p
d

dq

(
q

1 − q

)
= p

(1 − q)2

= 1

p

In words, the expected number of independent trials we need to perform until we
attain our first success equals the reciprocal of the probability that any one trial
results in a success. �

Example 2.19 (Expectation of a Poisson Random Variable). Calculate E[X] if X is a
Poisson random variable with parameter λ.

Solution: From Eq. (2.5), we have

E[X] =
∞∑
i=0

ie−λλi

i!

=
∞∑
i=1

e−λλi

(i − 1)!

= λe−λ

∞∑
i=1

λi−1

(i − 1)!

= λe−λ

∞∑
k=0

λk

k!
= λe−λeλ

= λ

where we have used the identity
∑∞

k=0 λk/k! = eλ. �

2.4.2 The Continuous Case

We may also define the expected value of a continuous random variable. This is done
as follows. If X is a continuous random variable having a probability density function
f (x), then the expected value of X is defined by

E[X] =
∫ ∞

−∞
xf (x)dx

Example 2.20 (Expectation of a Uniform Random Variable). Calculate the expecta-
tion of a random variable uniformly distributed over (α,β).

Solution: From Eq. (2.8), we have

E[X] =
∫ β

α

x

β − α
dx
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= β2 − α2

2(β − α)

= β + α

2

In other words, the expected value of a random variable uniformly distributed over
the interval (α,β) is just the midpoint of the interval. �

Example 2.21 (Expectation of an Exponential Random Variable). Let X be exponen-
tially distributed with parameter λ. Calculate E[X].

Solution:

E[X] =
∫ ∞

0
xλe−λx dx

Integrating by parts (dv = λe−λx dx,u = x) yields

E[X] = −xe−λx
∣∣∞
0 +

∫ ∞

0
e−λx dx

= 0 − e−λx

λ

∣∣∣∣
∞

0

= 1

λ
�

Example 2.22 (Expectation of a Normal Random Variable). Calculate E[X] when X

is normally distributed with parameters μ and σ 2.

Solution:

E[X] = 1√
2πσ

∫ ∞

−∞
xe−(x−μ)2/2σ 2

dx

Writing x as (x − μ) + μ yields

E[X] = 1√
2πσ

∫ ∞

−∞
(x −μ)e−(x−μ)2/2σ 2

dx +μ
1√

2πσ

∫ ∞

−∞
e−(x−μ)2/2σ 2

dx

Letting y = x − μ leads to

E[X] = 1√
2πσ

∫ ∞

−∞
ye−y2/2σ 2

dy + μ

∫ ∞

−∞
f (x)dx

where f (x) is the normal density. By symmetry, the first integral must be 0, and so

E[X] = μ

∫ ∞

−∞
f (x)dx = μ �
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2.4.3 Expectation of a Function of a Random Variable

Suppose now that we are given a random variable X and its probability distribution
(that is, its probability mass function in the discrete case or its probability density
function in the continuous case). Suppose also that we are interested in calculating
not the expected value of X, but the expected value of some function of X, say, g(X).
How do we go about doing this? One way is as follows. Since g(X) is itself a random
variable, it must have a probability distribution, which should be computable from a
knowledge of the distribution of X. Once we have obtained the distribution of g(X),
we can then compute E[g(X)] by the definition of the expectation.

Example 2.23. Suppose X has the following probability mass function:

p(0) = 0.2, p(1) = 0.5, p(2) = 0.3

Calculate E[X2].
Solution: Letting Y = X2, we have that Y is a random variable that can take on
one of the values 02,12,22 with respective probabilities

pY (0) = P {Y = 02} = 0.2,

pY (1) = P {Y = 12} = 0.5,

pY (4) = P {Y = 22} = 0.3

Hence,

E[X2] = E[Y ] = 0(0.2) + 1(0.5) + 4(0.3) = 1.7

Note that

1.7 = E[X2] 	= (E[X])2 = 1.21 �

Example 2.24. Let X be uniformly distributed over (0,1). Calculate E[X3].
Solution: Letting Y = X3, we calculate the distribution of Y as follows. For 0 ≤
a ≤ 1,

FY (a) = P {Y ≤ a}
= P {X3 ≤ a}
= P {X ≤ a1/3}
= a1/3

where the last equality follows since X is uniformly distributed over (0,1). By
differentiating FY (a), we obtain the density of Y , namely,

fY (a) = 1
3a−2/3, 0 ≤ a ≤ 1
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Hence,

E[X3] = E[Y ] =
∫ ∞

−∞
afY (a) da

=
∫ 1

0
a 1

3a−2/3 da

= 1
3

∫ 1

0
a1/3 da

= 1
3

3
4a4/3

∣∣∣1
0

= 1
4 �

While the foregoing procedure will, in theory, always enable us to compute the
expectation of any function of X from a knowledge of the distribution of X, there
is, fortunately, an easier way to do this. The following proposition shows how we
can calculate the expectation of g(X) without first determining its distribution.

Proposition 2.1. (a) If X is a discrete random variable with probability mass func-
tion p(x), then for any real-valued function g,

E[g(X)] =
∑

x:p(x)>0

g(x)p(x)

(b) If X is a continuous random variable with probability density function f (x),
then for any real-valued function g,

E[g(X)] =
∫ ∞

−∞
g(x)f (x) dx �

Example 2.25. Applying the proposition to Example 2.23 yields

E[X2] = 02(0.2) + (12)(0.5) + (22)(0.3) = 1.7

which, of course, checks with the result derived in Example 2.23.
Applying the proposition to Example 2.24 yields

E[X3] =
∫ 1

0
x3 dx (since f (x) = 1,0 < x < 1)

= 1
4 �

A simple corollary of Proposition 2.1 is the following.

Corollary 2.2. If a and b are constants, then

E[aX + b] = aE[X] + b
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Proof. In the discrete case,

E[aX + b] =
∑

x:p(x)>0

(ax + b)p(x)

= a
∑

x:p(x)>0

xp(x) + b
∑

x:p(x)>0

p(x)

= aE[X] + b

In the continuous case,

E[aX + b] =
∫ ∞

−∞
(ax + b)f (x) dx

= a

∫ ∞

−∞
xf (x)dx + b

∫ ∞

−∞
f (x)dx

= aE[X] + b �

The expected value of a random variable X,E[X], is also referred to as the mean
or the first moment of X. The quantity E[Xn], n ≥ 1, is called the nth moment of X.
By Proposition 2.1, we note that

E[Xn] =

⎧⎪⎪⎨
⎪⎪⎩

∑
x:p(x)>0

xnp(x), if X is discrete

∫ ∞

−∞
xnf (x) dx, if X is continuous

Another quantity of interest is the variance of a random variable X, denoted by
Var(X), which is defined by

Var(X) = E
[
(X − E[X])2

]
Thus, the variance of X measures the expected square of the deviation of X from its
expected value.

Example 2.26 (Variance of the Normal Random Variable). Let X be normally dis-
tributed with parameters μ and σ 2. Find Var(X).

Solution: Recalling (see Example 2.22) that E[X] = μ, we have that

Var(X) = E[(X − μ)2]
= 1√

2πσ

∫ ∞

−∞
(x − μ)2e−(x−μ)2/2σ 2

dx

Substituting y = (x − μ)/σ yields

Var(X) = σ 2

√
2π

∫ ∞

−∞
y2e−y2/2 dy
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Integrating by parts (u = y, dv = ye−y2/2dy) gives

Var(X) = σ 2

√
2π

(
−ye−y2/2

∣∣∣∞−∞ +
∫ ∞

−∞
e−y2/2 dy

)

= σ 2

√
2π

∫ ∞

−∞
e−y2/2 dy

= σ 2

Another derivation of Var(X) will be given in Example 2.44. �

Suppose that X is continuous with density f, and let E[X] = μ. Then,

Var(X) = E[(X − μ)2]
= E[X2 − 2μX + μ2]
=
∫ ∞

−∞
(x2 − 2μx + μ2)f (x) dx

=
∫ ∞

−∞
x2f (x)dx − 2μ

∫ ∞

−∞
xf (x)dx + μ2

∫ ∞

−∞
f (x)dx

= E[X2] − 2μμ + μ2

= E[X2] − μ2

A similar proof holds in the discrete case, and so we obtain the useful identity

Var(X) = E[X2] − (E[X])2

Example 2.27. Calculate Var(X) when X represents the outcome when a fair die is
rolled.

Solution: As previously noted in Example 2.15, E[X] = 7
2 . Also,

E[X2] = 1
(

1
6

)
+ 22

(
1
6

)
+ 32

(
1
6

)
+ 42

(
1
6

)
+ 52

(
1
6

)
+ 62

(
1
6

)
=
(

1
6

)
(91)

Hence,

Var(X) = 91
6 −

(
7
2

)2 = 35
12 �

2.5 Jointly Distributed Random Variables
2.5.1 Joint Distribution Functions

Thus far, we have concerned ourselves with the probability distribution of a single
random variable. However, we are often interested in probability statements concern-
ing two or more random variables. To deal with such probabilities, we define, for any
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two random variables X and Y , the joint cumulative probability distribution function
of X and Y by

F(a, b) = P {X ≤ a,Y ≤ b}, −∞ < a,b < ∞
The distribution of X can be obtained from the joint distribution of X and Y as follows:

FX(a) = P {X ≤ a}
= P {X ≤ a,Y < ∞}
= F(a,∞)

Similarly, the cumulative distribution function of Y is given by

FY (b) = P {Y ≤ b} = F(∞, b)

In the case where X and Y are both discrete random variables, it is convenient to define
the joint probability mass function of X and Y by

p(x, y) = P {X = x,Y = y}
The probability mass function of X may be obtained from p(x, y) by

pX(x) =
∑

y:p(x,y)>0

p(x, y)

Similarly,

pY (y) =
∑

x:p(x,y)>0

p(x, y)

We say that X and Y are jointly continuous if there exists a function f (x, y), de-
fined for all real x and y, having the property that for all sets A and B of real numbers

P {X ∈ A,Y ∈ B} =
∫

B

∫
A

f (x, y) dx dy

The function f (x, y) is called the joint probability density function of X and Y . The
probability density of X can be obtained from a knowledge of f (x, y) by the following
reasoning:

P {X ∈ A} = P {X ∈ A,Y ∈ (−∞,∞)}
=
∫ ∞

−∞

∫
A

f (x, y) dx dy

=
∫

A

fX(x)dx
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where

fX(x) =
∫ ∞

−∞
f (x, y) dy

is thus the probability density function of X. Similarly, the probability density function
of Y is given by

fY (y) =
∫ ∞

−∞
f (x, y) dx

Because

F(a, b) = P(X ≤ a,Y ≤ b) =
∫ a

−∞

∫ b

−∞
f (x, y) dy dx

differentiation yields

d2

da db
F(a, b) = f (a, b)

Thus, as in the single variable case, differentiating the probability distribution function
gives the probability density function.

A variation of Proposition 2.1 states that if X and Y are random variables, and g is
a function of two variables, then

E[g(X,Y )] =
∑
y

∑
x

g(x, y)p(x, y) in the discrete case

=
∫ ∞

−∞

∫ ∞

−∞
g(x, y)f (x, y) dx dy in the continuous case

For example, if g(X,Y ) = X + Y , then, in the continuous case,

E[X + Y ] =
∫ ∞

−∞

∫ ∞

−∞
(x + y)f (x, y) dx dy

=
∫ ∞

−∞

∫ ∞

−∞
xf (x, y) dx dy +

∫ ∞

−∞

∫ ∞

−∞
yf (x, y) dx dy

= E[X] + E[Y ]
where the first integral is evaluated by using the variation of Proposition 2.1 with
g(x, y) = x, and the second with g(x, y) = y.

The same result holds in the discrete case and, combined with the corollary in Sec-
tion 2.4.3, yields that for any constants a, b

E[aX + bY ] = aE[X] + bE[Y ] (2.10)

Joint probability distributions may also be defined for n random variables. The de-
tails are exactly the same as when n = 2 and are left as an exercise. The corresponding
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result to Eq. (2.10) states that if X1,X2, . . . ,Xn are n random variables, then for any
n constants a1, a2, . . . , an,

E[a1X1 + a2X2 + · · · + anXn] = a1E[X1] + a2E[X2] + · · · + anE[Xn] (2.11)

Example 2.28. Calculate the expected sum obtained when three fair dice are rolled.

Solution: Let X denote the sum obtained. Then X = X1 + X2 + X3 where Xi

represents the value of the ith die. Thus,

E[X] = E[X1] + E[X2] + E[X3] = 3
(

7
2

)
= 21

2 �

Example 2.29. As another example of the usefulness of Eq. (2.11), let us use it to
obtain the expectation of a binomial random variable having parameters n and p. Re-
calling that such a random variable X represents the number of successes in n trials
when each trial has probability p of being a success, we have

X = X1 + X2 + · · · + Xn

where

Xi =
{

1, if the ith trial is a success
0, if the ith trial is a failure

Hence, Xi is a Bernoulli random variable having expectation E[Xi] = 1(p) + 0(1 −
p) = p. Thus,

E[X] = E[X1] + E[X2] + · · · + E[Xn] = np

This derivation should be compared with the one presented in Example 2.17. �

Example 2.30. At a party N people throw their hats into the center of a room. The
hats are mixed up, and each person randomly selects one. Find the expected number
of people who select their own hats.

Solution: Letting X denote the number of people that select their own hats, we
can best compute E[X] by noting that

X = X1 + X2 + · · · + XN

where

Xi =
{

1, if the ith person selects their own hat
0, otherwise

Now, because the ith person is equally likely to select any of the N hats, it follows
that

P {Xi = 1} = P {ith person selects their own hat} = 1

N
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and so

E[Xi] = 1P {Xi = 1} + 0P {Xi = 0} = 1

N

Hence, from Eq. (2.11) we obtain

E[X] = E[X1] + · · · + E[XN ] =
(

1

N

)
N = 1

Hence, no matter how many people are at the party, on the average exactly one of
the people will select their own hat. �

Example 2.31. Suppose there are 25 different types of coupons and suppose that each
time one obtains a coupon, it is equally likely to be any one of the 25 types. Compute
the expected number of different types that are contained in a set of 10 coupons.

Solution: Let X denote the number of different types in the set of 10 coupons.
We compute E[X] by using the representation

X = X1 + · · · + X25

where

Xi =
{

1, if at least one type i coupon is in the set of 10
0, otherwise

Now,

E[Xi] = P {Xi = 1}
= P {at least one type i coupon is in the set of 10}
= 1 − P {no type i coupons are in the set of 10}
= 1 −

(
24
25

)10

when the last equality follows since each of the 10 coupons will (independently)
not be a type i with probability 24

25 . Hence,

E[X] = E[X1] + · · · + E[X25] = 25

[
1 −

(
24
25

)10
]

�

Example 2.32. Let R1, . . . ,Rn+m be a random permutation of 1, . . . , n+m. (That is,
R1, . . . ,Rn+m is equally likely to be any of the (n+m)! permutations of 1, . . . , n+m.)
For a given i ≤ n, let X be the ith smallest of the values R1, . . . ,Rn. Find E[X].

Solution: If we let N be the number of the values Rn+1, . . . ,Rn+m that are
smaller than X, then X is the (i + N)th smallest of all the values R1, . . . ,Rn+m.
Because R1, . . . ,Rn+m consists of all numbers 1, . . . , n + m, it follows that X =
i + N . Consequently,

E[X] = i + E[N ]
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To compute E[N ], for k = 1, . . . ,m let In+k equal 1 if Rn+k < X and let it equal
0 otherwise. Using that

N =
m∑

k=1

In+k

we obtain that

E[X] = i +
m∑

k=1

E[In+k]

Now,

E[In+k] = P(Rn+k < X)

= P(Rn+k < ith smallest of R1, . . . ,Rn)

= P(Rn+k is one of the i smallest of the values R1, . . . ,Rn,Rn+k)

= i

n + 1

where the final equality used that Rn+k is equally likely to be either the smallest,
the second smallest, . . . , or the (n + 1)st smallest of the values R1, . . . ,Rn,Rn+k .
Hence,

E[X] = i + m
i

n + 1
�

Example 2.33. A vendor must decide how many units of a product to stock during
the coming season. Supposing that the number of units that will be demanded by the
vendor’s customers is a random variable D with known probability mass function, that
r is the vendor’s profit on each item sold, and that c is the vendor’s cost for each item
that is not sold, how many items should the vendor stock to maximize their expected
net profit.

Solution: Let P(n) denote the net profit if the vendor stocks n units. To find
the value of n that maximizes E[P(n)], note that the profit when n + 1 units are
stocked is equal to the profit when n units are stocked plus r if the additional unit
can be sold (which will be the case if D ≥ n+ 1) minus c if the additional unit can
not be sold (which will be the case if D ≤ n). Hence, with I {A} standing for the
indicator variable for the event A, equal to 1 if A occurs and to 0 otherwise, we
have that

P(n + 1) = P(n) + r I {D ≥ n + 1} − c I {D ≤ n}
Taking expectations gives that

E[P(n + 1)] = E[P(n)] + rE[I {D ≥ n + 1}] − cE[I {D ≤ n}]
= E[P(n)] + r P (D ≥ n + 1) − cP (D ≤ n)
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Hence,

E[P(n + 1)] ≥ E[P(n)] ⇔ r P (D ≥ n + 1) ≥ cP (D ≤ n)

⇔ P(D ≥ n + 1)

P (D ≤ n)
≥ c

r

Because P(D≥n+1)
P (D≤n)

is a decreasing function of n, it follows that

E[P(n + 1)] ≥ E[P(n)] ⇔ n ≤ n∗

where

n∗ = max

{
n : P(D ≥ n + 1)

P (D ≤ n)
≥ c

r

}

The expected profit is thus maximized if one orders n∗ + 1 items. �

Whereas

E

[
n∑

i=1

Xi

]
=

n∑
i=1

E[Xi]

when n < ∞, it need not be true for infinite sums. That is, it need not be true that
E[∑∞

i=1 Xi] = ∑∞
i=1 E[Xi]. (Example 4.20 gives an example where it is not true.)

However, it can be shown to be true when the Xi are all nonnegative random vari-
ables. A useful consequence of this is the following Proposition.

Proposition 2.2. Let g be a nondecreasing function with g(0) = 0. If X is a nonneg-
ative integer valued random variable, then

E[g(X)] =
∞∑
i=1

(g(i) − g(i − 1))P (X ≥ i)

Proof. Using that

n∑
i=1

(g(i) − g(i − 1)) = g(n) − g(0) = g(n)

we see that

g(X) =
X∑

i=1

(g(i) − g(i − 1))

=
∞∑
i=1

(g(i) − g(i − 1)) I {i ≤ X}
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Consequently,

E[g(X)] = E

[ ∞∑
i=1

(g(i) − g(i − 1)) I {i ≤ X}
]

=
∞∑
i=1

(g(i) − g(i − 1))E[I {i ≤ X}]

=
∞∑
i=1

(g(i) − g(i − 1))P (X ≥ i)

where the interchange of expectation and summation is justified since g is nondecreas-
ing and thus (g(i) − g(i − 1)) I {i ≤ X} ≥ 0. �

Corollary 2.3. If X is a nonnegative integer valued random variable, then

E[X] =
∞∑
i=1

P(X ≥ i)

and

E[X2] =
∞∑
i=1

(2i − 1)P (X ≥ i) = 2
∞∑
i=1

iP (X ≥ i) − E[X]

Proof. This follows from Proposition 2.2, by letting g(i) = i, and then letting g(i) =
i2. �

Example 2.34. Let X be a geometric random variable with parameter p. That is, X is
the number of trials until a success occurs, when each trial independently results in a
success with probability p. Corollary 2.3 gives that

E[X] =
∞∑
i=1

P(X ≥ i) =
∞∑
i=1

(1 − p)i−1 = 1

p
,

where the preceding used that X will be at least i if and only if the first i − 1 trials are
all failures. Also,

∞∑
i=1

iP (X ≥ i) =
∞∑
i=1

i(1 − p)i−1 = 1

p

∞∑
i=1

i p(1 − p)i−1 = 1

p

∞∑
i=1

i P (X = i)

= 1

p
E[X] = 1

p2

Hence, Corollary 2.3 gives

E[X2] = 2

p2 − 1

p
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which yields that

Var(X) = 1

p2
− 1

p
= 1 − p

p2
�

2.5.2 Independent Random Variables

The random variables X and Y are said to be independent if, for all a, b,

P {X ≤ a,Y ≤ b} = P {X ≤ a}P {Y ≤ b} (2.12)

In other words, X and Y are independent if, for all a and b, the events Ea = {X ≤ a}
and Fb = {Y ≤ b} are independent.

In terms of the joint distribution function F of X and Y , we have that X and Y are
independent if

F(a, b) = FX(a)FY (b) for all a, b

When X and Y are discrete, the condition of independence reduces to

p(x, y) = pX(x)pY (y) (2.13)

while if X and Y are jointly continuous, independence reduces to

f (x, y) = fX(x)fY (y) (2.14)

To prove this statement, consider first the discrete version, and suppose that the joint
probability mass function p(x, y) satisfies Eq. (2.13). Then

P {X ≤ a,Y ≤ b} =
∑
y≤b

∑
x≤a

p(x, y)

=
∑
y≤b

∑
x≤a

pX(x)pY (y)

=
∑
y≤b

pY (y)
∑
x≤a

pX(x)

= P {Y ≤ b}P {X ≤ a}

and so X and Y are independent. That Eq. (2.14) implies independence in the contin-
uous case is proven in the same manner and is left as an exercise.

An important result concerning independence is the following.

Proposition 2.3. If X and Y are independent, then for any functions h and g

E[g(X)h(Y )] = E[g(X)]E[h(Y )]
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Proof. Suppose that X and Y are jointly continuous. Then

E[g(X)h(Y )] =
∫ ∞

−∞

∫ ∞

−∞
g(x)h(y)f (x, y) dx dy

=
∫ ∞

−∞

∫ ∞

−∞
g(x)h(y)fX(x)fY (y) dx dy

=
∫ ∞

−∞
h(y)fY (y) dy

∫ ∞

−∞
g(x)fX(x)dx

= E[h(Y )]E[g(X)]
The proof in the discrete case is similar. �

2.5.3 Covariance and Variance of Sums of Random
Variables

The covariance of any two random variables X and Y , denoted by Cov(X,Y ), is de-
fined by

Cov(X,Y ) = E[(X − E[X])(Y − E[Y ])]
= E[XY − YE[X] − XE[Y ] + E[X]E[Y ]]
= E[XY ] − E[Y ]E[X] − E[X]E[Y ] + E[X]E[Y ]
= E[XY ] − E[X]E[Y ]

Note that if X and Y are independent, then by Proposition 2.3 it follows that
Cov(X,Y ) = 0.

Let us consider now the special case where X and Y are indicator variables for
whether or not the events A and B occur. That is, for events A and B, define

X =
{

1, if A occurs
0, otherwise,

Y =
{

1, if B occurs
0, otherwise

Then,

Cov(X,Y ) = E[XY ] − E[X]E[Y ]
and, because XY will equal 1 or 0 depending on whether or not both X and Y equal 1,
we see that

Cov(X,Y ) = P {X = 1, Y = 1} − P {X = 1}P {Y = 1}
From this we see that

Cov(X,Y ) > 0 ⇔ P {X = 1, Y = 1} > P {X = 1}P {Y = 1}
⇔ P {X = 1, Y = 1}

P {X = 1} > P {Y = 1}
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⇔ P {Y = 1|X = 1} > P {Y = 1}
That is, the covariance of X and Y is positive if the outcome X = 1 makes it more
likely that Y = 1 (which, as is easily seen by symmetry, also implies the reverse).

In general it can be shown that a positive value of Cov(X,Y ) is an indication that Y

tends to increase as X does, whereas a negative value indicates that Y tends to decrease
as X increases.

Example 2.35. The joint density function of X,Y is

f (x, y) = 1

y
e−(y+x/y), 0 < x,y < ∞

(a) Verify that the preceding is a joint density function.
(b) Find Cov (X,Y ).

Solution: To show that f (x, y) is a joint density function we need to show it is
nonnegative, which is immediate, and that

∫∞
−∞

∫∞
−∞ f (x, y) dy dx = 1. We prove

the latter as follows:∫ ∞

−∞

∫ ∞

−∞
f (x, y) dy dx =

∫ ∞

0

∫ ∞

0

1

y
e−(y+x/y)dy dx

=
∫ ∞

0
e−y

∫ ∞

0

1

y
e−x/ydx dy

=
∫ ∞

0
e−ydy

= 1

To obtain Cov(X,Y ), note that the density function of Y is

fY (y) = e−y

∫ ∞

0

1

y
e−x/ydx = e−y

Thus, Y is an exponential random variable with parameter 1, showing (see Exam-
ple 2.21) that

E[Y ] = 1

We compute E[X] and E[XY ] as follows:

E[X] =
∫ ∞

−∞

∫ ∞

−∞
xf (x, y) dy dx

=
∫ ∞

0
e−y

∫ ∞

0

x

y
e−x/ydx dy

Now,
∫∞

0
x
y
e−x/ydx is the expected value of an exponential random variable with

parameter 1/y, and thus is equal to y. Consequently,

E[X] =
∫ ∞

0
ye−ydy = 1
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Also

E[XY ] =
∫ ∞

−∞

∫ ∞

−∞
xy f (x, y) dy dx

=
∫ ∞

0
ye−y

∫ ∞

0

x

y
e−x/ydx dy

=
∫ ∞

0
y2e−ydy

Integration by parts (dv = e−ydy,u = y2) gives

E[XY ] =
∫ ∞

0
y2e−ydy = −y2e−y

∣∣∞
0 +

∫ ∞

0
2ye−ydy = 2E[Y ] = 2

Consequently,

Cov(X,Y ) = E[XY ] − E[X]E[Y ] = 1 �

The following are important properties of covariance.

Properties of Covariance

For any random variables X,Y,Z and constant c,

1. Cov(X,X) = Var(X),
2. Cov(X,Y ) = Cov(Y,X),
3. Cov(cX,Y ) = c Cov(X,Y ),
4. Cov(X,Y + Z) = Cov(X,Y ) + Cov(X,Z).

Whereas the first three properties are immediate, the final one is easily proven as
follows:

Cov(X,Y + Z) = E[X(Y + Z)] − E[X]E[Y + Z]
= E[XY ] − E[X]E[Y ] + E[XZ] − E[X]E[Z]
= Cov(X,Y ) + Cov(X,Z)

The fourth property listed easily generalizes to give the following result:

Cov

⎛
⎝ n∑

i=1

Xi,

m∑
j=1

Yj

⎞
⎠=

n∑
i=1

m∑
j=1

Cov(Xi, Yj ) (2.15)

A useful expression for the variance of the sum of random variables can be obtained
from Eq. (2.15) as follows:

Var

(
n∑

i=1

Xi

)
= Cov

⎛
⎝ n∑

i=1

Xi,

n∑
j=1

Xj

⎞
⎠
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=
n∑

i=1

n∑
j=1

Cov(Xi,Xj )

=
n∑

i=1

Cov(Xi,Xi) +
n∑

i=1

∑
j 	=i

Cov(Xi,Xj )

=
n∑

i=1

Var(Xi) + 2
n∑

i=1

∑
j< i

Cov(Xi,Xj ) (2.16)

If Xi, i = 1, . . . , n are independent random variables, then Eq. (2.16) reduces to

Var

(
n∑

i=1

Xi

)
=

n∑
i=1

Var(Xi)

Definition 2.1. If X1, . . . ,Xn are independent and identically distributed, then the
random variable X̄ =∑n

i=1 Xi/n is called the sample mean.

The following proposition shows that the covariance between the sample mean and
a deviation from that sample mean is zero. It will be needed in Section 2.6.1.

Proposition 2.4. Suppose that X1, . . . ,Xn are independent and identically distributed
with expected value μ and variance σ 2. Then,

(a) E[X̄] = μ.
(b) Var(X̄) = σ 2/n.
(c) Cov(X̄,Xi − X̄) = 0, i = 1, . . . , n.

Proof. Parts (a) and (b) are easily established as follows:

E[X̄] = 1

n

n∑
i=1

E[Xi] = μ,

Var(X̄) =
(

1

n

)2

Var

(
n∑

i=1

Xi

)
=
(

1

n

)2 n∑
i=1

Var(Xi) = σ 2

n

To establish part (c), we reason as follows:

Cov(X̄,Xi − X̄) = Cov(X̄,Xi) − Cov(X̄, X̄)

= 1

n
Cov

⎛
⎝Xi +

∑
j 	=i

Xj ,Xi

⎞
⎠− Var(X̄)

= 1

n
Cov(Xi,Xi) + 1

n
Cov

⎛
⎝∑

j 	=i

Xj ,Xi

⎞
⎠− σ 2

n

= σ 2

n
− σ 2

n
= 0
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where the next to the last equality used the fact that Xi and
∑

j 	=i Xj are independent
and thus have covariance 0. �

Eq. (2.16) is often useful when computing variances.

Example 2.36 (Variance of a Binomial Random Variable). Compute the variance of
a binomial random variable X with parameters n and p.

Solution: Since such a random variable represents the number of successes in n

independent trials when each trial has a common probability p of being a success,
we may write

X = X1 + · · · + Xn

where the Xi are independent Bernoulli random variables such that

Xi =
{

1, if the ith trial is a success
0, otherwise

Hence, from Eq. (2.16), we obtain

Var(X) = Var(X1) + · · · + Var(Xn)

But

Var(Xi) = E[X2
i ] − (E[Xi])2

= E[Xi] − (E[Xi])2 since X2
i = Xi

= p − p2

and thus

Var(X) = np(1 − p) �

Example 2.37 (Sampling from a Finite Population: The Hypergeometric). Consider a
population of N individuals, some of whom are in favor of a certain proposition. In
particular suppose that Np of them are in favor and N − Np are opposed, where p

is assumed to be unknown. We are interested in estimating p, the fraction of the pop-
ulation that is for the proposition, by randomly choosing and then determining the
positions of n members of the population.

In such situations as described in the preceding, it is common to use the fraction of
the sampled population that is in favor of the proposition as an estimator of p. Hence,
if we let

Xi =
{

1, if the ith person chosen is in favor
0, otherwise
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then the usual estimator of p is
∑n

i=1 Xi/n. Let us now compute its mean and vari-
ance. Now,

E

[
n∑

i=1

Xi

]
=

n∑
1

E[Xi]

= np

where the final equality follows since the ith person chosen is equally likely to be any
of the N individuals in the population and so has probability Np/N of being in favor.

Var

(
n∑
1

Xi

)
=

n∑
1

Var(Xi) + 2
∑∑

i<j

Cov(Xi,Xj )

Now, since Xi is a Bernoulli random variable with mean p, it follows that

Var(Xi) = p(1 − p)

Also, for i 	= j ,

Cov(Xi,Xj ) = E[XiXj ] − E[Xi]E[Xj ]
= P {Xi = 1,Xj = 1} − p2

= P {Xi = 1}P {Xj = 1|Xi = 1} − p2

= Np

N

(Np − 1)

N − 1
− p2

where the last equality follows since if the ith person to be chosen is in favor, then the
j th person chosen is equally likely to be any of the other N − 1 of which Np − 1 are
in favor. Thus, we see that

Var

(
n∑
1

Xi

)
= np(1 − p) + 2

(
n

2

)[
p(Np − 1)

N − 1
− p2

]

= np(1 − p) − n(n − 1)p(1 − p)

N − 1

and so the mean and variance of our estimator are given by

E

[
n∑
1

Xi

n

]
= p,

Var

[
n∑
1

Xi

n

]
= p(1 − p)

n
− (n − 1)p(1 − p)

n(N − 1)

Some remarks are in order: As the mean of the estimator is the unknown value p,
we would like its variance to be as small as possible (why is this?), and we see by
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the preceding that, as a function of the population size N , the variance increases as
N increases. The limiting value, as N → ∞, of the variance is p(1 − p)/n, which is
not surprising since for N large each of the Xi will be (approximately) independent
random variables, and thus

∑n
1 Xi will have an (approximately) binomial distribution

with parameters n and p.
The random variable

∑n
1 Xi can be thought of as representing the number of white

balls obtained when n balls are randomly selected from a population consisting of Np

white and N − Np black balls. (Identify a person who favors the proposition with a
white ball and one against with a black ball.) Such a random variable is called hyper-
geometric and has a probability mass function given by

P

{
n∑
1

Xi = k

}
=

(
Np

k

)(
N − Np

n − k

)
(

N

n

) �

It is often important to be able to calculate the distribution of X + Y from the dis-
tributions of X and Y when X and Y are independent. Suppose first that X and Y are
continuous, X having probability density f and Y having probability density g. Then,
letting FX+Y (a) be the cumulative distribution function of X + Y , we have

FX+Y (a) = P {X + Y ≤ a}
=
∫∫

x+y≤a

f (x)g(y) dx dy

=
∫ ∞

−∞

∫ a−y

−∞
f (x)g(y) dx dy

=
∫ ∞

−∞

(∫ a−y

−∞
f (x)dx

)
g(y)dy

=
∫ ∞

−∞
FX(a − y)g(y) dy (2.17)

The cumulative distribution function FX+Y is called the convolution of the distribu-
tions FX and FY (the cumulative distribution functions of X and Y , respectively).

By differentiating Eq. (2.17), we obtain that the probability density function
fX+Y (a) of X + Y is given by

fX+Y (a) = d

da

∫ ∞

−∞
FX(a − y)g(y) dy

=
∫ ∞

−∞
d

da
(FX(a − y))g(y) dy

=
∫ ∞

−∞
f (a − y)g(y) dy (2.18)
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Example 2.38 (Sum of Two Independent Uniform Random Variables). If X and Y

are independent random variables both uniformly distributed on (0, 1), then calculate
the probability density of X + Y .

Solution: From Eq. (2.18), since

f (a) = g(a) =
{

1, 0 < a < 1
0, otherwise

we obtain

fX+Y (a) =
∫ 1

0
f (a − y)dy

For 0 ≤ a ≤ 1, this yields

fX+Y (a) =
∫ a

0
dy = a

For 1 < a < 2, we get

fX+Y (a) =
∫ 1

a−1
dy = 2 − a

Hence,

fX+Y (a) =
⎧⎨
⎩

a, 0 ≤ a ≤ 1
2 − a, 1 < a < 2
0, otherwise

�

Rather than deriving a general expression for the distribution of X + Y in the dis-
crete case, we shall consider an example.

Example 2.39 (Sums of Independent Poisson Random Variables). Let X and Y be
independent Poisson random variables with respective means λ1 and λ2. Calculate the
distribution of X + Y .

Solution: Since the event {X+Y = n} may be written as the union of the disjoint
events {X = k,Y = n − k},0 ≤ k ≤ n, we have

P {X + Y = n} =
n∑

k=0

P {X = k,Y = n − k}

=
n∑

k=0

P {X = k}P {Y = n − k}

=
n∑

k=0

e−λ1
λk

1

k! e
−λ2

λn−k
2

(n − k)!
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= e−(λ1+λ2)

n∑
k=0

λk
1λ

n−k
2

k!(n − k)!

= e−(λ1+λ2)

n!
n∑

k=0

n!
k!(n − k)!λ

k
1λ

n−k
2

= e−(λ1+λ2)

n! (λ1 + λ2)
n

In words, X + Y has a Poisson distribution with mean λ1 + λ2. �
The concept of independence may, of course, be defined for more than two random

variables. In general, the n random variables X1,X2, . . . ,Xn are said to be indepen-
dent if, for all values a1, a2, . . . , an,

P {X1 ≤ a1,X2 ≤ a2, . . . ,Xn ≤ an}
= P {X1 ≤ a1}P {X2 ≤ a2} · · ·P {Xn ≤ an}

Example 2.40. Let X1, . . . ,Xn be independent and identically distributed continu-
ous random variables with probability distribution F and density function F ′ = f . If
we let X(i) denote the ith smallest of these random variables, then X(1), . . . ,X(n) are
called the order statistics. To obtain the distribution of X(i), note that X(i) will be less
than or equal to x if and only if at least i of the n random variables X1, . . . ,Xn are
less than or equal to x. Hence,

P {X(i) ≤ x} =
n∑

k=i

(
n

k

)
(F (x))k(1 − F(x))n−k

Differentiation yields that the density function of X(i) is as follows:

fX(i)
(x) = f (x)

n∑
k=i

(
n

k

)
k(F (x))k−1(1 − F(x))n−k

− f (x)

n∑
k=i

(
n

k

)
(n − k)(F (x))k(1 − F(x))n−k−1

= f (x)

n∑
k=i

n!
(n − k)!(k − 1)! (F (x))k−1(1 − F(x))n−k

− f (x)

n−1∑
k=i

n!
(n − k − 1)!k! (F (x))k(1 − F(x))n−k−1

= f (x)

n∑
k=i

n!
(n − k)!(k − 1)! (F (x))k−1(1 − F(x))n−k

− f (x)

n∑
j=i+1

n!
(n − j)!(j − 1)! (F (x))j−1(1 − F(x))n−j
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= n!
(n − i)!(i − 1)!f (x)(F (x))i−1(1 − F(x))n−i

The preceding density is quite intuitive, since in order for X(i) to equal x, i − 1 of the
n values X1, . . . ,Xn must be less than x;n − i of them must be greater than x; and
one must be equal to x. Now, the probability density that every member of a specified
set of i − 1 of the Xj is less than x, every member of another specified set of n − i is
greater than x, and the remaining value is equal to x is (F (x))i−1(1 − F(x))n−if (x).
Therefore, since there are n!/[(i − 1)!(n − i)!] different partitions of the n random
variables into the three groups, we obtain the preceding density function. �

2.5.4 Joint Probability Distribution of Functions of Random
Variables

Let X1 and X2 be jointly continuous random variables with joint probability density
function f (x1, x2). It is sometimes necessary to obtain the joint distribution of the
random variables Y1 and Y2 that arise as functions of X1 and X2. Specifically, suppose
that Y1 = g1(X1,X2) and Y2 = g2(X1,X2) for some functions g1 and g2.

Assume that the functions g1 and g2 satisfy the following conditions:

1. The equations y1 = g1(x1, x2) and y2 = g2(x1, x2) can be uniquely solved for x1
and x2 in terms of y1 and y2 with solutions given by, say, x1 = h1(y1, y2), x2 =
h2(y1, y2).

2. The functions g1 and g2 have continuous partial derivatives at all points (x1, x2)

and are such that the following 2 × 2 determinant

J (x1, x2) =

∣∣∣∣∣∣∣∣
∂g1

∂x1

∂g1

∂x2

∂g2

∂x1

∂g2

∂x2

∣∣∣∣∣∣∣∣≡
∂g1

∂x1

∂g2

∂x2
− ∂g1

∂x2

∂g2

∂x1
	= 0

at all points (x1, x2).

Under these two conditions it can be shown that the random variables Y1 and Y2 are
jointly continuous with joint density function given by

fY1,Y2(y1, y2) = fX1,X2(x1, x2)|J (x1, x2)|−1 (2.19)

where x1 = h1(y1, y2), x2 = h2(y1, y2).
A proof of Eq. (2.19) would proceed along the following lines:

P {Y1 ≤ y1, Y2 ≤ y2} =
∫∫

(x1, x2) :
g1(x1, x2) ≤ y1
g2(x1, x2) ≤ y2

fX1,X2(x1, x2) dx1 dx2 (2.20)

The joint density function can now be obtained by differentiating Eq. (2.20) with re-
spect to y1 and y2. That the result of this differentiation will be equal to the right-hand
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side of Eq. (2.19) is an exercise in advanced calculus whose proof will not be presented
in the present text.

Example 2.41. If X and Y are independent gamma random variables with param-
eters (α,λ) and (β,λ), respectively, compute the joint density of U = X + Y and
V = X/(X + Y).

Solution: The joint density of X and Y is given by

fX,Y (x, y) = λe−λx(λx)α−1

�(α)

λe−λy(λy)β−1

�(β)

= λα+β

�(α)�(β)
e−λ(x+y)xα−1yβ−1

Now, if g1(x, y) = x + y,g2(x, y) = x/(x + y), then

∂g1

∂x
= ∂g1

∂y
= 1,

∂g2

∂x
= y

(x + y)2
,

∂g2

∂y
= − x

(x + y)2

and so

J (x, y) =
∣∣∣∣∣∣

1 1
y

(x + y)2

−x

(x + y)2

∣∣∣∣∣∣= − 1

x + y

Finally, because the equations u = x + y, v = x/(x + y) have as their solutions
x = uv,y = u(1 − v), we see that

fU,V (u, v) = fX,Y [uv,u(1 − v)]u

= λe−λu(λu)α+β−1

�(α + β)

vα−1(1 − v)β−1�(α + β)

�(α)�(β)

Hence X + Y and X/(X + Y) are independent, with X + Y having a gamma dis-
tribution with parameters (α + β,λ) and X/(X + Y) having density function

fV (v) = �(α + β)

�(α)�(β)
vα−1(1 − v)β−1, 0 < v < 1

This is called the beta density with parameters (α,β).

This result is quite interesting. For suppose there are n + m jobs to be performed,
with each (independently) taking an exponential amount of time with rate λ for per-
formance, and suppose that we have two workers to perform these jobs. Worker I will
do jobs 1,2, . . . , n, and worker II will do the remaining m jobs. If we let X and Y

denote the total working times of workers I and II, respectively, then upon using the
preceding result it follows that X and Y will be independent gamma random variables
having parameters (n,λ) and (m,λ), respectively. Then the preceding result yields
that independently of the working time needed to complete all n + m jobs (that is,
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of X + Y ), the proportion of this work that will be performed by worker I has a beta
distribution with parameters (n,m). �

When the joint density function of the n random variables X1,X2, . . . ,Xn is given
and we want to compute the joint density function of Y1, Y2, . . . , Yn, where

Y1 = g1(X1, . . . ,Xn), Y2 = g2(X1, . . . ,Xn), . . . ,

Yn = gn(X1, . . . ,Xn)

the approach is the same. Namely, we assume that the functions gi have continuous
partial derivatives and that the Jacobian determinant J (x1, . . . , xn) 	= 0 at all points
(x1, . . . , xn), where

J (x1, . . . , xn) =

∣∣∣∣∣∣∣∣∣∣∣∣∣

∂g1

∂x1

∂g1

∂x2
· · · ∂g1

∂xn

∂g2

∂x1

∂g2

∂x2
· · · ∂g2

∂xn

∂gn

∂x1

∂gn

∂x2
· · · ∂gn

∂xn

∣∣∣∣∣∣∣∣∣∣∣∣∣
Furthermore, we suppose that the equations y1 = g1(x1, . . . , xn), y2 = g2(x1, . . . , xn),

. . . , yn = gn(x1, . . . , xn) have a unique solution, say, x1 = h1(y1, . . . , yn), . . . , xn =
hn(y1, . . . , yn). Under these assumptions the joint density function of the random vari-
ables Yi is given by

fY1,...,Yn(y1, . . . , yn) = fX1,...,Xn(x1, . . . , xn)|J (x1, . . . , xn)|−1

where xi = hi(y1, . . . , yn), i = 1,2, . . . , n.

2.6 Moment Generating Functions
The moment generating function φ(t) of the random variable X is defined for all val-
ues t by

φ(t) = E[etX]

=

⎧⎪⎪⎨
⎪⎪⎩
∑
x

etxp(x), if X is discrete

∫ ∞

−∞
etxf (x) dx, if X is continuous

We call φ(t) the moment generating function because all of the moments of X can be
obtained by successively differentiating φ(t). For example,

φ′(t) = d

dt
E[etX]
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= E

[
d

dt
(etX)

]
= E[XetX]

Hence,

φ′(0) = E[X]
Similarly,

φ′′(t) = d

dt
φ′(t)

= d

dt
E[XetX]

= E

[
d

dt
(XetX)

]
= E[X2etX]

and so

φ′′(0) = E[X2]
In general, the nth derivative of φ(t) evaluated at t = 0 equals E[Xn], that is,

φn(0) = E[Xn], n ≥ 1

We now compute φ(t) for some common distributions.

Example 2.42 (The Binomial Distribution with Parameters n and p).

φ(t) = E[etX]

=
n∑

k=0

etk

(
n

k

)
pk(1 − p)n−k

=
n∑

k=0

(
n

k

)
(pet )k(1 − p)n−k

= (pet + 1 − p)n

Hence,

φ′(t) = n(pet + 1 − p)n−1pet

and so

E[X] = φ′(0) = np
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which checks with the result obtained in Example 2.17. Differentiating a second time
yields

φ′′(t) = n(n − 1)(pet + 1 − p)n−2(pet )2 + n(pet + 1 − p)n−1pet

and so

E[X2] = φ′′(0) = n(n − 1)p2 + np

Thus, the variance of X is given by

Var(X) = E[X2] − (E[X])2

= n(n − 1)p2 + np − n2p2

= np(1 − p) �

Example 2.43 (The Poisson Distribution with Mean λ).

φ(t) = E[etX]

=
∞∑

n=0

etne−λλn

n!

= e−λ
∞∑

n=0

(λet )n

n!
= e−λeλet

= exp{λ(et − 1)}
Differentiation yields

φ′(t) = λet exp{λ(et − 1)},
φ′′(t) = (λet )2 exp{λ(et − 1)} + λet exp{λ(et − 1)}

and so

E[X] = φ′(0) = λ,

E[X2] = φ′′(0) = λ2 + λ,

Var(X) = E[X2] − (E[X])2

= λ

Thus, both the mean and the variance of the Poisson equal λ. �

Example 2.44 (The Exponential Distribution with Parameter λ).

φ(t) = E[etX]
=
∫ ∞

0
etxλe−λxdx
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= λ

∫ ∞

0
e−(λ−t)xdx

= λ

λ − t
for t < λ

We note by the preceding derivation that, for the exponential distribution, φ(t) is only
defined for values of t less than λ. Differentiation of φ(t) yields

φ′(t) = λ

(λ − t)2
, φ′′(t) = 2λ

(λ − t)3

Hence,

E[X] = φ′(0) = 1

λ
, E[X2] = φ′′(0) = 2

λ2

The variance of X is thus given by

Var(X) = E[X2] − (E[X])2 = 1

λ2
�

Example 2.45 (The Normal Distribution with Parameters μ and σ 2). The moment
generating function of a standard normal random variable Z is obtained as follows.

E[etZ] = 1√
2π

∫ ∞

−∞
etxe−x2/2 dx

= 1√
2π

∫ ∞

−∞
e−(x2−2tx)/2 dx

= et2/2 1√
2π

∫ ∞

−∞
e−(x−t)2/2 dx

= et2/2

If Z is a standard normal, then X = σZ + μ is normal with parameters μ and σ 2;
therefore,

φ(t) = E[etX] = E[et(σZ+μ)] = etμE[etσZ] = exp

{
σ 2t2

2
+ μt

}
By differentiating, we obtain

φ′(t) = (μ + tσ 2) exp

{
σ 2t2

2
+ μt

}
,

φ′′(t) = (μ + tσ 2)2 exp

{
σ 2t2

2
+ μt

}
+ σ 2 exp

{
σ 2t2

2
+ μt

}
and so

E[X] = φ′(0) = μ,



68 Introduction to Probability Models

Table 2.1

Discrete
probability
distribution

Probability mass
function, p(x)

Moment
generating
function, φ(t)

Mean Variance

Binomial with
parameters n,p,
0 ≤ p ≤ 1

(n
x

)
px(1 − p)n−x ,

x = 0,1, . . . , n

(pet + (1 − p))n np np(1 − p)

Poisson with pa-
rameter λ > 0

e−λ λx

x! ,

x = 0,1,2, . . .

exp{λ(et − 1)} λ λ

Geometric with
parameter
0 ≤ p ≤ 1

p(1 − p)x−1,
x = 1,2, . . .

pet

1 − (1 − p)et

1

p

1 − p

p2

E[X2] = φ′′(0) = μ2 + σ 2

implying that

Var(X) = E[X2] − E([X])2

= σ 2 �

Tables 2.1 and 2.2 give the moment generating function for some common distri-
butions.

An important property of moment generating functions is that the moment gener-
ating function of the sum of independent random variables is just the product of the
individual moment generating functions. To see this, suppose that X and Y are inde-
pendent and have moment generating functions φX(t) and φY (t), respectively. Then
φX+Y (t), the moment generating function of X + Y , is given by

φX+Y (t) = E[et(X+Y)]
= E[etXetY ]
= E[etX]E[etY ]
= φX(t)φY (t)

where the next to the last equality follows from Proposition 2.3 since X and Y are
independent.

Another important result is that the moment generating function uniquely deter-
mines the distribution. That is, there exists a one-to-one correspondence between the
moment generating function and the distribution function of a random variable.

Example 2.46 (Sums of Independent Binomial Random Variables). If X and Y are in-
dependent binomial random variables with parameters (n,p) and (m,p), respectively,
then what is the distribution of X + Y ?
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Table 2.2

Continuous
probability
distribution

Probability density function,
f (x)

Moment
generating
function, φ(t)

Mean Variance

Uniform
over (a, b)

f (x) =
⎧⎨
⎩

1

b − a
, a < x < b

0, otherwise

etb − eta

t (b − a)

a + b

2

(b − a)2

12

Exponential
with
parameter
λ > 0

f (x) =
{

λe−λx, x ≥ 0
0, x < 0

λ

λ − t

1

λ

1

λ2

Gamma
with
parameters
(n,λ), λ > 0

f (x) =
⎧⎨
⎩

λe−λx(λx)n−1

(n − 1)! , x ≥ 0

0, x < 0

(
λ

λ − t

)n n

λ

n

λ2

Normal with
parameters
(μ,σ 2)

f (x) = 1√
2πσ

× exp{−(x − μ)2/2σ 2},
−∞ < x < ∞

exp

{
μt + σ 2t2

2

}
μ σ 2

Solution: The moment generating function of X + Y is given by

φX+Y (t) = φX(t)φY (t) = (pet + 1 − p)n(pet + 1 − p)m

= (pet + 1 − p)m+n

But (pet + (1 − p))m+n is just the moment generating function of a binomial ran-
dom variable having parameters m + n and p. Thus, this must be the distribution
of X + Y . �

Example 2.47 (Sums of Independent Poisson Random Variables). Calculate the dis-
tribution of X + Y when X and Y are independent Poisson random variables with
means λ1 and λ2, respectively.

Solution:

φX+Y (t) = φX(t)φY (t)

= eλ1(e
t−1)eλ2(e

t−1)

= e(λ1+λ2)(e
t−1)

Hence, X + Y is Poisson distributed with mean λ1 + λ2, verifying the result given
in Example 2.39. �
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Example 2.48 (Sums of Independent Normal Random Variables). Show that if X and
Y are independent normal random variables with parameters (μ1, σ

2
1 ) and (μ2, σ

2
2 ),

respectively, then X + Y is normal with mean μ1 + μ2 and variance σ 2
1 + σ 2

2 .

Solution:

φX+Y (t) = φX(t)φY (t)

= exp

{
σ 2

1 t2

2
+ μ1t

}
exp

{
σ 2

2 t2

2
+ μ2t

}

= exp

{
(σ 2

1 + σ 2
2 )t2

2
+ (μ1 + μ2)t

}

which is the moment generating function of a normal random variable with mean
μ1 + μ2 and variance σ 2

1 + σ 2
2 . Hence, the result follows since the moment gener-

ating function uniquely determines the distribution. �
Example 2.49 (The Poisson Paradigm). We showed in Section 2.2.4 that the number
of successes that occur in n independent trials, each of which results in a success with
probability p is, when n is large and p small, approximately a Poisson random vari-
able with parameter λ = np. This result, however, can be substantially strengthened.
First it is not necessary that the trials have the same success probability, only that all
the success probabilities are small. To see that this is the case, suppose that the trials
are independent, with trial i resulting in a success with probability pi , where all the
pi, i = 1, . . . , n are small. Letting Xi equal 1 if trial i is a success, and 0 otherwise, it
follows that the number of successes, call it X, can be expressed as

X =
n∑

i=1

Xi

Using that Xi is a Bernoulli (or binary) random variable, its moment generating func-
tion is

E[etXi ] = pie
t + 1 − pi = 1 + pi(e

t − 1)

Now, using the result that, for |x| small,

ex ≈ 1 + x

it follows, because pi(e
t − 1) is small when pi is small, that

E[etXi ] = 1 + pi(e
t − 1) ≈ exp{pi(e

t − 1)}
Because the moment generating function of a sum of independent random variables is
the product of their moment generating functions, the preceding implies that

E[etX] ≈
n∏

i=1

exp{pi(e
t − 1)} = exp

{∑
i

pi(e
t − 1)

}
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But the right side of the preceding is the moment generating function of a Poisson ran-
dom variable with mean

∑
i pi , thus arguing that this is approximately the distribution

of X.
Not only is it not necessary for the trials to have the same success probability for

the number of successes to approximately have a Poisson distribution, they need not
even be independent, provided that their dependence is weak. For instance, recall the
matching problem (Example 2.30) where n people randomly select hats from a set
consisting of one hat from each person. By regarding the random selections of hats as
constituting n trials, where we say that trial i is a success if person i chooses his or
her own hat, it follows that, with Ai being the event that trial i is a success,

P(Ai) = 1

n
and P(Ai |Aj) = 1

n − 1
, j 	= i

Hence, whereas the trials are not independent, their dependence appears, for large n,
to be weak. Because of this weak dependence, and the small trial success probabilities,
it would seem that the number of matches should approximately have a Poisson distri-
bution with mean 1 when n is large, and this is shown to be the case in Example 3.30.

The statement that “the number of successes in n trials that are either indepen-
dent or at most weakly dependent is, when the trial success probabilities are all small,
approximately a Poisson random variable” is known as the Poisson paradigm. �

Remark. For a nonnegative random variable X, it is often convenient to define its
Laplace transform g(t), t ≥ 0, by

g(t) = φ(−t) = E[e−tX]
That is, the Laplace transform evaluated at t is just the moment generating function
evaluated at −t . The advantage of dealing with the Laplace transform, rather than the
moment generating function, when the random variable is nonnegative is that if X ≥ 0
and t ≥ 0, then

0 ≤ e−tX ≤ 1

That is, the Laplace transform is always between 0 and 1. As in the case of moment
generating functions, it remains true that nonnegative random variables that have the
same Laplace transform must also have the same distribution. �

It is also possible to define the joint moment generating function of two or more
random variables. This is done as follows. For any n random variables X1, . . . ,Xn,
the joint moment generating function, φ(t1, . . . , tn), is defined for all real values of
t1, . . . , tn by

φ(t1, . . . , tn) = E[e(t1X1+···+tnXn)]
It can be shown that φ(t1, . . . , tn) uniquely determines the joint distribution of
X1, . . . ,Xn.
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Example 2.50 (The Multivariate Normal Distribution). Let Z1, . . . ,Zn be a set of n

independent standard normal random variables. If, for some constants aij , 1 ≤ i ≤
m,1 ≤ j ≤ n, and μi,1 ≤ i ≤ m,

X1 = a11Z1 + · · · + a1nZn + μ1,

X2 = a21Z1 + · · · + a2nZn + μ2,

...

Xi = ai1Z1 + · · · + ainZn + μi,

...

Xm = am1Z1 + · · · + amnZn + μm

then the random variables X1, . . . ,Xm are said to have a multivariate normal
distribution.

It follows from the fact that the sum of independent normal random variables is
itself a normal random variable that each Xi is a normal random variable with mean
and variance given by

E[Xi] = μi,

Var(Xi) =
n∑

j=1

a2
ij

Let us now determine

φ(t1, . . . , tm) = E[exp{t1X1 + · · · + tmXm}]
the joint moment generating function of X1, . . . ,Xm. The first thing to note is that
since

∑m
i=1tiXi is itself a linear combination of the independent normal random vari-

ables Z1, . . . ,Zn, it is also normally distributed. Its mean and variance are respectively

E

[
m∑

i=1

tiXi

]
=

m∑
i=1

tiμi

and

Var

(
m∑

i=1

tiXi

)
= Cov

⎛
⎝ m∑

i=1

tiXi,

m∑
j=1

tjXj

⎞
⎠

=
m∑

i=1

m∑
j=1

ti tj Cov(Xi,Xj )

Now, if Y is a normal random variable with mean μ and variance σ 2, then

E[eY ] = φY (t)|t=1 = eμ+σ 2/2
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Thus, we see that

φ(t1, . . . , tm) = exp

⎧⎨
⎩

m∑
i=1

tiμi + 1

2

m∑
i=1

m∑
j=1

ti tj Cov(Xi,Xj )

⎫⎬
⎭

which shows that the joint distribution of X1, . . . ,Xm is completely determined from
a knowledge of the values of E[Xi] and Cov(Xi,Xj ), i, j = 1, . . . ,m. �

2.6.1 The Joint Distribution of the Sample Mean and
Sample Variance from a Normal Population

Let X1, . . . ,Xn be independent and identically distributed random variables, each with
mean μ and variance σ 2. The random variable S2 defined by

S2 =
n∑

i=1

(Xi − X̄)2

n − 1

is called the sample variance of these data. To compute E[S2] we use the identity

n∑
i=1

(Xi − X̄)2 =
n∑

i=1

(Xi − μ)2 − n(X̄ − μ)2 (2.21)

which is proven as follows:

n∑
i=1

(Xi − X̄) =
n∑

i=1

(Xi − μ + μ − X̄)2

=
n∑

i=1

(Xi − μ)2 + n(μ − X̄)2 + 2(μ − X̄)

n∑
i=1

(Xi − μ)

=
n∑

i=1

(Xi − μ)2 + n(μ − X̄)2 + 2(μ − X̄)(nX̄ − nμ)

=
n∑

i=1

(Xi − μ)2 + n(μ − X̄)2 − 2n(μ − X̄)2

and Identity (2.21) follows.
Using Identity (2.21) gives

E[(n − 1)S2] =
n∑

i=1

E[(Xi − μ)2] − nE[(X̄ − μ)2]

= nσ 2 − n Var(X̄)

= (n − 1)σ 2 from Proposition 2.4(b)
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Thus, we obtain from the preceding that

E[S2] = σ 2

We will now determine the joint distribution of the sample mean X̄ =∑n
i=1 Xi/n

and the sample variance S2 when the Xi have a normal distribution. To begin we need
the concept of a chi-squared random variable.

Definition 2.2. If Z1, . . . ,Zn are independent standard normal random variables, then
the random variable

∑n
i=1 Z2

i is said to be a chi-squared random variable with n de-
grees of freedom.

We shall now compute the moment generating function of
∑n

i=1 Z2
i . To begin, note

that

E[exp{tZ2
i }] = 1√

2π

∫ ∞

−∞
etx2

e−x2/2 dx

= 1√
2π

∫ ∞

−∞
e−x2/2σ 2

dx where σ 2 = (1 − 2t)−1

= σ

= (1 − 2t)−1/2

Hence,

E

[
exp

{
t

n∑
i=1

Z2
i

}]
=

n∏
i=1

E[exp{tZ2
i }] = (1 − 2t)−n/2

Now, let X1, . . . ,Xn be independent normal random variables, each with mean μ and
variance σ 2, and let X̄ = ∑n

i=1 Xi/n and S2 denote their sample mean and sample
variance. Since the sum of independent normal random variables is also a normal ran-
dom variable, it follows that X̄ is a normal random variable with expected value μ and
variance σ 2/n. In addition, from Proposition 2.4,

Cov(X̄,Xi − X̄) = 0, i = 1, . . . , n (2.22)

Also, since X̄,X1 − X̄,X2 − X̄, . . . ,Xn − X̄ are all linear combinations of the inde-
pendent standard normal random variables (Xi − μ)/σ, i = 1, . . . , n, it follows that
the random variables X̄,X1 − X̄,X2 − X̄, . . . ,Xn − X̄ have a joint distribution that
is multivariate normal. However, if we let Y be a normal random variable with mean
μ and variance σ 2/n that is independent of X1, . . . ,Xn, then the random variables
Y,X1 − X̄,X2 − X̄, . . . ,Xn − X̄ also have a multivariate normal distribution, and by
Eq. (2.22), they have the same expected values and covariances as the random vari-
ables X̄,Xi − X̄, i = 1, . . . , n. Thus, since a multivariate normal distribution is com-
pletely determined by its expected values and covariances, we can conclude that the
random vectors Y,X1 − X̄,X2 − X̄, . . . ,Xn − X̄ and X̄,X1 − X̄,X2 − X̄, . . . ,Xn − X̄

have the same joint distribution; thus showing that X̄ is independent of the sequence
of deviations Xi − X̄, i = 1, . . . , n.
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Since X̄ is independent of the sequence of deviations Xi − X̄, i = 1, . . . , n, it fol-
lows that it is also independent of the sample variance

S2 ≡
n∑

i=1

(Xi − X̄)2

n − 1

To determine the distribution of S2, use Identity (2.21) to obtain

(n − 1)S2 =
n∑

i=1

(Xi − μ)2 − n(X̄ − μ)2

Dividing both sides of this equation by σ 2 yields

(n − 1)S2

σ 2 +
(

X̄ − μ

σ/
√

n

)2

=
n∑

i=1

(Xi − μ)2

σ 2 (2.23)

Now,
∑n

i=1(Xi − μ)2/σ 2 is the sum of the squares of n independent standard normal
random variables, and so is a chi-squared random variable with n degrees of freedom;
it thus has moment generating function (1 − 2t)−n/2. Also [(X̄ − μ)/(σ/

√
n)]2 is the

square of a standard normal random variable and so is a chi-squared random variable
with one degree of freedom; it thus has moment generating function (1 − 2t)−1/2.
In addition, we have previously seen that the two random variables on the left side
of Eq. (2.23) are independent. Therefore, because the moment generating function of
the sum of independent random variables is equal to the product of their individual
moment generating functions, we obtain that

E[et(n−1)S2/σ 2](1 − 2t)−1/2 = (1 − 2t)−n/2

or

E[et(n−1)S2/σ 2] = (1 − 2t)−(n−1)/2

But because (1 − 2t)−(n−1)/2 is the moment generating function of a chi-squared ran-
dom variable with n − 1 degrees of freedom, we can conclude, since the moment
generating function uniquely determines the distribution of the random variable, that
this is the distribution of (n − 1)S2/σ 2.

Summing up, we have shown the following.

Proposition 2.5. If X1, . . . ,Xn are independent and identically distributed normal
random variables with mean μ and variance σ 2, then the sample mean X̄ and the
sample variance S2 are independent. X̄ is a normal random variable with mean μ

and variance σ 2/n; (n − 1)S2/σ 2 is a chi-squared random variable with n − 1 de-
grees of freedom.
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2.7 Limit Theorems
We start this section by proving a result known as Markov’s inequality.

Proposition 2.6 (Markov’s Inequality). If X is a random variable that takes only
nonnegative values, then for any value a > 0

P {X ≥ a} ≤ E[X]
a

Proof. We give a proof for the case where X is continuous with density f .

E[X] =
∫ ∞

0
xf (x)dx

=
∫ a

0
xf (x)dx +

∫ ∞

a

xf (x) dx

≥
∫ ∞

a

xf (x) dx

≥
∫ ∞

a

af (x) dx

= a

∫ ∞

a

f (x) dx

= aP {X ≥ a}

and the result is proven. �

As a corollary, we obtain the following.

Proposition 2.7 (Chebyshev’s Inequality). If X is a random variable with mean μ

and variance σ 2, then, for any value k > 0,

P {|X − μ| ≥ k} ≤ σ 2

k2

Proof. Since (X − μ)2 is a nonnegative random variable, we can apply Markov’s in-
equality (with a = k2) to obtain

P {(X − μ)2 ≥ k2} ≤ E[(X − μ)2]
k2

But since (X − μ)2 ≥ k2 if and only if |X − μ| ≥ k, the preceding is equivalent to

P {|X − μ| ≥ k} ≤ E[(X − μ)2]
k2

= σ 2

k2

and the proof is complete. �



Random Variables 77

The importance of Markov’s and Chebyshev’s inequalities is that they enable us to
derive bounds on probabilities when only the mean, or both the mean and the vari-
ance, of the probability distribution are known. Of course, if the actual distribution
were known, then the desired probabilities could be exactly computed, and we would
not need to resort to bounds.

Example 2.51. Suppose we know that the number of items produced in a factory
during a week is a random variable with mean 500.

(a) What can be said about the probability that this week’s production will be at
least 1000?

(b) If the variance of a week’s production is known to equal 100, then what can be
said about the probability that this week’s production will be between 400 and
600?

Solution: Let X be the number of items that will be produced in a week.

(a) By Markov’s inequality,

P {X ≥ 1000} ≤ E[X]
1000

= 500

1000
= 1

2

(b) By Chebyshev’s inequality,

P {|X − 500| ≥ 100} ≤ σ 2

(100)2
= 1

100

Hence,

P {|X − 500| < 100} ≥ 1 − 1

100
= 99

100

and so the probability that this week’s production will be between 400 and 600 is
at least 0.99. �
The following theorem, known as the strong law of large numbers, is probably the

most well-known result in probability theory. It states that the average of a sequence
of independent random variables having the same distribution will, with probability 1,
converge to the mean of that distribution.

Theorem 2.1 (Strong Law of Large Numbers). Let X1,X2, . . . be a sequence of in-
dependent random variables having a common distribution, and let E[Xi] = μ. Then,
with probability 1,

X1 + X2 + · · · + Xn

n
→ μ as n → ∞

As an example of the preceding, suppose that a sequence of independent trials is
performed. Let E be a fixed event and denote by P(E) the probability that E occurs
on any particular trial. Letting

Xi =
{

1, if E occurs on the ith trial
0, if E does not occur on the ith trial
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we have by the strong law of large numbers that, with probability 1,

X1 + · · · + Xn

n
→ E[X] = P(E) (2.24)

Since X1 +· · ·+Xn represents the number of times that the event E occurs in the first
n trials, we may interpret Eq. (2.24) as stating that, with probability 1, the limiting
proportion of time that the event E occurs is just P(E).

Running neck and neck with the strong law of large numbers for the honor of being
probability theory’s number one result is the central limit theorem. Besides its theo-
retical interest and importance, this theorem provides a simple method for computing
approximate probabilities for sums of independent random variables. It also explains
the remarkable fact that the empirical frequencies of so many natural “populations”
exhibit a bell-shaped (that is, normal) curve.

Theorem 2.2 (Central Limit Theorem). Let X1,X2, . . . be a sequence of independent,
identically distributed random variables, each with mean μ and variance σ 2. Then the
distribution of

X1 + X2 + · · · + Xn − nμ

σ
√

n

tends to the standard normal as n → ∞. That is,

P

{
X1 + X2 + · · · + Xn − nμ

σ
√

n
≤ a

}
→ 1√

2π

∫ a

−∞
e−x2/2 dx

as n → ∞.

Note that like the other results of this section, this theorem holds for any distribu-
tion of the Xis; herein lies its power.

If X is binomially distributed with parameters n and p, then X has the same dis-
tribution as the sum of n independent Bernoulli random variables, each with param-
eter p. (Recall that the Bernoulli random variable is just a binomial random variable
whose parameter n equals 1.) Hence, the distribution of

X − E[X]√
Var(X)

= X − np√
np(1 − p)

approaches the standard normal distribution as n approaches ∞. The normal approxi-
mation will, in general, be quite good for values of n satisfying np(1 − p) ≥ 10.

Example 2.52 (Normal Approximation to the Binomial). Let X be the number of
times that a fair coin, flipped 40 times, lands heads. Find the probability that X = 20.
Use the normal approximation and then compare it to the exact solution.

Solution: Since the binomial is a discrete random variable, and the normal a
continuous random variable, it leads to a better approximation to write the desired
probability as

P {X = 20} = P {19.5 < X < 20.5}
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= P

{
19.5 − 20√

10
<

X − 20√
10

<
20.5 − 20√

10

}

= P

{
−0.16 <

X − 20√
10

< 0.16

}
≈ �(0.16) − �(−0.16)

where �(x), the probability that the standard normal is less than x is given by

�(x) = 1√
2π

∫ x

−∞
e−y2/2 dy

By the symmetry of the standard normal distribution

�(−0.16) = P {N(0,1) > 0.16} = 1 − �(0.16)

where N(0,1) is a standard normal random variable. Hence, the desired probabil-
ity is approximated by

P {X = 20} ≈ 2�(0.16) − 1

Using Table 2.3, we obtain

P {X = 20} ≈ 0.1272

The exact result is

P {X = 20} =
(

40
20

)(
1

2

)40

which can be shown to equal 0.1254. �

Example 2.53. Let Xi, i = 1,2, . . . ,10 be independent random variables, each being
uniformly distributed over (0, 1). Estimate P {∑10

1 Xi > 7}.
Solution: Since E[Xi] = 1

2 , Var(Xi) = 1
12 we have by the central limit theorem

that

P

{
10∑
1

Xi > 7

}
= P

⎧⎪⎪⎨
⎪⎪⎩
∑10

1 Xi − 5√
10
(

1
12

) >
7 − 5√
10
(

1
12

)
⎫⎪⎪⎬
⎪⎪⎭

≈ 1 − �(2.19)

= 0.0143 �

Example 2.54. The lifetime of a special type of battery is a random variable with
mean 40 hours and standard deviation 20 hours. A battery is used until it fails, at
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Table 2.3 Area �(x) under the Standard Normal Curve to the Left of x.

x 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09
0.0 0.5000 0.5040 0.5080 0.5120 0.5160 0.5199 0.5239 0.5279 0.5319 0.5359

0.1 0.5398 0.5438 0.5478 0.5517 0.5557 0.5597 0.5636 0.5675 0.5714 0.5753

0.2 0.5793 0.5832 0.5871 0.5910 0.5948 0.5987 0.6026 0.6064 0.6103 0.6141

0.3 0.6179 0.6217 0.6255 0.6293 0.6331 0.6368 0.6406 0.6443 0.6480 0.6517

0.4 0.6554 0.6591 0.6628 0.6664 0.6700 0.6736 0.6772 0.6808 0.6844 0.6879

0.5 0.6915 0.6950 0.6985 0.7019 0.7054 0.7088 0.7123 0.7157 0.7190 0.7224

0.6 0.7257 0.7291 0.7324 0.7357 0.7389 0.7422 0.7454 0.7486 0.7517 0.7549

0.7 0.7580 0.7611 0.7642 0.7673 0.7704 0.7734 0.7764 0.7794 0.7823 0.7852

0.8 0.7881 0.7910 0.7939 0.7967 0.7995 0.8023 0.8051 0.8078 0.8106 0.8133

0.9 0.8159 0.8186 0.8212 0.8238 0.8264 0.8289 0.8315 0.8340 0.8365 0.8389

1.0 0.8413 0.8438 0.8461 0.8485 0.8508 0.8531 0.8554 0.8557 0.8599 0.8621

1.1 0.8643 0.8665 0.8686 0.8708 0.8729 0.8749 0.8770 0.8790 0.8810 0.8830

1.2 0.8849 0.8869 0.8888 0.8907 0.8925 0.8944 0.8962 0.8980 0.8997 0.9015

1.3 0.9032 0.9049 0.9066 0.9082 0.9099 0.9115 0.9131 0.9147 0.9162 0.9177

1.4 0.9192 0.9207 0.9222 0.9236 0.9251 0.9265 0.9279 0.9292 0.9306 0.9319

1.5 0.9332 0.9345 0.9357 0.9370 0.9382 0.9394 0.9406 0.9418 0.9429 0.9441

1.6 0.9452 0.9463 0.9474 0.9484 0.9495 0.9505 0.9515 0.9525 0.9535 0.9545

1.7 0.9554 0.9564 0.9573 0.9582 0.9591 0.9599 0.9608 0.9616 0.9625 0.9633

1.8 0.9641 0.9649 0.9656 0.9664 0.9671 0.9678 0.9686 0.9693 0.9699 0.9706

1.9 0.9713 0.9719 0.9726 0.9732 0.9738 0.9744 0.9750 0.9756 0.9761 0.9767

2.0 0.9772 0.9778 0.9783 0.9788 0.9793 0.9798 0.9803 0.9808 0.9812 0.9817

2.1 0.9821 0.9826 0.9830 0.9834 0.9838 0.9842 0.9846 0.9850 0.9854 0.9857

2.2 0.9861 0.9864 0.9868 0.9871 0.9875 0.9878 0.9881 0.9884 0.9887 0.9890

2.3 0.9893 0.9896 0.9898 0.9901 0.9904 0.9906 0.9909 0.9911 0.9913 0.9916

2.4 0.9918 0.9920 0.9922 0.9925 0.9927 0.9929 0.9931 0.9932 0.9934 0.9936

2.5 0.9938 0.9940 0.9941 0.9943 0.9945 0.9946 0.9948 0.9949 0.9951 0.9952

2.6 0.9953 0.9955 0.9956 0.9957 0.9959 0.9960 0.9961 0.9962 0.9963 0.9964

2.7 0.9965 0.9966 0.9967 0.9968 0.9969 0.9970 0.9971 0.9972 0.9973 0.9974

2.8 0.9974 0.9975 0.9976 0.9977 0.9977 0.9978 0.9979 0.9979 0.9980 0.9981

2.9 0.9981 0.9982 0.9982 0.9983 0.9984 0.9984 0.9985 0.9985 0.9986 0.9986

3.0 0.9987 0.9987 0.9987 0.9988 0.9988 0.9989 0.9989 0.9989 0.9990 0.9990

3.1 0.9990 0.9991 0.9991 0.9991 0.9992 0.9992 0.9992 0.9992 0.9993 0.9993

3.2 0.9993 0.9993 0.9994 0.9994 0.9994 0.9994 0.9994 0.9995 0.9995 0.9995

3.3 0.9995 0.9995 0.9995 0.9996 0.9996 0.9996 0.9996 0.9996 0.9996 0.9997

3.4 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9998
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which point it is replaced by a new one. Assuming a stockpile of 25 such batteries, the
lifetimes of which are independent, approximate the probability that over 1100 hours
of use can be obtained.

Solution: If we let Xi denote the lifetime of the ith battery to be put in use, then
we desire p = P {X1 + · · · + X25 > 1100}, which is approximated as follows:

p = P

{
X1 + · · · + X25 − 1000

20
√

25
>

1100 − 1000

20
√

25

}
≈ P {N(0,1) > 1}
= 1 − �(1)

≈ 0.1587 �

We now present a heuristic proof of the central limit theorem. Suppose first that
the Xi have mean 0 and variance 1, and let E[etX] denote their common moment
generating function. Then, the moment generating function of X1+···+Xn√

n
is

E

[
exp

{
t

(
X1 + · · · + Xn√

n

)}]
= E[etX1/

√
netX2/

√
n · · · etXn/

√
n]

= (E[etX/
√

n])n by independence

Now, for n large, we obtain from the Taylor series expansion of ey that

etX/
√

n ≈ 1 + tX√
n

+ t2X2

2n

Taking expectations shows that when n is large

E[etX/
√

n] ≈ 1 + tE[X]√
n

+ t2E[X2]
2n

= 1 + t2

2n
because E[X] = 0,E[X2] = 1

Therefore, we obtain that when n is large

E

[
exp

{
t

(
X1 + · · · + Xn√

n

)}]
≈
(

1 + t2

2n

)n

When n goes to ∞ the approximation can be shown to become exact and we have

lim
n→∞E

[
exp

{
t

(
X1 + · · · + Xn√

n

)}]
= et2/2

Thus, the moment generating function of X1+···+Xn√
n

converges to the moment generat-
ing function of a (standard) normal random variable with mean 0 and variance 1. Using
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this, it can be proven that the distribution function of the random variable X1+···+Xn√
n

converges to the standard normal distribution function �.
When the Xi have mean μ and variance σ 2, the random variables Xi−μ

σ
have mean

0 and variance 1. Thus, the preceding shows that

P

{
X1 − μ + X2 − μ + · · · + Xn − μ

σ
√

n
≤ a

}
→ �(a)

which proves the central limit theorem.

2.8 Proof of the Strong Law of Large Numbers
In this section we give a proof of the strong law of large numbers. Our proof of the
strong law makes use of the Borel–Cantelli lemma.

Borel–Cantelli Lemma. For a sequence of events Ai , i ≥ 1, let N denote the number
of these events that occur. If

∑∞
i=1 P(Ai) < ∞, then P(N = ∞) = 0.

Proof. Suppose that
∑∞

i=1 P(Ai) < ∞. Now, if N = ∞, then for every n < ∞ at least
one of the events An,An+1, . . . will occur. That is, N = ∞ implies that ∪∞

i=nAi occurs
for every n. Thus, for every n

P (N = ∞) ≤ P(∪∞
i=nAi)

≤
∞∑

i=n

P (Ai)

where the final inequality follows from Boole’s inequality. Because
∑∞

i=1 P(Ai) < ∞
implies that

∑∞
i=n P (Ai) → 0 as n → ∞, we obtain from the preceding upon letting

n → ∞ that P(N = ∞) = 0, which proves the result. �

Remark. The Borel–Cantelli lemma is actually quite intuitive, for if we define the in-
dicator variable Ii to equal 1 if Ai occurs and to equal 0 otherwise, then N =∑∞

i=1 Ii ,
implying that

E[N ] =
∞∑
i=1

E[Ii] =
∞∑
i=1

P(Ai)

Consequently, the Borel–Cantelli theorem states that if the expected number of events
that occur is finite, then the probability that an infinite number of them occur is 0,
which is intuitive because if there were a positive probability that an infinite number
of events could occur then E[N ] would be infinite. �

Suppose that X1,X2, . . . are independent and identically distributed random vari-
ables with mean μ, and let X̄n = 1

n

∑n
i=1 Xi be the average of the first n of them.

The strong law of large numbers states that P(limn→∞ X̄n = μ) = 1. That is, with
probability 1, X̄n converges to μ as n → ∞. We will give a proof of this result under
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the assumption that σ 2, the variance of Xi , is finite (which is equivalent to assuming
that E[X2

i ] < ∞). Because proving the strong law requires showing, for any ε > 0,
that |X̄n − μ| > ε for only a finite number of values of n, it is natural to attempt
to prove it by utilizing the Borel–Cantelli lemma. That is, the result would follow
if we could show that

∑∞
n=1 P(|X̄n − μ| > ε) < ∞. However, because E[X̄n] = μ,

Var(X̄n) = σ 2/n, attempting to show this by using Chebyshev’s inequality yields

∞∑
n=1

P(|X̄n − μ| > ε) ≤
∞∑

n=1

Var(X̄n)

ε2
= σ 2

ε2

∞∑
n=1

1

n
= ∞

Thus, a straightforward use of Borel–Cantelli does not work. However, as we now
show, a tweaking of the argument, where we first consider a subsequence of X̄n, n ≥ 1,
allows us to prove the strong law.

Theorem (The Strong Law of Large Numbers). Let X1,X2, . . . be a sequence of inde-
pendent and identically distributed random variables with E[Xi] = μ, and Var(Xi) =
σ 2 < ∞. Then, with X̄n = 1

n

∑n
i=1 Xi ,

P( lim
n→∞ X̄n = μ) = 1

Proof. Suppose first that the Xi are nonnegative random variables. Fix α > 1, and
let nj be the smallest integer greater than or equal to αj , j ≥ 1. From Chebyshev’s
inequality we see that

P(|X̄nj
− μ| > ε) ≤ Var(X̄nj

)

ε2
= σ 2

nj ε2

Consequently,

∞∑
j=1

P(|X̄nj
− μ| > ε) ≤ σ 2

ε2

∞∑
j=1

1

nj

≤ σ 2

ε2

∞∑
j=1

(1/α)j < ∞.

Therefore, by the Borel–Cantelli lemma, it follows that, with probability 1, |X̄nj
−

μ| > ε for only a finite number of j . As this is true for any ε > 0, we see that, with
probability 1,

lim
j→∞ X̄nj

= μ (2.25)

Because nj ↑ ∞ as j ↑ ∞, it follows that for any m > α, there is an integer j (m) such
that nj(m) ≤ m < nj(m)+1. The nonnegativity of the Xi yields that

nj(m)∑
i=1

Xi ≤
m∑

i=1

Xi ≤
nj(m)+1∑

i=1

Xi
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Dividing by m shows that

nj(m)

m
X̄nj(m)

≤ X̄m ≤ nj(m)+1

m
X̄nj(m)+1

Because 1
nj(m)+1

< 1
m

≤ 1
nj(m)

, this yields that

nj(m)

nj (m)+1
X̄nj (m)

≤ X̄m ≤ nj(m)+1

nj(m)

X̄nj (m)+1

Because limm→∞ j (m) = ∞ and limj→∞
nj+1
nj

= α, it follows, for any ε > 0, that
nj(m)+1
nj(m)

< α + ε for all but a finite number of m. Consequently, from (2.25) and the

preceding, it follows, with probability 1, that μ
α+ε

< X̄m < (α + ε)μ for all but a fi-
nite number of values of m. As this is true for any ε > 0, α > 1, it follows that with
probability 1

lim
m→∞ X̄m = μ

Thus the result is proven when the Xi are nonnegative. In the general case, let

X+
i =

{
Xi, if Xi ≥ 0
0, if Xi < 0

and let

X−
i =

{
0, if Xi ≥ 0
−Xi, if Xi < 0

X+
i and X−

i are called, respectively, the positive and negative parts of Xi . Noting that

Xi = X+
i − X−

i

it follows (since X+
i X−

i = 0) that

X2
i = (X+

i )2 + (X−
i )2

Hence, the assumption that E[X2
i ] < ∞ implies that E[(X+

i )2] and E[(X−
i )2] are also

both finite. Letting μ+ = E[X+
i ] and μ− = E[X−

i ], and using that X+
i and X−

i are
both nonnegative, it follows from the previous result for nonnegative random variables
that, with probability 1,

lim
m→∞

1

m

m∑
i=1

X+
i = μ+ , lim

m→∞
1

m

m∑
i=1

X−
i = μ−

Consequently, with probability 1,

lim
m→∞ X̄m = lim

m→∞
1

m

m∑
i=1

(X+
i − X−

i )
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= μ+ − μ−

= μ �

There is a partial converse of the Borel–Cantelli lemma that holds when the events
are independent.

Converse to Borel–Cantelli Lemma. If
∑∞

i=1 P(Ai) = ∞, and the events Ai , i ≥ 1
are independent, then

P(an infinite number of the events Ai, i ≥ 1 occur) = 1

Proof. For any n, let Bn = ∩∞
i=nA

c
i be the event that none the events An,An+1, . . .

occur. Then

P(Bn) = P(∩∞
i=nA

c
i )

=
∞∏

i=n

P (Ac
i ) by independence

=
∞∏

i=n

[1 − P(Ai)]

≤
∞∏

i=n

e−P(Ai) by the inequality e−x ≥ 1 − x

= e−∑∞
i=n P (Ai)

= 0

Because Bn, n ≥ 1 are increasing events, limn→∞ Bn = ∪∞
n=1Bn. Consequently, it fol-

lows from the continuity property of probabilities that

P(∪∞
n=1Bn) = P( lim

n→∞Bn)

= lim
n→∞P(Bn)

= 0

As ∪∞
n=1Bn is the event that only a finite number of the events Ai occur, the result

follows. �

Example 2.55. Suppose that in each time period we must choose one of n drugs to
use, with drug i resulting in a cure with unknown probability pi , i = 1, . . . , n. Assume
that the result of a drug choice (either a cure or not) is immediately learned. Say that a
drug is optimal if its cure probability is equal to maxi pi , and say that it is nonoptimal
otherwise. Suppose that our objective is to find a policy for deciding which drug to
prescribe at each period that has the property that its use results in the long run pro-
portion of time that a nonoptimal drug is used being equal to 0. The following policy
accomplishes this goal.
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Suppose at time k that previous uses of drug i have resulted in si(k) cures and
fi(k) failures, for i = 1, . . . , n, where

∑
i (si(k) + fi(k)) = k − 1. Let the next choice

be a “random choice” with probability 1/k, or a “nonrandom choice” with probability
1 − 1/k. If it is a random choice, let the drug used in period k be equally likely to be
any of the n drugs; if it is a nonrandom choice, let the drug used in period k be any of
the drugs with maximal value of si (k)

si (k)+fi (k)
.

To show that the use of the preceding procedure results in the long run proportion
of time that a nonoptimal drug is chosen being equal to 0, first note that the converse
to the Borel–Cantelli lemma shows that, with probability 1, the number of random
choices is infinite. As each such choice is equally likely to be any of the n drugs, it
thus follows that each drug is, with probability 1, chosen infinitely often. Thus, by the
strong law of large numbers, it follows that with probability 1

lim
k→∞

si(k)

si(k) + fi(k)
= pi, i = 1, . . . , n

Hence, after some finite time no nonoptimal drug will ever be selected by a nonrandom
choice.

To complete the argument we now show that, with probability 1, the long run frac-
tion of choices that are random is equal to 0. Suppose that these choices are determined
by letting Uk, k ≥ 1 be independent uniform (0,1) random variables, and then letting
the choice at time k be random if Uk ≤ 1/k. Then, with I {A} being the indicator
variable for the event A, equal to 1 if A occurs and to 0 otherwise, we have that for
any m

proportion of choices that are random = lim
r→∞

∑r
k=1 I {Uk ≤ 1/k}

r

= lim
r→∞

∑m+r−1
k=m I {Uk ≤ 1/k}

r

≤ lim
r→∞

∑m+r−1
k=m I {Uk ≤ 1/m}

r

= 1/m

where the next to last equality follows because if k ≥ m then Uk ≤ 1/k ⇒ Uk ≤ 1/m,
and the final equality follows from the strong law of large numbers because I {Uk ≤
1/m}, k ≥ m, are independent and identically distributed Bernoulli random variables
with mean 1/m. As the preceding is true for all m, it follows that the proportion of
choices that are random is equal to 0. It now follows from the earlier result that the
long run proportion of nonrandom choices that are optimal is 1, that the long run
proportion of choices that are optimal is equal to 1. �

2.9 Stochastic Processes
A stochastic process {X(t), t ∈ T } is a collection of random variables. That is, for
each t ∈ T ,X(t) is a random variable. The index t is often interpreted as time and,
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Figure 2.3 Particle moving around a circle.

as a result, we refer to X(t) as the state of the process at time t . For example, X(t)

might equal the total number of customers that have entered a supermarket by time t ;
or the number of customers in the supermarket at time t ; or the total amount of sales
that have been recorded in the market by time t ; etc.

The set T is called the index set of the process. When T is a countable set the
stochastic process is said to be a discrete-time process. If T is an interval of the
real line, the stochastic process is said to be a continuous-time process. For instance,
{Xn,n = 0,1, . . .} is a discrete-time stochastic process indexed by the nonnegative
integers; while {X(t), t ≥ 0} is a continuous-time stochastic process indexed by the
nonnegative real numbers.

The state space of a stochastic process is defined as the set of all possible values
that the random variables X(t) can assume.

Thus, a stochastic process is a family of random variables that describes the evo-
lution through time of some (physical) process. We shall see much of stochastic
processes in the following chapters of this text.

Example 2.56. Consider a particle that moves along a set of m + 1 nodes, labeled
0,1, . . . ,m, that are arranged around a circle (see Fig. 2.3). At each step the parti-
cle is equally likely to move one position in either the clockwise or counterclockwise
direction. That is, if Xn is the position of the particle after its nth step then

P {Xn+1 = i + 1|Xn = i} = P {Xn+1 = i − 1|Xn = i} = 1
2

where i +1 ≡ 0 when i = m, and i −1 ≡ m when i = 0. Suppose now that the particle
starts at 0 and continues to move around according to the preceding rules until all the
nodes 1,2, . . . ,m have been visited. What is the probability that node i, i = 1, . . . ,m,
is the last one visited?

Solution: Surprisingly enough, the probability that node i is the last node visited
can be determined without any computations. To do so, consider the first time that
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the particle is at one of the two neighbors of node i, that is, the first time that the
particle is at one of the nodes i − 1 or i + 1 (with m+ 1 ≡ 0). Suppose it is at node
i − 1 (the argument in the alternative situation is identical). Since neither node i

nor i + 1 has yet been visited, it follows that i will be the last node visited if and
only if i + 1 is visited before i. This is so because in order to visit i + 1 before i

the particle will have to visit all the nodes on the counterclockwise path from i − 1
to i + 1 before it visits i. But the probability that a particle at node i − 1 will visit
i + 1 before i is just the probability that a particle will progress m − 1 steps in a
specified direction before progressing one step in the other direction. That is, it is
equal to the probability that a gambler who starts with one unit, and wins one when
a fair coin turns up heads and loses one when it turns up tails, will have his fortune
go up by m − 1 before he goes broke. Hence, because the preceding implies that
the probability that node i is the last node visited is the same for all i, and because
these probabilities must sum to 1, we obtain

P {i is the last node visited} = 1/m, i = 1, . . . ,m �

Remark. The argument used in Example 2.56 also shows that a gambler who is
equally likely to either win or lose one unit on each gamble will be down n before
being up 1 with probability 1/(n + 1); or equivalently,

P {gambler is up 1 before being down n} = n

n + 1

Suppose now we want the probability that the gambler is up 2 before being down n.
Upon conditioning on whether he reaches up 1 before down n, we obtain that

P {gambler is up 2 before being down n}
= P {up 2 before down n|up 1 before down n} n

n + 1

= P {up 1 before down n + 1} n

n + 1

= n + 1

n + 2

n

n + 1
= n

n + 2

Repeating this argument yields that

P {gambler is up k before being down n} = n

n + k

Exercises
1. An urn contains five red, three orange, and two blue balls. Two balls are ran-

domly selected. What is the sample space of this experiment? Let X represent
the number of orange balls selected. What are the possible values of X? Calcu-
late P {X = 0}.
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2. Let X represent the difference between the number of heads and the number of
tails obtained when a coin is tossed n times. What are the possible values of X?

3. In Exercise 2, if the coin is assumed fair, then, for n = 2, what are the probabil-
ities associated with the values that X can take on?

*4. Suppose a die is rolled twice. What are the possible values that the following
random variables can take on?
(a) The maximum value to appear in the two rolls.
(b) The minimum value to appear in the two rolls.
(c) The sum of the two rolls.
(d) The value of the first roll minus the value of the second roll.

5. If the die in Exercise 4 is assumed fair, calculate the probabilities associated
with the random variables in (a)–(d).

6. Suppose five fair coins are tossed. Let E be the event that all coins land heads.
Define the random variable IE

IE =
{

1, if E occurs
0, if Ec occurs

For what outcomes in the original sample space does IE equal 1? What is
P {IE = 1}?

7. Suppose a coin having probability 0.7 of coming up heads is tossed three times.
Let X denote the number of heads that appear in the three tosses. Determine the
probability mass function of X.

8. Suppose the distribution function of X is given by

F(b) =

⎧⎪⎨
⎪⎩

0, b < 0
1
2 , 0 ≤ b < 1

1, 1 ≤ b < ∞
What is the probability mass function of X?

9. If the distribution function of F is given by

F(b) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, b < 0
1
2 , 0 ≤ b < 1
3
5 , 1 ≤ b < 2
4
5 , 2 ≤ b < 3
9
10 , 3 ≤ b < 3.5

1, b ≥ 3.5

calculate the probability mass function of X.
10. Suppose three fair dice are rolled. What is the probability at most one six ap-

pears?
*11. A ball is drawn from an urn containing three white and three black balls. After

the ball is drawn, it is then replaced and another ball is drawn. This goes on
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indefinitely. What is the probability that of the first four balls drawn, exactly
two are white?

12. On a multiple-choice exam with three possible answers for each of the five
questions, what is the probability that a student would get four or more correct
answers just by guessing?

13. An individual claims to have extrasensory perception (ESP). As a test, a fair
coin is flipped ten times, and he is asked to predict in advance the outcome. Our
individual gets seven out of ten correct. What is the probability he would have
done at least this well if he had no ESP? (Explain why the relevant probability
is P {X ≥ 7} and not P {X = 7}.)

14. Suppose X has a binomial distribution with parameters 6 and 1
2 . Show that

X = 3 is the most likely outcome.
15. Let X be binomially distributed with parameters n and p. Show that as k goes

from 0 to n,P (X = k) increases monotonically, then decreases monotonically,
reaching its largest value
(a) in the case that (n + 1)p is an integer, when k equals either (n + 1)p − 1

or (n + 1)p,
(b) in the case that (n+ 1)p is not an integer, when k satisfies (n+ 1)p − 1 <

k < (n + 1)p.

Hint: Consider P {X = k}/P {X = k − 1} and see for what values of k it is
greater or less than 1.

*16. An airline knows that 5 percent of the people making reservations on a certain
flight will not show up. Consequently, their policy is to sell 52 tickets for a
flight that can hold only 50 passengers. What is the probability that there will
be a seat available for every passenger who shows up?

17. Suppose that an experiment can result in one of r possible outcomes, the ith
outcome having probability pi , i = 1, . . . , r,

∑r
i=1 pi = 1. If n of these experi-

ments are performed, and if the outcome of any one of the n does not affect the
outcome of the other n − 1 experiments, then show that the probability that the
first outcome appears x1 times, the second x2 times, and the rth xr times is

n!
x1!x2! . . . xr ! p

x1
1 p

x2
2 · · ·pxr

r when x1 + x2 + · · · + xr = n

This is known as the multinomial distribution.
*18. In Exercise 17, let Xi denote the number of times that the ith type outcome

occurs, i = 1, . . . , r.

(a) For 0 ≤ j ≤ n, use the definition of conditional probability to find P(Xi =
xi, i = 1, . . . , r − 1|Xr = j).

(b) What can you conclude about the conditional distribution of X1, . . . ,Xr−1

given that Xr = j?
(c) Give an intuitive explanation for your answer to part (b).

19. In Exercise 17, let Xi denote the number of times the ith outcome appears, i =
1, . . . , r . What is the probability mass function of X1 + X2 + . . . + Xk?
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20. In this problem, we employ the multinomial distribution to solve an extension
of the birthday problem. Assuming that each of n individuals is, independently
of others, equally likely to have their birthday be any of the 365 days of the
year, we want to derive an expression for the probability that the collection of
n individuals will contain at least 3 having the same birthday.
(a) For a given partition of the 365 days of the year into a first set of size i,

a second set of size n − 2i and a third of size 365 − n + i, find the prob-
ability that every day in the first set is the birthday of exactly 2 of the n

individuals, every day in the second set is the birthday of exactly 1 of the
n individuals, and every day in the third set is the birthday of none of the
n individuals.

(b) For a given value i, determine the number of different partitions of the
365 days of the year into a first set of size i, a second set of size n − 2i

and a third set of size 365 − n + i.
(c) Give an expression for the probability that a collection of n individuals

does not contain at least 3 having the same birthday.

Remark. A computation gives that

1 −
44∑
i=0

365!
i!(88 − 2i)!(365 − 88 + i)!

88!
2i

(
1

365
)88 ≈ 0.504.

21. Let X1 and X2 be independent binomial random variables, with Xi having pa-
rameters (ni,pi), i = 1,2.
(a) Find P(X1X2 = 0).
(b) Find P(X1 + X2 = 1).
(c) Find P(X1 + X2 = 2).

22. If a fair coin is successively flipped, find the probability that a head first appears
on the fifth trial.

*23. A coin having probability p of coming up heads is successively flipped until the
rth head appears. Argue that X, the number of flips required, will be n,n ≥ r ,
with probability

P {X = n} =
(

n − 1

r − 1

)
pr(1 − p)n−r , n ≥ r

This is known as the negative binomial distribution.

Hint: How many successes must there be in the first n − 1 trials?
24. The probability mass function of X is given by

p(k) =
(

r + k − 1

r − 1

)
pr(1 − p)k, k = 0,1, . . .

Give a possible interpretation of the random variable X.

Hint: See Exercise 23.
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25. Two teams are playing a series of games that ends when one of the teams has
won a total of i games. Each game is independently won by team A with prob-
ability p and by team B with probability 1 − p.
(a) If i = 4, find the probability that a total of 7 games are played, and show

that this probability is maximized when p = 1/2.
(b) Find the expected number of games played when i = 2.
(c) Find the expected number of games played when i = 3.

26. A total of n + 1 players are bidding for a 100 payoff, with the highest bid win-
ning the amount by which 100 exceeds the bid. Player 1 knows that the bids of
players 2 through n + 1 are independent uniform (0,100) random variables.
(a) What should player 1 bid so as to maximize their expected gain.
(b) Find player 1’s maximal expected gain.
(c) Find the expected gain of player 1 if their bid is also uniform on (0,100).

*27. A fair coin is independently flipped n times, k times by A and n−k times by B.
Show that the probability that A and B flip the same number of heads is equal
to the probability that there are a total of k heads.

28. Suppose that we want to generate a random variable X that is equally likely
to be either 0 or 1, and that all we have at our disposal is a biased coin that,
when flipped, lands on heads with some (unknown) probability p. Consider the
following procedure:
1. Flip the coin, and let 01, either heads or tails, be the result.
2. Flip the coin again, and let 02 be the result.
3. If 01 and 02 are the same, return to step 1.
4. If 02 is heads, set X = 0, otherwise set X = 1.

(a) Show that the random variable X generated by this procedure is
equally likely to be either 0 or 1.

(b) Could we use a simpler procedure that continues to flip the coin until
the last two flips are different, and then sets X = 0 if the final flip is a
head, and sets X = 1 if it is a tail?

29. Consider n independent flips of a coin having probability p of landing heads.
Say a changeover occurs whenever an outcome differs from the one preceding
it. For instance, if the results of the flips are H H T H T H H T , then there
are a total of five changeovers. If p = 1/2, what is the probability there are k

changeovers?
30. Consider the following gambling game, which starts with you choosing one of

the numbers 1, . . . ,6. Three fair dice are then rolled. If your number does not
appear on any of the dice, you lose 1. If exactly one of the dice shows your
number you win 1; if two of the dice do, you win 2; and if all three dice show
your number you win 3. Find your expected gain if you play this game.

31. Let X be a Poisson random variable with parameter λ. Show that P {X = i} in-
creases monotonically and then decreases monotonically as i increases, reach-
ing its maximum when i is the largest integer not exceeding λ.

Hint: Consider P {X = i}/P {X = i − 1}.
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32. If you buy a lottery ticket in 50 lotteries, in each of which your chance of win-
ning a prize is 1

100 , what is the (approximate) probability that you will win a
prize (a) at least once, (b) exactly once, (c) at least twice?

33. Let X be a random variable with probability density

f (x) =
{
c(1 − x2), −1 < x < 1
0, otherwise

(a) What is the value of c?
(b) What is the cumulative distribution function of X?

34. Let the probability density of X be given by

f (x) =
{
c(4x − 2x2), 0 < x < 2
0, otherwise

(a) What is the value of c?

(b) P
{

1
2 < X < 3

2

}
=?

35. The density of X is given by

f (x) =
{

10/x2, for x > 10
0, for x ≤ 10

What is the distribution function of X? Find P {X > 20}.
36. A point is uniformly distributed within the disk of radius 1. That is, its density

is

f (x, y) = C, 0 ≤ x2 + y2 ≤ 1

Find the probability that its distance from the origin is less than x,0 ≤ x ≤ 1.
37. Let X1,X2, . . . ,Xn be independent random variables, each having a uniform

distribution over (0,1). Let M = maximum (X1,X2, . . . ,Xn). Show that the
distribution function of M,FM(·), is given by

FM(x) = xn, 0 ≤ x ≤ 1

What is the probability density function of M?
*38. Let X1, . . . ,X10 be independent and identically distributed continuous random

variables with distribution function F , and mean μ = E[Xi]. Let X(1) < X(2) <

· · · < X(10) be the values arranged in increasing order. That is, for i = 1, . . . ,10,
X(i) is the ith smallest of X1, . . . ,X10.
(a) Find E[∑10

i=1 X(i)].
(b) Let N = max{i : X(i) < x}. What is the distribution of N .
(c) If m is the median of the distribution (that is, if F(m) = 0.5), find

P(X(2) < m < X(8)).
39. An urn has 8 red and 12 blue balls. Suppose that balls are chosen at random and

removed from the urn, with the process stopping when all the red balls have
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been removed. Let X be the number of balls that have been removed when the
process stops.
(a) Find P(X = 14).
(b) Find the probability that a specified blue ball remains in the urn.
(c) Find E[X].

40. Suppose that two teams are playing a series of games, each of which is indepen-
dently won by team A with probability p and by team B with probability 1−p.
The winner of the series is the first team to win four games. Find the expected
number of games that are played, and evaluate this quantity when p = 1/2.

41. Consider the case of arbitrary p in Exercise 29. Compute the expected number
of changeovers.

42. Suppose that each coupon obtained is, independent of what has been previ-
ously obtained, equally likely to be any of m different types. Find the expected
number of coupons one needs to obtain in order to have at least one of each
type.

Hint: Let X be the number needed. It is useful to represent X by

X =
m∑

i=1

Xi

where each Xi is a geometric random variable.
43. An urn contains n+m balls, of which n are red and m are black. They are

withdrawn from the urn, one at a time and without replacement. Let X be the
number of red balls removed before the first black ball is chosen. We are inter-
ested in determining E[X]. To obtain this quantity, number the red balls from 1
to n. Now define the random variables Xi, i = 1, . . . , n, by

Xi =
{

1, if red ball i is taken before any black ball is chosen
0, otherwise

(a) Express X in terms of the Xi .
(b) Find E[X].

44. In Exercise 43, let Y denote the number of red balls chosen after the first but
before the second black ball has been chosen.
(a) Express Y as the sum of n random variables, each of which is equal to

either 0 or 1.
(b) Find E[Y ].
(c) Compare E[Y ] to E[X] obtained in Exercise 43.
(d) Can you explain the result obtained in part (c)?

45. A total of r keys are to be put, one at a time, in k boxes, with each key in-
dependently being put in box i with probability pi,

∑k
i=1 pi = 1. Each time a

key is put in a nonempty box, we say that a collision occurs. Find the expected
number of collisions.
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46. If X is a nonnegative integer valued random variable, show that

(a) E[X] =
∞∑

n=1

P {X ≥ n} =
∞∑

n=0

P {X > n}

Hint: Define the sequence of random variables In, n ≥ 1, by

In =
{

1, if n ≤ X

0, if n > X

Now express X in terms of the In.
(b) If X and Y are both nonnegative integer valued random variables, show

that

E[XY ] =
∞∑

n=1

∞∑
m=1

P(X ≥ n,Y ≥ m)

*47. Consider three trials, each of which is either a success or not. Let X denote the
number of successes. Suppose that E[X] = 1.8.
(a) What is the largest possible value of P {X = 3}?
(b) What is the smallest possible value of P {X = 3}?
In both cases, construct a probability scenario that results in P {X = 3} having
the desired value.

48. For any event A, we define the random variable I {A}, called the indicator vari-
able for A, by letting it equal 1 when A occurs and 0 when A does not. Now,
if X(t) is a nonnegative random variable for all t ≥ 0, then it follows from a
result in real analysis called Fubini’s theorem that

E[
∫ ∞

0
X(t) dt] =

∫ ∞

0
E[X(t)]dt

Suppose that X is a nonnegative random variable and that g is a differentiable
function such that g(0) = 0.
(a) Show that

g(X) =
∫ ∞

0
I {t < X}g ′(t) dt

(b) Show that

E[g(X)] =
∫ ∞

0
F̄ (t) g ′(t) dt

where F̄ (t) = 1 − F(t) = P(X > t).
(c) Show that E[X] = ∫∞

0 F̄ (t) dt .
(d) Show that E[X2] = 2

∫∞
0 t F̄ (t) dt .

*49. Prove that E[X2] ≥ (E[X])2. When do we have equality?
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50. Let c be a constant. Show that
(a) Var(cX) = c2Var(X);
(b) Var(c + X) = Var(X).

51. A coin, having probability p of landing heads, is flipped until a head appears
for the rth time. Let N denote the number of flips required. Calculate E[N ].
Hint: There is an easy way of doing this. It involves writing N as the sum of
r geometric random variables.

52. (a) Calculate E[X] for the maximum random variable of Exercise 37.
(b) Calculate E[X] for X as in Exercise 33.
(c) Calculate E[X] for X as in Exercise 34.

53. If X is uniform over (0, 1), calculate E[Xn] and Var(Xn).
54. Each member of a population is either type 1 with probability p1 or type 2

with probability p2 = 1 − p1. Independent of other pairs, two individuals of
the same type will be friends with probability α, whereas two individuals of
different types will be friends with probability β. Let Pi be the probability that
a type i person will be friends with a randomly chosen other person.
(a) Find P1 and P2.

Let Fk,r be the event that persons k and r are friends.
(b) Find P(F1,2).
(c) Show that P(F1,2|F1,3) ≥ P(F1,2).

Hint for (c): It might be useful to let X be such that P(X = Pi) = pi , i = 1,2.
55. Suppose that the joint probability mass function of X and Y is

P(X = i, Y = j) =
(

j

i

)
e−2λλj /j !, 0 ≤ i ≤ j

(a) Find the probability mass function of Y .
(b) Find the probability mass function of X.
(c) Find the probability mass function of Y − X.

56. There are n types of coupons. Each newly obtained coupon is, independently,
type i with probability pi, i = 1, . . . , n. Find the expected number and the vari-
ance of the number of distinct types obtained in a collection of k coupons.

57. Suppose that X and Y are independent binomial random variables with parame-
ters (n,p) and (m,p). Argue probabilistically (no computations necessary) that
X + Y is binomial with parameters (n + m,p).

58. An urn contains 2n balls, of which r are red. The balls are randomly removed
in n successive pairs. Let X denote the number of pairs in which both balls are
red.
(a) Find E[X].
(b) Find Var(X).

59. Let X1,X2,X3, and X4 be independent continuous random variables with a
common distribution function F and let

p = P {X1 < X2 > X3 < X4}
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(a) Argue that the value of p is the same for all continuous distribution func-
tions F .

(b) Find p by integrating the joint density function over the appropriate re-
gion.

(c) Find p by using the fact that all 4! possible orderings of X1, . . . ,X4 are
equally likely.

60. Let X and Y be independent random variables with means μx and μy and vari-
ances σ 2

x and σ 2
y . Show that

Var(XY) = σ 2
x σ 2

y + μ2
yσ

2
x + μ2

xσ
2
y

61. Let X1,X2, . . . be a sequence of independent identically distributed continuous
random variables. We say that a record occurs at time n if Xn > max(X1, . . . ,

Xn−1). That is, Xn is a record if it is larger than each of X1, . . . ,Xn−1. Show
(a) P {a record occurs at time n} = 1/n;
(b) E[number of records by time n] =∑n

i=1 1/i;
(c) Var(number of records by time n) =∑n

i=1(i − 1)/i2;
(d) Let N = min{n: n > 1 and a record occurs at time n}. Show E[N ] = ∞.

Hint: For (b) and (c) represent the number of records as the sum of indicator
(that is, Bernoulli) random variables.

62. Let a1 < a2 < · · · < an denote a set of n numbers, and consider any permu-
tation of these numbers. We say that there is an inversion of ai and aj in the
permutation if i < j and aj precedes ai . For instance the permutation 4, 2, 1, 5,
3 has 5 inversions—(4, 2), (4, 1), (4, 3), (2, 1), (5, 3). Consider now a random
permutation of a1, a2, . . . , an—in the sense that each of the n! permutations is
equally likely to be chosen—and let N denote the number of inversions in this
permutation. Also, let

Ni = number of k : k < i, ai precedes ak in the permutation

and note that N =∑n
i=1 Ni .

(a) Show that N1, . . . ,Nn are independent random variables.
(b) What is the distribution of Ni?
(c) Compute E[N ] and Var(N ).

63. Let X denote the number of white balls selected when k balls are chosen at
random from an urn containing n white and m black balls.
(a) Compute P {X = i}.
(b) Let, for i = 1,2, . . . , k; j = 1,2, . . . , n,

Xi =
{

1, if the ith ball selected is white
0, otherwise

Yj =
{

1, if white ball j is selected
0, otherwise

Compute E[X] in two ways by expressing X first as a function of the Xis and
then of the Yj s.
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*64. Show that Var(X) = 1 when X is the number of men who select their own hats
in Example 2.30.

65. The number of traffic accidents on successive days are independent Poisson
random variables with mean 2.
(a) Find the probability that 3 of the next 5 days have two accidents.
(b) Find the probability that there are a total of six accidents over the next 2

days.
(c) If each accident is independently a “major accident” with probability p,

what is the probability there are no major accidents tomorrow?
*66. Show that the random variables X1, . . . ,Xn are independent if for each i =

2, . . . , n, Xi is independent of X1, . . . ,Xi−1.

Hint: X1, . . . ,Xn are independent if for any sets A1, . . . ,An

P (Xj ∈ Aj , j = 1, . . . , n) =
n∏

j=1

P(Xj ∈ Aj)

On the other hand Xi is independent of X1, . . . ,Xi−1 if for any sets A1, . . . ,Ai

P (Xi ∈ Ai |Xj ∈ Aj , j = 1, . . . , i − 1) = P(Xi ∈ Ai)

67. Calculate the moment generating function of the uniform distribution on (0,1).
Obtain E[X] and Var[X] by differentiating.

68. Let X and W be the working and subsequent repair times of a certain machine.
Let Y = X + W and suppose that the joint probability density of X and Y is

fX,Y (x, y) = λ2e−λy, 0 < x < y < ∞
(a) Find the density of X.
(b) Find the density of Y .
(c) Find the joint density of X and W .
(d) Find the density of W .

69. In deciding upon the appropriate premium to charge, insurance companies
sometimes use the exponential principle, defined as follows. With X as the
random amount that it will have to pay in claims, the premium charged by the
insurance company is

P = 1

a
ln(E[eaX])

where a is some specified positive constant. Find P when X is an exponential
random variable with parameter λ, and a = αλ, where 0 < α < 1.

70. Calculate the moment generating function of a geometric random variable.
*71. Show that the sum of independent identically distributed exponential random

variables has a gamma distribution.
72. Successive monthly sales are independent normal random variables with mean

100 and variance 100.
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(a) Find the probability that at least one of the next 5 months has sales above
115.

(b) Find the probability that the total number of sales over the next 5 months
exceeds 530.

73. Consider n people and suppose that each of them has a birthday that is equally
likely to be any of the 365 days of the year. Furthermore, assume that their
birthdays are independent, and let A be the event that no two of them share the

same birthday. Define a “trial” for each of the
(n

2

)
pairs of people and say that

trial (i, j), i 	= j, is a success if persons i and j have the same birthday. Let Si,j

be the event that trial (i, j) is a success.
(a) Find P(Si,j ), i 	= j .
(b) Are Si,j and Sk,r independent when i, j, k, r are all distinct?
(c) Are Si,j and Sk,j independent when i, j, k are all distinct?
(d) Are S1,2, S1,3, S2,3independent?
(e) Employ the Poisson paradigm to approximate P(A).
(f) Show that this approximation yields that P(A) ≈ 0.5 when n = 23.
(g) Let B be the event that no three people have the same birthday. Ap-

proximate the value of n that makes P(B)≈0.5. (Whereas a simple
combinatorial argument explicitly determines P(A), the exact determi-
nation of P(B) is very complicated.)

Hint: Define a trial for each triplet of people.
*74. If X is Poisson with parameter λ, show that its Laplace transform is given by

g(u) = E[e−uX] = eλ(e−u−1)

75. Consider Example 2.50. Find Cov(Xi, Xj ) in terms of the ars .
76. Use Chebyshev’s inequality to prove the weak law of large numbers. Namely, if

X1, X2, . . . are independent and identically distributed with mean μ and vari-
ance σ 2 then, for any ε > 0,

P

{∣∣∣∣X1 + X2 + · · · + Xn

n
− μ

∣∣∣∣> ε

}
→ 0 as n → ∞

77. Suppose that X is a random variable with mean 10 and variance 15. What can
we say about P {5 < X < 15}?

78. Let X1,X2, . . . ,X10 be independent Poisson random variables with mean 1.
(a) Use the Markov inequality to get a bound on P {X1 + · · · + X10 ≥ 15}.
(b) Use the central limit theorem to approximate P {X1 + · · · + X10 ≥ 15}.

79. If X is normally distributed with mean 1 and variance 4, use the tables to find
P {2 < X < 3}.

*80. Show that

lim
n→∞ e−n

n∑
k=0

nk

k! = 1

2
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Hint: Let Xn be Poisson with mean n. Use the central limit theorem to show
that P {Xn ≤ n} → 1

2 .
81. Let X and Y be independent normal random variables, each having parameters

μ and σ 2. Show that X + Y is independent of X − Y .

Hint: Find their joint moment generating function.
82. Let φ(t1, . . . , tn) denote the joint moment generating function of X1, . . . ,Xn.

(a) Explain how the moment generating function of Xi,φXi
(ti), can be ob-

tained from φ(t1, . . . , tn).
(b) Show that X1, . . . ,Xn are independent if and only if

φ(t1, . . . , tn) = φX1(t1) · · ·φXn(tn)

83. With K(t) = log(E
[
etX

]
), show that

K ′(0) = E[X], K ′′(0) = Var(X)

84. Teams 1,2,3,4 are all scheduled to play each of the other teams 10 times.
Whenever team i plays team j , team i is the winner with probability Pi,j , where

P1,2 = 0.6, P1,3 = 0.7, P1,4 = 0.75

P2,3 = 0.6, P2,4 = 0.70, P3,4 = 0.5

(a) Approximate the probability that team 1 wins at least 20 games.
Suppose now that we want to approximate the probability that team 2 wins
at least as many games as does team 1. To do so, let X be the number of
games that team 2 wins against team 1, let Y be the total number of games
that team 2 wins against teams 3 and 4, and let Z be the total number of
games that team 1 wins against teams 3 and 4.

(b) Are X,Y,Z independent.
(c) Express the event that team 2 wins at least as many games as does team 1

in terms of the random variables X,Y,Z.
(d) Approximate the probability that team 2 wins at least as many games as

does team 1.
*85. The standard deviation of a random variable is the positive square root of its

variance. Letting σX and σY denote the standard deviations of the random vari-
ables X and Y , we define the correlation of X and Y by

Corr(X,Y ) = Cov(X,Y )

σXσY

(a) Starting with the inequality Var
(

X
σX

+ Y
σY

)
≥ 0, show that −1 ≤

Corr(X,Y ).
(b) Prove the inequality

−1 ≤ Corr(X,Y ) ≤ 1
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(c) If σX+Y is the standard deviation of X + Y , show that

σX+Y ≤ σX + σY

*86. Each new book donated to a library must be processed. Suppose that the time it
takes a librarian to process a book has mean 10 minutes and standard deviation
3 minutes. If a librarian has 40 books that must be processed one at a time,
(a) approximate the probability that it will take more than 420 minutes to

process all these books;
(b) approximate the probability that at least 25 books will be processed in the

first 240 minutes.
87. Recall that X is said to be a gamma random variable with parameters (α,λ) if

its density is

f (x) = λe−λx(λx)α−1/�(α), x > 0

(a) If Z is a standard normal random variable, show that Z2 is a gamma ran-
dom variable with parameters (1/2,1/2).

(b) If Z1, . . . ,Zn are independent standard normal random variables, then∑n
i=1 Z2

i is said to be a chi-squared random variable with n degrees of
freedom. Explain how you can use results from Example 2.41 to show
that the density function of

∑n
i=1 Z2

i is

f (x) = e−x/2xn/2−1

2n/2 �(n/2)
, x > 0
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3Conditional Probability and
Conditional Expectation

3.1 Introduction
One of the most useful concepts in probability theory is that of conditional probability
and conditional expectation. The reason is twofold. First, in practice, we are often in-
terested in calculating probabilities and expectations when some partial information is
available; hence, the desired probabilities and expectations are conditional ones. Sec-
ondly, in calculating a desired probability or expectation it is often extremely useful
to first “condition” on some appropriate random variable.

3.2 The Discrete Case
Recall that for any two events E and F , the conditional probability of E given F is
defined, as long as P(F) > 0, by

P(E|F) = P(EF)

P (F )

Hence, if X and Y are discrete random variables, then it is natural to define the
conditional probability mass function of X given that Y = y, by

pX|Y (x|y) = P {X = x|Y = y}
= P {X = x,Y = y}

P {Y = y}
= p(x, y)

pY (y)

for all values of y such that P {Y = y} > 0. Similarly, the conditional probability dis-
tribution function of X given that Y = y is defined, for all y such that P {Y = y} > 0,
by

FX|Y (x|y) = P {X ≤ x|Y = y}
=
∑
a≤x

pX|Y (a|y)

Finally, the conditional expectation of X given that Y = y is defined by

E[X|Y = y] =
∑
x

xP {X = x|Y = y}

=
∑
x

xpX|Y (x|y)
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In other words, the definitions are exactly as before with the exception that every-
thing is now conditional on the event that Y = y. If X is independent of Y , then the
conditional mass function, distribution, and expectation are the same as the uncondi-
tional ones. This follows, since if X is independent of Y , then

pX|Y (x|y) = P {X = x|Y = y}
= P {X = x}

Example 3.1. Suppose that p(x, y), the joint probability mass function of X and Y ,
is given by

p(1,1) = 0.5, p(1,2) = 0.1, p(2,1) = 0.1, p(2,2) = 0.3

Calculate the conditional probability mass function of X given that Y = 1.

Solution: We first note that

pY (1) =
∑
x

p(x,1) = p(1,1) + p(2,1) = 0.6

Hence,

pX|Y (1|1) = P {X = 1|Y = 1}
= P {X = 1, Y = 1}

P {Y = 1}
= p(1,1)

pY (1)

= 5

6

Similarly,

pX|Y (2|1) = p(2,1)

pY (1)
= 1

6
�

Example 3.2. If X1 and X2 are independent binomial random variables with respec-
tive parameters (n1,p) and (n2,p), calculate the conditional probability mass function
of X1 given that X1 + X2 = m.

Solution: With q = 1 − p,

P {X1 = k|X1 + X2 = m} = P {X1 = k,X1 + X2 = m}
P {X1 + X2 = m}

= P {X1 = k,X2 = m − k}
P {X1 + X2 = m}

= P {X1 = k}P {X2 = m − k}
P {X1 + X2 = m}
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=

(
n1
k

)
pkqn1−k

(
n2

m − k

)
pm−kqn2−m+k

(
n1 + n2

m

)
pmqn1+n2−m

where we have used that X1 + X2 is a binomial random variable with parameters
(n1 + n2,p) (see Example 2.46). Thus, the conditional probability mass function
of X1, given that X1 + X2 = m, is

P {X1 = k|X1 + X2 = m} =

(
n1
k

)(
n2

m − k

)
(

n1 + n2
m

) (3.1)

The distribution given by Eq. (3.1), first seen in Example 2.37, is known as the
hypergeometric distribution. It is the distribution of the number of blue balls that
are chosen when a sample of m balls is randomly chosen from an urn that contains
n1 blue and n2 red balls. (To intuitively see why the conditional distribution is hy-
pergeometric, consider n1 +n2 independent trials that each result in a success with
probability p; let X1 represent the number of successes in the first n1 trials and let
X2 represent the number of successes in the final n2 trials. Because all trials have

the same probability of being a success, each of the
(
n1+n2

m

)
subsets of m trials is

equally likely to be the success trials; thus, the number of the m success trials that
are among the first n1 trials is a hypergeometric random variable.) �

Example 3.3. If X and Y are independent Poisson random variables with respective
means λ1 and λ2, calculate the conditional expected value of X given that X + Y = n.

Solution: Let us first calculate the conditional probability mass function of X

given that X + Y = n. We obtain

P {X = k|X + Y = n} = P {X = k,X + Y = n}
P {X + Y = n}

= P {X = k,Y = n − k}
P {X + Y = n}

= P {X = k}P {Y = n − k}
P {X + Y = n}

where the last equality follows from the assumed independence of X and Y . Recall-
ing (see Example 2.39) that X + Y has a Poisson distribution with mean λ1 + λ2,
the preceding equation equals

P {X = k|X + Y = n} = e−λ1λk
1

k!
e−λ2λn−k

2

(n − k)!

[
e−(λ1+λ2)(λ1 + λ2)

n

n!

]−1

= n!
(n − k)!k!

λk
1λ

n−k
2

(λ1 + λ2)
n
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=
(

n

k

)(
λ1

λ1 + λ2

)k (
λ2

λ1 + λ2

)n−k

In other words, the conditional distribution of X given that X + Y = n is the bino-
mial distribution with parameters n and λ1/(λ1 + λ2). Hence,

E{X|X + Y = n} = n
λ1

λ1 + λ2
�

Conditional expectations possess all of the properties of ordinary expectations. For
example such identities such as

E

[
n∑

i=1

Xi |Y = y

]
=

n∑
i=1

E[Xi |Y = y]

E[h(X)|Y = y] =
∑
x

h(x)P (X = x|Y = y)

remain valid.

Example 3.4. There are n components. On a rainy day, component i will function
with probability pi ; on a nonrainy day, component i will function with probability qi ,
for i = 1, . . . , n. It will rain tomorrow with probability α. Calculate the conditional
expected number of components that function tomorrow, given that it rains.

Solution: Let

Xi =
{

1, if component i functions tomorrow
0, otherwise

Then, with Y defined to equal 1 if it rains tomorrow, and 0 otherwise, the desired
conditional expectation is obtained as follows.

E

[
n∑

i=1

Xi |Y = 1

]
=

n∑
i=1

E[Xi |Y = 1]

=
n∑

i=1

pi �

3.3 The Continuous Case
If X and Y have a joint probability density function f (x, y), then the conditional prob-
ability density function of X, given that Y = y, is defined for all values of y such that
fY (y) > 0, by

fX|Y (x|y) = f (x, y)

fY (y)
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To motivate this definition, multiply the left side by dx and the right side by
(dx dy)/dy to get

fX|Y (x|y) dx = f (x, y) dx dy

fY (y) dy

≈ P {x ≤ X ≤ x + dx, y ≤ Y ≤ y + dy}
P {y ≤ Y ≤ y + dy}

= P {x ≤ X ≤ x + dx|y ≤ Y ≤ y + dy}

In other words, for small values dx and dy, fX|Y (x|y)dx is approximately the con-
ditional probability that X is between x and x + dx given that Y is between y and
y + dy.

The conditional expectation of X, given that Y = y, is defined for all values of y

such that fY (y) > 0, by

E[X|Y = y] =
∫ ∞

−∞
xfX|Y (x|y) dx

Example 3.5. Suppose the joint density of X and Y is given by

f (x, y) =
{

6xy(2 − x − y), 0 < x < 1,0 < y < 1
0, otherwise

Compute the conditional expectation of X given that Y = y, where 0 < y < 1.

Solution: We first compute the conditional density

fX|Y (x|y) = f (x, y)

fY (y)

= 6xy(2 − x − y)∫ 1
0 6xy(2 − x − y) dx

= 6xy(2 − x − y)

y(4 − 3y)

= 6x(2 − x − y)

4 − 3y

Hence,

E[X|Y = y] =
∫ 1

0

6x2(2 − x − y) dx

4 − 3y

= (2 − y)2 − 6
4

4 − 3y

= 5 − 4y

8 − 6y
�
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Example 3.6 (The t-Distribution). If Z and Y are independent, with Z having a stan-
dard normal distribution and Y having a chi-squared distribution with n degrees of
freedom, then the random variable T defined by

T = Z√
Y/n

= √
n

Z√
Y

is said to be a t-random variable with n degrees of freedom. To compute its density
function, we first derive the conditional density of T given that Y = y. Because Z and
Y are independent, the conditional distribution of T given that Y = y is the distribu-
tion of

√
n/yZ, which is normal with mean 0 and variance n/y. Hence, the conditional

density function of T given that Y = y is

fT |Y (t |y) = 1√
2πn/y

e−t2y/2n = y1/2

√
2πn

e−t2y/2n, −∞ < t < ∞

Using the preceding, along with the following formula for the chi-squared density
derived in Exercise 87 of Chapter 2,

fY (y) = e−y/2yn/2−1

2n/2�(n/2)
, y > 0

we obtain the density function of T :

fT (t) =
∫ ∞

0
fT,Y (t, y) dy =

∫ ∞

0
fT |Y (t |y)fY (y) dy

With

K = 1√
πn 2(n+1)/2�(n/2)

, c = t2 + n

2n
= 1

2

(
1 + t2

n

)

this yields

fT (t) = 1

K

∫ ∞

0
e−cyy(n−1)/2 dy

= c−(n+1)/2

K

∫ ∞

0
e−xx(n−1)/2 dx (by letting x = cy)

= c−(n+1)/2

K
�

(
n + 1

2

)

= �(n+1
2 )√

πn �(n
2 )

(
1 + t2

n

)−(n+1)/2

, −∞ < t < ∞ �

Example 3.7. The joint density of X and Y is given by

f (x, y) =
{

1
2ye−xy, 0 < x < ∞, 0 < y < 2

0, otherwise
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What is E[eX/2|Y = 1]?
Solution: The conditional density of X, given that Y = 1, is given by

fX|Y (x|1) = f (x,1)

fY (1)

=
1
2e−x∫∞

0
1
2e−x dx

= e−x

Hence, by Proposition 2.1,

E
[
eX/2|Y = 1

]
=
∫ ∞

0
ex/2fX|Y (x|1) dx

=
∫ ∞

0
ex/2e−x dx

= 2 �

Example 3.8. Let X1 and X2 be independent exponential random variables with rates
μ1 and μ2. Find the conditional density of X1 given that X1 + X2 = t .

Solution: To begin, let us first note that if f (x, y) is the joint density of X,Y ,
then the joint density of X and X + Y is

fX,X+Y (x, t) = f (x, t − x)

which is easily seen by noting that the Jacobian of the transformation

g1(x, y) = x, g2(x, y) = x + y

is equal to 1.
Applying the preceding to our example yields

fX1|X1+X2(x|t) = fX1,X1+X2(x, t)

fX1+X2(t)

= μ1e
−μ1xμ2e

−μ2(t−x)

fX1+X2(t)
, 0 ≤ x ≤ t

= Ce−(μ1−μ2)x, 0 ≤ x ≤ t

where

C = μ1μ2e
−μ2t

fX1+X2(t)

Now, if μ1 = μ2, then

fX1|X1+X2(x|t) = C, 0 ≤ x ≤ t
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yielding that C = 1/t and that X1 given X1 + X2 = t is uniformly distributed on
(0, t). On the other hand, if μ1 �= μ2, then we use

1 =
∫ t

0
fX1|X1+X2(x|t)dx = C

μ1 − μ2

(
1 − e−(μ1−μ2)t

)
to obtain

C = μ1 − μ2

1 − e−(μ1−μ2)t

thus yielding the result:

fX1|X1+X2(x|t) = (μ1 − μ2)e
−(μ1−μ2)x

1 − e−(μ1−μ2)t

An interesting byproduct of our analysis is that

fX1+X2(t) = μ1μ2e
−μ2t

C
=
{

μ2te−μt , if μ1 = μ2 = μ
μ1μ2(e

−μ2t−e−μ1 t )
μ1−μ2

, if μ1 �= μ2
�

The conditional density function of X given Y1 = y1, . . . , Yj = yj is defined by

fX|Y1,...,Yj
(x|y1, . . . , yj ) = fX,Y1,...,Yj

(x, y1, . . . , yj )

fY1,...,Yj
(y1, . . . , yj )

A simple consequence of the preceding is that the joint density of X1, . . . ,Xn can be
expressed as

fX1,...,Xn(x1, . . . , xn) = fX1(x1)fX2|X1(x2|x1) · · ·fXn|X1,...,Xn−1(xn|x1, . . . , xn−1)

Remark. The preceding is the continuous analog of the identity that for discrete ran-
dom variables

P(X1 = x1, . . . ,Xn = xn) = P(X1 = x1)P (X2 = x2|X1 = x1)

· · ·P(Xn = xn|X1 = x1, . . . ,Xn−1 = xn−1)

Example 3.9 (Record Values). Let X1,X2, . . . be independent and identically dis-
tributed continuous positive random variables. Suppose these random variables
are observed in sequence, and say that Xj is an upper record value if Xj =
max(X1, . . . ,Xj ). That is, an upper record value is one that is larger than all previous
values. For instance, if the data are X1 = 5,X2 = 4,X3 = 8,X4 = 1,X5 = 11, . . .

then the first record value is 5, the second is 8 and the third is 11. Let Rn denote
the nth upper record value. To determine the joint density of R1, . . . ,Rn, note that if
R1 = r1, . . . ,Rj−1 = rj−1, then the value of Rj is that of the first Xi to exceed rj−1.
Hence, with X having distribution F and density f , we have for rj > rj−1 > · · · > r1

fRj |R1,...,Rj−1(rj |r1, . . . , rj−1) = fX|X>rj−1(rj ) = f (rj )

F̄ (rj−1)
.
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Because R1 has density f , the preceding yields the joint density function

fR1,...,Rn(r1, . . . , rn) = f (r1)
f (r2)

F̄ (r1)

f (r3)

F̄ (r2)
· · · f (rn)

F̄ (rn−1)

= λ(r1) · · ·λ(rn−1)f (rn), 0 < r1 < r2 < . . . < rn

where

λ(r) = f (r)

F̄ (r)

Using the preceding, the density function of Rn is

fRn(t) = f (t)

∫
0<r1<...<rn−1<t

λ(r1) · · ·λ(rn−1) dr1 · · ·drn−1

Now, by symmetry, it follows that
∫

0<ri1 <...<rin−1<t
λ(r1) · · ·λ(rn−1) dr1 · · ·drn−1

has the same value for every permutation i1, . . . , in−1 of 1, . . . , n−1. Because the sum
over all (n − 1)! permutations is

∫
0<ri<t, i=1,...,n−1 λ(r1) · · ·λ(rn−1) dr1 · · ·drn−1, we

see that

fRn(t) = f (t)

(n − 1)!
∫ t

0
· · ·
∫ t

0
λ(r1) · · ·λ(rn−1) dr1 · · ·drn−1

= f (t)

(n − 1)!
[∫ t

0
λ(r) dr

]n−1

Because∫ t

0
λ(r) dr =

∫ t

0

f (r)

F̄ (r)
dr

=
∫ 1

F̄ (t)

1

v
dv (v = F̄ (r), dv = −f (r) dr)

= − log(F̄ (t))

we obtain

fRn(t) = f (t)
[− log(F̄ (t))

]n−1

(n − 1)! , t > 0 �

3.4 Computing Expectations by Conditioning
Let us denote by E[X|Y ] that function of the random variable Y whose value at Y = y

is E[X|Y = y]. Note that E[X|Y ] is itself a random variable. An extremely important
property of conditional expectation is that for all random variables X and Y ,

E[X] = E
[
E[X|Y ]] (3.2)
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If Y is a discrete random variable, then Eq. (3.2) states that

E[X] =
∑
y

E[X|Y = y]P {Y = y} (3.2a)

while if Y is continuous with density fY (y), then Eq. (3.2) says that

E[X] =
∫ ∞

−∞
E[X|Y = y]fY (y) dy (3.2b)

We now give a proof of Eq. (3.2) in the case where X and Y are both discrete random
variables.

Proof of Eq. (3.2) When X and Y Are Discrete. We must show that

E[X] =
∑
y

E[X|Y = y]P {Y = y} (3.3)

Now, the right side of the preceding can be written∑
y

E[X|Y = y]P {Y = y} =
∑
y

∑
x

xP {X = x|Y = y}P {Y = y}

=
∑
y

∑
x

x
P {X = x,Y = y}

P {Y = y} P {Y = y}

=
∑
y

∑
x

xP {X = x,Y = y}

=
∑
x

x
∑
y

P {X = x,Y = y}

=
∑
x

xP {X = x}

= E[X]
and the result is obtained. �

One way to understand Eq. (3.3) is to interpret it as follows. It states that to cal-
culate E[X] we may take a weighted average of the conditional expected value of X

given that Y = y, each of the terms E[X|Y = y] being weighted by the probability of
the event on which it is conditioned.

The following examples will indicate the usefulness of Eq. (3.2).

Example 3.10. Sam will read either one chapter of his probability book or one chap-
ter of his history book. If the number of misprints in a chapter of his probability book
is Poisson distributed with mean 2 and if the number of misprints in his history chap-
ter is Poisson distributed with mean 5, then assuming Sam is equally likely to choose
either book, what is the expected number of misprints that Sam will come across?
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Solution: Let X be the number of misprints. Because it would be easy to com-
pute E[X] if we know which book Sam chooses, let

Y =
{

1, if Sam chooses his history book
2, if chooses his probability book

Conditioning on Y yields

E[X] = E[X|Y = 1]P {Y = 1} + E[X|Y = 2]P {Y = 2}
= 5
(

1
2

)
+ 2
(

1
2

)
= 7

2 �

Example 3.11 (The Expectation of the Sum of a Random Number of Random Vari-
ables). Suppose that the expected number of accidents per week at an industrial plant
is four. Suppose also that the numbers of workers injured in each accident are inde-
pendent random variables with a common mean of 2. Assume also that the number of
workers injured in each accident is independent of the number of accidents that occur.
What is the expected number of injuries during a week?

Solution: Letting N denote the number of accidents and Xi the number injured
in the ith accident, i = 1,2, . . ., then the total number of injuries can be expressed
as
∑N

i=1 Xi . Hence, we need to compute the expected value of the sum of a random
number of random variables. Because it is easy to compute the expected value of
the sum of a fixed number of random variables, let us try conditioning on N . This
yields

E

[
N∑
1

Xi

]
= E

[
E

[
N∑
1

Xi |N
]]

But

E

[
N∑
1

Xi |N = n

]
= E

[
n∑
1

Xi |N = n

]

= E

[
n∑
1

Xi

]
by the independence of Xi and N

= nE[X]

which yields

E

[
N∑

i=1

Xi |N
]

= NE[X]
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and thus

E

[
N∑

i=1

Xi

]
= E

[
NE[X]]= E[N ]E[X]

Therefore, in our example, the expected number of injuries during a week equals
4 × 2 = 8. �
The random variable

∑N
i=1 Xi , equal to the sum of a random number N of inde-

pendent and identically distributed random variables that are also independent of N ,
is called a compound random variable. As just shown in Example 3.11, the expected
value of a compound random variable is E[X]E[N ]. Its variance will be derived in
Example 3.20.

If there is some random variable Y such that it would be easy to compute E[X]
if we knew the value of Y , then conditioning on Y is likely to be a good strategy for
determining E[X]. When there is no obvious random variable to condition on, it often
turns out to be useful to condition on the first thing that occurs. This is illustrated in
the following two examples.

Example 3.12 (The Mean of a Geometric Distribution). A coin, having probability p

of coming up heads, is to be successively flipped until the first head appears. What is
the expected number of flips required?

Solution: Let N be the number of flips required, and let

Y =
{

1, if the first flip results in a head
0, if the first flip results in a tail

Now,

E[N ] = E[N |Y = 1]P {Y = 1} + E[N |Y = 0]P {Y = 0}
= pE[N |Y = 1] + (1 − p)E[N |Y = 0] (3.4)

However,

E[N |Y = 1] = 1, E[N |Y = 0] = 1 + E[N ] (3.5)

To see why Eq. (3.5) is true, consider E[N |Y = 1]. Since Y = 1, we know that the
first flip resulted in heads and so, clearly, the expected number of flips required
is 1. On the other hand if Y = 0, then the first flip resulted in tails. However, since
the successive flips are assumed independent, it follows that, after the first tail,
the expected additional number of flips until the first head is just E[N ]. Hence
E[N |Y = 0] = 1 + E[N ]. Substituting Eq. (3.5) into Eq. (3.4) yields

E[N ] = p + (1 − p)(1 + E[N ])
or

E[N ] = 1/p �
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Because the random variable N is a geometric random variable with probability
mass function p(n) = p(1 − p)n−1, its expectation could easily have been computed
from E[N ] =∑∞

1 np(n) without recourse to conditional expectation. However, if you
attempt to obtain the solution to our next example without using conditional expecta-
tion, you will quickly learn what a useful technique “conditioning” can be.

Example 3.13. A miner is trapped in a mine containing three doors. The first door
leads to a tunnel that takes him to safety after two hours of travel. The second door
leads to a tunnel that returns him to the mine after three hours of travel. The third
door leads to a tunnel that returns him to his mine after five hours. Assuming that the
miner is at all times equally likely to choose any one of the doors, what is the expected
length of time until the miner reaches safety?

Solution: Let X denote the time until the miner reaches safety, and let Y denote
the door he initially chooses. Now,

E[X] = E[X|Y = 1]P {Y = 1} + E[X|Y = 2]P {Y = 2}
+ E[X|Y = 3]P {Y = 3}

= 1
3

(
E[X|Y = 1] + E[X|Y = 2] + E[X|Y = 3])

However,

E[X|Y = 1] = 2,

E[X|Y = 2] = 3 + E[X],
E[X|Y = 3] = 5 + E[X], (3.6)

To understand why this is correct consider, for instance, E[X|Y = 2], and reason
as follows. If the miner chooses the second door, then he spends three hours in the
tunnel and then returns to the mine. But once he returns to the mine the problem is
as before, and hence his expected additional time until safety is just E[X]. Hence
E[X|Y = 2] = 3 + E[X]. The argument behind the other equalities in Eq. (3.6) is
similar. Hence,

E[X] = 1
3 (2 + 3 + E[X] + 5 + E[X]) or E[X] = 10 �

Example 3.14 (Multinomial Covariances). Consider n independent trials, each of
which results in one of the outcomes 1, . . . , r , with respective probabilities p1, . . . , pr ,∑r

i=1 pi = 1. If we let Ni denote the number of trials that result in outcome i, then
(N1, . . . ,Nr) is said to have a multinomial distribution. For i �= j , let us compute

Cov(Ni,Nj ) = E[NiNj ] − E[Ni]E[Nj ]
Because each trial independently results in outcome i with probability pi , it follows
that Ni is binomial with parameters (n,pi), giving that E[Ni]E[Nj ] = n2pipj . To
compute E[NiNj ], condition on Ni to obtain

E[NiNj ] =
n∑

k=0

E[NiNj |Ni = k]P(Ni = k)
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=
n∑

k=0

kE[Nj |Ni = k]P(Ni = k)

Now, given that k of the n trials result in outcome i, each of the other n − k trials
independently results in outcome j with probability

P(j |not i) = pj

1 − pi

thus showing that the conditional distribution of Nj , given that Ni = k, is binomial
with parameters (n − k,

pj

1−pi
). Using this yields

E[NiNj ] =
n∑

k=0

k(n − k)
pj

1 − pi

P (Ni = k)

= pj

1 − pi

(
n

n∑
k=0

kP (Ni = k) −
n∑

k=0

k2P(Ni = k)

)

= pj

1 − pi

(nE[Ni] − E[N2
i ])

Because Ni is binomial with parameters (n,pi)

E[N2
i ] = Var(Ni) + (E[Ni])2 = npi(1 − pi) + (npi)

2

Hence,

E[NiNj ] = pj

1 − pi

[n2pi − npi(1 − pi) − n2p2
i ]

= npipj

1 − pi

[n − npi − (1 − pi)]
= n(n − 1)pipj

which yields the result

Cov(Ni,Nj ) = n(n − 1)pipj − n2pipj = −npipj �

Example 3.15 (The Matching Rounds Problem). Suppose in Example 2.30 that those
choosing their own hats depart, while the others (those without a match) put their se-
lected hats in the center of the room, mix them up, and then reselect. Also, suppose
that this process continues until each individual has his own hat.

(a) Find E[Rn] where Rn is the number of rounds that are necessary when n indi-
viduals are initially present.

(b) Find E[Sn] where Sn is the total number of selections made by the n individuals,
n ≥ 2.

(c) Find the expected number of false selections made by one of the n people, n ≥ 2.
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Solution: (a) It follows from the results of Example 2.30 that no matter how
many people remain there will, on average, be one match per round. Hence, one
might suggest that E[Rn] = n. This turns out to be true, and an induction proof
will now be given. Because it is obvious that E[R1] = 1, assume that E[Rk] = k

for k = 1, . . . , n − 1. To compute E[Rn], start by conditioning on Xn, the number
of matches that occur in the first round. This gives

E[Rn] =
n∑

i=0

E[Rn|Xn = i]P {Xn = i}

Now, given a total of i matches in the initial round, the number of rounds needed
will equal 1 plus the number of rounds that are required when n − i persons are to
be matched with their hats. Therefore,

E[Rn] =
n∑

i=0

(1 + E[Rn−i])P {Xn = i}

= 1 + E[Rn]P {Xn = 0} +
n∑

i=1

E[Rn−i]P {Xn = i}

= 1 + E[Rn]P {Xn = 0} +
n∑

i=1

(n − i)P {Xn = i}

by the induction hypothesis

= 1 + E[Rn]P {Xn = 0} + n(1 − P {Xn = 0}) − E[Xn]
= E[Rn]P {Xn = 0} + n(1 − P {Xn = 0})

where the final equality used the result, established in Example 2.30, that
E[Xn] = 1. Since the preceding equation implies that E[Rn] = n, the result is
proven.
(b) For n ≥ 2, conditioning on Xn, the number of matches in round 1, gives

E[Sn] =
n∑

i=0

E[Sn|Xn = i]P {Xn = i}

=
n∑

i=0

(n + E[Sn−i])P {Xn = i}

= n +
n∑

i=0

E[Sn−i]P {Xn = i}

where E[S0] = 0. To solve the preceding equation, rewrite it as

E[Sn] = n + E[Sn−Xn]
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Now, if there were exactly one match in each round, then it would take a total of
1 + 2 + · · · + n = n(n + 1)/2 selections. Thus, let us try a solution of the form
E[Sn] = an + bn2. For the preceding equation to be satisfied by a solution of this
type, for n ≥ 2, we need

an + bn2 = n + E
[
a(n − Xn) + b(n − Xn)

2]
or, equivalently,

an + bn2 = n + a(n − E[Xn]) + b
(
n2 − 2nE[Xn] + E

[
X2

n

])
Now, using the results of Example 2.30 and Exercise 72 of Chapter 2 that E[Xn] =
Var(Xn) = 1, the preceding will be satisfied if

an + bn2 = n + an − a + bn2 − 2nb + 2b

and this will be valid provided that b = 1/2, a = 1. That is,

E[Sn] = n + n2/2

satisfies the recursive equation for E[Sn].
The formal proof that E[Sn] = n+n2/2, n ≥ 2, is obtained by induction on n. It is
true when n = 2 (since, in this case, the number of selections is twice the number
of rounds and the number of rounds is a geometric random variable with parameter
p = 1/2). Now, the recursion gives

E[Sn] = n + E[Sn]P {Xn = 0} +
n∑

i=1

E[Sn−i]P {Xn = i}

Hence, upon assuming that E[S0] = E[S1] = 0,E[Sk] = k + k2/2, for k = 2, . . . ,

n − 1 and using that P {Xn = n − 1} = 0, we see that

E[Sn] = n + E[Sn]P {Xn = 0} +
n∑

i=1

[n − i + (n − i)2/2]P {Xn = i}

= n + E[Sn]P {Xn = 0} + (n + n2/2)(1 − P {Xn = 0})
− (n + 1)E[Xn] + E[X2

n]/2

Substituting the identities E[Xn] = 1,E[X2
n] = 2 in the preceding shows that

E[Sn] = n + n2/2

and the induction proof is complete.
(c) If we let Cj denote the number of hats chosen by person j, j = 1, . . . , n then

n∑
j=1

Cj = Sn
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Taking expectations, and using the fact that each Cj has the same mean, yields the
result

E[Cj ] = E[Sn]/n = 1 + n/2

Hence, the expected number of false selections by person j is

E[Cj − 1] = n/2. �

Example 3.16. Consider a gambler who in each game is equally likely to either win
or lose 1, independent of the results from earlier games. Starting with a fortune of i,
find mi , the mean number of games until the gambler’s fortune is either 0 or n, where
0 ≤ i ≤ n.

Solution: Let N denote the number of games until the gambler’s fortune is either
0 or n, and let Si denote the event that the gambler starts with a fortune of i. To
obtain an expression for mi = E[N |Si], condition on the result of the first game.
With W being the event that the first game is a win, and L that it is a loss, this
yields that for i = 1, . . . , n − 1

mi = E[N |Si]
= E[N |SiW ]P(W |Si) + E[N |SiL]P(L|Si)

= (1 + mi+1)
1

2
+ (1 + mi−1)

1

2

= 1 + 1

2
mi−1 + 1

2
mi+1 , i = 1, . . . , n − 1

Using that m0 = 0, the preceding can be rewritten as

m2 = 2(m1 − 1)

mi+1 = 2(mi − 1) − mi−1, i = 2, . . . , n − 1

Letting i = 2 in the preceding yields that

m3 = 2m2 − 2 − m1

= 4m1 − 4 − 2 − m1

= 3(m1 − 2)

A check of m4 shows a similar result, and indeed it is easily shown by induction
that

mi = i(m1 − i + 1), i = 2, . . . , n

Using that mn = 0, the preceding yields that 0 = n(m1 − n + 1). Thus, m1 = n −
1, and

mi = i(n− i) , i = 1, . . . , n−1 �
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Example 3.17 (Analyzing the Quick-Sort Algorithm). Suppose we are given a set of
n distinct values—x1, . . . , xn—and we desire to put these values in increasing order
or, as it is commonly called, to sort them. An efficient procedure for accomplishing
this is the quick-sort algorithm, which is defined recursively as follows: When n = 2
the algorithm compares the two values and puts them in the appropriate order. When
n > 2 it starts by choosing at random one of the n values—say, xi—and then com-
pares each of the other n − 1 values with xi , noting which are smaller and which are
larger than xi . Letting Si denote the set of elements smaller than xi , and S̄i the set of
elements greater than xi , the algorithm now sorts the set Si and the set S̄i . The final
ordering, therefore, consists of the ordered set of the elements in Si , then xi , and then
the ordered set of the elements in S̄i . For instance, suppose that the set of elements is
10, 5, 8, 2, 1, 4, 7. We start by choosing one of these values at random (that is, each
of the 7 values has probability of 1

7 of being chosen). Suppose, for instance, that the
value 4 is chosen. We then compare 4 with each of the other six values to obtain

{2,1},4, {10,5,8,7}
We now sort the set {2, 1} to obtain

1,2,4, {10,5,8,7}
Next we choose a value at random from {10,5,8,7}—say 7 is chosen—and compare
each of the other three values with 7 to obtain

1,2,4,5,7, {10,8}
Finally, we sort {10,8} to end up with

1,2,4,5,7,8,10

One measure of the effectiveness of this algorithm is the expected number of compar-
isons that it makes. Let us denote by Mn the expected number of comparisons needed
by the quick-sort algorithm to sort a set of n distinct values. To obtain a recursion for
Mn we condition on the rank of the initial value selected to obtain

Mn =
n∑

j=1

E[number of comparisons|value selected is j th smallest]1

n

Now, if the initial value selected is the j th smallest, then the set of values smaller than
it is of size j − 1, and the set of values greater than it is of size n − j . Hence, as n − 1
comparisons with the initial value chosen must be made, we see that

Mn =
n∑

j=1

(n − 1 + Mj−1 + Mn−j )
1

n

= n − 1 + 2

n

n−1∑
k=1

Mk (since M0 = 0)
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or, equivalently,

nMn = n(n − 1) + 2
n−1∑
k=1

Mk

To solve the preceding, note that upon replacing n by n − 1 we obtain

(n − 1)Mn−1 = (n − 1)(n − 2) + 2
n−2∑
k=1

Mk

Subtraction yields

nMn − (n − 1)Mn−1 = 2(n − 1) + 2Mn−1

or

nMn = (n + 1)Mn−1 + 2(n − 1)

Dividing both sides by n(n + 1) gives

Mn

n + 1
= Mn−1

n
+ 2(n − 1)

n(n + 1)

Thus,

j∑
n=1

Mn

n + 1
=

j∑
n=1

Mn−1

n
+

j∑
n=1

2(n − 1)

n(n + 1)

Because M0 = 0, the preceding is equivalent to

Mj = 2(j + 1)

j∑
n=1

n − 1

n(n + 1)

= 2(j + 1)

⎛
⎝ j∑

n=1

1

n + 1
−

j∑
n=1

1

n(n + 1)

⎞
⎠

Now,
∑j

n=1
1

n(n+1)
=∑j

n=1(
1
n

− 1
n+1 ) = 1 − 1

j+1 = j
j+1 , giving that

Mj = 2(j + 1)

j∑
n=1

1

n + 1
− 2j �

Although we usually employ the conditional expectation identity to more easily en-
able us to compute an unconditional expectation, in our next example, we show how
it can sometimes be used to obtain the conditional expectation.
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Example 3.18. In the match problem of Example 2.30 involving n,n > 1, individu-
als, find the conditional expected number of matches given that the first person did not
have a match.

Solution: Let X denote the number of matches, and let X1 equal 1 if the first
person has a match and 0 otherwise. Then,

E[X] = E[X|X1 = 0]P {X1 = 0} + E[X|X1 = 1]P {X1 = 1}
= E[X|X1 = 0]n − 1

n
+ E[X|X1 = 1]1

n

But, from Example 2.30

E[X] = 1

Moreover, given that the first person has a match, the expected number of matches
is equal to 1 plus the expected number of matches when n−1 people select among
their own n − 1 hats, showing that

E[X|X1 = 1] = 2

Therefore, we obtain the result

E[X|X1 = 0] = n − 2

n − 1
�

3.4.1 Computing Variances by Conditioning

Conditional expectations can also be used to compute the variance of a random vari-
able. Specifically, we can use

Var(X) = E[X2] − (E[X])2

and then use conditioning to obtain both E[X] and E[X2]. We illustrate this technique
by determining the variance of a geometric random variable.

Example 3.19 (Variance of the Geometric Random Variable). Independent trials, each
resulting in a success with probability p, are performed in sequence. Let N be the trial
number of the first success. Find Var(N).

Solution: Let Y = 1 if the first trial results in a success, and Y = 0 otherwise.

Var(N) = E[N2] − (E[N ])2

To calculate E[N2] and E[N ] we condition on Y . For instance,

E[N2] = E
[
E[N2|Y ]]

However,

E[N2|Y = 1] = 1,
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E[N2|Y = 0] = E[(1 + N)2]
These two equations are true since if the first trial results in a success, then clearly
N = 1 and so N2 = 1. On the other hand, if the first trial results in a failure, then the
total number of trials necessary for the first success will equal one (the first trial that
results in failure) plus the necessary number of additional trials. Since this latter
quantity has the same distribution as N , we get that E[N2|Y = 0] = E[(1 + N)2].
Hence, we see that

E[N2] = E[N2|Y = 1]P {Y = 1} + E[N2|Y = 0]P {Y = 0}
= p + E[(1 + N)2](1 − p)

= 1 + (1 − p)E[2N + N2]
Since, as was shown in Example 3.12, E[N ] = 1/p, this yields

E[N2] = 1 + 2(1 − p)

p
+ (1 − p)E[N2]

or

E[N2] = 2 − p

p2

Therefore,

Var(N) = E[N2] − (E[N ])2

= 2 − p

p2
−
(

1

p

)2

= 1 − p

p2
�

Another way to use conditioning to obtain the variance of a random variable is
to apply the conditional variance formula. The conditional variance of X given that
Y = y is defined by

Var(X|Y = y) = E
[
(X − E[X|Y = y])2|Y = y

]
That is, the conditional variance is defined in exactly the same manner as the ordinary
variance with the exception that all probabilities are determined conditional on the
event that Y = y. Expanding the right side of the preceding and taking expectation
term by term yields

Var(X|Y = y) = E[X2|Y = y] − (E[X|Y = y])2

Letting Var(X|Y) denote that function of Y whose value when Y = y is Var(X|Y = y),
we have the following result.
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Proposition 3.1 (The Conditional Variance Formula).

Var(X) = E
[
Var(X|Y)

]+ Var
(
E[X|Y ]) (3.7)

Proof.

E
[
Var(X|Y)

]= E[E[X2|Y ] − (E[X|Y ])2]
= E

[
E[X2|Y ]]− E

[
(E[X|Y ])2]

= E[X2] − E
[
(E[X|Y ])2]

and

Var(E[X|Y ]) = E
[
(E[X|Y ])2]− (E[E[X|Y ]])2

= E
[
(E[X|Y ])2]− (E[X])2

Therefore,

E
[
Var(X|Y)

]+ Var
(
E[X|Y ])= E[X2] − (E[X])2

which completes the proof. �

Example 3.20 (The Variance of a Compound Random Variable). Let X1,X2, . . . be
independent and identically distributed random variables with distribution F having
mean μ and variance σ 2, and assume that they are independent of the nonnegative in-
teger valued random variable N . As noted in Example 3.11, where its expected value
was determined, the random variable S =∑N

i=1 Xi is called a compound random vari-
able. Find its variance.

Solution: Whereas we could obtain E[S2] by conditioning on N , let us instead
use the conditional variance formula. Now,

Var(S|N = n) = Var

(
N∑

i=1

Xi |N = n

)

= Var

(
n∑

i=1

Xi |N = n

)

= Var

(
n∑

i=1

Xi

)

= nσ 2

By the same reasoning,

E[S|N = n] = nμ
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Therefore,

Var(S|N) = Nσ 2, E[S|N ] = Nμ

and the conditional variance formula gives

Var(S) = E[Nσ 2] + Var(Nμ) = σ 2E[N ] + μ2Var(N)

If N is a Poisson random variable, then S =∑N
i=1 Xi is called a compound Poisson

random variable. Because the variance of a Poisson random variable is equal to its
mean, it follows that for a compound Poisson random variable having E[N ] = λ

Var(S) = λσ 2 + λμ2 = λE[X2]
where X has the distribution F . �

Example 3.21 (The Variance in the Matching Rounds Problem). Consider the match-
ing rounds problem of Example 3.15, and let Vn = Var(Rn) denote the variance of
the number of rounds needed when there are initially n people. Using the conditional
variance formula, we will show that

Vn = n, n ≥ 2

The proof of the preceding is by induction on n. To begin, note that when n = 2 the
number of rounds needed is geometric with parameter p = 1/2 and so

V2 = 1 − p

p2
= 2

So assume the induction hypothesis that

Vj = j, 2 ≤ j < n

and now consider the case when there are n individuals. If X is the number of matches
in the first round then, conditional on X, the number of rounds Rn is distributed as 1
plus the number of rounds needed when there are initially n − X individuals. Conse-
quently,

E[Rn|X] = 1 + E[Rn−X]
= 1 + n − X by Example 3.15

Also, with V0 = 0,

Var(Rn|X) = Var(Rn−X) = Vn−X

Hence, by the conditional variance formula

Vn = E[Var(Rn|X)] + Var(E[Rn|X])
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= E[Vn−X] + Var(X)

=
n∑

j=0

Vn−jP (X = j) + Var(X)

= VnP (X = 0) +
n∑

j=1

Vn−jP (X = j) + Var(X)

Because P(X = n−1) = 0, it follows from the preceding and the induction hypothesis
that

Vn = VnP (X = 0) +
n∑

j=1

(n − j)P (X = j) + Var(X)

= VnP (X = 0) + n(1 − P(X = 0)) − E[X] + Var(X)

As it is easily shown (see Example 2.30 and Exercise 64 of Chapter 2) that E[X] =
Var(X) = 1, the preceding gives

Vn = VnP (X = 0) + n(1 − P(X = 0))

thus proving the result. �

3.5 Computing Probabilities by Conditioning
Not only can we obtain expectations by first conditioning on an appropriate random
variable, but we may also use this approach to compute probabilities. To see this, let
E denote an arbitrary event and define the indicator random variable X by

X =
{

1, if E occurs
0, if E does not occur

It follows from the definition of X that

E[X] = P(E),

E[X|Y = y] = P(E|Y = y), for any random variable Y

Therefore, from Eqs. (3.2a) and (3.2b) we obtain

P(E) =
∑
y

P (E|Y = y)P (Y = y), if Y is discrete

=
∫ ∞

−∞
P(E|Y = y)fY (y) dy, if Y is continuous

Example 3.22. Suppose that X and Y have joint density function fX,Y (x, y). Find the
density function of X + Y .
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Solution: First determine the distribution function of X + Y .

FX+Y (t) = P(X + Y ≤ t)

=
∫

P(X + Y ≤ t |Y = y)fY (y) dy

=
∫

P(X ≤ t − y|Y = y)fY (y) dy

=
∫

FX|Y (t − y|y)fY (y) dy

Differentiation gives

fX+Y (t) =
∫

fX|Y (t − y|y)fY (y) dy

=
∫

fX,Y (t − y, y) dy

It is worth noting that the preceding is just the continuous analog of the result that
for integer valued discrete random variables X and Y

P (X + Y = n) =
∑

i

P (X = i, Y = n − i) �

Example 3.23. An insurance company supposes that the number of accidents that
each of its policyholders will have in a year is Poisson distributed, with the mean of
the Poisson depending on the policyholder. If the Poisson mean of a randomly chosen
policyholder has a gamma distribution with density function

g(λ) = λe−λ, λ ≥ 0

what is the probability that a randomly chosen policyholder has exactly n accidents
next year?

Solution: Let X denote the number of accidents that a randomly chosen policy-
holder has next year. Letting Y be the Poisson mean number of accidents for this
policyholder, then conditioning on Y yields

P {X = n} =
∫ ∞

0
P {X = n|Y = λ}g(λ) dλ

=
∫ ∞

0
e−λ λn

n! λe−λ dλ

= 1

n!
∫ ∞

0
λn+1e−2λ dλ

However, because

h(λ) = 2e−2λ(2λ)n+1

(n + 1)! , λ > 0
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is the density function of a gamma (n + 2,2) random variable, its integral is 1.
Therefore,

1 =
∫ ∞

0

2e−2λ(2λ)n+1

(n + 1)! dλ = 2n+2

(n + 1)!
∫ ∞

0
λn+1e−2λ dλ

showing that

P {X = n} = n + 1

2n+2 �

Example 3.24. Suppose that the number of people who visit a yoga studio each day is
a Poisson random variable with mean λ. Suppose further that each person who visits
is, independently, female with probability p or male with probability 1 − p. Find the
joint probability that exactly n women and m men visit the academy today.

Solution: Let N1 denote the number of women and N2 the number of men who
visit the academy today. Also, let N = N1 +N2 be the total number of people who
visit. Conditioning on N gives

P {N1 = n,N2 = m} =
∞∑
i=0

P {N1 = n,N2 = m|N = i}P {N = i}

Because P {N1 = n,N2 = m|N = i} = 0 when i �= n + m, the preceding equation
yields

P {N1 = n,N2 = m} = P {N1 = n,N2 = m|N = n + m}e−λ λn+m

(n + m)!
Given that n + m people visit it follows, because each of these n + m is indepen-
dently a woman with probability p, that the conditional probability that n of them
are women (and m are men) is just the binomial probability of n successes in n+m

trials. Therefore,

P {N1 = n,N2 = m} =
(

n + m

n

)
pn(1 − p)me−λ λn+m

(n + m)!
= (n + m)!

n!m! pn(1 − p)me−λpe−λ(1−p) λnλm

(n + m)!
= e−λp (λp)n

n! e−λ(1−p) (λ(1 − p))m

m!
Because the preceding joint probability mass function factors into two products,
one of which depends only on n and the other only on m, it follows that N1 and
N2 are independent. Moreover, because

P {N1 = n} =
∞∑

m=0

P {N1 = n,N2 = m}
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= e−λp (λp)n

n!
∞∑

m=0

e−λ(1−p) (λ(1 − p))m

m! = e−λp (λp)n

n!

and, similarly,

P {N2 = m} = e−λ(1−p) (λ(1 − p))m

m!
we can conclude that N1 and N2 are independent Poisson random variables with
respective means λp and λ(1 − p). Therefore, this example establishes the im-
portant result that when each of a Poisson number of events is independently
classified either as being type 1 with probability p or type 2 with probability 1−p,
then the numbers of type 1 and type 2 events are independent Poisson random
variables. �

The result of Example 3.24 generalizes to the case where each of a Poisson dis-
tributed number of events, N , with mean λ is independently classified as being one
of k types, with the probability that it is type i being pi, i = 1, . . . , k,

∑k
i=1 pi = 1.

If Ni is the number that are classified as type i, then N1, . . . ,Nk are independent
Poisson random variables with respective means λp1, . . . , λpk . This follows, since for
n =∑k

i=1 ni

P (N1 = n1, . . . ,Nk = nk) = P(N1 = n1, . . . ,Nk = nk|N = n)P (N = n)

= n!
n1! · · ·nk!p

n1
1 · · ·pnk

k e−λλn/n!

=
k∏

i=1

e−λpi (λpi)
ni /ni !

where the second equality used that, given a total of n events, how many of these events
are of each type has a multinomial distribution with parameters (n,p1, . . . , pk).

Example 3.25 (The Distribution of the Sum of Independent Bernoulli Random Vari-
ables). Let X1, . . . ,Xn be independent Bernoulli random variables, with Xi having
parameter pi, i = 1, . . . , n. That is, P {Xi = 1} = pi,P {Xi = 0} = qi = 1 − pi . Sup-
pose we want to compute the probability mass function of their sum, X1 + · · · + Xn.
To do so, we will recursively obtain the probability mass function of X1 + · · · + Xk ,
first for k = 1, then k = 2, and on up to k = n. To begin, let

Pk(j) = P {X1 + · · · + Xk = j}

and note that

Pk(k) =
k∏

i=1

pi, Pk(0) =
k∏

i=1

qi
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For 0 < j < k, conditioning on Xk yields the recursion

Pk(j) = P {X1 + · · · + Xk = j |Xk = 1}pk + P {X1 + · · · + Xk = j |Xk = 0}qk

= P {X1 + · · · + Xk−1 = j − 1|Xk = 1}pk

+ P {X1 + · · · + Xk−1 = j |Xk = 0}qk

= P {X1 + · · · + Xk−1 = j − 1}pk + P {X1 + · · · + Xk−1 = j}qk

= pkPk−1(j − 1) + qkPk−1(j)

Starting with P1(1) = p1,P1(0) = q1, the preceding equations can be recursively
solved to obtain the functions P2(j),P3(j), up to Pn(j). �

Example 3.26 (The Best Prize Problem). Suppose that we are to be presented with n

distinct prizes in sequence. After being presented with a prize we must immediately
decide whether to accept it or reject it and consider the next prize. The only informa-
tion we are given when deciding whether to accept a prize is the relative rank of that
prize compared to ones already seen. That is, for instance, when the fifth prize is pre-
sented we learn how it compares with the first four prizes already seen. Suppose that
once a prize is rejected it is lost, and that our objective is to maximize the probability
of obtaining the best prize. Assuming that all n! orderings of the prizes are equally
likely, how well can we do?

Solution: Rather surprisingly, we can do quite well. To see this, fix a value
k,0 ≤ k < n, and consider the strategy that rejects the first k prizes and then ac-
cepts the first one that is better than all of those first k. Let Pk (best) denote the
probability that the best prize is selected when this strategy is employed. To com-
pute this probability, condition on X, the position of the best prize. This gives

Pk(best) =
n∑

i=1

Pk(best|X = i)P (X = i)

= 1

n

n∑
i=1

Pk(best|X = i)

Now, if the overall best prize is among the first k, then no prize is ever selected
under the strategy considered. On the other hand, if the best prize is in position
i, where i > k, then the best prize will be selected if the best of the first k prizes
is also the best of the first i − 1 prizes (for then none of the prizes in positions
k + 1, k + 2, . . . , i − 1 would be selected). Hence, we see that

Pk(best|X = i) = 0, if i ≤ k

Pk(best|X = i) = P {best of first i − 1 is among the first k}
= k/(i − 1), if i > k
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From the preceding, we obtain

Pk(best) = k

n

n∑
i=k+1

1

i − 1

≈ k

n

∫ n−1

k

1

x
dx

= k

n
log

(
n − 1

k

)

≈ k

n
log
(n

k

)
Now, if we consider the function

g(x) = x

n
log
(n

x

)
then

g′(x) = 1

n
log
(n

x

)
− 1

n

and so

g′(x) = 0 ⇒ log(n/x) = 1 ⇒ x = n/e

Thus, since Pk(best) ≈ g(k), we see that the best strategy of the type considered is
to let the first n/e prizes go by and then accept the first one to appear that is better
than all of those. In addition, since g(n/e) = 1/e, the probability that this strategy
selects the best prize is approximately 1/e ≈ 0.36788.

Remark. Most students are quite surprised by the size of the probability of obtain-
ing the best prize, thinking that this probability would be close to 0 when n is large.
However, even without going through the calculations, a little thought reveals that the
probability of obtaining the best prize can be made to be reasonably large. Consider
the strategy of letting half of the prizes go by, and then selecting the first one to appear
that is better than all of those. The probability that a prize is actually selected is the
probability that the overall best is among the second half and this is 1/2. In addition,
given that a prize is selected, at the time of selection that prize would have been the
best of more than n/2 prizes to have appeared, and would thus have probability of
at least 1/2 of being the overall best. Hence, the strategy of letting the first half of
all prizes go by and then accepting the first one that is better than all of those prizes
results in a probability greater than 1/4 of obtaining the best prize.

Even when the number of prizes is unknown, we can still do rather well when the
prizes arrive at random times with a known distribution. So let us suppose that
whereas the number of prizes n is unknown, the n prizes arrive at independent
times that are all uniformly distributed on (0,1). Let the t policy be the policy that
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rejects all prizes presented before time t and then accepts the first one that appears
after time t that is better than all previously seen prizes. Note that the t policy can
be implemented without knowing the value of n. Let B be the event that the best
prize is chosen, and let Pt (B) be the probability that the t policy yields the best
prize.
To determine Pt (B), we will condition on the time at which the best prize arrives.
Call that time Y . Now if Y < t , then the best prize would be rejected, showing that

Pt (B|Y = y) = 0 if y < t.

On the other hand, if Y = y > t then the best prize will be selected if either none
of the other n − 1 prizes arrive before time y, or if at least one of the other n − 1
prizes arrives before time y with the best of these arriving before time t . Now, the
probability that none of the n−1 nonbest prizes arrives before time y is (1−y)n−1.
Also, given that a prize arrives before y, its arrival time is uniform on (0, y), and
so the conditional probability that it arrives before time t is t/y. Thus, if the set
of prizes arriving before time y is nonempty, then the probability that the best of
these prizes has arrived before time t is t/y. Consequently, for y > t ,

Pt (B|Y = y) = (1 − y)n−1 + (1 − (1 − y)n−1)t/y

= t

y
+ (1 − y)n−1

(
1 − t

y

)

Hence,

Pt (B) =
∫ 1

0
Pt (B|Y = y)dy

= t

∫ 1

t

1

y
dy +

∫ 1

t

(1 − y)n−1
(

1 − t

y

)
dy

= −t log(t) +
∫ 1

t

(1 − y)n−1
(

1 − t

y

)
dy

Thus, Pt (B) is a decreasing function of n whose limit is −t log(t). That is,

Pt (B) ↓ −t log(t) as n ↑ ∞
Because max0<t<1 −t log(t) = −e−1 log(e−1) = e−1, we see that the strategy that
rejects all offers that arrive by time e−1 and then accepts the first one after then
that is a contender will yield the best prize with probability greater than e−1. �

Our next example is a special case of the gambler’s ruin problem, which is studied
in Section 4.5.1.

Example 3.27. Two players play a match consisting of a sequence of games, where
each game is independently won by player 1 with probability p, or by player 2 with
probability q = 1 − p. The match ends when one of the players has a total of k more
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wins than the other, with that player being declared the winner of the match. Let Wi

denote the event that player i, i = 1,2 is the winner of the match. Also, let N be the
number of games that are played in the match. We will now determine P(Wi), and
also prove the interesting result that N is independent of who wins the match.

Because a match ends when one of the players is ahead by k, it follows at that time
that one of the players would have had a total of r wins and the other a total of k + r

wins, for some value r . Let the skeleton vector of a match that ends after N = 2r + k

games be a vector of size 2r + k having a w in position i if the winner of the match—
either player 1 or 2—wins game i, and having an l in position i if the winner of the
match loses game i. For instance, when k = 3, the skeleton vector (w,w, l,w, l,w,w)

signifies that N = 7 and that the winner of the match won games 1,2,4,6,7 and lost
games 3 and 5. Note that the skeleton vector itself does not indicate which player won
the match.

If we let the outcome vector be the vector giving the winner of each successive
game, then the skeleton vector will be S if the outcome vector is either O1(S) or
O2(S), where O1(S) is the resulting vector when each w in S is replaced by a 1 and
each l by a 2, resulting in player 1 winning the match, and O2(S) is the resulting vector
when each w in S is replaced by a 2 and each l by a 1, resulting in player 2 winning the
match. For instance, the skeleton vector is S = (w,w, l,w, l,w,w) if and only if the
outcome vector is either O1(S) = (1,1,2,1,2,1,1) or O2(S) = (2,2,1,2,1,2,2).

Let S be a skeleton vector of size 2r + k. Given that S is the skeleton vector of the
match, it follows that

P(W1|S) = P(O1(S) |O1(S) ∪ O2(S))

= P(O1(S))

P (O1(S)) + P(O2(S))

= pr+kqr

pr+kqr + qr+kpr

= pk

pk + qk

Also,

P(W2|S) = 1 − P(W1|S) = qk

pk + qk

That is, for any skeleton vector, the conditional probability that 1 wins the match is
pk

pk+qk , and the conditional probability that 2 wins is qk

pk+qk , which not only shows that

P(W1) = pk

pk + qk
, P (W2) = qk

pk + qk
,

but also shows that who wins and the skeleton vector are independent. Because the
number of games played is determined by the skeleton vector, it also follows that who



134 Introduction to Probability Models

wins and the number of games played are independent, which is formally shown by
letting Sn denote the set of all skeleton vectors of length n, giving that

P(Wi,N = n) =
∑
S∈Sn

P (WiS) =
∑
S∈Sn

P (Wi)P (S) = P(Wi)P (N = n)

Remark. We have implicitly assumed that one of the players will eventually have k

more wins than the other. To verify this assumption, suppose that the players continue
to play even after one has k more wins than the other, and consider each successive
batch of 2k games, where the first batch consists of games 1 through 2k, the second
batch consists of games 2k +1 through 4k, and so on. If we let R denote the first batch
for which the same player wins all its 2k games, then the match would have been de-
cided by 2kR games. This is so because if the match has not ended after 2k(R − 1)

games have been played, then at that point the player who is leading is ahead by
less than k games. Consequently, because the next 2k games are all won by the same
player, it follows that that player wins the match. Because R is a geometric random
variable with parameter p2k + (1 − p)2k > 0, it follows that R, and thus 2kR, is fi-
nite with probability 1. Because N ≤ 2kR, it follows that the match does eventually
end. �
Example 3.28. A system consisting of 2n + 1 components, each of which indepen-
dently works with probability p, will work if at least n + 1 of its components work.
Letting Pn be the probability that the system works, show that Pn is an increasing
function of n when p > 1/2. That is, show that a system with 2n + 1 components
is more likely to work than is one with 2n − 1 components when the system works
if at least half of its components work, and all components independently work with
probability p > 1/2.

Solution: Let W be the event that a system of 2n+1 components works. Number
the 2n + 1 components, and let X denote how many of components 1, . . . ,2n − 1
work. Conditioning on X yields

Pn =
2n−1∑
j=0

P(W |X = j)P (X = j)

Now,

P(W |X = j) = 0, if j < n − 1

P(W |X = j) = p2, if j = n − 1

P(W |X = j) = 1 − (1 − p)2, if j = n

P (W |X = j) = 1, if j ≥ n + 1

where the preceding used that the system will work when X = n−1 if components
2n and 2n+ 1 both work, and will work when X = n if at least one of components
2n and 2n + 1 work. Hence,

Pn = p2P(X = n − 1) + (1 − (1 − p)2)P (X = n) + P(X ≥ n + 1)
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Because

Pn−1 = P(X ≥ n) = P(X = n) + P(X ≥ n + 1)

we must show that when p > 1/2,

p2P(X = n − 1) > (1 − p)2P(X = n)

Because X is binomial with parameters (2n − 1,p), the preceding is equivalent to

p2
(

2n − 1

n − 1

)
pn−1(1 − p)n > (1 − p)2

(
2n − 1

n

)
pn(1 − p)n−1

which, since
(2n−1

n−1

) = (2n−1
n

)
, is equivalent to p > 1 − p, which proves the re-

sult. �

Notation. If we let P(A|Y) be that function of Y which when Y = y is equal to
P(A|Y = y), (that is, P(A|Y) = E[I {A}|Y ]), then the conditioning identity for prob-
abilities can be written as

P(A) = E[P(A|Y)]
Example 3.29. Consider an infinite collection of coins, and suppose that associated
with each coin is a random variable Y having distribution function F , which is such
that if Y = p then each flip of that coin will independently come up heads with proba-
bility p. The Y random variables of different coins are independent. A coin is selected
and flipped until either a tail appears or the first k flips land heads. If the latter occurs
the process ends; if the former occurs a new coin is chosen and the process repeats.
(Thus, we continue until we have tossed a coin whose first k flips all land heads.) Let
Nk be the total number of flips. We will derive E[Nk].

As a preliminary to deriving E[Nk], let Hj be the event that the first j flips of a
coin are all heads. Because P(Hj |Y = p) = pj , we see that P(Hj |Y) = Y j , giving
that

P(Hj ) = E[P(Hj |Y)] = E[Y j ]
To derive E[Nk] we will make use of the relationship between Nk and Nk−1, the total
number of flips needed until the first k − 1 flips of a coin are all heads. Letting A be
the additional number of flips from the moment at which we have a coin whose first
k − 1 flips landed heads until we have one whose first k flips landed heads, we have
that Nk = Nk−1 + A, and so

E[Nk] = E[Nk−1] + E[A]
To compute E[A] condition on the result of the next flip. Letting H be the event that
the next flip lands heads, this yields

E[A] = E[A|H ]P(H) + E[A|Hc](1 − P(H))
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Now, if the next flip lands heads then the process ends, and so E[A|H ] = 1; on the
other hand, if the next flip lands tails, then at that point we are in essence starting over
and so E[A|Hc] = 1 + E[Nk]. Thus

E[A] = 1 + (1 − P(H))E[Nk]

Hence,

E[Nk] = E[Nk−1] + 1 + (1 − P(H))E[Nk]

or, equivalently

E[Nk] = 1

P(H)
+ E[Nk−1]

P(H)

Now, P(H) is the probability that a coin whose first k − 1 flips all landed heads will
come up heads on its next flip. Hence,

P(H) = P(head|Hk−1) = P(Hk)

P (Hk−1)
= E[Y k]

E[Y k−1]

Therefore, with μk = E[Y k], k ≥ 0

E[Nk] = μk−1

μk

+ μk−1

μk

E[Nk−1]

Hence,

E[N1] = μ0

μ1

E[N2] = μ1

μ2
+ μ0

μ2

E[N3] = μ2

μ3
+ μ1

μ3
+ μ0

μ3

In general

E[Nk] = 1

μk

k−1∑
i=0

μi

For instance, if Y is uniformly distributed on (0,1) then μi = E[Y i] = ∫ 1
0 pidp = 1

i+1 ,
and so

E[Nk] = (k + 1)

k−1∑
i=0

1

i + 1
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If Y is the constant p (meaning that we are always tossing a coin with heads probabil-
ity p, stopping when k consecutive heads have occurred),

E[Nk] = 1

pk

k−1∑
i=0

pi =
k∑

j=1

(1/p)j �

Example 3.30. At a party n people take off their hats. The hats are then mixed up and
each person randomly selects one. We say that a match occurs if a person selects their
own hat. What is the probability of no matches? What is the probability of exactly k

matches?

Solution: Let E denote the event that no matches occur, and to make explicit the
dependence on n, write Pn = P(E). We start by conditioning on whether or not
the first person selects their own hat—call these events M and Mc. Then

Pn = P(E) = P(E|M)P(M) + P(E|Mc)P (Mc)

Clearly, P(E|M) = 0, and so

Pn = P(E|Mc)
n − 1

n
(3.8)

Now, P(E|Mc) is the probability of no matches when n − 1 people select from
a set of n − 1 hats that does not contain the hat of one of these people. This can
happen in either of two mutually exclusive ways. Either there are no matches and
the extra person does not select the extra hat (this being the hat of the person that
chose first), or there are no matches and the extra person does select the extra hat.
The probability of the first of these events is just Pn−1, which is seen by regard-
ing the extra hat as “belonging” to the extra person. Because the second event has
probability [1/(n − 1)]Pn−2, we have

P(E|Mc) = Pn−1 + 1

n − 1
Pn−2

and thus, from Eq. (3.8),

Pn = n − 1

n
Pn−1 + 1

n
Pn−2

or, equivalently,

Pn − Pn−1 = −1

n
(Pn−1 − Pn−2) (3.9)

However, because Pn is the probability of no matches when n people select among
their own hats, we have

P1 = 0, P2 = 1
2
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and so, from Eq. (3.9),

P3 − P2 = − (P2 − P1)

3
= − 1

3! or P3 = 1

2! − 1

3! ,

P4 − P3 = − (P3 − P2)

4
= 1

4! or P4 = 1

2! − 1

3! + 1

4!
and, in general, we see that

Pn = 1

2! − 1

3! + 1

4! − · · · + (−1)n

n!
To obtain the probability of exactly k matches, we consider any fixed group of k

people. The probability that they, and only they, select their own hats is

1

n

1

n − 1
· · · 1

n − (k − 1)
Pn−k = (n − k)!

n! Pn−k

where Pn−k is the conditional probability that the other n− k people, selecting among

their own hats, have no matches. Because there are
(
n
k

)
choices of a set of k people,

the desired probability of exactly k matches is

Pn−k

k! =
1

2! − 1

3! + · · · + (−1)n−k

(n − k)!
k!

which, for n large, is approximately equal to e−1/k!.
Remark. The recursive equation, Eq. (3.9), could also have been obtained by us-
ing the concept of a cycle, where we say that the sequence of distinct individuals
i1, i2, . . . , ik constitutes a cycle if i1 chooses i2’s hat, i2 chooses i3’s hat, . . . , ik−1
chooses ik’s hat, and ik chooses i1’s hat. Note that every individual is part of a cycle,
and that a cycle of size k = 1 occurs when someone chooses his or her own hat. With
E being, as before, the event that no matches occur, it follows upon conditioning on
the size of the cycle containing a specified person, say person 1, that

Pn = P(E) =
n∑

k=1

P(E|C = k)P (C = k) (3.10)

where C is the size of the cycle that contains person 1. Now, call person 1 the first
person, and note that C = k if the first person does not choose 1’s hat; the person
whose hat was chosen by the first person—call this person the second person—does
not choose 1’s hat; the person whose hat was chosen by the second person—call this
person the third person—does not choose 1’s hat; . . . , the person whose hat was cho-
sen by the (k − 1)st person does choose 1’s hat. Consequently,

P(C = k) = n − 1

n

n − 2

n − 1
· · · n − k + 1

n − k + 2

1

n − k + 1
= 1

n
(3.11)
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That is, the size of the cycle that contains a specified person is equally likely to be any
of the values 1,2, . . . , n. Moreover, since C = 1 means that 1 chooses his or her own
hat, it follows that

P(E|C = 1) = 0

On the other hand, if C = k, then the set of hats chosen by the k individuals in this
cycle is exactly the set of hats of these individuals. Hence, conditional on C = k, the
problem reduces to determining the probability of no matches when n − k people
randomly choose among their own n − k hats. Therefore, for k > 1

P(E|C = k) = Pn−k (3.12)

Substituting (3.11)–(3.13) back into Eq. (3.10) gives

Pn = 1

n

n∑
k=2

Pn−k (3.13)

which is easily shown to be equivalent to Eq. (3.9). �
Example 3.31 (The Ballot Problem). In an election, candidate A receives n votes,
and candidate B receives m votes where n > m. Assuming that all orderings are
equally likely, show that the probability that A is always ahead in the count of votes is
(n − m)/(n + m).

Solution: Let Pn,m denote the desired probability. By conditioning on which can-
didate receives the last vote counted we have

Pn,m = P {A always ahead|A receives last vote} n

n + m

+ P {A always ahead|B receives last vote} m

n + m

Now, given that A receives the last vote, we can see that the probability that A is
always ahead is the same as if A had received a total of n − 1 and B a total of m

votes. Because a similar result is true when we are given that B receives the last
vote, we see from the preceding that

Pn,m = n

n + m
Pn−1,m + m

m + n
Pn,m−1 (3.14)

We can now prove that Pn,m = (n − m)/(n + m) by induction on n + m. As it is
true when n + m = 1, that is, P1,0 = 1, assume it whenever n + m = k. Then when
n + m = k + 1, we have by Eq. (3.14) and the induction hypothesis that

Pn,m = n

n + m

n − 1 − m

n − 1 + m
+ m

m + n

n − m + 1

n + m − 1

= n − m

n + m

and the result is proven. �
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The ballot problem has some interesting applications. For example, consider suc-
cessive flips of a coin that always land on “heads” with probability p, and let us
determine the probability distribution of the first time, after beginning, that the to-
tal number of heads is equal to the total number of tails. The probability that the first
time this occurs is at time 2n can be obtained by first conditioning on the total number
of heads in the first 2n trials. This yields

P {first time equal = 2n}
= P {first time equal = 2n|n heads in first 2n}

(
2n

n

)
pn(1 − p)n

Now, given a total of n heads in the first 2n flips we can see that all possible order-
ings of the n heads and n tails are equally likely, and thus the preceding conditional
probability is equivalent to the probability that in an election, in which each candidate
receives n votes, one of the candidates is always ahead in the counting until the last
vote (which ties them). But by conditioning on whomever receives the last vote, we
see that this is just the probability in the ballot problem when m = n − 1. Hence,

P {first time equal = 2n} = Pn,n−1

(
2n

n

)
pn(1 − p)n

=

(
2n

n

)
pn(1 − p)n

2n − 1

Suppose now that we wanted to determine the probability that the first time there
are i more heads than tails occurs after the (2n + i)th flip. Now, in order for this to be
the case, the following two events must occur:

(a) The first 2n + i tosses result in n + i heads and n tails; and
(b) The order in which the n + i heads and n tails occur is such that the number of

heads is never i more than the number of tails until after the final flip.

Now, it is easy to see that event (b) will occur if and only if the order of appearance
of the n + i heads and n tails is such that starting from the final flip and working
backwards heads is always in the lead. For instance, if there are 4 heads and 2 tails
(n = 2, i = 2), then the outcome _ _ _ _TH would not suffice because there would
have been 2 more heads than tails sometime before the sixth flip (since the first 4 flips
resulted in 2 more heads than tails).

Now, the probability of the event specified in (a) is just the binomial probability of
getting n + i heads and n tails in 2n + i flips of the coin.

We must now determine the conditional probability of the event specified in (b)
given that there are n + i heads and n tails in the first 2n + i flips. To do so, note first
that given that there are a total of n + i heads and n tails in the first 2n + i flips, all
possible orderings of these flips are equally likely. As a result, the conditional proba-
bility of (b) given (a) is just the probability that a random ordering of n + i heads and
n tails will, when counted in reverse order, always have more heads than tails. Since
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all reverse orderings are also equally likely, it follows from the ballot problem that this
conditional probability is i/(2n + i).

That is, we have shown that

P {a} =
(

2n + i

n

)
pn+i (1 − p)n,

P {b|a} = i

2n + i

and so

P {first time heads leads by i is after flip 2n+ i} =
(

2n + i

n

)
pn+i (1 −p)n

i

2n + i

Example 3.32. Let U1,U2, . . . be a sequence of independent uniform (0,1) random
variables, and let

N = min{n ≥ 2: Un > Un−1}
and

M = min{n ≥ 1: U1 + · · · + Un > 1}
That is, N is the index of the first uniform random variable that is larger than its im-
mediate predecessor, and M is the number of uniform random variables we need sum
to exceed 1. Surprisingly, N and M have the same probability distribution, and their
common mean is e!

Solution: It is easy to find the distribution of N . Since all n! possible orderings
of U1, . . . ,Un are equally likely, we have

P {N > n} = P {U1 > U2 > · · · > Un} = 1/n!
To show that P {M > n} = 1/n!, we will use mathematical induction. However, to
give ourselves a stronger result to use as the induction hypothesis, we will prove
the stronger result that for 0 < x ≤ 1,P {M(x) > n} = xn/n!, n ≥ 1, where

M(x) = min{n ≥ 1: U1 + · · · + Un > x}
is the minimum number of uniforms that need be summed to exceed x. To prove
that P {M(x) > n} = xn/n!, note first that it is true for n = 1 since

P {M(x) > 1} = P {U1 ≤ x} = x

So assume that for all 0 < x ≤ 1,P {M(x) > n} = xn/n!. To determine P {M(x) >

n + 1}, condition on U1 to obtain

P {M(x) > n + 1} =
∫ 1

0
P {M(x) > n + 1|U1 = y} dy
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=
∫ x

0
P {M(x) > n + 1|U1 = y} dy

=
∫ x

0
P {M(x − y) > n} dy

=
∫ x

0

(x − y)n

n! dy by the induction hypothesis

=
∫ x

0

un

n! du

= xn+1

(n + 1)!
where the third equality of the preceding follows from the fact that given U1 = y,
M(x) is distributed as 1 plus the number of uniforms that need be summed to ex-
ceed x − y. Thus, the induction is complete and we have shown that for 0 < x ≤ 1,
n ≥ 1,

P {M(x) > n} = xn/n!
Letting x = 1 shows that N and M have the same distribution. Finally, we have

E[M] = E[N ] =
∞∑

n=0

P {N > n} =
∞∑

n=0

1/n! = e �

Example 3.33. Let X1,X2, . . . be independent continuous random variables with a
common distribution function F and density f = F ′, and suppose that they are to be
observed one at a time in sequence. Let

N = min{n � 2: Xn = second largest of X1, . . . ,Xn}
and let

M = min{n ≥ 2: Xn = second smallest of X1, . . . ,Xn}
Which of the random variables XN , the first random variable which when observed is
the second largest of those that have been seen, or XM , the first one that on observation
is the second smallest to have been seen, tends to be larger?

Solution: To calculate the probability density function of XN , it is natural to
condition on the value of N ; so let us start by determining its probability mass
function. Now, if we let

Ai = {Xi �= second largest of X1, . . . ,Xi}, i ≥ 2

then, for n ≥ 2,

P {N = n} = P
(
A2A3 · · ·An−1A

c
n

)
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Since the Xi are independent and identically distributed it follows that, for any
m ≥ 1, knowing the rank ordering of the variables X1, . . . ,Xm yields no infor-
mation about the set of m values {X1, . . . ,Xm}. That is, for instance, knowing that
X1 < X2 gives us no information about the values of min(X1,X2) or max(X1,X2).
It follows from this that the events Ai, i ≥ 2 are independent. Also, since Xi is
equally likely to be the largest, or the second largest, . . . , or the ith largest of
X1, . . . ,Xi it follows that P(Ai) = (i − 1)/i, i ≥ 2. Therefore, we see that

P {N = n} = 1

2

2

3

3

4
· · · n − 2

n − 1

1

n
= 1

n(n − 1)

Hence, conditioning on N yields that the probability density function of XN is as
follows:

fXN
(x) =

∞∑
n=2

1

n(n − 1)
fXN |N(x|n)

Now, since the ordering of the variables X1, . . . ,Xn is independent of the set
of values {X1, . . . ,Xn}, it follows that the event {N = n} is independent of
{X1, . . . ,Xn}. From this, it follows that the conditional distribution of XN given
that N = n is equal to the distribution of the second largest from a set of n random
variables having distribution F . Thus, using the results of Example 2.40 concern-
ing the density function of such a random variable, we obtain

fXN
(x) =

∞∑
n=2

1

n(n − 1)

n!
(n − 2)!1! (F (x))n−2f (x)(1 − F(x))

= f (x)(1 − F(x))

∞∑
i=0

(F (x))i

= f (x)

Thus, rather surprisingly, XN has the same distribution as X1, namely, F . Also, if
we now let Wi = −Xi , i ≥ 1, then WM will be the value of the first Wi , which on
observation is the second largest of all those that have been seen. Hence, by the
preceding, it follows that WM has the same distribution as W1. That is, −XM has
the same distribution as −X1, and so XM also has distribution F ! In other words,
whether we stop at the first random variable that is the second largest of all those
presently observed, or we stop at the first one that is the second smallest of all those
presently observed, we will end up with a random variable having distribution F .

Whereas the preceding result is quite surprising, it is a special case of a general re-
sult known as Ignatov’s theorem, which yields even more surprises. For instance,
for k � 1, let

Nk = min{n � k: Xn = kth largest of X1, . . . ,Xn}
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Therefore, N2 is what we previously called N , and XNk
is the first random variable

that upon observation is the kth largest of all those observed up to this point. It can
then be shown by a similar argument as used in the preceding that XNk

has distri-
bution function F for all k (see Exercise 85 at the end of this chapter). In addition,
it can be shown that the random variables XNk

, k � 1 are independent. (A statement
and proof of Ignatov’s theorem in the case of discrete random variables are given in
Section 3.6.6.) �
Example 3.34. A population consists of m families. Let Xj denote the size of family
j , and suppose that X1, . . . ,Xm are independent random variables having the common
probability mass function

pk = P(Xj = k),

∞∑
k=1

pk = 1

with mean μ = �kkpk . Suppose a member of the population is randomly chosen, in
that the selection is equally likely to be any of the members of the population, and let
Si be the event that the selected individual is from a family of size i. Argue that

P(Si) → ipi

μ
as m → ∞

Solution: A heuristic argument for the preceding formula is that because each
family is of size i with probability pi , it follows that there are approximately mpi

families of size i when m is large. Thus, impi members of the population come
from a family of size i, implying that the probability that the selected individual is
from a family of size i is approximately impi∑

j jmpj
= ipi

μ
.

For a more formal argument, let Ni denote the number of families that are of size i.
That is,

Ni = number {k : k = 1, . . . ,m : Xk = i}
Then, conditional on X = (X1, . . . ,Xm)

P (Si |X) = iNi∑m
k=1 Xk

Hence,

P(Si) = E[P(Si |X)]
= E

[
iNi∑m
k=1 Xk

]

= E

[
iNi/m∑m
k=1 Xk/m

]

Because each family is independently of size i with probability pi , it follows by
the strong law of large numbers that Ni/m, the fraction of families that are of
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size i, converges to pi as m → ∞. Also by the strong law of large numbers,∑m
k=1 Xk/m → E[X] = μ as m → ∞. Consequently, with probability 1,

iNi/m∑m
k=1 Xk/m

→ ipi

μ
as m → ∞

Because the random variable iNi∑m
k=1 Xk

converges to ipi

μ
so does its expectation,

which proves the result. (While it is not always the case that limm→∞ Ym = c im-
plies that limm→∞ E[Ym] = c, the implication is true when the Ym are uniformly
bounded random variables, and the random variables iNi∑m

k=1 Xk
are all between 0

and 1.) �

The use of conditioning can also result in a more computationally efficient solution
than a direct calculation. This is illustrated by our next example.

Example 3.35. Consider n independent trials in which each trial results in one of
the outcomes 1, . . . , k with respective probabilities p1, . . . , pk ,

∑k
i=1 pi = 1. Suppose

further that n > k, and that we are interested in determining the probability that each
outcome occurs at least once. If we let Ai denote the event that outcome i does not
occur in any of the n trials, then the desired probability is 1 − P(

⋃k
i=1 Ai), and it can

be obtained by using the inclusion–exclusion theorem as follows:

P

(
k⋃

i=1

Ai

)
=

k∑
i=1

P(Ai) −
∑

i

∑
j>i

P (AiAj )

+
∑

i

∑
j>i

∑
r>j

P (AiAjAr) − · · · + (−1)k+1P(A1 · · ·Ak)

where

P(Ai) = (1 − pi)
n

P (AiAj ) = (1 − pi − pj )
n, i < j

P (AiAjAr) = (1 − pi − pj − pr)
n, i < j < r

The difficulty with the preceding solution is that its computation requires the calcula-
tion of 2k − 1 terms, each of which is a quantity raised to the power n. The preceding
solution is thus computationally inefficient when k is large. Let us now see how to
make use of conditioning to obtain an efficient solution.

To begin, note that if we start by conditioning on Nk (the number of times that
outcome k occurs) then when Nk > 0 the resulting conditional probability will equal
the probability that all of the outcomes 1, . . . , k − 1 occur at least once when n − Nk

trials are performed, and each results in outcome i with probability pi/
∑k−1

j=1 pj ,
i = 1, . . . , k − 1. We could then use a similar conditioning step on these terms.

To follow through on the preceding idea, let Am,r , for m � n, r � k, denote the
event that each of the outcomes 1, . . . , r occurs at least once when m independent trials
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are performed, where each trial results in one of the outcomes 1, . . . , r with respec-
tive probabilities p1/Pr, . . . ,pr/Pr , where Pr =∑r

j=1pj . Let P(m, r) = P(Am,r )

and note that P(n, k) is the desired probability. To obtain an expression for P(m, r),
condition on the number of times that outcome r occurs. This gives

P(m, r) =
m∑

j=0

P {Am,r |r occurs j times}
(

m

j

)(
pr

Pr

)j (
1 − pr

Pr

)m−j

=
m−r+1∑

j=1

P(m − j, r − 1)

(
m

j

)(
pr

Pr

)j (
1 − pr

Pr

)m−j

Starting with

P(m,1) = 1, if m� 1

P(m,1) = 0, if m = 0

we can use the preceding recursion to obtain the quantities P(m,2),m = 2, . . . , n −
(k − 2), and then the quantities P(m,3),m = 3, . . . , n − (k − 3), and so on, up to
P(m,k − 1), m = k − 1, . . . , n − 1. At this point we can then use the recursion to
compute P(n, k). It is not difficult to check that the amount of computation needed is
a polynomial function of k, which will be much smaller than 2k when k is large. �

Our next example is concerned with final score probabilities in serve and rally
games such as table tennis, squash, paddle ball, volleyball, and others.

Example 3.36 (Serve and Rally Competitions). Consider a serve and rally competi-
tion involving players A and B. Suppose that each rally that begins with a serve by
player A is won by player A with probability pa and is won by player B with prob-
ability qa = 1 − pa . Furthermore, suppose that each rally that begins with a serve by
player B is won by player A with probability pb and is won by player B with proba-
bility qb = 1 − pb. Suppose that the winner of the rally earns a point and becomes the
server of the next rally. The competition is decided either when A has won a total of
N points or when B has won a total of M . Given that A serves first, we are interested
in determining the final score probabilities.

The format of this example is used in a variety of serve and rally games, including
international volleyball and American squash, both of which changed from their orig-
inal format which gave service to the winner of the previous rally but only awarded a
point if the winner of a rally was the server. (See Exercise 87 for an analysis of this
latter format.)

Let F denote the final score, with F = (i, j) meaning that A won a total of i points
and B a total of j points. Clearly

P(F = (N,0)) = pN
a , P (F = (0,M)) = qaq

M−1
b

To determine the other final score probabilities, imagine that A and B continue to play
even after the competition is decided. Define the concept of a “round” by letting the
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initial serve of A start the first round and letting a new round begin each time A serves.
Let Bi denote the number of points won by B in round i. Note that if the first point of
a round is won by A, then that round ends with B winning 0 points in it. On the other
hand, if B wins the first point in a round then B will continue serving until A wins a
point, showing that the number of points won by B in a round is equal to the number
of times that B serves. Because the number of consecutive serves of B before A wins
a point is geometric with parameter pb, we see that

Bi =
{

0, with probability pa

Geometric(pb), with probability qa

That is,

P(Bi = 0) = pa

P (Bi = k|Bi > 0) = qk−1
b pb, k > 0

Because a new round begins each time A wins a point, it follows that Bi is the num-
ber of points that B wins between the time that A has won i −1 points until A has won
i points. Consequently, B(n) ≡∑n

i=1 Bi is the number of points that B has won at the
moment that A wins its nth point. Noting that the final score will be (N,m),m < M ,
if B(N) = m, let us determine P(B(n) = m) for m > 0. To do so, we condition on the
number of B1, . . . ,Bn that are positive. Calling this number Y , that is,

Y = number of i ≤ n such that Bi > 0

we obtain

P(B(n) = m) =
n∑

r=0

P(B(n) = m|Y = r)P (Y = r)

=
n∑

r=1

P(B(n) = m|Y = r)P (Y = r)

where the last equality followed since m > 0 and so P(B(n) = m|Y = 0) = 0. Because
each of B1, . . . ,Bn is independently positive with probability qa , it follows that Y , the
number of them that are positive, is binomial with parameters n,qa . Consequently,

P(B(n) = m) =
n∑

r=1

P(B(n) = m|Y = r)

(
n

r

)
qr
ap

n−r
a

Now, if r of the variables B1, . . . ,Bn are positive, then B(n) is distributed as the
sum of r independent geometric random variables with parameter pb, which is the
negative binomial distribution of the number of trials until there have been r successes
when each trial is independently a success with probability pb. Hence,

P(B(n) = m|Y = r) =
(

m − 1
r − 1

)
pr

bq
m−r
b
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where we are using the convention that
(
a

b

)= 0 if b > a. This gives

P(B(n) = m) =
n∑

r=1

(
m − 1
r − 1

)
pr

bq
m−r
b

(
n

r

)
qr
ap

n−r
a

= qm
b pn

a

n∑
r=1

(
m − 1
r − 1

)(
n

r

)(
pbqa

qbpa

)r

Thus, we have shown that

P(F = (N,m)) = P(B(N) = m)

= qm
b pN

a

N∑
r=1

(
m − 1
r − 1

)(
N

r

)(
pbqa

qbpa

)r

, 0 < m < M

To determine the probability that the final score will be (n,M),0 < n < N , we
condition on the number of wins that B has at the moment that A wins its nth game to
obtain

P(F = (n,M)) =
∞∑

m=0

P(F = (n,M)|B(n) = m)P (B(n) = m)

=
M−1∑
m=0

P(F = (n,M)|B(n) = m)P (B(n) = m)

Now, given that B has m < M points at the moment that A wins its nth point, in
order for the final score to be (n,M) B must win the next point with A serving and
must then win the final M − m − 1 points on its serve. Hence, P(F = (n,M)|B(n) =
m) = qaq

M−m−1
b , giving that

P(F = (n,M)) =
M−1∑
m=0

qaq
M−m−1
b P (B(n) = m)

= qaq
M−1
b pn

a +
M−1∑
m=1

qaq
M−m−1
b P (B(n) = m)

= qaq
M−1
b pn

a

[
1 +

M−1∑
m=1

n∑
r=1

(
m − 1
r − 1

)(
n

r

)(
pbqa

qbpa

)r
]

,

0 < n < N �

As noted previously, conditional expectations given that Y = y are exactly the same
as ordinary expectations except that all probabilities are computed conditional on the
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event that Y = y. As such, conditional expectations satisfy all the properties of ordi-
nary expectations. For instance, the analog of

E[X] =

⎧⎪⎪⎨
⎪⎪⎩

∑
w

E[X|W = w]P {W = w}, if W is discrete

∫
w

E[X|W = w]fW(w) dw, if W is continuous

is

E[X|Y = y]

=

⎧⎪⎪⎨
⎪⎪⎩

∑
w

E[X|W = w,Y = y]P {W = w|Y = y}, if W is discrete

∫
w

E[X|W = w,Y = y]fW |Y (w|y) dw, if W is continuous

If E[X|Y,W ] is defined to be that function of Y and W that, when Y = y, and W = w,
is equal to E[X|Y = y,W = w], then the preceding can be written as

E[X|Y ] = E
[
E[X|Y,W ]|Y ]

Example 3.37. An automobile insurance company classifies each of its policyhold-
ers as being of one of the types i = 1, . . . , k. It supposes that the numbers of accidents
that a type i policyholder has in successive years are independent Poisson random vari-
ables with mean λi, i = 1, . . . , k. The probability that a newly insured policyholder is
type i is pi,

∑k
i=1 pi = 1. Given that a policyholder had n accidents in her first year,

what is the expected number that she has in her second year? What is the conditional
probability that she has m accidents in her second year?

Solution: Let Ni denote the number of accidents the policyholder has in year
i, i = 1,2. To obtain E[N2|N1 = n], condition on her risk type T .

E[N2|N1 = n] =
k∑

j=1

E[N2|T = j,N1 = n]P {T = j |N1 = n}

=
k∑

j=1

E[N2|T = j ]P {T = j |N1 = n}

=
k∑

j=1

λjP {T = j |N1 = n}

=
∑k

j=1 e−λj λn+1
j pj∑k

j=1 e−λj λn
jpj
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where the final equality used that

P {T = j |N1 = n} = P {T = j,N1 = n}
P {N1 = n}

= P {N1 = n|T = j}P {T = j}∑k
j=1 P {N1 = n|T = j}P {T = j}

= pje
−λj λn

j /n!∑k
j=1 pje

−λj λn
j /n!

The conditional probability that the policyholder has m accidents in year 2 given
that she had n in year 1 can also be obtained by conditioning on her type.

P {N2 = m|N1 = n} =
k∑

j=1

P {N2 = m|T = j,N1 = n}P {T = j |N1 = n}

=
k∑

j=1

e−λj
λm

j

m! P {T = j |N1 = n}

=
∑k

j=1 e−2λj λm+n
j pj

m!∑k
j=1 e−λj λn

jpj

Another way to calculate P {N2 = m|N1 = n} is first to write

P {N2 = m|N1 = n} = P {N2 = m,N1 = n}
P {N1 = n}

and then determine both the numerator and denominator by conditioning on T . This
yields

P {N2 = m|N1 = n} =
∑k

j=1 P {N2 = m,N1 = n|T = j}pj∑k
j=1 P {N1 = n|T = j}pj

=
∑k

j=1 e−λj
λm

j

m! e
−λj

λn
j

n! pj∑k
j=1 e−λj

λn
j

n! pj

=
∑k

j=1 e−2λj λm+n
j pj

m!∑k
j=1 e−λj λn

jpj

�

3.6 Some Applications
3.6.1 A List Model

Consider n elements—e1, e2, . . . , en—that are initially arranged in some ordered list.
At each unit of time a request is made for one of these elements—ei being requested,
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independently of the past, with probability Pi . After being requested the element is
then moved to the front of the list. That is, for instance, if the present ordering is
e1, e2, e3, e4 and e3 is requested, then the next ordering is e3, e1, e2, e4.

We are interested in determining the expected position of the element requested
after this process has been in operation for a long time. However, before computing
this expectation, let us note two possible applications of this model. In the first we
have a stack of reference books. At each unit of time a book is randomly selected and
is then returned to the top of the stack. In the second application, we have a computer
receiving requests for elements stored in its memory. The request probabilities for the
elements may not be known, so to reduce the average time it takes the computer to
locate the element requested (which is proportional to the position of the requested el-
ement if the computer locates the element by starting at the beginning and then going
down the list), the computer is programmed to replace the requested element at the
beginning of the list.

To compute the expected position of the element requested, we start by condition-
ing on which element is selected. This yields

E[ position of element requested ]

=
n∑

i=1

E[ position|ei is selected ]Pi

=
n∑

i=1

E[ position of ei |ei is selected ]Pi

=
n∑

i=1

E[ position of ei ]Pi (3.15)

where the final equality used that the position of ei and the event that ei is selected are
independent because, regardless of its position, ei is selected with probability Pi .

Now,

position of ei = 1 +
∑
j �=i

Ij

where

Ij =
{

1, if ej precedes ei

0, otherwise

and so,

E[ position of ei ] = 1 +
∑
j �=i

E[Ij ]

= 1 +
∑
j �=i

P {ej precedes ei} (3.16)
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Figure 3.1 A graph.

To compute P {ej precedes ei}, note that ej will precede ei if the most recent request
for either of them was for ej . But given that a request is for either ei or ej , the proba-
bility that it is for ej is

P {ej |ei or ej } = Pj

Pi + Pj

and, thus,

P {ej precedes ei} = Pj

Pi + Pj

Hence, from Eqs. (3.15) and (3.16) we see that

E{position of element requested} = 1 +
n∑

i=1

Pi

∑
j �=i

Pj

Pi + Pj

This list model will be further analyzed in Section 4.8, where we will assume a dif-
ferent reordering rule—namely, that the element requested is moved one closer to the
front of the list as opposed to being moved to the front of the list as assumed here.
We will show there that the average position of the requested element is less under the
one-closer rule than it is under the front-of-the-line rule.

3.6.2 A Random Graph

A graph consists of a set V of elements called nodes and a set A of pairs of elements
of V called arcs. A graph can be represented graphically by drawing circles for nodes
and drawing lines between nodes i and j whenever (i, j) is an arc. For instance if
V = {1,2,3,4} and A = {(1,2), (1,4), (2,3), (1,2), (3,3)}, then we can represent
this graph as shown in Fig. 3.1. Note that the arcs have no direction (a graph in which
the arcs are ordered pairs of nodes is called a directed graph); and that in the figure
there are multiple arcs connecting nodes 1 and 2, and a self-arc (called a self-loop)
from node 3 to itself.

We say that there exists a path from node i to node j , i �= j , if there exists a se-
quence of nodes i, i1, . . . , ik, j such that (i, i1), (i1, i2), . . . , (ik, j) are all arcs. If there
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Figure 3.2 A disconnected graph.

Figure 3.3

is a path between each of the
(
n
2

)
distinct pair of nodes we say that the graph is con-

nected. The graph in Fig. 3.1 is connected but the graph in Fig. 3.2 is not. Consider
now the following graph where V = {1,2, . . . , n} and A = {(i,X(i)), i = 1, . . . , n}
where the X(i) are independent random variables such that

P {X(i) = j} = 1

n
, j = 1,2, . . . , n

In other words from each node i we select at random one of the n nodes (including
possibly the node i itself) and then join node i and the selected node with an arc. Such
a graph is commonly referred to as a random graph.

We are interested in determining the probability that the random graph so obtained
is connected. As a prelude, starting at some node—say, node 1—let us follow the se-
quence of nodes, 1, X(1),X2(1), . . ., where Xn(1) = X(Xn−1(1)); and define N to
equal the first k such that Xk(1) is not a new node. In other words,

N = 1st k such that Xk(1) ∈ {1,X(1), . . . ,Xk−1(1)}
We can represent this as shown in Fig. 3.3 where the arc from XN−1(1) goes back to
a node previously visited.

To obtain the probability that the graph is connected we first condition on N to
obtain

P {graph is connected} =
n∑

k=1

P {connected|N = k}P {N = k} (3.17)

Now, given that N = k, the k nodes 1,X(1), . . . ,Xk−1(1) are connected to each other,
and there are no other arcs emanating out of these nodes. In other words, if we re-
gard these k nodes as being one supernode, the situation is the same as if we had one
supernode and n − k ordinary nodes with arcs emanating from the ordinary nodes—
each arc going into the supernode with probability k/n. The solution in this situation
is obtained from Lemma 3.1 by taking r = n − k.
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Figure 3.4 The situation given that i of the r arcs are into the supernode.

Lemma 3.1. Given a random graph consisting of nodes 0,1, . . . , r and r arcs—namely,
(i, Yi), i = 1, . . . , r , where

Yi =

⎧⎪⎪⎨
⎪⎪⎩

j with probability
1

r + k
, j = 1, . . . , r

0 with probability
k

r + k

then

P {graph is connected} = k

r + k

(In other words, for the preceding graph there are r + 1 nodes—r ordinary nodes
and one supernode. Out of each ordinary node an arc is chosen. The arc goes to the
supernode with probability k/(r +k) and to each of the ordinary ones with probability
1/(r + k). There is no arc emanating out of the supernode.)

Proof. The proof is by induction on r . As it is true when r = 1 for any k, assume it true
for all values less than r . Now, in the case under consideration, let us first condition
on the number of arcs (j, Yj ) for which Yj = 0. This yields

P {connected}

=
r∑

i=0

P {connected|i of the Yj = 0}
( r

i

)( k

r + k

)i (
r

r + k

)r−i

(3.18)

Now, given that exactly i of the arcs are into the supernode (see Fig. 3.4), the situa-
tion for the remaining r − i arcs which do not go into the supernode is the same as if
we had r − i ordinary nodes and one supernode with an arc going out of each of the
ordinary nodes—into the supernode with probability i/r and into each ordinary node
with probability 1/r . But by the induction hypothesis the probability that this would
lead to a connected graph is i/r .
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Hence,

P {connected|i of the Yj = 0} = i

r

and from Eq. (3.18)

P {connected} =
r∑

i=0

i

r

( r

i

)( k

r + k

)i (
r

r + k

)r−i

= 1

r
E

[
binomial

(
r,

k

r + k

)]

= k

r + k

which completes the proof of the lemma. �

Hence, as the situation given N =k is exactly as described by Lemma 3.1 when
r = n − k, we see that, for the original graph,

P {graph is connected|N = k} = k

n

and, from Eq. (3.17),

P {graph is connected} = E(N)

n
(3.19)

To compute E(N) we use the identity

E(N) =
∞∑
i=1

P {N � i} (3.20)

Now, the event {N � i} occurs if the nodes 1,X(1), . . . ,Xi−1(1) are all distinct.
Hence,

P {N ≥ i} = (n − 1)

n

(n − 2)

n
· · · (n − i + 1)

n

= (n − 1)!
(n − i)!ni−1

and so, from Eqs. (3.19) and (3.20),

P {graph is connected} = (n − 1)!
n∑

i=1

1

(n − i)!ni

= (n − 1)!
nn

n−1∑
j=0

nj

j ! (by j = n − i) (3.21)
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We can also use Eq. (3.21) to obtain a simple approximate expression for the prob-
ability that the graph is connected when n is large. To do so, we first note that if X is
a Poisson random variable with mean n, then

P {X < n} = e−n
n−1∑
j=0

nj

j !

Since a Poisson random variable with mean n can be regarded as being the sum of
n independent Poisson random variables each with mean 1, it follows from the cen-
tral limit theorem that for n large such a random variable has approximately a normal
distribution and as such has probability 1

2 of being less than its mean. That is, for n

large,

P {X < n} ≈ 1
2

and so for n large,

n−1∑
j=0

nj

j ! ≈ en

2

Hence, from Eq. (3.21), for n large,

P {graph is connected} ≈ en(n − 1)!
2nn

By employing an approximation due to Stirling that states that for n large,

n! ≈ nn+1/2e−n
√

2π

we see that, for n large,

P {graph is connected} ≈ e

√
π

2(n − 1)

(
n − 1

n

)n

and as

lim
n→∞

(
n − 1

n

)n

= lim
n→∞

(
1 − 1

n

)n

= e−1

we see that, for n large,

P {graph is connected} ≈
√

π

2(n − 1)

Now a graph is said to consist of r connected components if its nodes can be par-
titioned into r subsets so that each of the subsets is connected and there are no arcs
between nodes in different subsets. For instance, the graph in Fig. 3.5 consists of three
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Figure 3.5 A graph having three connected components.

connected components—namely, {1, 2, 3}, {4, 5}, and {6}. Let C denote the number
of connected components of our random graph and let

Pn(i) = P {C = i}

where we use the notation Pn(i) to make explicit the dependence on n, the number
of nodes. Since a connected graph is by definition a graph consisting of exactly one
component, from Eq. (3.21) we have

Pn(1) = P {C = 1}

= (n − 1)!
nn

n−1∑
j=0

nj

j ! (3.22)

To obtain Pn(2), the probability of exactly two components, let us first fix attention on
some particular node—say, node 1. In order that a given set of k −1 other nodes—say,
nodes 2, . . . , k—will along with node 1 constitute one connected component, and the
remaining n − k a second connected component, we must have

(i) X(i) ∈ {1,2, . . . , k}, for all i = 1, . . . , k.
(ii) X(i) ∈ {k + 1, . . . , n}, for all i = k + 1, . . . , n.

(iii) The nodes 1,2, . . . , k form a connected subgraph.
(iv) The nodes k + 1, . . . , n form a connected subgraph.

The probability of the preceding occurring is clearly

(
k

n

)k (
n − k

n

)n−k

Pk(1)Pn−k(1)

and because there are
(
n−1
k−1

)
ways of choosing a set of k − 1 nodes from the nodes 2

through n, we have

Pn(2) =
n−1∑
k=1

(
n − 1

k − 1

)(
k

n

)k (
n − k

n

)n−k

Pk(1)Pn−k(1)
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Figure 3.6 A cycle.

and so Pn(2) can be computed from Eq. (3.22). In general, the recursive formula for
Pn(i) is given by

Pn(i) =
n−i+1∑
k=1

(
n − 1

k − 1

)(
k

n

)k (
n − k

n

)n−k

Pk(1)Pn−k(i − 1)

To compute E[C], the expected number of connected components, first note that every
connected component of our random graph must contain exactly one cycle (a cy-
cle is a set of arcs of the form (i, i1), (i1, i2), . . . , (ik−1, ik), (ik, i) for distinct nodes
i, i1, . . . , ik). For example, Fig. 3.6 depicts a cycle.

The fact that every connected component of our random graph must contain exactly
one cycle is most easily proved by noting that if the connected component consists of r

nodes, then it must also have r arcs and, hence, must contain exactly one cycle (why?).
Thus, we see that

E[C] = E[number of cycles]

= E

[∑
S

I (S)

]

=
∑
S

E[I (S)]

where the sum is over all subsets S ⊂ {1,2, . . . , n} and

I (S) =
{

1, if the nodes in S are all the nodes of a cycle
0, otherwise

Now, if S consists of k nodes, say 1, . . . , k, then

E[I (S)] = P {1,X(1), . . . ,Xk−1(1) are all distinct and contained in

1, . . . , k and Xk(1) = 1}
= k − 1

n

k − 2

n
· · · 1

n

1

n
= (k − 1)!

nk



Conditional Probability and Conditional Expectation 159

Hence, because there are
(
n
k

)
subsets of size k we see that

E[C] =
n∑

k=1

(
n

k

)
(k − 1)!

nk

3.6.3 Uniform Priors, Polya’s Urn Model, and Bose–Einstein
Statistics

Suppose that n independent trials, each of which is a success with probability p, are
performed. If we let X denote the total number of successes, then X is a binomial
random variable such that

P {X = k|p} =
(

n

k

)
pk(1 − p)n−k, k = 0,1, . . . , n

However, let us now suppose that whereas the trials all have the same success probabil-
ity p, its value is not predetermined but is chosen according to a uniform distribution
on (0, 1). (For instance, a coin may be chosen at random from a huge bin of coins
representing a uniform spread over all possible values of p, the coin’s probability of
coming up heads. The chosen coin is then flipped n times.) In this case, by condition-
ing on the actual value of p, we have

P {X = k} =
∫ 1

0
P {X = k|p}f (p) dp

=
∫ 1

0

(
n

k

)
pk(1 − p)n−k dp

Now, it can be shown that∫ 1

0
pk(1 − p)n−kdp = k!(n − k)!

(n + 1)! (3.23)

and thus

P {X = k} =
(

n

k

)
k!(n − k)!
(n + 1)!

= 1

n + 1
, k = 0,1, . . . , n (3.24)

In other words, each of the n + 1 possible values of X is equally likely.
As an alternate way of describing the preceding experiment, let us compute the

conditional probability that the (r + 1)st trial will result in a success given a total of k

successes (and r − k failures) in the first r trials.

P {(r + 1)st trial is a success|k successes in first r}
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= P {(r + 1)st is a success, k successes in first r trials}
P {k successes in first r trials}

=
∫ 1

0 P {(r + 1)st is a success, k in first r|p} dp

1/(r + 1)

= (r + 1)

∫ 1

0

(
r

k

)
pk+1(1 − p)r−k dp

= (r + 1)

(
r

k

)
(k + 1)!(r − k)!

(r + 2)! by Eq. (3.23)

= k + 1

r + 2
(3.25)

That is, if the first r trials result in k successes, then the next trial will be a success
with probability (k + 1)/(r + 2).

It follows from Eq. (3.25) that an alternative description of the stochastic process of
the successive outcomes of the trials can be described as follows: There is an urn that
initially contains one white and one black ball. At each stage a ball is randomly drawn
and is then replaced along with another ball of the same color. Thus, for instance, if
of the first r balls drawn, k were white, then the urn at the time of the (r + 1)th draw
would consist of k + 1 white and r − k + 1 black, and thus the next ball would be
white with probability (k + 1)/(r + 2). If we identify the drawing of a white ball with
a successful trial, then we see that this yields an alternate description of the original
model. This latter urn model is called Polya’s urn model.

Remarks. (i) In the special case when k = r , Eq. (3.25) is sometimes called La-
place’s rule of succession, after the French mathematician Pierre de Laplace. In
Laplace’s era, this “rule” provoked much controversy, for people attempted to
employ it in diverse situations where its validity was questionable. For instance,
it was used to justify such propositions as “If you have dined twice at a restaurant
and both meals were good, then the next meal also will be good with probability
3
4 ,” and “Since the sun has risen the past 1,826,213 days, so will it rise tomorrow
with probability 1,826,214/1,826,215.” The trouble with such claims resides in
the fact that it is not at all clear the situation they are describing can be modeled
as consisting of independent trials having a common probability of success that
is itself uniformly chosen.

(ii) In the original description of the experiment, we referred to the successive tri-
als as being independent, and in fact they are independent when the success
probability is known. However, when p is regarded as a random variable, the
successive outcomes are no longer independent because knowing whether an
outcome is a success or not gives us some information about p, which in turn
yields information about the other outcomes.

The preceding can be generalized to situations in which each trial has more than
two possible outcomes. Suppose that n independent trials, each resulting in one of m

possible outcomes 1, . . . ,m, with respective probabilities p1, . . . , pm are performed. If
we let Xi denote the number of type i outcomes that result in the n trials, i = 1, . . . ,m,
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then the vector X1, . . . ,Xm will have the multinomial distribution given by

P {X1 = x1,X2 = x2, . . . ,Xm = xm|p} = n!
x1! · · ·xm!p

x1
1 p

x2
2 · · ·pxm

m

where x1, . . . , xm is any vector of nonnegative integers that sum to n. Now let us
suppose that the vector p = (p1, . . . , pm) is not specified, but instead is chosen by a
“uniform” distribution. Such a distribution would be of the form

f (p1, . . . , pm) =
{
c, 0 � pi � 1, i = 1, . . . ,m,

∑m
1 pi = 1

0, otherwise

The preceding multivariate distribution is a special case of what is known as the
Dirichlet distribution, and it is not difficult to show, using the fact that the distribution
must integrate to 1, that c = (m − 1)!.

The unconditional distribution of the vector X is given by

P {X1 = x1, . . . ,Xm = xm} =
∫∫

· · ·
∫

P {X1 = x1, . . . ,Xm = xm|p1, . . . , pm}

× f (p1, . . . , pm)dp1 · · ·dpm = (m − 1)!n!
x1! · · ·xm!

∫∫
· · ·
∫

0�pi�1∑m
1 pi=1

p
x1
1 · · ·pxm

m dp1 · · ·dpm

Now it can be shown that∫∫
· · ·
∫

0�pi�1∑m
1 pi=1

p
x1
1 · · ·pxm

m dp1 · · ·dpm = x1! · · ·xm!(∑m
1 xi + m − 1

)! (3.26)

and thus, using the fact that
∑m

1 xi = n, we see that

P {X1 = x1, . . . ,Xm = xm} = n!(m − 1)!
(n + m − 1)!

=
(

n + m − 1
m − 1

)−1

(3.27)

Hence, all of the
(
n+m−1
m−1

)
possible outcomes (there are

(
n+m−1
m−1

)
possible nonnegative

integer valued solutions of x1 + · · · + xm = n) of the vector (X1, . . . ,Xm) are equally
likely. The probability distribution given by Eq. (3.27) is sometimes called the Bose–
Einstein distribution.

To obtain an alternative description of the foregoing, let us compute the conditional
probability that the (n + 1)st outcome is of type j if the first n trials have resulted in
xi type i outcomes, i = 1, . . . ,m,

∑m
1 xi = n. This is given by

P {(n + 1)st is j |xi type i in first n, i = 1, . . . ,m}
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= P {(n + 1)st is j, xi type i in first n, i = 1, . . . ,m}
P {xi type i in first n, i = 1, . . . ,m}

=
n!(m − 1)!
x1! · · ·xm!

∫∫
· · ·
∫

p
x1
1 · · ·pxj +1

j · · ·pxm
m dp1 · · ·dpm(

n + m − 1
m − 1

)−1

where the numerator is obtained by conditioning on the p vector and the denominator
is obtained by using Eq. (3.27). By Eq. (3.26), we have

P {(n + 1)st is j |xi type i in first n, i = 1, . . . ,m}

=
(xj + 1)n!(m − 1)!

(n + m)!
(m − 1)!n!

(n + m − 1)!
= xj + 1

n + m
(3.28)

Using Eq. (3.28), we can now present an urn model description of the stochastic pro-
cess of successive outcomes. Namely, consider an urn that initially contains one of
each of m types of balls. Balls are then randomly drawn and are replaced along with
another of the same type. Hence, if in the first n drawings there have been a total of
xj type j balls drawn, then the urn immediately before the (n+ 1)st draw will contain
xj + 1 type j balls out of a total of m + n, and so the probability of a type j on the
(n + 1)st draw will be given by Eq. (3.28).

Remark. Consider a situation where n particles are to be distributed at random among
m possible regions; and suppose that the regions appear, at least before the experiment,
to have the same physical characteristics. It would thus seem that the most likely dis-
tribution for the number of particles that fall into each of the regions is the multinomial
distribution with pi ≡ 1/m. (This, of course, would correspond to each particle, inde-
pendent of the others, being equally likely to fall in any of the m regions.) Physicists
studying how particles distribute themselves observed the behavior of such particles
as photons and atoms containing an even number of elementary particles. However,
when they studied the resulting data, they were amazed to discover that the observed
frequencies did not follow the multinomial distribution but rather seemed to follow
the Bose–Einstein distribution. They were amazed because they could not imagine a
physical model for the distribution of particles that would result in all possible out-
comes being equally likely. (For instance, if 10 particles are to distribute themselves
between two regions, it hardly seems reasonable that it is just as likely that both re-
gions will contain 5 particles as it is that all 10 will fall in region 1 or that all 10 will
fall in region 2.)

However, from the results of this section we now have a better understanding of the
cause of the physicists’ dilemma. In fact, two possible hypotheses present themselves.
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First, it may be that the data gathered by the physicists were actually obtained under
a variety of different situations, each having its own characteristic p vector that gave
rise to a uniform spread over all possible p vectors. A second possibility (suggested by
the urn model interpretation) is that the particles select their regions sequentially and a
given particle’s probability of falling in a region is roughly proportional to the fraction
of the landed particles that are in that region. (In other words, the particles presently
in a region provide an “attractive” force on elements that have not yet landed.)

3.6.4 Mean Time for Patterns

Let X = (X1,X2, . . .) be a sequence of independent and identically distributed dis-
crete random variables such that

pi = P {Xj = i}
For a given subsequence, or pattern, i1, . . . , in let T = T (i1, . . . , in) denote the
number of random variables that we need to observe until the pattern appears.
For instance, if the subsequence of interest is 3,5,1 and the sequence is X =
(5,3,1,3,5,3,5,1,6,2, . . .) then T = 8. We want to determine E[T ].

To begin, let us consider whether the pattern has an overlap, where we say that the
pattern i1, i2, . . . , in has an overlap if for some k,1 ≤ k < n, the sequence of its final
k elements is the same as that of its first k elements. That is, it has an overlap if for
some 1 ≤ k < n,

(in−k+1, . . . , in) = (i1, . . . , ik), k < n

For instance, the pattern 3,5,1 has no overlaps, whereas the pattern 3,3,3 does.

Case 1. The pattern has no overlaps.
In this case we will argue that T will equal j + n if and only if the pattern does not
occur within the first j values, and the next n values are i1, . . . , in.
That is,

T = j + n ⇔ {T > j, (Xj+1, . . . ,Xj+n) = (i1, . . . , in)} (3.29)

To verify (3.29), note first that T = j + n clearly implies both that T > j and that
(Xj+1, . . . ,Xj+n) = (i1, . . . , in). On the other hand, suppose that

T > j and (Xj+1, . . . ,Xj+n) = (i1, . . . , in) (3.30)

Let k < n. Because (i1, . . . , ik) �= (in−k+1, . . . , in), it follows that T �= j + k. But
(3.30) implies that T ≤ j + n, so we can conclude that T = j + n. Thus we have
verified (3.29).

Using (3.29), we see that

P {T = j + n} = P {T > j, (Xj+1, . . . ,Xj+n) = (i1, . . . , in)}
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However, whether T > j is determined by the values X1, . . . ,Xj , and is thus inde-
pendent of Xj+1, . . . ,Xj+n. Consequently,

P {T = j + n} = P {T > j}P {(Xj+1, . . . ,Xj+n) = (i1, . . . , in)}
= P {T > j}p

where

p = pi1pi2 · · ·pin

Summing both sides of the preceding over all j yields

1 =
∞∑

j=0

P {T = j + n} = p

∞∑
j=0

P {T > j} = pE[T ]

or

E[T ] = 1

p

Case 2. The pattern has overlaps.
For patterns having overlaps there is a simple trick that will enable us to obtain E[T ]
by making use of the result for nonoverlapping patterns. To make the analysis more
transparent, consider a specific pattern, say P = (3,5,1,3,5). Let x be a value
that does not appear in the pattern, and let Tx denote the time until the pattern
Px = (3,5,1,3,5, x) appears. That is, Tx is the time of occurrence of the new pat-
tern that puts x at the end of the original pattern. Because x did not appear in the
original pattern it follows that the new pattern has no overlaps; thus,

E[Tx] = 1

pxp

where p = ∏n
j=1pij = p2

3p
2
5p1. Because the new pattern can occur only after the

original one, write

Tx = T + A

where T is the time at which the pattern P = (3,5,1,3,5) occurs, and A is the
additional time after the occurrence of the pattern P until Px occurs. Also, let
E[Tx |i1, . . . ir ] denote the expected additional time after time r until the pattern Px

appears given that the first r data values are i1, . . . , ir . Conditioning on X, the next
data value after the occurrence of the pattern (3,5,1,3,5), gives

E[A|X = i] =

⎧⎪⎪⎨
⎪⎪⎩

1 + E[Tx |3,5,1], if i = 1
1 + E[Tx |3], if i = 3
1, if i = x

1 + E[Tx], if i �= 1,3, x
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Therefore,

E[Tx] = E[T ] + E[A]
= E[T ] + 1 + E[Tx |3,5,1]p1 + E[Tx |3]p3

+ E[Tx](1 − p1 − p3 − px) (3.31)

But

E[Tx] = E[T (3,5,1)] + E[Tx |3,5,1]
giving

E[Tx |3,5,1] = E[Tx] − E[T (3,5,1)]
Similarly,

E[Tx |3] = E[Tx] − E[T (3)]
Substituting back into Eq. (3.31) gives

pxE[Tx] = E[T ] + 1 − p1E[T (3,5,1)] − p3E[T (3)]
But, by the result in the nonoverlapping case,

E[T (3,5,1)] = 1

p3p5p1
, E[T (3)] = 1

p3

yielding the result

E[T ] = pxE[Tx] + 1

p3p5
= 1

p
+ 1

p3p5

For another illustration of the technique, consider the expected number of trials
until n consecutive successes occur, when the trials are independent with each being
a success with probability α. That is, with 1 signifying a success and 0 a failure, we
want E[T ] for the pattern P = (1,1, . . . ,1). To find E[T ], let P0 be the nonoverlap-
ping pattern P0 = (1,1, . . . ,1,0), and let T0 be its occurrence time. With A and X as
previously defined, we have

E[A|X = i] =
{

1 + E[A], if i = 1
1, if i = 0

Hence,

E[A] = 1 + αE[A] or E[A] = 1

1 − α

Using that E[T0] = 1
αn(1−α)

, we obtain that

E[T ] = E[T0] − E[A]
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= 1 − αn

αn(1 − α)

= 1 + α + . . . + αn−1

αn

=
n∑

i=1

(1/α)i

The mean occurrence time of any overlapping pattern P = (i1, . . . , in) can be ob-
tained by the preceding method. Namely, let Tx be the time until the nonoverlapping
pattern Px = (i1, . . . , in, x) occurs; then use the identity

E[Tx] = E[T ] + E[A]
to relate E[T ] and E[Tx] = 1

p px
; then condition on the next data value after P occurs

to obtain an expression for E[A] in terms of quantities of the form

E[Tx |i1, . . . , ir ] = E[Tx] − E[T (i1, . . . , ir )]
If (i1, . . . , ir ) is nonoverlapping, use the nonoverlapping result to obtain
E[T (i1, . . . , ir )]; otherwise, repeat the process on the subpattern (i1, . . . , ir ).

Remark. We can utilize the preceding technique even when the pattern i1, . . . , in in-
cludes all the distinct data values. For instance, in coin tossing the pattern of interest
might be h, t, h. Even in such cases, we should let x be a data value that is not in the
pattern and use the preceding technique (even though px = 0). Because px will appear
only in the final answer in the expression pxE[Tx] = px

pxp
, by interpreting this fraction

as 1/p we obtain the correct answer. (A rigorous approach, yielding the same result,
would be to reduce one of the positive pi by ε, take px = ε, solve for E[T ], and then
let ε go to 0.) �

When the pattern does not have any overlap we can also derive both the variance
of its occurrence time T as well as a recursive formula for its probability mass func-
tion. So let T be number of observations until the nonoverlapping pattern i1, . . . , in
appears. Let p = pi1 · · ·pin . Start with the identity

P(T = j + n) = P(T > j)p, j ≥ 0

Using that E[T ] =∑∞
j=0(j + n)P (T = j + n), the preceding yields that

E[T ] = p

∞∑
j=0

jP (T > j) + np

∞∑
j=0

P(T > j)

= p

∞∑
j=0

jP (T > j) + npE[T ] (3.32)
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Now,

∞∑
j=0

jP (T > j) =
∞∑
i=1

(i − 1)P (T > i − 1)

=
∞∑
i=1

iP (T ≥ i) −
∞∑
i=1

P(T ≥ i)

= E[T 2] + E[T ]
2

− E[T ]

= E[T 2] − E[T ]
2

where the next to last equality used Corollary 2.3. Substituting the preceding into
(3.32) gives

2E[T ] = p(E[T 2] − E[T ]) + 2npE[T ]
or, equivalently

E[T 2] = E[T ]( 2

p
− (2n − 1))

= 2

p2
− 2n − 1

p
(since E[T ] = 1/p)

Hence,

Var(T ) = 1

p2
− 2n − 1

p
,

where p = pi1 · · ·pin .
To derive a recursive formula for P(T = j + n) when the pattern i1, . . . , in does

not have any overlap, again start with the identity

P(T = j + n) = P(T > j)p, j ≥ 0

Replacing j by j − 1 in the preceding gives

P(T = j − 1 + n) = P(T > j − 1)p, j ≥ 1

Subtraction yields

P(T = j − 1 + n) − P(T = j + n) = P(T = j)p, j ≥ 1

or, equivalently

P(T = j + n) = P(T = j − 1 + n) − pP (T = j), j ≥ 1
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Starting with P(T = n) = p, we can use the preceding to compute P(T = j + n) for
any given value j . For instance, suppose T is the number of observations to observe
the pattern 1,1,0. With p = p2

1p0, using that n = 3 we have

P(T = 3) = p

P (T = 4) = P(T = 3) − pP (T = 1) = p

P (T = 5) = P(T = 4) − pP (T = 2) = p

P (T = 6) = P(T = 5) − pP (T = 3) = p − p2

P(T = 7) = P(T = 6) − pP (T = 4) = p − p2 − p2 = p − 2p2

P(T = 8) = P(T = 7) − pP (T = 5) = p − 2p2 − p2 = p − 3p2

P(T = 9) = P(T = 8) − pP (T = 6) = p − 3p2 − p(p − p2)

= p − 4p2 + p3

P(T = 10) = P(T = 9) − pP (T = 7) = p − 4p2 + p3 − p(p − 2p2)

= p − 5p2 + 3p3

and so on.

3.6.5 The k-Record Values of Discrete Random Variables

Let X1,X2, . . . be independent and identically distributed random variables whose set
of possible values is the positive integers, and let P {X = j}, j � 1, denote their com-
mon probability mass function. Suppose that these random variables are observed in
sequence, and say that Xn is a k-record value if

Xi � Xn for exactly k of the values i, i = 1, . . . , n

That is, the nth value in the sequence is a k-record value if exactly k of the first n val-
ues (including Xn) are at least as large as it. Let Rk denote the ordered set of k-record
values.

It is a rather surprising result that not only do the sequences of k-record values have
the same probability distributions for all k, these sequences are also independent of
each other. This result is known as Ignatov’s theorem.

Theorem 3.1 (Ignatov’s Theorem). Rk, k � 1, are independent and identically dis-
tributed random vectors.

Proof. Define a series of subsequences of the data sequence X1,X2, . . . by letting the
ith subsequence consist of all data values that are at least as large as i, i � 1. For
instance, if the data sequence is

2,5,1,6,9,8,3,4,1,5,7,8,2,1,3,4,2,5,6,1, . . .

then the subsequences are as follows:

� 1 : 2,5,1,6,9,8,3,4,1,5,7,8,2,1,3,4,2,5,6,1, . . .
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� 2 : 2,5,6,9,8,3,4,5,7,8,2,3,4,2,5,6, . . .

� 3 : 5,6,9,8,3,4,5,7,8,3,4,5,6, . . .

and so on.
Let Xi

j be the j th element of subsequence i. That is, Xi
j is the j th data value that is

at least as large as i. An important observation is that i is a k-record value if and only
if Xi

k = i. That is, i will be a k-record value if and only if the kth value to be at least
as large as i is equal to i. (For instance, for the preceding data, since the fifth value to
be at least as large as 3 is equal to 3 it follows that 3 is a five-record value.) Now, it is
not difficult to see that, independent of which values in the first subsequence are equal
to 1, the values in the second subsequence are independent and identically distributed
according to the mass function

P {value in second subsequence = j} = P {X = j |X � 2}, j � 2

Similarly, independent of which values in the first subsequence are equal to 1 and
which values in the second subsequence are equal to 2, the values in the third subse-
quence are independent and identically distributed according to the mass function

P {value in third subsequence = j} = P {X = j |X � 3}, j � 3

and so on. It therefore follows that the events {Xi
j = i}, i � 1, j � 1, are independent

and

P {i is a k-record value} = P {Xi
k = i} = P {X = i|X � i}

It now follows from the independence of the events {Xi
k = i}, i � 1, and the fact that

P {i is a k-record value} does not depend on k, that Rk has the same distribution for
all k � 1. In addition, it follows from the independence of the events {Xi

k = 1}, that
the random vectors Rk, k � 1, are also independent. �

Suppose now that the Xi, i � 1 are independent finite-valued random variables with
probability mass function

pi = P {X = i}, i = 1, . . . ,m

and let

T = min{n : Xi �Xn for exactly k of the values i, i = 1, . . . , n}
denote the first k-record index. We will now determine its mean.

Proposition 3.2. Let λi = pi/
∑m

j=i pj , i = 1, . . . ,m. Then

E[T ] = k + (k − 1)

m−1∑
i=1

λi
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Proof. To begin, suppose that the observed random variables X1,X2, . . . take on one
of the values i, i + 1, . . . ,m with respective probabilities

P {X = j} = pj

pi + · · · + pm

, j = i, . . . ,m

Let Ti denote the first k-record index when the observed data have the preceding mass
function, and note that since each data value is at least i it follows that the k-record
value will equal i, and Ti will equal k, if Xk = i. As a result,

E[Ti |Xk = i] = k

On the other hand, if Xk > i then the k-record value will exceed i, and so all data val-
ues equal to i can be disregarded when searching for the k-record value. In addition,
since each data value greater than i will have probability mass function

P {X = j |X > i} = pj

pi+1 + · · · + pm

, j = i + 1, . . . ,m

it follows that the total number of data values greater than i that need be observed until
a k-record value appears has the same distribution as Ti+1. Hence,

E[Ti |Xk > i] = E[Ti+1 + Ni |Xk > i]
where Ti+1 is the total number of variables greater than i that we need observe to ob-
tain a k-record, and Ni is the number of values equal to i that are observed in that time.
Now, given that Xk > i and that Ti+1 = n (n � k) it follows that the time to observe
Ti+1 values greater than i has the same distribution as the number of trials to obtain n

successes given that trial k is a success and that each trial is independently a success
with probability 1 − pi/

∑
j�i pj = 1 − λi . Thus, since the number of trials needed

to obtain a success is a geometric random variable with mean 1/(1 − λi), we see that

E[Ti |Ti+1,Xk > i] = 1 + Ti+1 − 1

1 − λi

= Ti+1 − λi

1 − λi

Taking expectations gives

E[Ti |Xk > i] = E

[
Ti+1 − λi

1 − λi

∣∣∣∣Xk > i

]
= E[Ti+1] − λi

1 − λi

Thus, upon conditioning on whether Xk = i, we obtain

E[Ti] = E[Ti |Xk = i]λi + E[Ti |Xk > i](1 − λi)

= (k − 1)λi + E[Ti+1]
Starting with E[Tm] = k, the preceding gives

E[Tm−1] = (k − 1)λm−1 + k
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E[Tm−2] = (k − 1)λm−2 + (k − 1)λm−1 + k

= (k − 1)

m−1∑
j=m−2

λj + k

E[Tm−3] = (k − 1)λm−3 + (k − 1)

m−1∑
j=m−2

λj + k

= (k − 1)

m−1∑
j=m−3

λj + k

In general,

E[Ti] = (k − 1)

m−1∑
j=i

λj + k

and the result follows since T = T1. �

3.6.6 Left Skip Free Random Walks

Let Xi, i ≥ 1 be independent and identically distributed random variables. Let Pj =
P(Xi = j) and suppose that

∞∑
j=−1

Pj = 1

That is, the possible values of the Xi are −1,0,1, . . . . If we take

S0 = 0, Sn =
n∑

i=1

Xi

then the sequence of random variables Sn,n ≥ 0 is called a left skip free random walk.
(It is called left skip free because Sn can decrease from Sn−1 by at most 1.)

For an application consider a gambler who makes a sequence of identical bets, for
which he can lose at most 1 on each bet. Then if Xi represents the gambler’s winnings
on bet i, then Sn would represent his total winnings after the first n bets.

Suppose that the gambler is playing in an unfair game, in the sense that E[Xi] < 0,
and let v = −E[Xi]. Also, let T0 = 0, and for k > 0, let T−k denote the number of bets
until the gambler is losing k. That is,

T−k = min{n : Sn = −k}
It should be noted that T−k < ∞; that is, the random walk will eventually hit −k. This
is so because, by the strong law of large numbers, Sn/n → E[Xi] < 0, which implies
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that Sn → −∞. We are interested in determining E[T−k] and Var(T−k). (It can be
shown that both are finite when E[Xi] < 0.)

The key to the analysis is to note that the number of bets until one’s fortune de-
creases by k can be expressed as the number of bets until it decreases by 1 (namely,
T−1), plus the additional number of bets after the decrease is 1 until the total decrease
is 2 (namely, T−2 − T−1), plus the additional number of bets after the decrease is 2
until it is 3 (namely, T−3 − T−2), and so on. That is,

T−k = T−1 +
k∑

j=2

(
T−j − T−(j−1)

)

However, because the results of all bets are independent and identically distributed, it
follows that T−1, T−2 − T−1, T−3 − T−2, . . . , T−k − T−(k−1) are all independent and
identically distributed. (That is, starting at any instant, the number of additional bets
until the gambler’s fortune is one less than it is at that instant is independent of prior
results and has the same distribution as T−1.) Consequently, the mean and variance of
T−k , the sum of these k random variables, are

E[T−k] = kE[T−1]
and

Var(T−k) = kVar(T−1)

We now compute the mean and variance of T−1 by conditioning on X1, the result
of the initial bet. Now, given X1, T−1 is equal to 1 plus the number of bets it takes
until the gambler’s fortune decreases by X1 + 1 from what it is after the initial bet.
Consequently, given X1, T−1 has the same distribution as 1 + T−(X1+1). Hence,

E[T−1|X1] = 1 + E[T−(X1+1)] = 1 + (X1 + 1)E[T−1]
Var(T−1|X1) = Var(T−(X1+1)) = (X1 + 1)Var(T−1)

Consequently,

E[T−1] = E [E[T−1|X1]] = 1 + (−v + 1)E[T−1]
or

E[T−1] = 1

v

which shows that

E[T−k] = k

v
(3.33)

Similarly, with σ 2 = Var(X1), the conditional variance formula yields

Var(T−1) = E[(X1 + 1)Var(T−1)] + Var(X1E[T−1])
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= (1 − v)Var(T−1) + (E[T−1])2σ 2

= (1 − v)Var(T−1) + σ 2

v2

thus showing that

Var(T−1) = σ 2

v3

and yielding the result

Var(T−k) = kσ 2

v3
(3.34)

There are many interesting results about skip free random walks. For instance, the
hitting time theorem.

Proposition 3.3 (The Hitting Time Theorem).

P(T−k = n) = k

n
P (Sn = −k), n ≥ 1

Proof. The proof is by induction on n. Now, when n = 1 we must prove

P(T−k = 1) = kP (S1 = −k)

However, the preceding is true when k = 1 because

P(T−1 = 1) = P(S1 = −1) = P−1

and it is true when k > 1 because

P(T−k = 1) = 0 = P(S1 = −k), k > 1

Thus the result is true when n = 1. So assume that for a fixed value n > 1 and all k >

0

P(T−k = n − 1) = k

n − 1
P(Sn−1 = −k) (3.35)

Now consider P(T−k = n). Conditioning on X1 yields

P(T−k = n) =
∞∑

j=−1

P(T−k = n|X1 = j)Pj

Now, if the gambler wins j on his initial bet, then the first time that he is down k will
occur after bet n if the first time that his cumulative losses after the initial gamble is
k + j occurs after an additional n − 1 bets. That is,

P(T−k = n|X1 = j) = P(T−(k+j) = n − 1)
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Consequently,

P(T−k = n) =
∞∑

j=−1

P(T−k = n|X1 = j)Pj

=
∞∑

j=−1

P(T−(k+j) = n − 1)Pj

=
∞∑

j=−1

k + j

n − 1
P {Sn−1 = −(k + j)}Pj

where the last equality follows by Induction Hypothesis (3.35). Using that

P(Sn = −k|X1 = j) = P {Sn−1 = −(k + j)}

the preceding yields

P(T−k = n) =
∞∑

j=−1

k + j

n − 1
P(Sn = −k|X1 = j)Pj

=
∞∑

j=−1

k + j

n − 1
P(Sn = −k,X1 = j)

=
∞∑

j=−1

k + j

n − 1
P(X1 = j |Sn = −k)P (Sn = −k)

= P(Sn = −k)

⎧⎨
⎩ k

n − 1

∞∑
j=−1

P(X1 = j |Sn = −k)

+ 1

n − 1

∞∑
j=−1

jP (X1 = j |Sn = −k)

⎫⎬
⎭

= P(Sn = −k)

{
k

n − 1
+ 1

n − 1
E[X1|Sn = −k]

}
(3.36)

However,

−k = E[Sn|Sn = −k]
= E[X1 + · · · + Xn|Sn = −k]

=
n∑

i=1

E[Xi |Sn = −k]

= nE[X1|Sn = −k]
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where the final equation follows because X1, . . . ,Xn are independent and identically
distributed and thus the distribution of Xi given that X1 + · · · + Xn = −k is the same
for all i. Hence,

E[X1|Sn = −k] = − k

n

Substituting the preceding into (3.36) gives

P(T−k = n) = P(Sn = −k)

(
k

n − 1
− 1

n − 1

k

n

)
= k

n
P (Sn = −k)

and completes the proof. �

Suppose that after n bets the gambler is down k. Then the conditional probability
that this is the first time he has ever been down k is

P(T−k = n|Sn = −k) = P(T−k = n,Sn = −k)

P (Sn = −k)

= P(T−k = n)

P (Sn = −k)

= k

n
(by the hitting time theorem)

Let us suppose for the remainder of this section that −v = E[X] < 0. Combining
the hitting time theorem with our previously derived result about E[T−k] gives the
following:

k

v
= E[T−k]

=
∞∑

n=1

nP (T−k = n)

=
∞∑

n=1

kP (Sn = −k)

where the final equality used the hitting time theorem. Hence,

∞∑
n=1

P(Sn = −k) = 1

v

Let In be an indicator variable for the event that Sn = −k. That is, let

In =
{

1, if Sn = −k

0, if Sn �= −k
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and note that

total time gambler’s fortune is −k =
∞∑

n=1

In

Taking expectations gives

E[total time gambler’s fortune is −k] =
∞∑

n=1

P(Sn = −k) = 1

v
(3.37)

Now, let α be the probability that the random walk is always negative after the initial
movement. That is,

α = P(Sn < 0 for all n ≥ 1)

To determine α note that each time the gambler’s fortune is −k the probability that it
will never again hit −k (because all cumulative winnings starting at that time are neg-
ative) is α. Hence, the number of times that the gambler’s fortune is −k is a geometric
random variable with parameter α, and thus has mean 1/α. Consequently, from (3.37)

α = v

Let us now define L−k to equal the last time that the random walk hits −k. Because
L−k will equal n if Sn = −k and the sequence of cumulative winnings from time n

onwards is always negative, we see that

P(L−k = n) = P(Sn = −k)α = P(Sn = −k)v

Hence,

E[L−k] =
∞∑

n=0

nP (L−k = n)

= v

∞∑
n=0

nP (Sn = −k)

= v

∞∑
n=0

n
n

k
P (T−k = n) by the hitting time theorem

= v

k

∞∑
n=0

n2P(T−k = n)

= v

k
E[T 2−k]

= v

k
{E2[T−k] + Var(T−k)}

= k

v
+ σ 2

v2
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3.7 An Identity for Compound Random Variables
Let X1,X2, . . . be a sequence of independent and identically distributed random vari-
ables, and let Sn =∑n

i=1 Xi be the sum of the first n of them, n ≥ 0, where S0 = 0.
Recall that if N is a nonnegative integer valued random variable that is independent
of the sequence X1,X2, . . . then

SN =
N∑

i=1

Xi

is said to be a compound random variable, with the distribution of N called the com-
pounding distribution. In this subsection we will first derive an identity involving such
random variables. We will then specialize to where the Xi are positive integer valued
random variables, prove a corollary of the identity, and then use this corollary to de-
velop a recursive formula for the probability mass function of SN , for a variety of
common compounding distributions.

To begin, let M be a random variable that is independent of the sequence
X1,X2, . . ., and which is such that

P {M = n} = nP {N = n}
E[N ] , n = 1,2, . . .

Proposition 3.4 (The Compound Random Variable Identity). For any function h

E[SNh(SN)] = E[N ]E[X1h(SM)]

Proof.

E[SNh(SN)] = E

[
N∑

i=1

Xih(SN)

]

=
∞∑

n=0

E

[
N∑

i=1

Xih(SN)|N = n

]
P {N = n}

(by conditioning on N)

=
∞∑

n=0

E

[
n∑

i=1

Xih(Sn)|N = n

]
P {N = n}

=
∞∑

n=0

E

[
n∑

i=1

Xih(Sn)

]
P {N = n}

(by independence of N and X1, . . . ,Xn)

=
∞∑

n=0

n∑
i=1

E
[
Xih(Sn)

]
P {N = n}
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Now, because X1, . . . ,Xn are independent and identically distributed, and h(Sn) =
h(X1 + · · · + Xn) is a symmetric function of X1, . . . ,Xn, it follows that the distribu-
tion of Xih(Sn) is the same for all i = 1, . . . , n. Therefore, continuing the preceding
string of equalities yields

E[SNh(SN)] =
∞∑

n=0

nE[X1h(Sn)]P {N = n}

= E[N ]
∞∑

n=0

E[X1h(Sn)]P {M = n} (definition of M)

= E[N ]
∞∑

n=0

E[X1h(Sn)|M = n]P {M = n}

(independence of M and X1, . . . ,Xn)

= E[N ]
∞∑

n=0

E[X1h(SM)|M = n]P {M = n}

= E[N ]E[X1h(SM)]
which proves the proposition. �

Suppose now that the Xi are positive integer valued random variables, and let

αj = P {X1 = j}, j > 0

The successive values of P {SN = k} can often be obtained from the following corol-
lary to Proposition 3.4.

Corollary 3.5.

P {SN = 0} = P {N = 0}

P {SN = k} = 1

k
E[N ]

k∑
j=1

jαjP {SM−1 = k − j}, k > 0

Proof. For k fixed, let

h(x) =
{

1, if x = k

0, if x �= k

and note that SNh(SN) is either equal to k if SN = k or is equal to 0 otherwise. There-
fore,

E[SNh(SN)] = kP {SN = k}
and the compound identity yields

kP {SN = k} = E[N ]E[X1h(SM)]
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= E[N ]
∞∑

j=1

E[X1h(SM))|X1 = j ]αj

= E[N ]
∞∑

j=1

jE[h(SM)|X1 = j ]αj

= E[N ]
∞∑

j=1

jP {SM = k|X1 = j}αj (3.38)

Now,

P {SM = k|X1 = j} = P

{
M∑
i=1

Xi = k |X1 = j

}

= P

{
j +

M∑
i=2

Xi = k |X1 = j

}

= P

{
j +

M∑
i=2

Xi = k

}

= P

{
j +

M−1∑
i=1

Xi = k

}

= P {SM−1 = k − j}
The next to last equality followed because X2, . . . ,XM and X1, . . . ,XM−1 have the
same joint distribution; namely that of M − 1 independent random variables that all
have the distribution of X1, where M − 1 is independent of these random variables.
Thus the proof follows from Eq. (3.38). �

When the distributions of M − 1 and N are related, the preceding corollary can be
a useful recursion for computing the probability mass function of SN , as is illustrated
in the following subsections.

3.7.1 Poisson Compounding Distribution

If N is the Poisson distribution with mean λ, then

P {M − 1 = n} = P {M = n + 1}
= (n + 1)P {N = n + 1}

E[N ]
= 1

λ
(n + 1)e−λ λn+1

(n + 1)!
= e−λ λn

n!
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Consequently, M − 1 is also Poisson with mean λ. Thus, with

Pn = P {SN = n}
the recursion given by Corollary 3.5 can be written

P0 = e−λ

Pk = λ

k

k∑
j=1

jαjPk−j , k > 0

Remark. When the Xi are identically 1, the preceding recursion reduces to the well-
known identity for a Poisson random variable having mean λ:

P {N = 0} = e−λ

P {N = n} = λ

n
P {N = n − 1}, n ≥ 1

Example 3.38. Let S be a compound Poisson random variable with λ = 4 and

P {Xi = i} = 1/4, i = 1,2,3,4

Let us use the recursion given by Corollary 3.5 to determine P {S = 5}. It gives

P0 = e−λ = e−4

P1 = λα1P0 = e−4

P2 = λ

2
(α1P1 + 2α2P0) = 3

2
e−4

P3 = λ

3
(α1P2 + 2α2P1 + 3α3P0) = 13

6
e−4

P4 = λ

4
(α1P3 + 2α2P2 + 3α3P1 + 4α4P0) = 73

24
e−4

P5 = λ

5
(α1P4 + 2α2P3 + 3α3P2 + 4α4P1 + 5α5P0) = 381

120
e−4 �

3.7.2 Binomial Compounding Distribution

Suppose that N is a binomial random variable with parameters r and p. Then,

P {M − 1 = n} = (n + 1)P {N = n + 1}
E[N ]

= n + 1

rp

(
r

n + 1

)
pn+1(1 − p)r−n−1

= n + 1

rp

r!
(r − 1 − n)!(n + 1)!p

n+1(1 − p)r−1−n
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= (r − 1)!
(r − 1 − n)!n!p

n(1 − p)r−1−n

Thus, M − 1 is a binomial random variable with parameters r − 1,p.
Fixing p, let N(r) be a binomial random variable with parameters r and p, and let

Pr(k) = P {SN(r) = k}

Then, Corollary 3.5 yields

Pr(0) = (1 − p)r

Pr(k) = rp

k

k∑
j=1

jαjPr−1(k − j), k > 0

For instance, letting k equal 1, then 2, and then 3 gives

Pr(1) = rpα1(1 − p)r−1

Pr(2) = rp

2
[α1Pr−1(1) + 2α2Pr−1(0)]

= rp

2

[
(r − 1)pα2

1(1 − p)r−2 + 2α2(1 − p)r−1]
Pr(3) = rp

3

[
α1Pr−1(2) + 2α2Pr−1(1) + 3α3Pr−1(0)

]
= α1rp

3

(r − 1)p

2

[
(r − 2)pα2

1(1 − p)r−3 + 2α2(1 − p)r−2]
+ 2α2rp

3
(r − 1)pα1(1 − p)r−2 + α3rp(1 − p)r−1

3.7.3 A Compounding Distribution Related to the Negative
Binomial

Suppose, for a fixed value of p,0 < p < 1, the compounding random variable N has
a probability mass function

P {N = n} =
(

n + r − 1
r − 1

)
pr(1 − p)n, n = 0,1, . . .

Such a random variable can be thought of as being the number of failures that occur
before a total of r successes have been amassed when each trial is independently a
success with probability p. (There will be n such failures if the rth success occurs on
trial n + r . Consequently, N + r is a negative binomial random variable with parame-
ters r and p.) Using that the mean of the negative binomial random variable N + r is
E[N + r] = r/p, we see that E[N ] = r

1−p
p

.
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Regard p as fixed, and call N an NB(r) random variable. The random variable
M − 1 has probability mass function

P {M − 1 = n} = (n + 1)P {N = n + 1}
E[N ]

= (n + 1)p

r(1 − p)

(
n + r

r − 1

)
pr(1 − p)n+1

= (n + r)!
r!n! pr+1(1 − p)n

=
(

n + r

r

)
pr+1(1 − p)n

In other words, M − 1 is an NB(r + 1) random variable.
Letting, for an NB(r) random variable N ,

Pr(k) = P {SN = k}
Corollary 3.5 yields

Pr(0) = pr

Pr(k) = r(1 − p)

kp

k∑
j=1

jαjPr+1(k − j), k > 0

Thus,

Pr(1) = r(1 − p)

p
α1Pr+1(0)

= rpr(1 − p)α1,

Pr(2) = r(1 − p)

2p

[
α1Pr+1(1) + 2α2Pr+1(0)

]
= r(1 − p)

2p

[
α2

1(r + 1)pr+1(1 − p) + 2α2p
r+1],

Pr(3) = r(1 − p)

3p

[
α1Pr+1(2) + 2α2Pr+1(1) + 3α3Pr+1(0)

]
and so on.

Exercises
1. If X and Y are both discrete, show that

∑
x pX|Y (x|y) = 1 for all y such that

pY (y) > 0.
*2. Let X1 and X2 be independent geometric random variables having the same

parameter p. Guess the value of

P {X1 = i|X1 + X2 = n}
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Hint: Suppose a coin having probability p of coming up heads is continu-
ally flipped. If the second head occurs on flip number n, what is the conditional
probability that the first head was on flip number i, i = 1, . . . , n − 1?
Verify your guess analytically.

3. The joint probability mass function of X and Y,p(x, y), is given by

p(1,1) = 1
9 , p(2,1) = 1

3 , p(3,1) = 1
9 ,

p(1,2) = 1
9 , p(2,2) = 0, p(3,2) = 1

18 ,

p(1,3) = 0, p(2,3) = 1
6 , p(3,3) = 1

9

Compute E[X|Y = i] for i = 1,2,3.
4. In Exercise 3, are the random variables X and Y independent?
5. An urn contains three white, six red, and five black balls. Six of these balls are

randomly selected from the urn. Let X and Y denote respectively the number
of white and black balls selected. Compute the conditional probability mass
function of X given that Y = 3. Also compute E[X|Y = 1].

*6. Repeat Exercise 5 but under the assumption that when a ball is selected its
color is noted, and it is then replaced in the urn before the next selection is
made.

7. Suppose p(x, y, z), the joint probability mass function of the random variables
X,Y , and Z, is given by

p(1,1,1) = 1
8 , p(2,1,1) = 1

4 ,

p(1,1,2) = 1
8 , p(2,1,2) = 3

16 ,

p(1,2,1) = 1
16 , p(2,2,1) = 0,

p(1,2,2) = 0, p(2,2,2) = 1
4

What is E[X|Y = 2]? What is E[X|Y = 2,Z = 1]?
8. If X,Y are jointly continuous, with X having density fX, and Y having density

fY , show that

fX(x) =
∫ ∞

−∞
fX|Y (x|y)fY (y)dy

9. If Z1 and Z2 are independent standard normal random variables, find the con-
ditional density function of Z1 given that Z1 + Z2 = x.

10. Let X1, . . . ,Xn be independent uniform (0,1) random variables. Find the con-
ditional density of X1 given that it is not the smallest of the n values.

11. The joint density of X and Y is

f (x, y) = (y2 − x2)

8
e−y, 0 < y < ∞, −y � x � y

Show that E[X|Y = y] = 0.
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12. The joint density of X and Y is given by

f (x, y) = e−x/ye−y

y
, 0 < x < ∞, 0 < y < ∞

Show E[X|Y = y] = y.
*13. Let X be exponential with mean 1/λ; that is,

fX(x) = λe−λx, 0 < x < ∞
Find E[X|X > 1].

14. Let X be uniform over (0, 1). Find E[X|X < 1
2 ].

15. The joint density of X and Y is given by

f (x, y) = e−y

y
, 0 < x < y, 0 < y < ∞

Compute E[X2|Y = y].
16. The random variables X and Y are said to have a bivariate normal distribution

if their joint density function is given by

f (x, y) = 1

2πσxσy

√
1 − ρ2

exp

{
− 1

2(1 − ρ2)

×
[(

x − μx

σx

)2

− 2ρ(x − μx)(y − μy)

σxσy

+
(

y − μy

σy

)2
]}

for −∞ < x < ∞,−∞ < y < ∞, where σx,σy,μx,μy , and ρ are constants
such that −1 < ρ < 1, σx > 0, σy > 0,−∞ < μx < ∞,−∞ < μy < ∞.
(a) Show that X is normally distributed with mean μx and variance σ 2

x , and
Y is normally distributed with mean μy and variance σ 2

y .
(b) Show that the conditional density of X given that Y = y is normal with

mean μx + (ρσx/σy)(y − μy) and variance σ 2
x (1 − ρ2).

The quantity ρ is called the correlation between X and Y . It can be shown
that

ρ = E[(X − μx)(Y − μy)]
σxσy

= Cov(X,Y )

σxσy

17. Let Y be a gamma random variable with parameters (s,α). That is, its density is

fY (y) = Ce−αyys−1, y > 0

where C is a constant that does not depend on y. Suppose also that the condi-
tional distribution of X given that Y = y is Poisson with mean y. That is,
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P {X = i|Y = y} = e−yyi/i!, i � 0

Show that the conditional distribution of Y given that X = i is the gamma
distribution with parameters (s + i, α + 1).

18. Let X1, . . . ,Xn be independent random variables having a common distribu-
tion function that is specified up to an unknown parameter θ . Let T = T (X)

be a function of the data X = (X1, . . . ,Xn). If the conditional distribution of
X1, . . . ,Xn given T (X) does not depend on θ then T (X) is said to be a suf-
ficient statistic for θ . In the following cases, show that T (X) =∑n

i=1Xi is a
sufficient statistic for θ .
(a) The Xi are normal with mean θ and variance 1.
(b) The density of Xi is f (x) = θe−θx, x > 0.
(c) The mass function of Xi is p(x) = θx(1 − θ)1−x, x = 0,1,0 < θ < 1.
(d) The Xi are Poisson random variables with mean θ .

*19. Prove that if X and Y are jointly continuous, then

E[X] =
∫ ∞

−∞
E[X|Y = y]fY (y) dy

20. There are 3 coins which when flipped come up heads, respectively, with prob-
abilities 1/4, 1/2, 3/4. One of these coins is randomly chosen and continually
flipped.
(a) Find the expected number of flips until the first head.
(b) Find the mean number of heads in the first 8 flips.

21. Consider Example 3.13, which refers to a miner trapped in a mine. Let N de-
note the total number of doors selected before the miner reaches safety. Also,
let Ti denote the travel time corresponding to the ith choice, i � 1. Again let
X denote the time when the miner reaches safety.
(a) Give an identity that relates X to N and the Ti .
(b) What is E[N ]?
(c) What is E[TN ]?
(d) What is E[∑N

i=1 Ti |N = n]?
(e) Using the preceding, what is E[X]?

22. Suppose that independent trials, each of which is equally likely to have any of
m possible outcomes, are performed until the same outcome occurs k consec-
utive times. If N denotes the number of trials, show that

E[N ] = mk − 1

m − 1

Some people believe that the successive digits in the expansion of π =
3.14159 . . . are “uniformly” distributed. That is, they believe that these digits
have all the appearance of being independent choices from a distribution that
is equally likely to be any of the digits from 0 through 9. Possible evidence
against this hypothesis is the fact that starting with the 24,658,601st digit there
is a run of nine successive 7s. Is this information consistent with the hypothesis
of a uniform distribution?
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To answer this, we note from the preceding that if the uniform hypothesis were
correct, then the expected number of digits until a run of nine of the same value
occurs is

(109 − 1)/9 = 111,111,111

Thus, the actual value of approximately 25 million is roughly 22 percent of the
theoretical mean. However, it can be shown that under the uniformity assump-
tion the standard deviation of N will be approximately equal to the mean. As a
result, the observed value is approximately 0.78 standard deviations less than
its theoretical mean and is thus quite consistent with the uniformity assump-
tion.

*23. A coin having probability p of coming up heads is successively flipped until
two of the most recent three flips are heads. Let N denote the number of flips.
(Note that if the first two flips are heads, then N = 2.) Find E[N ].

24. A coin, having probability p of landing heads, is continually flipped until at
least one head and one tail have been flipped.
(a) Find the expected number of flips needed.
(b) Find the expected number of flips that land on heads.
(c) Find the expected number of flips that land on tails.
(d) Repeat part (a) in the case where flipping is continued until a total of at

least two heads and one tail have been flipped.
25. Independent trials, resulting in one of the outcomes 1, 2, 3 with respective

probabilities p1,p2,p3,
∑3

i=1 pi = 1, are performed.
(a) Let N denote the number of trials needed until the initial outcome has

occurred exactly 3 times. For instance, if the trial results are 3, 2, 1, 2, 3,
2, 3 then N = 7. Find E[N ].

(b) Find the expected number of trials needed until both outcome 1 and out-
come 2 have occurred.

26. You have two opponents with whom you alternate play. Whenever you play A,
you win with probability pA; whenever you play B, you win with probability
pB , where pB > pA. If your objective is to minimize the expected number of
games you need to play to win two in a row, should you start with A or with
B?

Hint: Let E[Ni] denote the mean number of games needed if you initially
play i. Derive an expression for E[NA] that involves E[NB ]; write down the
equivalent expression for E[NB ] and then subtract.

27. A coin that comes up heads with probability p is continually flipped until the
pattern T, T, H appears. (That is, you stop flipping when the most recent flip
landed heads, and the two immediately preceding it landed tails.) Let X denote
the number of flips made, and find E[X].

28. Polya’s urn model supposes that an urn initially contains r red and b blue balls.
At each stage a ball is randomly selected from the urn and is then returned
along with m other balls of the same color. Let Xk be the number of red balls
drawn in the first k selections.
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(a) Find E[X1].
(b) Find E[X2].
(c) Find E[X3].
(d) Conjecture the value of E[Xk], and then verify your conjecture by a con-

ditioning argument.
(e) Give an intuitive proof for your conjecture.

Hint: Number the initial r red and b blue balls, so the urn contains one type
i red ball, for each i = 1, . . . , r; as well as one type j blue ball, for each
j = 1, . . . , b. Now suppose that whenever a red ball is chosen it is returned
along with m others of the same type, and similarly whenever a blue ball is
chosen it is returned along with m others of the same type. Now, use a symme-
try argument to determine the probability that any given selection is red.

29. Two players take turns shooting at a target, with each shot by player i hitting
the target with probability pi, i = 1,2. Shooting ends when two consecutive
shots hit the target. Let μi denote the mean number of shots taken when player
i shoots first, i = 1,2.
(a) Find μ1 and μ2.
(b) Let hi denote the mean number of times that the target is hit when player

i shoots first, i = 1,2. Find h1 and h2.
30. Let Xi, i � 0 be independent and identically distributed random variables with

probability mass function

p(j) = P {Xi = j}, j = 1, . . . ,m,

m∑
j=1

P(j) = 1

Find E[N ], where N = min{n > 0 : Xn = X0}.
31. Each element in a sequence of binary data is either 1 with probability p or 0

with probability 1 − p. A maximal subsequence of consecutive values having
identical outcomes is called a run. For instance, if the outcome sequence is
1,1,0,1,1,1,0, the first run is of length 2, the second is of length 1, and the
third is of length 3.
(a) Find the expected length of the first run.
(b) Find the expected length of the second run.

32. Independent trials, each resulting in success with probability p, are performed.
(a) Find the expected number of trials needed for there to have been both at

least n successes and at least m failures.

Hint: Is it useful to know the result of the first n + m trials?
(b) Find the expected number of trials needed for there to have been either at

least n successes or at least m failures.

Hint: Make use of the result from part (a).
33. Suppose that N,X1,X2 . . . are independent, with N being a Poisson random

variable with mean λ, and E[Xi] = i, i ≥ 1. Find E[∑N
i=1 Xi].



188 Introduction to Probability Models

34. Let H(n) be the mean number of comparison values needed by quicksort to
sort n values when each comparison value is equally likely to be any of its
possibilities. Derive a recursion for H(n), and show H(n) = 2n−1

3 , n ≥ 2.
35. If Ri denotes the random amount that is earned in period i, then

∑∞
i=1 βi−1Ri ,

where 0 < β < 1 is a specified constant, is called the total discounted reward
with discount factor β. Let T be a geometric random variable with parameter
1 − β that is independent of the Ri . Show that the expected total discounted
reward is equal to the expected total (undiscounted) reward earned by time T .
That is, show that

E

[ ∞∑
i=1

βi−1Ri

]
= E

[
T∑

i=1

Ri

]

36. A set of n dice is thrown. All those that land on six are put aside, and the others
are again thrown. This is repeated until all the dice have landed on six. Let N

denote the number of throws needed. (For instance, suppose that n = 3 and that
on the initial throw exactly two of the dice land on six. Then the other die will
be thrown, and if it lands on six, then N = 2.) Let mn = E[N ].
(a) Derive a recursive formula for mn and use it to calculate mi, i = 2,3,4

and to show that m5 ≈ 13.024.
(b) Let Xi denote the number of dice rolled on the ith throw. Find

E[∑N
i=1 Xi].

37. Consider n multinomial trials, where each trial independently results in out-
come i with probability pi,

∑k
i=1 pi = 1. With Xi equal to the number of trials

that result in outcome i, find E[X1|X2 > 0].
38. Let p0 = P {X = 0} and suppose that 0 < p0 < 1. Let μ = E[X] and σ 2 =

Var(X).
(a) Find E[X|X �= 0].
(b) Find Var(X|X �= 0).

39. A manuscript is sent to a typing firm consisting of typists A,B, and C. If it is
typed by A, then the number of errors made is a Poisson random variable with
mean 2.6; if typed by B, then the number of errors is a Poisson random vari-
able with mean 3; and if typed by C, then it is a Poisson random variable with
mean 3.4. Let X denote the number of errors in the typed manuscript. Assume
that each typist is equally likely to do the work.
(a) Find E[X].
(b) Find Var(X).

*40. Suppose Y is uniformly distributed on (0,1), and that the conditional distribu-
tion of X given that Y = y is uniform on (0, y). Find E[X] and Var(X).

41. A deck of n cards, numbered 1 through n, is randomly shuffled so that all n!
possible permutations are equally likely. The cards are then turned over one at
a time until card number 1 appears. These upturned cards constitute the first
cycle. We now determine (by looking at the upturned cards) the lowest num-
bered card that has not yet appeared, and we continue to turn the cards face up
until that card appears. This new set of cards represents the second cycle. We
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again determine the lowest numbered of the remaining cards and turn the cards
until it appears, and so on until all cards have been turned over. Let mn denote
the mean number of cycles.
(a) Derive a recursive formula for mn in terms of mk, k = 1, . . . , n − 1.
(b) Starting with m0 = 0, use the recursion to find m1,m2,m3, and m4.
(c) Conjecture a general formula for mn.
(d) Prove your formula by induction on n. That is, show it is valid for n = 1,

then assume it is true for any of the values 1, . . . , n− 1 and show that this
implies it is true for n.

(e) Let Xi equal 1 if one of the cycles ends with card i, and let it equal 0
otherwise, i =1, . . . , n. Express the number of cycles in terms of these
Xi .

(f) Use the representation in part (e) to determine mn.
(g) Are the random variables X1, . . . ,Xn independent? Explain.
(h) Find the variance of the number of cycles.

42. A prisoner is trapped in a cell containing three doors. The first door leads to
a tunnel that returns him to his cell after two days of travel. The second leads
to a tunnel that returns him to his cell after three days of travel. The third door
leads immediately to freedom.
(a) Assuming that the prisoner will always select doors 1, 2, and 3 with prob-

abilities 0.5, 0.3, 0.2, what is the expected number of days until he reaches
freedom?

(b) Assuming that the prisoner is always equally likely to choose among
those doors that he has not used, what is the expected number of days
until he reaches freedom? (In this version, for instance, if the prisoner
initially tries door 1, then when he returns to the cell, he will now select
only from doors 2 and 3.)

(c) For parts (a) and (b) find the variance of the number of days until the
prisoner reaches freedom.

*43. Workers 1, . . . , n are currently idle. Suppose that each worker, independently,
has probability p of being eligible for a job, and that a job is equally likely to
be assigned to any of the workers that are eligible for it (if none are eligible,
the job is rejected). Find the probability that the next job is assigned to worker
1.

*44. If Xi, i = 1, . . . , n are independent normal random variables, with Xi having
mean μi and variance 1, then the random variable

∑n
i=1 X2

i is said to be a
noncentral chi-squared random variable.
(a) if X is a normal random variable having mean μ and variance 1 show, for

|t | < 1/2, that the moment generating function of X2 is

(1 − 2t)−1/2e
tμ2

1−2t

(b) Derive the moment generating function of the noncentral chi-squared ran-
dom variable

∑n
i=1 X2

i , and show that its distribution depends on the
sequence of means μ1, . . . ,μn only through the sum of their squares.
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As a result, we say that
∑n

i=1 X2
i is a noncentral chi-squared random

variable with parameters n and θ =∑n
i=1 μ2

i .
(c) If all μi = 0, then

∑n
i=1 X2

i is called a chi-squared random variable with
n degrees of freedom. Determine, by differentiating its moment generat-
ing function, its expected value and variance.

(d) Let K be a Poisson random variable with mean θ/2, and suppose that
conditional on K = k, the random variable W has a chi-squared distri-
bution with n + 2k degrees of freedom. Show, by computing its moment
generating function, that W is a noncentral chi-squared random variable
with parameters n and θ .

(e) Find the expected value and variance of a noncentral chi-squared random
variable with parameters n and θ .

*45. For P(Y ∈ A) > 0, show that

E[X|Y ∈ A] = E[XI {Y ∈ A}]
P(Y ∈ A)

where I {B} is the indicator variable of the event B, equal to 1 if B occurs and
to 0 otherwise.

46. The number of customers entering a store on a given day is Poisson distributed
with mean λ = 10. The amount of money spent by a customer is uniformly
distributed over (0,100). Find the mean and variance of the amount of money
that the store takes in on a given day.

47. An individual traveling on the real line is trying to reach the origin. However,
the larger the desired step, the greater is the variance in the result of that step.
Specifically, whenever the person is at location x, he next moves to a location
having mean 0 and variance βx2. Let Xn denote the position of the individual
after having taken n steps. Supposing that X0 = x0, find
(a) E[Xn];
(b) Var(Xn).

48. (a) Show that

Cov(X,Y ) = Cov(X,E[Y |X])

(b) Suppose, that, for constants a and b,

E[Y |X] = a + bX

Show that

b = Cov(X,Y )/Var(X)

*49. If E[Y |X] = 1, show that

Var(X Y) � Var(X)
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50. Suppose that we want to predict the value of a random variable X by using
one of the predictors Y1, . . . , Yn, each of which satisfies E[Yi |X] = X. Show
that the predictor Yi that minimizes E[(Yi − X)2] is the one whose variance is
smallest.

Hint: Compute Var(Yi) by using the conditional variance formula.
51. A and B play a series of games with A winning each game with probability

p. The overall winner is the first player to have won two more games than the
other.
(a) Find the probability that A is the overall winner.
(b) Find the expected number of games played.

52. Suppose that N , the number of flips made of a coin that comes up heads with
probability p, is a geometric random variable with parameter α, independent
of the results of the flips. Let A be the event that all flips land heads.
(a) Find P(A) by conditioning on N .
(b) Find P(A) by conditioning on the result of the first flip.

53. Each contestant is equally likely to win. Jean will enter the contest. The num-
ber of other contestants is a Poisson with mean λ. Find the probability that Jean
wins.

54. Each applicant has a score. If there are a total of n applicants then each appli-
cant whose score is above sn is accepted, where s1 = 0.2, s2 = 0.4, sn = 0.5,
n ≥ 3. Suppose the scores of the applicants are independent uniform (0,1) ran-
dom variables and are independent of N , the number of applicants, which is
Poisson distributed with mean 2. Let X denote the number of applicants that
are accepted. Derive expressions for
(a) P(X = 0).
(b) E[X].

*55. Suppose X is a Poisson random variable with mean λ. The parameter λ is itself
a random variable whose distribution is exponential with mean 1. Show that
P {X = n} = ( 1

2 )n+1.
56. Independent trials, each resulting in a success with probability p, are per-

formed until k consecutive successful trials have occurred. Let X be the total
number of successes in these trials, and let Pn = P(X = n).
(a) Find Pk .
(b) Derive a recursive equation for the Pn,n ≥ k, by imagining that the trials

continue forever and conditioning on the time of the first failure.
(c) Verify your answer in part (a) by solving the recursion for Pk .
(d) When p = 0.6, k = 3, find P8.

57. In the preceding problem let Mk = E[X]. Derive a recursive equation for Mk

and then solve.

Hint: Start by writing Xk = Xk−1 + Ak−1,k , where Xi is the total number of
successes attained up to the first time there have been i consecutive successes,
and Ak−1,k is the additional number of successes after there have been k − 1
successes in a row until there have been k successes in a row.
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58. Data indicate that the number of traffic accidents in Berkeley on a rainy day is
a Poisson random variable with mean 9, whereas on a dry day it is a Poisson
random variable with mean 3. Let X denote the number of traffic accidents
tomorrow. If it will rain tomorrow with probability 0.6, find
(a) E[X];
(b) P {X = 0};
(c) Var(X).

59. The number of storms in the upcoming rainy season is Poisson distributed but
with a parameter value that is uniformly distributed over (0,5). That is, � is
uniformly distributed over (0,5), and given that � = λ, the number of storms
is Poisson with mean λ. Find the probability there are at least three storms this
season.

*60. Suppose that the conditional distribution of N , given that Y = y, is Poisson
with mean y. Further suppose that Y is a gamma random variable with param-
eters (r, λ), where r is a positive integer. That is, suppose that

P(N = n|Y = y) = e−y yn

n!
and

fY (y) = λe−λy(λy)r−1

(r − 1)! , y > 0

(a) Find E[N ].
(b) Find Var(N).
(c) Find P(N = n)

(d) Using (c), argue that N is distributed as the total number of failures before
the rth success when each trial is independently a success with probabil-
ity p = λ

1+λ
.

61. Suppose each new coupon collected is, independent of the past, a type i coupon
with probability pi . A total of n coupons is to be collected. Let Ai be the event
that there is at least one type i in this set. For i �= j , compute P(AiAj ) by
(a) conditioning on Ni , the number of type i coupons in the set of n coupons;
(b) conditioning on Fi , the first time a type i coupon is collected;
(c) using the identity P(Ai ∪ Aj) = P(Ai) + P(Aj ) − P(AiAj ).

*62. Two players alternate flipping a coin that comes up heads with probability p.
The first one to obtain a head is declared the winner. We are interested in the
probability that the first player to flip is the winner. Before determining this
probability, which we will call f (p), answer the following questions.
(a) Do you think that f (p) is a monotone function of p? If so, is it increasing

or decreasing?
(b) What do you think is the value of limp→1 f (p)?
(c) What do you think is the value of limp→0 f (p)?
(d) Find f (p).
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63. Suppose in Exercise 29 that the shooting ends when the target has been hit
twice. Let mi denote the mean number of shots needed for the first hit when
player i shoots first, i = 1,2. Also, let Pi, i = 1,2, denote the probability that
the first hit is by player 1, when player i shoots first.
(a) Find m1 and m2.
(b) Find P1 and P2.
For the remainder of the problem, assume that player 1 shoots first.
(c) Find the probability that the final hit was by 1.
(d) Find the probability that both hits were by 1.
(e) Find the probability that both hits were by 2.
(f) Find the mean number of shots taken.

64. A,B, and C are evenly matched tennis players. Initially A and B play a set,
and the winner then plays C. This continues, with the winner always playing
the waiting player, until one of the players has won two sets in a row. That
player is then declared the overall winner. Find the probability that A is the
overall winner.

65. Suppose there are n types of coupons, and that the type of each new coupon
obtained is independent of past selections and is equally likely to be any of the
n types. Suppose one continues collecting until a complete set of at least one
of each type is obtained.
(a) Find the probability that there is exactly one type i coupon in the final

collection.

Hint: Condition on T , the number of types that are collected before the first
type i appears.
(b) Find the expected number of types that appear exactly once in the final

collection.
66. A and B roll a pair of dice in turn, with A rolling first. A’s objective is to obtain

a sum of 6, and B’s is to obtain a sum of 7. The game ends when either player
reaches his or her objective, and that player is declared the winner.
(a) Find the probability that A is the winner.
(b) Find the expected number of rolls of the dice.
(c) Find the variance of the number of rolls of the dice.

67. The number of red balls in an urn that contains n balls is a random variable
that is equally likely to be any of the values 0,1, . . . , n. That is,

P {i red, n − i non-red} = 1

n + 1
, i = 0, . . . , n

The n balls are then randomly removed one at a time. Let Yk denote the number
of red balls in the first k selections, k = 1, . . . , n.
(a) Find P {Yn = j}, j = 0, . . . , n.
(b) Find P {Yn−1 = j}, j = 0, . . . , n.
(c) What do you think is the value of P {Yk = j}, j = 0, . . . , n?
(d) Verify your answer to part (c) by a backwards induction argument. That

is, check that your answer is correct when k = n, and then show that
whenever it is true for k it is also true for k − 1, k = 1, . . . , n.
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68. The number of goals that J scores in soccer games that her team wins is Pois-
son with mean 2, while the number she scores in games that her team loses
is Poisson with mean 1. Assume that J’s team wins each game they play with
probability p.
(a) Find the expected number of goals that J scores in her next 3 games.
(b) Find the probability that she scores a total of n goals in her next 3 games.

*69. A coin having probability p of coming up heads is continually flipped. Let
Pj (n) denote the probability that a run of j successive heads occurs within the
first n flips.
(a) Argue that

Pj (n) = Pj (n − 1) + pj (1 − p)[1 − Pj (n − j − 1)]
(b) By conditioning on the first non-head to appear, derive another equation

relating Pj (n) to the quantities Pj (n − k), k = 1, . . . , j .
70. If the level of infection of a tree is x, 0 ≤ x ≤ 1, then each cure attempt will

independently be successful with probability 1 − x. Consider a tree whose in-
fection level, call it L, is assumed to be the value of a uniform (0,1) random
variable.
(a) What is the probability that a single attempt will result in a cure.
(b) Find the probability that the first two cure attempts are unsuccessful.
(c) Find the conditional expected value of L given that it took 3 attempts to

cure the tree.
71. In Example 3.29, let Tk denote the total number of flips that land heads. Find

E[Tk].
72. In the match problem, say that (i, j), i < j , is a pair if i chooses j ’s hat and j

chooses i’s hat.
(a) Find the expected number of pairs.
(b) Let Qn denote the probability that there are no pairs, and derive a recur-

sive formula for Qn in terms of Qj, j < n.

Hint: Use the cycle concept.
(c) Use the recursion of part (b) to find Q8.

73. Let N denote the number of cycles that result in the match problem.
(a) Let Mn =E[N ], and derive an equation for Mn in terms of M1, . . . ,Mn−1.
(b) Let Cj denote the size of the cycle that contains person j . Argue that

N =
n∑

j=1

1/Cj

and use the preceding to determine E[N ].
(c) Find the probability that persons 1,2, . . . , k are all in the same cycle.
(d) Find the probability that 1,2, . . . , k is a cycle.

74. Use Eq. (3.13) to obtain Eq. (3.9).

Hint: First multiply both sides of Eq. (3.13) by n, then write a new equation
by replacing n with n − 1, and then subtract the former from the latter.
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Figure 3.7

75. In Example 3.32, show that the conditional distribution of N given that U1 = y

is the same as the conditional distribution of M given that U1 = 1 − y. Also,
show that

E[N |U1 = y] = E[M|U1 = 1 − y] = 1 + ey

*76. Suppose that we continually roll a die until the sum of all throws exceeds 100.
What is the most likely value of this total when you stop?

77. There are five components. The components act independently, with compo-
nent i working with probability pi, i = 1,2,3,4,5. These components form a
system as shown in Fig. 3.7.
The system is said to work if a signal originating at the left end of the diagram
can reach the right end, where it can pass through a component only if that
component is working. (For instance, if components 1 and 4 both work, then
the system also works.) What is the probability that the system works?

78. This problem will present another proof of the ballot problem of Example 3.31.
(a) Argue that

Pn,m = 1 − P {A and B are tied at some point}
(b) Explain why

P {A receives first vote and they are eventually tied}
= P {B receives first vote and they are eventually tied}

Hint: Any outcome in which they are eventually tied with A receiving the
first vote corresponds to an outcome in which they are eventually tied with B

receiving the first vote. Explain this correspondence.
(c) Argue that P {eventually tied} = 2m/(n + m), and conclude that Pn,m =

(n − m)/(n + m).
79. Consider a gambler who on each bet either wins 1 with probability 18/38 or

loses 1 with probability 20/38. (These are the probabilities if the bet is that a
roulette wheel will land on a specified color.) The gambler will quit either when
he or she is winning a total of 5 or after 100 plays. What is the probability he
or she plays exactly 15 times?
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80. Show that
(a) E[XY |Y = y] = yE[X|Y = y]
(b) E[g(X,Y )|Y = y] = E[g(X,y)|Y = y]
(c) E[XY ] = E[YE[X|Y ]]

81. In the ballot problem (Example 3.31), compute P {A is never behind}.
82. An urn contains n white and m black balls that are removed one at a time. If

n > m, show that the probability that there are always more white than black
balls in the urn (until, of course, the urn is empty) equals (n−m)/(n+m). Ex-
plain why this probability is equal to the probability that the set of withdrawn
balls always contains more white than black balls. (This latter probability is
(n − m)/(n + m) by the ballot problem.)

83. A coin that comes up heads with probability p is flipped n consecutive times.
What is the probability that starting with the first flip there are always more
heads than tails that have appeared?

84. Let Xi, i � 1, be independent uniform (0,1) random variables, and define N

by

N = min{n: Xn < Xn−1}

where X0 = x. Let f (x) = E[N ].
(a) Derive an integral equation for f (x) by conditioning on X1.
(b) Differentiate both sides of the equation derived in part (a).
(c) Solve the resulting equation obtained in part (b).
(d) For a second approach to determining f (x) argue that

P {N � k} = (1 − x)k−1

(k − 1)!
(e) Use part (d) to obtain f (x).

85. Let X1,X2, . . . be independent continuous random variables with a common
distribution function F and density f = F ′, and for k � 1 let

Nk = min{n � k: Xn = kth largest of X1, . . . ,Xn}

(a) Show that P {Nk = n} = k−1
n(n−1)

, n � k.
(b) Argue that

fXNk
(x) = f (x)(F̄ (x))k−1

∞∑
i=0

(
i + k − 2

i

)
(F (x))i

(c) Prove the following identity:

a1−k =
∞∑
i=0

(
i + k − 2

i

)
(1 − a)i, 0 < a < 1, k � 2
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Hint: Use induction. First prove it when k = 2, and then assume it for k. To
prove it for k + 1, use the fact that

∞∑
i=1

(
i + k − 1

i

)
(1 − a)i =

∞∑
i=1

(
i + k − 2

i

)
(1 − a)i

+
∞∑
i=1

(
i + k − 2

i − 1

)
(1 − a)i

where the preceding used the combinatorial identity(
m

i

)
=
(

m − 1
i

)
+
(

m − i

i − 1

)

Now, use the induction hypothesis to evaluate the first term on the right side of
the preceding equation.
(d) Conclude that XNk

has distribution F .
86. An urn contains n balls, with ball i having weight wi, i = 1, . . . , n. The balls

are withdrawn from the urn one at a time according to the following scheme:
When S is the set of balls that remains, ball i, i ∈ S, is the next ball with-
drawn with probability wi/

∑
j∈S wj . Find the expected number of balls that

are withdrawn before ball i, i = 1, . . . , n.
*87. Suppose in Example 3.36 that a point is only won if the winner of the rally was

the server of that rally.
(a) If A is currently serving, what is the probability that A wins the next

point?
(b) Explain how to obtain the final score probabilities.

88. In the list problem, when the Pi are known, show that the best ordering (best
in the sense of minimizing the expected position of the element requested)
is to place the elements in decreasing order of their probabilities. That is, if
P1 > P2 > · · · > Pn, show that 1,2, . . . , n is the best ordering.

89. Consider the random graph of Section 3.6.2 when n = 5. Compute the prob-
ability distribution of the number of components and verify your solution by
using it to compute E[C] and then comparing your solution with

E[C] =
5∑

k=1

(
5
k

)
(k − 1)!

5k

90. (a) From the results of Section 3.6.3 we can conclude that there are
(
n+m−1
m−1

)
nonnegative integer valued solutions of the equation x1 + · · · + xm = n.
Prove this directly.

(b) How many positive integer valued solutions of x1 + · · · + xm = n are
there?

Hint: Let yi = xi − 1.
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(c) For the Bose–Einstein distribution, compute the probability that exactly
k of the Xi are equal to 0.

91. In Section 3.6.3, we saw that if U is a random variable that is uniform on (0,1)

and if, conditional on U = p,X is binomial with parameters n and p, then

P {X = i} = 1

n + 1
, i = 0,1, . . . , n

For another way of showing this result, let U,X1,X2, . . . ,Xn be independent
uniform (0,1) random variables. Define X by

X = #i: Xi < U

That is, if the n+1 variables are ordered from smallest to largest, then U would
be in position X + 1.
(a) What is P {X = i}?
(b) Explain how this proves the result of Section 3.6.3.

92. Let I1, . . . , In be independent random variables, each of which is equally likely
to be either 0 or 1. A well-known nonparametric statistical test (called the
signed rank test) is concerned with determining Pn(k) defined by

Pn(k) = P

⎧⎨
⎩

n∑
j=1

jIj � k

⎫⎬
⎭

Justify the following formula:

Pn(k) = 1
2Pn−1(k) + 1

2Pn−1(k − n)

93. The number of accidents in each period is a Poisson random variable with
mean 5. With Xn,n ≥ 1, equal to the number of accidents in period n, find
E[N ] when
(a) N = min(n: Xn−2 = 2,Xn−1 = 1,Xn = 0);
(b) N = min(n: Xn−3 = 2,Xn−2 = 1,Xn−1 = 0,Xn = 2).

94. Find the expected number of flips of a coin, which comes up heads with prob-
ability p, that are necessary to obtain the pattern h, t, h,h, t, h, t, h.

95. The number of coins that Josh spots when walking to work is a Poisson ran-
dom variable with mean 6. Each coin is equally likely to be a penny, a nickel,
a dime, or a quarter. Josh ignores the pennies but picks up the other coins.
(a) Find the expected amount of money that Josh picks up on his way to

work.
(b) Find the variance of the amount of money that Josh picks up on his way

to work.
(c) Find the probability that Josh picks up exactly 25 cents on his way to

work.
*96. Consider a sequence of independent trials, each of which is equally likely to

result in any of the outcomes 0,1, . . . ,m. Say that a round begins with the first
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trial, and that a new round begins each time outcome 0 occurs. Let N denote
the number of trials that it takes until all of the outcomes 1, . . . ,m − 1 have
occurred in the same round. Also, let Tj denote the number of trials that it
takes until j distinct outcomes have occurred, and let Ij denote the j th distinct
outcome to occur. (Therefore, outcome Ij first occurs at trial Tj .)
(a) Argue that the random vectors (I1, . . . , Im) and (T1, . . . , Tm) are inde-

pendent.
(b) Define X by letting X = j if outcome 0 is the j th distinct outcome to

occur. (Thus, IX = 0.) Derive an equation for E[N ] in terms of E[Tj ],
j = 1, . . . ,m − 1 by conditioning on X.

(c) Determine E[Tj ], j = 1, . . . ,m − 1.

Hint: See Exercise 42 of Chapter 2.
(d) Find E[N ].

97. Let N be a hypergeometric random variable having the distribution of the num-
ber of white balls in a random sample of size r from a set of w white and b

blue balls. That is,

P {N = n} =
(

w
n

)(
b

r−n

)
(

w+b
r

)

where we use the convention that
(
m
j

)= 0 if either j < 0 or j > m. Now, con-

sider a compound random variable SN =∑N
i=1 Xi , where the Xi are positive

integer valued random variables with αj = P {Xi = j}.
(a) With M as defined as in Section 3.7, find the distribution of M − 1.
(b) Suppressing its dependence on b, let Pw,r (k) = P {SN = k}, and derive a

recursion equation for Pw,r (k).
(c) Use the recursion of (b) to find Pw,r (2).

98. For the left skip free random walk of Section 3.6.6 let β = P(Sn ≤ 0 for all n)

be the probability that the walk is never positive. Find β when E[Xi] < 0.
99. Consider a large population of families, and suppose that the number of chil-

dren in the different families are independent Poisson random variables with
mean λ. Show that the number of siblings of a randomly chosen child is also
Poisson distributed with mean λ.

*100. Use the conditional variance formula to find the variance of a geometric ran-
dom variable.

101. For a compound random variable S =∑N
i=1 Xi , find Cov(N,S).

102. Let N be the number of trials until k consecutive successes have occurred,
when each trial is independently a success with probability p.
(a) What is P(N = k)?
(b) Argue that

P(N = k + r) = P(N > r − 1)qpk, r > 0
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(c) Show that

1 − pk = qpkE[N ]
103. In the fair gambler’s ruin problem of Example 3.16, let Pi denote the probabil-

ity that, starting with a fortune of i, the gambler’s fortune reaches n before 0.
Find Pi , 0 ≤ i ≤ n.

104. For the left skip free random walk of Section 3.6.6,
(a) Show, for 0 < k ≤ n, that P(Tk = n|Sn = −k) = k/n.
(b) Show that part (a) implies that P(Sj < 0, j = 1, . . . , n|Sn = −k) = k/n.
(c) Explain why part (b) implies the ballot theorem.



4Markov Chains

4.1 Introduction
Consider a process that has a value in each time period. Let Xn denote its value in
time period n, and suppose we want to make a probability model for the sequence of
successive values X0,X1,X2 . . . . The simplest model would probably be to assume
that the Xn are independent random variables, but often such an assumption is clearly
unjustified. For instance, starting at some time suppose that Xn represents the price of
one share of some security, such as Google, at the end of n additional trading days.
Then it certainly seems unreasonable to suppose that the price at the end of day n + 1
is independent of the prices on days n,n−1, n−2 and so on down to day 0. However,
it might be reasonable to suppose that the price at the end of trading day n+1 depends
on the previous end-of-day prices only through the price at the end of day n. That is, it
might be reasonable to assume that the conditional distribution of Xn+1 given all the
past end-of-day prices Xn,Xn−1, . . . ,X0 depends on these past prices only through
the price at the end of day n. Such an assumption defines a Markov chain, a type of
stochastic process that will be studied in this chapter, and which we now formally
define.

Let {Xn,n = 0,1,2, . . .} be a stochastic process that takes on a finite or countable
number of possible values. Unless otherwise mentioned, this set of possible values of
the process will be denoted by the set of nonnegative integers {0,1,2, . . .}. If Xn = i,
then the process is said to be in state i at time n. We suppose that whenever the process
is in state i, there is a fixed probability Pij that it will next be in state j . That is, we
suppose that

P {Xn+1 = j |Xn = i,Xn−1 = in−1, . . . ,X1 = i1,X0 = i0} = Pij (4.1)

for all states i0, i1, . . . , in−1, i, j and all n � 0. Such a stochastic process is known as a
Markov chain. Eq. (4.1) may be interpreted as stating that, for a Markov chain, the con-
ditional distribution of any future state Xn+1, given the past states X0,X1, . . . ,Xn−1

and the present state Xn, is independent of the past states and depends only on the
present state.

The value Pij represents the probability that the process will, when in state i, next
make a transition into state j . Since probabilities are nonnegative and since the process
must make a transition into some state, we have

Pij � 0, i, j � 0;
∞∑

j=0

Pij = 1, i = 0,1, . . .

Introduction to Probability Models. https://doi.org/10.1016/B978-0-44-318761-2.00009-9
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Let P denote the matrix of one-step transition probabilities Pij , so that

P =

∥∥∥∥∥∥∥∥∥∥∥∥

P00 P01 P02 · · ·
P10 P11 P12 · · ·
...

...
...

Pi0 Pi1 Pi2 · · ·
...

...
...

∥∥∥∥∥∥∥∥∥∥∥∥
Example 4.1 (Forecasting the Weather). Suppose that the chance of rain tomorrow
depends on previous weather conditions only through whether or not it is raining to-
day and not on past weather conditions. Suppose also that if it rains today, then it
will rain tomorrow with probability α; and if it does not rain today, then it will rain
tomorrow with probability β.

If we say that the process is in state 0 when it rains and state 1 when it does not
rain, then the preceding is a two-state Markov chain whose transition probabilities are
given by

P =
∥∥∥∥α 1 − α

β 1 − β

∥∥∥∥ �

Example 4.2 (A Communications System). Consider a communications system that
transmits the digits 0 and 1. Each digit transmitted must pass through several stages,
at each of which there is a probability p that the digit entered will be unchanged when
it leaves. Letting Xn denote the digit entering the nth stage, then {Xn,n = 0,1, . . .} is
a two-state Markov chain having a transition probability matrix

P =
∥∥∥∥ p 1 − p

1 − p p

∥∥∥∥ �

Example 4.3. On any given day Gary is either cheerful (C), so-so (S), or glum (G). If
he is cheerful today, then he will be C,S, or G tomorrow with respective probabilities
0.5, 0.4, 0.1. If he is feeling so-so today, then he will be C,S, or G tomorrow with
probabilities 0.3, 0.4, 0.3. If he is glum today, then he will be C,S, or G tomorrow
with probabilities 0.2, 0.3, 0.5.

Letting Xn denote Gary’s mood on the nth day, then {Xn,n � 0} is a three-state
Markov chain (state 0 = C, state 1 = S, state 2 = G) with transition probability ma-
trix

P =
∥∥∥∥∥∥

0.5 0.4 0.1
0.3 0.4 0.3
0.2 0.3 0.5

∥∥∥∥∥∥ �

Example 4.4 (Transforming a Process into a Markov Chain). Suppose that whether
or not it rains today depends on previous weather conditions through the last two
days. Specifically, suppose that if it has rained for the past two days, then it will rain
tomorrow with probability 0.7; if it rained today but not yesterday, then it will rain
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tomorrow with probability 0.5; if it rained yesterday but not today, then it will rain
tomorrow with probability 0.4; if it has not rained in the past two days, then it will
rain tomorrow with probability 0.2.

If we let the state at time n depend only on whether or not it is raining at time n,
then the preceding model is not a Markov chain (why not?). However, we can trans-
form this model into a Markov chain by saying that the state at any time is determined
by the weather conditions during both that day and the previous day. In other words,
we can say that the process is in

state 0 if it rained both today and yesterday,
state 1 if it rained today but not yesterday,
state 2 if it rained yesterday but not today,
state 3 if it did not rain either yesterday or today.

The preceding would then represent a four-state Markov chain having a transition
probability matrix

P =

∥∥∥∥∥∥∥∥
0.7 0 0.3 0
0.5 0 0.5 0
0 0.4 0 0.6
0 0.2 0 0.8

∥∥∥∥∥∥∥∥
You should carefully check the matrix P, and make sure you understand how it was
obtained. �

Example 4.5 (A Random Walk Model). A Markov chain whose state space is given
by the integers i = 0,±1,±2, . . . is said to be a random walk if, for some number
0 < p < 1,

Pi,i+1 = p = 1 − Pi,i−1, i = 0,±1, . . .

The preceding Markov chain is called a random walk for we may think of it as being
a model for an individual walking on a straight line who at each point of time either
takes one step to the right with probability p or one step to the left with probability
1 − p. �

Example 4.6 (A Gambling Model). Consider a gambler who, at each play of the
game, either wins $1 with probability p or loses $1 with probability 1 − p. If we sup-
pose that our gambler quits playing either when he goes broke or he attains a fortune
of $N , then the gambler’s fortune is a Markov chain having transition probabilities

Pi,i+1 = p = 1 − Pi,i−1, i = 1,2, . . . ,N − 1,

P00 = PNN = 1

States 0 and N are called absorbing states since once entered they are never left.
Note that the preceding is a finite state random walk with absorbing barriers (states 0
and N ). �
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Example 4.7. In most of Europe and Asia, annual automobile insurance premiums are
determined by use of a Bonus Malus (Latin for Good-Bad) system. Each policyholder
is given a positive integer valued state and the annual premium is a function of this
state (along, of course, with the type of car being insured and the level of insurance).
A policyholder’s state changes from year to year in response to the number of claims
made by that policyholder. Because lower numbered states correspond to lower annual
premiums, a policyholder’s state will usually decrease if he or she had no claims in the
preceding year, and will generally increase if he or she had at least one claim. (Thus,
no claims is good and typically results in a decreased premium, while claims are bad
and typically result in a higher premium.)

For a given Bonus Malus system, let si(k) denote the next state of a policyholder
who was in state i in the previous year and who made a total of k claims in that year.
If we suppose that the number of yearly claims made by a particular policyholder is
a Poisson random variable with parameter λ, then the successive states of this policy-
holder will constitute a Markov chain with transition probabilities

Pi,j =
∑

k:si (k)=j

e−λ λk

k! , j � 0

Whereas there are usually many states (20 or so is not atypical), the following table
specifies a hypothetical Bonus Malus system having four states.

State Annual Premium Next state if
0 claims 1 claim 2 claims � 3 claims

1 200 1 2 3 4
2 250 1 3 4 4
3 400 2 4 4 4
4 600 3 4 4 4

Thus, for instance, the table indicates that s2(0) = 1; s2(1) = 3; s2(k) = 4, k � 2. Con-
sider a policyholder whose annual number of claims is a Poisson random variable with
parameter λ. If ak is the probability that such a policyholder makes k claims in a year,
then

ak = e−λ λk

k! , k � 0

For the Bonus Malus system specified in the preceding table, the transition probability
matrix of the successive states of this policyholder is

P =

∥∥∥∥∥∥∥∥
a0 a1 a2 1 − a0 − a1 − a2
a0 0 a1 1 − a0 − a1
0 a0 0 1 − a0
0 0 a0 1 − a0

∥∥∥∥∥∥∥∥
�
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4.2 Chapman–Kolmogorov Equations
We have already defined the one-step transition probabilities Pij . We now define the
n-step transition probabilities P n

ij to be the probability that a process in state i will be
in state j after n additional transitions. That is,

P n
ij = P {Xn+k = j |Xk = i}, n � 0, i, j � 0

Of course P 1
ij = Pij . The Chapman–Kolmogorov equations provide a method for com-

puting these n-step transition probabilities. These equations are

P n+m
ij =

∞∑
k=0

P n
ikP

m
kj for all n, m� 0, all i, j (4.2)

and are most easily understood by noting that P n
ikP

m
kj represents the probability that

starting in i the process will go to state j in n + m transitions through a path which
takes it into state k at the nth transition. Hence, summing over all intermediate states
k yields the probability that the process will be in state j after n + m transitions.
Formally, we have

P n+m
ij = P {Xn+m = j |X0 = i}

=
∞∑

k=0

P {Xn+m = j,Xn = k|X0 = i}

=
∞∑

k=0

P {Xn+m = j |Xn = k,X0 = i}P {Xn = k|X0 = i}

=
∞∑

k=0

P m
kj P n

ik

If we let P(n) denote the matrix of n-step transition probabilities P n
ij , then Eq. (4.2)

asserts that

P(n+m) = P(n) · P(m)

where the dot represents matrix multiplication.1 Hence, in particular,

P(2) = P(1+1) = P · P = P2

and by induction

P(n) = P(n−1+1) = Pn−1 · P = Pn

1 If A is an N × M matrix whose element in the ith row and j th column is aij and B is an M × K matrix
whose element in the ith row and j th column is bij , then A·B is defined to be the N × K matrix whose

element in the ith row and j th column is
∑M

k=1 aikbkj .
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That is, the n-step transition matrix may be obtained by multiplying the matrix P by
itself n times.

Example 4.8. Consider Example 4.1 in which the weather is considered as a two-state
Markov chain. If α = 0.7 and β = 0.4, then calculate the probability that it will rain
four days from today given that it is raining today.

Solution: The one-step transition probability matrix is given by

P =
∥∥∥∥0.7 0.3

0.4 0.6

∥∥∥∥
Hence,

P(2) = P2 =
∥∥∥∥0.7 0.3

0.4 0.6

∥∥∥∥ ·
∥∥∥∥0.7 0.3

0.4 0.6

∥∥∥∥
=

∥∥∥∥0.61 0.39
0.52 0.48

∥∥∥∥ ,

P(4) = (P2)2 =
∥∥∥∥0.61 0.39

0.52 0.48

∥∥∥∥ ·
∥∥∥∥0.61 0.39

0.52 0.48

∥∥∥∥
=

∥∥∥∥0.5749 0.4251
0.5668 0.4332

∥∥∥∥
and the desired probability P 4

00 equals 0.5749. �
Example 4.9. Consider Example 4.4. Given that it rained on Monday and Tuesday,
what is the probability that it will rain on Thursday?

Solution: The two-step transition matrix is given by

P(2) = P2 =

∥∥∥∥∥∥∥∥
0.7 0 0.3 0
0.5 0 0.5 0
0 0.4 0 0.6
0 0.2 0 0.8

∥∥∥∥∥∥∥∥
·

∥∥∥∥∥∥∥∥
0.7 0 0.3 0
0.5 0 0.5 0
0 0.4 0 0.6
0 0.2 0 0.8

∥∥∥∥∥∥∥∥
=

∥∥∥∥∥∥∥∥
0.49 0.12 0.21 0.18
0.35 0.20 0.15 0.30
0.20 0.12 0.20 0.48
0.10 0.16 0.10 0.64

∥∥∥∥∥∥∥∥
Since rain on Thursday is equivalent to the process being in either state 0 or state
1 on Thursday, the desired probability is given by P 2

00 + P 2
01 = 0.49 + 0.12 =

0.61. �
Example 4.10. An urn always contains 2 balls. Ball colors are red and blue. At each
stage a ball is randomly chosen and then replaced by a new ball, which with probabil-
ity 0.8 is the same color, and with probability 0.2 is the opposite color, as the ball it
replaces. If initially both balls are red, find the probability that the fifth ball selected is
red.
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Solution: To find the desired probability we first define an appropriate Markov
chain. This can be accomplished by noting that the probability that a selection is
red is determined by the composition of the urn at the time of the selection. So, let
us define Xn to be the number of red balls in the urn after the nth selection and
subsequent replacement. Then Xn,n ≥ 0, is a Markov chain with states 0,1,2 and
with transition probability matrix P given by⎛

⎝0.8 0.2 0
0.1 0.8 0.1
0 0.2 0.8

⎞
⎠

To understand the preceding, consider for instance P1,0. Now, to go from 1 red ball
in the urn to 0 red balls, the ball chosen must be red (which occurs with probability
0.5) and it must then be replaced by a ball of opposite color (which occurs with
probability 0.2), showing that

P1,0 = (0.5)(0.2) = 0.1

To determine the probability that the fifth selection is red, condition on the number
of red balls in the urn after the fourth selection. This yields

P(fifth selection is red)

=
2∑

i=0

P(fifth selection is red|X4 = i)P (X4 = i|X0 = 2)

= (0)P 4
2,0 + (0.5)P 4

2,1 + (1)P 4
2,2

= 0.5P 4
2,1 + P 4

2,2

To calculate the preceding we compute P4. Doing so yields

P 4
2,1 = 0.4352, P 4

2,2 = 0.4872

giving the answer P(fifth selection is red) = 0.7048. �

Example 4.11. Suppose that balls are successively distributed among 8 urns, with
each ball being equally likely to be put in any of these urns. What is the probability
that there will be exactly 3 nonempty urns after 9 balls have been distributed?

Solution: If we let Xn be the number of nonempty urns after n balls have been
distributed, then Xn,n � 0 is a Markov chain with states 0,1, . . . ,8 and transition
probabilities

Pi,i = i/8 = 1 − Pi,i+1, i = 0,1, . . . ,8

The desired probability is P 9
0,3 = P 8

1,3, where the equality follows because
P0,1 = 1. Now, starting with 1 occupied urn, if we had wanted to determine the en-
tire probability distribution of the number of occupied urns after 8 additional balls
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had been distributed we would need to consider the transition probability matrix
with states 1,2, . . . ,8. However, because we only require the probability, start-
ing with a single occupied urn, that there are 3 occupied urns after an additional 8
balls have been distributed we can make use of the fact that the state of the Markov
chain cannot decrease to collapse all states 4,5, . . . ,8 into a single state 4 with the
interpretation that the state is 4 whenever four or more of the urns are occupied.
Consequently, we need only determine the eight-step transition probability P 8

1,3 of
the Markov chain with states 1,2,3,4 having transition probability matrix P given
by ⎛

⎜⎜⎝
1/8 7/8 0 0
0 2/8 6/8 0
0 0 3/8 5/8
0 0 0 1

⎞
⎟⎟⎠

Raising the preceding matrix to the power 4 yields the matrix P4 given by⎛
⎜⎜⎝

0.0002 0.0256 0.2563 0.7178
0 0.0039 0.0952 0.9009
0 0 0.0198 0.9802
0 0 0 1

⎞
⎟⎟⎠

Hence,

P 8
1,3 = 0.0002 × 0.2563 + 0.0256 × 0.0952 + 0.2563 × 0.0198

+ 0.7178 × 0 = 0.00756 �

Consider a Markov chain with transition probabilities Pij . Let A be a set of states,
and suppose we are interested in the probability that the Markov chain ever enters any
of the states in A by time m. That is, for a given state i /∈ A , we are interested in
determining

β = P(Xk ∈ A for some k = 1, . . . ,m|X0 = i)

To determine the preceding probability we will define a Markov chain {Wn,n � 0}
whose states are the states that are not in A plus an additional state, which we will
call A in our general discussion (though in specific examples we will usually give it a
different name). Once the {Wn} Markov chain enters state A it remains there forever.

The new Markov chain is defined as follows. Letting Xn denote the state at time n

of the Markov chain with transition probabilities Pi,j , define

N = min{n : Xn ∈ A }
and let N = ∞ if Xn /∈ A for all n. In words, N is the first time the Markov chain
enters the set of states A . Now, define

Wn =
{
Xn, if n < N

A, if n � N
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So the state of the {Wn} process is equal to the state of the original Markov chain up
to the point when the original Markov chain enters a state in A . At that time the new
process goes to state A and remains there forever. From this description, it follows that
Wn,n � 0 is a Markov chain with states i, i /∈ A ,A and with transition probabilities
Qi,j , given by

Qi,j = Pi,j , if i /∈ A , j /∈ A

Qi,A =
∑
j∈A

Pi,j , if i /∈ A

QA,A = 1

Because the original Markov chain will have entered a state in A by time m if and
only if the state at time m of the new Markov chain is A, we see that

P(Xk ∈ A for some k = 1, . . . ,m|X0 = i)

= P(Wm = A|X0 = i) = P(Wm = A|W0 = i) = Qm
i,A

That is, the desired probability is equal to an m-step transition probability of the new
chain.

Example 4.12. In a sequence of independent flips of a fair coin, let N denote the
number of flips until there is a run of three consecutive heads. Find

(a) P(N ≤ 8) and
(b) P(N = 8).

Solution: To determine P(N ≤ 8), define a Markov chain with states 0,1,2,3
where for i < 3 state i means that we currently are on a run of i consecutive heads,
and where state 3 means that a run of three consecutive heads has already occurred.
Thus, the transition probability matrix is

P =

⎛
⎜⎜⎝

1/2 1/2 0 0
1/2 0 1/2 0
1/2 0 0 1/2
0 0 0 1

⎞
⎟⎟⎠

where, for instance, the values for row 2 are obtained by noting that if we currently
are on a run of size 1 then the next state will be 0 if the next flip is a tail, or 2 if it is
a head. Hence, P1,0 = P1,2 = 1/2. Because there would be a run of three consecu-
tive heads within the first eight flips if and only if X8 = 3, the desired probability
is P 8

0,3. Squaring P to obtain P2, then squaring the result to obtain P4, and then
squaring that matrix gives the result

P8 =

⎛
⎜⎜⎝

81/256 44/256 24/256 107/256
68/256 37/256 20/256 131/256
44/256 24/256 13/256 175/256

0 0 0 1

⎞
⎟⎟⎠
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Hence, the probability that there will be a run of three consecutive heads within
the first eight flips is 107/256 ≈ 0.4180.
(b) Noting that N = 8 if the pattern hasn’t yet occurred in the first 7 transitions,
the state after 7 transitions is 2, and the next flip lands heads, shows that

P(N = 8) = 1

2
P 7

0,2. �

We can also use Markov chains to determine probabilities concerning the time until
a pattern appears when the data itself comes from a Markov chain. We illustrate this
by an example.

Example 4.13. Let {Xn,n ≥ 0} be a Markov chain with states 0,1,2,3 and transition
probabilities Pi,j , i, j = 0,1,2,3, and let N denote the number of transitions, starting
in state 0, until the pattern 1,2,1,2 appears. That is,

N = min{n ≥ 4 : Xn−3 = 1,Xn−2 = 2,Xn−1 = 1,Xn = 2}.
Suppose we are interested in evaluating P(N ≤ k) for some specified value k. To do
so, we define a new Markov chain {Yn,n ≥ 0}, that tracks the progress towards the
pattern. The Yn are defined as follows:

– If the pattern has appeared by the nth transition—that is, if X0, . . . ,Xn includes
1,2,1,2—then Yn = 4.

– If the pattern has not yet appeared by the nth transition

Yn = 1 if Xn = 1 and (Xn−2,Xn−1) �= (1,2).
Yn = 2 if Xn−1 = 1, Xn = 2.
Yn = 3 if Xn−2 = 1, Xn−1 = 2, Xn = 1.
Yn = 5 if Xn = 2, Xn−1 �= 1.
Yn = 6 if Xn = 0.
Yn = 7 if Xn = 3

Thus, for i = 1,2,3,4, Yn = i signifies that we are i steps into the pattern (or in the
case i = 4 that the pattern has appeared). Yn = 5 (or 6 or 7) if there is no current
progress with regards to the pattern and the current state is 2 (or 0 or 3). The desired
probability P(N ≤ k) is equal to the probability that the number of transitions of the
Markov chain {Yn} to go from state 6 to state 4 is less than or equal to k. Because
state 4 is an absorbing state of this chain, this probability is Qk

6,4 where Qi,j are the
transition probabilities of the Markov chain {Yn}. �

Suppose now that we want to compute the probability that the {Xn,n � 0} chain,
starting in state i, enters state j at time m without ever entering any of the states in A ,
where neither i nor j is in A . That is, for i, j /∈ A , we are interested in

α = P(Xm = j,Xk /∈ A , k = 1, . . . ,m − 1|X0 = i)

Noting that the event that Xm = j,Xk /∈ A , k = 1, . . . ,m−1 is equivalent to the event
that Wm = j , it follows that for i, j /∈ A ,
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P(Xm = j,Xk /∈ A , k = 1, . . . ,m − 1|X0 = i) = P(Wm = j |X0 = i)

= P(Wm = j |W0 = i) = Qm
i,j .

Example 4.14. Consider a Markov chain with states 1,2,3,4,5, and suppose that we
want to compute

P(X4 = 2,X3 � 2,X2 � 2,X1 � 2|X0 = 1)

That is, we want the probability that, starting in state 1, the chain is in state 2 at time
4 and has never entered any of the states in the set A = {3,4,5}.

To compute this probability all we need to know are the transition probabilities
P11,P12,P21,P22. So, suppose that

P11 = 0.3 P12 = 0.3

P21 = 0.1 P22 = 0.2

Then we consider the Markov chain having states 1,2,3 (we are giving state A the
name 3), and having the transition probability matrix Q as follows:⎛

⎝ 0.3 0.3 0.4
0.1 0.2 0.7
0 0 1

⎞
⎠

The desired probability is Q4
12. Raising Q to the power 4 yields the matrix⎛

⎝ 0.0219 0.0285 0.9496
0.0095 0.0124 0.9781
0 0 1

⎞
⎠

Hence, the desired probability is α = 0.0285. �

When i /∈ A but j ∈ A we can determine the probability

α = P(Xm = j,Xk /∈ A , k = 1, . . . ,m − 1|X0 = i)

as follows.

α =
∑
r /∈A

P(Xm = j,Xm−1 = r,Xk /∈ A , k = 1, . . . ,m − 2|X0 = i)

=
∑
r /∈A

P(Xm = j |Xm−1 = r,Xk /∈ A , k = 1, . . . ,m − 2,X0 = i)

× P(Xm−1 = r,Xk /∈ A , k = 1, . . . ,m − 2|X0 = i)

=
∑
r /∈A

Pr,j P (Xm−1 = r,Xk /∈ A , k = 1, . . . ,m − 2|X0 = i)

=
∑
r /∈A

Pr,j Qm−1
i,r
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Also, when i ∈ A we could determine

α = P(Xm = j,Xk /∈ A , k = 1, . . . ,m − 1|X0 = i)

by conditioning on the first transition to obtain

α =
∑
r /∈A

P(Xm = j,Xk /∈ A ,

k = 1, . . . ,m − 1|X0 = i,X1 = r)P (X1 = r|X0 = i)

=
∑
r /∈A

P(Xm−1 = j,Xk /∈ A , k = 1, . . . ,m − 2|X0 = r)Pi,r

For instance, if i ∈ A , j /∈ A then the preceding equation yields

P(Xm = j,Xk /∈ A , k = 1, . . . ,m − 1|X0 = i) =
∑
r /∈A

Qm−1
r,j Pi,r

We can also compute the conditional probability of Xn given that the chain starts
in state i and has not entered any state in A by time n, as follows. For i, j /∈ A ,

P {Xn = j |X0 = i,Xk /∈ A , k = 1, . . . , n}

= P {Xn = j,Xk /∈ A , k = 1, . . . , n|X0 = i}
P {Xk /∈ A , k = 1, . . . , n|X0 = i} = Qn

i,j∑
r /∈A Qn

i,r

Remark. So far, all of the probabilities we have considered are conditional probabili-
ties. For instance, P n

ij is the probability that the state at time n is j given that the initial
state at time 0 is i. If the unconditional distribution of the state at time n is desired,
it is necessary to specify the probability distribution of the initial state. Let us denote
this by

αi ≡ P {X0 = i}, i � 0

( ∞∑
i=0

αi = 1

)

All unconditional probabilities may be computed by conditioning on the initial state.
That is,

P {Xn = j} =
∞∑
i=0

P {Xn = j |X0 = i}P {X0 = i}

=
∞∑
i=0

P n
ijαi

For instance, if α0 = 0.4, α1 = 0.6, in Example 4.8, then the (unconditional) prob-
ability that it will rain four days after we begin keeping weather records is

P {X4 = 0} = 0.4P 4
00 + 0.6P 4

10
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= (0.4)(0.5749) + (0.6)(0.5668)

= 0.5700

4.3 Classification of States
State j is said to be accessible from state i if P n

ij > 0 for some n � 0. Note that this
implies that state j is accessible from state i if and only if, starting in i, it is possible
that the process will ever enter state j . This is true since if j is not accessible from i,
then

P {ever be in j |start in i} = P

{ ∞⋃
n=0

{Xn = j}
∣∣∣∣∣X0 = i

}

≤
∞∑

n=0

P {Xn = j |X0 = i}

=
∞∑

n=0

P n
ij

= 0

Two states i and j that are accessible to each other are said to communicate, and we
write i ↔ j .

Remark. Say that i1, . . . , in is a path from state i1 to state in if Pij ,ij+1 > 0, j =
1, . . . , n − 1. With this definition, it follows that state j is accessible from state i ei-
ther if j = i if there is a path from i to j .

Note that any state communicates with itself since, by definition,

P 0
ii = P {X0 = i|X0 = i} = 1

The relation of communication satisfies the following three properties:

(i) State i communicates with state i, all i � 0.
(ii) If state i communicates with state j , then state j communicates with state i.

(iii) If state i communicates with state j , and state j communicates with state k,
then state i communicates with state k.

Properties (i) and (ii) follow immediately from the definition of communication. To
prove (iii) suppose that i communicates with j , and j communicates with k. Thus,
there exist integers n and m such that P n

ij > 0,P m
jk > 0. Now by the Chapman–

Kolmogorov equations, we have

P n+m
ik =

∞∑
r=0

P n
irP

m
rk � P n

ijP
m
jk > 0

Hence, state k is accessible from state i. Similarly, we can show that state i is accessi-
ble from state k. Hence, states i and k communicate.
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Two states that communicate are said to be in the same class. It is an easy conse-
quence of (i), (ii), and (iii) that any two classes of states are either identical or disjoint.
In other words, the concept of communication divides the state space up into a num-
ber of separate classes. The Markov chain is said to be irreducible if there is only one
class, that is, if all states communicate with each other.

Example 4.15. Consider the Markov chain consisting of the three states 0, 1, 2 and
having transition probability matrix

P =

∥∥∥∥∥∥∥
1
2

1
2 0

1
2

1
4

1
4

0 1
3

2
3

∥∥∥∥∥∥∥
It is easy to verify that this Markov chain is irreducible. For example, it is possible to
go from state 0 to state 2 since

0 → 1 → 2

That is, one way of getting from state 0 to state 2 is to go from state 0 to state 1 (with
probability 1

2 ) and then go from state 1 to state 2 (with probability 1
4 ). �

Example 4.16. Consider a Markov chain consisting of the four states 0, 1, 2, 3 and
having transition probability matrix

P =

∥∥∥∥∥∥∥∥∥∥

1
2

1
2 0 0

1
2

1
2 0 0

1
4

1
4

1
4

1
4

0 0 0 1

∥∥∥∥∥∥∥∥∥∥
The classes of this Markov chain are {0, 1}, {2}, and {3}. Note that while state 0
(or 1) is accessible from state 2, the reverse is not true. Since state 3 is an absorbing
state, that is, P33 = 1, no other state is accessible from it. �

For any state i we let fi denote the probability that, starting in state i, the process
will ever reenter state i. State i is said to be recurrent if fi = 1 and transient if fi < 1.

Suppose that the process starts in state i and i is recurrent. Hence, with proba-
bility 1, the process will eventually reenter state i. However, by the definition of a
Markov chain, it follows that the process will be starting over again when it reenters
state i and, therefore, state i will eventually be visited again. Continual repetition of
this argument leads to the conclusion that if state i is recurrent then, starting in state i,
the process will reenter state i again and again and again—in fact, infinitely often.

On the other hand, suppose that state i is transient. Hence, each time the process
enters state i there will be a positive probability, namely, 1−fi , that it will never again
enter that state. Therefore, starting in state i, the probability that the process will be in
state i for exactly n time periods equals f n−1

i (1 − fi), n � 1. In other words, if state
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i is transient then, starting in state i, the number of time periods that the process will
be in state i has a geometric distribution with finite mean 1/(1 − fi).

From the preceding two paragraphs, it follows that state i is recurrent if and only
if, starting in state i, the expected number of time periods that the process is in state i
is infinite. But, letting

In =
{

1, if Xn = i

0, if Xn �= i

we have that
∑∞

n=0 In represents the number of periods that the process is in state i.
Also,

E

[ ∞∑
n=0

In|X0 = i

]
=

∞∑
n=0

E[In|X0 = i]

=
∞∑

n=0

P {Xn = i|X0 = i}

=
∞∑

n=0

P n
ii

We have thus proven the following.

Proposition 4.1. State i is

recurrent if
∞∑

n=1

P n
ii = ∞,

transient if
∞∑

n=1

P n
ii < ∞

The argument leading to the preceding proposition is doubly important because it
also shows that a transient state will only be visited a finite number of times (hence
the name transient). This leads to the conclusion that in a finite-state Markov chain not
all states can be transient. To see this, suppose the states are 0,1, . . . ,M and suppose
that they are all transient. Then after a finite amount of time (say, after time T0) state
0 will never be visited, and after a time (say, T1) state 1 will never be visited, and
after a time (say, T2) state 2 will never be visited, and so on. Thus, after a finite time
T = max{T0, T1, . . . , TM} no states will be visited. But as the process must be in some
state after time T we arrive at a contradiction, which shows that at least one of the
states must be recurrent.

Another use of Proposition 4.1 is that it enables us to show that recurrence is a class
property.

Corollary 4.2. If state i is recurrent, and state i communicates with state j , then state
j is recurrent.
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Proof. To prove this we first note that, since state i communicates with state j , there
exist integers k and m such that P k

ij > 0,P m
ji > 0. Now, for any integer n

P m+n+k
jj � P m

ji P
n
iiP

k
ij

This follows since the left side of the preceding is the probability of going from j to
j in m + n + k steps, while the right side is the probability of going from j to j in
m + n + k steps via a path that goes from j to i in m steps, then from i to i in an
additional n steps, then from i to j in an additional k steps.

From the preceding we obtain, by summing over n, that

∞∑
n=1

P m+n+k
jj � P m

ji P
k
ij

∞∑
n=1

P n
ii = ∞

since P m
ji P

k
ij > 0 and

∑∞
n=1 P n

ii is infinite since state i is recurrent. Thus, by Proposi-
tion 4.1 it follows that state j is also recurrent. �

Remarks. (i) Corollary 4.2 also implies that transience is a class property. For if
state i is transient and communicates with state j , then state j must also be tran-
sient. For if j were recurrent then, by Corollary 4.2, i would also be recurrent
and hence could not be transient.

(ii) Corollary 4.2 along with our previous result that not all states in a finite Markov
chain can be transient leads to the conclusion that all states of a finite irreducible
Markov chain are recurrent.

Example 4.17. Let the Markov chain consisting of the states 0,1,2,3 have the tran-
sition probability matrix

P =

∥∥∥∥∥∥∥∥∥∥

0 0 1
2

1
2

1 0 0 0

0 1 0 0

0 1 0 0

∥∥∥∥∥∥∥∥∥∥
Determine which states are transient and which are recurrent.

Solution: It is a simple matter to check that all states communicate and, hence,
since this is a finite chain, all states must be recurrent. �

Example 4.18. Consider the Markov chain having states 0, 1, 2, 3, 4 and

P =

∥∥∥∥∥∥∥∥∥∥∥∥∥

1
2

1
2 0 0 0

1
2

1
2 0 0 0

0 0 1
2

1
2 0

0 0 1
2

1
2 0

1
4

1
4 0 0 1

2

∥∥∥∥∥∥∥∥∥∥∥∥∥
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Determine the recurrent state.

Solution: This chain consists of the three classes {0,1}, {2,3}, and {4}. The first
two classes are recurrent and the third transient. �

Example 4.19 (A Random Walk). Consider a Markov chain whose state space con-
sists of the integers i = 0,±1,±2, . . . , and has transition probabilities given by

Pi,i+1 = p = 1 − Pi,i−1, i = 0,±1,±2, . . .

where 0 < p < 1. In other words, on each transition the process either moves one step
to the right (with probability p) or one step to the left (with probability 1 − p). One
colorful interpretation of this process is that it represents the wanderings of a drunken
man as he walks along a straight line. Another is that it represents the winnings of a
gambler who on each play of the game either wins or loses one dollar.

Since all states clearly communicate, it follows from Corollary 4.2 that they are
either all transient or all recurrent. So let us consider state 0 and attempt to determine
if
∑∞

n=1 P n
00 is finite or infinite.

Since it is impossible to be even (using the gambling model interpretation) after an
odd number of plays we must, of course, have that

P 2n−1
00 = 0, n = 1,2, . . .

On the other hand, we would be even after 2n trials if and only if we won n of
these and lost n of these. Because each play of the game results in a win with proba-
bility p and a loss with probability 1 − p, the desired probability is thus the binomial
probability

P 2n
00 =

(
2n

n

)
pn(1 − p)n = (2n)!

n!n! (p(1 − p))n, n = 1,2,3, . . .

By using an approximation, due to Stirling, which asserts that

n! ∼ nn+1/2e−n
√

2π (4.3)

where we say that an ∼ bn when limn→∞ an/bn = 1, we obtain(
2n

n

)
∼ (2n)2n+1/2 e−2n

√
2π

n2n+1 e−2n (2π)
= 22n

√
nπ

Hence,

P 2n
00 ∼ (4p(1 − p))n√

πn

Now it is easy to verify, for positive an, bn, that if an ∼ bn, then
∑

n an < ∞ if and
only if

∑
n bn < ∞. Hence,

∑∞
n=1 P n

00 will converge if and only if

∞∑
n=1

(4p(1 − p))n√
πn
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does. However, 4p(1 − p) ≤ 1 with equality holding if and only if p = 1
2 . Hence,∑∞

n=1P
n
00 = ∞ if and only if p = 1

2 . Thus, the chain is recurrent when p = 1
2 and

transient if p �= 1
2 .

When p = 1
2 , the preceding process is called a symmetric random walk. We could

also look at symmetric random walks in more than one dimension. For instance, in the
two-dimensional symmetric random walk the process would, at each transition, either
take one step to the left, right, up, or down, each having probability 1

4 . That is, the
state is the pair of integers (i,j ) and the transition probabilities are given by

P(i,j),(i+1,j) = P(i,j),(i−1,j) = P(i,j),(i,j+1) = P(i,j),(i,j−1) = 1
4

By using the same method as in the one-dimensional case, we now show that this
Markov chain is also recurrent.

Since the preceding chain is irreducible, it follows that all states will be recurrent
if state 0 = (0,0) is recurrent. So consider P 2n

00 . Now after 2n steps, the chain will be
back in its original location if for some i,0 � i � n, the 2n steps consist of i steps to
the left, i to the right, n − i up, and n − i down. Since each step will be either of these
four types with probability 1

4 , it follows that the desired probability is a multinomial
probability. That is,

P 2n
00 =

n∑
i=0

(2n)!
i!i!(n − i)!(n − i)!

(
1

4

)2n

=
n∑

i=0

(2n)!
n!n!

n!
(n − i)!i!

n!
(n − i)!i!

(
1

4

)2n

=
(

1

4

)2n(2n

n

) n∑
i=0

(
n

i

)(
n

n − i

)

=
(

1

4

)2n(2n

n

)(
2n

n

)
(4.4)

where the last equality uses the combinatorial identity(
2n

n

)
=

n∑
i=0

(
n

i

)(
n

n − i

)

which follows upon noting that both sides represent the number of subgroups of size
n one can select from a set of n white and n black objects. Now,(

2n

n

)
= (2n)!

n!n!
∼ (2n)2n+1/2e−2n

√
2π

n2n+1e−2n(2π)
by Stirling’s approximation

= 4n

√
πn
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Hence, from Eq. (4.4) we see that

P 2n
00 ∼ 1

πn

which shows that
∑

nP
2n
00 = ∞, and thus all states are recurrent.

Interestingly enough, whereas the symmetric random walks in one and two dimen-
sions are both recurrent, all higher-dimensional symmetric random walks turn out to
be transient. (For instance, the three-dimensional symmetric random walk is at each
transition equally likely to move in any of six ways—either to the left, right, up, down,
in, or out.) �

Remark. For the one-dimensional random walk of Example 4.19 here is a direct ar-
gument for establishing recurrence in the symmetric case, and for determining the
probability that it ever returns to state 0 in the nonsymmetric case. Let

β = P {ever return to 0}

To determine β, start by conditioning on the initial transition to obtain

β = P {ever return to 0|X1 = 1}p + P {ever return to 0|X1 = −1}(1 − p) (4.5)

Now, let α denote the probability that the Markov chain will ever return to state 0
given that it is currently in state 1. Because the Markov chain will always increase by
1 with probability p or decrease by 1 with probability 1 −p no matter what its current
state, note that α is also the probability that the Markov chain currently in state i will
ever enter state i − 1, for any i. To obtain an equation for α, condition on the next
transition to obtain

α = P {ever return|X1 = 1,X2 = 0}(1 − p) + P {ever return|X1 = 1,X2 = 2}p
= 1 − p + P {ever return|X1 = 1,X2 = 2}p
= 1 − p + pα2

where the final equation follows by noting that in order for the chain to ever go from
state 2 to state 0 it must first go to state 1—and the probability of that ever happening
is α—and if it does eventually go to state 1 then it must still go to state 0—and the
conditional probability of that ever happening is also α. Therefore,

α = 1 − p + pα2

The two roots of this equation are α = 1 and α = (1−p)/p. Consequently, in the case
of the symmetric random walk where p = 1/2 we can conclude that α = 1. By sym-
metry, the probability that the symmetric random walk will ever enter state 0 given
that it is currently in state −1 is also 1, proving that the symmetric random walk is
recurrent.
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Suppose now that p > 1/2. In this case, it can be shown (see Exercise 17 at the
end of this chapter) that P {ever return to 0|X1 = −1} = 1. Consequently, Eq. (4.5)
reduces to

β = αp + 1 − p

Because the random walk is transient in this case we know that β < 1, showing that
α �= 1. Therefore, α = (1 − p)/p, yielding that

β = 2(1 − p), p > 1/2

Similarly, when p < 1/2 we can show that β = 2p. Thus, in general

P {ever return to 0} = 2 min(p,1 − p) �

In our next example we use the recurrence of the symmetric random walk to con-
struct an example where E[∑∞

n=1 Xn] �=∑∞
n=1 E[Xn].

Example 4.20. Whereas it is true that E[∑∞
n=1 Xn] =∑∞

n=1 E[Xn] when the random
variables Xn,n ≥ 1 are all nonnegative, it is not true in general. For an example where
it does not hold, suppose that Y1, Y2, . . . are independent and identically distributed
with P(Yn = 1) = P(Yn = −1) = 1/2, n ≥ 1. Note that E[Yn] = 0. Let

N = min(k : Y1 + . . . + Yk = 1)

and note that it follows from the fact that the symmetric random walk is recurrent that
N will be finite with probability 1. Now, let

In =
{

1, if n ≤ N

0, if n > N

Because In = 1 if N > n − 1, and it is equal to 0 otherwise, it follows that the value
of In is determined by Y1, . . . , Yn−1. Indeed, because N is defined to be the first time
the sum of the Y ’s is equal to 1, it follows that

{In = 1} = {N > n − 1} = {Y1 �= 1, Y1 + Y2 �= 1, . . . , Y1 + . . . + Yn−1 �= 1}
which shows that In and Yn are independent. Now, define Xn, n ≥ 1, by

Xn = YnIn =
{
Yn, if n ≤ N

0, if n > N

By the independence of Yn and In,

E[Xn] = E[Yn]E[In] = 0

showing that

∞∑
n=1

E[Xn] = 0
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However,

∞∑
n=1

Xn =
∞∑

n=1

Yn In =
N∑

n=1

Yn = 1

and so

E[
∞∑

n=1

Xn] = 1

Thus,

E[
∞∑

n=1

Xn] = 1 and
∞∑

n=1

E[Xn] = 0 �

Example 4.21 (On the Ultimate Instability of the Aloha Protocol). Consider a com-
munications facility in which the numbers of messages arriving during each of the time
periods n = 1,2, . . . are independent and identically distributed random variables. Let
ai = P {i arrivals}, and suppose that a0 + a1 < 1. Each arriving message will trans-
mit at the end of the period in which it arrives. If exactly one message is transmitted,
then the transmission is successful and the message leaves the system. However, if at
any time two or more messages simultaneously transmit, then a collision is deemed
to occur and these messages remain in the system. Once a message is involved in a
collision it will, independently of all else, transmit at the end of each additional period
with probability p—the so-called Aloha protocol (because it was first instituted at the
University of Hawaii). We will show that such a system is asymptotically unstable
in the sense that the number of successful transmissions will, with probability 1, be
finite.

To begin let Xn denote the number of messages in the facility at the beginning of
the nth period, and note that {Xn,n � 0} is a Markov chain. Now for k � 0 define the
indicator variables Ik by

Ik =
⎧⎨
⎩

1, if the first time that the chain departs state k it
directly goes to state k − 1

0, otherwise

and let it be 0 if the system is never in state k, k � 0. (For instance, if the successive
states are 0,1,3,4, . . . , then I3 = 0 since when the chain first departs state 3 it goes to
state 4; whereas, if they are 0,3,3,2, . . . , then I3 = 1 since this time it goes to state 2.)
Now,

E

[ ∞∑
k=0

Ik

]
=

∞∑
k=0

E[Ik]

=
∞∑

k=0

P {Ik = 1}
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�
∞∑

k=0

P {Ik = 1|k is ever visited} (4.6)

Now, P {Ik = 1|k is ever visited} is the probability that when state k is departed the
next state is k − 1. That is, it is the conditional probability that a transition from k is
to k − 1 given that it is not back into k, and so

P {Ik = 1|k is ever visited} = Pk,k−1

1 − Pk,k

Because

Pk,k−1 = a0kp(1 − p)k−1,

Pk,k = a0[1 − kp(1 − p)k−1] + a1(1 − p)k

which is seen by noting that if there are k messages present on the beginning of a
day, then (a) there will be k − 1 at the beginning of the next day if there are no new
messages that day and exactly one of the k messages transmits; and (b) there will be k

at the beginning of the next day if either

(i) there are no new messages and it is not the case that exactly one of the existing
k messages transmits, or

(ii) there is exactly one new message (which automatically transmits) and none of
the other k messages transmits.

Substitution of the preceding into Eq. (4.6) yields

E

[ ∞∑
k=0

Ik

]
�

∞∑
k=0

a0kp(1 − p)k−1

1 − a0[1 − kp(1 − p)k−1] − a1(1 − p)k

< ∞
where the convergence follows by noting that when k is large the denominator of
the expression in the preceding sum converges to 1 − a0 and so the convergence or
divergence of the sum is determined by whether or not the sum of the terms in the
numerator converge and

∑∞
k=0 k(1 − p)k−1 < ∞.

Hence, E[∑∞
k=0 Ik] < ∞, which implies that

∑∞
k=0 Ik < ∞ with probability 1 (for

if there was a positive probability that
∑∞

k=0 Ik could be ∞, then its mean would be
∞). Hence, with probability 1, there will be only a finite number of states that are
initially departed via a successful transmission; or equivalently, there will be some
finite integer N such that whenever there are N or more messages in the system, there
will never again be a successful transmission. From this (and the fact that such higher
states will eventually be reached—why?) it follows that, with probability 1, there will
only be a finite number of successful transmissions. �

Remark. For a (slightly less than rigorous) probabilistic proof of Stirling’s approxi-
mation, let X1,X2, . . . be independent Poisson random variables each having mean 1.
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Let Sn = ∑n
i=1 Xi , and note that both the mean and variance of Sn are equal to n.

Now,

P {Sn = n} = P {n − 1 < Sn � n}
= P {−1/

√
n < (Sn − n)/

√
n � 0}

≈
∫ 0

−1/
√

n

(2π)−1/2e−x2/2 dx
when n is large, by the
central limit theorem

≈ (2π)−1/2(1/
√

n)

= (2πn)−1/2

But Sn is Poisson with mean n, and so

P {Sn = n} = e−nnn

n!
Hence, for n large

e−nnn

n! ≈ (2πn)−1/2

or, equivalently

n! ≈ nn+1/2e−n
√

2π

which is Stirling’s approximation.

4.4 Long-Run Proportions and Limiting Probabilities
For pairs of states i �= j , let fi,j denote the probability that the Markov chain, starting
in state i, will ever make a transition into state j . That is,

fi,j = P(Xn = j for some n > 0|X0 = i)

We then have the following result.

Proposition 4.3. If i is recurrent and i communicates with j, then fi,j = 1.

Proof. Because i ↔ j , there is some n such that P n
j,i > 0. Now, suppose the Markov

chain starts in state j . If fi,j < 1, there would be a positive probability that the Markov
chain would never return to state j after time n (because it has a positive probability
of being in state i at time n and as fi,j < 1 there would be a positive probability of
never returning to j from then on). But this contradicts the fact that state j is recurrent
(since it communicates with i) and thus shows that fi,j = 1. �

If state j is recurrent, let mj denote the expected number of transitions that it takes
the Markov chain when starting in state j to return to that state. That is, with

Nj = min{n > 0 : Xn = j}
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equal to the number of transitions until the Markov chain makes a transition into
state j ,

mj = E[Nj |X0 = j ]
Definition. Say that the recurrent state j is positive recurrent if mj < ∞ and say that
it is null recurrent if mj = ∞.

Now suppose that the Markov chain is irreducible and recurrent. In this case we
now show that the long-run proportion of time that the chain spends in state j is equal
to 1/mj . That is, letting πj denote the long-run proportion of time that the Markov
chain is in state j , we have the following proposition.

Proposition 4.4. If the Markov chain is irreducible and recurrent, then for any initial
state

πj = 1/mj

Proof. Suppose that the Markov chain starts in state i, and let T1 denote the number
of transitions until the chain enters state j ; then let T2 denote the additional number of
transitions from time T1 until the Markov chain next enters state j ; then let T3 denote
the additional number of transitions from time T1 + T2 until the Markov chain next
enters state j , and so on. Note that T1 is finite because Proposition 4.3 tells us that
with probability 1 a transition into j will eventually occur. Also, for n ≥ 2, because
Tn is the number of transitions between the (n − 1)th and the nth transition into state
j , it follows from the Markovian property that T2, T3, . . . are independent and identi-
cally distributed with mean mj . Because the nth transition into state j occurs at time
T1 + . . . + Tn we obtain that πj , the long-run proportion of time that the chain is in
state j , is

πj = lim
n→∞

n∑n
i=1 Ti

= lim
n→∞

1
1
n

∑n
i=1 Ti

= lim
n→∞

1
T1
n

+ T2+...+Tn

n

= 1

mj

where the last equality follows because limn→∞ T1/n = 0 and, from the strong law of
large numbers, limn→∞ T2+...+Tn

n
= limn→∞ T2+...+Tn

n−1
n−1
n

= mj . �

Because mj < ∞ is equivalent to 1/mj > 0, it follows from the preceding that
state j is positive recurrent if and only if πj > 0. We now exploit this to show that
positive recurrence is a class property.

Proposition 4.5. If i is positive recurrent and i ↔ j then j is positive recurrent.
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Proof. Suppose that i is positive recurrent and that i ↔ j . If we let m be the smallest
n for which P n

i,j > 0, then m is the length of the shortest path from i to j . Let Tk be
the time of the kth transition into state i, and let Ak be the event that m periods later
the Markov chain will be in state j ; that is, Ak = {XTk+m = j}. We now argue that

(i) P (Ak) = P m
i,j and (ii) Ak, k ≥ 1 are independent.

Whereas (i) is immediate, we show (ii) by arguing that whether or not Ak occurred
would have been determined by time Tk+1. To see why this is, note that it is clearly
true if Tk+1 ≥ Tk + m. On the other hand, if Tk+1 < Tk + m, then the chain would be
back in state i at some time between Tk and Tk + m and, as it takes at least m transi-
tions to go from i to j , it would not be possible for it to be in state j at time Tk + m.
Hence, (i) and (ii) are established, and thus, by the strong law of large numbers, the
proportion of transitions into state i that are followed m transitions later by one into
state j is P m

i,j . Since πi > 0 is the proportion of time that the chain is in state i, we see
that

0 < πiP
m
i,j

= proportion of time in state i and will be in state j after m transitions

= proportion of time in state j and was, m periods earlier, in state i

≤ proportion of time in state j

= πj

Hence, πj > 0, showing that state j is positive recurrent. �

Remarks. (i) It follows from the preceding result that null recurrence is also a
class property. For suppose that i is null recurrent and i ↔ j . Because i is re-
current and i ↔ j we can conclude that j is recurrent. But if j were positive
recurrent then by the preceding proposition i would also be positive recurrent.
Because i is not positive recurrent, neither is j .

(ii) An irreducible finite state Markov chain must be positive recurrent. For we
know that such a chain must be recurrent; hence, all its states are either positive
recurrent or null recurrent. If they were null recurrent then all the long run pro-
portions would equal 0, which is impossible when there are only a finite number
of states. Consequently, we can conclude that the chain is positive recurrent.

(iii) The classical example of a null recurrent Markov chain is the one dimensional
symmetric random walk of Example 4.18. To show it is null recurrent, we need
to show that E[T0,0] = ∞, where Ti,j is the number of transitions, starting in
state i, until the symmetric random walk makes a transition into state j . To
show this, condition on the first transition to obtain

E[T0,0] = 1 + 1

2
E[T1,0] + 1

2
E[T−1,0]

Now,

E[T1,0] = 1 + 1

2
E[T2,0]
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= 1 + 1

2
(E[T2,1] + E[T1,0])

Because each transition has the same probability of being up 1 (rather than
down 1), it follows that the number of transitions to enter a state one higher
than the initial state has the same distribution for all initial states. Consequently,
E[T2,1] = E[T1,0], giving that

E[T1,0] = 1 + 1

2
(2E[T1,0]) = 1 + E[T1,0]

Hence, E[T1,0] = ∞, which also shows that E[T0,0] = ∞, proving that the
symmetric random walk is null recurrent. �

To determine the long-run proportions {πj , j ≥ 1}, note, because πi is the long-run
proportion of transitions that come from state i, that

πiPi,j = long-run proportion of transitions that go from state i to state j

Summing the preceding over all i now yields that

πj =
∑

i

πiPi,j

Indeed, the following important theorem can be proven.

Theorem 4.1. Consider an irreducible Markov chain. If the chain is positive recur-
rent, then the long-run proportions are the unique solution of the equations

πj =
∑

i

πiPi,j , j ≥ 1

∑
j

πj = 1
(4.7)

Moreover, if there is no solution of the preceding linear equations, then the Markov
chain is either transient or null recurrent and all πj = 0.

Example 4.22. Consider Example 4.1, in which we assume that if it rains today, then
it will rain tomorrow with probability α; and if it does not rain today, then it will rain
tomorrow with probability β. If we say that the state is 0 when it rains and 1 when it
does not rain, then by Theorem 4.1 the long-run proportions π0 and π1 are given by

π0 = απ0 + βπ1,

π1 = (1 − α)π0 + (1 − β)π1,

π0 + π1 = 1

which yields that

π0 = β

1 + β − α
, π1 = 1 − α

1 + β − α
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For example if α = 0.7 and β = 0.4, then the long-run proportion of rain is π0 = 4
7 =

0.571. �

Example 4.23. Consider Example 4.3 in which the mood of an individual is consid-
ered as a three-state Markov chain having a transition probability matrix

P =
∥∥∥∥∥∥

0.5 0.4 0.1
0.3 0.4 0.3
0.2 0.3 0.5

∥∥∥∥∥∥
In the long run, what proportion of time is the process in each of the three states?

Solution: The long run proportions πi, i = 0,1,2, are obtained by solving the
set of equations in Eq. (4.7). In this case these equations are

π0 = 0.5π0 + 0.3π1 + 0.2π2,

π1 = 0.4π0 + 0.4π1 + 0.3π2,

π2 = 0.1π0 + 0.3π1 + 0.5π2,

π0 + π1 + π2 = 1

Solving yields

π0 = 21
62 , π1 = 23

62 , π2 = 18
62 �

Example 4.24 (A Model of Class Mobility). A problem of interest to sociologists is
to determine the proportion of society that has an upper- or lower-class occupation.
One possible mathematical model would be to assume that transitions between social
classes of the successive generations in a family can be regarded as transitions of a
Markov chain. That is, we assume that the occupation of a child depends only on his
or her parent’s occupation. Let us suppose that such a model is appropriate and that
the transition probability matrix is given by

P =
∥∥∥∥∥∥

0.45 0.48 0.07
0.05 0.70 0.25
0.01 0.50 0.49

∥∥∥∥∥∥ (4.8)

That is, for instance, we suppose that the child of a middle-class worker will attain
an upper-, middle-, or lower-class occupation with respective probabilities 0.05, 0.70,
0.25.

The long-run proportions πi thus satisfy

π0 = 0.45π0 + 0.05π1 + 0.01π2,

π1 = 0.48π0 + 0.70π1 + 0.50π2,

π2 = 0.07π0 + 0.25π1 + 0.49π2,

π0 + π1 + π2 = 1
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Hence,

π0 = 0.07, π1 = 0.62, π2 = 0.31

In other words, a society in which social mobility between classes can be described by
a Markov chain with transition probability matrix given by Eq. (4.8) has, in the long
run, 7 percent of its people in upper-class jobs, 62 percent of its people in middle-class
jobs, and 31 percent in lower-class jobs.

Example 4.25 (The Hardy–Weinberg Law and a Markov Chain in Genetics). Con-
sider a large population of individuals, each of whom possesses a particular pair of
genes, of which each individual gene is classified as being of type A or type a. Assume
that the proportions of individuals whose gene pairs are AA,aa, or Aa are, respec-
tively, p0, q0, and r0 (p0 + q0 + r0 = 1). When two individuals mate, each contributes
one of his or her genes, chosen at random, to the resultant offspring. Assuming that
the mating occurs at random, in that each individual is equally likely to mate with any
other individual, we are interested in determining the proportions of individuals in the
next generation whose genes are AA,aa, or Aa. Calling these proportions p,q, and r ,
they are easily obtained by focusing attention on an individual of the next generation
and then determining the probabilities for the gene pair of that individual.

To begin, note that randomly choosing a parent and then randomly choosing one
of its genes is equivalent to just randomly choosing a gene from the total gene popu-
lation. By conditioning on the gene pair of the parent, we see that a randomly chosen
gene will be type A with probability

P {A} = P {A|AA}p0 + P {A|aa}q0 + P {A|Aa}r0

= p0 + r0/2

Similarly, it will be type a with probability

P {a} = q0 + r0/2

Thus, under random mating a randomly chosen member of the next generation will be
type AA with probability p, where

p = P {A}P {A} = (p0 + r0/2)2

Similarly, the randomly chosen member will be type aa with probability

q = P {a}P {a} = (q0 + r0/2)2

and will be type Aa with probability

r = 2P {A}P {a} = 2(p0 + r0/2)(q0 + r0/2)

Since each member of the next generation will independently be of each of the three
gene types with probabilities p,q, r , it follows that the percentages of the members of
the next generation that are of type AA,aa, or Aa are respectively p,q, and r .
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If we now consider the total gene pool of this next generation, then p + r/2, the
fraction of its genes that are A, will be unchanged from the previous generation. This
follows either by arguing that the total gene pool has not changed from generation to
generation or by the following simple algebra:

p + r/2 = (p0 + r0/2)2 + (p0 + r0/2)(q0 + r0/2)

= (p0 + r0/2)[p0 + r0/2 + q0 + r0/2]
= p0 + r0/2 since p0 + r0 + q0 = 1

= P {A} (4.9)

Thus, the fractions of the gene pool that are A and a are the same as in the initial gen-
eration. From this it follows that, under random mating, in all successive generations
after the initial one the percentages of the population having gene pairs AA, aa, and
Aa will remain fixed at the values p,q, and r . This is known as the Hardy–Weinberg
law.

Suppose now that the gene pair population has stabilized in the percentages p,q, r ,
and let us follow the genetic history of a single individual and her descendants. (For
simplicity, assume that each individual has exactly one offspring.) So, for a given in-
dividual, let Xn denote the genetic state of her descendant in the nth generation. The
transition probability matrix of this Markov chain, namely,

∥∥∥∥∥∥∥∥∥∥∥∥

AA aa Aa

AA p + r

2
0 q + r

2

aa 0 q + r

2
p + r

2

Aa
p

2
+ r

4

q

2
+ r

4

p

2
+ q

2
+ r

2

∥∥∥∥∥∥∥∥∥∥∥∥
is easily verified by conditioning on the state of the randomly chosen mate. It is quite
intuitive (why?) that the limiting probabilities for this Markov chain (which also equal
the fractions of the individual’s descendants that are in each of the three genetic states)
should just be p,q, and r . To verify this we must show that they satisfy Theorem 4.1.
Because one of the equations in Theorem 4.1 is redundant, it suffices to show that

p = p
(
p + r

2

)
+ r

(p

2
+ r

4

)
=
(
p + r

2

)2
,

q = q
(
q + r

2

)
+ r

(q

2
+ r

4

)
=
(
q + r

2

)2
,

p + q + r = 1

But this follows from Eq. (4.9), and thus the result is established. �

Example 4.26. Suppose that a production process changes states in accordance with
an irreducible, positive recurrent Markov chain having transition probabilities Pij ,
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i, j = 1, . . . , n, and suppose that certain of the states are considered acceptable and
the remaining unacceptable. Let A denote the acceptable states and Ac the unaccept-
able ones. If the production process is said to be “up” when in an acceptable state and
“down” when in an unacceptable state, determine

1. the rate at which the production process goes from up to down (that is, the rate of
breakdowns);

2. the average length of time the process remains down when it goes down; and
3. the average length of time the process remains up when it goes up.

Solution: Let πk, k = 1, . . . , n, denote the long-run proportions. Now for i ∈ A

and j ∈ Ac the rate at which the process enters state j from state i is

rate enter j from i = πiPij

and so the rate at which the production process enters state j from an acceptable
state is

rate enter j from A =
∑
i∈A

πiPij

Hence, the rate at which it enters an unacceptable state from an acceptable one
(which is the rate at which breakdowns occur) is

rate breakdowns occur =
∑
j∈Ac

∑
i∈A

πiPij (4.10)

Now let Ū and D̄ denote the average time the process remains up when it goes up
and down when it goes down. Because there is a single breakdown every Ū + D̄

time units on the average, it follows heuristically that

rate at which breakdowns occur = 1

Ū + D̄

and so from Eq. (4.10),

1

Ū + D̄
=

∑
j∈Ac

∑
i∈A

πiPij (4.11)

To obtain a second equation relating Ū and D̄, consider the percentage of time the
process is up, which, of course, is equal to

∑
i∈A πi . However, since the process

is up on the average Ū out of every Ū + D̄ time units, it follows (again somewhat
heuristically) that the

proportion of up time = Ū

Ū + D̄
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and so

Ū

Ū + D̄
=
∑
i∈A

πi (4.12)

Hence, from Eqs. (4.11) and (4.12) we obtain

Ū =
∑

i∈A πi∑
j∈Ac

∑
i∈A πiPij

,

D̄ = 1 −∑
i∈A πi∑

j∈Ac

∑
i∈A πiPij

=
∑

i∈Ac πi∑
j∈Ac

∑
i∈A πiPij

For example, suppose the transition probability matrix is

P =

∥∥∥∥∥∥∥∥∥∥

1
4

1
4

1
2 0

0 1
4

1
2

1
4

1
4

1
4

1
4

1
4

1
4

1
4 0 1

2

∥∥∥∥∥∥∥∥∥∥
where the acceptable (up) states are 1, 2 and the unacceptable (down) ones are 3, 4.
The long-run proportions satisfy

π1 = π1
1
4 + π3

1
4 + π4

1
4 ,

π2 = π1
1
4 + π2

1
4 + π3

1
4 + π4

1
4 ,

π3 = π1
1
2 + π2

1
2 + π3

1
4 ,

π1 + π2 + π3 + π4 = 1

These solve to yield

π1 = 3
16 , π2 = 1

4 , π3 = 14
48 , π4 = 13

48

and thus
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rate of breakdowns = π1(P13 + P14) + π2(P23 + P24)

= 9
32 ,

Ū = 14
9 and D̄ = 2

Hence, on the average, breakdowns occur about 9
32 (or 28 percent) of the time.

They last, on the average, 2 time units, and then there follows a stretch of (on the
average) 14

9 time units when the system is up. �
The long run proportions πj , j � 0, are often called stationary probabilities. The

reason being that if the initial state is chosen according to the probabilities πj , j � 0,
then the probability of being in state j at any time n is also equal to πj . That is, if

P {X0 = j} = πj , j � 0

then

P {Xn = j} = πj for all n, j � 0

The preceding is easily proven by induction, for it is true when n = 0 and if we sup-
pose it true for n − 1, then writing

P {Xn = j} =
∑

i

P {Xn = j |Xn−1 = i}P {Xn−1 = i}

=
∑

i

Pijπi by the induction hypothesis

= πj by Theorem 4.1

Example 4.27. Suppose the numbers of families that check into a hotel on successive
days are independent Poisson random variables with mean λ. Also suppose that the
number of days that a family stays in the hotel is a geometric random variable with
parameter p,0 < p < 1. (Thus, a family who spent the previous night in the hotel will,
independently of how long they have already spent in the hotel, check out the next day
with probability p.) Also suppose that all families act independently of each other.
Under these conditions it is easy to see that if Xn denotes the number of families that
are checked in the hotel at the beginning of day n then {Xn,n ≥ 0} is a Markov chain.
Find

(a) the transition probabilities of this Markov chain;
(b) E[Xn|X0 = i];
(c) the stationary probabilities of this Markov chain.

Solution: (a) To find Pi,j , suppose there are i families checked into the hotel at
the beginning of a day. Because each of these i families will stay for another day
with probability q = 1 − p it follows that Ri , the number of these families that re-
main another day, is a binomial (i, q) random variable. So, letting N be the number
of new families that check in that day, we see that

Pi,j = P(Ri + N = j)
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Conditioning on Ri and using that N is Poisson with mean λ, we obtain

Pi,j =
i∑

k=0

P(Ri + N = j |Ri = k)

(
i

k

)
qkpi−k

=
i∑

k=0

P(N = j − k|Ri = k)

(
i

k

)
qkpi−k

=
min(i,j)∑

k=0

P(N = j − k)

(
i

k

)
qkpi−k

=
min(i,j)∑

k=0

e−λ λj−k

(j − k)!
(

i

k

)
qkpi−k

(b) Using the preceding representation Ri + N for the next state from state i, we
see that

E[Xn|Xn−1 = i] = E[Ri + N ] = iq + λ

Consequently,

E[Xn|Xn−1] = Xn−1q + λ

Taking expectations of both sides yields

E[Xn] = λ + qE[Xn−1]
Iterating the preceding gives

E[Xn] = λ + qE[Xn−1]
= λ + q(λ + qE[Xn−2])
= λ + qλ + q2E[Xn−2]
= λ + qλ + q2(λ + qE[Xn−3])
= λ + qλ + q2λ + q3E[Xn−3]

showing that

E[Xn] = λ
(

1 + q + q2 + . . . + qn−1
)

+ qnE[X0]

and yielding the result

E[Xn|X0 = i] = λ(1 − qn)

p
+ qni

(c) To find the stationary probabilities we will not directly use the complicated
transition probabilities derived in part (a). Rather we will make use of the fact that
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the stationary probability distribution is the only distribution on the initial state that
results in the next state having the same distribution. Now, suppose that the initial
state X0 has a Poisson distribution with mean α. That is, assume that the number
of families initially in the hotel is Poisson with mean α. Let R denote the number
of these families that remain in the hotel at the beginning of the next day. Then,
using the result of Example 3.24 that if each of a Poisson distributed (with mean α)
number of events occurs with probability q, then the total number of these events
that occur is Poisson distributed with mean αq, it follows that R is a Poisson ran-
dom variable with mean αq. In addition, the number of new families that check in
during the day, call it N , is Poisson with mean λ, and is independent of R. Hence,
since the sum of independent Poisson random variables is also Poisson distributed,
it follows that R + N , the number of guests at the beginning of the next day, is
Poisson with mean λ + αq. Consequently, if we choose α so that

α = λ + αq

then the distribution of X1 would be the same as that of X0. But this means that
when the initial distribution of X0 is Poisson with mean α = λ

p
, then so is the distri-

bution of X1, implying that this is the stationary distribution. That is, the stationary
probabilities are

πi = e−λ/p(λ/p)i/i!, i ≥ 0

The preceding model has an important generalization. Namely, consider an orga-
nization whose workers are of r distinct types. For instance, the organization could
be a law firm and its lawyers could either be juniors, associates, or partners. Sup-
pose that a worker who is currently type i will in the next period become type j

with probability qi,j for j = 1, . . . , r or will leave the organization with probabil-
ity 1 − ∑r

j=1 qi,j . In addition, suppose that new workers are hired each period,
and that the numbers of types 1, . . . , r workers hired are independent Poisson ran-
dom variables with means λ1, . . . , λr . If we let Xn = (Xn(1), . . . ,Xn(r)), where
Xn(i) is the number of type i workers in the organization at the beginning of pe-
riod n, then Xn, n ≥ 0 is a Markov chain. To compute its stationary probability
distribution, suppose that the initial state is chosen so that the number of work-
ers of different types are independent Poisson random variables, with αi being the
mean number of type i workers. That is, suppose that X0(1), . . . ,X0(r) are in-
dependent Poisson random variables with respective means α1, . . . , αr . Also, let
Nj , j = 1, . . . , r , be the number of new type j workers hired during the initial
period. Now, fix i, and for j = 1, . . . , r , let Mi(j) be the number of the X0(i)

type i workers who become type j in the next period. Then because each of the
Poisson number X0(i) of type i workers will independently become type j with
probability qi,j , j = 1, . . . , r , it follows from the remarks following Example 3.24
that Mi(1), . . . ,Mi(r) are independent Poisson random variables with Mi(j) hav-
ing mean aiqi,j . Because X0(1), . . . ,X0(r) are, by assumption, independent, we
can also conclude that the random variables Mi(j), i, j = 1, . . . , r are all indepen-
dent. Because the sum of independent Poisson random variables is also Poisson
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distributed, the preceding yields that the random variables

X1(j) = Nj +
r∑

i=1

Mi(j), j = 1, . . . , r

are independent Poisson random variables with means

E[X1(j)] = λj +
r∑

i=1

αiqi,j

Hence, if α1, . . . , αr satisfied

αj = λj +
r∑

i=1

αiqi,j , j = 1, . . . , r

then X1 would have the same distribution as X0. Consequently, if we let αo
1, . . . , αo

r

be such that

αo
j = λj +

r∑
i=1

αo
i qi,j , j = 1, . . . , r

then the stationary distribution of the Markov chain is the distribution that takes
the number of workers in each type to be independent Poisson random variables
with means αo

1, . . . , αo
r . That is, the long run proportions are

πk1,...,kr =
r∏

i=1

e−αo
i (αo

i )
ki /ki !

It can be shown that there will be such values αo
j , j = 1, . . . , r , provided that, with

probability 1, each worker eventually leaves the organization. Also, because there
is a unique stationary distribution, there can only be one such set of values. �

The following example exploits the relationship mi = 1/πi, which states that the mean
time between visits to a state is the inverse of the long run proportion of time the chain
is in that state, to obtain a method for computing the mean time until a specified pattern
appears when the data constitutes the successive states of a Markov chain.

Example 4.28 (Mean Pattern Times in Markov Chain Generated Data). Consider an
irreducible Markov chain {Xn,n � 0} with transition probabilities Pi,j and station-
ary probabilities πj , j � 0. Starting in state r , we are interested in determining the
expected number of transitions until the pattern i1, i2, . . . , ik appears. That is, with

N(i1, i2, . . . , ik) = min{n � k: Xn−k+1 = i1, . . . ,Xn = ik}
we are interested in

E[N(i1, i2, . . . , ik)|X0 = r]
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Note that even if i1 = r , the initial state X0 is not considered part of the pattern se-
quence.

Let μ(i, i1) be the mean number of transitions for the chain to enter state i1, given
that the initial state is i, i � 0. The quantities μ(i, i1) can be determined as the solution
of the following set of equations, obtained by conditioning on the first transition out
of state i:

μ(i, i1) = 1 +
∑
j �=i1

Pi,jμ(j, i1), i � 0

For the Markov chain {Xn,n � 0} associate a corresponding Markov chain, which we
will refer to as the k-chain, whose state at any time is the sequence of the most recent
k states of the original chain. (For instance, if k = 3 and X2 = 4,X3 = 1,X4 = 1,
then the state of the k-chain at time 4 is (4,1,1).) Let π(j1, . . . , jk) be the stationary
probabilities for the k-chain. Because π(j1, . . . , jk) is the proportion of time that the
state of the original Markov chain k units ago was j1 and the following k − 1 states,
in sequence, were j2, . . . , jk , we can conclude that

π(j1, . . . , jk) = πj1Pj1,j2 · · ·Pjk−1,jk

Moreover, because the mean number of transitions between successive visits of the
k-chain to the state i1, i2, . . . , ik is equal to the inverse of the stationary probability of
that state, we have that

E[number of transitions between visits to i1, i2, . . . , ik]
= 1

π(i1, . . . , ik)
(4.13)

Let A(i1, . . . , im) be the additional number of transitions needed until the pattern
appears, given that the first m transitions have taken the chain into states X1 =
i1, . . . ,Xm = im.

We will now consider whether the pattern has overlaps, where we say that the pat-
tern i1, i2, . . . , ik has an overlap of size j,j < k, if the sequence of its final j elements
is the same as that of its first j elements. That is, it has an overlap of size j if

(ik−j+1, . . . , ik) = (i1, . . . , ij ), j < k

Case 1. The pattern i1, i2, . . . , ik has no overlaps.
Because there is no overlap, Eq. (4.13) yields

E[N(i1, i2, . . . , ik)|X0 = ik] = 1

π(i1, . . . , ik)

Because the time until the pattern occurs is equal to the time until the chain enters
state i1 plus the additional time, we may write

E[N(i1, i2, . . . , ik)|X0 = ik] = μ(ik, i1) + E[A(i1)]
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The preceding two equations imply

E[A(i1)] = 1

π(i1, . . . , ik)
− μ(ik, i1)

Using that

E[N(i1, i2, . . . , ik)|X0 = r] = μ(r, i1) + E[A(i1)]
gives the result

E[N(i1, i2, . . . , ik)|X0 = r] = μ(r, i1) + 1

π(i1, . . . , ik)
− μ(ik, i1)

where

π(i1, . . . , ik) = πi1Pi1,i2 · · ·Pik−1,ik

Case 2. Now suppose that the pattern has overlaps and let its largest overlap be of
size s. In this case the number of transitions between successive visits of the k-chain
to the state i1, i2, . . . , ik is equal to the additional number of transitions of the original
chain until the pattern appears given that it has already made s transitions with the
results X1 = i1, . . . ,Xs = is . Therefore, from Eq. (4.13)

E[A(i1, . . . , is)] = 1

π(i1, . . . , ik)

But because

N(i1, i2, . . . , ik) = N(i1, . . . , is) + A(i1, . . . , is)

we have

E[N(i1, i2, . . . , ik)|X0 = r] = E[N(i1, i2, . . . , is)|X0 = r] + 1

π(i1, . . . , ik)

We can now repeat the same procedure on the pattern i1, . . . , is , continuing to do so
until we reach one that has no overlap, and then apply the result from Case 1.

For instance, suppose the desired pattern is 1,2,3,1,2,3,1,2. Then

E[N(1,2,3,1,2,3,1,2)|X0 = r] = E[N(1,2,3,1,2)|X0 = r]
+ 1

π(1,2,3,1,2,3,1,2)

Because the largest overlap of the pattern (1,2,3,1,2) is of size 2, the same argument
as in the preceding gives

E[N(1,2,3,1,2)|X0 = r] = E[N(1,2)|X0 = r] + 1

π(1,2,3,1,2)
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Because the pattern (1,2) has no overlap, we obtain from Case 1 that

E[N(1,2)|X0 = r] = μ(r,1) + 1

π(1,2)
− μ(2,1)

Putting it together yields

E[N(1,2,3,1,2,3,1,2)|X0 = r] = μ(r,1) + 1

π1P1,2
− μ(2,1)

+ 1

π1P
2
1,2P2,3P3,1

+ 1

π1P
3
1,2P

2
2,3P

2
3,1

If the generated data is a sequence of independent and identically distributed ran-
dom variables, with each value equal to j with probability Pj , then the Markov chain
has Pi,j = Pj . In this case, πj = Pj . Also, because the time to go from state i to
state j is a geometric random variable with parameter Pj , we have μ(i, j) = 1/Pj .
Thus, the expected number of data values that need be generated before the pattern
1,2,3,1,2,3,1,2 appears would be

1

P1
+ 1

P1P2
− 1

P1
+ 1

P 2
1 P 2

2 P3
+ 1

P 3
1 P 3

2 P 2
3

= 1

P1P2
+ 1

P 2
1 P 2

2 P3
+ 1

P 3
1 P 3

2 P 2
3

�

The following result is quite useful.

Proposition 4.6. Let {Xn,n � 1} be an irreducible Markov chain with stationary
probabilities πj , j � 0, and let r be a bounded function on the state space. Then, with
probability 1,

lim
N→∞

∑N
n=1 r(Xn)

N
=

∞∑
j=0

r(j)πj

Proof. If we let aj (N) be the amount of time the Markov chain spends in state j

during time periods 1, . . . ,N , then

N∑
n=1

r(Xn) =
∞∑

j=0

aj (N)r(j)

Since aj (N)/N → πj the result follows from the preceding upon dividing by N and
then letting N → ∞. �

If we suppose that we earn a reward r(j) whenever the chain is in state j , then
Proposition 4.6 states that our average reward per unit time is

∑
j r(j)πj .
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Example 4.29. For the four state Bonus Malus automobile insurance system specified
in Example 4.7, find the average annual premium paid by a policyholder whose yearly
number of claims is a Poisson random variable with mean 1/2.

Solution: With ak = e−1/2 (1/2)k

k! , we have

a0 = 0.6065, a1 = 0.3033, a2 = 0.0758

Therefore, the Markov chain of successive states has the following transition prob-
ability matrix:∥∥∥∥∥∥∥∥

0.6065 0.3033 0.0758 0.0144
0.6065 0.0000 0.3033 0.0902
0.0000 0.6065 0.0000 0.3935
0.0000 0.0000 0.6065 0.3935

∥∥∥∥∥∥∥∥
The stationary probabilities are given as the solution of

π1 = 0.6065π1 + 0.6065π2,

π2 = 0.3033π1 + 0.6065π3,

π3 = 0.0758π1 + 0.3033π2 + 0.6065π4,

π1 + π2 + π3 + π4 = 1

Rewriting the first three of these equations gives

π2 = 1 − 0.6065

0.6065
π1,

π3 = π2 − 0.3033π1

0.6065
,

π4 = π3 − 0.0758π1 − 0.3033π2

0.6065

or

π2 = 0.6488π1,

π3 = 0.5697π1,

π4 = 0.4900π1

Using that
∑4

i=1 πi = 1 gives the solution (rounded to four decimal places)

π1 = 0.3692, π2 = 0.2395, π3 = 0.2103, π4 = 0.1809

Therefore, the average annual premium paid is

200π1 + 250π2 + 400π3 + 600π4 = 326.375 �
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4.4.1 Limiting Probabilities

In Example 4.8, we considered a two-state Markov chain with transition probability
matrix

P =
(

0.7 0.3
0.4 0.6

)

and showed that

P(4) =
(

0.5749 0.4251
0.5668 0.4332

)

From this it follows that P(8) = P(4) · P(4) is given (to three significant places) by

P(8) =
(

0.571 0.429
0.571 0.429

)

Note that the matrix P(8)is almost identical to the matrix P(4), and that each of the
rows of P(8) has almost identical values. Indeed, it seems that P n

ij is converging to
some value as n → ∞, with this value not depending on i. Moreover, in Example 4.22
we showed that the long-run proportions for this chain are π0 = 4/7 ≈ 0.571,π1 =
3/7 ≈ 0.429, thus making it appear that these long-run proportions may also be lim-
iting probabilities. Although this is indeed the case for the preceding chain, it is not
always true that the long-run proportions are also limiting probabilities. To see why
not, consider a two-state Markov chain having

P0,1 = P1,0 = 1

Because this Markov chain continually alternates between states 0 and 1, the long-run
proportions of time it spends in these states are

π0 = π1 = 1/2

However,

P n
0,0 =

{
1, if n is even
0, if n is odd

and so P n
0,0 does not have a limiting value as n goes to infinity. In general, a chain that

can only return to a state in a multiple of d > 1 steps (where d = 2 in the preceding
example) is said to be periodic and does not have limiting probabilities. However, for
an irreducible chain that is not periodic, and such chains are called aperiodic, the lim-
iting probabilities will always exist and will not depend on the initial state. Moreover,
the limiting probability that the chain will be in state j will equal πj , the long-run
proportion of time the chain is in state j . That the limiting probabilities, when they
exist, will equal the long-run proportions can be seen by letting

αj = lim
n→∞P(Xn = j)
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and using that

P(Xn+1 = j) =
∞∑
i=0

P(Xn+1 = j |Xn = i)P (Xn = i) =
∞∑
i=0

PijP (Xn = i)

and

1 =
∞∑
i=0

P(Xn = i)

Letting n → ∞ in the preceding two equations yields, upon assuming that we can
bring the limit inside the summation, that

αj =
∞∑
i=0

αiPij

1 =
∞∑
i=0

αi

Hence, {αj , j ≥ 0} satisfies the equations for which {πj , j ≥ 0} is the unique solution,
showing that αj = πj , j ≥ 0.

An irreducible, positive recurrent, aperiodic Markov chain is said to be ergodic.

4.5 Some Applications
4.5.1 The Gambler’s Ruin Problem

Consider a gambler who at each play of the game has probability p of winning one
unit and probability q = 1 − p of losing one unit. Assuming that successive plays
of the game are independent, what is the probability that, starting with i units, the
gambler’s fortune will reach N before reaching 0?

If we let Xn denote the player’s fortune at time n, then the process {Xn,n =
0,1,2, . . .} is a Markov chain with transition probabilities

P00 = PNN = 1,

Pi,i+1 = p = 1 − Pi,i−1, i = 1, 2, . . . ,N − 1

This Markov chain has three classes, namely, {0}, {1,2, . . . ,N − 1}, and {N}; the first
and third class being recurrent and the second transient. Since each transient state is
visited only finitely often, it follows that, after some finite amount of time, the gambler
will either attain his goal of N or go broke.

Let Pi, i = 0,1, . . . ,N , denote the probability that, starting with i, the gambler’s
fortune will eventually reach N . By conditioning on the outcome of the initial play of
the game we obtain

Pi = pPi+1 + qPi−1, i = 1,2, . . . ,N − 1
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or equivalently, since p + q = 1,

pPi + qPi = pPi+1 + qPi−1

or

Pi+1 − Pi = q

p
(Pi − Pi−1), i = 1,2, . . . ,N − 1

Hence, since P0 = 0, we obtain from the preceding line that

P2 − P1 = q

p
(P1 − P0) = q

p
P1,

P3 − P2 = q

p
(P2 − P1) =

(
q

p

)2

P1,

...

Pi − Pi−1 = q

p
(Pi−1 − Pi−2) =

(
q

p

)i−1

P1,

...

PN − PN−1 =
(

q

p

)
(PN−1 − PN−2) =

(
q

p

)N−1

P1

Adding the first i − 1 of these equations yields

Pi − P1 = P1

[(
q

p

)
+
(

q

p

)2

+ · · · +
(

q

p

)i−1
]

or

Pi =

⎧⎪⎪⎨
⎪⎪⎩

1 − (q/p)i

1 − (q/p)
P1, if

q

p
�= 1

iP1, if
q

p
= 1

Now, using the fact that PN = 1, we obtain

P1 =

⎧⎪⎨
⎪⎩

1 − (q/p)

1 − (q/p)N
, if p �= 1

2
1

N
, if p = 1

2

and hence

Pi =

⎧⎪⎪⎨
⎪⎪⎩

1 − (q/p)i

1 − (q/p)N
, if p �= 1

2
i

N
, if p = 1

2

(4.14)
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Note that, as N → ∞,

Pi →

⎧⎪⎪⎨
⎪⎪⎩

1 −
(

q

p

)i

, if p >
1

2

0, if p � 1

2

Thus, if p > 1
2 , there is a positive probability that the gambler’s fortune will increase

indefinitely; while if p � 1
2 , the gambler will, with probability 1, go broke against an

infinitely rich adversary.

Example 4.30. Suppose Max and Patty decide to flip pennies; the one coming closest
to the wall wins. Patty, being the better player, has a probability 0.6 of winning on
each flip. (a) If Patty starts with five pennies and Max with ten, what is the probability
that Patty will wipe Max out? (b) What if Patty starts with 10 and Max with 20?

Solution: (a) The desired probability is obtained from Eq. (4.14) by letting i = 5,
N = 15, and p = 0.6. Hence, the desired probability is

1 −
(

2
3

)5

1 −
(

2
3

)15
≈ 0.87

(b) The desired probability is

1 −
(

2
3

)10

1 −
(

2
3

)30
≈ 0.98 �

For an application of the gambler’s ruin problem to drug testing, suppose that two
new drugs have been developed for treating a certain disease. Drug i has a cure rate
Pi, i = 1,2, in the sense that each patient treated with drug i will be cured with prob-
ability Pi . These cure rates, however, are not known, and suppose we are interested
in a method for deciding whether P1 > P2 or P2 > P1. To decide upon one of these
alternatives, consider the following test: Pairs of patients are treated sequentially with
one member of the pair receiving drug 1 and the other drug 2. The results for each pair
are determined, and the testing stops when the cumulative number of cures using one
of the drugs exceeds the cumulative number of cures when using the other by some
fixed predetermined number. More formally, let

Xj =
{

1, if the patient in the j th pair to receive drug number 1 is cured
0, otherwise

Yj =
{

1, if the patient in the j th pair to receive drug number 2 is cured
0, otherwise
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For a predetermined positive integer M the test stops after pair N where N is the
first value of n such that either

X1 + · · · + Xn − (Y1 + · · · + Yn) = M

or

X1 + · · · + Xn − (Y1 + · · · + Yn) = −M

In the former case we then assert that P1 > P2, and in the latter that P2 > P1.
In order to help ascertain whether the preceding is a good test, one thing we would

like to know is the probability of it leading to an incorrect decision. That is, for given
P1 and P2 where P1 > P2, what is the probability that the test will incorrectly assert
that P2 > P1? To determine this probability, note that after each pair is checked the
cumulative difference of cures using drug 1 versus drug 2 will either go up by 1 with
probability P1(1 − P2)—since this is the probability that drug 1 leads to a cure and
drug 2 does not—or go down by 1 with probability (1 − P1)P2, or remain the same
with probability P1P2 + (1 − P1)(1 − P2). Hence, if we only consider those pairs in
which the cumulative difference changes, then the difference will go up 1 with proba-
bility

p = P {up 1|up 1 or down 1}
= P1(1 − P2)

P1(1 − P2) + (1 − P1)P2

and down 1 with probability

q = 1 − p = P2(1 − P1)

P1(1 − P2) + (1 − P1)P2

Hence, the probability that the test will assert that P2 > P1 is equal to the probability
that a gambler who wins each (one unit) bet with probability p will go down M before
going up M . But Eq. (4.14) with i = M,N = 2M , shows that this probability is given
by

P {test asserts that P2 > P1} = 1 − 1 − (q/p)M

1 − (q/p)2M

= 1

1 + (p/q)M

Thus, for instance, if P1 = 0.6 and P2 = 0.4 then the probability of an incorrect deci-
sion is 0.017 when M = 5 and reduces to 0.0003 when M = 10.
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4.5.2 A Model for Algorithmic Efficiency

The following optimization problem is called a linear program:

minimize cx,

subject to Ax = b,

x � 0

where A is an m × n matrix of fixed constants; c = (c1, . . . , cn) and b = (b1, . . . , bm)

are vectors of fixed constants; and x = (x1, . . . , xn) is the n-vector of nonnegative val-
ues that is to be chosen to minimize cx ≡∑n

i=1 cixi . Supposing that n > m, it can be
shown that the optimal x can always be chosen to have at least n − m components
equal to 0—that is, it can always be taken to be one of the so-called extreme points of
the feasibility region.

The simplex algorithm solves this linear program by moving from an extreme point
of the feasibility region to a better (in terms of the objective function cx) extreme point
(via the pivot operation) until the optimal is reached. Because there can be as many

as N ≡ (
n
m

)
such extreme points, it would seem that this method might take many

iterations, but, surprisingly to some, this does not appear to be the case in practice.
To obtain a feel for whether or not the preceding statement is surprising, let us

consider a simple probabilistic (Markov chain) model as to how the algorithm moves
along the extreme points. Specifically, we will suppose that if at any time the algo-
rithm is at the j th best extreme point then after the next pivot the resulting extreme
point is equally likely to be any of the j − 1 best. Under this assumption, we show
that the time to get from the N th best to the best extreme point has approximately, for
large N , a normal distribution with mean and variance equal to the logarithm (base e)
of N .

Consider a Markov chain for which P11 = 1 and

Pij = 1

i − 1
, j = 1, . . . , i − 1, i > 1

and let Ti denote the number of transitions needed to go from state i to state 1. A re-
cursive formula for E[Ti] can be obtained by conditioning on the initial transition:

E[Ti] = 1 + 1

i − 1

i−1∑
j=1

E[Tj ]

Starting with E[T1] = 0, we successively see that

E[T2] = 1,

E[T3] = 1 + 1
2 ,

E[T4] = 1 + 1
3 (1 + 1 + 1

2 ) = 1 + 1
2 + 1

3
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and it is not difficult to guess and then prove inductively that

E[Ti] =
i−1∑
j=1

1/j

However, to obtain a more complete description of TN , we will use the representa-
tion

TN =
N−1∑
j=1

Ij

where

Ij =
{

1, if the process ever enters j

0, otherwise

The importance of the preceding representation stems from the following:

Proposition 4.7. I1, . . . , IN−1 are independent and

P {Ij = 1} = 1/j, 1 � j �N − 1

Proof. Given Ij+1, . . . , IN , let n = min{i: i > j, Ii = 1} denote the lowest numbered
state, greater than j , that is entered. Thus we know that the process enters state n and
the next state entered is one of the states 1,2, . . . , j . Hence, as the next state from state
n is equally likely to be any of the lower number states 1,2, . . . , n − 1 we see that

P {Ij = 1|Ij+1, . . . , IN } = 1/(n − 1)

j/(n − 1)
= 1/j

Hence, P {Ij = 1} = 1/j , and independence follows since the preceding conditional
probability does not depend on Ij+1, . . . , IN . �

Corollary 4.8. (i) E[TN ] =∑N−1
j=1 1/j .

(ii) Var(TN) =∑N−1
j=1 (1/j)(1 − 1/j).

(iii) For N large, TN has approximately a normal distribution with mean logN and
variance logN .

Proof. Parts (i) and (ii) follow from Proposition 4.7 and the representation TN =∑N−1
j=1 Ij . Part (iii) follows from the central limit theorem since

∫ N

1

dx

x
<

N−1∑
1

1/j < 1 +
∫ N−1

1

dx

x

or

logN <

N−1∑
1

1/j < 1 + log(N − 1)
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and so

logN ≈
N−1∑
j=1

1/j �

Returning to the simplex algorithm, if we assume that n,m, and n−m are all large,
we have by Stirling’s approximation that

N =
(

n

m

)
∼ nn+1/2

(n − m)n−m+1/2mm+1/2
√

2π

and so, letting c = n/m,

logN ∼ (
mc + 1

2

)
log(mc) − (

m(c − 1) + 1
2

)
log(m(c − 1))

− (
m + 1

2

)
logm − 1

2 log(2π)

or

logN ∼ m

[
c log

c

c − 1
+ log(c − 1)

]

Now, as limx→∞ x log[x/(x − 1)] = 1, it follows that, when c is large,

logN ∼ m[1 + log(c − 1)]
Thus, for instance, if n = 8000,m = 1000, then the number of necessary transitions
is approximately normally distributed with mean and variance equal to 1000(1 +
log 7) ≈ 3000. Hence, the number of necessary transitions would be roughly between

3000 ± 2
√

3000 or roughly 3000 ± 110

95 percent of the time.

4.5.3 Using a Random Walk to Analyze a Probabilistic
Algorithm for the Satisfiability Problem

Consider a Markov chain with states 0,1, . . . , n having

P0,1 = 1, Pi,i+1 = p, Pi,i−1 = q = 1 − p, 1 � i < n

and suppose that we are interested in studying the time that it takes for the chain to
go from state 0 to state n. One approach to obtaining the mean time to reach state n

would be to let mi denote the mean time to go from state i to state n, i = 0, . . . , n − 1.
If we then condition on the initial transition, we obtain the following set of equations:

m0 = 1 + m1,
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mi = E[time to reach n|next state is i + 1]p
+ E[time to reach n|next state is i − 1]q

= (1 + mi+1)p + (1 + mi−1)q

= 1 + pmi+1 + qmi−1, i = 1, . . . , n − 1

Whereas the preceding equations can be solved for mi, i = 0, . . . , n−1, we do not pur-
sue their solution; we instead make use of the special structure of the Markov chain
to obtain a simpler set of equations. To start, let Ni denote the number of additional
transitions that it takes the chain when it first enters state i until it enters state i + 1.
By the Markovian property, it follows that these random variables Ni, i = 0, . . . , n−1
are independent. Also, we can express N0,n, the number of transitions that it takes the
chain to go from state 0 to state n, as

N0,n =
n−1∑
i=0

Ni (4.15)

Letting μi = E[Ni] we obtain, upon conditioning on the next transition after the chain
enters state i, that for i = 1, . . . , n − 1

μi = 1 + E[number of additional transitions to reach i + 1|chain to i − 1]q
Now, if the chain next enters state i − 1, then in order for it to reach i + 1 it must first
return to state i and must then go from state i to state i + 1. Hence, we have from the
preceding that

μi = 1 + E[N∗
i−1 + N∗

i ]q
where N∗

i−1 and N∗
i are, respectively, the additional number of transitions to return to

state i from i − 1 and the number to then go from i to i + 1. Now, it follows from the
Markovian property that these random variables have, respectively, the same distribu-
tions as Ni−1 and Ni . In addition, they are independent (although we will only use this
when we compute the variance of N0,n). Hence, we see that

μi = 1 + q(μi−1 + μi)

or

μi = 1

p
+ q

p
μi−1, i = 1, . . . , n − 1

Starting with μ0 = 1, and letting α = q/p, we obtain from the preceding recursion
that

μ1 = 1/p + α,

μ2 = 1/p + α(1/p + α) = 1/p + α/p + α2,
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μ3 = 1/p + α(1/p + α/p + α2)

= 1/p + α/p + α2/p + α3

In general, we see that

μi = 1

p

i−1∑
j=0

αj + αi, i = 1, . . . , n − 1 (4.16)

Using Eq. (4.15), we now get

E[N0,n] = 1 + 1

p

n−1∑
i=1

i−1∑
j=0

αj +
n−1∑
i=1

αi

When p = 1
2 , and so α = 1, we see from the preceding that

E[N0,n] = 1 + (n − 1)n + n − 1 = n2

When p �= 1
2 , we obtain

E[N0,n] = 1 + 1

p(1 − α)

n−1∑
i=1

(1 − αi) + α − αn

1 − α

= 1 + 1 + α

1 − α

[
n − 1 − (α − αn)

1 − α

]
+ α − αn

1 − α

= 1 + 2αn+1 − (n + 1)α2 + n − 1

(1 − α)2

where the second equality used the fact that p = 1/(1 + α). Therefore, we see that
when α > 1, or equivalently when p < 1

2 , the expected number of transitions to
reach n is an exponentially increasing function of n. On the other hand, when p = 1

2 ,
E[N0,n] = n2, and when p > 1

2 ,E[N0,n] is, for large n, essentially linear in n.
Let us now compute Var(N0,n). To do so, we will again make use of the repre-

sentation given by Eq. (4.15). Letting vi = Var(Ni), we start by determining the vi

recursively by using the conditional variance formula. Let Si = 1 if the first transition
out of state i is into state i + 1, and let Si = −1 if the transition is into state i − 1,
i = 1, . . . , n − 1. Then,

given that Si = 1: Ni = 1

given that Si = − 1: Ni = 1 + N∗
i−1 + N∗

i

Hence,

E[Ni |Si = 1] = 1,

E[Ni |Si = −1] = 1 + μi−1 + μi
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implying that

Var(E[Ni |Si]) = Var(E[Ni |Si] − 1)

= (μi−1 + μi)
2q − (μi−1 + μi)

2q2

= qp(μi−1 + μi)
2

Also, since N∗
i−1 and N∗

i , the numbers of transitions to return from state i − 1 to i

and to then go from state i to state i + 1 are, by the Markovian property, independent
random variables having the same distributions as Ni−1 and Ni , respectively, we see
that

Var(Ni |Si = 1) = 0,

Var(Ni |Si = −1) = vi−1 + vi

Hence,

E[Var(Ni |Si)] = q(vi−1 + vi)

From the conditional variance formula, we thus obtain

vi = pq(μi−1 + μi)
2 + q(vi−1 + vi)

or, equivalently,

vi = q(μi−1 + μi)
2 + αvi−1, i = 1, . . . , n − 1

Starting with v0 = 0, we obtain from the preceding recursion that

v1 = q(μ0 + μ1)
2,

v2 = q(μ1 + μ2)
2 + αq(μ0 + μ1)

2,

v3 = q(μ2 + μ3)
2 + αq(μ1 + μ2)

2 + α2q(μ0 + μ1)
2

In general, we have for i > 0,

vi = q

i∑
j=1

αi−j (μj−1 + μj )
2 (4.17)

Therefore, we see that

Var(N0,n) =
n−1∑
i=0

vi = q

n−1∑
i=1

i∑
j=1

αi−j (μj−1 + μj )
2

where μj is given by Eq. (4.16).
We see from Eqs. (4.16) and (4.17) that when p � 1

2 , and so α � 1, that μi and vi ,
the mean and variance of the number of transitions to go from state i to i + 1, do not
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increase too rapidly in i. For instance, when p = 1
2 , it follows from Eqs. (4.16) and

(4.17) that

μi = 2i + 1

and

vi = 1

2

i∑
j=1

(4j)2 = 8
i∑

j=1

j2

Hence, since N0,n is the sum of independent random variables, which are of roughly
similar magnitudes when p � 1

2 , it follows in this case from the central limit theo-
rem that N0,n is, for large n, approximately normally distributed. In particular, when
p = 1

2 ,N0,n is approximately normal with mean n2 and variance

Var(N0,n) = 8
n−1∑
i=1

i∑
j=1

j2

= 8
n−1∑
j=1

n−1∑
i=j

j2

= 8
n−1∑
j=1

(n − j)j2

≈ 8
∫ n−1

1
(n − x)x2 dx

≈ 2
3n4

Example 4.31 (The Satisfiability Problem). A Boolean variable x is one that takes
on either of two values: TRUE or FALSE. If xi, i � 1 are Boolean variables, then a
Boolean clause of the form

x1 + x̄2 + x3

is TRUE if x1 is TRUE, or if x2 is FALSE, or if x3 is TRUE. That is, the symbol “+”
means “or” and x̄ is TRUE if x is FALSE and vice versa. A Boolean formula is a
combination of clauses such as

(x1 + x̄2) ∗ (x1 + x3) ∗ (x2 + x̄3) ∗ (x̄1 + x̄2) ∗ (x1 + x2)

In the preceding, the terms between the parentheses represent clauses, and the for-
mula is TRUE if all the clauses are TRUE, and is FALSE otherwise. For a given
Boolean formula, the satisfiability problem is either to determine values for the vari-
ables that result in the formula being TRUE, or to determine that the formula is never
true. For instance, one set of values that makes the preceding formula TRUE is to set
x1 = TRUE, x2 = FALSE, and x3 = FALSE.
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Consider a formula of the n Boolean variables x1, . . . , xn and suppose that each
clause in this formula refers to exactly two variables. We will now present a proba-
bilistic algorithm that will either find values that satisfy the formula or determine to
a high probability that it is not possible to satisfy it. To begin, start with an arbitrary
setting of values. Then, at each stage choose a clause whose value is FALSE, and ran-
domly choose one of the Boolean variables in that clause and change its value. That
is, if the variable has value TRUE then change its value to FALSE, and vice versa. If
this new setting makes the formula TRUE then stop, otherwise continue in the same

fashion. If you have not stopped after n2(1 + 4
√

2
3 ) repetitions, then declare that the

formula cannot be satisfied. We will now argue that if there is a satisfiable assignment
then this algorithm will find such an assignment with a probability very close to 1.

Let us start by assuming that there is a satisfiable assignment of truth values and let
A be such an assignment. At each stage of the algorithm there is a certain assignment
of values. Let Yj denote the number of the n variables whose values at the j th stage
of the algorithm agree with their values in A . For instance, suppose that n = 3 and
A consists of the settings x1 = x2 = x3 = TRUE. If the assignment of values at the
j th step of the algorithm is x1 = TRUE, x2 = x3 = FALSE, then Yj = 1. Now, at each
stage, the algorithm considers a clause that is not satisfied, thus implying that at least
one of the values of the two variables in this clause does not agree with its value in A .
As a result, when we randomly choose one of the variables in this clause then there is
a probability of at least 1

2 that Yj+1 = Yj + 1 and at most 1
2 that Yj+1 = Yj − 1. That

is, independent of what has previously transpired in the algorithm, at each stage the
number of settings in agreement with those in A will either increase or decrease by
1 and the probability of an increase is at least 1

2 (it is 1 if both variables have values
different from their values in A ). Thus, even though the process Yj , j � 0 is not itself
a Markov chain (why not?) it is intuitively clear that both the expectation and the vari-
ance of the number of stages of the algorithm needed to obtain the values of A will
be less than or equal to the expectation and variance of the number of transitions to go
from state 0 to state n in the Markov chain of Section 4.5.2. Hence, if the algorithm
has not yet terminated because it found a set of satisfiable values different from that of
A , it will do so within an expected time of at most n2 and with a standard deviation

of at most n2
√

2
3 . In addition, since the time for the Markov chain to go from 0 to

n is approximately normal when n is large we can be quite certain that a satisfiable

assignment will be reached by n2 + 4(n2
√

2
3 ) stages, and thus if one has not been

found by this number of stages of the algorithm we can be quite certain that there is
no satisfiable assignment.

Our analysis also makes it clear why we assumed that there are only two variables
in each clause. For if there were k, k > 2, variables in a clause then as any clause that
is not presently satisfied may have only one incorrect setting, a randomly chosen vari-
able whose value is changed might only increase the number of values in agreement
with A with probability 1/k and so we could only conclude from our prior Markov
chain results that the mean time to obtain the values in A is an exponential function
of n, which is not an efficient algorithm when n is large. �
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4.6 Mean Time Spent in Transient States
Consider now a finite state Markov chain and suppose that the states are numbered so
that T = {1,2, . . . , t} denotes the set of transient states. Let

PT =
⎡
⎢⎣

P11 P12 · · · P1t

...
...

...
...

Pt1 Pt2 · · · Ptt

⎤
⎥⎦

and note that since PT specifies only the transition probabilities from transient states
into transient states, some of its row sums are less than 1 (otherwise, T would be a
closed class of states).

For transient states i and j , let sij denote the expected number of time periods that
the Markov chain is in state j , given that it starts in state i. Let δi,j = 1 when i = j

and let it be 0 otherwise. Condition on the initial transition to obtain

sij = δi,j +
∑

k

Pikskj

= δi,j +
t∑

k=1

Pikskj (4.18)

where the final equality follows since it is impossible to go from a recurrent to a tran-
sient state, implying that skj = 0 when k is a recurrent state.

Let S denote the matrix of values sij , i, j = 1, . . . , t . That is,

S =
⎡
⎢⎣

s11 s12 · · · s1t

...
...

...
...

st1 st2 · · · stt

⎤
⎥⎦

In matrix notation, Eq. (4.18) can be written as

S = I + PT S

where I is the identity matrix of size t . Because the preceding equation is equivalent
to

(I − PT )S = I

we obtain, upon multiplying both sides by (I − PT )−1,

S = (I − PT )−1

That is, the quantities sij , i ∈ T , j ∈ T , can be obtained by inverting the matrix I−PT .
(The existence of the inverse is easily established.)

Example 4.32. Consider the gambler’s ruin problem with p = 0.4 and N = 7. Start-
ing with 3 units, determine
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(a) the expected amount of time the gambler has 5 units,
(b) the expected amount of time the gambler has 2 units.

Solution: The matrix PT , which specifies Pij , i, j ∈ {1,2,3,4,5,6}, is as fol-
lows:

PT =

1 2 3 4 5 6

1 0 0.4 0 0 0 0
2 0.6 0 0.4 0 0 0
3 0 0.6 0 0.4 0 0
4 0 0 0.6 0 0.4 0
5 0 0 0 0.6 0 0.4
6 0 0 0 0 0.6 0

Inverting I − PT gives

S = (I−PT )−1 =

⎡
⎢⎢⎢⎢⎢⎢⎣

1.6149 1.0248 0.6314 0.3691 0.1943 0.0777
1.5372 2.5619 1.5784 0.9228 0.4857 0.1943
1.4206 2.3677 2.9990 1.7533 0.9228 0.3691
1.2458 2.0763 2.6299 2.9990 1.5784 0.6314
0.9835 1.6391 2.0763 2.3677 2.5619 1.0248
0.5901 0.9835 1.2458 1.4206 1.5372 1.6149

⎤
⎥⎥⎥⎥⎥⎥⎦

Hence,

s3,5 = 0.9228, s3,2 = 2.3677 �

For i ∈ T , j ∈ T , the quantity fij , equal to the probability that the Markov chain
ever makes a transition into state j given that it starts in state i, is easily determined
from PT . To determine the relationship, let us start by deriving an expression for sij
by conditioning on whether state j is ever entered. This yields

sij = E[time in j |start in i, ever transit to j ]fij

+ E[time in j |start in i, never transit to j ](1 − fij )

= (δi,j + sjj )fij + δi,j (1 − fij )

= δi,j + fij sjj

since sjj is the expected number of additional time periods spent in state j given that
it is eventually entered from state i. Solving the preceding equation yields

fij = sij − δi,j

sjj

Example 4.33. In Example 4.32, what is the probability that the gambler ever has a
fortune of 1?
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Solution: Since s3,1 = 1.4206 and s1,1 = 1.6149, then

f3,1 = s3,1

s1,1
= 0.8797

As a check, note that f3,1 is just the probability that a gambler starting with 3
reaches 1 before 7. That is, it is the probability that the gambler’s fortune will go
down 2 before going up 4; which is the probability that a gambler starting with 2
will go broke before reaching 6. Therefore,

f3,1 = 1 − 1 − (0.6/0.4)2

1 − (0.6/0.4)6
= 0.8797

which checks with our earlier answer. �
Suppose we are interested in the expected time until the Markov chain enters some

sets of states A, which need not be the set of recurrent states. We can reduce this back
to the previous situation by making all states in A absorbing states. That is, reset the
transition probabilities of states in A to satisfy

Pi,i = 1, i ∈ A

This transforms the states of A into recurrent states, and transforms any state outside
of A from which an eventual transition into A is possible into a transient state. Thus,
our previous approach can be used.

4.7 Branching Processes
In this section, we consider a class of Markov chains, known as branching processes,
which have a wide variety of applications in the biological, sociological, and engi-
neering sciences.

Consider a population consisting of individuals able to produce offspring of the
same kind. Suppose that each individual will, by the end of its lifetime, have produced
j new offspring with probability Pj , j � 0, independently of the numbers produced
by other individuals. We suppose that Pj < 1 for all j � 0. The number of individ-
uals initially present, denoted by X0, is called the size of the zeroth generation. All
offspring of the zeroth generation constitute the first generation and their number is
denoted by X1. In general, let Xn denote the size of the nth generation. It follows that
{Xn,n = 0,1, . . .} is a Markov chain having as its state space the set of nonnegative
integers.

Note that state 0 is a recurrent state, since clearly P00 = 1. Also, if P0 > 0, all other
states are transient. This follows since Pi0 = P i

0 , which implies that starting with i in-
dividuals there is a positive probability of at least P i

0 that no later generation will ever
consist of i individuals. Moreover, since any finite set of transient states {1,2, . . . , n}
will be visited only finitely often, this leads to the important conclusion that, if P0 > 0,
then the population will either die out or its size will converge to infinity.
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Let

μ =
∞∑

j=0

jPj

denote the mean number of offspring of a single individual, and let

σ 2 =
∞∑

j=0

(j − μ)2Pj

be the variance of the number of offspring produced by a single individual.
Let us suppose that X0 = 1, that is, initially there is a single individual present. We

calculate E[Xn] and Var(Xn) by first noting that we may write

Xn =
Xn−1∑
i=1

Zi

where Zi represents the number of offspring of the ith individual of the (n − 1)st
generation. By conditioning on Xn−1, we obtain

E[Xn] = E[E[Xn|Xn−1]]

= E

⎡
⎣E

⎡
⎣Xn−1∑

i=1

Zi |Xn−1

⎤
⎦
⎤
⎦

= E[Xn−1μ]
= μE[Xn−1]

where we have used the fact that E[Zi] = μ. Since E[X0] = 1, the preceding yields

E[X1] = μ,

E[X2] = μE[X1] = μ2,

...

E[Xn] = μE[Xn−1] = μn

Similarly, Var(Xn) may be obtained by using the conditional variance formula

Var(Xn) = E[Var(Xn|Xn−1)] + Var(E[Xn|Xn−1])
Now, given Xn−1,Xn is just the sum of Xn−1 independent random variables each
having the distribution {Pj , j � 0}. Hence,

E[Xn|Xn−1] = Xn−1μ, Var(Xn|Xn−1) = Xn−1σ
2
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The conditional variance formula now yields

Var(Xn) = E
[
Xn−1σ

2]+ Var(Xn−1μ)

= σ 2μn−1 + μ2Var(Xn−1)

= σ 2μn−1 + μ2(σ 2μn−2 + μ2Var(Xn−2)
)

= σ 2(μn−1 + μn
)+ μ4Var(Xn−2)

= σ 2(μn−1 + μn
)+ μ4(σ 2μn−3 + μ2Var(Xn−3)

)
= σ 2(μn−1 + μn + μn+1)+ μ6Var(Xn−3)

= · · ·
= σ 2(μn−1 + μn + · · · + μ2n−2)+ μ2nVar(X0)

= σ 2(μn−1 + μn + · · · + μ2n−2)
Therefore,

Var(Xn) =
{

σ 2μn−1
(

1−μn

1−μ

)
, if μ �= 1

nσ 2, if μ = 1
(4.19)

Let π0 denote the probability that the population will eventually die out (under the
assumption that X0 = 1). More formally,

π0 = lim
n→∞P {Xn = 0|X0 = 1}

The problem of determining the value of π0 was first raised in connection with the
extinction of family surnames by Galton in 1889.

We first note that π0 = 1 if μ < 1. This follows since

μn = E[Xn] =
∞∑

j=1

jP {Xn = j}

�
∞∑

j=1

1 · P {Xn = j}

= P {Xn � 1}
Since μn → 0 when μ < 1, it follows that P {Xn � 1} → 0, and hence P {Xn = 0} →1.

In fact, it can be shown that π0 = 1 even when μ = 1. When μ > 1, it turns out
that π0 < 1, and an equation determining π0 may be derived by conditioning on the
number of offspring of the initial individual, as follows:

π0 = P {population dies out}

=
∞∑

j=0

P {population dies out|X1 = j}Pj
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Now, given that X1 = j , the population will eventually die out if and only if each
of the j families started by the members of the first generation eventually dies out.
Since each family is assumed to act independently, and since the probability that any
particular family dies out is just π0, this yields

P {population dies out|X1 = j} = π
j

0

and thus π0 satisfies

π0 =
∞∑

j=0

π
j

0 Pj (4.20)

In fact when μ > 1, it can be shown that π0 is the smallest positive number satisfying
Eq. (4.20).

Example 4.34. If P0 = 1
2 ,P1 = 1

4 ,P2 = 1
4 , then determine π0.

Solution: Since μ = 3
4 � 1, it follows that π0 = 1. �

Example 4.35. If P0 = 1
4 ,P1 = 1

4 , P2 = 1
2 , then determine π0.

Solution: π0 satisfies

π0 = 1
4 + 1

4π0 + 1
2π2

0

or

2π2
0 − 3π0 + 1 = 0

The smallest positive solution of this quadratic equation is π0 = 1
2 . �

Example 4.36. In Examples 4.34 and 4.35, what is the probability that the population
will die out if it initially consists of n individuals?

Solution: Since the population will die out if and only if the families of each
of the members of the initial generation die out, the desired probability is πn

0 . For

Example 4.34 this yields πn
0 = 1, and for Example 4.35, πn

0 =
(

1
2

)n

. �

4.8 Time Reversible Markov Chains
Consider a stationary ergodic Markov chain (that is, an ergodic Markov chain that has
been in operation for a long time) having transition probabilities Pij and stationary
probabilities πi , and suppose that starting at some time we trace the sequence of states
going backward in time. That is, starting at time n, consider the sequence of states
Xn,Xn−1,Xn−2, . . .. It turns out that this sequence of states is itself a Markov chain
with transition probabilities Qij defined by

Qij = P {Xm = j |Xm+1 = i}
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= P {Xm = j,Xm+1 = i}
P {Xm+1 = i}

= P {Xm = j}P {Xm+1 = i|Xm = j}
P {Xm+1 = i}

= πjPji

πi

To prove that the reversed process is indeed a Markov chain, we must verify that

P {Xm = j |Xm+1 = i,Xm+2,Xm+3, . . .} = P {Xm = j |Xm+1 = i}

To see that this is so, suppose that the present time is m+1. Now, since X0,X1,X2, . . .

is a Markov chain, it follows that the conditional distribution of the future Xm+2,

Xm+3, . . . given the present state Xm+1 is independent of the past state Xm. How-
ever, independence is a symmetric relationship (that is, if A is independent of B, then
B is independent of A), and so this means that given Xm+1,Xm is independent of
Xm+2,Xm+3, . . . . But this is exactly what we had to verify.

Thus, the reversed process is also a Markov chain with transition probabilities given
by

Qij = πjPji

πi

If Qij = Pij for all i, j , then the Markov chain is said to be time reversible. The con-
dition for time reversibility, namely, Qij = Pij , can also be expressed as

πiPij = πjPji for all i, j (4.21)

The condition in Eq. (4.21) can be stated that, for all states i and j , the rate at which
the process goes from i to j (namely, πiPij ) is equal to the rate at which it goes from j

to i (namely, πjPji). It is worth noting that this is an obvious necessary condition for
time reversibility since a transition from i to j going backward in time is equivalent to
a transition from j to i going forward in time; that is, if Xm = i and Xm−1 = j , then
a transition from i to j is observed if we are looking backward, and one from j to i if
we are looking forward in time. Thus, the rate at which the forward process makes a
transition from j to i is always equal to the rate at which the reverse process makes a
transition from i to j ; if time reversible, this must equal the rate at which the forward
process makes a transition from i to j .

If we can find nonnegative numbers, summing to one, that satisfy Eq. (4.21), then it
follows that the Markov chain is time reversible and the numbers represent the limiting
probabilities. This is so since if

xiPij = xjPji for all i, j,
∑

i

xi = 1 (4.22)
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then summing over i yields

∑
i

xiPij = xj

∑
i

Pji = xj ,
∑

i

xi = 1

and, because the limiting probabilities πi are the unique solution of the preceding, it
follows that xi = πi for all i.

Example 4.37. Consider a random walk with states 0,1, . . . ,M and transition proba-
bilities

Pi,i+1 = αi = 1 − Pi,i−1, i = 1, . . . ,M − 1,

P0,1 = α0 = 1 − P0,0,

PM,M = αM = 1 − PM,M−1

Without the need for any computations, it is possible to argue that this Markov chain,
which can only make transitions from a state to one of its two nearest neighbors, is
time reversible. This follows by noting that the number of transitions from i to i + 1
must at all times be within 1 of the number from i + 1 to i. This is so because between
any two transitions from i to i + 1 there must be one from i + 1 to i (and conversely)
since the only way to reenter i from a higher state is via state i + 1. Hence, it follows
that the rate of transitions from i to i + 1 equals the rate from i + 1 to i, and so the
process is time reversible.

We can easily obtain the limiting probabilities by equating for each state i =
0,1, . . . ,M − 1 the rate at which the process goes from i to i + 1 with the rate at
which it goes from i + 1 to i. This yields

π0α0 = π1(1 − α1),

π1α1 = π2(1 − α2),

...

πiαi = πi+1(1 − αi+1), i = 0,1, . . . ,M − 1

Solving in terms of π0 yields

π1 = α0

1 − α1
π0,

π2 = α1

1 − α2
π1 = α1α0

(1 − α2)(1 − α1)
π0

and, in general,

πi = αi−1 · · ·α0

(1 − αi) · · · (1 − α1)
π0, i = 1,2, . . . ,M
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Since
∑M

0 πi = 1, we obtain

π0

⎡
⎣1 +

M∑
j=1

αj−1 · · ·α0

(1 − αj ) · · · (1 − α1)

⎤
⎦= 1

or

π0 =
⎡
⎣1 +

M∑
j=1

αj−1 · · ·α0

(1 − αj ) · · · (1 − α1)

⎤
⎦

−1

(4.23)

and

πi = αi−1 · · ·α0

(1 − αi) · · · (1 − α1)
π0, i = 1, . . . ,M (4.24)

For instance, if αi ≡ α, then

π0 =
⎡
⎣1 +

M∑
j=1

(
α

1 − α

)j
⎤
⎦

−1

= 1 − β

1 − βM+1

and, in general,

πi = βi(1 − β)

1 − βM+1 , i = 0,1, . . . ,M

where

β = α

1 − α
�

Another special case of Example 4.37 is the following urn model, proposed by
the physicists P. and T. Ehrenfest to describe the movements of molecules. Suppose
that M molecules are distributed among two urns; and at each time point one of the
molecules is chosen at random, removed from its urn, and placed in the other one. The
number of molecules in urn I is a special case of the Markov chain of Example 4.37
having

αi = M − i

M
, i = 0,1, . . . ,M

Hence, using Eqs. (4.23) and (4.24) the limiting probabilities in this case are

π0 =
⎡
⎣1 +

M∑
j=1

(M − j + 1) · · · (M − 1)M

j (j − 1) · · ·1

⎤
⎦

−1
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=
⎡
⎣ M∑

j=0

(
M

j

)⎤⎦
−1

=
(

1

2

)M

where we have used the identity

1 =
(

1

2
+ 1

2

)M

=
M∑

j=0

(
M

j

)(
1

2

)M

Hence, from Eq. (4.24)

πi =
(

M

i

)(
1

2

)M

, i = 0,1, . . . ,M

Because the preceding are just the binomial probabilities, it follows that in the long
run, the positions of each of the M balls are independent and each one is equally likely
to be in either urn. This, however, is quite intuitive, for if we focus on any one ball, it
becomes quite clear that its position will be independent of the positions of the other
balls (since no matter where the other M − 1 balls are, the ball under consideration at
each stage will be moved with probability 1/M) and by symmetry, it is equally likely
to be in either urn.

Example 4.38. Consider an arbitrary connected graph (see Section 3.6 for defini-
tions) having a number wij associated with arc (i, j ) for each arc. One instance of
such a graph is given by Fig. 4.1. Now consider a particle moving from node to node
in this manner: If at any time the particle resides at node i, then it will next move to

Figure 4.1 A connected graph with arc weights.
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node j with probability Pij where

Pij = wij∑
j wij

and where wij is 0 if (i, j ) is not an arc. For instance, for the graph of Fig. 4.1, P12 =
3/(3 + 1 + 2) = 1

2 .
The time reversibility equations

πiPij = πjPji

reduce to

πi

wij∑
j wij

= πj

wji∑
i wji

or, equivalently, since wij = wji

πi∑
j wij

= πj∑
i wji

which is equivalent to

πi∑
j wij

= c

or

πi = c
∑
j

wij

or, since 1 =∑
i πi

πi =
∑

j wij∑
i

∑
j wij

Because the πis given by this equation satisfy the time reversibility equations, it fol-
lows that the process is time reversible with these limiting probabilities.

For the graph of Fig. 4.1 we have that

π1 = 6
32 , π2 = 3

32 , π3 = 6
32 , π4 = 5

32 , π5 = 12
32 �

If we try to solve Eq. (4.22) for an arbitrary Markov chain with states 0,1, . . . ,M ,
it will usually turn out that no solution exists. For example, from Eq. (4.22),

xiPij = xjPji,

xkPkj = xjPjk
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implying (if PijPjk > 0) that

xi

xk

= PjiPkj

PijPjk

which in general need not equal Pki/Pik . Thus, we see that a necessary condition for
time reversibility is that

PikPkjPji = PijPjkPki for all i, j, k (4.25)

which is equivalent to the statement that, starting in state i, the path i → k → j → i

has the same probability as the reversed path i → j → k → i. To understand the ne-
cessity of this, note that time reversibility implies that the rate at which a sequence of
transitions from i to k to j to i occurs must equal the rate of ones from i to j to k to i

(why?), and so we must have

πiPikPkjPji = πiPijPjkPki

implying Eq. (4.25) when πi > 0.
In fact, we can show the following.

Theorem 4.2. A stationary Markov chain for which Pij = 0 whenever Pji = 0 is time
reversible if and only if starting in state i, any path back to i has the same probability
as the reversed path. That is, if

Pi,i1Pi1,i2 · · ·Pik,i = Pi,ikPik,ik−1 · · ·Pi1,i (4.26)

for all states i, i1, . . . , ik .

Proof. We have already proven necessity. To prove sufficiency, fix states i and j and
rewrite (4.26) as

Pi,i1Pi1,i2 · · ·Pik,jPji = PijPj,ik · · ·Pi1,i

Summing the preceding over all states i1, . . . , ik yields

P k+1
ij Pji = PijP

k+1
ji

Consequently,

Pji

∑m
k=1 P k+1

ij

m
= Pij

∑m
k=1 P k+1

ji

m

Letting m → ∞ yields

Pji πj = Pij πi

which proves the theorem. �
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Example 4.39. Suppose we are given a set of n elements, numbered 1 through n,
which are to be arranged in some ordered list. At each unit of time a request is made
to retrieve one of these elements, element i being requested (independently of the
past) with probability Pi . After being requested, the element then is put back but not
necessarily in the same position. In fact, let us suppose that the element requested is
moved one closer to the front of the list; for instance, if the present list ordering is 1,
3, 4, 2, 5 and element 2 is requested, then the new ordering becomes 1, 3, 2, 4, 5. We
are interested in the long-run average position of the element requested.

For any given probability vector P = (P1, . . . ,Pn), the preceding can be modeled
as a Markov chain with n! states, with the state at any time being the list order at
that time. We shall show that this Markov chain is time reversible and then use this
to show that the average position of the element requested when this one-closer rule
is in effect is less than when the rule of always moving the requested element to the
front of the line is used. The time reversibility of the resulting Markov chain when the
one-closer reordering rule is in effect easily follows from Theorem 4.2. For instance,
suppose n = 3 and consider the following path from state (1, 2, 3) to itself:

(1,2,3) → (2,1,3) → (2,3,1) → (3,2,1)

→ (3,1,2) → (1,3,2) → (1,2,3)

The product of the transition probabilities in the forward direction is

P2P3P3P1P1P2 = P 2
1 P 2

2 P 2
3

whereas in the reverse direction, it is

P3P3P2P2P1P1 = P 2
1 P 2

2 P 2
3

Because the general result follows in much the same manner, the Markov chain is
indeed time reversible. (For a formal argument note that if fi denotes the number of
times element i moves forward in the path, then as the path goes from a fixed state
back to itself, it follows that element i will also move backward fi times. Therefore,
since the backward moves of element i are precisely the times that it moves forward
in the reverse path, it follows that the product of the transition probabilities for both
the path and its reversal will equal∏

i

P
fi+ri
i

where ri is equal to the number of times that element i is in the first position and the
path (or the reverse path) does not change states.)

For any permutation i1, i2, . . . , in of 1,2, . . . , n, let π(i1, i2, . . . , in) denote the lim-
iting probability under the one-closer rule. By time reversibility we have

Pij+1π(i1, . . . , ij , ij+1, . . . , in) = Pij π(i1, . . . , ij+1, ij , . . . , in) (4.27)

for all permutations.
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Now, the average position of the element requested can be expressed (as in Sec-
tion 3.6.1) as

Average position =
∑

i

PiE[Position of element i]

=
∑

i

Pi

⎡
⎣1 +

∑
j �=i

P {element j precedes element i}
⎤
⎦

= 1 +
∑

i

∑
j �=i

PiP {ej precedes ei}

= 1 +
∑∑

i<j

[PiP {ej precedes ei} + PjP {ei precedes ej }]

= 1 +
∑∑

i<j

[PiP {ej precedes ei}

+ Pj (1− P {ej precedes ei})]
= 1 +

∑∑
i<j

(Pi − Pj )P {ej precedes ei} +
∑∑

i<j

Pj

Hence, to minimize the average position of the element requested, we would want to
make P {ej precedes ei} as large as possible when Pj > Pi and as small as possible
when Pi > Pj . Under the front-of-the-line rule we showed in Section 3.6.1,

P {ej precedes ei} = Pj

Pj + Pi

(since under the front-of-the-line rule element j will precede element i if and only if
the last request for either i or j was for j ).

Therefore, to show that the one-closer rule is better than the front-of-the-line rule,
it suffices to show that under the one-closer rule

P {ej precedes ei} >
Pj

Pj + Pi

when Pj > Pi

Now consider any state where element i precedes element j , say, (. . . , i, i1, . . . , ik,
j, . . .). By successive transpositions using Eq. (4.27), we have

π(. . . , i, i1, . . . , ik, j, . . .) =
(

Pi

Pj

)k+1

π(. . . , j, i1, . . . , ik, i, . . .) (4.28)

For instance,

π(1,2,3) = P2

P3
π(1,3,2) = P2

P3

P1

P3
π(3,1,2)

= P2

P3

P1

P3

P1

P2
π(3,2,1) =

(
P1

P3

)2

π(3,2,1)
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Now when Pj > Pi , Eq. (4.28) implies that

π(. . . , i, i1, . . . , ik, j, . . .) <
Pi

Pj

π(. . . , j, i1, . . . , ik, i, . . .)

Letting α(i, j) = P {ei precedes ej }, we see by summing over all states for which i

precedes j and by using the preceding that

α(i, j) <
Pi

Pj

α(j, i)

which, since α(i, j) = 1 − α(j, i), yields

α(j, i) >
Pj

Pj + Pi

Hence, the average position of the element requested is indeed smaller under the one-
closer rule than under the front-of-the-line rule. �

The concept of the reversed chain is useful even when the process is not time re-
versible. To illustrate this, we start with the following proposition whose proof is left
as an exercise.

Proposition 4.9. Consider an irreducible Markov chain with transition probabilities
Pij . If we can find positive numbers πi, i � 0, summing to one, and a transition prob-
ability matrix Q = [Qij ] such that

πiPij = πjQji (4.29)

then the Qij are the transition probabilities of the reversed chain and the πi are the
stationary probabilities both for the original and reversed chain.

The importance of the preceding proposition is that, by thinking backward, we can
sometimes guess at the nature of the reversed chain and then use the set of Eqs. (4.29)
to obtain both the stationary probabilities and the Qij .

Example 4.40. A single bulb is necessary to light a given room. When the bulb in use
fails, it is replaced by a new one at the beginning of the next day. Let Xn equal i if the
bulb in use at the beginning of day n is in its ith day of use (that is, if its present age
is i). For instance, if a bulb fails on day n− 1, then a new bulb will be put in use at the
beginning of day n and so Xn = 1. If we suppose that each bulb, independently, fails
on its ith day of use with probability pi, i � 1, then it is easy to see that {Xn,n � 1}
is a Markov chain whose transition probabilities are as follows:

Pi,1 = P {bulb, on its ith day of use, fails}
= P {life of bulb = i|life of bulb � i}
= P {L = i}

P {L� i}
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where L, a random variable representing the lifetime of a bulb, is such that P {L =
i} = pi . Also,

Pi,i+1 = 1 − Pi,1

Suppose now that this chain has been in operation for a long (in theory, an infinite)
time and consider the sequence of states going backward in time. Since, in the forward
direction, the state is always increasing by 1 until it reaches the age at which the item
fails, it is easy to see that the reverse chain will always decrease by 1 until it reaches 1
and then it will jump to a random value representing the lifetime of the (in real time)
previous bulb. Thus, it seems that the reverse chain should have transition probabilities
given by

Qi,i−1 = 1, i > 1

Q1,i = pi, i � 1

To check this, and at the same time determine the stationary probabilities, we must see
if we can find, with the Qi,j as previously given, positive numbers {πi} such that

πiPi,j = πjQj,i

To begin, let j = 1 and consider the resulting equations:

πiPi,1 = π1Q1,i

This is equivalent to

πi

P {L = i}
P {L� i} = π1P {L = i}

or

πi = π1P {L � i}
Summing over all i yields

1 =
∞∑
i=1

πi = π1

∞∑
i=1

P {L � i} = π1E[L]

and so, for the preceding Qi,j to represent the reverse transition probabilities, it is
necessary for the stationary probabilities to be

πi = P {L� i}
E[L] , i � 1

To finish the proof that the reverse transition probabilities and stationary probabilities
are as given, all that remains is to show that they satisfy

πiPi,i+1 = πi+1Qi+1,i
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which is equivalent to

P {L� i}
E[L]

(
1 − P {L = i}

P {L� i}
)

= P {L� i + 1}
E[L]

and which is true since P {L� i} − P {L = i} = P {L� i + 1}. �

4.9 Markov Chain Monte Carlo Methods
Let X be a discrete random vector whose set of possible values is xj , j � 1. Let the
probability mass function of X be given by P {X = xj }, j � 1, and suppose that we
are interested in calculating

θ = E[h(X)] =
∞∑

j=1

h(xj )P {X = xj }

for some specified function h. In situations where it is computationally difficult to
evaluate the function h(xj ), j � 1, we often turn to simulation to approximate θ . The
usual approach, called Monte Carlo simulation, is to use random numbers to gen-
erate a partial sequence of independent and identically distributed random vectors
X1,X2, . . . ,Xn having the mass function P {X = xj }, j � 1 (see Chapter 11 for a dis-
cussion as to how this can be accomplished). Since the strong law of large numbers
yields

lim
n→∞

n∑
i=1

h(Xi )

n
= θ (4.30)

it follows that we can estimate θ by letting n be large and using the average of the
values of h(Xi ), i = 1, . . . , n as the estimator.

It often, however, turns out that it is difficult to generate a random vector having the
specified probability mass function, particularly if X is a vector of dependent random
variables. In addition, its probability mass function is sometimes given in the form
P {X = xj } = Cbj , j � 1, where the bj are specified, but C must be computed, and
in many applications it is not computationally feasible to sum the bj so as to deter-
mine C. Fortunately, however, there is another way of using simulation to estimate θ

in these situations. It works by generating a sequence, not of independent random vec-
tors, but of the successive states of a vector-valued Markov chain X1,X2, . . . whose
stationary probabilities are P {X = xj }, j � 1. If this can be accomplished, then it
would follow from Proposition 4.6 that Eq. (4.30) remains valid, implying that we can
then use

∑n
i=1 h(Xi )/n as an estimator of θ .

We now show how to generate a Markov chain with arbitrary stationary probabil-
ities that may only be specified up to a multiplicative constant. Let b(j), j = 1,2, . . .

be positive numbers whose sum B = ∑∞
j=1 b(j) is finite. The following, known as

the Hastings–Metropolis algorithm, can be used to generate a time reversible Markov
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chain whose stationary probabilities are

π(j) = b(j)/B, j = 1,2, . . .

To begin, let Q be any specified irreducible Markov transition probability matrix on
the integers, with q(i, j) representing the row i column j element of Q. Now define
a Markov chain {Xn,n � 0} as follows. When Xn = i, generate a random variable Y

such that P {Y = j} = q(i, j), j = 1,2, . . .. If Y = j , then set Xn+1 equal to j with
probability α(i, j), and set it equal to i with probability 1 − α(i, j). Under these con-
ditions, it is easy to see that the sequence of states constitutes a Markov chain with
transition probabilities Pi,j given by

Pi,j = q(i, j)α(i, j), if j �= i

Pi,i = q(i, i) +
∑
k �=i

q(i, k)(1 − α(i, k))

This Markov chain will be time reversible and have stationary probabilities π(j) if

π(i)Pi,j = π(j)Pj,i for j �= i

which is equivalent to

π(i)q(i, j)α(i, j) = π(j)q(j, i)α(j, i) (4.31)

But if we take π(j) = b(j)/B and set

α(i, j) = min

(
π(j)q(j, i)

π(i)q(i, j)
,1

)
(4.32)

then Eq. (4.31) is easily seen to be satisfied. For if

α(i, j) = π(j)q(j, i)

π(i)q(i, j)

then α(j, i) = 1 and Eq. (4.31) follows, and if α(i,j) = 1 then

α(j, i) = π(i)q(i, j)

π(j)q(j, i)

and again Eq. (4.31) holds, thus showing that the Markov chain is time reversible with
stationary probabilities π(j). Also, since π(j) = b(j)/B, we see from (4.32) that

α(i, j) = min

(
b(j)q(j, i)

b(i)q(i, j)
,1

)

which shows that the value of B is not needed to define the Markov chain, because the
values b(j) suffice. Also, it is almost always the case that π(j), j � 1 will not only
be stationary probabilities but will also be limiting probabilities. (Indeed, a sufficient
condition is that Pi,i > 0 for some i.)
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Example 4.41. Suppose that we want to generate a uniformly distributed element
in S , the set of all permutations (x1, . . . , xn) of the numbers (1, . . . , n) for which∑n

j=1jxj > a for a given constant a. To utilize the Hastings–Metropolis algorithm
we need to define an irreducible Markov transition probability matrix on the state
space S . To accomplish this, we first define a concept of “neighboring” elements of
S , and then construct a graph whose vertex set is S . We start by putting an arc be-
tween each pair of neighboring elements in S , where any two permutations in S are
said to be neighbors if one results from an interchange of two of the positions of the
other. That is, (1, 2, 3, 4) and (1, 2, 4, 3) are neighbors whereas (1, 2, 3, 4) and (1, 3,
4, 2) are not. Now, define the q transition probability function as follows. With N(s)

defined as the set of neighbors of s, and |N(s)| equal to the number of elements in the
set N(s), let

q(s, t) = 1

|N(s)| if t ∈ N(s)

That is, the candidate next state from s is equally likely to be any of its neighbors.
Since the desired limiting probabilities of the Markov chain are π(s) = C, it follows
that π(s) = π(t), and so

α(s, t) = min(|N(s)|/|N(t)|,1)

That is, if the present state of the Markov chain is s then one of its neighbors is
randomly chosen, say, t. If t is a state with fewer neighbors than s (in graph theory
language, if the degree of vertex t is less than that of vertex s), then the next state
is t. If not, a uniform (0,1) random number U is generated and the next state is t if
U < |(N(s)|/|N(t)| and is s otherwise. The limiting probabilities of this Markov chain
are π(s) = 1/|S |, where |S | is the (unknown) number of permutations in S . �

The most widely used version of the Hastings–Metropolis algorithm is the Gibbs
sampler. Let X = (X1, . . . ,Xn) be a discrete random vector with probability mass
function p(x) that is only specified up to a multiplicative constant, and suppose that
we want to generate a random vector whose distribution is that of X. That is, we want
to generate a random vector having mass function

p(x) = Cg(x)

where g(x) is known, but C is not. Utilization of the Gibbs sampler assumes that for
any i and values xj , j �= i, we can generate a random variable X having the probability
mass function

P {X = x} = P {Xi = x|Xj = xj , j �= i}
It operates by using the Hasting–Metropolis algorithm on a Markov chain with states
x = (x1, . . . , xn), and with transition probabilities defined as follows. Whenever the
present state is x, a coordinate that is equally likely to be any of 1, . . . , n is chosen.
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If coordinate i is chosen, then a random variable X with probability mass func-
tion P {X = x} = P {Xi = x|Xj = xj , j �= i} is generated. If X = x, then the state
y = (x1, . . . xi−1, x, xi+1, . . . , xn) is considered as the candidate next state. In other
words, with x and y as given, the Gibbs sampler uses the Hastings–Metropolis algo-
rithm with

q(x,y) = 1

n
P {Xi = x|Xj = xj , j �= i} = p(y)

nP {Xj = xj , j �= i}
Because we want the limiting mass function to be p, we see from Eq. (4.32) that the
vector y is then accepted as the new state with probability

α(x,y) = min

(
p(y)q(y,x)

p(x)q(x,y)
,1

)

= min

(
p(y)p(x)

p(x)p(y)
,1

)
= 1

Hence, when utilizing the Gibbs sampler, the candidate state is always accepted as the
next state of the chain.

Example 4.42. Suppose that we want to generate n uniformly distributed points in
the circle of radius 1 centered at the origin, conditional on the event that no two points
are within a distance d of each other, when the probability of this conditioning event
is small. This can be accomplished by using the Gibbs sampler as follows. Start with
any n points x1, . . . ,xn in the circle that have the property that no two of them are
within d of the other; then generate the value of I , equally likely to be any of the val-
ues 1, . . . , n. Then continually generate a random point in the circle until you obtain
one that is not within d of any of the other n − 1 points excluding xI . At this point,
replace xI by the generated point and then repeat the operation. After a large number
of iterations of this algorithm, the set of n points will approximately have the desired
distribution. �

Example 4.43. Let Xi, i = 1, . . . , n, be independent exponential random variables
with respective rates λi, i = 1, . . . , n. Let S = ∑n

i=1 Xi , and suppose that we want to
generate the random vector X = (X1, . . . ,Xn), conditional on the event that S > c for
some large positive constant c. That is, we want to generate the value of a random
vector whose density function is

f (x1, . . . , xn) = 1

P {S > c}
n∏

i=1

λie
−λixi , xi � 0,

n∑
i=1

xi > c

This is easily accomplished by starting with an initial vector x = (x1, . . . , xn) satis-
fying xi > 0, i = 1, . . . , n,

∑n
i=1 xi > c. Then generate a random variable I that is

equally likely to be any of 1, . . . , n. Next, generate an exponential random variable X

with rate λI conditional on the event that X + ∑
j �=I xj > c. This latter step, which
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calls for generating the value of an exponential random variable given that it exceeds
c −∑

j �=I xj , is easily accomplished by using the fact that an exponential conditioned
to be greater than a positive constant is distributed as the constant plus the exponential.
Consequently, to obtain X, first generate an exponential random variable Y with rate
λI , and then set

X = Y +
⎛
⎝c −

∑
j �=I

xj

⎞
⎠

+

where a+ = max(a,0).
The value of xI should then be reset as X and a new iteration of the algorithm be-
gun. �

Remark. As can be seen by Examples 4.42 and 4.43, although the theory for the
Gibbs sampler was represented under the assumption that the distribution to be gener-
ated was discrete, it also holds when this distribution is continuous.

4.10 Markov Decision Processes
Consider a process that is observed at discrete time points to be in any one of M possi-
ble states, which we number by 1,2, . . . ,M . After observing the state of the process,
an action must be chosen, and we let A, assumed finite, denote the set of all possible
actions.

If the process is in state i at time n and action a is chosen, then the next state of
the system is determined according to the transition probabilities Pij (a). If we let Xn

denote the state of the process at time n and an the action chosen at time n, then the
preceding is equivalent to stating that

P {Xn+1 = j |X0, a0,X1, a1, . . . ,Xn = i, an = a} = Pij (a)

Thus, the transition probabilities are functions only of the present state and the subse-
quent action.

By a policy, we mean a rule for choosing actions. We shall restrict ourselves to
policies that are of the form that the action they prescribe at any time depends only
on the state of the process at that time (and not on any information concerning prior
states and actions). However, we shall allow the policy to be “randomized” in that its
instructions may be to choose actions according to a probability distribution. In other
words, a policy β is a set of numbers β = {βi(a), a ∈ A, i = 1, . . . ,M} with the inter-
pretation that if the process is in state i, then action a is to be chosen with probability
βi(a). Of course, we need have

0 � βi(a) � 1, for all i, a∑
a

βi(a) = 1, for all i
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Under any given policy β, the sequence of states {Xn, n = 0,1, . . .} constitutes a
Markov chain with transition probabilities Pij (β) given by2

Pij (β) = Pβ{Xn+1 = j |Xn = i}
=

∑
a

Pij (a)βi(a)

where the last equality follows by conditioning on the action chosen when in state i.
Let us suppose that for every choice of a policy β, the resultant Markov chain
{Xn, n = 0,1, . . .} is ergodic.

For any policy β, let πia denote the limiting (or steady-state) probability that the
process will be in state i and action a will be chosen if policy β is employed. That is,

πia = lim
n→∞Pβ{Xn = i, an = a}

The vector π = (πia) must satisfy

(i) πia � 0 for all i, a,

(ii)
∑

i

∑
a πia = 1,

(iii)
∑

a πja =∑
i

∑
a πiaPij (a) for all j

(4.33)

Eqs. (i) and (ii) are obvious, and Eq. (iii), which is an analogue of Theorem 4.1, fol-
lows as the left-hand side equals the steady-state probability of being in state j and
the right-hand side is the same probability computed by conditioning on the state and
action chosen one stage earlier.

Thus for any policy β, there is a vector π = (πia) that satisfies (i)–(iii) and with the
interpretation that πia is equal to the steady-state probability of being in state i and
choosing action a when policy β is employed. Moreover, it turns out that the reverse is
also true. Namely, for any vector π = (πia) that satisfies (i)–(iii), there exists a policy
β such that if β is used, then the steady-state probability of being in i and choosing
action a equals πia . To verify this last statement, suppose that π = (πia) is a vector
that satisfies (i)–(iii). Then, let the policy β = (βi(a)) be

βi(a) = P {β chooses a|state is i}
= πia∑

a πia

Now, let Pia denote the limiting probability of being in i and choosing a when policy
β is employed. We need to show that Pia = πia . To do so, first note that {Pia, i =
1, . . . ,M,a ∈ A} are the limiting probabilities of the two-dimensional Markov chain
{(Xn, an), n � 0}. Hence, by the fundamental Theorem 4.1, they are the unique solu-

2 We use the notation Pβ to signify that the probability is conditional on the fact that policy β is used.
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tion of

(i′) Pia � 0,

(ii′)
∑

i

∑
a Pia = 1,

(iii′) Pja =∑
i

∑
a′ Pia′Pij (a

′)βj (a)

where (iii′) follows since

P {Xn+1 = j, an+1 = a|Xn = i, an = a′} = Pij (a
′)βj (a)

Because

βj (a) = πja∑
a πja

we see that (Pia) is the unique solution of

Pia � 0,∑
i

∑
a

Pia = 1,

Pja =
∑

i

∑
a′

Pia′Pij (a
′)

πja∑
a πja

Hence, to show that Pia = πia , we need show that

πia � 0,∑
i

∑
a

πia = 1,

πja =
∑

i

∑
a′

πia′Pij (a
′)

πja∑
a πja

The top two equations follow from (i) and (ii) of Eq. (4.33), and the third, which is
equivalent to

∑
a

πja =
∑

i

∑
a′

πia′Pij (a
′)

follows from condition (iii) of Eq. (4.33).
Thus we have shown that a vector π = (πia) will satisfy (i), (ii), and (iii) of

Eq. (4.33) if and only if there exists a policy β such that πia is equal to the steady-state
probability of being in state i and choosing action a when β is used. In fact, the policy
β is defined by βi(a) = πia/

∑
a πia .

The preceding is quite important in the determination of “optimal” policies. For in-
stance, suppose that a reward R(i, a) is earned whenever action a is chosen in state i.
Since R(Xi, ai) would then represent the reward earned at time i, the expected average
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reward per unit time under policy β can be expressed as

expected average reward under β = lim
n→∞Eβ

[∑n
i=1R(Xi, ai)

n

]

Now, if πia denotes the steady-state probability of being in state i and choosing action
a, it follows that the limiting expected reward at time n equals

lim
n→∞E[R(Xn,an)] =

∑
i

∑
a

πiaR(i, a)

which implies that

expected average reward under β =
∑

i

∑
a

πiaR(i, a)

Hence, the problem of determining the policy that maximizes the expected average
reward is

maximize
π=(πia)

∑
i

∑
a

πiaR(i, a)

subject to πia � 0, for all i, a,∑
i

∑
a

πia = 1,

∑
a

πja =
∑

i

∑
a

πiaPij (a), for all j (4.34)

However, the preceding maximization problem is a special case of what is known as a
linear program and can be solved by a standard linear programming algorithm known
as the simplex algorithm.3 If π∗ = (π∗

ia) maximizes the preceding, then the optimal
policy will be given by β∗ where

β∗
i (a) = π∗

ia∑
a π∗

ia

Remarks. (i) It can be shown that there is a π∗ maximizing Eq. (4.34) that has the
property that for each i, π∗

ia is zero for all but one value of a, which implies that
the optimal policy is nonrandomized. That is, the action it prescribes when in
state i is a deterministic function of i.

(ii) The linear programming formulation also often works when there are restric-
tions placed on the class of allowable policies. For instance, suppose there is a
restriction on the fraction of time the process spends in some state, say, state 1.
Specifically, suppose that we are allowed to consider only policies having the

3 It is called a linear program since the objective function
∑

i

∑
a R(i, a)πia and the constraints are all

linear functions of the πia . For a heuristic analysis of the simplex algorithm, see Section 4.5.2.



Markov Chains 277

property that their use results in the process being in state 1 less than 100α per-
cent of time. To determine the optimal policy subject to this requirement, we
add to the linear programming problem the additional constraint

∑
a

π1a � α

since
∑

a π1a represents the proportion of time that the process is in state 1.

4.11 Hidden Markov Chains
Let {Xn, n = 1,2, . . .} be a Markov chain with transition probabilities Pi,j and ini-
tial state probabilities pi = P {X1 = i}, i � 0. Suppose that there is a finite set S
of signals, and that a signal from S is emitted each time the Markov chain enters a
state. Further, suppose that when the Markov chain enters state j then, independently
of previous Markov chain states and signals, the signal emitted is s with probability
p(s|j),

∑
s∈S p(s|j) = 1. That is, if Sn represents the nth signal emitted, then

P {S1 = s|X1 = j} = p(s|j),

P {Sn = s|X1, S1, . . . ,Xn−1, Sn−1,Xn = j} = p(s|j)

A model of the preceding type in which the sequence of signals S1, S2, . . . is observed,
while the sequence of underlying Markov chain states X1,X2, . . . is unobserved, is
called a hidden Markov chain model.

Example 4.44. Consider a production process that in each period is either in a good
state (state 1) or in a poor state (state 2). If the process is in state 1 during a period
then, independent of the past, with probability 0.9 it will be in state 1 during the next
period and with probability 0.1 it will be in state 2. Once in state 2, it remains in that
state forever. Suppose that a single item is produced each period and that each item
produced when the process is in state 1 is of acceptable quality with probability 0.99,
while each item produced when the process is in state 2 is of acceptable quality with
probability 0.96.

If the status, either acceptable or unacceptable, of each successive item is observed,
while the process states are unobservable, then the preceding is a hidden Markov chain
model. The signal is the status of the item produced, and has value either a or u, de-
pending on whether the item is acceptable or unacceptable. The signal probabilities
are

p(u|1) = 0.01, p(a|1) = 0.99,

p(u|2) = 0.04, p(a|2) = 0.96

while the transition probabilities of the underlying Markov chain are

P1,1 = 0.9 = 1 − P1,2, P2,2 = 1 �
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Although {Sn,n � 1} is not a Markov chain, it should be noted that, conditional on
the current state Xn, the sequence Sn,Xn+1, Sn+1, . . . of future signals and states is
independent of the sequence X1, S1, . . . ,Xn−1, Sn−1 of past states and signals.

Let Sn = (S1, . . . , Sn) be the random vector of the first n signals. For a fixed se-
quence of signals s1, . . . , sn, let sk = (s1, . . . , sk), k � n. To begin, let us determine
the conditional probability of the Markov chain state at time n given that Sn = sn. To
obtain this probability, let

Fn(j) = P {Sn = sn,Xn = j}
and note that

P {Xn = j |Sn = sn} = P {Sn = sn,Xn = j}
P {Sn = sn}

= Fn(j)∑
i Fn(i)

Now,

Fn(j) = P {Sn−1 = sn−1, Sn = sn,Xn = j}
=

∑
i

P {Sn−1 = sn−1,Xn−1 = i,Xn = j, Sn = sn}

=
∑

i

Fn−1(i)P {Xn = j, Sn = sn|Sn−1 = sn−1,Xn−1 = i}

=
∑

i

Fn−1(i)P {Xn = j, Sn = sn|Xn−1 = i}

=
∑

i

Fn−1(i)Pi,jp(sn|j)

= p(sn|j)
∑

i

Fn−1(i)Pi,j (4.35)

where the preceding used that

P {Xn = j, Sn = sn|Xn−1 = i}
= P {Xn = j |Xn−1 = i} × P {Sn = sn|Xn = j,Xn−1 = i}
= Pi,jP {Sn = sn|Xn = j}
= Pi,jp(sn|j)

Starting with

F1(i) = P {X1 = i, S1 = s1} = pip(s1|i)
we can use Eq. (4.35) to recursively determine the functions F2(i),F3(i), . . ., up to
Fn(i).
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Example 4.45. Suppose in Example 4.44 that P {X1 = 1} = 0.8. It is given that the
successive conditions of the first three items produced are a,u, a.

(a) What is the probability that the process was in its good state when the third item
was produced?

(b) What is the probability that X4 is 1?
(c) What is the probability that the next item produced is acceptable?

Solution: With s3 = (a,u, a), we have

F1(1) = (0.8)(0.99) = 0.792,

F1(2) = (0.2)(0.96) = 0.192

F2(1) = 0.01[0.792(0.9) + 0.192(0)] = 0.007128,

F2(2) = 0.04[0.792(0.1) + 0.192(1)] = 0.010848

F3(1) = 0.99[(0.007128)(0.9)] ≈ 0.006351,

F3(2) = 0.96[(0.007128)(0.1) + 0.010848] ≈ 0.011098

Therefore, the answer to part (a) is

P {X3 = 1|s3} ≈ 0.006351

0.006351 + 0.011098
≈ 0.364

To compute P {X4 = 1|s3}, condition on X3 to obtain

P {X4 = 1|s3} = P {X4 = 1|X3 = 1, s3}P {X3 = 1|s3}
+ P {X4 = 1|X3 = 2, s3}P {X3 = 2|s3}

= P {X4 = 1|X3 = 1, s3}(0.364)

+ P {X4 = 1|X3 = 2, s3}(0.636)

= 0.364P1,1 + 0.636P2,1

= 0.3276

To compute P {S4 = a|s3}, condition on X4 to obtain

P {S4 = a|s3} = P {S4 = a|X4 = 1, s3}P {X4 = 1|s3}
+ P {S4 = a|X4 = 2, s3}P {X4 = 2|s3}

= P {S4 = a|X4 = 1}(0.3276)

+ P {S4 = a|X4 = 2}(1 − 0.3276)

= (0.99)(0.3276) + (0.96)(0.6724) = 0.9698 �

To compute P {Sn = sn}, use the identity P {Sn = sn} = ∑
i Fn(i) along with

Eq. (4.35). If there are N states of the Markov chain, this requires computing nN

quantities Fn(i), with each computation requiring a summation over N terms. This
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can be compared with a computation of P {Sn = sn} based on conditioning on the first
n states of the Markov chain to obtain

P {Sn = sn} =
∑

i1,...,in

P {Sn = sn|X1 = i1, . . . ,Xn = in}P {X1 = i1, . . . ,Xn = in}

=
∑

i1,...,in

p(s1|i1) · · ·p(sn|in)pi1Pi1,i2Pi2,i3 · · ·Pin−1,in

The use of the preceding identity to compute P {Sn = sn} would thus require a sum-
mation over Nn terms, with each term being a product of 2n values, indicating that it
is not competitive with the previous approach.

The computation of P {Sn = sn} by recursively determining the functions Fk(i) is
known as the forward approach. There also is a backward approach, which is based
on the quantities Bk(i), defined by

Bk(i) = P {Sk+1 = sk+1, . . . , Sn = sn|Xk = i}
A recursive formula for Bk(i) can be obtained by conditioning on Xk+1.

Bk(i) =
∑
j

P {Sk+1 = sk+1, . . . , Sn = sn|Xk = i,Xk+1 = j}

× P {Xk+1 = j |Xk = i}
=

∑
j

P {Sk+1 = sk+1, . . . , Sn = sn|Xk+1 = j}Pi,j

=
∑
j

P {Sk+1 = sk+1|Xk+1 = j}

× P {Sk+2 = sk+2, . . . , Sn = sn|Sk+1 = sk+1,Xk+1 = j}Pi,j

=
∑
j

p(sk+1|j)P {Sk+2 = sk+2, . . . , Sn = sn|Xk+1 = j}Pi,j

=
∑
j

p(sk+1|j)Bk+1(j)Pi,j (4.36)

Starting with

Bn−1(i) = P {Sn = sn|Xn−1 = i}
=

∑
j

Pi,jp(sn|j)

we would then use Eq. (4.36) to determine the function Bn−2(i), then Bn−3(i), and so
on, down to B1(i). This would then yield P {Sn = sn} via

P {Sn = sn} =
∑

i

P {S1 = s1, . . . , Sn = sn|X1 = i}pi
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=
∑

i

P {S1 = s1|X1 = i}

× P {S2 = s2, . . . , Sn = sn|S1 = s1,X1 = i}pi

=
∑

i

p(s1|i)P {S2 = s2, . . . , Sn = sn|X1 = i}pi

=
∑

i

p(s1|i)B1(i)pi

Another approach to obtaining P {Sn = sn} is to combine both the forward and
backward approaches. Suppose that for some k we have computed both functions
Fk(j) and Bk(j). Because

P {Sn = sn,Xk = j} = P {Sk = sk,Xk = j}
× P {Sk+1 = sk+1, . . . , Sn = sn|Sk = sk,Xk = j}

= P {Sk = sk,Xk = j}P {Sk+1 = sk+1, . . . ,Sn = sn|Xk = j}
= Fk(j)Bk(j)

we see that

P {Sn = sn} =
∑
j

Fk(j)Bk(j)

The beauty of using the preceding identity to determine P {Sn = sn} is that we may
simultaneously compute the sequence of forward functions, starting with F1, as well
as the sequence of backward functions, starting at Bn−1. The parallel computations
can then be stopped once we have computed both Fk and Bk for some k.

4.11.1 Predicting the States

Suppose the first n observed signals are sn = (s1, . . . , sn), and that given this data we
want to predict the first n states of the Markov chain. The best predictor depends on
what we are trying to accomplish. If our objective is to maximize the expected number
of states that are correctly predicted, then for each k = 1, . . . , n we need to compute
P {Xk = j |Sn = sn} and then let the value of j that maximizes this quantity be the pre-
dictor of Xk . (That is, we take the mode of the conditional probability mass function
of Xk , given the sequence of signals, as the predictor of Xk .) To do so, we must first
compute this conditional probability mass function, which is accomplished as follows.
For k � n,

P {Xk = j |Sn = sn} = P {Sn = sn,Xk = j}
P {Sn = sn}

= Fk(j)Bk(j)∑
j Fk(j)Bk(j)
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Thus, given that Sn = sn, the optimal predictor of Xk is the value of j that maximizes
Fk(j)Bk(j).

A different variant of the prediction problem arises when we regard the sequence
of states as a single entity. In this situation, our objective is to choose that sequence
of states whose conditional probability, given the sequence of signals, is maximal. For
instance, in signal processing, while X1, . . . ,Xn might be the actual message sent,
S1, . . . , Sn would be what is received, and so the objective would be to predict the
actual message in its entirety.

Letting Xk = (X1, . . . ,Xk) be the vector of the first k states, the problem of inter-
est is to find the sequence of states i1, . . . , in that maximizes P {Xn = (i1, . . . , in)|Sn =
sn}. Because

P {Xn = (i1, . . . , in)|Sn = sn} = P {Xn = (i1, . . . , in),Sn = sn}
P {Sn = sn}

this is equivalent to finding the sequence of states i1, . . . , in that maximizes P {Xn =
(i1, . . . , in), Sn = sn}.

To solve the preceding problem let, for k � n,

Vk(j) = max
i1,...,ik−1

P {Xk−1 = (i1, . . . , ik−1),Xk = j,Sk = sk}

To recursively solve for Vk(j), use that

Vk(j) = max
i

max
i1,...,ik−2

P {Xk−2 = (i1, . . . , ik−2),Xk−1 = i,Xk = j,Sk = sk}
= max

i
max

i1,...,ik−2
P {Xk−2 = (i1, . . . , ik−2),Xk−1 = i,Sk−1 = sk−1,

Xk = j, Sk = sk}
= max

i
max

i1,...,ik−2
P {Xk−2 = (i1, . . . , ik−2),Xk−1 = i,Sk−1 = sk−1}

× P {Xk = j, Sk = sk|Xk−2 = (i1, . . . , ik−2),Xk−1 = i,Sk−1 = sk−1}
= max

i
max

i1,...,ik−2
P {Xk−2 = (i1, . . . , ik−2),Xk−1 = i,Sk−1 = sk−1}

× P {Xk = j, Sk = sk|Xk−1 = i}
= max

i
P {Xk = j, Sk = sk|Xk−1 = i}

× max
i1,...,ik−2

P {Xk−2 = (i1, . . . , ik−2),Xk−1 = i,Sk−1 = sk−1}
= max

i
Pi,jp(sk|j)Vk−1(i)

= p(sk|j)max
i

Pi,jVk−1(i) (4.37)

Starting with

V1(j) = P {X1 = j, S1 = s1} = pjp(s1|j)
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we now use the recursive identity (4.37) to determine V2(j) for each j ; then V3(j) for
each j ; and so on, up to Vn(j) for each j .

To obtain the maximizing sequence of states, we work in the reverse direction. Let
jn be the value (or any of the values if there are more than one) of j that maximizes
Vn(j). Thus jn is the final state of a maximizing state sequence. Also, for k < n, let
ik(j) be a value of i that maximizes Pi,jVk(i). Then

max
i1,...,in

P {Xn = (i1, . . . , in),Sn = sn}
= max

j
Vn(j)

= Vn(jn)

= max
i1,...,in−1

P {Xn = (i1, . . . , in−1, jn),Sn = sn}
= p(sn|jn)max

i
Pi,jnVn−1(i)

= p(sn|jn)Pin−1(jn),jnVn−1(in−1(jn))

Thus, in−1(jn) is the next to last state of the maximizing sequence. Continuing in this
manner, the second from the last state of the maximizing sequence is in−2(in−1(jn)),
and so on.

The preceding approach to finding the most likely sequence of states given a pre-
scribed sequence of signals is known as the Viterbi Algorithm.

Exercises
*1. Three white and three black balls are distributed in two urns in such a way that

each contains three balls. We say that the system is in state i,i = 0,1,2,3, if
the first urn contains i white balls. At each step, we draw one ball from each
urn and place the ball drawn from the first urn into the second, and conversely
with the ball from the second urn. Let Xn denote the state of the system after
the nth step. Explain why {Xn,n = 0,1,2, . . .} is a Markov chain and calculate
its transition probability matrix.

2. Each individual in a population independently has a random number of off-
spring that is Poisson distributed with mean λ. Those initially present constitute
the zeroth generation. Offspring of zeroth generation people constitute the first
generation; their offspring constitute the second generation, and so on. If Xn

denotes the size of generation n, is {Xn,n ≥ 0} a Markov chain. If it is, give its
transition probabilities Pi,j ; if it is not, explain why it is not.

3. There are k players, with player i having value vi > 0, i = 1, . . . , k. In every
period, two of the players play a game, while the other k − 2 wait in an ordered
line. The loser of a game joins the end of the line, and the winner then plays a
new game against the player who is first in line. Whenever i and j play, i wins
with probability vi

vi+vj
.
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(a) Define a Markov chain that is useful in analyzing this model.
(b) How many states does the Markov chain have?
(c) Give the transition probabilities of the chain.

4. Let P and Q be transition probability matrices on states 1, . . . ,m, with respec-
tive transition probabilities Pi,j and Qi,j . Consider processes {Xn,n ≥ 0} and
{Yn,n ≥ 0} defined as follows:
(a) X0 = 1. A coin that comes up heads with probability p is then flipped.

If the coin lands heads, the subsequent states X1,X2, . . ., are obtained by
using the transition probability matrix P; if it lands tails, the subsequent
states X1,X2, . . . , are obtained by using the transition probability ma-
trix Q. (In other words, if the coin lands heads (tails) then the sequence
of states is a Markov chain with transition probability matrix P (Q).) Is
{Xn,n ≥ 0} a Markov chain. If it is, give its transition probabilities. If it
is not, tell why not.

(b) Y0 = 1. If the current state is i, then the next state is determined by first
flipping a coin that comes up heads with probability p. If the coin lands
heads then the next state is j with probability Pi,j ; if it lands tails then
the next state is j with probability Qi,j . Is {Yn,n ≥ 0} a Markov chain. If
it is, give its transition probabilities. If it is not, tell why not.

5. A Markov chain {Xn,n � 0} with states 0,1,2, has the transition probability
matrix

⎡
⎢⎢⎣

1
2

1
3

1
6

0 1
3

2
3

1
2 0 1

2

⎤
⎥⎥⎦

If P {X0 = 0} = P {X0 = 1} = 1
4 , find E[X3].

6. Let the transition probability matrix of a two-state Markov chain be given, as
in Example 4.2, by

P =
∥∥∥∥∥

p 1 − p

1 − p p

∥∥∥∥∥
Show by mathematical induction that

P(n) =
∥∥∥∥∥

1
2 + 1

2 (2p − 1)n 1
2 − 1

2 (2p − 1)n

1
2 − 1

2 (2p − 1)n 1
2 + 1

2 (2p − 1)n

∥∥∥∥∥
7. In Example 4.4, suppose that it has rained neither yesterday nor the day before

yesterday. What is the probability that it will rain tomorrow?
8. An urn initially contains 2 balls, one of which is red and the other blue. At each

stage a ball is randomly selected. If the selected ball is red, then it is replaced
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with a red ball with probability 0.7 or with a blue ball with probability 0.3; if
the selected ball is blue, then it is equally likely to be replaced by either a red
or blue ball.
(a) Let Xn equal 1 if the nth ball selected is red, and let it equal 0 other-

wise. Is {Xn,n ≥ 1} a Markov chain? If so, give its transition probability
matrix.

(b) Let Yn denote the number of red balls in the urn immediately before the
nth ball is selected. Is {Yn,n ≥ 1} a Markov chain? If so, give its transi-
tion probability matrix.

(c) Find the probability that the second ball selected is red.
(d) Find the probability that the fourth ball selected is red.

*9. In a sequence of independent flips of a coin that comes up heads with proba-
bility 0.6, what is the probability that there is a run of three consecutive heads
within the first 10 flips?

10. In Example 4.3, Gary is currently in a cheerful mood. What is the probability
that he is not in a glum mood on any of the following three days?

11. In Example 4.13, give the transition probabilities of the Yn Markov chain in
terms of the transition probabilities Pi,j of the Xn chain.

12. Consider a Markov chain with transition probabilities qi,j , i, j ≥ 0. Let
N0,k, k �= 0, be the number of transitions, starting in state 0, until this Markov
chain enters state k. Consider another Markov chain with transition probabili-
ties Pi,j , i, j ≥ 0, where

Pi,j = qi,j , i �= k

Pk,j = 0, j �= k

Pk,k = 1

Give explanations as to whether the following identities are true or false.
(a) P(N0,k ≤ m) = P m

0,k

(b) P(N0,k = m) =∑
i �=k P m−1

0,i Pi,k

13. Let P be the transition probability matrix of a Markov chain. Argue that if
for some positive integer r,Pr has all positive entries, then so does Pn, for all
integers n � r .

14. Specify the classes of the following Markov chains, and determine whether
they are transient or recurrent:

P1 =

∥∥∥∥∥∥∥∥
0 1

2
1
2

1
2 0 1

2

1
2

1
2 0

∥∥∥∥∥∥∥∥
, P2 =

∥∥∥∥∥∥∥∥∥∥∥

0 0 0 1

0 0 0 1

1
2

1
2 0 0

0 0 1 0

∥∥∥∥∥∥∥∥∥∥∥
,
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P3 =

∥∥∥∥∥∥∥∥∥∥∥∥∥∥

1
2 0 1

2 0 0

1
4

1
2

1
4 0 0

1
2 0 1

2 0 0

0 0 0 1
2

1
2

0 0 0 1
2

1
2

∥∥∥∥∥∥∥∥∥∥∥∥∥∥
, P4 =

∥∥∥∥∥∥∥∥∥∥∥∥∥∥

1
4

3
4 0 0 0

1
2

1
2 0 0 0

0 0 1 0 0

0 0 1
3

2
3 0

1 0 0 0 0

∥∥∥∥∥∥∥∥∥∥∥∥∥∥
15. Consider the random walk of Example 4.19. Suppose that p > 1/2, and let mi

denote the mean number of transitions until the random walk, starting in state
0, has value i, i > 0. Argue that
(a) m1 = 1 + (1 − p)2m1
(b) Find mi, i > 0.

*16. Show that if state i is recurrent and state i does not communicate with state j ,
then Pij = 0. This implies that once a process enters a recurrent class of states
it can never leave that class. For this reason, a recurrent class is often referred
to as a closed class.

17. For the random walk of Example 4.19 use the strong law of large numbers to
give another proof that the Markov chain is transient when p �= 1

2 .

Hint: Note that the state at time n can be written as
∑n

i=1Yi where the Yis
are independent and P {Yi = 1} = p = 1 − P {Yi = −1}. Argue that if p > 1

2 ,
then, by the strong law of large numbers,

∑n
1Yi → ∞ as n → ∞ and hence

the initial state 0 can be visited only finitely often, and hence must be transient.
A similar argument holds when p < 1

2 .
18. Coin 1 comes up heads with probability 0.6 and coin 2 with probability 0.5.

A coin is continually flipped until it comes up tails, at which time that coin is
put aside and we start flipping the other one.
(a) What proportion of flips use coin 1?
(b) If we start the process with coin 1 what is the probability that coin 2 is

used on the fifth flip?
(c) What proportion of flips land heads?

19. For Example 4.4, calculate the proportion of days that it rains.
20. A transition probability matrix P is said to be doubly stochastic if the sum over

each column equals one; that is,∑
i

Pij = 1, for all j

If such a chain is irreducible and consists of M + 1 states 0,1, . . . ,M , show
that the long-run proportions are given by

πj = 1

M + 1
, j = 0,1, . . . ,M

*21. A DNA nucleotide has any of four values. A standard model for a mutational
change of the nucleotide at a specific location is a Markov chain model that
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supposes that in going from period to period the nucleotide does not change
with probability 1−3α, and if it does change then it is equally likely to change
to any of the other three values, for some 0 < α < 1

3 .
(a) Show that P n

1,1 = 1
4 + 3

4 (1 − 4α)n.
(b) What is the long-run proportion of time the chain is in each state?

22. Let Yn be the sum of n independent rolls of a fair die. Find

lim
n→∞P {Yn is a multiple of 13}

Hint: Define an appropriate Markov chain and apply the results of Exer-
cise 20.

23. In a good weather year, the number of storms is Poisson distributed with mean 1;
in a bad year it is Poisson distributed with mean 3. Suppose that any year’s
weather condition depends on past years only through the previous year’s con-
dition. Suppose that a good year is equally likely to be followed by either a
good or a bad year, and that a bad year is twice as likely to be followed by a bad
year as by a good year. Suppose that last year—call it year 0—was a good year.
(a) Find the expected total number of storms in the next two years (that is, in

years 1 and 2).
(b) Find the probability there are no storms in year 3.
(c) Find the long-run average number of storms per year.
(d) Find the proportion of years that have no storms.

24. Consider three urns, one colored red, one white, and one blue. The red urn
contains 1 red and 4 blue balls; the white urn contains 3 white balls, 2 red
balls, and 2 blue balls; the blue urn contains 4 white balls, 3 red balls, and 2
blue balls. At the initial stage, a ball is randomly selected from the red urn and
then returned to that urn. At every subsequent stage, a ball is randomly selected
from the urn whose color is the same as that of the ball previously selected and
is then returned to that urn. In the long run, what proportion of the selected
balls are red? What proportion are white? What proportion are blue?

25. Each morning an individual leaves his house and goes for a run. He is equally
likely to leave either from his front or back door. Upon leaving the house, he
chooses a pair of running shoes (or goes running barefoot if there are no shoes
at the door from which he departed). On his return he is equally likely to enter,
and leave his running shoes, either by the front or back door. If he owns a total
of k pairs of running shoes, what proportion of the time does he run barefooted?

26. Consider the following approach to shuffling a deck of n cards. Starting with
any initial ordering of the cards, one of the numbers 1,2, . . . , n is randomly
chosen in such a manner that each one is equally likely to be selected. If num-
ber i is chosen, then we take the card that is in position i and put it on top of
the deck—that is, we put that card in position 1. We then repeatedly perform
the same operation. Show that, in the limit, the deck is perfectly shuffled in the
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sense that the resultant ordering is equally likely to be any of the n! possible
orderings.

*27. Each individual in a population of size N is, in each period, either active or
inactive. If an individual is active in a period then, independent of all else, that
individual will be active in the next period with probability α. Similarly, if an
individual is inactive in a period then, independent of all else, that individual
will be inactive in the next period with probability β. Let Xn denote the number
of individuals that are active in period n.
(a) Argue that Xn,n � 0 is a Markov chain.
(b) Find E[Xn|X0 = i].
(c) Derive an expression for its transition probabilities.
(d) Find the long-run proportion of time that exactly j people are active.

Hint for (d): Consider first the case where N = 1.
28. Every time that the team wins a game, it wins its next game with probability

0.8; every time it loses a game, it wins its next game with probability 0.3. If the
team wins a game, then it has dinner together with probability 0.7, whereas if
the team loses then it has dinner together with probability 0.2. What proportion
of games result in a team dinner?

29. Whether or not it rains follows a 2 state Markov chain. If it rains one day,
then it will rain the next with probability 1/2 or will be dry with probability
1/2. Overall, 40 percent of days are rainy. If it is raining on Monday, find the
probability that it will rain on Thursday.

30. J plays a new game every day. If J wins a game, then she wins the next one
with probability 0.6; if she has lost the last game but won the one preceding
it, then she wins the next with probability 0.7; if she has lost the last 2 games,
then she wins the next with probability 0.2.
(a) What proportion of games does J win?
(b) Suppose J has been playing a long time. If J loses her game on Monday,

what is the probability she will win on Tuesday?
31. A certain town never has two sunny days in a row. Each day is classified as

being either sunny, cloudy (but dry), or rainy. If it is sunny one day, then it is
equally likely to be either cloudy or rainy the next day. If it is rainy or cloudy
one day, then there is one chance in two that it will be the same the next day, and
if it changes then it is equally likely to be either of the other two possibilities. In
the long run, what proportion of days are sunny? What proportion are cloudy?

*32. Each of two switches is either on or off during a day. On day n, each switch
will independently be on with probability

[1 + number of on switches during day n − 1]/4

For instance, if both switches are on during day n − 1, then each will indepen-
dently be on during day n with probability 3/4. What fraction of days are both
switches on? What fraction are both off?
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33. Two players are playing a sequence of points, which begin when one of the
players serves. Suppose that player 1 wins each point she serves with proba-
bility p, and wins each point her opponent serves with probability q. Suppose
the winner of a point becomes the server of the next point.
(a) Find the proportion of points that are won by player 1.
(b) Find the proportion of time that player 1 is the server.

34. A flea moves around the vertices of a triangle in the following manner: When-
ever it is at vertex i it moves to its clockwise neighbor vertex with probability
pi and to the counterclockwise neighbor with probability qi = 1 − pi, i =
1,2,3.
(a) Find the proportion of time that the flea is at each of the vertices.
(b) How often does the flea make a counterclockwise move that is then fol-

lowed by five consecutive clockwise moves?
35. Consider a Markov chain with states 0, 1, 2, 3, 4. Suppose P0,4 = 1; and sup-

pose that when the chain is in state i, i > 0, the next state is equally likely to be
any of the states 0,1, . . . , i − 1. Find the limiting probabilities of this Markov
chain.

36. The state of a process changes daily according to a two-state Markov chain. If
the process is in state i during one day, then it is in state j the following day
with probability Pi,j , where

P0,0 = 0.4, P0,1 = 0.6, P1,0 = 0.2, P1,1 = 0.8

Every day a message is sent. If the state of the Markov chain that day is i then
the message sent is “good” with probability pi and is “bad” with probability
qi = 1 − pi , i = 0,1
(a) If the process is in state 0 on Monday, what is the probability that a good

message is sent on Tuesday?
(b) If the process is in state 0 on Monday, what is the probability that a good

message is sent on Friday?
(c) In the long run, what proportion of messages are good?
(d) Let Yn equal 1 if a good message is sent on day n and let it equal 2 other-

wise. Is {Yn,n � 1} a Markov chain? If so, give its transition probability
matrix. If not, briefly explain why not.

37. Show that the stationary probabilities for the Markov chain having transition
probabilities Pi,j are also the stationary probabilities for the Markov chain
whose transition probabilities Qi,j are given by

Qi,j = P k
i,j

for any specified positive integer k.
38. Capa plays either one or two chess games every day, with the number of games

that she plays on successive days being a Markov chain with transition proba-
bilities

P1,1 = 0.2, P1,2 = 0.8 P2,1 = 0.4, P2,2 = 0.6
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Capa wins each game with probability p. Suppose she plays two games on
Monday.
(a) What is the probability that she wins all the games she plays on Tuesday?
(b) What is the expected number of games that she plays on Wednesday?
(c) In the long run, on what proportion of days does Capa win all her games.

39. Consider the one-dimensional symmetric random walk of Example 4.19, which
was shown in that example to be recurrent. Let πi denote the long-run propor-
tion of time that the chain is in state i.
(a) Argue that πi = π0 for all i.
(b) Show that

∑
i πi �= 1.

(c) Conclude that this Markov chain is null recurrent, and thus all πi = 0.
40. A particle moves on 12 points situated on a circle. At each step it is equally

likely to move one step in the clockwise or in the counterclockwise direction.
Find the mean number of steps for the particle to return to its starting position.

*41. Consider a Markov chain with states equal to the nonnegative integers, and
suppose its transition probabilities satisfy Pi,j = 0 if j ≤ i. Assume X0 = 0,
and let ej be the probability that the Markov chain is ever in state j . (Note that
e0 = 1 because X0 = 0.) Argue that for j > 0

ej =
j−1∑
i=0

eiPi,j

If Pi,i+k = 1/3, k = 1,2,3, find ei for i = 1, . . . ,10.
42. Let A be a set of states, and let Ac be the remaining states.

(a) What is the interpretation of∑
i∈A

∑
j∈Ac

πiPij ?

(b) What is the interpretation of∑
i∈Ac

∑
j∈A

πiPij ?

(c) Explain the identity∑
i∈A

∑
j∈Ac

πiPij =
∑
i∈Ac

∑
j∈A

πiPij

43. Each day, one of n possible elements is requested, the ith one with probability
Pi, i � 1,

∑n
1Pi = 1. These elements are at all times arranged in an ordered

list that is revised as follows: The element selected is moved to the front of the
list with the relative positions of all the other elements remaining unchanged.
Define the state at any time to be the list ordering at that time and note that
there are n! possible states.
(a) Argue that the preceding is a Markov chain.
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(b) For any state i1, . . . , in (which is a permutation of 1,2, . . . , n), let
π(i1, . . . , in) denote the limiting probability. In order for the state to be
i1, . . . , in, it is necessary for the last request to be for i1, the last non-i1
request for i2, the last non-i1 or i2 request for i3, and so on. Hence, it
appears intuitive that

π(i1, . . . , in) = Pi1

Pi2

1 − Pi1

Pi3

1 − Pi1 − Pi2

· · · Pin−1

1 − Pi1 − · · · − Pin−2

Verify when n = 3 that the preceding are indeed the limiting probabilities.
44. Suppose that a population consists of a fixed number, say, m, of genes in any

generation. Each gene is one of two possible genetic types. If exactly i (of the
m) genes of any generation are of type 1, then the next generation will have j

type 1 (and m − j type 2) genes with probability(
m

j

)(
i

m

)j (
m − i

m

)m−j

, j = 0,1, . . . ,m

Let Xn denote the number of type 1 genes in the nth generation, and assume
that X0 = i.
(a) Find E[Xn].
(b) What is the probability that eventually all the genes will be type 1?

45. Consider an irreducible finite Markov chain with states 0,1, . . . ,N .
(a) Starting in state i, what is the probability the process will ever visit state

j? Explain!
(b) Let xi = P {visit state N before state 0|start in i}. Compute a set of linear

equations that the xi satisfy, i = 0,1, . . . ,N .
(c) If

∑
j jPij = i for i = 1, . . . ,N − 1, show that xi = i/N is a solution to

the equations in part (b).
46. An individual possesses r umbrellas that he employs in going from his home

to office, and vice versa. If he is at home (the office) at the beginning (end)
of a day and it is raining, then he will take an umbrella with him to the office
(home), provided there is one to be taken. If it is not raining, then he never
takes an umbrella. Assume that, independent of the past, it rains at the begin-
ning (end) of a day with probability p.
(a) Define a Markov chain with r + 1 states, which will help us to determine

the proportion of time that our man gets wet. (Note: He gets wet if it is
raining, and all umbrellas are at his other location.)

(b) Show that the limiting probabilities are given by

πi =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

q

r + q
, if i = 0

where q = 1 − p
1

r + q
, if i = 1, . . . , r

(c) What fraction of time does our man get wet?
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(d) When r = 3, what value of p maximizes the fraction of time he gets wet
*47. Let {Xn,n � 0} denote an ergodic Markov chain with limiting probabilities πi .

Define the process {Yn,n � 1} by Yn = (Xn−1,Xn). That is, Yn keeps track of
the last two states of the original chain. Is {Yn,n � 1} a Markov chain? If so,
determine its transition probabilities and find

lim
n→∞P {Yn = (i, j)}

48. Consider a Markov chain in steady state. Say that a k length run of zeroes ends
at time m if

Xm−k−1 �= 0, Xm−k = Xm−k+1 = . . . = Xm−1 = 0,Xm �= 0

Show that the probability of this event is π0(P0,0)
k−1(1 − P0,0)

2, where π0 is
the limiting probability of state 0.

49. Consider a Markov chain with states 1,2,3 having transition probability matrix⎛
⎝ 0.5 0.3 0.2

0 0.4 0.6
0.8 0 0.2

⎞
⎠

(a) If the chain is currently in state 1, find the probability that after two tran-
sitions it will be in state 2.

(b) Suppose you receive a reward r(i) = i2 whenever the Markov chain is in
state i, i = 1,2,3. Find your long run average reward per unit time.
Let Ni denote the number of transitions, starting in state i, until the
Markov chain enters state 3.

(c) Find E[N1].
(d) Find P(N1 ≤ 4).
(e) Find P(N1 = 4).

50. A Markov chain with states 1, . . . ,6 has transition probability matrix⎛
⎜⎜⎜⎜⎜⎜⎝

0.2 0.4 0 0.3 0 0.1
0.1 0.3 0 0.4 0 0.2
0 0 0.3 0.7 0 0
0 0 0.6 0.4 0 0
0 0 0 0 0.5 0.5
0 0 0 0 0.2 0.8

⎞
⎟⎟⎟⎟⎟⎟⎠

(a) Give the classes and tell which are recurrent and which are transient.
(b) Find limn→∞ P n

1,2.

(c) Find limn→∞ P n
5,6.

(d) Find limn→∞ P n
1,3.

51. In Example 4.3, Gary is in a cheerful mood today. Find the expected number
of days until he has been glum for three consecutive days.
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52. A taxi driver provides service in two zones of a city. Fares picked up in zone A

will have destinations in zone A with probability 0.6 or in zone B with prob-
ability 0.4. Fares picked up in zone B will have destinations in zone A with
probability 0.3 or in zone B with probability 0.7. The driver’s expected profit
for a trip entirely in zone A is 6; for a trip entirely in zone B is 8; and for a trip
that involves both zones is 12. Find the taxi driver’s average profit per trip.

53. Find the average premium received per policyholder of the insurance company
of Example 4.29 if λ = 1/4 for one-third of its clients, and λ = 1/2 for two-
thirds of its clients.

54. Consider the Ehrenfest urn model in which M molecules are distributed be-
tween two urns, and at each time point one of the molecules is chosen at
random and is then removed from its urn and placed in the other one. Let
Xn denote the number of molecules in urn 1 after the nth switch and let
μn = E[Xn]. Show that
(a) μn+1 = 1 + (1 − 2/M)μn.
(b) Use (a) to prove that

μn = M

2
+
(

M − 2

M

)n(
E[X0] − M

2

)

55. Consider a population of individuals each of whom possesses two genes that
can be either type A or type a. Suppose that in outward appearance type A

is dominant and type a is recessive. (That is, an individual will have only the
outward characteristics of the recessive gene if its pair is aa.) Suppose that the
population has stabilized, and the percentages of individuals having respective
gene pairs AA, aa, and Aa are p,q, and r . Call an individual dominant or re-
cessive depending on the outward characteristics it exhibits. Let S11 denote the
probability that an offspring of two dominant parents will be recessive; and let
S10 denote the probability that the offspring of one dominant and one recessive
parent will be recessive. Compute S11 and S10 to show that S11 = S2

10. (The
quantities S10 and S11 are known in the genetics literature as Snyder’s ratios.)

56. Suppose that on each play of the game a gambler either wins 1 with probability
p or loses 1 with probability 1 − p. The gambler continues betting until she or
he is either up n or down m. What is the probability that the gambler quits a
winner?

57. A particle moves among n + 1 vertices that are situated on a circle in the
following manner. At each step it moves one step either in the clockwise di-
rection with probability p or the counterclockwise direction with probability
q = 1 − p. Starting at a specified state, call it state 0, let T be the time of the
first return to state 0. Find the probability that all states have been visited by
time T .

Hint: Condition on the initial transition and then use results from the gam-
bler’s ruin problem.

58. In the gambler’s ruin problem of Section 4.5.1, suppose the gambler’s for-
tune is presently i, and suppose that we know that the gambler’s fortune will
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eventually reach N (before it goes to 0). Given this information, show that the
probability he wins the next gamble is

p[1 − (q/p)i+1]
1 − (q/p)i

, if p �= 1
2

i + 1

2i
, if p = 1

2

Hint: The probability we want is

P {Xn+1 = i + 1|Xn = i, lim
m→∞Xm = N}

= P {Xn+1 = i + 1, limm Xm = N |Xn = i}
P {limm Xm = N |Xn = i}

59. For the gambler’s ruin model of Section 4.5.1, let Mi denote the mean number
of games that must be played until the gambler either goes broke or reaches a
fortune of N , given that he starts with i, i = 0,1, . . . ,N . Show that Mi satisfies

M0 = MN = 0; Mi = 1 + pMi+1 + qMi−1, i = 1, . . . ,N − 1

Solve these equations to obtain

Mi = i(N − i), if p = 1
2

= i

q − p
− N

q − p

1 − (q/p)i

1 − (q/p)N
, if p �= 1

2

60. The following is the transition probability matrix of a Markov chain with states
1,2,3,4

P =

⎛
⎜⎜⎝

0.4 0.3 0.2 0.1
0.2 0.2 0.2 0.4
0.25 0.25 0.5 0
0.2 0.1 0.4 0.3

⎞
⎟⎟⎠

If X0 = 1
(a) find the probability that state 3 is entered before state 4;
(b) find the mean number of transitions until either state 3 or state 4 is en-

tered.
61. Suppose in the gambler’s ruin problem that the probability of winning a bet

depends on the gambler’s present fortune. Specifically, suppose that αi is the
probability that the gambler wins a bet when his or her fortune is i. Given
that the gambler’s initial fortune is i, let P(i) denote the probability that the
gambler’s fortune reaches N before 0.
(a) Derive a formula that relates P(i) to P(i − 1) and P(i + 1).
(b) Using the same approach as in the gambler’s ruin problem, solve the

equation of part (a) for P(i).
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(c) Suppose that i balls are initially in urn 1 and N − i are in urn 2, and sup-
pose that at each stage one of the N balls is randomly chosen, taken from
whichever urn it is in, and placed in the other urn. Find the probability
that the first urn becomes empty before the second.

*62. Consider the particle from Exercise 57. What is the expected number of steps
the particle takes to return to the starting position? What is the probability that
all other positions are visited before the particle returns to its starting state?

63. For the Markov chain with states 1, 2, 3, 4 whose transition probability matrix
P is as specified below find fi3 and si3 for i = 1,2,3.

P =

⎡
⎢⎢⎣

0.4 0.2 0.1 0.3
0.1 0.5 0.2 0.2
0.3 0.4 0.2 0.1
0 0 0 1

⎤
⎥⎥⎦

64. Consider a branching process having μ < 1. Show that if X0 = 1, then the
expected number of individuals that ever exist in this population is given by
1/(1 − μ). What if X0 = n?

65. In a branching process having X0 = 1 and μ > 1, prove that π0 is the smallest
positive number satisfying Eq. (4.20).

Hint: Let π be any solution of π =∑∞
j=0 πjPj . Show by mathematical in-

duction that π � P {Xn = 0} for all n, and let n → ∞. In using the induction
argue that

P {Xn = 0} =
∞∑

j=0

(P {Xn−1 = 0})jPj

66. For a branching process, calculate π0 when
(a) P0 = 1

4 ,P2 = 3
4 .

(b) P0 = 1
4 ,P1 = 1

2 ,P2 = 1
4 .

(c) P0 = 1
6 ,P1 = 1

2 ,P3 = 1
3 .

67. For a Branching process Xn, n ≥ 0, show that Cov(Xm,Xn+m) ≥ 0.
68. At all times, an urn contains N balls—some white balls and some black balls.

At each stage, a coin having probability p,0 < p < 1, of landing heads is
flipped. If heads appears, then a ball is chosen at random from the urn and is
replaced by a white ball; if tails appears, then a ball is chosen from the urn and
is replaced by a black ball. Let Xn denote the number of white balls in the urn
after the nth stage.
(a) Is {Xn,n � 0} a Markov chain? If so, explain why.
(b) What are its classes? What are their periods? Are they transient or recur-

rent?
(c) Compute the transition probabilities Pij .
(d) Let N = 2. Find the proportion of time in each state.
(e) Based on your answer in part (d) and your intuition, guess the answer for

the limiting probability in the general case.



296 Introduction to Probability Models

(f) Prove your guess in part (e) either by showing that Theorem (4.1) is sat-
isfied or by using the results of Example 4.37.

(g) If p = 1, what is the expected time until there are only white balls in the
urn if initially there are i white and N − i black?

*69. (a) Show that the limiting probabilities of the reversed Markov chain are the
same as for the forward chain by showing that they satisfy the equations

πj =
∑

i

πiQij

(b) Give an intuitive explanation for the result of part (a).
70. M balls are initially distributed among m urns. At each stage one of the balls is

selected at random, taken from whichever urn it is in, and then placed, at ran-
dom, in one of the other m − 1 urns. Consider the Markov chain whose state
at any time is the vector (n1, . . . , nm) where ni denotes the number of balls in
urn i. Guess at the limiting probabilities for this Markov chain and then verify
your guess and show at the same time that the Markov chain is time reversible.

71. A total of m white and m black balls are distributed among two urns, with each
urn containing m balls. At each stage, a ball is randomly selected from each
urn and the two selected balls are interchanged. Let Xn denote the number of
black balls in urn 1 after the nth interchange.
(a) Give the transition probabilities of the Markov chain Xn,n � 0.
(b) Without any computations, what do you think are the limiting probabili-

ties of this chain?
(c) Find the limiting probabilities and show that the stationary chain is time

reversible.
72. It follows from Theorem 4.2 that for a time reversible Markov chain

PijPjkPki = PikPkjPji, for all i, j, k

It turns out that if the state space is finite and Pij > 0 for all i, j , then the
preceding is also a sufficient condition for time reversibility. (That is, in this
case, we need only check Eq. (4.26) for paths from i to i that have only two
intermediate states.) Prove this.

Hint: Fix i and show that the equations

πjPjk = πkPkj

are satisfied by πj = cPij /Pji , where c is chosen so that
∑

j πj = 1.
73. For a time reversible Markov chain, argue that the rate at which transitions

from i to j to k occur must equal the rate at which transitions from k to j to i

occur.
74. There are k players, with player i having value vi > 0, i = 1, . . . , k. In every

period, two of the players play a game. Whoever wins then plays the next game
against a randomly chosen one of the other k − 1 players (including the one
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who has just lost). Suppose that whenever i and j play, i wins with probability
vi

vi+vj
. Let Xn denote the winner of game n.

(a) Give the transition probabilities of the Markov chain {Xn,n ≥ 1}.
(b) Give the stationarity equations that are uniquely satisfied by the πj .
(c) Give the time reversibility equations.
(d) Find the proportion of all games that are won by j , j = 1, . . . , k.
(e) Find the proportion of games that involve player j as one of the contes-

tants.
75. A group of n processors is arranged in an ordered list. When a job arrives, the

first processor in line attempts it; if it is unsuccessful, then the next in line tries
it; if it too is unsuccessful, then the next in line tries it, and so on. When the job
is successfully processed or after all processors have been unsuccessful, the
job leaves the system. At this point we are allowed to reorder the processors,
and a new job appears. Suppose that we use the one-closer reordering rule,
which moves the processor that was successful one closer to the front of the
line by interchanging its position with the one in front of it. If all processors
were unsuccessful (or if the processor in the first position was successful), then
the ordering remains the same. Suppose that each time processor i attempts a
job then, independently of anything else, it is successful with probability pi .
(a) Define an appropriate Markov chain to analyze this model.
(b) Show that this Markov chain is time reversible.
(c) Find the long-run probabilities.

76. A Markov chain is said to be a tree process if
(i) Pij > 0 whenever Pji > 0,

(ii) for every pair of states i and j, i �= j , there is a unique sequence of dis-
tinct states i = i0, i1, . . . , in−1, in = j such that

Pik,ik+1 > 0, k = 0,1, . . . , n − 1

In other words, a Markov chain is a tree process if for every pair of distinct
states i and j there is a unique way for the process to go from i to j without
reentering a state (and this path is the reverse of the unique path from j to i).
Argue that an ergodic tree process is time reversible.

77. On a chessboard compute the expected number of plays it takes a knight, start-
ing in one of the four corners of the chessboard, to return to its initial position
if we assume that at each play it is equally likely to choose any of its legal
moves. (No other pieces are on the board.)

Hint: Make use of Example 4.38.
78. In a Markov decision problem, another criterion often used, different than the

expected average return per unit time, is that of the expected discounted return.
In this criterion we choose a number α,0 < α < 1, and try to choose a policy so
as to maximize E[∑∞

i=0α
iR(Xi, ai)] (that is, rewards at time n are discounted

at rate αn). Suppose that the initial state is chosen according to the probabilities
bi . That is,

P {X0 = i} = bi, i = 1, . . . , n
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For a given policy β let yja denote the expected discounted time that the pro-
cess is in state j and action a is chosen. That is,

yja = Eβ

[ ∞∑
n=0

αnI{Xn=j,an=a}

]

where for any event A the indicator variable IA is defined by

IA =
{

1, if A occurs
0, otherwise

(a) Show that

∑
a

yja = E

[ ∞∑
n=0

αnI{Xn=j}

]

or, in other words,
∑

a yja is the expected discounted time in state j un-
der β.

(b) Show that

∑
j

∑
a

yja = 1

1 − α
,

∑
a

yja = bj + α
∑

i

∑
a

yiaPij (a)

Hint: For the second equation, use the identity

I{Xn+1=j} =
∑

i

∑
a

I{Xn=i,an=a}I{Xn+1=j}

Take expectations of the preceding to obtain

E
[
IXn+1=j}

]=
∑

i

∑
a

E
[
I{Xn=i,an=a}

]
Pij (a)

(c) Let {yja} be a set of numbers satisfying

∑
j

∑
a

yja = 1

1 − α
,

∑
a

yja = bj + α
∑

i

∑
a

yiaPij (a)

(4.38)

Argue that yja can be interpreted as the expected discounted time that the
process is in state j and action a is chosen when the initial state is chosen
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according to the probabilities bj and the policy β, given by

βi(a) = yia∑
a yia

is employed.

Hint: Derive a set of equations for the expected discounted times when pol-
icy β is used and show that they are equivalent to Eq. (4.38).
(d) Argue that an optimal policy with respect to the expected discounted re-

turn criterion can be obtained by first solving the linear program

maximize
∑
j

∑
a

yjaR(j, a),

such that
∑
j

∑
a

yja = 1

1 − α
,

∑
a

yja = bj + α
∑

i

∑
a

yiaPij (a),

yja � 0, all j, a;
and then defining the policy β∗ by

β∗
i (a) = y∗

ia∑
a y∗

ia

where the y∗
ja are the solutions of the linear program.

79. For the Markov chain of Exercise 5, suppose that p(s|j) is the probability that
signal s is emitted when the underlying Markov chain state is j, j = 0,1,2.
(a) What proportion of emissions are signal s?
(b) What proportion of those times in which signal s is emitted is 0 the un-

derlying state?
80. In Example 4.45, what is the probability that the first 4 items produced are all

acceptable?
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5The Exponential Distribution and
the Poisson Process

5.1 Introduction
In making a mathematical model for a real-world phenomenon it is always necessary
to make certain simplifying assumptions so as to render the mathematics tractable. On
the other hand, however, we cannot make too many simplifying assumptions, for then
our conclusions, obtained from the mathematical model, would not be applicable to
the real-world situation. Thus, in short, we must make enough simplifying assump-
tions to enable us to handle the mathematics but not so many that the mathematical
model no longer resembles the real-world phenomenon. One simplifying assumption
that is often made is to assume that certain random variables are exponentially dis-
tributed. The reason for this is that the exponential distribution is both relatively easy
to work with and is often a good approximation to the actual distribution.

The property of the exponential distribution that makes it easy to analyze is that
it does not deteriorate with time. By this we mean that if the lifetime of an item is
exponentially distributed, then an item that has been in use for ten (or any number of)
hours is as good as a new item in regards to the amount of time remaining until the
item fails. This will be formally defined in Section 5.2, where it will be shown that the
exponential is the only distribution that possesses this property.

In Section 5.3 we shall study counting processes with an emphasis on a kind of
counting process known as the Poisson process. Among other things we shall dis-
cover about this process is its intimate connection with the exponential distribution.
In Section 5.4 we consider some important generalizations of the Poisson process,
such as the nonhomogeneous Poisson process, which allows for the possibility that
events are more likely to occur at certain times. Other generalizations considered in
this section are to compound and to conditional Poisson processes. In Section 5.5 we
introduce the Hawkes counting process.

5.2 The Exponential Distribution
5.2.1 Definition

A continuous random variable X is said to have an exponential distribution with pa-
rameter λ, λ > 0, if its probability density function is given by

f (x) =
{
λe−λx, x ≥ 0
0, x < 0

or, equivalently, if its cdf is given by

F(x) =
∫ x

−∞
f (y)dy =

{
1 − e−λx, x ≥ 0
0, x < 0

Introduction to Probability Models. https://doi.org/10.1016/B978-0-44-318761-2.00010-5
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The mean of the exponential distribution, E[X], is given by

E[X] =
∫ ∞

−∞
xf (x)dx

=
∫ ∞

0
λxe−λx dx

Integrating by parts (u = x, dv = λe−λxdx) yields

E[X] = −xe−λx
∣∣∞
0 +

∫ ∞

0
e−λx dx = 1

λ

The moment generating function φ(t) of the exponential distribution is given by

φ(t) = E[etX]
=
∫ ∞

0
etxλe−λx dx

= λ

λ − t
for t < λ (5.1)

All the moments of X can now be obtained by differentiating Eq. (5.1). For example,

E[X2] = d2

dt2
φ(t)

∣∣∣∣
t=0

= 2λ

(λ − t)3

∣∣∣∣
t=0

= 2

λ2

Consequently,

Var(X) = E[X2] − (E[X])2

= 2

λ2 − 1

λ2

= 1

λ2

Example 5.1 (Exponential Random Variables and Expected Discounted Returns).
Suppose that you are receiving rewards at randomly changing rates continuously
throughout time. Let R(x) denote the random rate at which you are receiving rewards
at time x. For a value α ≥ 0, called the discount rate, the quantity

R =
∫ ∞

0
e−αxR(x)dx

represents the total discounted reward. (In certain applications, α is a continuously
compounded interest rate, and R is the present value of the infinite flow of rewards.)
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Whereas

E[R] = E

[∫ ∞

0
e−αxR(x)dx

]
=
∫ ∞

0
e−αxE[R(x)]dx

is the expected total discounted reward, we will show that it is also equal to the ex-
pected total reward earned up to an exponentially distributed random time with rate α.

Let T be an exponential random variable with rate α that is independent of all the
random variables R(x). We want to argue that∫ ∞

0
e−αxE[R(x)]dx = E

[∫ T

0
R(x)dx

]

To show this define for each x ≥ 0 a random variable I (x) by

I (x) =
{

1, if x ≤ T

0, if x > T

and note that∫ T

0
R(x)dx =

∫ ∞

0
R(x)I (x) dx

Thus,

E

[∫ T

0
R(x)dx

]
= E

[∫ ∞

0
R(x)I (x) dx

]

=
∫ ∞

0
E[R(x)I (x)]dx

=
∫ ∞

0
E[R(x)]E[I (x)]dx by independence

=
∫ ∞

0
E[R(x)]P {T ≥ x}dx

=
∫ ∞

0
e−αxE[R(x)]dx

Therefore, the expected total discounted reward is equal to the expected total (undis-
counted) reward earned by a random time that is exponentially distributed with a rate
equal to the discount factor. �

5.2.2 Properties of the Exponential Distribution

A random variable X is said to be without memory, or memoryless, if

P {X > s + t | X > t} = P {X > s} for all s, t ≥ 0 (5.2)

If we think of X as being the lifetime of some instrument, then Eq. (5.2) states that
the probability that the instrument lives for at least s + t hours given that it has sur-
vived t hours is the same as the initial probability that it lives for at least s hours. In
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other words, if the instrument is alive at time t , then the distribution of the remaining
amount of time that it survives is the same as the original lifetime distribution; that is,
the instrument does not remember that it has already been in use for a time t .

The condition in Eq. (5.2) is equivalent to

P {X > s + t, X > t}
P {X > t} = P {X > s}

or

P {X > s + t} = P {X > s}P {X > t} (5.3)

Since Eq. (5.3) is satisfied when X is exponentially distributed (for e−λ(s+t) =
e−λse−λt ), it follows that exponentially distributed random variables are memoryless.

Example 5.2. Suppose that the amount of time one spends in a bank is exponentially
distributed with mean ten minutes, that is, λ = 1

10 . What is the probability that a cus-
tomer will spend more than fifteen minutes in the bank? What is the probability that a
customer will spend more than fifteen minutes in the bank given that she is still in the
bank after ten minutes?

Solution: If X represents the amount of time that the customer spends in the
bank, then the first probability is just

P {X > 15} = e−15λ = e−3/2 ≈ 0.223

The second question asks for the probability that a customer who has spent ten
minutes in the bank will have to spend at least five more minutes. However, since
the exponential distribution does not “remember” that the customer has already
spent ten minutes in the bank, this must equal the probability that an entering cus-
tomer spends at least five minutes in the bank. That is, the desired probability is
just

P {X > 5} = e−5λ = e−1/2 ≈ 0.607 �

Example 5.3. Consider a post office that is run by two clerks. Suppose that when
Mr. Smith enters the system he discovers that Mr. Jones is being served by one of
the clerks and Mr. Brown by the other. Suppose also that Mr. Smith is told that his
service will begin as soon as either Jones or Brown leaves. If the amount of time that
a clerk spends with a customer is exponentially distributed with mean 1/λ, what is the
probability that, of the three customers, Mr. Smith is the last to leave the post office?

Solution: The answer is obtained by this reasoning: Consider the time at which
Mr. Smith first finds a free clerk. At this point either Mr. Jones or Mr. Brown would
have just left and the other one would still be in service. However, by the lack of
memory of the exponential, it follows that the amount of time that this other man
(either Jones or Brown) would still have to spend in the post office is exponen-
tially distributed with mean 1/λ. That is, it is the same as if he were just starting
his service at this point. Hence, by symmetry, the probability that he finishes before
Smith must equal 1

2 . �
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Example 5.4. The dollar amount of damage involved in an automobile accident is an
exponential random variable with mean 1000. Of this, the insurance company only
pays that amount exceeding (the deductible amount of) 400. Find the expected value
and the standard deviation of the amount the insurance company pays per accident.

Solution: If X is the dollar amount of damage resulting from an accident, then
the amount paid by the insurance company is (X − 400)+ (where a+ is defined to
equal a if a > 0 and to equal 0 if a ≤ 0). Whereas we could certainly determine
the expected value and variance of (X − 400)+ from first principles, it is easier to
condition on whether X exceeds 400. So, let

I =
{

1, if X > 400
0, if X ≤ 400

Let Y = (X − 400)+ be the amount paid. By the lack of memory property of the
exponential, it follows that if a damage amount exceeds 400, then the amount by
which it exceeds it is exponential with mean 1000. Therefore,

E[Y |I = 1] = 1000

E[Y |I = 0] = 0

Var(Y |I = 1) = (1000)2

Var(Y |I = 0) = 0

which can be conveniently written as

E[Y |I ] = 103I, Var(Y |I ) = 106I

Because I is a Bernoulli random variable that is equal to 1 with probability e−0.4,
we obtain

E[Y ] = E[E[Y |I ]] = 103E[I ] = 103e−0.4 ≈ 670.32

and, by the conditional variance formula

Var(Y ) = E[Var(Y |I )] + Var(E[Y |I ])
= 106e−0.4 + 106e−0.4(1 − e−0.4)

where the final equality used that the variance of a Bernoulli random variable with
parameter p is p(1 − p). Consequently,√

Var(Y ) ≈ 944.09 �

It turns out that not only is the exponential distribution “memoryless,” but it is the
unique distribution possessing this property. To see this, suppose that X is memoryless
and let F̄ (x) = P {X > x}. Then by Eq. (5.3), it follows that

F̄ (s + t) = F̄ (s)F̄ (t)
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That is, F̄ (x) satisfies the functional equation

g(s + t) = g(s)g(t)

However, it turns out that the only right continuous solution of this functional equa-
tion is1

g(x) = e−λx

and since a distribution function is always right continuous, we must have

F̄ (x) = e−λx

or

F(x) = P {X ≤ x} = 1 − e−λx

which shows that X is exponentially distributed.

Example 5.5. A store must decide how much of a certain commodity to order so as
to meet next month’s demand, where that demand is assumed to have an exponential
distribution with rate λ. If the commodity costs the store c per pound, and can be sold
at a price of s > c per pound, how much should be ordered so as to maximize the
store’s expected profit? Assume that any inventory left over at the end of the month is
worthless and that there is no penalty if the store cannot meet all the demand.

Solution: Let X equal the demand. If the store orders the amount t , then the
profit, call it P , is given by

P = s min(X, t) − ct

Writing

min(X, t) = X − (X − t)+

we obtain, upon conditioning whether X > t and then using the lack of memory
property of the exponential, that

E[(X − t)+] = E[(X − t)+|X > t]P(X > t)

1 This is proven as follows: If g(s + t) = g(s)g(t), then

g

(
2

n

)
= g

(
1

n
+ 1

n

)
= g2

(
1

n

)

and repeating this yields g(m/n) = gm(1/n). Also,

g(1) = g

(
1

n
+ 1

n
+ · · · + 1

n

)
= gn

(
1

n

)
or g

(
1

n

)
= (g(1))1/n

Hence g(m/n) = (g(1))m/n, which implies, since g is right continuous, that g(x) = (g(1))x . Since
g(1) = (g( 1

2 ))2 ≥ 0 we obtain g(x) = e−λx , where λ = −log(g(1)).
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+ E[(X − t)+|X ≤ t]P(X ≤ t)

= E[(X − t)+|X > t]e−λt

= 1

λ
e−λt

where the final equality used the lack of memory property of exponential random
variables to conclude that, conditional on X exceeding t , the amount by which it
exceeds it is an exponential random variable with rate λ. Hence,

E[min(X, t)] = 1

λ
− 1

λ
e−λt

giving that

E[P ] = s

λ
− s

λ
e−λt − ct

Differentiation now yields that the maximal profit is attained when se−λt − c = 0;
that is, when

t = 1

λ
log(s/c)

Now, suppose that all unsold inventory can be returned for the amount r <

min(s, c) per pound; and also that there is a penalty cost p per pound of unmet
demand. In this case, using our previously derived expression for E[P ], we have

E[P ] = s

λ
− s

λ
e−λt − ct + rE[(t − X)+] − pE[(X − t)+]

Using that

min(X, t) = t − (t − X)+

we see that

E[(t − X)+] = t − E[min(X, t)] = t − 1

λ
+ 1

λ
e−λt

Hence,

E[P ] = s

λ
− s

λ
e−λt − ct + rt − r

λ
+ r

λ
e−λt − p

λ
e−λt

= s − r

λ
+ r − s − p

λ
e−λt − (c − r)t

Calculus now yields that the optimal amount to order is

t = 1

λ
log

(
s + p − r

c − r

)
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It is worth noting that the optimal amount to order increases in s,p, and r and
decreases in λ and c. (Are these monotonicity properties intuitive?) �

The memoryless property is further illustrated by the failure rate function (also
called the hazard rate function) of the exponential distribution.

Consider a continuous positive random variable X having distribution function F

and density f . The failure (or hazard) rate function λ(t) is defined by

λ(t) = f (t)

1 − F(t)
(5.4)

To interpret λ(t), suppose that an item, having lifetime X, has survived for t hours,
and we desire the probability that it does not survive for an additional time dt . That
is, consider P {X ∈ (t, t + dt)|X > t}. Now,

P {X ∈ (t, t + dt)|X > t} = P {X ∈ (t, t + dt),X > t}
P {X > t}

= P {X ∈ (t, t + dt)}
P {X > t}

≈ f (t) dt

1 − F(t)
= λ(t) dt

That is, λ(t) represents the conditional probability density that a t-year-old item will
fail.

Suppose now that the lifetime distribution is exponential. Then, by the memoryless
property, it follows that the distribution of remaining life for a t-year-old item is the
same as for a new item. Hence, λ(t) should be constant. This checks out since

λ(t) = f (t)

1 − F(t)

= λe−λt

e−λt
= λ

Thus, the failure rate function for the exponential distribution is constant. The pa-
rameter λ is often referred to as the rate of the distribution. (Note that the rate is the
reciprocal of the mean, and vice versa.)

It turns out that the failure rate function λ(t) uniquely determines the distribution F .
To prove this, we note by Eq. (5.4) that

λ(t) =
d
dt

F (t)

1 − F(t)

Integrating both sides yields

log(1 − F(t)) = −
∫ t

0
λ(t) dt + k
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or

1 − F(t) = ek exp

{
−
∫ t

0
λ(t) dt

}

Letting t = 0 shows that k = 0 and thus

F(t) = 1 − exp

{
−
∫ t

0
λ(t) dt

}

The preceding identity can also be used to show that exponential random variables
are the only ones that are memoryless. Because if X is memoryless, then its failure
rate function must be constant. But if λ(t) = c, then by the preceding equation

1 − F(t) = e−ct

showing that the random variable is exponential.

Example 5.6. Let X1, . . . ,Xn be independent exponential random variables with re-
spective rates λ1, . . . , λn, where λi �= λj when i �= j . Let T be independent of these
random variables and suppose that

n∑
j=1

Pj = 1 where Pj = P {T = j}

The random variable XT is said to be a hyperexponential random variable. To see how
such a random variable might originate, imagine that a bin contains n different types
of batteries, with a type j battery lasting for an exponential distributed time with rate
λj , j = 1, . . . , n. Suppose further that Pj is the proportion of batteries in the bin that
are type j for each j = 1, . . . , n. If a battery is randomly chosen, in the sense that it
is equally likely to be any of the batteries in the bin, then the lifetime of the battery
selected will have the hyperexponential distribution specified in the preceding.

To obtain the distribution function F of X = XT , condition on T . This yields

1 − F(t) = P {X > t}

=
n∑

i=1

P {X > t |T = i}P {T = i}

=
n∑

i=1

Pie
−λi t

Differentiation of the preceding yields f , the density function of X.

f (t) =
n∑

i=1

λiPie
−λi t
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Consequently, the failure rate function of a hyperexponential random variable is

λ(t) =
∑n

j=1 Pjλj e
−λj t∑n

i=1 Pie−λi t

By noting that

P {T = j |X > t} = P {X > t |T = j}P {T = j}
P {X > t}

= Pje
−λj t∑n

i=1 Pie−λi t

we see that the failure rate function λ(t) can also be written as

λ(t) =
n∑

j=1

λjP {T = j |X > t}

If λ1 < λi , for all i > 1, then

P {T = 1|X > t} = P1e
−λ1t

P1e−λ1t +∑n
i=2 Pie−λi t

= P1

P1 +∑n
i=2 Pie−(λi−λ1)t

→ 1 as t → ∞
Similarly, P {T = i|X > t} → 0 when i �= 1, thus showing that

lim
t→∞λ(t) = min

i
λi

That is, as a randomly chosen battery ages its failure rate converges to the failure rate
of the exponential type having the smallest failure rate, which is intuitive since the
longer the battery lasts, the more likely it is a battery type with the smallest failure
rate. �

5.2.3 Further Properties of the Exponential Distribution

Let X1, . . . ,Xn be independent and identically distributed exponential random vari-
ables having mean 1/λ. It follows from the results of Example 2.41 that X1 +· · ·+Xn

has a gamma distribution with parameters n and λ. Let us now give a second verifica-
tion of this result by using mathematical induction. Because there is nothing to prove
when n = 1, let us start by assuming that X1 + · · · + Xn−1 has density given by

fX1+···+Xn−1(t) = λe−λt (λt)n−2

(n − 2)!
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Hence,

fX1+···+Xn−1+Xn(t) =
∫ ∞

0
fXn(t − s)fX1+···+Xn−1(s) ds

=
∫ t

0
λe−λ(t−s)λe−λs (λs)n−2

(n − 2)! ds

= λe−λt (λt)n−1

(n − 1)!
Thus, we have proven

Proposition 5.1. If X1, . . . ,Xn are independent exponential random variables with
common rate λ, then

∑n
i=1 Xi is a gamma (n, λ) random variable. That is, its density

function is

f (t) = λe−λt (λt)n−1

(n − 1)! , t > 0

Another useful calculation is to determine the probability that one exponential
random variable is smaller than another. That is, suppose that X1 and X2 are inde-
pendent exponential random variables with respective means 1/λ1 and 1/λ2; what is
P {X1 < X2}? This probability is easily calculated by conditioning on X1:

P {X1 < X2} =
∫ ∞

0
P {X1 < X2|X1 = x}λ1e

−λ1x dx

=
∫ ∞

0
P {x < X2}λ1e

−λ1x dx

=
∫ ∞

0
e−λ2xλ1e

−λ1x dx

=
∫ ∞

0
λ1e

−(λ1+λ2)x dx

= λ1

λ1 + λ2
(5.5)

Suppose that X1,X2, . . . ,Xn are independent exponential random variables, with Xi

having rate μi, i = 1, . . . , n. It turns out that the smallest of the Xi is exponential with
a rate equal to the sum of the μi . This is shown as follows:

P {minimum(X1, . . . ,Xn) > x} = P {Xi > x for each i = 1, . . . , n}

=
n∏

i=1

P {Xi > x} (by independence)

=
n∏

i=1

e−μix
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= exp

{
−
(

n∑
i=1

μi

)
x

}
(5.6)

Example 5.7 (Analyzing Greedy Algorithms for the Assignment Problem). A group
of n people is to be assigned to a set of n jobs, with one person assigned to each job.
For a given set of n2 values Cij , i, j = 1, . . . , n, a cost Cij is incurred when person
i is assigned to job j . The classical assignment problem is to determine the set of
assignments that minimizes the sum of the n costs incurred.

Rather than trying to determine the optimal assignment, let us consider two heuris-
tic algorithms for solving this problem. The first heuristic is as follows. Assign person
1 to the job that results in the least cost. That is, person 1 is assigned to job j1 where
C(1, j1) = minimumj C(1, j). Now eliminate that job from consideration and assign
person 2 to the job that results in the least cost. That is, person 2 is assigned to job j2
where C(2, j2) = minimumj �=j1C(2, j). This procedure is then continued until all n

persons are assigned. Since this procedure always selects the best job for the person
under consideration, we will call it Greedy Algorithm A.

The second algorithm, which we call Greedy Algorithm B, is a more “global” ver-
sion of the first greedy algorithm. It considers all n2 cost values and chooses the pair
i1, j1 for which C(i, j) is minimal. It then assigns person i1 to job j1. It then eliminates
all cost values involving either person i1 or job j1 (so that (n− 1)2 values remain) and
continues in the same fashion. That is, at each stage it chooses the person and job that
have the smallest cost among all the unassigned people and jobs.

Under the assumption that the Cij constitute a set of n2 independent exponential
random variables each having mean 1, which of the two algorithms results in a smaller
expected total cost?

Solution: Suppose first that Greedy Algorithm A is employed. Let Ci denote the
cost associated with person i, i = 1, . . . , n. Now C1 is the minimum of n indepen-
dent exponentials each having rate 1; so by Eq. (5.6), it will be exponential with
rate n. Similarly, C2 is the minimum of n−1 independent exponentials with rate 1,
and so is exponential with rate n− 1. Indeed, by the same reasoning Ci will be ex-
ponential with rate n − i + 1, i = 1, . . . , n. Thus, the expected total cost under
Greedy Algorithm A is

EA[total cost] = E[C1 + · · · + Cn]

=
n∑

i=1

1/i

Let us now analyze Greedy Algorithm B. Let Ci be the cost of the ith person-
job pair assigned by this algorithm. Since C1 is the minimum of all the n2 values
Cij , it follows from Eq. (5.6) that C1 is exponential with rate n2. Now, it follows
from the lack of memory property of the exponential that the amounts by which
the other Cij exceed C1 will be independent exponentials with rates 1. As a result,
C2 is equal to C1 plus the minimum of (n − 1)2 independent exponentials with
rate 1. Similarly, C3 is equal to C2 plus the minimum of (n − 2)2 independent
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exponentials with rate 1, and so on. Therefore, we see that

E[C1] = 1/n2,

E[C2] = E[C1] + 1/(n − 1)2,

E[C3] = E[C2] + 1/(n − 2)2,

...

E[Cj ] = E[Cj−1] + 1/(n − j + 1)2,

...

E[Cn] = E[Cn−1] + 1

Therefore,

E[C1] = 1/n2,

E[C2] = 1/n2 + 1/(n − 1)2,

E[C3] = 1/n2 + 1/(n − 1)2 + 1/(n − 2)2,

...

E[Cn] = 1/n2 + 1/(n − 1)2 + 1/(n − 2)2 + · · · + 1

Adding up all the E[Ci] yields

EB [total cost] = n/n2 + (n − 1)/(n − 1)2 + (n − 2)/(n − 2)2 + · · · + 1

=
n∑

i=1

1

i

The expected cost is thus the same for both greedy algorithms. �

Let X1, . . . ,Xn be independent exponential random variables, with respective rates
λ1, . . . , λn. A useful result, generalizing Eq. (5.5), is that Xi is the smallest of these
with probability λi/

∑
j λj . This is shown as follows:

P

{
Xi = min

j
Xj

}
= P

{
Xi < min

j �=i
Xj

}

= λi∑n
j=1 λj

where the final equality uses Eq. (5.5) along with the fact that minj �=iXj is exponential
with rate

∑
j �=i λj .

Another important fact is that mini Xi and the rank ordering of the Xi are inde-
pendent. To see why this is true, consider the conditional probability that Xi1 < Xi2 <

· · · < Xin given that the minimal value is greater than t . Because mini Xi > t means



314 Introduction to Probability Models

that all the Xi are greater than t , it follows from the lack of memory property of ex-
ponential random variables that their remaining lives beyond t remain independent
exponential random variables with their original rates. Consequently,

P
{
Xi1 < · · · < Xin

∣∣min
i

Xi > t

}
= P

{
Xi1 − t < · · · < Xin − t

∣∣min
i

Xi > t

}
= P {Xi1 < · · · < Xin}

That is, we have proven the following.

Proposition 5.2. If X1, . . . ,Xn are independent exponential random variables with
respective rates λ1, . . . , λn, then mini Xi is exponential with rate

∑n
i=1 λi. Further,

mini Xi and the rank order of the variables X1, . . . ,Xn are independent.

Example 5.8. Suppose you arrive at a post office having two clerks at a moment when
both are busy but there is no one else waiting in line. You will enter service when either
clerk becomes free. If service times for clerk i are exponential with rate λi, i = 1,2,
find E[T ], where T is the amount of time that you spend in the post office.

Solution: Let Ri denote the remaining service time of the customer with clerk i,
i = 1,2, and note, by the lack of memory property of exponentials, that R1 and
R2 are independent exponential random variables with respective rates λ1 and λ2.
Conditioning on which of R1 or R2 is the smallest yields

E[T ] = E[T |R1 <R2]P {R1 < R2} + E[T |R2 ≤ R1]P {R2 ≤ R1}
= E[T |R1 <R2] λ1

λ1 + λ2
+ E[T |R2 ≤ R1] λ2

λ1 + λ2

Now, with S denoting your service time

E[T |R1 <R2] = E[R1 + S|R1 <R2]
= E[R1|R1 <R2] + E[S|R1 <R2]
= E[R1|R1 <R2] + 1

λ1

= 1

λ1 + λ2
+ 1

λ1

The final equation used that conditional on R1 < R2 the random variable R1 is the
minimum of R1 and R2 and is thus exponential with rate λ1 + λ2; and also that
conditional on R1 < R2 you are served by server 1.
As we can show in a similar fashion that

E[T |R2 ≤ R1] = 1

λ1 + λ2
+ 1

λ2

we obtain the result

E[T ] = 3

λ1 + λ2
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Another way to obtain E[T ] is to write T as a sum, take expectations, and then
condition where needed. This approach yields

E[T ] = E[min(R1,R2) + S]
= E[min(R1,R2)] + E[S]
= 1

λ1 + λ2
+ E[S]

To compute E[S], we condition on which of R1 and R2 is smallest.

E[S] = E[S|R1 < R2] λ1

λ1 + λ2
+ E[S|R2 ≤ R1] λ2

λ1 + λ2

= 2

λ1 + λ2
�

Example 5.9. There are n cells in the body, of which cells 1, . . . , k are target cells.
Associated with each cell is a weight, with wi being the weight associated with
cell i, i = 1, . . . , n. The cells are destroyed one at a time in a random order, which
is such that if S is the current set of surviving cells then, independent of the order
in which the cells not in S have been destroyed, the next cell killed is i, i ∈ S, with
probability wi/

∑
j∈S wj . In other words, the probability that a given surviving cell is

the next one to be killed is the weight of that cell divided by the sum of the weights of
all still surviving cells. Let A denote the total number of cells that are still alive at the
moment when all the cells 1,2, . . . , k have been killed, and find E[A].

Solution: Although it would be quite difficult to solve this problem by a direct
combinatorial argument, a nice solution can be obtained by relating the order in
which cells are killed to a ranking of independent exponential random variables.
To do so, let X1, . . . ,Xn be independent exponential random variables, with Xi

having rate wi, i = 1, . . . , n. Note that Xi will be the smallest of these exponen-
tials with probability wi/

∑
j wj ; further, given that Xi is the smallest, Xr will be

the next smallest with probability wr/
∑

j �=i wj ; further, given that Xi and Xr are,
respectively, the first and second smallest, Xs , s �= i, r , will be the third smallest
with probability ws/

∑
j �=i,r wj ; and so on. Consequently, if we let Ij be the index

of the j th smallest of X1, . . . ,Xn—so that XI1 < XI2 < · · · < XIn—then the order
in which the cells are destroyed has the same distribution as I1, . . . , In. So, let us
suppose that the order in which the cells are killed is determined by the ordering of
X1, . . . ,Xn. (Equivalently, we can suppose that all cells will eventually be killed,
with cell i being killed at time Xi, i = 1, . . . , n.)
If we let Aj equal 1 if cell j is still alive at the moment when all the cells 1, . . . , k

have been killed, and let it equal 0 otherwise, then

A =
n∑

j=k+1

Aj
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Because cell j will be alive at the moment when all the cells 1, . . . , k have been
killed if Xj is larger than all the values X1, . . . ,Xk , we see that for j > k

E[Aj ] = P {Aj = 1}
= P {Xj > max

i=1,...,k
Xi}

=
∫ ∞

0
P

{
Xj > max

i=1,...,k
Xi |Xj = x

}
wje

−wj x dx

=
∫ ∞

0
P {Xi < x for all i = 1, . . . , k}wje

−wj x dx

=
∫ ∞

0

k∏
i=1

(1 − e−wix)wj e
−wj x dx

=
∫ 1

0

k∏
i=1

(1 − ywi/wj ) dy

where the final equality follows from the substitution y = e−wj x . Thus, we obtain
the result

E[A] =
n∑

j=k+1

∫ 1

0

k∏
i=1

(1 − ywi/wj ) dy =
∫ 1

0

n∑
j=k+1

k∏
i=1

(1 − ywi/wj ) dy �

Example 5.10. Suppose that customers are in line to receive service that is provided
sequentially by a server; whenever a service is completed, the next person in line
enters the service facility. However, each waiting customer will only wait an exponen-
tially distributed time with rate θ ; if its service has not yet begun by this time then
it will immediately depart the system. These exponential times, one for each waiting
customer, are independent. In addition, the service times are independent exponential
random variables with rate μ. Suppose that someone is presently being served and
consider the person who is nth in line.

(a) Find Pn, the probability that this customer is eventually served.
(b) Find Wn, the conditional expected amount of time this person spends waiting in

line given that she is eventually served.

Solution: Consider the n + 1 random variables consisting of the remaining ser-
vice time of the person in service along with the n additional exponential departure
times with rate θ of the first n in line.
(a) Given that the smallest of these n+1 independent exponentials is the departure
time of the nth person in line, the conditional probability that this person will be
served is 0; on the other hand, given that this person’s departure time is not the
smallest, the conditional probability that this person will be served is the same as
if it were initially in position n − 1. Since the probability that a given departure
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time is the smallest of the n + 1 exponentials is θ/(nθ + μ), we obtain

Pn = (n − 1)θ + μ

nθ + μ
Pn−1

Using the preceding with n − 1 replacing n gives

Pn = (n − 1)θ + μ

nθ + μ

(n − 2)θ + μ

(n − 1)θ + μ
Pn−2 = (n − 2)θ + μ

nθ + μ
Pn−2

Continuing in this fashion yields the result

Pn = θ + μ

nθ + μ
P1 = μ

nθ + μ

(b) To determine an expression for Wn, we use the fact that the minimum of in-
dependent exponentials is, independent of their rank ordering, exponential with a
rate equal to the sum of the rates. Since the time until the nth person in line enters
service is the minimum of these n + 1 random variables plus the additional time
thereafter, we see, upon using the lack of memory property of exponential random
variables, that

Wn = 1

nθ + μ
+ Wn−1

Repeating the preceding argument with successively smaller values of n yields the
solution

Wn =
n∑

i=1

1

iθ + μ
�

5.2.4 Convolutions of Exponential Random Variables

Let Xi, i = 1, . . . , n, be independent exponential random variables with respective
rates λi, i = 1, . . . , n, and suppose that λi �= λj for i �= j . The random variable∑n

i=1 Xi is said to be a hypoexponential random variable. To compute its probabil-
ity density function, let us start with the case n = 2. Now,

fX1+X2(t) =
∫ t

0
fX1(s)fX2(t − s) ds

=
∫ t

0
λ1e

−λ1sλ2e
−λ2(t−s) ds

= λ1λ2e
−λ2t

∫ t

0
e−(λ1−λ2)s ds

= λ1

λ1 − λ2
λ2e

−λ2t (1 − e−(λ1−λ2)t )
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= λ1

λ1 − λ2
λ2e

−λ2t + λ2

λ2 − λ1
λ1e

−λ1t

Using the preceding, a similar computation yields, when n = 3,

fX1+X2+X3(t) =
3∑

i=1

λie
−λi t

(∏
j �=i

λj

λj − λi

)

which suggests the general result

fX1+···+Xn(t) =
n∑

i=1

Ci,nλie
−λi t

where

Ci,n =
∏
j �=i

λj

λj − λi

We will now prove the preceding formula by induction on n. Since we have already
established it for n = 2, assume it for n and consider n + 1 arbitrary independent ex-
ponentials Xi with distinct rates λi, i = 1, . . . , n + 1. If necessary, renumber X1 and
Xn+1 so that λn+1 < λ1. Now,

fX1+···+Xn+1(t) =
∫ t

0
fX1+···+Xn(s)λn+1e

−λn+1(t−s) ds

=
n∑

i=1

Ci,n

∫ t

0
λie

−λisλn+1e
−λn+1(t−s) ds

=
n∑

i=1

Ci,n

(
λi

λi − λn+1
λn+1e

−λn+1t + λn+1

λn+1 − λi

λie
−λi t

)

= Kn+1λn+1e
−λn+1t +

n∑
i=1

Ci,n+1λie
−λi t (5.7)

where Kn+1 =∑n
i=1 Ci,nλi/(λi − λn+1) is a constant that does not depend on t . But,

we also have that

fX1+···+Xn+1(t) =
∫ t

0
fX2+···+Xn+1(s)λ1e

−λ1(t−s) ds

which implies, by the same argument that resulted in Eq. (5.7), that for a constant K1

fX1+···+Xn+1(t) = K1λ1e
−λ1t +

n+1∑
i=2

Ci,n+1λie
−λi t
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Equating these two expressions for fX1+···+Xn+1(t) yields

Kn+1λn+1e
−λn+1t + C1,n+1λ1e

−λ1t = K1λ1e
−λ1t + Cn+1,n+1λn+1e

−λn+1t

Multiplying both sides of the preceding equation by eλn+1t and then letting t → ∞
yields [since e−(λ1−λn+1)t → 0 as t → ∞]

Kn+1 = Cn+1,n+1

and this, using Eq. (5.7), completes the induction proof. Thus, we have shown that if
S =∑n

i=1 Xi , then

fS(t) =
n∑

i=1

Ci,nλie
−λi t (5.8)

where

Ci,n =
∏
j �=i

λj

λj − λi

Integrating both sides of the expression for fS from t to ∞ yields that the tail distri-
bution function of S is given by

P {S > t} =
n∑

i=1

Ci,ne
−λi t (5.9)

Hence, we obtain from Eqs. (5.8) and (5.9) that rS(t), the failure rate function of S, is
as follows:

rS(t) =
∑n

i=1 Ci,nλie
−λi t∑n

i=1 Ci,ne−λi t

If we let λj = min(λ1, . . . , λn), then it follows, upon multiplying the numerator and
denominator of rS(t) by eλj t , that

lim
t→∞ rS(t) = λj

From the preceding, we can conclude that the remaining lifetime of a hypoexponen-
tially distributed item that has survived to age t is, for t large, approximately that of
an exponentially distributed random variable with a rate equal to the minimum of the
rates of the random variables whose sums make up the hypoexponential.

Remark. Although

1 =
∫ ∞

0
fS(t) dt =

n∑
i=1

Ci,n =
n∑

i=1

∏
j �=i

λj

λj − λi
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it should not be thought that the Ci,n, i = 1, . . . , n are probabilities, because some of
them will be negative. Thus, while the form of the hypoexponential density is similar
to that of the hyperexponential density (see Example 5.6), these two random variables
are very different.

Example 5.11. Let X1, . . . ,Xm be independent exponential random variables with
respective rates λ1, . . . , λm, where λi �= λj when i �= j . Let N be independent of these
random variables and suppose that

∑m
n=1 Pn = 1, where Pn = P {N = n}. The random

variable

Y =
N∑

j=1

Xj

is said to be a Coxian random variable. Conditioning on N gives its density function:

fY (t) =
m∑

n=1

fY (t |N = n)Pn

=
m∑

n=1

fX1+···+Xn(t |N = n)Pn

=
m∑

n=1

fX1+···+Xn(t)Pn

=
m∑

n=1

Pn

n∑
i=1

Ci,nλie
−λi t

Let

r(n) = P {N = n|N ≥ n}

If we interpret N as a lifetime measured in discrete time periods, then r(n) denotes the
probability that an item will die in its nth period of use given that it has survived up to
that time. Thus, r(n) is the discrete time analog of the failure rate function λ(t), and
is correspondingly referred to as the discrete time failure (or hazard) rate function.

Coxian random variables often arise in the following manner. Suppose that an item
must go through m stages of treatment to be cured. However, suppose that after each
stage there is a probability that the item will quit the program. If we suppose that
the amounts of time that it takes the item to pass through the successive stages are
independent exponential random variables, and that the probability that an item that
has just completed stage n quits the program is (independent of how long it took to
go through the n stages) equal to r(n), then the total time that an item spends in the
program is a Coxian random variable. �
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5.2.5 The Dirichlet Distribution

Consider an experiment with possible outcomes 1,2, . . . , n, having respective prob-
abilities P1, . . . ,Pn,

∑n
i=1 Pi = 1, and suppose we want to assume a probability

distribution on the vector (P1, . . . ,Pn). Because
∑n

i=1 Pi = 1, we cannot define a
density on P1, . . . ,Pn, but what we can do is to define one on P1, . . . ,Pn−1 and then
take Pn = 1 − ∑n−1

i=1 Pi . The Dirichlet distribution assumes that (P1, . . . ,Pn−1) is
uniformly distributed over the set S = {(p1, . . . , pn−1) : ∑n

i=1 pi < 1, 0 < pi, i =
1, . . . , n − 1}. Thus, the Dirichlet joint density function is

fP1,...,Pn−1(p1, . . . , pn−1) = C, 0 < pi, i = 1, . . . , n − 1,

n−1∑
i=1

pi < 1

Because integrating the preceding density over the set S yields that

1 = C P(U1 + . . .Un−1 < 1)

where U1, . . . ,Un−1 are independent uniform (0,1) random variables, it follows from
Example 3.31 that C = (n − 1)!.

There is a relationship between exponential random variables and the Dirichlet dis-
tribution.

Proposition 5.3. Let X1, . . . ,Xn be independent exponential random variables with
rate λ, and let S =∑n

i=1 Xi . Then, (X1
S

, X2
S

, . . . ,
Xn−1

S
) has a Dirichlet distribution.

Proof. With fX1,...,Xn−1|S(x1, . . . , xn−1|t) being the conditional density of X1, . . . ,

Xn−1 given that S = t , we have that

fX1,...,Xn−1|S(x1, . . . , xn−1|t) = fX1,...,Xn−1,S(x1, . . . , xn−1, t)

fS(t)
(5.10)

Because X1 = x1, . . . ,Xn−1 = xn−1, S = t is equivalent to X1 = x1, . . . ,Xn−1 =
xn−1, Xn = t −∑n−1

i=1 xi , Eq. (5.10) gives that for
∑n−1

i=1 xi < t , xi > 0,

fX1,...,Xn−1|S(x1, . . . , xn−1|t) = fX1,...,Xn−1,Xn(x1, . . . , xn−1, t −∑n−1
i=1 xi)

fS(t)

= fX1(x1) · · ·fXn−1(xn−1)fXn(t −∑n−1
i=1 xi)

fS(t)

= λe−λx1 · · ·λe−λxn−1λe−λ(t−∑n−1
i=1 xi )

λe−λt (λt)n−1/(n − 1)!

= (n − 1)!
tn−1

,

n−1∑
i=1

xi < t

where the second equality used independence, and the next one used that S, being the
sum of n independent exponential random variables with rate λ, has a gamma distri-
bution with parameters n, λ. If we let Yi = Xi/t , i = 1, . . . , n−1 then, as the Jacobian
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of this transformation is 1/tn−1, it follows that

fX1
t

,...,
Xn−1

t
|S(y1, . . . , yn−1|t) = fX1,...,Xn−1|S(ty1, . . . , tyn−1|t) tn−1

= (n − 1)!
tn−1

tn−1,

n−1∑
i=1

tyi < t

= (n − 1)!,
n−1∑
i=1

yi < 1 (5.11)

Because, given that S = t , the conditional distributions of X1
S

, . . . ,
Xn−1

S
and of

X1
t

, . . . ,
Xn−1

t
are identical, it follows from Eq. (5.11) that

fX1
S

,...,
Xn−1

S
|S(y1, . . . , yn−1|t) = (n − 1)!,

n−1∑
i=1

yi < 1

Because the preceding conditional density of X1
S

, . . . ,
Xn−1

S
given that S = t does not

depend on t , it follows that it is also the unconditional density of X1
S

, . . . ,
Xn−1

S
. That

is,

fX1
S

,...,
Xn−1

S

(y1, . . . , yn−1) = (n − 1)!,
n−1∑
i=1

yi < 1

which shows that (X1
S

, X2
S

, . . . ,
Xn−1

S
) has a Dirichlet distribution. �

5.3 The Poisson Process
5.3.1 Counting Processes

A stochastic process {N(t), t ≥ 0} is said to be a counting process if N(t) represents
the total number of “events” that occur by time t . Some examples of counting pro-
cesses are the following:

(a) If we let N(t) equal the number of persons who enter a particular store at or prior
to time t , then {N(t), t ≥ 0} is a counting process in which an event corresponds
to a person entering the store. Note that if we had let N(t) equal the number of
persons in the store at time t , then {N(t), t ≥ 0} would not be a counting process
(why not?).

(b) If we say that an event occurs whenever a child is born, then {N(t), t ≥ 0} is a
counting process when N(t) equals the total number of people who were born
by time t . (Does N(t) include persons who have died by time t? Explain why it
must.)

(c) If N(t) equals the number of goals that a given soccer player scores by time t ,
then {N(t), t ≥ 0} is a counting process. An event of this process will occur
whenever the soccer player scores a goal.
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From its definition we see that for a counting process N(t) must satisfy:

(i) N(t) ≥ 0.
(ii) N(t) is integer valued.

(iii) If s < t , then N(s) ≤ N(t).
(iv) For s < t, N(t) − N(s) equals the number of events that occur in the interval

(s, t].
A counting process is said to possess independent increments if the numbers of

events that occur in disjoint time intervals are independent. For example, this means
that the number of events that occur by time 10 (that is, N(10)) must be independent
of the number of events that occur between times 10 and 15 (that is, N(15) − N(10)).

The assumption of independent increments might be reasonable for example (a),
but it probably would be unreasonable for example (b). The reason for this is that if in
example (b) N(t) is very large, then it is probable that there are many people alive at
time t ; this would lead us to believe that the number of new births between time t and
time t + s would also tend to be large (that is, it does not seem reasonable that N(t)

is independent of N(t + s) − N(t), and so {N(t), t ≥ 0} would not have independent
increments in example (b)). The assumption of independent increments in example (c)
would be justified if we believed that the soccer player’s chances of scoring a goal to-
day do not depend on “how he’s been going.” It would not be justified if we believed
in “hot streaks” or “slumps.”

A counting process is said to possess stationary increments if the distribution of
the number of events that occur in any interval of time depends only on the length of
the time interval. In other words, the process has stationary increments if the number
of events in the interval (s, s + t) has the same distribution for all s.

The assumption of stationary increments would only be reasonable in example (a)
if there were no times of day at which people were more likely to enter the store.
Thus, for instance, if there was a rush hour (say, between 12 P.M. and 1 P.M.) each day,
then the stationarity assumption would not be justified. If we believed that the earth’s
population is basically constant (a belief not held at present by most scientists), then
the assumption of stationary increments might be reasonable in example (b). Station-
ary increments do not seem to be a reasonable assumption in example (c) since, for
one thing, most people would agree that the soccer player would probably score more
goals while in the age bracket 25–30 than he would while in the age bracket 35–40. It
may, however, be reasonable over a smaller time horizon, such as one year.

5.3.2 Definition of the Poisson Process

One of the most important types of counting process is the Poisson process. As a
prelude to giving its definition, we define the concept of a function f (·) being o(h).

Definition 5.1. The function f (·) is said to be o(h) if

lim
h→0

f (h)

h
= 0
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Example 5.12. (a) The function f (x) = x2 is o(h) since

lim
h→0

f (h)

h
= lim

h→0

h2

h
= lim

h→0
h = 0

(b) The function f (x) = x is not o(h) since

lim
h→0

f (h)

h
= lim

h→0

h

h
= lim

h→0
1 = 1 �= 0

(c) If f (·) is o(h) and g(·) is o(h), then so is f (·) + g(·). This follows since

lim
h→0

f (h) + g(h)

h
= lim

h→0

f (h)

h
+ lim

h→0

g(h)

h
= 0 + 0 = 0

(d) If f (·) is o(h), then so is g(·) = cf (·). This follows since

lim
h→0

cf (h)

h
= c lim

f (h)

h
= c · 0 = 0

(e) From (c) and (d) it follows that any finite linear combination of functions, each
of which is o(h), is o(h). �

In order for the function f (·) to be o(h) it is necessary that f (h)/h go to zero as h

goes to zero. But if h goes to zero, the only way for f (h)/h to go to zero is for f (h)

to go to zero faster than h does. That is, for h small, f (h) must be small compared
with h.

The o(h) notation can be used to make statements more precise. For instance, if
X is continuous with density f and failure rate function λ(t), then the approximate
statements

P(t < X < t + h) ≈ f (t)h

P (t < X < t + h|X > t) ≈ λ(t)h

can be precisely expressed as

P(t < X < t + h) = f (t)h + o(h)

P (t < X < t + h|X > t) = λ(t)h + o(h)

We are now in position to define the Poisson process.

Definition 5.2. The counting process {N(t), t ≥ 0} is said to be a Poisson process
with rate λ > 0 if the following axioms hold:

(i) N(0) = 0
(ii) {N(t), t ≥ 0} has independent increments

(iii) P(N(t + h) − N(t) = 1) = λh + o(h)

(iv) P(N(t + h) − N(t) ≥ 2) = o(h)
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We start our analysis of the Poisson process by first considering the counting pro-
cess that results when one starts observing the Poisson process at a given time s.

For s > 0, let Ns(t) = N(s + t) − N(s). That is, starting at time s, Ns(t) is the
number of events of the Poisson process that occur in the next t time units.

Lemma 5.1. {Ns(t), t ≥ 0} is a Poisson process with rate λ.

Proof. To prove this, we check that {Ns(t), t ≥ 0} satisfies the axioms of a Poisson
process with rate λ. Axiom (i) is immediate, and each of the other axioms hold for
{Ns(t), t ≥ 0} because they hold for {N(t), t ≥ 0}. For instance, Axiom (ii) follows
because nonoverlapping intervals from time s onward are nonoverlapping; and Ax-
ioms (iii) and (iv) follow because Ns(t + h) − Ns(t) = N(s + t + h) − N(s + t). �

Let T1 denote the time of the first event of a Poisson process {N(t), t ≥ 0}. That is,

T1 = min{t ≥ 0 : N(t) = 1}
We now show that T1 is an exponential random variable with rate λ.

Lemma 5.2. If T1 is the time of the first event of the Poisson process {N(t), t ≥ 0},
then

P(T1 > t) = P(N(t) = 0) = e−λt

Proof. Letting λT1(t) be the failure rate function of T1, then

λT1(t)h = P(t < T1 < t + h|T1 > t) + o(h)

Noting that {T1 > t} ⇔ {N(t) = 0}, the preceding gives

λT1(t)h = P(t < T1 < t + h|N(t) = 0) + o(h)

= P(N(t + h) − N(t) ≥ 1|N(t) = 0) + o(h)

= P(N(t + h) − N(t) ≥ 1) + o(h) by Axiom (ii)

= λh + o(h) by Axioms (iii) and (iv)

Dividing through by h and letting h go to 0 gives that λT1(t) = λ. As the failure rate
function uniquely determines the distribution, and λ(t) = λ is the failure rate function
of an exponential with rate λ, it follows that T1 is exponential with rate λ. Hence,
P(N(t) = 0) = P(T1 > t) = e−λt . �

Whereas T1 is the time of the first event of the Poisson process, for n > 1 we define
Tn to be the time between the (n − 1)st and the nth event. For instance, if T1 = 5 and
T2 = 10, then the first event of the Poisson process occurred at time 5 and the second at
time 15. The sequence {Tn, n = 1,2, . . .} is called the sequence of interarrival times.

Proposition 5.4. T1, T2, . . . are independent and identically distributed exponential
random variables with rate λ.
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Proof. We’ve already shown that T1 is exponential with rate λ. Now

P(T2 > t |T1 = s) = P(0 events in (s, s + t)|T1 = s)

= P(0 events in (s, s + t)) by independent increments

= P(Ns(t) = 0)

= e−λt

where the last equality follows from Lemma 5.2 because Ns(t), t ≥ 0 is, by Lemma 5.1,
a Poisson process with rate λ. Hence, T2 is exponential with rate λ and, because
P(T2 > t |T1 = s) does not depend on s, is independent of T1. Repeating the argument
(or using induction) completes the proof. �

Another quantity of interest is Sn, the time of the nth event. Because the interarrival
times are the times between successive events, it is easily seen that

Sn =
n∑

i=1

Ti , n ≥ 1

Thus, from Propositions 5.4 and 5.1, it follows that Sn is a gamma (n,λ) random
variable with density function

fSn(s) = λe−λs (λs)n−1

(n − 1)! , s > 0

We are now ready for the following important theorem.

Theorem 5.1. If {N(t), t ≥ 0} is a Poisson process with rate λ, then N(t) is a Poisson
random variable with rate λt . That is,

P(N(t) = n) = e−λt (λt)n/n! , n ≥ 0 (5.12)

Proof. It was shown in Lemma 5.2 that P(N(t) = 0) = e−λt . For n > 0, we compute
P(N(t) = n) by conditioning on Sn, the time of the nth event. This gives

P(N(t) = n) =
∫ t

0
P(N(t) = n|Sn = s)λe−λs (λs)n−1

(n − 1)! ds (5.13)

where the preceding used that P(N(t) = n|Sn = s) = 0 when s > t . Now, for 0 <

s < t , given that the nth event occurs at time s, there will be a total of n events by time
t if the next interarrival time exceeds t − s. Hence,

P(N(t) = n|Sn = s) = P(Tn+1 > t − s|T1 + . . . Tn = s)

= P(Tn+1 > t − s)

= e−λ(t−s)
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where the last two equalities both used Proposition 5.4. Substituting this back into
Eq. (5.13) yields that

P(N(t) = n) =
∫ t

0
e−λ(t−s) λe−λs (λs)n−1

(n − 1)! ds

= e−λtλn

∫ t

0

sn−1

(n − 1)! ds

= e−λt (λt)n/n! �

Remarks. (i) Because {Ns(t), t ≥ 0} is also a Poisson process with rate λ, it fol-
lows that Ns(t) = N(t + s) − N(s) is a Poisson random variable with rate λ.
Thus the number of events in any fixed interval of length t is Poisson with
rate λ.

(ii) A counting process for which the distribution of the number of events in an
interval depends only on the length of the interval and not its location is said to
have stationary increments. Thus, a Poisson process has stationary increments.

(iii) The result that N(t), or more generally N(t + s)−N(s), has a Poisson distribu-
tion is a consequence of the Poisson approximation to the binomial distribution
(see Section 2.2.4). To see this, subdivide the interval [0, t] into k equal parts
where k is very large (Fig. 5.1). Now it can be shown using axiom (iv) of Defini-
tion 5.2 that as k increases to ∞ the probability of having two or more events in
any of the k subintervals goes to 0. Hence, N(t) will (with a probability going
to 1) just equal the number of subintervals in which an event occurs. However,
by stationary and independent increments this number will have a binomial
distribution with parameters k and p = λt/k + o(t/k). Hence, by the Poisson
approximation to the binomial we see by letting k approach ∞ that N(t) will
have a Poisson distribution with mean equal to

lim
k→∞ k

[
λ

t

k
+ o

(
t

k

)]
= λt + lim

k→∞
to(t/k)

t/k

= λt

by using the definition of o(h) and the fact that t/k → 0 as k → ∞.

Example 5.13. Suppose that people immigrate into a territory according to a Poisson
process with rate λ = 2 per day.

(a) Find the probability there are 10 arrivals in the following week (of 7 days).
(b) Find the expected number of days until there have been 20 arrivals.

Figure 5.1
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Solution: (a) Because the number of arrivals in 7 days is Poisson with mean
7λ = 14, it follows that the probability there will be 10 arrivals is e−14(14)10/10!.
(b) E[S20] = 20/λ = 10. �

5.3.3 Further Properties of Poisson Processes

Consider a Poisson process {N(t), t ≥ 0} having rate λ, and suppose that each time an
event occurs it is classified as either a type I or a type II event. Suppose further that
each event is classified as a type I event with probability p or a type II event with prob-
ability 1 − p, independently of all other events. For example, suppose that customers
arrive at a store in accordance with a Poisson process having rate λ; and suppose that
each arrival is male with probability 1

2 and female with probability 1
2 . Then a type I

event would correspond to a male arrival and a type II event to a female arrival.
Let N1(t) and N2(t) denote respectively the number of type I and type II events

occurring in [0, t]. Note that N(t) = N1(t) + N2(t).

Proposition 5.5. {N1(t), t ≥ 0} and {N2(t), t ≥ 0} are both Poisson processes having
respective rates λp and λ(1 − p). Furthermore, the two processes are independent.

Proof. It is easy to verify that {N1(t), t ≥ 0} is a Poisson process with rate λp by
verifying that it satisfies Definition 5.2.

• N1(0) = 0 follows from the fact that N(0) = 0.
• It is easy to see that {N1(t), t ≥ 0} inherits the stationary and independent incre-

ment properties of the process {N(t), t ≥ 0}. This is true because the distribution
of the number of type I events in an interval can be obtained by conditioning on
the number of events in that interval, and the distribution of this latter quantity
depends only on the length of the interval and is independent of what has occurred
in any nonoverlapping interval.

• P {N1(h) = 1} =P {N1(h) = 1 | N(h) = 1}P {N(h) = 1}
+ P {N1(h) = 1 | N(h) ≥ 2}P {N(h) ≥ 2}

=p(λh + o(h)) + o(h)

=λph + o(h)

• P {N1(h) ≥ 2} ≤ P {N(h) ≥ 2} = o(h)

Thus we see that {N1(t), t ≥ 0} is a Poisson process with rate λp and, by a similar
argument, that {N2(t), t ≥ 0} is a Poisson process with rate λ(1 − p). Because the
probability of a type I event in the interval from t to t + h is independent of all that
occurs in intervals that do not overlap (t, t + h), it is independent of knowledge of
when type II events occur, showing that the two Poisson processes are independent.
(For another way of proving independence, see Example 3.24.) �

Example 5.14. If immigrants to area A arrive at a Poisson rate of ten per week, and
if each immigrant is of English descent with probability 1

12 , then what is the proba-
bility that no people of English descent will emigrate to area A during the month of
February?
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Solution: By the previous proposition, it follows that the number of Englishmen
emigrating to area A during the month of February is Poisson distributed with
mean 4 ·10 · 1

12 = 10
3 . Hence, the desired probability is e−10/3. �

Example 5.15. Suppose nonnegative offers to buy an item that you want to sell arrive
according to a Poisson process with rate λ. Assume that each offer is the value of a
continuous random variable having density function f (x). Once the offer is presented
to you, you must either accept it or reject it and wait for the next offer. We suppose that
you incur costs at a rate c per unit time until the item is sold, and that your objective is
to maximize your expected total return, where the total return is equal to the amount
received minus the total cost incurred. Suppose you employ the policy of accepting
the first offer that is greater than some specified value y. (Such a type of policy, which
we call a y-policy, can be shown to be optimal.) What is the best value of y? What is
the maximal expected net return?

Solution: Let us compute the expected total return when you use the y-policy,
and then choose the value of y that maximizes this quantity. Let X denote the
value of a random offer, and let F̄ (x) = P {X > x} = ∫∞

x
f (u)du be its tail distri-

bution function. Because each offer will be greater than y with probability F̄ (y),
it follows that such offers occur according to a Poisson process with rate λF̄ (y).
Hence, the time until an offer is accepted is an exponential random variable with
rate λF̄ (y). Letting R(y) denote the total return from the policy that accepts the
first offer that is greater than y, we have

E[R(y)] = E[accepted offer] − cE[time to accept]
= E[X|X > y] − c

λF̄ (y)

=
∫ ∞

0
xfX|X>y(x) dx − c

λF̄ (y)

=
∫ ∞

y

x
f (x)

F̄ (y)
dx − c

λF̄ (y)

=
∫∞
y

xf (x) dx − c/λ

F̄ (y)
(5.14)

Differentiation yields

d

dy
E[R(y)] = 0 ⇔ −F̄ (y)yf (y) +

(∫ ∞

y

xf (x) dx − c

λ

)
f (y) = 0

Therefore, the optimal value of y satisfies

yF̄ (y) =
∫ ∞

y

xf (x) dx − c

λ

or

y

∫ ∞

y

f (x) dx =
∫ ∞

y

xf (x) dx − c

λ
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or ∫ ∞

y

(x − y)f (x) dx = c

λ

It is not difficult to show that there is a unique value of y that satisfies the preced-
ing. Hence, the optimal policy is the one that accepts the first offer that is greater
than y∗, where y∗ is such that∫ ∞

y∗
(x − y∗) f (x) dx = c/λ

Putting y = y∗ in Eq. (5.14) shows that the maximal expected net return is

E[R(y∗)] = 1

F̄ (y∗)
(

∫ ∞

y∗
(x − y∗ + y∗) f (x) dx − c/λ)

= 1

F̄ (y∗)
(

∫ ∞

y∗
(x − y∗) f (x) dx + y∗

∫ ∞

y∗
f (x)dx − c/λ)

= 1

F̄ (y∗)
(c/λ + y∗F̄ (y∗) − c/λ)

= y∗

Thus, the optimal critical value is also the maximal expected net return. To under-
stand why this is so, let m be the maximal expected net return, and note that when
an offer is rejected the problem basically starts anew and so the maximal expected
additional net return from then on is m. But this implies that it is optimal to accept
an offer if and only if it is at least as large as m, showing that m is the optimal
critical value. �

It follows from Proposition 5.5 that if each of a Poisson number of individuals is
independently classified into one of two possible groups with respective probabilities
p and 1 − p, then the number of individuals in each of the two groups will be inde-
pendent Poisson random variables. Because this result easily generalizes to the case
where the classification is into any one of r possible groups, we have the following
application to a model of employees moving about in an organization.

Example 5.16. Consider a system in which individuals at any time are classified as
being in one of r possible states, and assume that an individual changes states in ac-
cordance with a Markov chain having transition probabilities Pij , i, j = 1, . . . , r . That
is, if an individual is in state i during a time period then, independently of its previous
states, it will be in state j during the next time period with probability Pij . The indi-
viduals are assumed to move through the system independently of each other. Suppose
that the numbers of people initially in states 1,2, . . . , r are independent Poisson ran-
dom variables with respective means λ1, λ2, . . . , λr . We are interested in determining
the joint distribution of the numbers of individuals in states 1,2, . . . , r at some time n.

Solution: For fixed i, let Nj(i), j = 1, . . . , r denote the number of those indi-
viduals, initially in state i, that are in state j at time n. Now each of the (Poisson
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distributed) number of people initially in state i will, independently of each other,
be in state j at time n with probability P n

ij , where P n
ij is the n-stage transition

probability for the Markov chain having transition probabilities Pij . Hence, the
Nj(i), j = 1, . . . , r will be independent Poisson random variables with respective
means λiP

n
ij , j = 1, . . . , r . Because the sum of independent Poisson random vari-

ables is itself a Poisson random variable, it follows that the number of individuals
in state j at time n—namely

∑r
i=1 Nj(i)—will be independent Poisson random

variables with respective means
∑

i λiP
n
ij , for j = 1, . . . , r . �

Example 5.17 (The Coupon Collecting Problem). There are m different types of
coupons. Each time a person collects a coupon it is, independently of ones previ-
ously obtained, a type j coupon with probability pj ,

∑m
j=1 pj = 1. Let N denote the

number of coupons one needs to collect in order to have a complete collection of at
least one of each type. Find E[N ].

Solution: If we let Nj denote the number one must collect to obtain a type j

coupon, then we can express N as

N = max
1≤j≤m

Nj

However, even though each Nj is geometric with parameter pj , the foregoing
representation of N is not that useful, because the random variables Nj are not
independent.
We can, however, transform the problem into one of determining the expected
value of the maximum of independent random variables. To do so, suppose that
coupons are collected at times chosen according to a Poisson process with rate
λ = 1. Say that an event of this Poisson process is of type j,1 ≤ j ≤ m, if the
coupon obtained at that time is a type j coupon. If we now let Nj(t) denote the
number of type j coupons collected by time t , then it follows from Proposition 5.5
that {Nj(t), t � 0}, j = 1, . . . ,m are independent Poisson processes with respec-
tive rates λpj = pj . Let Xj denote the time of the first event of the j th process,
and let

X = max
1≤j≤m

Xj

denote the time at which a complete collection is amassed. Since the Xj are inde-
pendent exponential random variables with respective rates pj , it follows that

P {X < t} = P {max1≤j≤mXj < t}
= P {Xj < t, for j = 1, . . . ,m}

=
m∏

j=1

(1 − e−pj t )

Therefore,

E[X] =
∫ ∞

0
P {X > t} dt
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=
∫ ∞

0

⎧⎨
⎩1 −

m∏
j=1

(1 − e−pj t )

⎫⎬
⎭ dt (5.15)

It remains to relate E[X], the expected time until one has a complete set, to E[N ],
the expected number of coupons it takes. This can be done by letting Ti denote
the ith interarrival time of the Poisson process that counts the number of coupons
obtained. Then it is easy to see that

X =
N∑

i=1

Ti

Because Ti, i ≥ 1, is a sequence of independent exponential random variables with
mean 1 that is independent of N , it follows that X is a compound random variable.
Hence, from Example 3.11, we have that

E[X] = E[N ]E[T ] = E[N ]

Thus, Eq. (5.15) yields

E[N ] =
∫ ∞

0

⎛
⎝1 −

m∏
j=1

(1 − e−pj t )

⎞
⎠dt

An expression for Var(N) can also be derived. The formula for the variance of a
compound random variable given in Example 3.20 gives

Var(X) = Var(Ti)E[N ] + E2[Ti]Var(N)

= E[N ] + Var(N)

Hence,

Var(N) = E[X2] − E2[X] − E[N ]
= E[X2] − E[N ](1 + E[N ])

Using the identity (see Exercise 48 of Chapter 2)

E[X2] = 2
∫ ∞

0
t P (X > t)dt

gives that

E[X2] = 2
∫ ∞

0
t

⎛
⎝1 −

m∏
j=1

(1 − e−pj t )

⎞
⎠dt
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Let us now compute the expected number of types that appear only once in the
complete collection. Letting Ii equal 1 if there is only a single type i coupon in the
final set, and letting it equal 0 otherwise, we thus want

E

[
m∑

i=1

Ii

]
=

m∑
i=1

E[Ii]

=
m∑

i=1

P {Ii = 1}

Now there will be a single type i coupon in the final set if a coupon of each type has
appeared before the second coupon of type i is obtained. Thus, letting Si denote
the time at which the second type i coupon is obtained, we have

P {Ii = 1} = P {Xj < Si, for all j �= i}
Using that Si has a gamma distribution with parameters (2,pi), this yields

P {Ii = 1} =
∫ ∞

0
P {Xj < Si for all j �= i|Si = x}pie

−pixpix dx

=
∫ ∞

0
P {Xj < x, for all j �= i}p2

i x e−pix dx

=
∫ ∞

0

∏
j �=i

(1 − e−pj x)p2
i xe−pix dx

Therefore, we have the result

E

[
m∑

i=1

Ii

]
=
∫ ∞

0

m∑
i=1

∏
j �=i

(1 − e−pj x)p2
i xe−pix dx

=
∫ ∞

0
x

m∏
j=1

(1 − e−pj x)

m∑
i=1

p2
i

e−pix

1 − e−pix
dx �

The next probability calculation related to Poisson processes that we shall deter-
mine is the probability that n events occur in one Poisson process before m events
have occurred in a second and independent Poisson process. More formally let
{N1(t), t ≥ 0} and {N2(t), t ≥ 0} be two independent Poisson processes having re-
spective rates λ1 and λ2. Also, let S1

n denote the time of the nth event of the first
process, and S2

m the time of the mth event of the second process. We seek

P
{
S1

n < S2
m

}
Before attempting to calculate this for general n and m, let us consider the special

case n = m = 1. Since S1
1 , the time of the first event of the N1(t) process, and S2

1 , the
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time of the first event of the N2(t) process, are both exponentially distributed random
variables (by Proposition 5.4) with respective means 1/λ1 and 1/λ2, it follows from
Section 5.2.3 that

P
{
S1

1 < S2
1

}
= λ1

λ1 + λ2
(5.16)

Let us now consider the probability that two events occur in the N1(t) process before
a single event has occurred in the N2(t) process. That is, P {S1

2 < S2
1}. To calculate

this we reason as follows: In order for the N1(t) process to have two events before a
single event occurs in the N2(t) process, it is first necessary for the initial event that
occurs to be an event of the N1(t) process (and this occurs, by Eq. (5.16), with prob-
ability λ1/(λ1 + λ2)). Now, given that the initial event is from the N1(t) process, the
next thing that must occur for S1

2 to be less than S2
1 is for the second event also to be

an event of the N1(t) process. However, when the first event occurs both processes
start all over again (by the memoryless property of Poisson processes) and hence this
conditional probability is also λ1/(λ1 + λ2); thus, the desired probability is given by

P
{
S1

2 < S2
1

}
=
(

λ1

λ1 + λ2

)2

In fact, this reasoning shows that each event that occurs is going to be an event
of the N1(t) process with probability λ1/(λ1 + λ2) or an event of the N2(t) process
with probability λ2/(λ1 + λ2), independent of all that has previously occurred. In
other words, the probability that the N1(t) process reaches n before the N2(t) process
reaches m is just the probability that n heads will appear before m tails if one flips a
coin having probability p = λ1/(λ1 + λ2) of a head appearing. But by noting that this
event will occur if and only if the first n + m − 1 tosses result in n or more heads, we
see that our desired probability is given by

P
{
S1

n < S2
m

}
=

n+m−1∑
k=n

(
n + m − 1

k

)(
λ1

λ1 + λ2

)k (
λ2

λ1 + λ2

)n+m−1−k

5.3.4 Conditional Distribution of the Arrival Times

Suppose we are told that exactly one event of a Poisson process has taken place by
time t , and we are asked to determine the distribution of the time at which the event
occurred. Now, since a Poisson process possesses stationary and independent incre-
ments it seems reasonable that each interval in [0, t] of equal length should have the
same probability of containing the event. In other words, the time of the event should
be uniformly distributed over [0, t]. This is easily checked since, for s ≤ t ,

P{T1 < s|N(t) = 1} = P {T1 < s,N(t) = 1}
P {N(t) = 1}

= P {1 event in [0, s),0 events in [s, t]}
P {N(t) = 1}
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= P {1 event in [0, s)}P {0 events in [s, t]}
P {N(t) = 1}

= λse−λse−λ(t−s)

λte−λt

= s

t

This result may be generalized, but before doing so we need to introduce the concept
of order statistics.

Let Y1, Y2, . . . , Yn be n random variables. We say that Y(1), Y(2), . . . , Y(n) are the
order statistics corresponding to Y1, Y2, . . . , Yn if Y(k) is the kth smallest value among
Y1, . . . , Yn, k = 1,2, . . . , n. For instance, if n = 3 and Y1 = 4, Y2 = 5, Y3 = 1 then
Y(1) = 1, Y(2) = 4, Y(3) = 5. If the Yi, i = 1, . . . , n, are independent identically dis-
tributed continuous random variables with probability density f , then the joint density
of the order statistics Y(1), Y(2), . . . , Y(n) is given by

f (y1, y2, . . . , yn) = n!
n∏

i=1

f (yi), y1 < y2 < · · · < yn

The preceding follows since

(i) (Y(1), Y(2), . . . , Y(n)) will equal (y1, y2, . . . , yn) if (Y1, Y2, . . . , Yn) is equal to any
of the n! permutations of (y1, y2, . . . , yn);

and

(ii) the probability density that (Y1, Y2, . . . , Yn) is equal to (yi1, . . . , yin) is∏n
j=1 f (yij ) =∏n

j=1 f (yj ) when i1, . . . , in is a permutation of 1,2, . . . , n.

If the Yi, i = 1, . . . , n, are uniformly distributed over (0, t), then we obtain from
the preceding that the joint density function of the order statistics Y(1), Y(2), . . . , Y(n)

is

f (y1, y2, . . . , yn) = n!
tn

, 0 < y1 < y2 < · · · < yn < t

We are now ready for the following useful theorem.

Theorem 5.2. Given that N(t) = n, the n arrival times S1, . . . , Sn have the same
distribution as the order statistics corresponding to n independent random variables
uniformly distributed on the interval (0, t).

Proof. To obtain the conditional density of S1, . . . , Sn given that N(t) = n note that
for 0 < s1 < · · · < sn < t the event that S1 = s1, S2 = s2, . . . , Sn = sn,N(t) = n is
equivalent to the event that the first n + 1 interarrival times satisfy T1 = s1, T2 =
s2 − s1, . . . , Tn = sn − sn−1, Tn+1 > t − sn. Hence, using Proposition 5.4, we have
that the conditional joint density of S1, . . . , Sn given that N(t) = n is as follows:

f (s1, . . . , sn | n) = f (s1, . . . , sn, n)

P {N(t) = n}
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= λe−λs1λe−λ(s2−s1) · · ·λe−λ(sn−sn−1)e−λ(t−sn)

e−λt (λt)n/n!
= n!

tn
, 0 < s1 < · · · < sn < t

which proves the result. �

Remark. The preceding result is usually paraphrased as stating that, under the con-
dition that n events have occurred in (0, t), the times S1, . . . , Sn at which events
occur, considered as unordered random variables, are distributed independently and
uniformly in the interval (0, t).

Application of Theorem 5.2 (Sampling a Poisson Process). In Proposition 5.5, we
showed that if each event of a Poisson process is independently classified as a type I
event with probability p and as a type II event with probability 1−p then the counting
processes of type I and type II events are independent Poisson processes with respec-
tive rates λp and λ(1 − p). Suppose now, however, that there are k possible types of
events and that the probability that an event is classified as a type i event, i = 1, . . . , k,
depends on the time the event occurs. Specifically, suppose that if an event occurs
at time y then it will be classified as a type i event, independently of anything that
has previously occurred, with probability Pi(y), i = 1, . . . , k where

∑k
i=1 Pi(y) = 1.

Upon using Theorem 5.2, we can prove the following useful proposition.

Proposition 5.6. If Ni(t), i =1, . . . , k, represents the number of type i events occur-
ring by time t then Ni(t), i = 1, . . . , k, are independent Poisson random variables
having means

E[Ni(t)] = λ

∫ t

0
Pi(s) ds

Before proving this proposition, let us first illustrate its use.

Example 5.18 (An Infinite Server Queue). Suppose that customers arrive at a service
station in accordance with a Poisson process with rate λ. Upon arrival the customer is
immediately served by one of an infinite number of possible servers, and the service
times are assumed to be independent with a common distribution G. What is the distri-
bution of X(t), the number of customers that have completed service by time t? What
is the distribution of Y(t), the number of customers that are being served at time t?

To answer the preceding questions let us agree to call an entering customer a type I
customer if he completes his service by time t and a type II customer if he does not
complete his service by time t . Now, if the customer enters at time s, s ≤ t , then he will
be a type I customer if his service time is less than t − s. Since the service time dis-
tribution is G, the probability of this will be G(t − s). Similarly, a customer entering
at time s, s ≤ t , will be a type II customer with probability Ḡ(t − s) = 1 − G(t − s).
Hence, from Proposition 5.6 we obtain that the distribution of X(t), the number of
customers that have completed service by time t , is Poisson distributed with mean

E[X(t)] = λ

∫ t

0
G(t − s) ds = λ

∫ t

0
G(y)dy (5.17)
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Similarly, the distribution of Y(t), the number of customers being served at time t is
Poisson with mean

E[Y(t)] = λ

∫ t

0
Ḡ(t − s) ds = λ

∫ t

0
Ḡ(y) dy (5.18)

Furthermore, X(t) and Y(t) are independent.
Suppose now that we are interested in computing the joint distribution of Y(t) and

Y(t + s)—that is, the joint distribution of the number in the system at time t and at
time t + s. To accomplish this, say that an arrival is

type 1: if he arrives before time t and completes service between t and t + s,
type 2: if he arrives before t and completes service after t + s,
type 3: if he arrives between t and t + s and completes service after t + s,
type 4: otherwise.

Hence, an arrival at time y will be type i with probability Pi(y) given by

P1(y) =
{
G(t + s − y) − G(t − y), if y < t

0, otherwise

P2(y) =
{
Ḡ(t + s − y), if y < t

0, otherwise

P3(y) =
{
Ḡ(t + s − y), if t < y < t + s

0, otherwise

P4(y) = 1 − P1(y) − P2(y) − P3(y)

Thus, if Ni = Ni(s + t), i = 1,2,3, denotes the number of type i events that occur,
then from Proposition 5.6, Ni, i = 1,2,3, are independent Poisson random variables
with respective means

E[Ni] = λ

∫ t+s

0
Pi(y) dy, i = 1,2,3

Because

Y(t) = N1 + N2,

Y (t + s) = N2 + N3

it is now an easy matter to compute the joint distribution of Y(t) and Y(t + s). For
instance,

Cov[Y(t), Y (t + s)]
= Cov(N1 + N2,N2 + N3)

= Cov(N2,N2) by independence of N1,N2,N3

= Var(N2)

= λ

∫ t

0
Ḡ(t + s − y) dy = λ

∫ t

0
Ḡ(u + s) du
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Figure 5.2 Cars enter at point a and depart at b.

where the last equality follows since the variance of a Poisson random variable equals
its mean, and from the substitution u = t − y. Also, the joint distribution of Y(t) and
Y(t + s) is as follows:

P {Y(t) = i, Y (t + s) = j} = P {N1 + N2 = i,N2 + N3 = j}

=
min(i,j)∑

l=0

P {N2 = l,N1 = i − l,N3 = j − l}

=
min(i,j)∑

l=0

P {N2 = l}P {N1 = i − l}P {N3 = j − l} �

Example 5.19 (A One Lane Road with No Overtaking). Consider a one lane road
with a single entrance and a single exit point which are of distance L from each other
(see Fig. 5.2). Suppose that cars enter this road according to a Poisson process with
rate λ, and that each entering car has an attached random value V which represents the
velocity at which the car will travel, with the proviso that whenever the car encounters
a slower-moving car, it must decrease its speed to that of the slower car. Let Vi denote
the velocity value of the ith car to enter the road, and suppose that Vi, i ≥ 1 are inde-
pendent and identically distributed and, in addition, are independent of the counting
process of cars entering the road. Assuming that the road is empty at time 0, we are
interested in determining

(a) the probability mass function of R(t), the number of cars on the road at time t ;
and

(b) the distribution of the road traversal time of a car that enters the road at time y.

Solution: Let Ti = L/Vi denote the time it would take car i to travel the road if
it were empty when car i arrived. Call Ti the free travel time of car i, and note that
T1, T2, . . . are independent with distribution function

G(x) = P(Ti ≤ x) = P(L/Vi ≤ x) = P(Vi ≥ L/x)

Let us say that an event occurs each time that a car enters the road. Also, let t be
a fixed value, and say that an event that occurs at time s is a type 1 event if both
s ≤ t and the free travel time of the car entering the road at time s exceeds t − s.
In other words, a car entering the road is a type 1 event if the car would be on the
road at time t even if the road were empty when it entered. Note that, independent
of all that occurred prior to time s, an event occurring at time s is a type 1 event
with probability

P(s) =
{
Ḡ(t − s), if s ≤ t

0, if s > t
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Letting N1(y) denote the number of type 1 events that occur by time y, it follows
from Proposition 5.6 that N1(y) is, for y ≤ t, a Poisson random variable with mean

E[N1(y)] = λ

∫ y

0
Ḡ(t − s) ds, y ≤ t

Because there will be no cars on the road at time t if and only if N1(t) = 0, it
follows that

P(R(t) = 0) = P(N1(t) = 0) = e−λ
∫ t

0 Ḡ(t−s) ds = e−λ
∫ t

0 Ḡ(u)du

To determine P(R(t) = n) for n > 0, we will condition on when the first type 1
event occurs. With X equal to the time of the first type 1 event (or to ∞ if there are
no type 1 events), its distribution function is obtained by noting that

X ≤ y ⇔ N1(y) > 0

thus showing that

FX(y) = P(X ≤ y) = P(N1(y) > 0) = 1 − e−λ
∫ y

0 Ḡ(t−s) ds, y ≤ t

Differentiating gives the density function of X:

fX(y) = λḠ(t − y) e−λ
∫ y

0 Ḡ(t−s) ds, y ≤ t

To use the identity

P(R(t) = n) =
∫ t

0
P(R(t) = n|X = y)fX(y)dy (5.19)

note that if X = y ≤ t then the leading car that is on the road at time t entered at
time y. Because all other cars that arrive between y and t will also be on the road
at time t , it follows that, conditional on X = y, the number of cars on the road at
time t will be distributed as 1 plus a Poisson random variable with mean λ(t − y).

Therefore, for n > 0

P(R(t) = n|X = y) =
{

e−λ(t−y) (λ(t−y))n−1

(n−1)! , if y ≤ t

0, if y = ∞
Substituting this into Eq. (5.19) yields

P(R(t) = n) =
∫ t

0
e−λ(t−y) (λ(t − y))n−1

(n − 1)! λḠ(t − y) e−λ
∫ y

0 Ḡ(t−s) ds dy

(b) Let T be the free travel time of the car that enters the road at time y, and let
A(y) be its actual travel time. To determine P(A(y) < x), let t = y + x and note



340 Introduction to Probability Models

that A(y) will be less than x if and only if both T < x and there have been no
type 1 events (using t = y + x) before time y. That is,

A(y) < x ⇔ T < x, N1(y) = 0

Because T is independent of what has occurred prior to time y, the preceding gives

P(A(y) < x) = P(T < x)P (N1(y) = 0)

= G(x)e−λ
∫ y

0 Ḡ(y+x−s) ds

= G(x)e−λ
∫ y+x
x Ḡ(u)du �

Example 5.20 (Tracking the Number of HIV Infections). There is a relatively long
incubation period from the time when an individual becomes infected with the HIV
virus, which causes AIDS, until the symptoms of the disease appear. As a result, it
is difficult for public health officials to be certain of the number of members of the
population that are infected at any given time. We will now present a first approxima-
tion model for this phenomenon, which can be used to obtain a rough estimate of the
number of infected individuals.

Let us suppose that individuals contract the HIV virus in accordance with a Pois-
son process whose rate λ is unknown. Suppose that the time from when an individual
becomes infected until symptoms of the disease appear is a random variable having
a known distribution G. Suppose also that the incubation times of different infected
individuals are independent.

Let N1(t) denote the number of individuals who have shown symptoms of the dis-
ease by time t . Also, let N2(t) denote the number who are HIV positive but have
not yet shown any symptoms by time t . Now, since an individual who contracts the
virus at time s will have symptoms by time t with probability G(t − s) and will not
with probability Ḡ(t − s), it follows from Proposition 5.6 that N1(t) and N2(t) are
independent Poisson random variables with respective means

E[N1(t)] = λ

∫ t

0
G(t − s) ds = λ

∫ t

0
G(y)dy

and

E[N2(t)] = λ

∫ t

0
Ḡ(t − s) ds = λ

∫ t

0
Ḡ(y) dy

Now, if we knew λ, then we could use it to estimate N2(t), the number of individuals
infected but without any outward symptoms at time t , by its mean value E[N2(t)].
However, since λ is unknown, we must first estimate it. Now, we will presumably
know the value of N1(t), and so we can use its known value as an estimate of its
mean E[N1(t)]. That is, if the number of individuals who have exhibited symptoms
by time t is n1, then we can estimate that

n1 ≈ E[N1(t)] = λ

∫ t

0
G(y)dy
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Therefore, we can estimate λ by the quantity λ̂ given by

λ̂ = n1

/∫ t

0
G(y)dy

Using this estimate of λ, we can estimate the number of infected but symptomless
individuals at time t by

estimate of N2(t) = λ̂

∫ t

0
Ḡ(y) dy

= n1
∫ t

0 Ḡ(y) dy∫ t

0 G(y)dy

For example, suppose that G is exponential with mean μ. Then Ḡ(y) = e−y/μ, and a
simple integration gives that

estimate of N2(t) = n1μ(1 − e−t/μ)

t − μ(1 − e−t/μ)

If we suppose that t = 16 years, μ = 10 years, and n1 = 220 thousand, then the esti-
mate of the number of infected but symptomless individuals at time 16 is

estimate = 2,200(1 − e−1.6)

16 − 10(1 − e−1.6)
= 218.96

That is, if we suppose that the foregoing model is approximately correct (and we
should be aware that the assumption of a constant infection rate λ that is unchanging
over time is almost certainly a weak point of the model), then if the incubation period
is exponential with mean 10 years and if the total number of individuals who have ex-
hibited AIDS symptoms during the first 16 years of the epidemic is 220 thousand, then
we can expect that approximately 219 thousand individuals are HIV positive though
symptomless at time 16. �

Proof of Proposition 5.6. Let us compute the joint probability P {Ni(t) = ni, i =
1, . . . , k}. To do so note first that in order for there to have been ni type i events
for i = 1, . . . , k there must have been a total of

∑k
i=1 ni events. Hence, conditioning

on N(t) yields

P {N1(t) = n1, . . . ,Nk(t) = nk}

= P

{
N1(t) = n1, . . . ,Nk(t) = nk

∣∣N(t) =
k∑

i=1

ni

}

× P

{
N(t) =

k∑
i=1

ni

}
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Now consider an arbitrary event that occurred in the interval [0, t]. If it had occurred
at time s, then the probability that it would be a type i event would be Pi(s). Hence,
since by Theorem 5.2 this event will have occurred at some time uniformly distributed
on [0, t], it follows that the probability that this event will be a type i event is

Pi = 1

t

∫ t

0
Pi(s) ds

independently of the other events. Hence,

P

{
Ni(t) = ni, i = 1, . . . , k

∣∣ N(t) =
k∑

i=1

ni

}

will just equal the multinomial probability of ni type i outcomes for i = 1, . . . , k

when each of
∑k

i=1 ni independent trials results in outcome i with probability Pi, i =
1, . . . , k. That is,

P

{
N1(t) = n1, . . . ,Nk(t) = nk

∣∣ N(t) =
k∑

i=1

ni

}
=
(∑k

i=1 ni

)!
n1! · · ·nk! P

n1
1 · · ·P nk

k

Consequently,

P {N1(t) = n1, . . . ,Nk(t) = nk}

= (
∑

i ni)!
n1! · · ·nk!P

n1
1 · · ·P nk

k e−λt (λt)
∑

i ni

(
∑

i ni)!

=
k∏

i=1

e−λtPi (λtPi)
ni /ni !

and the proof is complete. �

We now present some additional examples of the usefulness of Theorem 5.2.

Example 5.21. Insurance claims are made at times distributed according to a Poisson
process with rate λ; the successive claim amounts are independent random variables
having distribution G with mean μ, and are independent of the claim arrival times.
Let Si and Ci denote, respectively, the time and the amount of the ith claim. The total
discounted cost of all claims made up to time t , call it D(t), is defined by

D(t) =
N(t)∑
i=1

e−αSi Ci

where α is the discount rate and N(t) is the number of claims made by time t . To
determine the expected value of D(t), we condition on N(t) to obtain

E[D(t)] =
∞∑

n=0

E[D(t)|N(t) = n]e−λt (λt)n

n!
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Now, conditional on N(t) = n, the claim arrival times S1, . . . , Sn are distributed as
the ordered values U(1), . . . ,U(n) of n independent uniform (0, t) random variables
U1, . . . ,Un. Therefore,

E[D(t)|N(t) = n] = E

[
n∑

i=1

Cie
−αU(i)

]

=
n∑

i=1

E[Cie
−αU(i)]

=
n∑

i=1

E[Ci]E[e−αU(i)]

where the final equality used the independence of the claim amounts and their arrival
times. Because E[Ci] = μ, continuing the preceding gives

E[D(t)|N(t) = n] = μ

n∑
i=1

E[e−αU(i)]

= μE

[
n∑

i=1

e−αU(i)

]

= μE

[
n∑

i=1

e−αUi

]

The last equality follows because U(1), . . . ,U(n) are the values U1, . . . ,Un in increas-
ing order, and so

∑n
i=1 e−αU(i) = ∑n

i=1 e−αUi . Continuing the string of equalities
yields

E[D(t)|N(t) = n] = nμE[e−αU ]
= n

μ

t

∫ t

0
e−αx dx

= n
μ

αt
(1 − e−αt )

Therefore,

E[D(t)|N(t)] = N(t)
μ

αt
(1 − e−αt )

Taking expectations yields the result

E[D(t)] = λμ

α
(1 − e−αt ) �

Example 5.22 (An Optimization Example). Suppose that items arrive at a processing
plant in accordance with a Poisson process with rate λ. At a fixed time T , all items are
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dispatched from the system. The problem is to choose an intermediate time, t ∈ (0, T ),
at which all items in the system are dispatched, so as to minimize the total expected
wait of all items.

If we dispatch at time t, 0 < t < T , then the expected total wait of all items will be

λt2

2
+ λ(T − t)2

2

To see why this is true, we reason as follows: The expected number of arrivals in (0, t)

is λt , and each arrival is uniformly distributed on (0, t), and hence has expected wait
t/2. Thus, the expected total wait of items arriving in (0, t) is λt2/2. Similar reasoning
holds for arrivals in (t, T ), and the preceding follows. To minimize this quantity, we
differentiate with respect to t to obtain

d

dt

[
λ

t2

2
+ λ

(T − t)2

2

]
= λt − λ(T − t)

and equating to 0 shows that the dispatch time that minimizes the expected total wait
is t = T/2. �

We end this section with a result, quite similar in spirit to Theorem 5.2, which
states that given Sn, the time of the nth event, then the first n − 1 event times are dis-
tributed as the ordered values of a set of n − 1 random variables uniformly distributed
on (0, Sn).

Proposition 5.7. Given that Sn = t , the set S1, . . . , Sn−1 has the distribution of a set
of n − 1 independent uniform (0, t) random variables.

Proof. We can prove the preceding in the same manner as we did Theorem 5.2, or we
can argue more loosely as follows:

S1, . . . , Sn−1 | Sn = t ∼ S1, . . . , Sn−1 | Sn = t, N(t−) = n − 1

∼ S1, . . . , Sn−1 | N(t−) = n − 1

where ∼ means “has the same distribution as” and t− is infinitesimally smaller than t .
The result now follows from Theorem 5.2. �

5.3.5 Estimating Software Reliability

When a new computer software package is developed, a testing procedure is often put
into effect to eliminate the faults, or bugs, in the package. One common procedure is to
try the package on a set of well-known problems to see if any errors result. This goes
on for some fixed time, with all resulting errors being noted. Then the testing stops and
the package is carefully checked to determine the specific bugs that were responsible
for the observed errors. The package is then altered to remove these bugs. Because
we cannot be certain that all the bugs in the package have been eliminated, however, a
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problem of great importance is the estimation of the error rate of the revised software
package.

To model the preceding, let us suppose that initially the package contains an un-
known number, m, of bugs, which we will refer to as bug 1, bug 2, . . . , bug m. Suppose
also that bug i will cause errors to occur in accordance with a Poisson process having
an unknown rate λi, i = 1, . . . ,m. Then, for instance, the number of errors due to bug i

that occurs in any s units of operating time is Poisson distributed with mean λis. Also
suppose that these Poisson processes caused by bugs i, i = 1, . . . ,m are independent.
In addition, suppose that the package is to be run for t time units with all resulting
errors being noted. At the end of this time a careful check of the package is made to
determine the specific bugs that caused the errors (that is, a debugging, takes place).
These bugs are removed, and the problem is then to determine the error rate for the
revised package.

If we let

ψi(t) =
{

1, if bug i has not caused an error by t

0, otherwise

then the quantity we wish to estimate is

�(t) =
∑

i

λiψi(t)

the error rate of the final package. To start, note that

E[�(t)] =
∑

i

λiE[ψi(t)]

=
∑

i

λie
−λi t (5.20)

Now, each of the bugs that is discovered would have been responsible for a certain
number of errors. Let us denote by Mj(t) the number of bugs that were responsible
for j errors, j ≥ 1. That is, M1(t) is the number of bugs that caused exactly one error,
M2(t) is the number that caused two errors, and so on, with

∑
j jMj (t) equaling the

total number of errors that resulted. To compute E[M1(t)], let us define the indicator
variables, Ii(t), i ≥ 1, by

Ii(t) =
{

1, bug i causes exactly 1 error
0, otherwise

Then,

M1(t) =
∑

i

Ii(t)

and so

E[M1(t)] =
∑

i

E[Ii(t)] =
∑

i

λi te
−λi t (5.21)
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Thus, from (5.20) and (5.21) we obtain the intriguing result that

E

[
�(t) − M1(t)

t

]
= 0 (5.22)

Thus this suggests the possible use of M1(t)/t as an estimate of �(t). To determine
whether or not M1(t)/t constitutes a “good” estimate of �(t) we shall look at how far
apart these two quantities tend to be. That is, we will compute

E

[(
�(t) − M1(t)

t

)2
]

= Var

(
�(t) − M1(t)

t

)
from (5.22)

= Var(�(t)) − 2

t
Cov(�(t),M1(t)) + 1

t2 Var(M1(t))

Now,

Var(�(t)) =
∑

i

λ2
i Var(ψi(t)) =

∑
i

λ2
i e

−λi t (1 − e−λi t ),

Var(M1(t)) =
∑

i

Var(Ii(t)) =
∑

i

λi te
−λi t (1 − λite

−λi t ),

Cov(�(t),M1(t)) = Cov

(∑
i

λiψi(t),
∑
j

Ij (t)

)

=
∑

i

∑
j

Cov(λiψi(t), Ij (t))

=
∑

i

λiCov(ψi(t), Ii(t))

= −
∑

i

λie
−λi tλi te

−λi t

where the last two equalities follow since ψi(t) and Ij (t) are independent when i �= j

because they refer to different Poisson processes and ψi(t)Ii(t) = 0. Hence, we obtain

E

[(
�(t) − M1(t)

t

)2
]

=
∑

i

λ2
i e

−λi t + 1

t

∑
i

λie
−λi t

= E[M1(t) + 2M2(t)]
t2

where the last equality follows from (5.21) and the identity (which we leave as an
exercise)

E[M2(t)] = 1

2

∑
i

(λi t)
2e−λi t

Thus, we can estimate the average square of the difference between �(t) and
M1(t)/t by the observed value of M1(t) + 2M2(t) divided by t2.
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Example 5.23. Suppose that in 100 units of operating time 20 bugs are discovered
of which two resulted in exactly one, and three resulted in exactly two, errors. Then
we would estimate that �(100) is something akin to the value of a random variable
whose mean is equal to 1/50 and whose variance is equal to 8/10,000. �

5.4 Generalizations of the Poisson Process
5.4.1 Nonhomogeneous Poisson Process

In this section, we consider two generalizations of the Poisson process. The first of
these is the nonhomogeneous, also called the nonstationary, Poisson process, which is
obtained by allowing the arrival rate at time t to be a function of t .

Definition 5.3. The counting process {N(t), t ≥0} is said to be a nonhomogeneous
Poisson process with intensity function λ(t), t ≥ 0, if

(i) N(0) = 0.
(ii) {N(t), t ≥ 0} has independent increments.

(iii) P {N(t + h) − N(t) ≥ 2} = o(h).
(iv) P {N(t + h) − N(t) = 1} = λ(t)h + o(h).

The function m(t) defined by

m(t) =
∫ t

0
λ(y)dy

is called the mean value function of the nonhomogeneous Poisson process.
We start our analysis by proving a lemma analogous to Lemma 5.2.

Lemma 5.3. If {N(t), t ≥ 0} is a nonhomogeneous Poisson process having intensity
function λ(t), then

P(N(t) = 0) = e−m(t)

Proof. Let T1 be the time of the first event of the nonhomogeneous Poisson process,
and let λT1(t) be its failure rate function. In exactly the same way as we showed, in
the proof of Lemma 5.2, that the failure rate function of the time of the first event of a
Poisson process is identically λ, we can show that λT1(t) = λ(t), t ≥ 0. Hence,

P(T1 > t) = e− ∫ t
0 λ(s) ds = e−m(t).

As P(N(t) = 0) = P(T1 > t), the result is established. �

Now, for s > 0, let Ns(t) = N(s + t) − N(s). We leave the proof of the following
as an exercise.

Lemma 5.4. If {N(t), t ≥ 0} is a nonhomogeneous Poisson process having intensity
function λ(t), then {Ns(t), t ≥ 0} is a nonhomogeneous Poisson process having inten-
sity function λs(t) = λ(s + t), t ≥ 0.
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The mean value function of {Ns(t), t ≥ 0} is

ms(t) =
∫ t

0
λs(y)dy

=
∫ t

0
λ(s + y)dy

=
∫ s+t

s

λ(u)du

= m(s + t) − m(s)

We are now ready to prove that N(t) is a Poisson random variable with mean m(t).

Theorem 5.3. If {N(t), t ≥ 0} is a nonhomogeneous Poisson process having intensity
function λ(t), then

P(N(t) = n) = e−m(t)(m(t))n/n! , n ≥ 0

Proof. The proof is by induction on n. As Lemma 5.3 shows that the result holds
for n = 0, assume that it is true for n − 1; that is, assume that P(N(t) = n − 1) =
e−m(t)(m(t))n−1/(n − 1)!. Let Sn denote the time of the nth event. The density func-
tion of Sn can be derived as follows:

fSn(t)h = P(t < Sn < t + h) + o(h)

= P(N(t) = n − 1, N(t + h) − N(t) ≥ 1) + o(h)

= P(N(t) = n − 1)P (N(t + h) − N(t) ≥ 1) + o(h)

(by independent increments)

= P(N(t) = n − 1) λ(t) h + o(h) (by Axioms (iii) and (iv))

Dividing by h and letting h go to 0, yields that

fSn(t) = P(N(t) = n − 1) λ(t)

= λ(t) e−m(t)(m(t))n−1/(n − 1)!
where the final equality used the induction hypothesis. To compute P(N(t) = n), we
condition on Sn.

P(N(t) = n) =
∫ ∞

0
P(N(t) = n|Sn = s)λ(s)e−m(s)(m(s))n−1/(n − 1)!ds

= 1

(n − 1)!
∫ t

0
P(N(t) = n|Sn = s)λ(s)e−m(s)(m(s))n−1 ds

Now, for s < t ,

P(N(t) = n|Sn = s) = P(N(t) − N(s) = 0|Sn = s)

= P(N(t) − N(s) = 0) (by independent increments)
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= P(Ns(t − s) = 0)

= e−ms(t−s) (by Lemmas 5.3 and 5.4)

= e−(m(t)−m(s))

Substituting back gives

P(N(t) = n) = 1

(n − 1)!e
−m(t)

∫ t

0
λ(s) (m(s))n−1 ds

= 1

(n − 1)!e
−m(t)

∫ m(t)

0
yn−1 dy (by y = m(s), dy = λ(s) ds)

= e−m(t)(m(t))n/n!

and the induction proof is complete. �

Remarks. (i) Because {Ns(t), t ≥ 0} is a nonhomogeneous Poisson process with
mean value function ms(t) = m(s + t)−m(s), it follows from Theorem 5.3 that
Ns(t) = N(s + t) − N(s) is Poisson with mean m(s + t) − m(s).

(ii) That N(s + t) − N(s) has a Poisson distribution with mean
∫ s+t

s
λ(y) dy is

a consequence of the Poisson limit of the sum of independent Bernoulli ran-
dom variables (see Example 2.49). To see why, subdivide the interval [s, s + t]
into n subintervals of length t

n
, where subinterval i goes from s + (i − 1) t

n
to

s + i t
n
, i = 1, . . . , n. Let Ni = N(s + i t

n
) − N(s + (i − 1) t

n
) be the number of

events that occur in subinterval i, and note that

P {≥ 2 events in some subinterval} = P

(
n⋃

i=1

{Ni ≥ 2}
)

≤
n∑

i=1

P {Ni ≥ 2}

= no(t/n) by Axiom (iii)

Because

lim
n→∞no(t/n) = lim

n→∞ t
o(t/n)

t/n
= 0

it follows that, as n increases to ∞, the probability of having two or more events
in any of the n subintervals goes to 0. Consequently, with a probability go-
ing to 1, N(t) will equal the number of subintervals in which an event occurs.
Because the probability of an event in subinterval i is λ(s + i t

n
) t
n

+ o( t
n
), it

follows, because the number of events in different subintervals are independent,
that when n is large the number of subintervals that contain an event is approxi-
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mately a Poisson random variable with mean

n∑
i=1

λ

(
s + i

t

n

)
t

n
+ no(t/n)

But,

lim
n→∞

n∑
i=1

λ

(
s + i

t

n

)
t

n
+ no(t/n) =

∫ s+t

s

λ(y) dy

and the result follows. �

Time sampling an ordinary Poisson process generates a nonhomogeneous Poisson
process. That is, let {N(t), t ≥ 0} be a Poisson process with rate λ, and suppose that
an event occurring at time t is, independently of what has occurred prior to t , counted
with probability p(t). With Nc(t) denoting the number of counted events by time t ,
the counting process {Nc(t), t ≥ 0} is a nonhomogeneous Poisson process with inten-
sity function λ(t) = λp(t). This is verified by noting that {Nc(t), t ≥ 0} satisfies the
nonhomogeneous Poisson process axioms.

1. Nc(0) = 0.
2. The number of counted events in (s, s + t) depends solely on the number of

events of the Poisson process in (s, s + t), which is independent of what has oc-
curred prior to time s. Consequently, the number of counted events in (s, s + t)

is independent of the process of counted events prior to s, thus establishing the
independent increment property.

3. Let Nc(t, t + h) = Nc(t + h) − Nc(t), with a similar definition of N(t, t + h).

P {Nc(t, t + h) ≥ 2} ≤ P {N(t, t + h) ≥ 2} = o(h)

4. To compute P {Nc(t, t + h) = 1}, condition on N(t, t + h).

P {Nc(t, t + h) = 1}
= P {Nc(t, t + h) = 1|N(t, t + h) = 1}P {N(t, t + h) = 1}

+ P {Nc(t, t + h) = 1|N(t, t + h) ≥ 2}P {N(t, t + h) ≥ 2}
= P {Nc(t, t + h) = 1|N(t, t + h) = 1}λh + o(h)

= p(t)λh + o(h)

The importance of the nonhomogeneous Poisson process resides in the fact that we
no longer require the condition of stationary increments. Thus we now allow for the
possibility that events may be more likely to occur at certain times than during other
times.

Example 5.24. Siegbert runs a hot dog stand that opens at 8 A.M. From 8 until 11 A.M.
customers seem to arrive, on the average, at a steadily increasing rate that starts with an
initial rate of 5 customers per hour at 8 A.M. and reaches a maximum of 20 customers
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per hour at 11 A.M. From 11 A.M. until 1 P.M. the (average) rate seems to remain con-
stant at 20 customers per hour. However, the (average) arrival rate then drops steadily
from 1 P.M. until closing time at 5 P.M. at which time it has the value of 12 customers
per hour. If we assume that the numbers of customers arriving at Siegbert’s stand dur-
ing disjoint time periods are independent, then what is a good probability model for
the preceding? What is the probability that no customers arrive between 8:30 A.M.
and 9:30 A.M. on Monday morning? What is the expected number of arrivals in this
period?

Solution: A good model for the preceding would be to assume that arrivals con-
stitute a nonhomogeneous Poisson process with intensity function λ(t) given by

λ(t) =
⎧⎨
⎩

5 + 5t, 0 ≤ t ≤ 3
20, 3 ≤ t ≤ 5
20 − 2(t − 5), 5 ≤ t ≤ 9

and

λ(t) = λ(t − 9) for t > 9

Note that N(t) represents the number of arrivals during the first t hours that the
store is open. That is, we do not count the hours between 5 P.M. and 8 A.M. If for
some reason we wanted N(t) to represent the number of arrivals during the first
t hours regardless of whether the store was open or not, then, assuming that the
process begins at midnight we would let

λ(t) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0, 0 ≤ t < 8
5 + 5(t − 8), 8 ≤ t ≤ 11
20, 11 ≤ t ≤ 13
20 − 2(t − 13), 13 ≤ t ≤ 17
0, 17 < t ≤ 24

and

λ(t) = λ(t − 24) for t > 24

As the number of arrivals between 8:30 A.M. and 9:30 A.M. will be Poisson with
mean m( 3

2 ) − m( 1
2 ) in the first representation (and m( 19

2 ) − m( 17
2 ) in the second

representation), we have that the probability that this number is zero is

exp

{
−
∫ 3/2

1/2
(5 + 5t) dt

}
= e−10

and the mean number of arrivals is∫ 3/2

1/2
(5 + 5t) dt = 10 �
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Suppose that events occur according to a Poisson process with rate λ, and sup-
pose that, independent of what has previously occurred, an event at time s is a type 1
event with probability P1(s) or a type 2 event with probability P2(s) = 1 − P1(s).
If Ni(t), t ≥ 0, denotes the number of type i events by time t , then it easily follows
from Definition 5.3 that {N1(t), t ≥ 0} and {N2(t), t ≥ 0} are independent nonhomo-
geneous Poisson processes with respective intensity functions λi(t) = λPi(t), i = 1,2.
(The proof mimics that of Proposition 5.5.) This result gives us another way of under-
standing (or of proving) the time sampling Poisson process result of Proposition 5.6,
which states that N1(t) and N2(t) are independent Poisson random variables with
means E[Ni(t)] = λ

∫ t

0 Pi(s) ds, i = 1,2.

Example 5.25 (The Output Process of an Infinite Server Poisson Queue). It turns out
that the output process of the M/G/∞ queue—that is, of the infinite server queue hav-
ing Poisson arrivals and general service distribution G—is a nonhomogeneous Poisson
process having intensity function λ(t) = λG(t). To verify this claim, let us first argue
that the departure process has independent increments. Towards this end, consider
nonoverlapping intervals O1, . . . ,Ok; now say that an arrival is type i, i = 1, . . . , k, if
that arrival departs in the interval Oi . By Proposition 5.6, it follows that the numbers
of departures in these intervals are independent, thus establishing independent incre-
ments. Now, suppose that an arrival is “counted” if that arrival departs between t and
t + h. Because an arrival at time s, s < t + h, will be counted with probability P(s),
where

P(s) =
{
G(t + h − s) − G(t − s), if s < t

G(t + h − s), if t < s < t + h

it follows from Proposition 5.6 that the number of departures in (t, t + h) is a Poisson
random variable with mean

λ

∫ t+h

0
P(s)ds = λ

∫ t+h

0
G(t + h − s)ds − λ

∫ t

0
G(t − s)ds

= λ

∫ t+h

0
G(y)dy − λ

∫ t

0
G(y)dy

= λ

∫ t+h

t

G(y)dy

= λG(t)h + o(h)

Therefore,

P {1 departure in (t, t + h)} = λG(t)h e−λG(t)h + o(h) = λG(t)h + o(h)

and

P {≥ 2 departures in (t, t + h)} = o(h)

which completes the verification. �
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If we let Sn denote the time of the nth event of the nonhomogeneous Poisson pro-
cess, then we can obtain its density as follows:

P {t < Sn < t + h} = P {N(t) = n − 1, one event in (t, t + h)} + o(h)

= P {N(t) = n − 1}P {one event in (t, t + h)}+o(h)

= e−m(t) [m(t)]n−1

(n − 1)! [λ(t)h + o(h)]+o(h)

= λ(t)e−m(t) [m(t)]n−1

(n − 1)! h+o(h)

which implies that

fSn(t) = λ(t)e−m(t) [m(t)]n−1

(n − 1)!
where

m(t) =
∫ t

0
λ(s) ds

5.4.2 Compound Poisson Process

A stochastic process {X(t), t ≥ 0} is said to be a compound Poisson process if it can
be represented as

X(t) =
N(t)∑
i=1

Yi, t ≥ 0 (5.23)

where {N(t), t ≥ 0} is a Poisson process, and {Yi, i ≥ 1} is a family of independent
and identically distributed random variables that is also independent of {N(t), t ≥ 0}.
As noted in Chapter 3, the random variable X(t) is said to be a compound Poisson
random variable.

Examples of Compound Poisson Processes

(i) If Yi ≡ 1, then X(t) = N(t), and so we have the usual Poisson process.
(ii) Suppose that buses arrive at a sporting event in accordance with a Poisson

process, and suppose that the numbers of fans in each bus are assumed to be
independent and identically distributed. Then {X(t), t ≥ 0} is a compound Pois-
son process where X(t) denotes the number of fans who have arrived by t . In
Eq. (5.23) Yi represents the number of fans in the ith bus.

(iii) Suppose customers leave a supermarket in accordance with a Poisson process.
If the Yi , the amount spent by the ith customer, i = 1,2, . . . , are independent
and identically distributed, then {X(t), t ≥ 0} is a compound Poisson process
when X(t) denotes the total amount of money spent by time t . �
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Because X(t) is a compound Poisson random variable with Poisson parameter λt ,
we have from Examples 3.11 and 3.19 that

E[X(t)] = λtE[Y1] (5.24)

and

Var(X(t)) = λtE
[
Y 2

1

]
(5.25)

Example 5.26. Suppose that families migrate to an area at a Poisson rate λ = 2 per
week. If the number of people in each family is independent and takes on the values
1, 2, 3, 4 with respective probabilities 1

6 , 1
3 , 1

3 , 1
6 , then what is the expected value and

variance of the number of individuals migrating to this area during a fixed five-week
period?

Solution: Letting Yi denote the number of people in the ith family, we have

E[Yi] = 1 · 1
6 + 2 · 1

3 + 3 · 1
3 + 4 · 1

6 = 5
2 ,

E
[
Y 2

i

]= 12 · 1
6 + 22 · 1

3 + 32 · 1
3 + 42 · 1

6 = 43
6

Hence, letting X(5) denote the number of immigrants during a five-week period,
we obtain from Eqs. (5.24) and (5.25) that

E[X(5)] = 2 · 5 · 5
2 = 25

and

Var[X(5)] = 2 · 5 · 43
6 = 215

3 �

Example 5.27 (Busy Periods in Single-Server Poisson Arrival Queues). Consider a
single-server service station in which customers arrive according to a Poisson process
having rate λ. An arriving customer is immediately served if the server is free; if not,
the customer waits in line (that is, he or she joins the queue). The successive service
times are independent with a common distribution.

Such a system will alternate between idle periods when there are no customers in
the system, so the server is idle, and busy periods when there are customers in the sys-
tem, so the server is busy. A busy period will begin when an arrival finds the system
empty, and because of the memoryless property of the Poisson arrivals it follows that
the distribution of the length of a busy period will be the same for each such period.
Let B denote the length of a busy period. We will compute its mean and variance.

To begin, let S denote the service time of the first customer in the busy period and
let N(S) denote the number of arrivals during that time. Now, if N(S) = 0 then the
busy period will end when the initial customer completes his service, and so B will
equal S in this case. Now, suppose that one customer arrives during the service time
of the initial customer. Then, at time S, there will be a single customer in the system
who is just about to enter service. Because the arrival stream from time S on will still
be a Poisson process with rate λ, it thus follows that the additional time from S until



The Exponential Distribution and the Poisson Process 355

the system becomes empty will have the same distribution as a busy period. That is, if
N(S) = 1 then

B = S + B1

where B1 is independent of S and has the same distribution as B.
Now, consider the general case where N(S) = n, so there will be n customers

waiting when the server finishes his initial service. To determine the distribution of
remaining time in the busy period note that the order in which customers are served
will not affect the remaining time. Hence, let us suppose that the n arrivals, call them
C1, . . . ,Cn, during the initial service period are served as follows. Customer C1 is
served first, but C2 is not served until the only customers in the system are C2, . . . ,Cn.
For instance, any customers arriving during C1’s service time will be served before C2.
Similarly, C3 is not served until the system is free of all customers but C3, . . . ,Cn, and
so on. A little thought reveals that the times between the beginnings of service of cus-
tomers Ci and Ci+1, i = 1, . . . , n − 1, and the time from the beginning of service of
Cn until there are no customers in the system, are independent random variables, each
distributed as a busy period.

It follows from the preceding that if we let B1,B2, . . . be a sequence of independent
random variables, each distributed as a busy period, then we can express B as

B = S +
N(S)∑
i=1

Bi

Hence,

E[B|S] = S + E

⎡
⎣N(S)∑

i=1

Bi |S
⎤
⎦

and

Var(B|S) = Var

⎛
⎝N(S)∑

i=1

Bi |S
⎞
⎠

However, given S,
∑N(S)

i=1 Bi is a compound Poisson random variable, and thus from
Eqs. (5.24) and (5.25), we obtain

E[B|S] = S + λSE[B] = (1 + λE[B])S
Var(B|S) = λSE[B2]

Hence,

E[B] = E[E[B|S]] = (1 + λE[B])E[S]
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implying, provided that λE[S] < 1, that

E[B] = E[S]
1 − λE[S]

Also, by the conditional variance formula

Var(B) = Var(E[B|S]) + E[Var(B|S)]
= (1 + λE[B])2Var(S) + λE[S]E[B2]
= (1 + λE[B])2Var(S) + λE[S](Var(B) + E2[B])

yielding

Var(B) = Var(S)(1 + λE[B])2 + λE[S]E2[B]
1 − λE[S]

Using E[B] = E[S]/(1 − λE[S]), we obtain

Var(B) = Var(S) + λE3[S]
(1 − λE[S])3

�

There is a very nice representation of the compound Poisson process when the set
of possible values of the Yi is finite or countably infinite. So let us suppose that there
are numbers αj , j ≥ 1, such that

P {Yi = αj } = pj ,
∑
j

pj = 1

Now, a compound Poisson process arises when events occur according to a Poisson
process and each event results in a random amount Y being added to the cumula-
tive sum. Let us say that the event is a type j event whenever it results in adding the
amount αj , j ≥ 1. That is, the ith event of the Poisson process is a type j event if
Yi = αj . If we let Nj(t) denote the number of type j events by time t , then it follows
from Proposition 5.5 that the random variables Nj(t), j ≥ 1, are independent Poisson
random variables with respective means

E[Nj(t)] = λpj t

Since, for each j , the amount αj is added to the cumulative sum a total of Nj(t) times
by time t , it follows that the cumulative sum at time t can be expressed as

X(t) =
∑
j

αjNj (t) (5.26)

As a check of Eq. (5.26), let us use it to compute the mean and variance of X(t). This
yields

E[X(t)] = E

[∑
j

αjNj (t)

]
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=
∑
j

αjE[Nj(t)]

=
∑
j

αjλpj t

= λt E[Y1]
Also,

Var[X(t)] = Var

[∑
j

αjNj (t)

]

=
∑
j

α2
j Var[Nj(t)] by the independence of the Nj(t), j ≥ 1

=
∑
j

α2
j λpj t

= λtE[Y 2
1 ]

where the next to last equality follows since the variance of the Poisson random vari-
able Nj(t) is equal to its mean.

Thus, we see that the representation (5.26) results in the same expressions for the
mean and variance of X(t) as were previously derived.

One of the uses of the representation (5.26) is that it enables us to conclude that as t

grows large, the distribution of X(t) converges to the normal distribution. To see why,
note first that it follows by the central limit theorem that the distribution of a Pois-
son random variable converges to a normal distribution as its mean increases. (Why
is this?) Therefore, each of the random variables Nj(t) converges to a normal random
variable as t increases. Because they are independent, and because the sum of inde-
pendent normal random variables is also normal, it follows that X(t) also approaches
a normal distribution as t increases.

Example 5.28. In Example 5.26, find the approximate probability that at least 240
people migrate to the area within the next 50 weeks.

Solution: Since λ = 2,E[Yi] = 5/2,E[Y 2
i ] = 43/6, we see that

E[X(50)] = 250, Var[X(50)] = 4300/6

Now, the desired probability is

P {X(50) ≥ 240} = P {X(50) ≥ 239.5}
= P

{
X(50) − 250√

4300/6
≥ 239.5 − 250√

4300/6

}
= 1 − φ(−0.3922)

= φ(0.3922)

= 0.6525
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where Table 2.3 was used to determine φ(0.3922), the probability that a standard
normal is less than 0.3922. �

Another useful result is that if {X(t), t ≥ 0} and {Y(t), t ≥ 0} are independent com-
pound Poisson processes with respective Poisson parameters and distributions λ1,F1
and λ2,F2, then {X(t)+Y(t), t ≥ 0} is also a compound Poisson process. This is true
because in this combined process events will occur according to a Poisson process
with rate λ1 +λ2, and each event independently will be from the first compound Pois-
son process with probability λ1/(λ1 + λ2). Consequently, the combined process will
be a compound Poisson process with Poisson parameter λ1 +λ2, and with distribution
function F given by

F(x) = λ1

λ1 + λ2
F1(x) + λ2

λ1 + λ2
F2(x)

5.4.3 Conditional or Mixed Poisson Processes

Let {N(t), t ≥ 0} be a counting process whose probabilities are defined as follows.
There is a positive random variable L such that, conditional on L=λ, the counting
process is a Poisson process with rate λ. Such a counting process is called a condi-
tional or a mixed Poisson process.

Suppose that L is continuous with density function g. Because

P {N(t + s) − N(s) = n} =
∫ ∞

0
P {N(t + s) − N(s) = n | L = λ}g(λ)dλ

=
∫ ∞

0
e−λt (λt)n

n! g(λ)dλ (5.27)

we see that a conditional Poisson process has stationary increments. However, because
knowing how many events occur in an interval gives information about the possible
value of L, which affects the distribution of the number of events in any other inter-
val, it follows that a conditional Poisson process does not generally have independent
increments. Consequently, a conditional Poisson process is not generally a Poisson
process.

Example 5.29. If g is the gamma density with parameters m and θ ,

g(λ) = θe−θλ (θλ)m−1

(m − 1)! , λ > 0

then

P {N(t) = n} =
∫ ∞

0
e−λt (λt)n

n! θe−θλ (θλ)m−1

(m − 1)! dλ

= tnθm

n!(m − 1)!
∫ ∞

0
e−(t+θ)λλn+m−1 dλ
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Letting y = (t + θ)λ, gives∫ ∞

0
e−(t+θ)λλn+m−1 dλ = 1

(t + θ)n+m

∫ ∞

0
e−yyn+m−1 dy

= �(n + m)

(t + θ)n+m
= (n + m − 1)!

(t + θ)n+m

Hence,

P(N(t) = n) =
(

n + m − 1

n

)(
θ

t + θ

)m(
t

t + θ

)n

�

To compute the mean and variance of N(t), condition on L. Because, conditional
on L,N(t) is Poisson with mean Lt , we obtain

E[N(t)|L] = Lt

Var(N(t)|L) = Lt

where the final equality used that the variance of a Poisson random variable is equal
to its mean. Consequently, the conditional variance formula yields

Var(N(t)) = E[Lt] + Var(Lt)

= tE[L] + t2Var(L)

We can compute the conditional distribution function of L, given that N(t) = n, as
follows.

P {L ≤ x|N(t) = n} = P {L ≤ x, N(t) = n}
P {N(t) = n}

=
∫∞

0 P {L ≤ x,N(t) = n|L = λ}g(λ)dλ

P {N(t) = n}
=
∫ x

0 P {N(t) = n|L = λ}g(λ)dλ

P {N(t) = n}
=

∫ x

0 e−λt (λt)ng(λ)dλ∫∞
0 e−λt (λt)ng(λ)dλ

where the final equality used Eq. (5.27). In other words, the conditional density func-
tion of L given that N(t) = n is

fL|N(t)(λ | n) = e−λtλn g(λ)∫∞
0 e−λtλn g(λ)dλ

, λ ≥ 0 (5.28)

Example 5.30. An insurance company feels that each of its policyholders has a rating
value and that a policyholder having rating value λ will make claims at times dis-
tributed according to a Poisson process with rate λ, when time is measured in years.
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The firm also believes that rating values vary from policyholder to policyholder, with
the probability distribution of the value of a new policyholder being uniformly dis-
tributed over (0,1). Given that a policyholder has made n claims in his or her first
t years, what is the conditional distribution of the time until the policyholder’s next
claim?

Solution: If T is the time until the next claim, then we want to compute
P {T >x | N(t) = n}. Conditioning on the policyholder’s rating value gives, upon
using Eq. (5.28),

P {T > x | N(t) = n} =
∫ ∞

0
P {T > x | L = λ, N(t) = n}

× fL|N(t)(λ | n)dλ

=
∫ 1

0 e−λxe−λtλn dλ∫ 1
0 e−λtλn dλ

�

There is a nice formula for the probability that more than n events occur in an
interval of length t . In deriving it we will use the identity

∞∑
j=n+1

e−λt (λt)j

j ! =
∫ t

0
λe−λx (λx)n

n! dx (5.29)

which follows by noting that it equates the probability that the number of events by
time t of a Poisson process with rate λ is greater than n with the probability that the
time of the (n+ 1)st event of this process (which has a gamma (n+ 1, λ) distribution)
is less than t . Interchanging λ and t in Eq. (5.29) yields the equivalent identity

∞∑
j=n+1

e−λt (λt)j

j ! =
∫ λ

0
te−tx (tx)n

n! dx (5.30)

Using Eq. (5.27) we now have

P {N(t) > n} =
∞∑

j=n+1

∫ ∞

0
e−λt (λt)j

j ! g(λ)dλ

=
∫ ∞

0

∞∑
j=n+1

e−λt (λt)j

j ! g(λ)dλ (by interchanging)

=
∫ ∞

0

∫ λ

0
te−tx (tx)n

n! dxg(λ)dλ (using (5.30))

=
∫ ∞

0

∫ ∞

x

g(λ)dλte−tx (tx)n

n! dx (by interchanging)

=
∫ ∞

0
Ḡ(x)te−tx (tx)n

n! dx
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5.5 Random Intensity Functions and Hawkes Processes
Whereas the intensity function λ(t) of a nonhomogeneous Poisson process is a deter-
ministic function, there are counting processes {N(t), t ≥ 0} whose intensity function
value at time t , call it R(t), is a random variable whose value depends on the history
of the process up to time t . That is, if we let Ht denote the “history” of the process up
to time t then R(t), the intensity rate at time t , is a random variable whose value is
determined by Ht and which is such that

P(N(t + h) − N(t) = 1|Ht ) = R(t)h + o(h)

and

P(N(t + h) − N(t) ≥ 2|Ht ) = o(h)

The Hawkes process is an example of a counting process having a random intensity
function. This counting process assumes that there is a base intensity value λ > 0,

and that associated with each event is a nonnegative random variable, called a mark,
whose value is independent of all that has previously occurred and has distribution F .
Whenever an event occurs, it is supposed that the current value of the random inten-
sity function increases by the amount of the event’s mark, with this increase decreasing
over time at an exponential rate α. More specifically, if there have been a total of N(t)

events by time t , with S1 < S2 < . . . < SN(t) being the event times and Mi being the
mark of event i, i = 1, . . . ,N(t), then

R(t) = λ +
N(t)∑
i=1

Mie
−α(t−Si)

In other words, a Hawkes process is a counting process in which

1. R(0) = λ;
2. whenever an event occurs, the random intensity increases by the value of the

event’s mark;
3. if there are no events between s and s + t then R(s + t) = λ + (R(s) − λ)e−αt .

Because the intensity increases each time an event occurs, the Hawkes process is
said to be a self-exciting process.

We will derive E[N(t)], the expected number of events of a Hawkes process that
occur by time t . To do so, we will need the following lemma, which is valid for all
counting processes.

Lemma 5.5. Let R(t), t ≥ 0 be the random intensity function of the counting process
{N(t), t ≥ 0} having N(0) = 0. Then, with m(t) = E[N(t)]

m(t) =
∫ t

0
E[R(s)]ds

Proof.

E[N(t + h)|N(t),R(t)] = N(t) + R(t)h + o(h)
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Taking expectations gives

E[N(t + h)] = E[N(t)] + E[R(t)]h + o(h)

That is,

m(t + h) = m(t) + hE[R(t)] + o(h)

or

m(t + h) − m(t)

h
= E[R(t)] + o(h)

h

Letting h go to 0 gives

m′(t) = E[R(t)]
Integrating both sides from 0 to t now gives the result:

m(t) =
∫ t

0
E[R(s)]ds �

Using the preceding, we can now prove the following proposition.

Proposition 5.8. If μ is the expected value of a mark in a Hawkes process, then for
this process

E[N(t)] = λt + λμ

(μ − α)2
(e(μ−α)t − 1 − (μ − α)t)

Proof. To determine the mean value function m(t) it suffices, by the preceding lemma,
to determine E[R(t)], which will be accomplished by deriving and then solving a dif-
ferential equation. To begin note that, with Mt(h) equal to the sum of the marks of all
events occurring between t and t + h,

R(t + h) = λ + (R(t) − λ)e−αh + Mt(h) + o(h)

Letting g(t) = E[R(t)] and taking expectations of the preceding gives

g(t + h) = λ + (g(t) − λ)e−αh + E[Mt(h)] + o(h)

Using the identity e−αh = 1 − αh + o(h) shows that

g(t + h) = λ + (g(t) − λ)(1 − αh) + E[Mt(h)] + o(h)

= g(t) − αhg(t) + λαh + E[Mt(h)] + o(h) (5.31)

Now, given R(t), there will be 1 event between t and t + h with probability
R(t)h + o(h), and there will be 2 or more with probability o(h). Hence, conditioning
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on the number of events between t and t + h yields, upon using that μ is the expected
value of a mark, that

E[Mt(h)|R(t)] = μR(t)h + o(h)

Taking expectations of both sides of the preceding gives that

E[Mt(h)] = μg(t)h + o(h)

Substituting back into Eq. (5.31) gives

g(t + h) = g(t) − αhg(t) + λαh + μg(t)h + o(h)

or, equivalently,

g(t + h) − g(t)

h
= (μ − α)g(t) + λα + o(h)

h

Letting h go to 0 gives that

g′(t) = (μ − α)g(t) + λα

Letting f (t) = (μ − α)g(t) + λα, the preceding can be written as

f ′(t)
μ − α

= f (t)

or

f ′(t)
f (t)

= μ − α

Integration now yields

log(f (t)) = (μ − α)t + C

Now, g(0) = E[R(0)] = λ and so f (0) = μλ, showing that C = log(μλ) and giving
the result

f (t) = μλe(μ−α)t

Using that g(t) = f (t)−λα
μ−α

= f (t)
μ−α

+ λ − λμ
μ−α

gives

g(t) = λ + λμ

μ − α
(e(μ−α)t − 1)

Hence, from Lemma 5.5

E[N(t)] = λt +
∫ t

0

λμ

μ − α
(e(μ−α)s − 1) ds
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= λt + λμ

(μ − α)2 (e(μ−α)t − 1 − (μ − α)t)

and the result is proved. �

Exercises
1. The time T required to repair a machine is an exponentially distributed random

variable with mean 1
2 (hours).

(a) What is the probability that a repair time exceeds 1
2 hour?

(b) What is the probability that a repair takes at least 12 1
2 hours given that

its duration exceeds 12 hours?
2. Suppose that you arrive at a single-teller bank to find five other customers in

the bank, one being served and the other four waiting in line. You join the
end of the line. If the service times are all exponential with rate μ, what is the
expected amount of time you will spend in the bank?

3. Let X be an exponential random variable. Without any computations, tell
which one of the following is correct. Explain your answer.
(a) E[X2|X > 1] = E[(X + 1)2]
(b) E[X2|X > 1] = E[X2] + 1
(c) E[X2|X > 1] = (1 + E[X])2

4. Consider a post office with two clerks. Three people, A, B, and C, enter si-
multaneously. A and B go directly to the clerks, and C waits until either A or
B leaves before he begins service. What is the probability that A is still in the
post office after the other two have left when
(a) the service time for each clerk is exactly (nonrandom) ten minutes?
(b) the service times are i with probability 1

3 , i = 1, 2, 3?
(c) the service times are exponential with mean 1/μ?

5. In Example 5.3 if server i serves at an exponential rate λi, i = 1,2, show that

P {Smith is not last} =
(

λ1

λ1 + λ2

)2

+
(

λ2

λ1 + λ2

)2

*6. If X has failure rate function λ(t), show that
∫ X

0 λ(t) dt is an exponential ran-
dom variable with mean 1.

*7. If X1 and X2 are independent nonnegative continuous random variables, show
that

P {X1 < X2|min(X1,X2) = t} = λ1(t)

λ1(t) + λ2(t)

where λi(t) is the failure rate function of Xi .
8. If X and Y are independent exponential random variables with respective rates

λ and μ, what is the conditional distribution of X given that X < Y ?
9. Machine 1 is currently working. Machine 2 will be put in use at a time t from

now. If the lifetime of machine i is exponential with rate λi, i = 1,2, what is
the probability that machine 1 is the first machine to fail?
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*10. Let X and Y be independent exponential random variables with respective
rates λ and μ. Find
(a) Cov(X,min(X,Y ))

(b) Cov(X,max(X,Y ))

(c) Cov(min(X,Y ),max(X,Y ))

(d) Find P(X < 2Y).
11. Let X1, . . . , be independent and identically distributed continuous positive

random variables. Suppose these random variables are observed in sequence,
and say that Xj is an upper record value if Xj = max(X1, . . . ,Xj ). That is,
an upper record value is one that is larger than all previous values. Let Rn be
the nth upper record value when the Xi are all exponential with rate λ.
(a) What is the distribution of R2 − R1, the amount by which the second

record value exceeds the first?
(b) What is the distribution of Rn?

12. If Xi, i = 1,2,3, are independent exponential random variables with rates λi ,
i = 1,2,3, find
(a) P {X1 < X2 < X3},
(b) P {X1 < X2|max(X1, X2, X3) = X3},
(c) E[maxXi |X1 < X2 < X3],
(d) E[maxXi].

13. Find, in Example 5.10, the expected time until the nth person on line leaves
the line (either by entering service or departing without service).

14. I am waiting for two friends to arrive at my house. The time until A arrives is
exponentially distributed with rate λa , and the time until B arrives is exponen-
tially distributed with rate λb. Once they arrive, both will spend exponentially
distributed times, with respective rates μa and μb at my home before depart-
ing. The four exponential random variables are independent.
(a) What is the probability that A arrives before and departs after B?
(b) What is the expected time of the last departure?

15. One hundred items are simultaneously put on a life test. Suppose the life-
times of the individual items are independent exponential random variables
with mean 200 hours. The test will end when there have been a total of 5
failures. If T is the time at which the test ends, find E[T ] and Var(T ).

16. There are three jobs that need to be processed, with the processing time of job
i being exponential with rate μi . There are two processors available, so pro-
cessing on two of the jobs can immediately start, with processing on the final
job to start when one of the initial ones is finished.
(a) Let Ti denote the time at which the processing of job i is completed.

If the objective is to minimize E[T1 + T2 + T3], which jobs should be
initially processed if μ1 < μ2 < μ3?

(b) Let M , called the makespan, be the time until all three jobs have been
processed. With S equal to the time that there is only a single processor
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working, show that

2E[M] = E[S] +
3∑

i=1

1/μi

For the rest of this problem, suppose that μ1 = μ2 = μ, μ3 = λ. Also,
let P(μ) be the probability that the last job to finish is either job 1 or job
2, and let P(λ) = 1 − P(μ) be the probability that the last job to finish
is job 3.

(c) Express E[S] in terms of P(μ) and P(λ).
Let Pi,j (μ) be the value of P(μ) when i and j are the jobs that are ini-
tially started.

(d) Show that P1,2(μ) ≤ P1,3(μ).
(e) If μ > λ show that E[M] is minimized when job 3 is one of the jobs that

is initially started.
(f) If μ < λ show that E[M] is minimized when processing is initially

started on jobs 1 and 2.
17. A set of n cities is to be connected via communication links. The cost to

construct a link between cities i and j is Cij , i �= j . Enough links should be
constructed so that for each pair of cities there is a path of links that connects
them. As a result, only n − 1 links need be constructed. A minimal cost algo-
rithm for solving this problem (known as the minimal spanning tree problem)

first constructs the cheapest of all the
(

n
2

)
links. Then, at each additional stage

it chooses the cheapest link that connects a city without any links to one with
links. That is, if the first link is between cities 1 and 2, then the second link
will either be between 1 and one of the links 3, . . . , n or between 2 and one of

the links 3, . . . , n. Suppose that all of the
(

n
2

)
costs Cij are independent expo-

nential random variables with mean 1. Find the expected cost of the preceding
algorithm if
(a) n = 3,
(b) n = 4.

*18. Let X1 and X2 be independent exponential random variables, each having rate
μ. Let

X(1) = minimum(X1,X2) and X(2) = maximum(X1,X2)

Find
(a) E[X(1)],
(b) Var[X(1)],
(c) E[X(2)],
(d) Var[X(2)].

19. In a mile race between A and B, the time it takes A to complete the mile is
an exponential random variable with rate λa and is independent of the time it
takes B to complete the mile, which is an exponential random variable with
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rate λb. The one who finishes earliest is declared the winner and receives
Re−αt if the winning time is t, where R and α are constants. If the loser
receives 0, find the expected amount that runner A wins.

20. Consider a two-server system in which a customer is served first by server 1,
then by server 2, and then departs. The service times at server i are exponen-
tial random variables with rates μi, i = 1,2. When you arrive, you find server
1 free and two customers at server 2—customer A in service and customer B
waiting in line.
(a) Find PA, the probability that A is still in service when you move over to

server 2.
(b) Find PB , the probability that B is still in the system when you move over

to server 2.
(c) Find E[T ], where T is the time that you spend in the system.

Hint: Write

T = S1 + S2 + WA + WB

where Si is your service time at server i,WA is the amount of time you wait
in queue while A is being served, and WB is the amount of time you wait in
queue while B is being served.

21. In a certain system, a customer must first be served by server 1 and then by
server 2. The service times at server i are exponential with rate μi, i = 1,2.
An arrival finding server 1 busy waits in line for that server. Upon completion
of service at server 1, a customer either enters service with server 2 if that
server is free or else remains with server 1 (blocking any other customer from
entering service) until server 2 is free. Customers depart the system after being
served by server 2. Suppose that when you arrive there is one customer in the
system and that customer is being served by server 1. What is the expected
total time you spend in the system?

22. Suppose in Exercise 21 you arrive to find two others in the system, one being
served by server 1 and one by server 2. What is the expected time you spend
in the system? Recall that if server 1 finishes before server 2, then server 1’s
customer will remain with him (thus blocking your entrance) until server 2
becomes free.

*23. A flashlight needs two batteries to be operational. Consider such a flashlight
along with a set of n functional batteries—battery 1, battery 2, . . . , battery n.
Initially, battery 1 and 2 are installed. Whenever a battery fails, it is immedi-
ately replaced by the lowest numbered functional battery that has not yet been
put in use. Suppose that the lifetimes of the different batteries are independent
exponential random variables each having rate μ. At a random time, call it T ,
a battery will fail and our stockpile will be empty. At that moment exactly one
of the batteries—which we call battery X—will not yet have failed.
(a) What is P {X = n}?
(b) What is P {X = 1}?
(c) What is P {X = i}?
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(d) Find E[T ].
(e) What is the distribution of T ?

24. There are two servers available to process n jobs. Initially, each server begins
work on a job. Whenever a server completes work on a job, that job leaves
the system and the server begins processing a new job (provided there are still
jobs waiting to be processed). Let T denote the time until all jobs have been
processed. If the time that it takes server i to process a job is exponentially
distributed with rate μi, i = 1,2, find E[T ] and Var(T ).

25. Customers can be served by any of three servers, where the service times of
server i are exponentially distributed with rate μi, i = 1,2,3. Whenever a
server becomes free, the customer who has been waiting the longest begins
service with that server.
(a) If you arrive to find all three servers busy and no one waiting, find the

expected time until you depart the system.
(b) If you arrive to find all three servers busy and one person waiting, find

the expected time until you depart the system.
26. Each entering customer must be served first by server 1, then by server 2, and

finally by server 3. The amount of time it takes to be served by server i is an
exponential random variable with rate μi, i = 1,2,3. Suppose you enter the
system when it contains a single customer who is being served by server 3.
(a) Find the probability that server 3 will still be busy when you move over

to server 2.
(b) Find the probability that server 3 will still be busy when you move over

to server 3.
(c) Find the expected amount of time that you spend in the system. (When-

ever you encounter a busy server, you must wait for the service in prog-
ress to end before you can enter service.)

(d) Suppose that you enter the system when it contains a single customer
who is being served by server 2. Find the expected amount of time that
you spend in the system.

27. Show, in Example 5.7, that the distributions of the total cost are the same for
the two algorithms.

28. Consider n components with independent lifetimes, which are such that com-
ponent i functions for an exponential time with rate λi . Suppose that all
components are initially in use and remain so until they fail.
(a) Find the probability that component 1 is the second component to fail.
(b) Find the expected time of the second failure.

29. Let X and Y be independent exponential random variables with respective
rates λ and μ, where λ > μ. Let c > 0.
(a) Show that the conditional density function of X, given that X + Y = c,

is

fX|X+Y (x|c) = (λ − μ)e−(λ−μ)x

1 − e−(λ−μ)c
, 0 < x < c

(b) Use part (a) to find E[X|X + Y = c].
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(c) Find E[Y |X + Y = c].
30. The lifetimes of A’s dog and cat are independent exponential random variables

with respective rates λd and λc. One of them has just died. Find the expected
additional lifetime of the other pet.

31. Suppose W,X1, . . . ,Xn are independent nonnegative continuous random vari-
ables, with W being exponential with rate λ, and with Xi having density
function fi , i = 1, . . . , n.
(a) Show that

P(Xi < xi |W > Xi) =
∫ xi

0 e−λsfi(s)ds

P (W > Xi)

(b) Show that

P(W >

n∑
i=1

Xi) =
n∏

i=1

P(W > Xi)

(c) Show that

P(Xi ≤ xi, i = 1, . . . , n|W >

n∑
i=1

Xi) =
n∏

i=1

P(Xi ≤ xi |W > Xi)

That is, given that W >
∑n

i=1 Xi , the random variables X1, . . . ,Xn are
independent with Xi now being distributed according to its conditional
distribution given that it is less than W , i = 1, . . . , n.

32. Let X be a uniform random variable on (0, 1), and consider a counting process
where events occur at times X + i, for i = 0,1,2, . . . .
(a) Does this counting process have independent increments?
(b) Does this counting process have stationary increments?

33. Let X and Y be independent exponential random variables with respective
rates λ and μ.
(a) Argue that, conditional on X >Y , the random variables min(X,Y ) and

X − Y are independent.
(b) Use part (a) to conclude that for any positive constant c

E[min(X,Y )|X > Y + c] = E[min(X,Y )|X > Y ]
= E[min(X,Y )] = 1

λ + μ

(c) Give a verbal explanation of why min(X,Y ) and X − Y are (uncondi-
tionally) independent.

34. Two individuals, A and B, both require kidney transplants. If she does not re-
ceive a new kidney, then A will die after an exponential time with rate μA, and
B after an exponential time with rate μB . New kidneys arrive in accordance
with a Poisson process having rate λ. It has been decided that the first kidney
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will go to A (or to B if B is alive and A is not at that time) and the next one to
B (if still living).
(a) What is the probability that A obtains a new kidney?
(b) What is the probability that B obtains a new kidney?
(c) What is the probability that neither A nor B obtains a new kidney?
(d) What is the probability that both A and B obtain new kidneys?
(e) Find the expected time until neither A nor B is waiting.

35. Let {N(t), t ≥ 0} be a Poisson process with rate λ, and let P0(t) = P(N(t) =
0). This exercise gives another way to determine P0(t).
(a) Show that P0(t + h) = P0(t)(1 − λh) + o(h).
(b) Derive a differential equation satisfied by P ′

0(t).
(c) Solve to obtain P0(t).

*36. Let S(t) denote the price of a security at time t . A popular model for the pro-
cess {S(t), t ≥ 0} supposes that the price remains unchanged until a “shock”
occurs, at which time the price is multiplied by a random factor. If we let N(t)

denote the number of shocks by time t , and let Xi denote the ith multiplicative
factor, then this model supposes that

S(t) = S(0)

N(t)∏
i=1

Xi

where
∏N(t)

i=1 Xi is equal to 1 when N(t) = 0. Suppose that the Xi are in-
dependent exponential random variables with rate μ; that {N(t), t ≥ 0} is a
Poisson process with rate λ; that {N(t), t ≥ 0} is independent of the Xi ; and
that S(0) = s.
(a) Find E[S(t)].
(b) Find E[S2(t)].

37. Let {N(t), t ≥ 0} be a Poisson process with rate λ. For i ≤ n and s < t ,
(a) find P(N(t) = n|N(s) = i);
(b) find P(N(s) = i|N(t) = n).

38. Let {Mi(t), t ≥ 0}, i = 1,2,3 be independent Poisson processes with respec-
tive rates λi, i = 1,2, and set

N1(t) = M1(t) + M2(t), N2(t) = M2(t) + M3(t)

The stochastic process {(N1(t),N2(t)), t ≥ 0} is called a bivariate Poisson pro-
cess.
(a) Find P {N1(t) = n,N2(t) = m}.
(b) Find Cov(N1(t),N2(t)).

39. A certain scientific theory supposes that mistakes in cell division occur ac-
cording to a Poisson process with rate 2.5 per year, and that an individual dies
when 196 such mistakes have occurred. Assuming this theory, find
(a) the mean lifetime of an individual,
(b) the variance of the lifetime of an individual.
Also approximate
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(c) the probability that an individual dies before age 67.2,
(d) the probability that an individual reaches age 90,
(e) the probability that an individual reaches age 100.

*40. Show that if {Ni(t), t ≥ 0} are independent Poisson processes with rate λi ,
i = 1,2, then {N(t), t ≥ 0} is a Poisson process with rate λ1 + λ2 where
N(t) = N1(t) + N2(t).

41. Let {N(t), t ≥ 0} be a Poisson process with rate λ.
(a) Find P(N(4) = 4|N(3) = 1).
(b) Find Var(N(8)|N(5) = 6).
(c) Find P(N(5) = 0|N(8) − N(3) = 4).

42. Customers arrive to a single server system according to a Poisson process with
rate λ. An arrival that finds the server idle immediately begins service; an ar-
rival that finds the server busy waits. When the server completes a service it
then simultaneously serves all those customers who are waiting. The time it
takes to serve a group of size i is a random variable with density function gi ,
i ≥ 1. If Xn is the number of customers in the nth service batch, is {Xn,n ≥ 0}
a Markov chain. If it is, give its transition probabilities; if it is not, tell why
not.

43. Customers arrive at a two-server service station according to a Poisson process
with rate λ. Whenever a new customer arrives, any customer that is in the sys-
tem immediately departs. A new arrival enters service first with server 1 and
then with server 2. If the service times at the servers are independent exponen-
tials with respective rates μ1 and μ2, what proportion of entering customers
completes their service with server 2?

44. Cars pass a certain street location according to a Poisson process with rate λ.
A woman who wants to cross the street at that location waits until she can see
that no cars will come by in the next T time units.
(a) Find the probability that her waiting time is 0.
(b) Find her expected waiting time.

Hint: Condition on the time of the first car.
45. Let {N(t), t ≥ 0} be a Poisson process with rate λ that is independent of the

nonnegative random variable T with mean μ and variance σ 2. Find
(a) Cov(T , N(T )),
(b) Var(N(T )).

46. Let {N(t), t ≥ 0} be a Poisson process with rate λ that is independent of the
sequence X1, X2, . . . of independent and identically distributed random vari-
ables with mean μ and variance σ 2. Find

Cov

⎛
⎝N(t),

N(t)∑
i=1

Xi

⎞
⎠

47. Consider a two-server parallel queuing system where customers arrive ac-
cording to a Poisson process with rate λ, and where the service times are
exponential with rate μ. Moreover, suppose that arrivals finding both servers
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busy immediately depart without receiving any service (such a customer is
said to be lost), whereas those finding at least one free server immediately
enter service and then depart when their service is completed.
(a) If both servers are presently busy, find the expected time until the next

customer enters the system.
(b) Starting empty, find the expected time until both servers are busy.
(c) Find the expected time between two successive lost customers.

48. Consider an n-server parallel queuing system where customers arrive accord-
ing to a Poisson process with rate λ, where the service times are exponen-
tial random variables with rate μ, and where any arrival finding all servers
busy immediately departs without receiving any service. If an arrival finds all
servers busy, find
(a) the expected number of busy servers found by the next arrival,
(b) the probability that the next arrival finds all servers free,
(c) the probability that the next arrival finds exactly i of the servers free.

49. Events occur according to a Poisson process with rate λ. Each time an event
occurs, we must decide whether or not to stop, with our objective being to stop
at the last event to occur prior to some specified time T , where T > 1/λ. That
is, if an event occurs at time t,0 ≤ t ≤ T , and we decide to stop, then we win
if there are no additional events by time T , and we lose otherwise. If we do not
stop when an event occurs and no additional events occur by time T , then we
lose. Also, if no events occur by time T , then we lose. Consider the strategy
that stops at the first event to occur after some fixed time s,0 ≤ s ≤ T .
(a) Using this strategy, what is the probability of winning?
(b) What value of s maximizes the probability of winning?
(c) Show that one’s probability of winning when using the preceding strat-

egy with the value of s specified in part (b) is 1/e.
50. The number of hours between successive train arrivals at the station is uni-

formly distributed on (0, 1). Passengers arrive according to a Poisson process
with rate 7 per hour. Suppose a train has just left the station. Let X denote the
number of people who get on the next train. Find
(a) E[X],
(b) Var(X).

51. If an individual has never had a previous automobile accident, then the prob-
ability he or she has an accident in the next h time units is βh + o(h); on the
other hand, if he or she has ever had a previous accident, then the probability
is αh+ o(h). Find the expected number of accidents an individual has by time
t .

52. Teams 1 and 2 are playing a match. The teams score points according to inde-
pendent Poisson processes with respective rates λ1 and λ2. If the match ends
when one of the teams has scored k more points than the other, find the prob-
ability that team 1 wins.

Hint: Relate this to the gambler’s ruin problem.
53. There are n patients needing a kidney transplant. Kidneys arrive according to

a Poisson process with rate λ, and each patient is independently eligible to re-
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ceive an arriving kidney with probability p. If at least one patient still needing
a kidney is eligible then the arriving kidney is given to a randomly chosen one
of them; if all are ineligible the kidney is lost. Find the expected time until all
patients receive a kidney.

54. A viral linear DNA molecule of length, say, 1 is often known to contain a cer-
tain “marked position,” with the exact location of this mark being unknown.
One approach to locating the marked position is to cut the molecule by agents
that break it at points chosen according to a Poisson process with rate λ. It is
then possible to determine the fragment that contains the marked position. For
instance, letting m denote the location on the line of the marked position, then
if L1 denotes the last Poisson event time before m (or 0 if there are no Poisson
events in [0,m]), and R1 denotes the first Poisson event time after m (or 1 if
there are no Poisson events in [m,1]), then it would be learned that the marked
position lies between L1 and R1. Find
(a) P {L1 = 0},
(b) P {L1 < x}, 0 < x < m,
(c) P {R1 = 1},
(d) P {R1 > x}, m < x < 1.
By repeating the preceding process on identical copies of the DNA molecule,
we are able to zero in on the location of the marked position. If the cutting
procedure is utilized on n identical copies of the molecule, yielding the data
Li,Ri , i = 1, . . . , n, then it follows that the marked position lies between L

and R, where

L = max
i

Li, R = min
i

Ri

(e) Find E[R − L], and in doing so, show that E[R − L] ∼ 2
nλ

.
55. Consider a single server queuing system where customers arrive according to a

Poisson process with rate λ, service times are exponential with rate μ, and cus-
tomers are served in the order of their arrival. Suppose that a customer arrives
and finds n− 1 others in the system. Let X denote the number in the system at
the moment that customer departs. Find the probability mass function of X.

56. An event independently occurs on each day with probability p. Let N(n) de-
note the total number of events that occur on the first n days, and let Tr denote
the day on which the rth event occurs.
(a) What is the distribution of N(n)?
(b) What is the distribution of T1?
(c) What is the distribution of Tr?
(d) Given that N(n) = r , show that the set of r days on which events oc-

curred has the same distribution as a random selection (without replace-
ment) of r of the values 1,2, . . . , n.

*57. Each round played by a contestant is either a success with probability p or a
failure with probability 1 −p. If the round is a success, then a random amount
of money having an exponential distribution with rate λ is won. If the round is
a failure, then the contestant loses everything that had been accumulated up to
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that time and cannot play any additional rounds. After a successful round, the
contestant can either elect to quit playing and keep whatever has already been
won or can elect to play another round. Suppose that a newly starting contes-
tant plans on continuing to play until either the total of her winnings exceeds
t or a failure occurs.
(a) What is the distribution of N, equal to the number of successful rounds

that it would take until her fortune exceeds t?
(b) What is the probability the contestant will be successful in reaching a

fortune of at least t?
(c) Given the contestant is successful, what is her expected winnings?
(d) What is the expected value of the contestant’s winnings?

58. There are two types of claims that are made to an insurance company. Let
Ni(t) denote the number of type i claims made by time t , and suppose that
{N1(t), t ≥ 0} and {N2(t), t ≥ 0} are independent Poisson processes with rates
λ1 = 10 and λ2 = 1. The amounts of successive type 1 claims are independent
exponential random variables with mean $1000 whereas the amounts from
type 2 claims are independent exponential random variables with mean $5000.
A claim for $4000 has just been received; what is the probability it is a type 1
claim?

59. Cars pass an intersection according to a Poisson process with rate λ. There are
4 types of cars, and each passing car is, independently, type i with probability
pi ,

∑4
i=1 pi = 1.

(a) Find the probability that at least one of each of car types 1,2,3 but none
of type 4 have passed by time t .

(b) Given that exactly 6 cars of type 1 or 2 passed by time t , find the proba-
bility that 4 of them were type 1.

*60. People arrive according to a Poisson process with rate λ, with each person in-
dependently being equally likely to be either a man or a woman. If a woman
(man) arrives when there is at least one man (woman) waiting, then the woman
(man) departs with one of the waiting men (women). If there is no member of
the opposite sex waiting upon a person’s arrival, then that person waits. Let
X(t) denote the number waiting at time t . Argue that E[X(t)] ≈ 0.78

√
2λt

when t is large.

Hint: If Z is a standard normal random variable, then E[|Z|] = √
2/π ≈

0.78.
61. A system has a random number of flaws that we will suppose is Poisson dis-

tributed with mean c. Each of these flaws will, independently, cause the system
to fail at a random time having distribution G. When a system failure occurs,
suppose that the flaw causing the failure is immediately located and fixed.
(a) What is the distribution of the number of failures by time t?
(b) What is the distribution of the number of flaws that remain in the system

at time t?
(c) Are the random variables in parts (a) and (b) dependent or independent?

62. Suppose that the number of typographical errors in a new text is Poisson
distributed with mean λ. Two proofreaders independently read the text. Sup-
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pose that each error is independently found by proofreader i with probability
pi, i = 1,2. Let X1 denote the number of errors that are found by proofreader
1 but not by proofreader 2. Let X2 denote the number of errors that are found
by proofreader 2 but not by proofreader 1. Let X3 denote the number of er-
rors that are found by both proofreaders. Finally, let X4 denote the number of
errors found by neither proofreader.
(a) Describe the joint probability distribution of X1,X2,X3,X4.
(b) Show that

E[X1]
E[X3] = 1 − p2

p2
and

E[X2]
E[X3] = 1 − p1

p1

Suppose now that λ,p1, and p2 are all unknown.
(c) By using Xi as an estimator of E[Xi], i = 1,2,3, present estimators of

p1,p2, and λ.
(d) Give an estimator of X4, the number of errors not found by either proof-

reader.
63. Consider an infinite server queuing system in which customers arrive in accor-

dance with a Poisson process with rate λ, and where the service distribution
is exponential with rate μ. Let X(t) denote the number of customers in the
system at time t . Find
(a) E[X(t + s)|X(s) = n];
(b) Var(X(t + s)|X(s) = n).

Hint: Divide the customers in the system at time t + s into two groups, one
consisting of “old” customers and the other of “new” customers.
(c) If there is currently a single customer in the system, find the probability

that the system becomes empty when that customer departs.
*64. Suppose that people arrive at a bus stop in accordance with a Poisson process

with rate λ. The bus departs at time t . Let X denote the total amount of waiting
time of all those who get on the bus at time t . We want to determine Var(X).
Let N(t) denote the number of arrivals by time t .
(a) What is E[X|N(t)]?
(b) Argue that Var(X|N(t)) = N(t)t2/12.
(c) What is Var(X)?

65. An average of 500 people pass the California bar exam each year. A Califor-
nia lawyer practices law, on average, for 30 years. Assuming these numbers
remain steady, roughly how many lawyers would you expect California to have
in 2050?

66. Policyholders of a certain insurance company have accidents at times dis-
tributed according to a Poisson process with rate λ. The amount of time from
when the accident occurs until a claim is made has distribution G.
(a) Find the probability there are exactly n incurred but as yet unreported

claims at time t .
(b) Suppose that each claim amount has distribution F , and that the claim

amount is independent of the time that it takes to report the claim. Find
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the expected value of the sum of all incurred but as yet unreported claims
at time t .

67. Satellites are launched into space at times distributed according to a Poisson
process with rate λ. Each satellite independently spends a random time (hav-
ing distribution G) in space before falling to the ground. Find the probability
that none of the satellites in the air at time t was launched before time s, where
s < t .

68. Suppose that electrical shocks having random amplitudes occur at times dis-
tributed according to a Poisson process {N(t), t ≥ 0} with rate λ. Suppose that
the amplitudes of the successive shocks are independent both of other ampli-
tudes and of the arrival times of shocks, and also that the amplitudes have
distribution F with mean μ. Suppose also that the amplitude of a shock de-
creases with time at an exponential rate α, meaning that an initial amplitude A

will have value Ae−αx after an additional time x has elapsed. Let A(t) denote
the sum of all amplitudes at time t . That is,

A(t) =
N(t)∑
i=1

Aie
−α(t−Si)

where Ai and Si are the initial amplitude and the arrival time of shock i.
(a) Find E[A(t)] by conditioning on N(t).
(b) Without any computations, explain why A(t) has the same distribution

as does D(t) of Example 5.21.
69. Suppose in Example 5.19 that a car can overtake a slower moving car without

any loss of speed. Suppose a car that enters the road at time s has a free travel
time equal to t0. Find the distribution of the total number of other cars that it
encounters on the road (either by passing or by being passed).

70. For the infinite server queue with Poisson arrivals and general service distri-
bution G, find the probability that
(a) the first customer to arrive is also the first to depart.
Let S(t) equal the sum of the remaining service times of all customers in the
system at time t .
(b) Argue that S(t) is a compound Poisson random variable.
(c) Find E[S(t)].
(d) Find Var(S(t)).

71. Events occur according to a Poisson process N(t), t ≥ 0, with rate λ. An event
for which there are no other events within a time d of it is said to be isolated.
That is, an event occurring at time y < d is isolated if there are no other events
in the interval (0, y + d), whereas an event occurring at time y ≥ d is isolated
if there are no other events in the interval (y − d, y + d).
(a) Find the probability that the first event of the Poisson process is isolated.
(b) Find the probability that the second event of the Poisson process is iso-

lated.
Let Is(t) be the number of isolated events in the interval (s, s + t).
(c) If s > d , find E[Is(t)|N(s + t + d) = n].
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(d) If s > d , find E[Is(t)].
72. A cable car starts off with n riders. The times between successive stops of the

car are independent exponential random variables with rate λ. At each stop
one rider gets off. This takes no time, and no additional riders get on. After a
rider gets off the car, he or she walks home. Independently of all else, the walk
takes an exponential time with rate μ.
(a) What is the distribution of the time at which the last rider departs the car?
(b) Suppose the last rider departs the car at time t . What is the probability

that all the other riders are home at that time?
73. Shocks occur according to a Poisson process with rate λ, and each shock inde-

pendently causes a certain system to fail with probability p. Let T denote the
time at which the system fails and let N denote the number of shocks that it
takes.
(a) Find the conditional distribution of T given that N = n.
(b) Calculate the conditional distribution of N , given that T = t , and no-

tice that it is distributed as 1 plus a Poisson random variable with mean
λ(1 − p)t .

(c) Explain how the result in part (b) could have been obtained without any
calculations.

74. The number of missing items in a certain location, call it X, is a Poisson
random variable with mean λ. When searching the location, each item will
independently be found after an exponentially distributed time with rate μ. A
reward of R is received for each item found, and a searching cost of C per unit
of search time is incurred. Suppose that you search for a fixed time t and then
stop.
(a) Find your total expected return.
(b) Find the value of t that maximizes the total expected return.
(c) The policy of searching for a fixed time is a static policy. Would a dy-

namic policy, which allows the decision as to whether to stop at each
time t , depend on the number already found by t be beneficial?

Hint: How does the distribution of the number of items not yet found by
time t depend on the number already found by that time?

75. If X1, . . . ,Xn are independent exponential random variables with rate λ, find
(a) P(X1 < x|X1 + . . . + Xn = t);
(b) P( X1

X1+...+Xn
≤ x), 0 ≤ x ≤ 1.

Hint: Interpret X1, . . . ,Xn as the interarrival times of a Poisson process.
76. For the model of Example 5.27, find the mean and variance of the number of

customers served in a busy period.
77. Suppose that customers arrive to a system according to a Poisson process with

rate λ. There are an infinite number of servers in this system so a customer
begins service upon arrival. The service times of the arrivals are independent
exponential random variables with rate μ, and are independent of the arrival
process. Customers depart the system when their service ends. Let N be the
number of arrivals before the first departure.



378 Introduction to Probability Models

(a) Find P(N = 1).
(b) Find P(N = 2).
(c) Find P(N = j).
(d) Find the probability that the first to arrive is the first to depart.
(e) Find the expected time of the first departure.

78. A store opens at 8 A.M. From 8 until 10 A.M. customers arrive at a Poisson
rate of four an hour. Between 10 A.M. and 12 P.M. they arrive at a Poisson rate
of eight an hour. From 12 P.M. to 2 P.M. the arrival rate increases steadily from
eight per hour at 12 P.M. to ten per hour at 2 P.M.; and from 2 to 5 P.M. the
arrival rate drops steadily from ten per hour at 2 P.M. to four per hour at 5 P.M.
Determine the probability distribution of the number of customers that enter
the store on a given day.

*79. Suppose that events occur according to a nonhomogeneous Poisson process
with intensity function λ(t), t > 0. Further, suppose that an event that occurs
at time s is a type 1 event with probability p(s), s > 0. If N1(t) is the number
of type 1 events by time t , what type of process is {N1(t), t ≥ 0}?

80. (a) Show that the joint density of S1, . . . , Sn, the first n events time of a non-
stationary Poisson process {N(t), t ≥ 0} with intensity function λ(t), is
given by

fS1,...,Sn(t1, . . . , tn) = λ(t1) · · ·λ(tn) e−m(tn), 0 < t1 < . . . < tn

where m(t) = ∫ t

0 λ(s)ds.
(b) Show that the conditional density of S1, . . . , Sn, given that N(t) = n is

fS1,...,Sn|N(t)(t1, . . . , tn|n) = n!λ(t1) · · ·λ(tn)

mn(t)
, 0 < t1 < . . . < tn < t

(c) Conclude that given that N(t) = n, the event times S1, . . . , Sn are dis-
tributed as the order statistics of n independent random variables with
density function f (s) = λ(s)

m(t)
, 0 < s < t .

81. Workers at a plant incur accidents in accordance with a nonhomogeneous Pois-
son process with intensity function λ(t). Each worker having an accident is out
of work for a random time having distribution function F . Let X(t) denote the
number of workers out of work at time t . Find E[X(t)].
Hint: Use the results of Exercise 80.

82. Let X1,X2, . . . be independent positive continuous random variables with a
common density function f , and suppose this sequence is independent of N ,
a Poisson random variable with mean λ. Define

N(t) = number of i ≤ N : Xi ≤ t

Show that {N(t), t ≥ 0} is a nonhomogeneous Poisson process with intensity
function λ(t) = λf (t).

83. Prove Lemma 5.4.
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*84. Let X1,X2, . . . be independent and identically distributed nonnegative con-
tinuous random variables having density function f (x). We say that a record
occurs at time n if Xn is larger than each of the previous values X1, . . . ,Xn−1.
(A record automatically occurs at time 1.) If a record occurs at time n, then
Xn is called a record value. In other words, a record occurs whenever a new
high is reached, and that new high is called the record value. Let N(t) denote
the number of record values that are less than or equal to t . Characterize the
process {N(t), t ≥ 0} when
(a) f is an arbitrary continuous density function.
(b) f (x) = λe−λx .

Hint: Finish the following sentence: There will be a record whose value is
between t and t + dt if the first Xi that is greater than t lies between . . .

85. Let X(t) = ∑N(t)
i=1 Xi where Xi , i ≥ 1 are independent and identically dis-

tributed with mean E[X], and are independent of {N(t), t ≥ 0}, which is a
Poisson process with rate λ. For s < t , find
(a) E[X(t)|X(s)];
(b) E[X(t)|N(s)];
(c) Var(X(t)|N(s));
(d) E[X(s)|N(t)].

86. In good years, storms occur according to a Poisson process with rate 3 per unit
time, while in other years they occur according to a Poisson process with rate
5 per unit time. Suppose next year will be a good year with probability 0.3.
Let N(t) denote the number of storms during the first t time units of next year.
(a) Find P {N(t) = n}.
(b) Is {N(t)} a Poisson process?
(c) Does {N(t)} have stationary increments? Why or why not?
(d) Does it have independent increments? Why or why not?
(e) If next year starts off with three storms by time t = 1, what is the condi-

tional probability it is a good year?
87. Determine

Cov(X(t),X(t + s))

when {X(t), t ≥ 0} is a compound Poisson process.
88. Customers arrive at the automatic teller machine in accordance with a Pois-

son process with rate 12 per hour. The amount of money withdrawn on each
transaction is a random variable with mean $30 and standard deviation $50. (A
negative withdrawal means that money was deposited.) The machine is in use
for 15 hours daily. Approximate the probability that the total daily withdrawal
is less than $6000.

89. Some components of a two-component system fail after receiving a shock.
Shocks of three types arrive independently and in accordance with Poisson
processes. Shocks of the first type arrive at a Poisson rate λ1 and cause the
first component to fail. Those of the second type arrive at a Poisson rate λ2
and cause the second component to fail. The third type of shock arrives at a
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Poisson rate λ3 and causes both components to fail. Let X1 and X2 denote the
survival times for the two components. Show that the joint distribution of X1
and X2 is given by

P {X1 > s,X1 > t} = exp{−λ1s − λ2t − λ3 max(s, t)}
This distribution is known as the bivariate exponential distribution.

90. In Exercise 89 show that X1 and X2 both have exponential distributions.
*91. Let X1,X2, . . . ,Xn be independent and identically distributed exponential

random variables. Show that the probability that the largest of them is greater
than the sum of the others is n/2n−1. That is, if

M = max
j

Xj

then show

P

{
M >

n∑
i=1

Xi − M

}
= n

2n−1

Hint: What is P {X1 >
∑n

i=2 Xi}?
92. Prove Eq. (5.22).
93. Prove that

(a) max(X1,X2) = X1 + X2 − min(X1,X2) and, in general,

(b) max(X1, . . . ,Xn) =
n∑
1

Xi −
∑∑

i<j

min(Xi,Xj )

+
∑∑∑

i<j<k

min(Xi,Xj ,Xk) + · · ·

+ (−1)n−1 min(Xi,Xj , . . . ,Xn)

(c) Show by defining appropriate random variables Xi , i = 1, . . . , n, and by
taking expectations in part (b) how to obtain the well-known formula

P

(
n⋃
1

Ai

)
=
∑

i

P (Ai)−
∑∑

i<j

P (AiAj )+· · ·+ (−1)n−1 P(A1 · · ·An)

(d) Consider n independent Poisson processes—the ith having rate λi . De-
rive an expression for the expected time until an event has occurred in all
n processes.

94. A two-dimensional Poisson process is a process of randomly occurring events
in the plane such that

(i) for any region of area A the number of events in that region has a Poisson
distribution with mean λA, and

(ii) the number of events in nonoverlapping regions are independent.
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For such a process, consider an arbitrary point in the plane and let X denote
its distance from its nearest event (where distance is measured in the usual
Euclidean manner). Show that
(a) P {X > t} = e−λπt2

,
(b) E[X] = 1

2
√

λ
.

95. Let {N(t), t ≥ 0} be a conditional Poisson process with a random rate L.
(a) Derive an expression for E[L|N(t) = n].
(b) Find, for s > t , E[N(s)|N(t) = n].
(c) Find, for s < t , E[N(s)|N(t) = n].

96. For the conditional Poisson process, let m1 = E[L], m2 = E[L2]. In terms of
m1 and m2, find Cov(N(s),N(t)) for s ≤ t .

97. Consider a conditional Poisson process in which the rate L is, as in Exam-
ple 5.29, gamma distributed with parameters m and p. Find the conditional
density function of L given that N(t) = n.

98. Let M(t) = E[D(t)] in Example 5.21.
(a) Show that

M(t + h) = M(t) + e−αtλhμ + o(h)

(b) Use (a) to show that

M ′(t) = λμe−αt

(c) Show that

M(t) = λμ

α
(1 − e−αt )

99. Let X be the time between the first and the second event of a Hawkes process
with mark distribution F . Find P(X > t).
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6Continuous-Time Markov Chains

6.1 Introduction
In this chapter, we consider a class of probability models that has a wide variety of ap-
plications in the real world. The members of this class are the continuous-time analogs
of the Markov chains of Chapter 4 and as such are characterized by the Markovian
property that, given the present state, the future is independent of the past.

One example of a continuous-time Markov chain has already been met. This is the
Poisson process of Chapter 5. For if we let the total number of arrivals by time t (that
is, N(t)) be the state of the process at time t , then the Poisson process is a continuous-
time Markov chain having states 0,1,2, . . . that always proceeds from state n to state
n+1, where n ≥ 0. Such a process is known as a pure birth process since when a tran-
sition occurs the state of the system is always increased by one. More generally, an
exponential model that can go (in one transition) only from state n to either state n−1
or state n + 1 is called a birth and death model. For such a model, transitions from
state n to state n+1 are designated as births, and those from n to n−1 as deaths. Birth
and death models have wide applicability in the study of biological systems and in the
study of waiting line systems in which the state represents the number of customers in
the system. These models will be studied extensively in this chapter.

In Section 6.2, we define continuous-time Markov chains and then relate them to
the discrete-time Markov chains of Chapter 4. In Section 6.3, we consider birth and
death processes and in Section 6.4, we derive two sets of differential equations—the
forward and backward equations—that describe the probability laws for the system.
The material in Section 6.5 is concerned with determining the limiting (or long-run)
probabilities connected with a continuous-time Markov chain. In Section 6.6, we con-
sider the topic of time reversibility. We show that all birth and death processes are time
reversible, and then illustrate the importance of this observation to queueing systems.
In Section 6.7, we introduce the reverse chain, which has important applications even
when the chain is not time reversible. The final two sections deal with uniformization
and methods for numerically computing transition probabilities.

6.2 Continuous-Time Markov Chains
Suppose we have a continuous-time stochastic process {X(t), t ≥ 0} taking on val-
ues in the set of nonnegative integers. In analogy with the definition of a discrete-
time Markov chain, given in Chapter 4, we say that the process {X(t), t ≥ 0} is a
continuous-time Markov chain if for all s, t ≥ 0 and nonnegative integers i, j , x(u),
0 ≤ u < s
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P {X(t + s) = j |X(s) = i, X(u) = x(u), 0 ≤ u < s}
= P {X(t + s) = j |X(s) = i}

In other words, a continuous-time Markov chain is a stochastic process having the
Markovian property that the conditional distribution of the future X(t + s) given the
present X(s) and the past X(u),0 ≤ u < s, depends only on the present and is inde-
pendent of the past. If, in addition,

P {X(t + s) = j |X(s) = i}
is independent of s, then the continuous-time Markov chain is said to have stationary
or homogeneous transition probabilities.

All Markov chains considered in this text will be assumed to have stationary tran-
sition probabilities.

Suppose that a continuous-time Markov chain enters state i at some time, say, time
0, and suppose that the process does not leave state i (that is, a transition does not
occur) during the next ten minutes. What is the probability that the process will not
leave state i during the following five minutes? Since the process is in state i at time
10 it follows, by the Markovian property, that the probability that it remains in that
state during the interval [10,15] is just the (unconditional) probability that it stays in
state i for at least five minutes. That is, if we let Ti denote the amount of time that the
process stays in state i before making a transition into a different state, then

P {Ti > 15|Ti > 10} = P {Ti > 5}
or, in general, by the same reasoning,

P {Ti > s + t |Ti > s} = P {Ti > t}
for all s, t ≥ 0. Hence, the random variable Ti is memoryless and must thus (see Sec-
tion 5.2.2) be exponentially distributed.

In fact, the preceding gives us another way of defining a continuous-time Markov
chain. Namely, it is a stochastic process having the properties that each time it enters
state i

(i) the amount of time it spends in that state before making a transition into a dif-
ferent state is exponentially distributed with mean, say, 1/vi , and

(ii) when the process leaves state i, it next enters state j with some probability, say,
Pij . Of course, the Pij must satisfy

Pii = 0, all i∑
j

Pij = 1, all i

In other words, a continuous-time Markov chain is a stochastic process that moves
from state to state in accordance with a (discrete-time) Markov chain, but is such that
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the amount of time it spends in each state, before proceeding to the next state, is ex-
ponentially distributed. In addition, the amount of time the process spends in state i,
and the next state visited, must be independent random variables. For if the next state
visited were dependent on Ti , then information as to how long the process has al-
ready been in state i would be relevant to the prediction of the next state—and this
contradicts the Markovian assumption.

Example 6.1 (A Shoe Shine Shop). Consider a shoe shine establishment consisting of
two chairs—chair 1 and chair 2. A customer upon arrival goes initially to chair 1 where
his shoes are cleaned and polish is applied. After this is done the customer moves on
to chair 2 where the polish is buffed. The service times at the two chairs are assumed
to be independent random variables that are exponentially distributed with respective
rates μ1 and μ2. Suppose that potential customers arrive in accordance with a Poisson
process having rate λ, and that a potential customer will enter the system only if both
chairs are empty.

The preceding model can be analyzed as a continuous-time Markov chain, but first
we must decide upon an appropriate state space. Since a potential customer will enter
the system only if there are no other customers present, it follows that there will al-
ways either be 0 or 1 customers in the system. However, if there is 1 customer in the
system, then we would also need to know which chair he was presently in. Hence, an
appropriate state space might consist of the three states 0, 1, and 2 where the states
have the following interpretation:

State Interpretation
0 system is empty
1 a customer is in chair 1
2 a customer is in chair 2

We leave it as an exercise for you to verify that

v0 = λ, v1 = μ1, v2 = μ2,

P01 = P12 = P20 = 1 �

6.3 Birth and Death Processes
Consider a system whose state at any time is represented by the number of people in
the system at that time. Suppose that whenever there are n people in the system, then
(i) new arrivals enter the system at an exponential rate λn, and (ii) people leave the sys-
tem at an exponential rate μn. That is, whenever there are n persons in the system, then
the time until the next arrival is exponentially distributed with mean 1/λn and is inde-
pendent of the time until the next departure, which is itself exponentially distributed
with mean 1/μn. Such a system is called a birth and death process. The parameters
{λn}∞n=0 and {μn}∞n=1 are called, respectively, the arrival (or birth) and departure (or
death) rates.

Thus, a birth and death process is a continuous-time Markov chain with states
{0,1, . . .} for which transitions from state n may go only to either state n − 1 or state
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n+ 1. The relationships between the birth and death rates and the state transition rates
and probabilities are

v0 = λ0,

vi = λi + μi, i > 0

P0 1 = 1,

Pi,i+1 = λi

λi + μi

, i > 0

Pi,i−1 = μi

λi + μi

, i > 0

The preceding follows, because if there are i in the system, then the next state will
be i + 1 if a birth occurs before a death, and the probability that an exponential ran-
dom variable with rate λi will occur earlier than an (independent) exponential with
rate μi is λi/(λi + μi). Moreover, the time until either a birth or a death occurs is
exponentially distributed with rate λi + μi (and so, vi = λi + μi).

Example 6.2 (The Poisson Process). Consider a birth and death process for which

μn = 0, for all n ≥ 0

λn = λ, for all n ≥ 0

This is a process in which departures never occur, and the time between successive
arrivals is exponential with mean 1/λ. Hence, this is just the Poisson process. �

A birth and death process for which μn = 0 for all n is called a pure birth process.
Another pure birth process is given by the next example.

Example 6.3 (A Birth Process with Linear Birth Rate). Consider a population whose
members can give birth to new members but cannot die. If each member acts indepen-
dently of the others and takes an exponentially distributed amount of time, with mean
1/λ, to give birth, then if X(t) is the population size at time t , then {X(t), t ≥ 0} is a
pure birth process with λn = nλ,n ≥ 0. This follows since if the population consists
of n persons and each gives birth at an exponential rate λ, then the total rate at which
births occur is nλ. This pure birth process is known as a Yule process after G. Yule,
who used it in his mathematical theory of evolution. �

Example 6.4 (A Linear Growth Model with Immigration). A model in which

μn = nμ, n ≥ 1

λn = nλ + θ, n ≥ 0

is called a linear growth process with immigration. Such processes occur naturally
in the study of biological reproduction and population growth. Each individual in the
population is assumed to give birth at an exponential rate λ; in addition, there is an
exponential rate of increase θ of the population due to an external source such as
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immigration. Hence, the total birth rate where there are n persons in the system is
nλ + θ . Deaths are assumed to occur at an exponential rate μ for each member of the
population, so μn = nμ.

Let X(t) denote the population size at time t . Suppose that X(0) = i and let

M(t) = E[X(t)]
We will determine M(t) by deriving and then solving a differential equation that it
satisfies.

We start by deriving an equation for M(t +h) by conditioning on X(t). This yields

M(t + h) = E[X(t + h)]
= E[E[X(t + h)|X(t)]]

Now, given the size of the population at time t then, ignoring events whose probability
is o(h), the population at time t + h will either increase in size by 1 if a birth or an
immigration occurs in (t, t + h), or decrease by 1 if a death occurs in this interval, or
remain the same if neither of these two possibilities occurs. That is, given X(t),

X(t + h) =
⎧⎨
⎩

X(t) + 1, with probability [θ + X(t)λ]h + o(h)

X(t) − 1, with probability X(t)μh + o(h)

X(t), with probability 1 − [θ + X(t)λ+X(t)μ]h + o(h)

Therefore,

E[X(t + h)|X(t)] = X(t) + [θ + X(t)λ − X(t)μ]h + o(h)

Taking expectations yields

M(t + h) = M(t) + (λ − μ)M(t)h + θh + o(h)

or, equivalently,

M(t + h) − M(t)

h
= (λ − μ)M(t) + θ + o(h)

h

Taking the limit as h → 0 yields the differential equation

M ′(t) = (λ − μ)M(t) + θ (6.1)

If we now define the function h(t) by

h(t) = (λ − μ)M(t) + θ

then

h′(t) = (λ − μ)M ′(t)
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Therefore, differential equation (6.1) can be rewritten as

h′(t)
λ − μ

= h(t)

or

h′(t)
h(t)

= λ − μ

Integration yields

log[h(t)] = (λ − μ)t + c

or

h(t) = Ke(λ−μ)t

Putting this back in terms of M(t) gives

θ + (λ − μ)M(t) = Ke(λ−μ)t

To determine the value of the constant K , we use the fact that M(0) = i and evaluate
the preceding at t = 0. This gives

θ + (λ − μ)i = K

Substituting this back in the preceding equation for M(t) yields the following solution
for M(t):

M(t) = θ

λ − μ
[e(λ−μ)t − 1] + ie(λ−μ)t

Note that we have implicitly assumed that λ �= μ. If λ = μ, then differential equa-
tion (6.1) reduces to

M ′(t) = θ (6.2)

Integrating (6.2) and using that M(0) = i gives the solution

M(t) = θt + i �

Example 6.5 (The Queueing System M/M/1). Suppose that customers arrive at a
single-server service station in accordance with a Poisson process having rate λ. That
is, the times between successive arrivals are independent exponential random vari-
ables having mean 1/λ. Upon arrival, each customer goes directly into service if the
server is free; if not, then the customer joins the queue (that is, he waits in line). When
the server finishes serving a customer, the customer leaves the system and the next
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customer in line, if there are any waiting, enters the service. The successive service
times are assumed to be independent exponential random variables having mean 1/μ.

The preceding is known as the M/M/1 queueing system. The first M refers to the
fact that the interarrival process is Markovian (since it is a Poisson process) and the
second to the fact that the service distribution is exponential (and, hence, Markovian).
The 1 refers to the fact that there is a single server.

If we let X(t) denote the number in the system at time t then {X(t), t ≥ 0} is a
birth and death process with

μn = μ, n ≥ 1

λn = λ, n ≥ 0 �

Example 6.6 (A Multiserver Exponential Queueing System). Consider an exponen-
tial queueing system in which there are s servers available, each serving at rate μ. An
entering customer first waits in line and then goes to the first free server. Assuming ar-
rivals are according to a Poisson process having rate λ, this is a birth and death process
with parameters

μn =
{
nμ, 1 ≤ n ≤ s

sμ, n > s

λn = λ, n ≥ 0

To see why this is true, reason as follows: If there are n customers in the system, where
n ≤ s, then n servers will be busy. Since each of these servers works at rate μ, the total
departure rate will be nμ. On the other hand, if there are n customers in the system,
where n > s, then all s of the servers will be busy, and thus the total departure rate
will be sμ. This is known as an M/M/s queueing model. �

Consider now a general birth and death process with birth rates {λn} and death
rates {μn}, where μ0 = 0, and let Ti denote the time, starting from state i, it takes for
the process to enter state i + 1, i ≥ 0. We will recursively compute E[Ti], i ≥ 0, by
starting with i = 0. Since T0 is exponential with rate λ0, we have

E[T0] = 1

λ0

For i > 0, we condition whether the first transition takes the process into state i − 1 or
i + 1. That is, let

Ii =
{

1, if the first transition from i is to i + 1
0, if the first transition from i is to i − 1

and note that

E[Ti |Ii = 1] = 1

λi + μi

,

E[Ti |Ii = 0] = 1

λi + μi

+ E[Ti−1] + E[Ti]
(6.3)
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This follows since, independent of whether the first transition is from a birth or death,
the time until it occurs is exponential with rate λi +μi ; if this first transition is a birth,
then the population size is at i + 1, so no additional time is needed; whereas if it is
death, then the population size becomes i − 1 and the additional time needed to reach
i + 1 is equal to the time it takes to return to state i (this has mean E[Ti−1]) plus the
additional time it then takes to reach i + 1 (this has mean E[Ti]). Hence, since the
probability that the first transition is a birth is λi/(λi + μi), we see that

E[Ti] = 1

λi + μi

+ μi

λi + μi

(E[Ti−1] + E[Ti])

or, equivalently,

E[Ti] = 1

λi

+ μi

λi

E[Ti−1], i ≥ 1

Starting with E[T0] = 1/λ0, the preceding yields an efficient method to successively
compute E[T1],E[T2], and so on.

Suppose now that we wanted to determine the expected time to go from state i to
state j where i < j . This can be accomplished using the preceding by noting that this
quantity will equal E[Ti] + E[Ti+1] + · · · + E[Tj−1].
Example 6.7. For the birth and death process having parameters λi ≡ λ, μi ≡ μ,

E[Ti] = 1

λ
+ μ

λ
E[Ti−1]

= 1

λ
(1 + μE[Ti−1])

Starting with E[T0] = 1/λ, we see that

E[T1] = 1

λ

(
1 + μ

λ

)
,

E[T2] = 1

λ

[
1 + μ

λ
+

(μ

λ

)2
]

and, in general,

E[Ti] = 1

λ

[
1 + μ

λ
+

(μ

λ

)2 + · · · +
(μ

λ

)i
]

= 1 − (μ/λ)i+1

λ − μ
, i ≥ 0

The expected time to reach state j , starting at state k, k < j , is

E[time to go from k to j ] =
j−1∑
i=k

E[Ti]

= j − k

λ − μ
− (μ/λ)k+1

λ − μ

[
1 − (μ/λ)j−k

]
1 − μ/λ
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The foregoing assumes that λ �= μ. If λ = μ, then

E[Ti] = i + 1

λ
,

E[time to go from k to j ] = j (j + 1) − k(k + 1)

2λ
�

We can also compute the variance of the time to go from 0 to i + 1 by utilizing the
conditional variance formula. First note that Eq. (6.3) can be written as

E[Ti |Ii] = 1

λi + μi

+ (1 − Ii)(E[Ti−1] + E[Ti])

Thus,

Var(E[Ti |Ii]) = (E[Ti−1] + E[Ti])2 Var(Ii)

= (E[Ti−1] + E[Ti])2 μiλi

(μi + λi)2
(6.4)

where Var(Ii) is as shown since Ii is a Bernoulli random variable with parameter
p = λi/(λi + μi). Also, note that if we let Xi denote the time until the transition from
i occurs, then

Var(Ti |Ii = 1) = Var(Xi |Ii = 1)

= Var(Xi)

= 1

(λi + μi)2
(6.5)

where the preceding uses the fact that the time until transition is independent of the
next state visited. Also,

Var(Ti |Ii = 0) = Var(Xi + time to get back to i + time to then reach i +1)

= Var(Xi) + Var(Ti−1) + Var(Ti) (6.6)

where the foregoing uses the fact that the three random variables are independent. We
can rewrite Eqs. (6.5) and (6.6) as

Var(Ti |Ii) = Var(Xi) + (1 − Ii)[Var(Ti−1) + Var(Ti)]
so

E[Var(Ti |Ii)] = 1

(μi + λi)2
+ μi

μi + λi

[Var(Ti−1) + Var(Ti)] (6.7)

Hence, using the conditional variance formula, which states that Var(Ti) is the sum of
Eqs. (6.7) and (6.4), we obtain



392 Introduction to Probability Models

Var(Ti) = 1

(μi + λi)2
+ μi

μi + λi

[Var(Ti−1) + Var(Ti)]

+ μiλi

(μi + λi)2
(E[Ti−1] + E[Ti])2

or, equivalently,

Var(Ti) = 1

λi(λi + μi)
+ μi

λi

Var(Ti−1) + μi

μi + λi

(E[Ti−1] + E[Ti])2

Starting with Var(T0) = 1/λ2
0 and using the former recursion to obtain the expecta-

tions, we can recursively compute Var(Ti). In addition, if we want the variance of the
time to reach state j , starting from state k, k < j , then this can be expressed as the
time to go from k to k +1 plus the additional time to go from k +1 to k +2, and so on.
Since, by the Markovian property, these successive random variables are independent,
it follows that

Var(time to go from k to j) =
j−1∑
i=k

Var(Ti)

6.4 The Transition Probability Function Pij (t)
Let

Pij (t) = P {X(t + s) = j |X(s) = i}

denote the probability that a process presently in state i will be in state j a time t later.
These quantities are often called the transition probabilities of the continuous-time
Markov chain.

We can explicitly determine Pij (t) in the case of a pure birth process having dis-
tinct birth rates. For such a process, let Xk denote the time the process spends in state k

before making a transition into state k +1, k ≥ 1. Suppose that the process is presently
in state i, and let j > i. Then, as Xi is the time it spends in state i before moving to
state i + 1, and Xi+1 is the time it then spends in state i + 1 before moving to state
i + 2, and so on, it follows that

∑j−1
k=i Xk is the time it takes until the process enters

state j . Now, if the process has not yet entered state j by time t , then its state at time
t is smaller than j , and vice versa. That is,

X(t) < j ⇔ Xi + · · · + Xj−1 > t

Therefore, for i < j , we have for a pure birth process that

P {X(t) < j |X(0) = i} = P

⎧⎨
⎩

j−1∑
k=i

Xk > t

⎫⎬
⎭
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However, since Xi, . . . ,Xj−1 are independent exponential random variables with re-
spective rates λi, . . . , λj−1, we obtain from the preceding and Eq. (5.9), which gives

the tail distribution function of
∑j−1

k=i Xk , that

P {X(t) < j |X(0) = i} =
j−1∑
k=i

e−λkt

j−1∏
r �=k, r=i

λr

λr − λk

Replacing j by j + 1 in the preceding gives

P {X(t) < j + 1|X(0) = i} =
j∑

k=i

e−λkt

j∏
r �=k, r=i

λr

λr − λk

Since

P {X(t) = j |X(0) = i} = P {X(t) < j + 1|X(0) = i} − P {X(t) < j |X(0) = i}
and since Pii(t) = P {Xi > t} = e−λi t , we have shown the following.

Proposition 6.1. For a pure birth process having λi �= λj when i �= j

Pij (t) =
j∑

k=i

e−λkt

j∏
r �=k, r=i

λr

λr − λk

−
j−1∑
k=i

e−λkt

j−1∏
r �=k, r=i

λr

λr − λk

, i < j

Pii(t) = e−λi t

Example 6.8. Consider the Yule process, which is a pure birth process in which each
individual in the population independently gives birth at rate λ, and so λn = nλ, n ≥ 1.
Letting i = 1, we obtain from Proposition 6.1

P1j (t) =
j∑

k=1

e−kλt

j∏
r �=k, r=1

r

r − k
−

j−1∑
k=1

e−kλt

j−1∏
r �=k, r=1

r

r − k

= e−jλt

j−1∏
r=1

r

r − j
+

j−1∑
k=1

e−kλt

⎛
⎝ j∏

r �=k, r=1

r

r − k
−

j−1∏
r �=k, r=1

r

r − k

⎞
⎠

= e−jλt (−1)j−1 +
j−1∑
k=1

e−kλt

(
j

j − k
− 1

) j−1∏
r �=k, r=1

r

r − k

Now,

k

j − k

j−1∏
r �=k, r=1

r

r − k
= (j − 1)!

(1 − k)(2 − k) · · · (k − 1 − k)(j − k)!
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= (−1)k−1
(

j − 1
k − 1

)

so

P1j (t) =
j∑

k=1

(
j − 1
k − 1

)
e−kλt (−1)k−1

= e−λt

j−1∑
i=0

(
j − 1

i

)
e−iλt (−1)i

= e−λt (1 − e−λt )j−1

Thus, starting with a single individual, the population size at time t has a geometric
distribution with mean eλt . If the population starts with i individuals, then we can re-
gard each of these individuals as starting her own independent Yule process, and so
the population at time t will be the sum of i independent and identically distributed
geometric random variables with parameter e−λt . But this means that the conditional
distribution of X(t), given that X(0) = i, is the same as the distribution of the number
of times that a coin that lands heads on each flip with probability e−λt must be flipped
to amass a total of i heads. Hence, the population size at time t has a negative binomial
distribution with parameters i and e−λt , so

Pij (t) =
(

j − 1
i − 1

)
e−iλt (1 − e−λt )j−i , j ≥ i ≥ 1

(We could, of course, have used Proposition 6.1 to immediately obtain an equation for
Pij (t), rather than just using it for P1j (t), but the algebra that would have then been
needed to show the equivalence of the resulting expression to the preceding result is
somewhat involved.) �

Example 6.9. An urn initially contains one type 1 and one type 2 ball. At each stage,
a ball is chosen from the urn, with the chosen ball being equally likely to be any of the
balls in the urn. If a type i ball is chosen, then an experiment that is successful with
probability pi is performed; if it is successful then the ball chosen along with a new
type i ball are put in the urn, and if it is unsuccessful then only the ball chosen is put
in the urn, i = 1,2. We then move to the next stage. We are interested in determining
the mean numbers of type 1 and type 2 balls in the urn after n stages.

Solution: To determine the mean numbers, for i = 1,2, let mi(j, k : r) denote the
mean number of type i balls in the urn after the n stages have elapsed, given that
there are currently j type 1 and k type 2 balls in the urn, with a total of r additional
stages remaining. Also, let m(j, k : r) be the vector

m(j, k : r) = (m1(j, k : r), m2(j, k : r)) .

We need to determine m(1,1 : n). To start, we derive recursive equations for
m(j, k : r) by conditioning on the first ball chosen and whether the resulting ex-
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periment is successful. This yields that

m(j, k : r) = j

j + k
[p1 m(j + 1, k : r − 1) + q1 m(j, k : r − 1)]

+ k

j + k
[p2 m(j, k + 1 : r − 1) + q2 m(j, k : r − 1)]

where qi = 1 − pi , i = 1,2. Now, using that

m(j, k : 0) = (j, k)

we can use the recursion to determine the values m(j, k : r) when r = 1, then when
r = 2, and so on, up to r = n.
We can also derive an approximation for the mean numbers of type 1 and type 2
balls in the urn after n stages, by using a “Poissonization” trick. Let us imagine
that each ball in the urn, independently of other balls, lights up at times distributed
as a Poisson process with rate λ = 1. Suppose that each time a type i ball lights
up, we conduct the experiment that is successful with probability pi and add a new
type i ball to the urn if it is successful, i = 1,2. Each time a ball lights up, say
that a new stage has begun. Because, for an urn that currently has j type 1 and k

type 2 balls, the next ball to light up will be of type 1 with probability j
j+k

, the
numbers of type 1 and type 2 balls in the urn after successive stages are distributed
exactly as in the original model. Now, whenever there are j type 1 balls in the urn,
the time until the next type 1 ball lights up is the minimum of j independent ex-
ponential random variables with rate 1 and so is exponential with rate j . Because,
with probability p1, this will then result in a new type 1 ball to be added to the
urn, it follows that, whenever there are j type 1 balls in the urn, the time until the
next type 1 ball is added is distributed as an exponential random variable with rate
jp1. Consequently, the counting process of the number of type 1 balls in the urn
is a Yule process with birth parameters λ1(j) = jp1, j ≥ 1. Similarly, the count-
ing process of the number of type 2 balls in the urn is a Yule process with birth
parameters λ2(j) = jp2, j ≥ 1, with these two Yule processes being independent.
Thus, starting with a single type i ball, it follows that Ni(t), defined as the number
of type i balls in the urn at time t , is a geometric random variable with parameter
e−pi t , i = 1,2. Therefore,

E[Ni(t)] = epi t , i = 1,2

Also, if Li(t) denotes the number of times that a type i ball has lit up by time t ,
then as each light up, independently of all that came earlier, results in a new type i

ball being added with probability pi , it is intuitive that

E[Ni(t)] = piE[Li(t)] + 1 , i = 1,2

Thus,

E[Li(t)] = epi t − 1

pi

, i = 1,2
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Hence, the expected number of stages that have passed by time t is

E[L1(t) + L2(t)] = ep1t − 1

p1
+ ep2t − 1

p2

If we let tn be the value of t that makes the preceding equal n; that is, tn is such
that

ep1tn − 1

p1
+ ep2tn − 1

p2
= n

then we can approximate the expected number of type i balls in the urn after n

stages by E[Ni(tn)] = epi tn , i = 1,2. �

Remarks. (i) That E[Ni(t)] = piE[Li(t)] + 1 is not immediate. Because infor-
mation as to the number of light ups by time t changes the probabilities that
the experiments resulting from light ups were successful (for instance, Li(t)

being large makes it more likely that experiments were successful because a
successful experiment increases the light up rate)

E[Ni(t)|Li(t)] �= piLi(t) + 1

However, even though the preceding is the case and so can not be used to prove
that E[Ni(t)] = piE[Li(t)] + 1, the preceding equation is indeed valid and
can be proven by using Wald’s equation, a technique that will be presented in
Section 7.3.

(ii) The preceding example has been applied in drug testing. Imagine there are two
drugs with unknown cure probabilities (p1 and p2 in the example). At each
stage, the choice of the drug to give to a patient is made by randomly choosing
a ball from the urn. If a type i ball is chosen, then drug i is used. The result of
using this drug is assumed to be immediately learned, and a successful outcome
results in another ball of type i being added to the urn, i = 1,2.

(iii) If p1 = 0.7, p2 = 0.4, then after n = 500 stages, the expected number of type
1 balls in the urn is 288.92 and the expected number of type 2 balls is 36.47.
The approximations of these quantities given in the preceding are, respectively,
304.09 and 26.23. After 1000 stages the true means are 600.77 and 58.28,
whereas the approximations are 630.37 and 39.79. �

We shall now derive a set of differential equations that the transition probabilities
Pij (t) satisfy in a general continuous-time Markov chain. However, first we need a
definition and a pair of lemmas.

For any pair of states i and j , let

qij = viPij

Since vi is the rate at which the process makes a transition when in state i and Pij is
the probability that this transition is into state j , it follows that qij is the rate, when
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in state i, at which the process makes a transition into state j . The quantities qij are
called the instantaneous transition rates. Since

vi =
∑
j

viPij =
∑
j

qij

and

Pij = qij

vi

= qij∑
j qij

it follows that specifying the instantaneous transition rates determines the parameters
of the continuous-time Markov chain.

Lemma 6.2. (a) limh→0
1 − Pii(h)

h
= vi

(b) limh→0
Pij (h)

h
= qij when i �= j

Proof. We first note that since the amount of time until a transition occurs is exponen-
tially distributed it follows that the probability of two or more transitions in a time h

is o(h). Thus, 1 − Pii(h), the probability that a process in state i at time 0 will not be
in state i at time h, equals the probability that a transition occurs within time h plus
something small compared to h. Therefore,

1 − Pii(h) = vih + o(h)

and part (a) is proven. To prove part (b), we note that Pij (h), the probability that the
process goes from state i to state j in a time h, equals the probability that a transition
occurs in this time multiplied by the probability that the transition is into state j , plus
something small compared to h. That is,

Pij (h) = hviPij + o(h)

and part (b) is proven. �

Lemma 6.3. For all s ≥ 0, t ≥ 0,

Pij (t + s) =
∞∑

k=0

Pik(t)Pkj (s) (6.8)

Proof. In order for the process to go from state i to state j in time t + s, it must be
somewhere at time t and thus

Pij (t + s) = P {X(t + s) = j |X(0) = i}

=
∞∑

k=0

P {X(t + s) = j,X(t) = k|X(0) = i}
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=
∞∑

k=0

P {X(t + s) = j |X(t) = k,X(0) = i} · P {X(t) = k|X(0) = i}

=
∞∑

k=0

P {X(t + s) = j |X(t) = k} · P {X(t) = k|X(0) = i}

=
∞∑

k=0

Pkj (s)Pik(t)

and the proof is completed. �

The set of Eqs. (6.8) is known as the Chapman–Kolmogorov equations. From Lem-
ma 6.3, we obtain

Pij (h + t) − Pij (t) =
∞∑

k=0

Pik(h)Pkj (t) − Pij (t)

=
∑
k �=i

Pik(h)Pkj (t) − [1 − Pii(h)]Pij (t)

and thus

lim
h→0

Pij (t + h) − Pij (t)

h
= lim

h→0

⎧⎨
⎩
∑
k �=i

Pik(h)

h
Pkj (t) −

[
1 − Pii(h)

h

]
Pij (t)

⎫⎬
⎭

Now, assuming that we can interchange the limit and the summation in the preceding
and applying Lemma 6.2, we obtain

P ′
ij (t) =

∑
k �=i

qikPkj (t) − viPij (t)

It turns out that this interchange can indeed be justified and, hence, we have the fol-
lowing theorem.

Theorem 6.1 (Kolmogorov’s Backward Equations). For all states i, j , and times t ≥ 0,

P ′
ij (t) =

∑
k �=i

qikPkj (t) − viPij (t)

Example 6.10. The backward equations for the pure birth process become

P ′
ij (t) = λiPi+1,j (t) − λiPij (t)

The backward equations for the birth and death process become

P ′
0j (t) = λ0P1j (t) − λ0P0j (t),
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P ′
ij (t) = (λi + μi)

[
λi

λi + μi

Pi+1,j (t) + μi

λi + μi

Pi−1,j (t)

]
− (λi + μi)Pij (t)

or equivalently,

P ′
0j (t) = λ0[P1j (t) − P0j (t)],

P ′
ij (t) = λiPi+1,j (t) + μiPi−1,j (t) − (λi + μi)Pij (t), i > 0 (6.9)

�

Example 6.11 (A Continuous-Time Markov Chain Consisting of Two States). Con-
sider a machine that works for an exponential amount of time having mean 1/λ before
breaking down; and suppose that it takes an exponential amount of time having mean
1/μ to repair the machine. If the machine is in working condition at time 0, then what
is the probability that it will be working at time t = 10?

To answer this question, we note that the process is a birth and death process (with
state 0 meaning that the machine is working and state 1 that it is being repaired) having
parameters

λ0 = λ, μ1 = μ,

λi = 0, i �= 0, μi = 0, i �= 1

We shall derive the desired probability, namely, P00(10) by solving the set of differ-
ential equations given in Example 6.10. From Eq. (6.9), we obtain

P ′
00(t) = λ[P10(t) − P00(t)], (6.10)

P ′
10(t) = μP00(t) − μP10(t) (6.11)

Multiplying Eq. (6.10) by μ and Eq. (6.11) by λ and then adding the two equations
yields

μP ′
00(t) + λP ′

10(t) = 0

By integrating, we obtain

μP00(t) + λP10(t) = c

However, since P00(0) = 1 and P10(0) = 0, we obtain c = μ and hence,

μP00(t) + λP10(t) = μ (6.12)

or equivalently,

λP10(t) = μ[1 − P00(t)]
By substituting this result in Eq. (6.10), we obtain

P ′
00(t) = μ[1 − P00(t)] − λP00(t)

= μ − (μ + λ)P00(t)
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Letting

h(t) = P00(t) − μ

μ + λ

we have

h′(t) = μ − (μ + λ)

[
h(t) + μ

μ + λ

]
= − (μ + λ)h(t)

or

h′(t)
h(t)

= −(μ + λ)

By integrating both sides, we obtain

logh(t) = −(μ + λ)t + c

or

h(t) = Ke−(μ+λ)t

and thus

P00(t) = Ke−(μ+λ)t + μ

μ + λ

which finally yields, by setting t = 0 and using the fact that P00(0) = 1,

P00(t) = λ

μ + λ
e−(μ+λ)t + μ

μ + λ

From Eq. (6.12), this also implies that

P10(t) = μ

μ + λ
− μ

μ + λ
e−(μ+λ)t

Hence, our desired probability is as follows:

P00(10) = λ

μ + λ
e−10(μ+λ) + μ

μ + λ
�

Another set of differential equations, different from the backward equations, may
also be derived. This set of equations, known as Kolmogorov’s forward equations is
derived as follows. From the Chapman–Kolmogorov equations (Lemma 6.3), we have

Pij (t + h) − Pij (t) =
∞∑

k=0

Pik(t)Pkj (h) − Pij (t)

=
∑
k �=j

Pik(t)Pkj (h) − [1 − Pjj (h)]Pij (t)
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and thus

lim
h→0

Pij (t + h) − Pij (t)

h
= lim

h→0

⎧⎨
⎩
∑
k �=j

Pik(t)
Pkj (h)

h
−

[
1 − Pjj (h)

h

]
Pij (t)

⎫⎬
⎭

and, assuming that we can interchange limit with summation, we obtain from Lem-
ma 6.2

P ′
ij (t) =

∑
k �=j

qkjPik(t) − vjPij (t)

Unfortunately, we cannot always justify the interchange of limit and summation and
thus the preceding is not always valid. However, they do hold in most models, in-
cluding all birth and death processes and all finite state models. We thus have the
following.

Theorem 6.2 (Kolmogorov’s Forward Equations). Under suitable regularity condi-
tions,

P ′
ij (t) =

∑
k �=j

qkjPik(t) − vjPij (t) (6.13)

We shall now solve the forward equations for the pure birth process. For this pro-
cess, Eq. (6.13) reduces to

P ′
ij (t) = λj−1Pi,j−1(t) − λjPij (t)

However, by noting that Pij (t) = 0 whenever j < i (since no deaths can occur), we
can rewrite the preceding equation to obtain

P ′
ii (t) = −λiPii(t),

P ′
ij (t) = λj−1Pi,j−1(t) − λjPij (t), j ≥ i + 1

(6.14)

Proposition 6.4. For a pure birth process,

Pii(t) = e−λi t , i ≥ 0

Pij (t) = λj−1e
−λj t

∫ t

0
eλj sPi,j−1(s) ds, j ≥ i + 1

Proof. The fact that Pii(t) = e−λi t follows from Eq. (6.14) by integrating and us-
ing the fact that Pii(0) = 1. To prove the corresponding result for Pij (t), we note by
Eq. (6.14) that

eλj t
[
P ′

ij (t) + λjPij (t)
]

= eλj tλj−1Pi,j−1(t)
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or

d

dt

[
eλj tPij (t)

] = λj−1e
λj tPi,j−1(t)

Hence, since Pij (0) = 0, we obtain the desired results. �

Example 6.12 (Forward Equations for Birth and Death Process). The forward equa-
tions (Eq. (6.13)) for the general birth and death process become

P ′
i0(t) =

∑
k �=0

qk0Pik(t) − λ0Pi0(t)

= μ1Pi1(t) − λ0Pi0(t) (6.15)

P ′
ij (t) =

∑
k �=j

qkjPik(t) − (λj + μj )Pij (t)

= λj−1Pi,j−1(t) + μj+1Pi,j+1(t) − (λj + μj )Pij (t) (6.16)

�

6.5 Limiting Probabilities
In analogy with a basic result in discrete-time Markov chains, the probability that a
continuous-time Markov chain will be in state j at time t often converges to a limiting
value that is independent of the initial state. That is, if we call this value Pj , then

Pj ≡ lim
t→∞Pij (t)

where we are assuming that the limit exists and is independent of the initial state i.
To derive a set of equations for the Pj , consider first the set of forward equations

P ′
ij (t) =

∑
k �=j

qkjPik(t) − vjPij (t) (6.17)

Now, if we let t approach ∞, then assuming that we can interchange limit and sum-
mation, we obtain

lim
t→∞P ′

ij (t) = lim
t→∞

⎡
⎣∑

k �=j

qkjPik(t) − vjPij (t)

⎤
⎦

=
∑
k �=j

qkjPk − vjPj

However, as Pij (t) is a bounded function (being a probability it is always between 0
and 1), it follows that if P ′

ij (t) converges, then it must converge to 0 (why is this?).
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Hence, we must have

0 =
∑
k �=j

qkjPk − vjPj

or

vjPj =
∑
k �=j

qkjPk, all states j (6.18)

The preceding set of equations, along with the equation

∑
j

Pj = 1 (6.19)

can be used to solve for the limiting probabilities.

Remark. (i) We have assumed that the limiting probabilities Pj exist. A sufficient
condition for this is that
(a) all states of the Markov chain communicate in the sense that starting in

state i there is a positive probability of ever being in state j , for all i, j

and
(b) the Markov chain is positive recurrent in the sense that, starting in any

state, the mean time to return to that state is finite
If conditions (a) and (b) hold, then the limiting probabilities will exist and sat-
isfy Eqs. (6.18) and (6.19). In addition, Pj also will have the interpretation of
being the long-run proportion of time that the process is in state j .

(ii) Eqs. (6.18) and (6.19) have a nice interpretation: In any interval (0, t), the num-
ber of transitions into state j must equal to within 1 the number of transitions
out of state j (why?). Hence, in the long run, the rate at which transitions into
state j occur must equal the rate at which transitions out of state j occur. When
the process is in state j , it leaves at rate vj , and, as Pj is the proportion of time
it is in state j , it thus follows that

vjPj = rate at which the process leaves state j

Similarly, when the process is in state k, it enters j at a rate qkj . Hence, as Pk is
the proportion of time in state k, we see that the rate at which transitions from
k to j occur is just qkjPk; thus

∑
k �=j

qkjPk = rate at which the process enters state j

So, Eq. (6.18) is just a statement of the equality of the rates at which the pro-
cess enters and leaves state j . Because it balances (that is, equates) these rates,
Eq. (6.18) is sometimes referred to as a set of “balance equations.”
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Let us now determine the limiting probabilities for a birth and death process. From
Eq. (6.18) or equivalently, by equating the rate at which the process leaves a state with
the rate at which it enters that state, we obtain

State Rate at which leave = rate at which enter
0 λ0P0 = μ1P1
1 (λ1 + μ1)P1 = μ2P2 + λ0P0
2 (λ2 + μ2)P2 = μ3P3 + λ1P1

n,n ≥ 1 (λn + μn)Pn = μn+1Pn+1 + λn−1Pn−1

By adding to each equation the equation preceding it, we obtain

λ0P0 = μ1P1,

λ1P1 = μ2P2,

λ2P2 = μ3P3,

...

λnPn = μn+1Pn+1, n ≥ 0

Solving in terms of P0 yields

P1 = λ0

μ1
P0,

P2 = λ1

μ2
P1 = λ1λ0

μ2μ1
P0,

P3 = λ2

μ3
P2 = λ2λ1λ0

μ3μ2μ1
P0,

...

Pn = λn−1

μn

Pn−1 = λn−1λn−2 · · ·λ1λ0

μnμn−1 · · ·μ2μ1
P0

And by using the fact that
∑∞

n=0 Pn = 1, we obtain

1 = P0 + P0

∞∑
n=1

λn−1 · · ·λ1λ0

μn · · ·μ2μ1

or

P0 = 1

1 + ∑∞
n=1

λ0λ1···λn−1
μ1μ2···μn

and so

Pn = λ0λ1 · · ·λn−1

μ1μ2 · · ·μn

(
1 + ∑∞

n=1
λ0λ1···λn−1
μ1μ2···μn

) , n ≥ 1 (6.20)
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The foregoing equations also show us what condition is necessary for these limiting
probabilities to exist. Namely, it is necessary that

∞∑
n=1

λ0λ1 · · ·λn−1

μ1μ2 · · ·μn

< ∞ (6.21)

This condition also may be shown to be sufficient.
In the multiserver exponential queueing system (Example 6.6), Condition (6.21)

reduces to

∞∑
n=s+1

λn

(sμ)n
< ∞

which is equivalent to λ < sμ.
For the linear growth model with immigration (Example 6.4), Condition (6.21) re-

duces to

∞∑
n=1

θ(θ + λ) · · · (θ + (n − 1)λ)

n!μn
< ∞

Using the ratio test, the preceding will converge when

lim
n→∞

θ(θ + λ) · · · (θ + nλ)

(n + 1)!μn+1

n!μn

θ(θ + λ) · · · (θ + (n − 1)λ)
= lim

n→∞
θ + nλ

(n + 1)μ

= λ

μ
< 1

That is, the condition is satisfied when λ < μ. When λ ≥ μ it is easy to show that
Condition (6.21) is not satisfied.

Example 6.13 (A Machine Repair Model). Consider a job shop that consists of M

machines and one serviceman. Suppose that the amount of time each machine runs
before breaking down is exponentially distributed with mean 1/λ, and suppose that
the amount of time that it takes for the serviceman to fix a machine is exponentially
distributed with mean 1/μ. We shall attempt to answer these questions: (a) What is the
average number of machines not in use? (b) What proportion of time is each machine
in use?

Solution: If we say that the system is in state n whenever n machines are not in
use, then the preceding is a birth and death process having parameters

μn = μ n ≥ 1

λn =
{
(M − n)λ, n ≤ M

0, n > M

This is so in the sense that a failing machine is regarded as an arrival and a fixed
machine as a departure. If any machines are broken down, then since the service-
man’s rate is μ,μn = μ. On the other hand, if n machines are not in use, then since
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the M −n machines in use each fail at a rate λ, it follows that λn = (M −n)λ. From
Eq. (6.20) we have that Pn, the probability that n machines will not be in use, is
given by

P0 = 1

1 + ∑M
n=1 [Mλ(M − 1)λ · · · (M − n + 1)λ/μn]

= 1

1 + ∑M
n=1 (λ/μ)nM!/(M − n)! ,

Pn = (λ/μ)nM!/(M − n)!
1 + ∑M

n=1 (λ/μ)nM!/(M − n)! , n = 0,1, . . . ,M

Hence, the average number of machines not in use is given by

M∑
n=0

nPn =
∑M

n=0 n(λ/μ)nM!/(M − n)!
1 + ∑M

n=1 (λ/μ)nM!/(M − n)! (6.22)

To obtain the long-run proportion of time that a given machine is working we will
compute the equivalent limiting probability of the machine working. To do so, we
condition on the number of machines that are not working to obtain

P {machine is working} =
M∑

n=0

P {machine is working|n not working}Pn

=
M∑

n=0

M − n

M
Pn

(since if n are not working,

then M − n are working!)

= 1 −
M∑

n=0

nPn

M

where
∑M

n=0 nPn is given by Eq. (6.22). �

Example 6.14 (The M/M/1 Queue). In the M/M/1 queue λn = λ, μn = μ and thus,
from Eq. (6.20),

Pn = (λ/μ)n

1 + ∑∞
n=1(λ/μ)n

= (λ/μ)n(1 − λ/μ), n ≥ 0

provided that λ/μ < 1. It is intuitive that λ must be less than μ for limiting probabili-
ties to exist. Customers arrive at rate λ and are served at rate μ, and thus if λ > μ, then
they arrive at a faster rate than they can be served and the queue size will go to infinity.
The case λ = μ behaves much like the symmetric random walk of Section 4.3, which
is null recurrent and thus has no limiting probabilities. �
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Example 6.15. Let us reconsider the shoe shine shop of Example 6.1, and determine
the proportion of time the process is in each of the states 0, 1, 2. Because this is not a
birth and death process (since the process can go directly from state 2 to state 0), we
start with the balance equations for the limiting probabilities.

State Rate that the process leaves = rate that the process enters
0 λP0 = μ2P2
1 μ1P1 = λP0
2 μ2P2 = μ1P1

Solving in terms of P0 yields

P2 = λ

μ2
P0, P1 = λ

μ1
P0

which implies, since P0 + P1 + P2 = 1, that

P0

[
1 + λ

μ2
+ λ

μ1

]
= 1

or

P0 = μ1μ2

μ1μ2 + λ(μ1 + μ2)

and

P1 = λμ2

μ1μ2 + λ(μ1 + μ2)
,

P2 = λμ1

μ1μ2 + λ(μ1 + μ2)
�

Example 6.16. Consider a set of n components along with a single repairman. Sup-
pose that component i functions for an exponentially distributed time with rate λi

and then fails. The time it then takes to repair component i is exponential with
rate μi, i = 1, . . . , n. Suppose that when there is more than one failed component
the repairman always works on the most recent failure. For instance, if there are at
present two failed components—say, components 1 and 2 of which 1 has failed most
recently—then the repairman will be working on component 1. However, if com-
ponent 3 should fail before 1’s repair is completed, then the repairman would stop
working on component 1 and switch to component 3 (that is, a newly failed compo-
nent preempts service).

To analyze the preceding as a continuous-time Markov chain, the state must rep-
resent the set of failed components in the order of failure. That is, the state will be
i1, i2, . . . , ik if i1, i2, . . . , ik are the k failed components (all the other n − k being
functional) with i1 having been the most recent failure (and is thus presently being re-
paired), i2 the second most recent, and so on. Because there are k! possible orderings
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for a fixed set of k failed components and
(

n
k

)
choices of that set, it follows that there

are

n∑
k=0

(n

k

)
k! =

n∑
k=0

n!
(n − k)! = n!

n∑
i=0

1

i!

possible states.
The balance equations for the limiting probabilities are as follows:⎛

⎜⎜⎝μi1 +
∑
i �=ij

j=1,...,k

λi

⎞
⎟⎟⎠P(i1, . . . , ik) =

∑
i �=ij

j=1,...,k

P (i, i1, . . . , ik)μi +P(i2, . . . , ik)λi1 ,

n∑
i=1

λiP (φ) =
n∑

i=1

P(i)μi (6.23)

where φ is the state when all components are working. The preceding equations follow
because state i1, . . . , ik can be left either by a failure of any of the additional compo-
nents or by a repair completion of component i1. Also, that state can be entered either
by a repair completion of component i when the state is i, i1, . . . , ik or by a failure of
component i1 when the state is i2, . . . , ik .

However, if we take

P(i1, . . . , ik) = λi1λi2 · · ·λik

μi1μi2 · · ·μik

P (φ) (6.24)

then it is easily seen that Eqs. (6.23) are satisfied. Hence, by uniqueness these must be
the limiting probabilities with P(φ) determined to make their sum equal 1. That is,

P(φ) =
⎡
⎣1 +

∑
i1,...,ik

λi1 · · ·λik

μi1 · · ·μik

⎤
⎦

−1

As an illustration, suppose n = 2 and so there are five states φ, 1, 2, 12, 21. Then from
the preceding we would have

P(φ) =
[

1 + λ1

μ1
+ λ2

μ2
+ 2λ1λ2

μ1μ2

]−1

,

P (1) = λ1

μ1
P(φ),

P (2) = λ2

μ2
P(φ),

P (1,2) = P(2,1) = λ1λ2

μ1μ2
P(φ)
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It is interesting to note, using Eq. (6.24), that given the set of failed components, each
of the possible orderings of these components is equally likely. �

When the limiting probabilities exist we say that the chain is ergodic. The limiting
probabilities Pj are often called stationary probabilities because (as in the case of a
discrete time Markov chain) if the initial state of the continuous time Markov chain
is chosen according to the probabilities {Pj } then the probability of being in state j

at time t is Pj for all t and j . To verify this, suppose that the initial state is chosen
according to the limiting probabilities Pj . Then,

P(X(t) = j) =
∑

k

P (X(t) = j |X(0) = k)P (X(0) = k)

=
∑

k

Pk,j (t)Pk

=
∑

k

Pk,j (t) lim
s→∞Pi,k(s)

= lim
s→∞

∑
k

Pk,j (t)Pi,k(s)

= lim
s→∞Pi,j (t + s)

= Pj

where we have assumed that the interchange of limit and summation is justified, and
where the next to last equality follows from the Chapman–Kolmogorov equations
(Lemma 6.3).

6.6 Time Reversibility
Consider a continuous-time Markov chain that is ergodic and let us consider the lim-
iting probabilities Pi from a different point of view than previously. If we consider
the sequence of states visited, ignoring the amount of time spent in each state during a
visit, then this sequence constitutes a discrete-time Markov chain with transition prob-
abilities Pij . Let us assume that this discrete-time Markov chain, called the embedded
chain, is ergodic and denote by πi its limiting probabilities. That is, the πi are the
unique solution of

πi =
∑
j

πjPji, all i

∑
i

πi = 1

Now, since πi represents the proportion of transitions that take the process into
state i, and because 1/vi is the mean time spent in state i during a visit, it seems intu-
itive that Pi , the proportion of time in state i, should be a weighted average of the πi
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where πi is weighted proportionately to 1/vi . That is, it is intuitive that

Pi = πi/vi∑
j πj /vj

(6.25)

To check the preceding, recall that the limiting probabilities Pi must satisfy

viPi =
∑
j �=i

Pj qji, all i

or equivalently, since Pii = 0

viPi =
∑
j

Pj vjPji, all i

Hence, for the Pis to be given by Eq. (6.25), the following would be necessary:

πi =
∑
j

πjPji, all i

But this, of course, follows since it is in fact the defining equation for the πis.
Suppose now that the continuous-time Markov chain has been in operation for a

long time, and suppose that starting at some (large) time T we trace the process going
backward in time. To determine the probability structure of this reversed process, we
first note that given we are in state i at some time—say, t—the probability that we
have been in this state for an amount of time greater than s is just e−vi s . This is so,
since

P {process is in state i throughout [t − s, t]|X(t) = i}
= P {process is in state i throughout [t − s, t]}

P {X(t) = i}
= P {X(t − s) = i}e−vi s

P {X(t) = i}
= e−vi s

since for t large P {X(t − s) = i} = P {X(t) = i} = Pi .
In other words, going backward in time, the amount of time the process spends

in state i is also exponentially distributed with rate vi . In addition, as was shown
in Section 4.8, the sequence of states visited by the reversed process constitutes a
discrete-time Markov chain with transition probabilities Qij given by

Qij = πjPji

πi

Hence, we see from the preceding that the reversed process is a continuous-time
Markov chain with the same transition rates as the forward-time process and with one-
stage transition probabilities Qij . Therefore, the continuous-time Markov chain will
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be time reversible, in the sense that the process reversed in time has the same proba-
bilistic structure as the original process, if the embedded chain is time reversible. That
is, if

πiPij = πjPji, for all i, j

Now, using the fact that Pi = (πi/vi)/
(∑

j πj /vj

)
, we see that the preceding condi-

tion is equivalent to

Piqij = Pjqji, for all i, j (6.26)

Since Pi is the proportion of time in state i and qij is the rate when in state i that
the process goes to j , the condition of time reversibility is that the rate at which the
process goes directly from state i to state j is equal to the rate at which it goes directly
from j to i. It should be noted that this is exactly the same condition needed for an
ergodic discrete-time Markov chain to be time reversible (see Section 4.8).

An application of the preceding condition for time reversibility yields the following
proposition concerning birth and death processes.

Proposition 6.5. An ergodic birth and death process is time reversible.

Proof. We must show that the rate at which a birth and death process goes from state
i to state i + 1 is equal to the rate at which it goes from i + 1 to i. In any length of
time t the number of transitions from i to i + 1 must equal to within 1 the number
from i + 1 to i (since between each transition from i to i + 1 the process must return
to i, and this can only occur through i + 1, and vice versa). Hence, as the number of
such transitions goes to infinity as t → ∞, it follows that the rate of transitions from i

to i + 1 equals the rate from i + 1 to i. �

Proposition 6.5 can be used to prove the important result that the output process of
an M/M/s queue is a Poisson process. We state this as a corollary.

Corollary 6.6. Consider an M/M/s queue in which customers arrive in accordance
with a Poisson process having rate λ and are served by any one of s servers—each
having an exponentially distributed service time with rate μ. If λ < sμ, then the output
process of customers departing is, after the process has been in operation for a long
time, a Poisson process with rate λ.

Proof. Let X(t) denote the number of customers in the system at time t . Since the
M/M/s process is a birth and death process, it follows from Proposition 6.5 that
{X(t), t ≥ 0} is time reversible. Going forward in time, the time points at which X(t)

increases by 1 constitute a Poisson process since these are just the arrival times of cus-
tomers. Hence, by time reversibility the time points at which X(t) increases by 1 when
we go backward in time also constitute a Poisson process. But these latter points are
exactly the points of time when customers depart (see Fig. 6.1). Hence, the departure
times constitute a Poisson process with rate λ. �
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Figure 6.1 The number in the system.

Example 6.17. Consider a first come first serve M/M/1 queue, with arrival rate λ

and service rate μ, where λ < μ, that is in steady state. Given that customer C spends
a total of t time units in the system, what is the conditional distribution of the number
of others that were present when C arrived?

Solution: Suppose that C arrived at time s and departed at time s + t . Because
the system is first come first served, the number that were in the system when C
arrived is equal to the number of departures of other customers that occur after
time s and before time s + t , which is equal to the number of arrivals in the re-
versed process in that interval of time. Now, in the reversed process C would have
arrived at time s + t and departed at time s. Because the reversed process is also
an M/M/1 queueing system, the number of arrivals during that interval of length
t is Poisson distributed with mean λt . (For a more direct argument for this result,
see Section 8.3.1.) �

We have shown that a process is time reversible if and only if

Piqij = Pjqji for all i �= j

Analogous to the result for discrete-time Markov chains, if we can find a probabil-
ity vector P that satisfies the preceding then the Markov chain is time reversible and
the Pis are the long-run probabilities. That is, we have the following proposition.

Proposition 6.7. If for some set {Pi}∑
i

Pi = 1, Pi ≥ 0

and

Piqij = Pjqji for all i �= j (6.27)

then the continuous-time Markov chain is time reversible and Pi represents the limit-
ing probability of being in state i.
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Proof. For fixed i we obtain upon summing Eq. (6.27) over all j : j �= i∑
j �=i

Piqij =
∑
j �=i

Pj qji

or, since
∑

j �=i qij = vi ,

viPi =
∑
j �=i

Pj qji

Hence, the Pis satisfy the balance equations and thus represent the limiting probabili-
ties. Because Eq. (6.27) holds, the chain is time reversible. �

Example 6.18. Consider a set of n machines and a single repair facility to service
them. Suppose that when machine i, i = 1, . . . , n, goes down it requires an exponen-
tially distributed amount of work with rate μi to get it back up. The repair facility
divides its efforts equally among all down components in the sense that whenever
there are k down machines 1 ≤ k ≤ n each receives work at a rate of 1/k per unit
time. Finally, suppose that each time machine i goes back up it remains up for an
exponentially distributed time with rate λi .

The preceding can be analyzed as a continuous-time Markov chain having 2n states
where the state at any time corresponds to the set of machines that are down at that
time. Thus, for instance, the state will be (i1, i2, . . . , ik) when machines i1, . . . , ik are
down and all the others are up. The instantaneous transition rates are as follows:

q(i1,...,ik−1),(i1,...,ik) = λik ,

q(i1,...,ik),(i1,...,ik−1) = μik/k

where i1, . . . , ik are all distinct. This follows since the failure rate of machine ik is al-
ways λik and the repair rate of machine ik when there are k failed machines is μik/k.

Hence, the time reversible equations from (6.27) are

P(i1, . . . , ik)μik /k = P(i1, . . . , ik−1)λik

or

P(i1, . . . , ik) = kλik

μik

P (i1, . . . , ik−1)

= kλik

μik

(k − 1)λik−1

μik−1

P(i1, . . . , ik−2) upon iterating

=
...

= k!
k∏

j=1

(λij /μij )P (φ)
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where φ is the state in which all components are working. Because

P(φ) +
∑

P(i1, . . . , ik) = 1

we see that

P(φ) =
⎡
⎣1 +

∑
i1,...,ik

k!
k∏

j=1

(λij /μij )

⎤
⎦

−1

(6.28)

where the preceding sum is over all the 2n − 1 nonempty subsets {i1, . . . , ik} of
{1,2, . . . , n}. Hence, as the time reversible equations are satisfied for this choice of
probability vector it follows from Proposition 6.7 that the chain is time reversible and

P(i1, . . . , ik) = k!
k∏

j=1

(λij /μij )P (φ)

with P(φ) being given by (6.28).
For instance, suppose there are two machines. Then, from the preceding we would

have

P(φ) = 1

1 + λ1/μ1 + λ2/μ2 + 2λ1λ2/μ1μ2
,

P (1) = λ1/μ1

1 + λ1/μ1 + λ2/μ2 + 2λ1λ2/μ1μ2
,

P (2) = λ2/μ2

1 + λ1/μ1 + λ2/μ2 + 2λ1λ2/μ1μ2
,

P (1,2) = 2λ1λ2

μ1μ2[1 + λ1/μ1 + λ2/μ2 + 2λ1λ2/μ1μ2] �

Consider a continuous-time Markov chain whose state space is S. We say that the
Markov chain is truncated to the set A ⊂ S if qij is changed to 0 for all i ∈ A,j /∈ A.
That is, transitions out of the class A are no longer allowed, whereas ones in A con-
tinue at the same rates as before. A useful result is that if the chain is time reversible,
then so is the truncated one.

Proposition 6.8. A time reversible chain with limiting probabilities Pj , j ∈ S that is
truncated to the set A ⊂ S and remains irreducible is also time reversible and has
limiting probabilities P A

j given by

P A
j = Pj∑

i∈A Pi

, j ∈ A

Proof. By Proposition 6.7 we need to show that, with P A
j as given,

P A
i qij = P A

j qji for i ∈ A, j ∈ A
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or, equivalently,

Piqij = Pjqji for i ∈ A, j ∈ A

But this follows since the original chain is, by assumption, time reversible. �

Example 6.19. Consider an M/M/1 queue in which arrivals finding N in the system
do not enter. This finite capacity system can be regarded as a truncation of the M/M/1
queue to the set of states A = {0,1, . . . ,N}. Since the number in the system in the
M/M/1 queue is time reversible and has limiting probabilities Pj = (λ/μ)j (1−λ/μ)

it follows from Proposition 6.8 that the finite capacity model is also time reversible and
has limiting probabilities given by

Pj = (λ/μ)j∑N
i=0(λ/μ)i

, j = 0,1, . . . ,N �

Another useful result is given by the following proposition, whose proof is left as
an exercise.

Proposition 6.9. If {Xi(t), t ≥0} are, for i = 1, . . . , n, independent time reversible
continuous-time Markov chains, then the vector process {(X1(t), . . . ,Xn(t)), t ≥ 0}
is also a time reversible continuous-time Markov chain.

Example 6.20. Consider an n-component system where component i, i = 1, . . . , n,
functions for an exponential time with rate λi and then fails; upon failure, repair be-
gins on component i, with the repair taking an exponentially distributed time with rate
μi . Once repaired, a component is as good as new. The components act independently
except that when there is only one working component the system is temporarily shut
down until a repair has been completed; it then starts up again with two working com-
ponents.

(a) What proportion of time is the system shut down?
(b) What is the (limiting) averaging number of components that are being repaired?

Solution: Consider first the system without the restriction that it is shut down
when a single component is working. Letting Xi(t), i = 1, . . . , n, equal 1
if component i is working at time t and 0 if it failed, then {Xi(t), t ≥ 0},
i = 1, . . . , n, are independent birth and death processes. Because a birth and
death process is time reversible, it follows from Proposition 6.9 that the process
{(X1(t), . . . ,Xn(t)), t ≥ 0} is also time reversible. Now, with

Pi(j) = lim
t→∞P {Xi(t) = j}, j = 0,1

we have

Pi(1) = μi

μi + λi

, Pi(0) = λi

μi + λi
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Also, with

P(j1, . . . , jn) = lim
t→∞P {Xi(t) = ji, i = 1, . . . , n}

it follows, by independence, that

P(j1, . . . , jn) =
n∏

i=1

Pi(ji), ji = 0,1, i = 1, . . . , n

Now, note that shutting down the system when only one component is working is
equivalent to truncating the preceding unconstrained system to the set consisting of
all states except the one having all components down. Therefore, with PT denoting
a probability for the truncated system, we have from Proposition 6.8 that

PT (j1, . . . , jn) = P(j1, . . . , jn)

1 − C
,

n∑
i=1

ji > 0

where

C = P(0, . . . ,0) =
n∏

j=1

λj/(μj + λj )

Hence, letting (0,1i ) = (0, . . . ,0,1,0, . . . ,0) be the n vector of zeroes and ones
whose single 1 is in the ith place, we have

PT (system is shut down) =
n∑

i=1

PT (0,1i )

= 1

1 − C

n∑
i=1

(
μi

μi + λi

)∏
j �=i

(
λj

μj + λj

)

= C
∑n

i=1 μi/λi

1 − C

Let R denote the number of components being repaired. Then with Ii equal to 1
if component i is being repaired and 0 otherwise, we have for the unconstrained
(nontruncated) system that

E[R] = E

[
n∑

i=1

Ii

]
=

n∑
i=1

Pi(0) =
n∑

i=1

λi/(μi + λi)

But, in addition,

E[R] = E[R|all components are in repair]C
+ E[R|not all components are in repair](1 − C)
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= nC + ET [R](1 − C)

implying that

ET [R] =
∑n

i=1 λi/(μi + λi) − nC

1 − C
�

6.7 The Reversed Chain
Consider an ergodic continuous-time Markov chain whose state space is S and which
has instantaneous transition rates qij and limiting probabilities Pi, i ∈ S, and suppose
that this chain that has been in operation for a long (in theory, an infinite) time. Then, it
follows from results in the previous section that the process of states going backwards
in time is also a continuous time Markov chain, having instantaneous transition rates
q∗
ij that satisfy

Piq
∗
ij = Pjqji, i �= j

The reverse chain is a very useful concept even in cases where it differs from the
forward chain (that is, even in cases where the chain is not time reversible).

To begin, note that the amount of time the reverse chain spends in state i during a
visit is exponential with rate v∗

i ≡ ∑
j �=i q

∗
ij . Because the amount of time the process

spends in a state i during a visit will be the same whether the chain is observed in the
usual (forward) or in the reverse direction of time, it follows that the distribution of
the time that the reverse chain spends in state i during a visit should be the same as
the distribution of the time that the forward chain spends in that state during a visit.
That is, we should have that

v∗
i = vi

Moreover, because the proportion of time that the chain spends in state i would be
the same whether one was observing the chain in the usual (forward) direction of time
or in the reverse direction, the two chains should intuitively have the same limiting
probabilities.

Proposition 6.10. Let a continuous-time Markov chain have instantaneous transition
rates qij and limiting probabilities Pi, i ∈ S, and let q∗

ij be the instantaneous rates of
the reversed chain. Then, with v∗

i = ∑
j �=i q

∗
ij and vi = ∑

j �=i qij

v∗
i = vi

Moreover Pi, i ∈ S, are also the limiting probabilities of the reversed chain.

Proof. Using that Piq
∗
ij = Pjqji we see that∑

j �=i

q∗
ij =

∑
j �=i

Pj qji/Pi = viPi/Pi = vi

where the preceding used (from (6.18)) that
∑

j �=i Pj qji = viPi .
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That the reversed chain has the same limiting probabilities as does the forward
chain can be formally proven by showing that the Pj satisfy the balance equations of
the reversed chain:

v∗
j Pj =

∑
k �=j

Pkq
∗
kj , j ∈ S

Now, because v∗
j = vj and Pkq

∗
kj = Pjqjk , the preceding equations are equivalent to

vjPj =
∑
k �=j

Pjqjk, j ∈ S

which are just the balance equations for the forward chain, which are known to be
satisfied by the Pj . �

That the long-run proportions for the reverse chain are the same as for the forward
chain makes it easy to understand why

Piq
∗
ij = Pjqji, i �= j

Because Pi is the proportion of time the reverse chain spends in state i and q∗
ij is

the rate, when in i, that it makes a transition into state j , it follows that Piq
∗
ij is the

rate at which the reversed chain makes transitions from i to j . Similarly, Pjqji is the
rate at which the forward chain makes transitions from j to i. Because every transition
from j to i in the (forward) Markov chain would be seen as a transition from i to j by
someone looking backwards in time, it is evident that Piq

∗
ij = Pjqji .

The following proposition shows that if one can find a solution of the “reverse chain
equations” then the solution is unique and yields the limiting probabilities.

Proposition 6.11. Let qij be the transition rates of an irreducible continuous time
Markov chain. If one can find values q∗

ij and a collection of positive values Pi that
sum to 1, such that

Piq
∗
ij = Pjqji, i �= j (6.29)

and ∑
j �=i

q∗
ij =

∑
j �=i

qij , i ∈ S (6.30)

then q∗
ij are the transition rates of the reversed chain and Pi are the limiting probabil-

ities (for both chains).

Proof. We show that the Pi are the limiting probabilities by showing that they satisfy
the balance Eqs. (6.18). To show this, sum (6.29) over all j, j �= i, to obtain

Pi

∑
j �=i

q∗
ij =

∑
j �=i

Pj qji, i ∈ S
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Figure 6.2 Forward and Reverse Transitions.

Using (6.30) now shows that

Pi

∑
j �=i

qij =
∑
j �=i

Pj qji

Because
∑

i Pi = 1 we see that the Pi satisfy the balance equations and are thus the
limiting probabilities. Because Piq

∗
ij = Pjqji it also follows that q∗

ij are the transition
rates of the reversed chain. �

Suppose now that the structure of the continuous time Markov chain enables us to
make a guess as to the transition rates of the reversed chain. Assuming that this guess
satisfies Eq. (6.30) of Proposition 6.11, we can then verify the correctness of our guess
by seeing whether there are probabilities that satisfy Eqs. (6.29). If there are such prob-
abilities, our guess is correct and we have also found the limiting probabilities; if there
are not, our guess is incorrect.

Example 6.21. Consider a continuous-time Markov chain whose states are the non-
negative integers. Suppose that a transition out of state 0 goes to state i with probability
αi,

∑∞
i=1 αi = 1; whereas a transition out of state i > 0 always goes to state i −1. That

is, the instantaneous transition rates of this chain are, for i > 0

q0i = v0αi

qi,i−1 = vi

Let N be a random variable having the distribution of the next state from state 0; that
is, P(N = i) = αi, i > 0. Also, say that a cycle begins each time the chain goes to
state 0. Because the forward chain goes from 0 to N and then continually moves one
step closer to 0 until reaching that state, it follows that the states in the reverse chain
would continually increase by 1 until it reaches N at which point it goes back to state
0 (see Fig. 6.2).

Now, if the chain is currently in state i then the value of N for that cycle must be
at least i. Hence, the next state of the reversed chain will be 0 with probability

P(N = i|N ≥ i) = P(N = i)

P (N ≥ i)
= αi

P (N ≥ i)

and will be i + 1 with probability

1 − P(N = i|N ≥ i) = P(N ≥ i + 1|N ≥ i) = P(N ≥ i + 1)

P (N ≥ i)
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Because the reversed chain spends the same time in a state during each visit as does
the forward chain, it thus appears that the transition rates of the reversed chain are

q∗
i,0 = vi

αi

P (N ≥ i)
, i > 0

q∗
i,i+1 = vi

P (N ≥ i + 1)

P (N ≥ i)
, i ≥ 0

Based on the preceding guess, the reversed time equations P0 q0i = Piq
∗
i0 and

Piqi,i−1 = Pi−1q
∗
i−1,i become

P0 v0 αi = Pi vi

αi

P (N ≥ i)
, i ≥ 1 (6.31)

and

Pi vi = Pi−1 vi−1
P(N ≥ i)

P (N ≥ i − 1)
, i ≥ 1 (6.32)

The set of Eqs. (6.31) gives

Pi = P0 v0 P(N ≥ i)/vi, i ≥ 1

As the preceding equation is also valid when i = 0 (since P(N ≥ 0) = 1), we obtain
upon summing over all i that

1 =
∑

i

Pi = P0 v0

∞∑
i=0

P(N ≥ i)/vi

Thus,

Pi = P(N ≥ i)/vi∑∞
i=0 P(N ≥ i)/vi

, i ≥ 0

To show that the set of Eqs. (6.32) is also satisfied by the preceding values of Pi , note
that, with C = 1/

∑∞
i=0 P(N ≥ i)/vi ,

viPi

P (N ≥ i)
= C = vi−1Pi−1

P(N ≥ i − 1)

which immediately shows that Eqs. (6.32) are also satisfied. Because we chose the
transition rates of the reversed chain to be such that it spent as much time in state i

during a visit as does the forward chain, there is no need to check Condition (6.30) of
Proposition 6.11, and so the stationary probabilities are as given. �

Example 6.22 (A Sequential Queueing System). Consider a two-server queueing sys-
tem in which customers arrive at server 1 in accordance with a Poisson process with
rate λ. An arrival at server 1 either enters service if server 1 is free or joins the queue
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if server 1 is busy. After completion of service at server 1 the customer moves over to
server 2, where it either enters service if server 2 is free or joins its queue otherwise.
After completion of service at server 2 a customer departs the system. The service
times at servers 1 and 2 are exponential with rates μ1 and μ2 respectively. All service
times are independent and are also independent of the arrival process.

The preceding model can be analyzed as a continuous-time Markov chain whose
state is (n,m) if there are currently n customers with server 1 and m with server 2.
The instantaneous transition rates of this chain are

q(n−1,m),(n,m) = λ, n > 0

q(n+1,m−1),(n,m) = μ1, m > 0

q(n,m+1),(n,m) = μ2

To find the limiting probabilities, let us first consider the chain going backwards in
time. Because in real time the total number in the system decreases at moments when
customers depart server 2, looking backwards the total number in the system will at
those moments increase by having an added customer at server 2. Similarly while in
real time the number will increase when a customer arrives at server 1, in the reverse
process at that moment there will be a decrease in the number at server 1. Because
the times spent in service at server i will be the same whether looking in forward or
in reverse time, it appears that the reverse process is a two-server system in which
customers arrive first at server 2, then go to server 1, and then depart the system, with
their service times at server i being exponential with rate μi, i = 1,2. Now the arrival
rate to server 2 in the reverse process is equal to the departure rate from the system in
the forward process and this must equal the arrival rate λ of the forward process. (If the
departure rate of the forward process was less than the arrival rate, then the queue size
would build to infinity and there would not be any limiting probabilities.) Although it
is not clear that the arrival process of customers to server 2 in the reverse process is
a Poisson process, let us guess that this is the case and then use Proposition 6.11 to
determine whether our guess is correct.

So, let us guess that the reverse process is a sequential queue where customers ar-
rive at server 2 according to a Poisson process with rate λ, and after receiving service
at server 2 move over to server 1, and after receiving service at server 1 depart the
system. In addition, the service times at server i are exponential with rate μi, i = 1,2.
Now, if this were true then the transition rates of the reverse chain would be

q∗
(n,m),(n−1,m) = μ1, n > 0

q∗
(n,m),(n+1,m−1) = μ2, m > 0

q∗
(n,m),(n,m+1) = λ

The rate at which a chain with transition rates q∗ departs from state (n,m) is

q∗
(n,m),(n−1,m) +q∗

(n,m),(n+1,m−1) +q∗
(n,m),(n,m+1) = μ1I {n > 0}+μ2I {m > 0}+λ
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where I {k > 0} is equal to 1 when k > 0 and is equal to 0 otherwise. As the pre-
ceding is also the rate at which the forward process departs from state (n,m), the
Condition (6.30) of Proposition 6.11 is satisfied.

Using the preceding conjectured reverse time transition rates, the reverse time equa-
tions would be

Pn−1,m λ = Pn,m μ1, n > 0 (6.33)

Pn+1,m−1 μ1 = Pn,m μ2, m > 0 (6.34)

Pn,m+1 μ2 = Pn,m λ (6.35)

Writing (6.33) as Pn,m = (λ/μ1)Pn−1,m and iterating, yields that

Pn,m = (λ/μ1)
2 Pn−2,m = · · · = (λ/μ1)

n P0,m

Letting n = 0,m = m−1 in Eq. (6.35) shows that P0,m = (λ/μ2)P0,m−1, which yields
upon iteration that

P0,m = (λ/μ2)
2 P0,m−2 = · · · = (λ/μ2)

m P0,0

Hence, the conjectured reversed time equations imply that

Pn,m = (λ/μ1)
n (λ/μ2)

m P0,0

Using that
∑

n

∑
m Pn,m = 1, gives

Pn,m = (λ/μ1)
n (1 − λ/μ1) (λ/μ2)

m (1 − λ/μ2)

As it is easy to check that all the conjectured reverse time Eqs. (6.33), (6.34), and
(6.35) are satisfied for the preceding choice of Pn,m, it follows that they are the limit-
ing probabilities. Hence, we have shown that in steady state the numbers of customers
at the two servers are independent, with the number at server i distributed as the num-
ber in the system of an M/M/1 queue with Poisson arrival rate λ and exponential
service rate μi, i = 1,2. (See Example 6.14.)

6.8 Uniformization
Consider a continuous-time Markov chain in which the mean time spent in a state is
the same for all states. That is, suppose that vi = v, for all states i. In this case since
the amount of time spent in each state during a visit is exponentially distributed with
rate v, it follows that if we let N(t) denote the number of state transitions by time t ,
then {N(t), t ≥ 0} will be a Poisson process with rate v.

To compute the transition probabilities Pij (t), we can condition on N(t):

Pij (t) = P {X(t) = j |X(0) = i}

=
∞∑

n=0

P {X(t) = j |X(0) = i, N(t) = n}P {N(t) = n|X(0) = i}
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=
∞∑

n=0

P {X(t) = j |X(0) = i, N(t) = n}e−vt (vt)n

n!

Now, the fact that there have been n transitions by time t tells us something about the
amount of time spent in each of the first n states visited, but since the distribution of
time spent in each state is the same for all states, it follows that knowing that N(t) = n

gives us no information about which states were visited. Hence,

P {X(t) = j |X(0) = i, N(t) = n} = P n
ij

where P n
ij is just the n-stage transition probability associated with the discrete-time

Markov chain with transition probabilities Pij ; and so when vi ≡ v

Pij (t) =
∞∑

n=0

P n
ij e

−vt (vt)n

n! (6.36)

Eq. (6.36) is often useful from a computational point of view since it enables us to ap-
proximate Pij (t) by taking a partial sum and then computing (by matrix multiplication
of the transition probability matrix) the relevant n stage probabilities P n

ij .
Whereas the applicability of Eq. (6.36) would appear to be quite limited since it

supposes that vi ≡ v, it turns out that most Markov chains can be put in that form by
the trick of allowing fictitious transitions from a state to itself. To see how this works,
consider any Markov chain for which the vi are bounded, and let v be any number
such that

vi ≤ v, for all i (6.37)

When in state i, the process actually leaves at rate vi ; but this is equivalent to sup-
posing that transitions occur at rate v, but only the fraction vi/v of transitions are real
ones (and thus real transitions occur at rate vi) and the remaining fraction 1 − vi/v

are fictitious transitions that leave the process in state i. In other words, any Markov
chain satisfying Condition (6.37) can be thought of as being a process that spends an
exponential amount of time with rate v in state i and then makes a transition to j with
probability P ∗

ij , where

P ∗
ij =

{
1 − vi

v
, j = i

vi

v
Pij , j �= i

(6.38)

Hence, from Eq. (6.36) we have that the transition probabilities can be computed by

Pij (t) =
∞∑

n=0

P ∗n
ij e−vt (vt)n

n!

where P ∗
ij are the n-stage transition probabilities corresponding to Eq. (6.38). This

technique of uniformizing the rate in which a transition occurs from each state by
introducing transitions from a state to itself is known as uniformization.
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Example 6.23. Let us reconsider Example 6.11, which models the workings of a
machine—either on or off—as a two-state continuous-time Markov chain with

P01 = P10 = 1,

v0 = λ, v1 = μ

Letting v = λ + μ, the uniformized version of the preceding is to consider it a
continuous-time Markov chain with

P00 = μ

λ + μ
= 1 − P01,

P10 = μ

λ + μ
= 1 − P11,

vi = λ + μ, i = 1,2

As P00 = P10, it follows that the probability of a transition into state 0 is equal to
μ/(λ+μ) no matter what the present state. Because a similar result is true for state 1,
it follows that the n-stage transition probabilities are given by

P n
i0 = μ

λ + μ
, n ≥ 1, i = 0,1

P n
i1 = λ

λ + μ
, n ≥ 1, i = 0,1

Hence,

P00(t) =
∞∑

n=0

P n
00e

−(λ+μ)t [(λ + μ)t]n
n!

= e−(λ+μ)t +
∞∑

n=1

(
μ

λ + μ

)
e−(λ+μ)t [(λ + μ)t]n

n!
= e−(λ+μ)t + [1 − e−(λ+μ)t ] μ

λ + μ

= μ

λ + μ
+ λ

λ + μ
e−(λ+μ)t

Similarly,

P11(t) =
∞∑

n=0

P n
11e

−(λ+μ)t [(λ + μ)t]n
n!

= e−(λ+μ)t + [1 − e−(λ+μ)t ] λ

λ + μ

= λ

λ + μ
+ μ

λ + μ
e−(λ+μ)t
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The remaining probabilities are

P01(t) = 1 − P00(t) = λ

λ + μ
[1 − e−(λ+μ)t ],

P10(t) = 1 − P11(t) = μ

λ + μ
[1 − e−(λ+μ)t ] �

Example 6.24. Consider the two-state chain of Example 6.23 and suppose that the ini-
tial state is state 0. Let O(t) denote the total amount of time that the process is in state
0 during the interval (0, t). The random variable O(t) is often called the occupation
time. We will now compute its mean.

If we let

I (s) =
{

1, if X(s) = 0
0, if X(s) = 1

then we can represent the occupation time by

O(t) =
∫ t

0
I (s) ds

Taking expectations and using the fact that we can take the expectation inside the
integral sign (since an integral is basically a sum), we obtain

E[O(t)] =
∫ t

0
E[I (s)] ds

=
∫ t

0
P {X(s) = 0} ds

=
∫ t

0
P00(s) ds

= μ

λ + μ
t + λ

(λ + μ)2
{1 − e−(λ+μ)t }

where the final equality follows by integrating

P00(s) = μ

λ + μ
+ λ

λ + μ
e−(λ+μ)s

(For another derivation of E[O(t)], see Exercise 46.) �

6.9 Computing the Transition Probabilities
For any pair of states i and j , let

rij =
{
qij , if i �= j

−vi, if i = j
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Using this notation, we can rewrite the Kolmogorov backward equations

P ′
ij (t) =

∑
k �=i

qikPkj (t) − viPij (t)

and the forward equations

P ′
ij (t) =

∑
k �=j

qkjPik(t) − vjPij (t)

as follows:

P ′
ij (t) =

∑
k
rikPkj (t) (backward)

P ′
ij (t) =

∑
k
rkjPik(t) (forward)

This representation is especially revealing when we introduce matrix notation. Define
the matrices R and P(t), P′(t) by letting the element in row i, column j of these ma-
trices be, respectively, rij ,Pij (t), and P ′

ij (t). Since the backward equations say that
the element in row i, column j of the matrix P′(t) can be obtained by multiplying the
ith row of the matrix R by the j th column of the matrix P(t), it is equivalent to the
matrix equation

P′(t) = RP(t) (6.39)

Similarly, the forward equations can be written as

P′(t) = P(t)R (6.40)

Now, just as the solution of the scalar differential equation

f ′(t) = cf (t)

(or, equivalent, f ′(t) = f (t)c) is

f (t) = f (0)ect

it can be shown that the solution of the matrix differential Eqs. (6.39) and (6.40) is
given by

P(t) = P(0)eRt

Since P(0) = I (the identity matrix), this yields that

P(t) = eRt (6.41)

where the matrix eRt is defined by

eRt =
∞∑

n=0

Rn tn

n! (6.42)
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with Rn being the (matrix) multiplication of R by itself n times.
The direct use of Eq. (6.42) to compute P(t) turns out to be very inefficient for two

reasons. First, since the matrix R contains both positive and negative elements (re-
member the off-diagonal elements are the qij while the ith diagonal element is −vi),
there is the problem of computer round-off error when we compute the powers of R.
Second, we often have to compute many of the terms in the infinite sum (6.42) to arrive
at a good approximation. However, there are certain indirect ways that we can utilize
the relation in (6.41) to efficiently approximate the matrix P(t). We now present two
of these methods.

Approximation Method 1 Rather than using Eq. (6.42) to compute eRt , we can
use the matrix equivalent of the identity

ex = lim
n→∞

(
1 + x

n

)n

which states that

eRt = lim
n→∞

(
I + R

t

n

)n

Thus, if we let n be a power of 2, say, n = 2k , then we can approximate P(t) by raising
the matrix M = I + Rt/n to the nth power, which can be accomplished by k matrix
multiplications (by first multiplying M by itself to obtain M2 and then multiplying
that by itself to obtain M4 and so on). In addition, since only the diagonal elements of
R are negative (and the diagonal elements of the identity matrix I are equal to 1), by
choosing n large enough we can guarantee that the matrix I+Rt/n has all nonnegative
elements.

Approximation Method 2 A second approach to approximating eRt uses the iden-
tity

e−Rt = lim
n→∞

(
I − R

t

n

)n

≈
(

I − R
t

n

)n

for n large

and thus

P(t) = eRt ≈
(

I − R
t

n

)−n

=
[(

I − R
t

n

)−1
]n

Hence, if we again choose n to be a large power of 2, say, n = 2k , we can approximate
P(t) by first computing the inverse of the matrix I − Rt/n and then raising that matrix
to the nth power (by utilizing k matrix multiplications). It can be shown that the matrix
(I − Rt/n)−1 will have only nonnegative elements.
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Remark. Both of the preceding computational approaches for approximating P(t)

have probabilistic interpretations (see Exercises 49 and 50).

Exercises
1. A population of organisms consists of both male and female members. In a

small colony any particular male is likely to mate with any particular female in
any time interval of length h, with probability λh + o(h). Each mating imme-
diately produces one offspring, equally likely to be male or female. Let N1(t)

and N2(t) denote the number of males and females in the population at t . De-
rive the parameters of the continuous-time Markov chain {N1(t),N2(t)}, i.e.,
the vi,Pij of Section 6.2.

*2. Suppose that a one-celled organism can be in one of two states—either A or B.
An individual in state A will change to state B at an exponential rate α; an in-
dividual in state B divides into two new individuals of type A at an exponential
rate β. Define an appropriate continuous-time Markov chain for a population
of such organisms and determine the appropriate parameters for this model.

3. Consider two machines that are maintained by a single repairman. Machine i

functions for an exponential time with rate μi before breaking down, i = 1,2.
The repair times (for either machine) are exponential with rate μ. Can we an-
alyze this as a birth and death process? If so, what are the parameters? If not,
how can we analyze it?

*4. Potential customers arrive at a single-server station in accordance with a Pois-
son process with rate λ. However, if the arrival finds n customers already in
the station, then he will enter the system with probability αn. Assuming an ex-
ponential service rate μ, set this up as a birth and death process and determine
the birth and death rates.

5. There are N individuals in a population, some of whom have a certain infec-
tion that spreads as follows. Contacts between two members of this population
occur in accordance with a Poisson process having rate λ. When a contact oc-
curs, it is equally likely to involve any of the

(
N
2

)
pairs of individuals in the

population. If a contact involves an infected and a noninfected individual, then
with probability p the noninfected individual becomes infected. Once infected,
an individual remains infected throughout. Let X(t) denote the number of in-
fected members of the population at time t .
(a) Is {X(t), t ≥ 0} a continuous-time Markov chain?
(b) Specify its type.
(c) Starting with a single infected individual, what is the expected time until

all members are infected?
6. Consider a birth and death process with birth rates λi = (i + 1)λ, i ≥ 0, and

death rates μi = iμ, i ≥ 0.
(a) Determine the expected time to go from state 0 to state 4.
(b) Determine the expected time to go from state 2 to state 5.
(c) Determine the variances in parts (a) and (b).
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*7. Individuals join a club in accordance with a Poisson process with rate λ. Each
new member must pass through k consecutive stages to become a full mem-
ber of the club. The time it takes to pass through each stage is exponentially
distributed with rate μ. Let Ni(t) denote the number of club members at
time t who have passed through exactly i stages, i = 1, . . . , k − 1. Also, let
N(t) = (N1(t),N2(t), . . . ,Nk−1(t)).
(a) Is {N(t), t ≥ 0} a continuous-time Markov chain?
(b) If so, give the infinitesimal transition rates. That is, for any state n =

(n1, . . . , nk−1) give the possible next states along with their infinitesimal
rates.

8. Consider two machines, both of which have an exponential lifetime with mean
1/λ. There is a single repairman that can service machines at an exponential
rate μ. Set up the Kolmogorov backward equations; you need not solve them.

9. The birth and death process with parameters λn = 0 and μn = μ,n > 0 is
called a pure death process. Find Pij (t).

10. Consider two machines. Machine i operates for an exponential time with rate
λi and then fails; its repair time is exponential with rate μi, i = 1,2. The ma-
chines act independently of each other. Define a four-state continuous-time
Markov chain that jointly describes the condition of the two machines. Use the
assumed independence to compute the transition probabilities for this chain
and then verify that these transition probabilities satisfy the forward and back-
ward equations.

*11. Consider a Yule process starting with a single individual—that is, suppose
X(0) = 1. Let Ti denote the time it takes the process to go from a population
of size i to one of size i + 1.
(a) Argue that Ti, i = 1, . . . , j , are independent exponentials with respective

rates iλ.
(b) Let X1, . . . ,Xj denote independent exponential random variables each

having rate λ, and interpret Xi as the lifetime of component i. Argue that
max(X1, . . . ,Xj) can be expressed as

max(X1, . . . ,Xj) = ε1 + ε2 + · · · + εj

where ε1, ε2, . . . , εj are independent exponentials with respective rates
jλ, (j − 1)λ, . . . , λ.

Hint: Interpret εi as the time between the i − 1 and the ith failure.
(c) Using (a) and (b) argue that

P {T1 + · · · + Tj ≤ t} = (1 − e−λt )j

(d) Use (c) to obtain

P1j (t) = (1 − e−λt )j−1 − (1 − e−λt )j = e−λt (1 − e−λt )j−1

and hence, given X(0) = 1,X(t) has a geometric distribution with pa-
rameter p = e−λt .
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(e) Now conclude that

Pij (t) =
(

j − 1

i − 1

)
e−λti(1 − e−λt )j−i

12. Each individual in a biological population is assumed to give birth at an ex-
ponential rate λ, and to die at an exponential rate μ. In addition, there is an
exponential rate of increase θ due to immigration. However, immigration is
not allowed when the population size is N or larger.
(a) Set this up as a birth and death model.
(b) If N = 3,1 = θ = λ,μ = 2, determine the proportion of time that immi-

gration is restricted.
13. A small barbershop, operated by a single barber, has room for at most two cus-

tomers. Potential customers arrive at a Poisson rate of three per hour, and the
successive service times are independent exponential random variables with
mean 1

4 hour.
(a) What is the average number of customers in the shop?
(b) What is the proportion of potential customers that enter the shop?
(c) If the barber could work twice as fast, how much more business would

he do?
14. Consider an irreducible continuous time Markov chain whose state space is the

nonnegative integers, having instantaneous transition rates qi,j and stationary
probabilities Pi , i ≥ 0. Let T be a given set of states, and let Xn be the state at
the moment of the nth transition into a state in T .
(a) Argue that {Xn,n ≥ 1} is a Markov chain.
(b) At what rate does the continuous time Markov chain make transitions that

go into state j .
(c) For i ∈ T , find the long run proportion of transitions of the Markov chain

{Xn,n ≥ 1} that are into state i.
15. A service center consists of two servers, each working at an exponential rate

of two services per hour. If customers arrive at a Poisson rate of three per hour,
then, assuming a system capacity of at most three customers,
(a) what fraction of potential customers enter the system?
(b) what would the value of part (a) be if there was only a single server, and

his rate was twice as fast (that is, μ = 4)?
*16. The following problem arises in molecular biology. The surface of a bacterium

consists of several sites at which foreign molecules—some acceptable and
some not—become attached. We consider a particular site and assume that
molecules arrive at the site according to a Poisson process with parameter λ.
Among these molecules a proportion α is acceptable. Unacceptable molecules
stay at the site for a length of time that is exponentially distributed with param-
eter μ1, whereas an acceptable molecule remains at the site for an exponential
time with rate μ2. An arriving molecule will become attached only if the site
is free of other molecules. What percentage of time is the site occupied with
an acceptable (unacceptable) molecule?
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17. Each time a machine is repaired it remains up for an exponentially distributed
time with rate λ. It then fails, and its failure is either of two types. If it is a type
1 failure, then the time to repair the machine is exponential with rate μ1; if it
is a type 2 failure, then the repair time is exponential with rate μ2. Each failure
is, independently of the time it took the machine to fail, a type 1 failure with
probability p and a type 2 failure with probability 1 − p. What proportion of
time is the machine down due to a type 1 failure? What proportion of time is it
down due to a type 2 failure? What proportion of time is it up?

18. After being repaired, a machine functions for an exponential time with rate λ

and then fails. Upon failure, a repair process begins. The repair process pro-
ceeds sequentially through k distinct phases. First a phase 1 repair must be
performed, then a phase 2, and so on. The times to complete these phases are
independent, with phase i taking an exponential time with rate μi, i = 1, . . . , k.
(a) What proportion of time is the machine undergoing a phase i repair?
(b) What proportion of time is the machine working?

*19. A single repairperson looks after both machines 1 and 2. Each time it is re-
paired, machine i stays up for an exponential time with rate λi, i = 1, 2. When
machine i fails, it requires an exponentially distributed amount of work with
rate μi to complete its repair. The repairperson will always service machine
1 when it is down. For instance, if machine 1 fails while 2 is being repaired,
then the repairperson will immediately stop work on machine 2 and start on 1.
What proportion of time is machine 2 down?

20. There are two machines, one of which is used as a spare. A working machine
will function for an exponential time with rate λ and will then fail. Upon fail-
ure, it is immediately replaced by the other machine if that one is in working
order, and it goes to the repair facility. The repair facility consists of a single
person who takes an exponential time with rate μ to repair a failed machine. At
the repair facility, the newly failed machine enters service if the repairperson
is free. If the repairperson is busy, it waits until the other machine is fixed; at
that time, the newly repaired machine is put in service and repair begins on the
other one. Starting with both machines in working condition, find
(a) the expected value and
(b) the variance of the time until both are in the repair facility.
(c) In the long run, what proportion of time is there a working machine?

21. Suppose that when both machines are down in Exercise 20 a second repairper-
son is called in to work on the newly failed one. Suppose all repair times remain
exponential with rate μ. Now find the proportion of time at least one machine
is working, and compare your answer with the one obtained in Exercise 20.

22. Customers arrive at a single-server queue in accordance with a Poisson process
having rate λ. However, an arrival that finds n customers already in the system
will only join the system with probability 1/(n + 1). That is, with probability
n/(n + 1) such an arrival will not join the system. Show that the limiting dis-
tribution of the number of customers in the system is Poisson with mean λ/μ.
Assume that the service distribution is exponential with rate μ.
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23. A job shop consists of three machines and two repairmen. The amount of time
a machine works before breaking down is exponentially distributed with mean
10. If the amount of time it takes a single repairman to fix a machine is expo-
nentially distributed with mean 8, then
(a) what is the average number of machines not in use?
(b) what proportion of time are both repairmen busy?

*24. Consider a taxi station where taxis and customers arrive in accordance with
Poisson processes with respective rates of one and two per minute. A taxi will
wait no matter how many other taxis are present. However, an arriving cus-
tomer that does not find a taxi waiting leaves. Find
(a) the average number of taxis waiting, and
(b) the proportion of arriving customers that get taxis.

25. Customers arrive at a service station, manned by a single server who serves
at an exponential rate μ1, at a Poisson rate λ. After completion of service the
customer then joins a second system where the server serves at an exponen-
tial rate μ2. Such a system is called a tandem or sequential queueing system.
Assuming that λ < μi , i = 1, 2, determine the limiting probabilities.

Hint: Try a solution of the form Pn,m = Cαnβm, and determine C,α,β.
26. Consider an ergodic M/M/s queue in steady state (that is, after a long time)

and argue that the number presently in the system is independent of the se-
quence of past departure times. That is, for instance, knowing that there have
been departures 2, 3, 5, and 10 time units ago does not affect the distribution
of the number presently in the system.

27. In the M/M/s queue if you allow the service rate to depend on the number in
the system (but in such a way so that it is ergodic), what can you say about the
output process? What can you say when the service rate μ remains unchanged
but λ > sμ?

*28. If {X(t)} and {Y(t)} are independent continuous-time Markov chains, both of
which are time reversible, show that the process {X(t), Y (t)} is also a time
reversible Markov chain.

29. Consider a set of n machines and a single repair facility to service these
machines. Suppose that when machine i, i = 1, . . . , n, fails it requires an ex-
ponentially distributed amount of work with rate μi to repair it. The repair
facility divides its efforts equally among all failed machines in the sense that
whenever there are k failed machines each one receives work at a rate of 1/k

per unit time. If there are a total of r working machines, including machine i,
then i fails at an instantaneous rate λi/r .
(a) Define an appropriate state space so as to be able to analyze the preceding

system as a continuous-time Markov chain.
(b) Give the instantaneous transition rates (that is, give the qij ).
(c) Write the time reversibility equations.
(d) Find the limiting probabilities and show that the process is time re-

versible.
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30. Consider a graph with nodes 1,2, . . . , n and the
(
n
2

)
arcs (i, j), i �= j, i, j,=

1, . . . , n. (See Section 3.6.2 for appropriate definitions.) Suppose that a particle
moves along this graph as follows: Events occur along the arcs (i, j) accord-
ing to independent Poisson processes with rates λij . An event along arc (i, j)

causes that arc to become excited. If the particle is at node i at the moment that
(i, j) becomes excited, it instantaneously moves to node j, i, j = 1, . . . , n. Let
Pj denote the proportion of time that the particle is at node j . Show that

Pj = 1

n

Hint: Use time reversibility.
31. A total of N customers move about among r servers in the following manner.

When a customer is served by server i, he then goes over to server j , j �= i, with
probability 1/(r − 1). If the server he goes to is free, then the customer enters
service; otherwise he joins the queue. The service times are all independent,
with the service times at server i being exponential with rate μ, i = 1, . . . , r .
Let the state at any time be the vector (n1, . . . , nr ), where ni is the number of
customers presently at server i, i = 1, . . . , r,

∑
ini = N .

(a) Argue that if X(t) is the state at time t , then {X(t), t ≥ 0} is a continuous-
time Markov chain.

(b) Give the infinitesimal rates of this chain.
(c) Show that this chain is time reversible, and find the limiting probabilities.

32. Customers arrive at a two-server station in accordance with a Poisson process
having rate λ. Upon arriving, they join a single queue. Whenever a server com-
pletes a service, the person first in line enters service. The service times of
server i are exponential with rate μi, i = 1,2, where μ1 + μ2 > λ. An arrival
finding both servers free is equally likely to go to either one. Define an appro-
priate continuous-time Markov chain for this model, show it is time reversible,
and find the limiting probabilities.

*33. Consider two M/M/1 queues with respective parameters λi,μi, i = 1,2. Sup-
pose they share a common waiting room that can hold at most three customers.
That is, whenever an arrival finds her server busy and three customers in the
waiting room, she goes away. Find the limiting probability that there will be n

queue 1 customers and m queue 2 customers in the system.

Hint: Use the results of Exercise 28 together with the concept of truncation.
34. Four workers share an office that contains four telephones. At any time, each

worker is either “working” or “on the phone.” Each “working” period of worker
i lasts for an exponentially distributed time with rate λi , and each “on the
phone” period lasts for an exponentially distributed time with rate μi, i = 1, 2,
3, 4.
(a) What proportion of time are all workers “working”?

Let Xi(t) equal 1 if worker i is working at time t , and let it be 0 otherwise.
Let X(t) = (X1(t),X2(t),X3(t),X4(t)).
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(b) Argue that {X(t), t ≥ 0} is a continuous-time Markov chain and give its
infinitesimal rates.

(c) Is {X(t)} time reversible? Why or why not?
Suppose now that one of the phones has broken down. Suppose that a worker
who is about to use a phone but finds them all being used begins a new “work-
ing” period.
(d) What proportion of time are all workers “working”?

35. Consider a time reversible continuous-time Markov chain having infinitesimal
transition rates qij and limiting probabilities {Pi}. Let A denote a set of states
for this chain, and consider a new continuous-time Markov chain with transi-
tion rates q∗

ij given by

q∗
ij =

{
cqij , if i ∈ A, j /∈ A

qij , otherwise

where c is an arbitrary positive number. Show that this chain remains time
reversible, and find its limiting probabilities.

36. Consider a system of n components such that the working times of component
i, i = 1, . . . , n, are exponentially distributed with rate λi . When a component
fails, however, the repair rate of component i depends on how many other
components are down. Specifically, suppose that the instantaneous repair rate
of component i, i = 1, . . . , n, when there are a total of k failed components, is
αkμi .
(a) Explain how we can analyze the preceding as a continuous-time Markov

chain. Define the states and give the parameters of the chain.
(b) Show that, in steady state, the chain is time reversible and compute the

limiting probabilities.
37. A hospital accepts k different types of patients, where type i patients arrive

according to a Poisson proccess with rate λi , with these k Poisson processes
being independent. Type i patients spend an exponentially distributed length
of time with rate μi in the hospital, i = 1, . . . , k. Suppose that each type i pa-
tient in the hospital requires wi units of resources, and that the hospital will
not accept a new patient if it would result in the total of all patient’s resource
needs exceeding the amount C. Consequently, it is possible to have n1 type 1
patients, n2 type 2 patients, . . . , and nk type k patients in the hospital at the
same time if and only if

k∑
i=1

niwi ≤ C

(a) Define a continuous-time Markov chain to analyze the preceding.
For parts (b), (c), and (d) suppose that C = ∞.

(b) If Ni(t) is the number of type i customers in the system at time t , what
type of process is {Ni(t), t ≥ 0}? Is it time reversible?

(c) What can be said about the vector process {(N1(t), . . . ,Nk(t)), t ≥ 0}?
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(d) What are the limiting probabilities of the process of part (c).
For the remaining parts assume that C < ∞.
(e) Find the limiting probabilities for the Markov chain of part (a).
(f) At what rate are type i patients admitted?
(g) What fraction of patients are admitted?

38. Consider an n server system where the service times of server i are expo-
nentially distributed with rate μi, i = 1, . . . , n. Suppose customers arrive in
accordance with a Poisson process with rate λ, and that an arrival who finds
all servers busy does not enter but goes elsewhere. Suppose that an arriving
customer who finds at least one idle server is served by a randomly chosen one
of that group; that is, an arrival finding k idle servers is equally likely to be
served by any of these k.
(a) Define states so as to analyze the preceding as a continuous-time Markov

chain.
(b) Show that this chain is time reversible.
(c) Find the limiting probabilities.

39. Suppose in Exercise 38 that an entering customer is served by the server who
has been idle the shortest amount of time.
(a) Define states so as to analyze this model as a continuous-time Markov

chain.
(b) Show that this chain is time reversible.
(c) Find the limiting probabilities.

*40. Consider a continuous-time Markov chain with states 1, . . . , n, which spends
an exponential time with rate vi in state i during each visit to that state and is
then equally likely to go to any of the other n − 1 states.
(a) Is this chain time reversible?
(b) Find the long-run proportions of time it spends in each state.

41. Show in Example 6.22 that the limiting probabilities satisfy Eqs. (6.33), (6.34),
and (6.35).

42. In Example 6.22 explain why we would have known before analyzing Exam-
ple 6.22 that the limiting probability there are j customers with server i is
(λ/μi)

j (1 −λ/μi), i = 1,2, j ≥ 0. (What we would not have known was that
the number of customers at the two servers would, in steady state, be indepen-
dent.)

43. Consider a sequential queueing model with three servers, where customers
arrive at server 1 in accordance with a Poisson process with rate λ. After
completion at server 1 the customer then moves to server 2; after a service
completion at server 2 the customer moves to server 3; after a service com-
pletion at server 3 the customer departs the system. Assuming that the service
times at server i are exponential with rate μi, i = 1,2,3, find the limiting prob-
abilities of this system by guessing at the reverse chain and then verifying that
your guess is correct.

44. A system of N machines operates as follows. Each machine works for an ex-
ponentially distributed time with rate λ before failing. Upon failure, a machine
must go through two phases of service. Phase 1 service lasts for an exponential
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time with rate μ, and there are always servers available for phase 1 service.
After competing phase 1 service the machine goes to a server that performs
phase 2 service. If that server is busy then the machine joins the waiting queue.
The time it takes to complete a phase 2 service is exponential with rate v. After
completing a phase 2 service the machine goes back to work. Consider the con-
tinuous time Markov chain whose state at any time is the triplet of nonnegative
numbers n = (n0, n1, n2) where n0 + n1 + n2 = N , with the interpretation that
of the N machines, n0 are working, n1 are in phase 1 service, and n2 are in
phase 2 service.
(a) Give the instantaneous transition rates of this continuous time Markov

chain.
(b) Interpreting the reverse chain as a model of similar type, except that ma-

chines go from working to phase 2 and then to phase 1 service, conjecture
the transition rates of the reverse chain. In doing so, make sure that your
conjecture would result in the rate at which the reverse chain departs state
(n, k, j) upon a visit being equal to the rate at which the forward chain
departs that state upon a visit.

(c) Prove that your conjecture is correct and find the limiting probabilities.
45. For the continuous-time Markov chain of Exercise 3 present a uniformized

version.
46. In Example 6.24, we computed m(t) = E[O(t)], the expected occupation time

in state 0 by time t for the two-state continuous-time Markov chain starting
in state 0. Another way of obtaining this quantity is by deriving a differential
equation for it.
(a) Show that

m(t + h) = m(t) + P00(t)h + o(h)

(b) Show that

m′(t) = μ

λ + μ
+ λ

λ + μ
e−(λ+μ)t

(c) Solve for m(t).
47. Let O(t) be the occupation time for state 0 in the two-state continuous-time

Markov chain. Find E[O(t)|X(0) = 1].
48. Consider the two-state continuous-time Markov chain. Starting in state 0, find

Cov[X(s),X(t)].
*49. Let Y denote an exponential random variable with rate λ that is independent of

the continuous-time Markov chain {X(t)} and let

P̄ij = P {X(Y) = j |X(0) = i}
(a) Show that

P̄ij = 1

vi + λ

∑
k

qikP̄kj + λ

vi + λ
δij
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where δij is 1 when i = j and 0 when i �= j .
(b) Show that the solution of the preceding set of equations is given by

P̄ = (I − R/λ)−1

where P̄ is the matrix of elements P̄ij , I is the identity matrix, and R the
matrix specified in Section 6.9.

(c) Suppose now that Y1, . . . , Yn are independent exponentials with rate λ

that are independent of {X(t)}. Show that

P {X(Y1 + · · · + Yn) = j |X(0) = i}
is equal to the element in row i, column j of the matrix P̄n.

(d) Explain the relationship of the preceding to Approximation 2 of Sec-
tion 6.9.

50. (a) Show that Approximation 1 of Section 6.9 is equivalent to uniformizing
the continuous-time Markov chain with a value v such that vt = n and
then approximating Pij (t) by P ∗n

ij .
(b) Explain why the preceding should make a good approximation.

Hint: What is the standard deviation of a Poisson random variable with
mean n?
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7Renewal Theory and Its
Applications

7.1 Introduction
We have seen that a Poisson process is a counting process for which the times between
successive events are independent and identically distributed exponential random vari-
ables. One possible generalization is to consider a counting process for which the
times between successive events are independent and identically distributed with an
arbitrary distribution. Such a counting process is called a renewal process.

Let {N(t), t ≥ 0} be a counting process and let Xn denote the time between the
(n − 1)st and the nth event of this process, n ≥ 1.

Definition 7.1. If the sequence of nonnegative random variables {X1,X2, . . .} is in-
dependent and identically distributed, then the counting process {N(t), t ≥ 0} is said
to be a renewal process.

Thus, a renewal process is a counting process such that the time until the first event
occurs has some distribution F , the time between the first and second event has, inde-
pendently of the time of the first event, the same distribution F , and so on. When an
event occurs, we say that a renewal has taken place.

For an example of a renewal process, suppose that we have an infinite supply of
lightbulbs whose lifetimes are independent and identically distributed. Suppose also
that we use a single lightbulb at a time, and when it fails we immediately replace it
with a new one. Under these conditions, {N(t), t ≥ 0} is a renewal process when N(t)

represents the number of lightbulbs that have failed by time t .
For a renewal process having interarrival times X1,X2, . . . , let

S0 = 0, Sn =
n∑

i=1

Xi, n ≥ 1

That is, S1 = X1 is the time of the first renewal; S2 = X1 +X2 is the time until the first
renewal plus the time between the first and second renewal, that is, S2 is the time of
the second renewal. In general, Sn denotes the time of the nth renewal (see Fig. 7.1).

We shall let F denote the interarrival distribution and to avoid trivialities, we as-
sume that F(0) = P {Xn = 0} < 1. Furthermore, we let

μ = E[Xn], n ≥ 1

be the mean time between successive renewals. It follows from the nonnegativity of
Xn and the fact that Xn is not identically 0 that μ > 0.

The first question we shall attempt to answer is whether an infinite number of re-
newals can occur in a finite amount of time. That is, can N(t) be infinite for some
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Figure 7.1 Renewal and interarrival times.

(finite) value of t? To show that this cannot occur, we first note that, as Sn is the time
of the nth renewal, N(t) may be written as

N(t) = max{n: Sn ≤ t} (7.1)

To understand why Eq. (7.1) is valid, suppose, for instance, that S4 ≤ t but S5 > t .
Hence, the fourth renewal had occurred by time t but the fifth renewal occurred after
time t ; or in other words, N(t), the number of renewals that occurred by time t , must
equal 4. Now by the strong law of large numbers it follows that, with probability 1,

Sn

n
→ μ as n → ∞

But since μ > 0, this means that Sn must be going to infinity as n goes to infinity.
Thus, Sn can be less than or equal to t for at most a finite number of values of n, and
hence by Eq. (7.1), N(t) must be finite.

However, though N(t) < ∞ for each t , it is true that, with probability 1,

N(∞) ≡ lim
t→∞N(t) = ∞

This follows since the only way in which N(∞), the total number of renewals that
occur, can be finite is for one of the interarrival times to be infinite.

Therefore,

P {N(∞) < ∞} = P {Xn = ∞ for some n}

= P

{ ∞⋃
n=1

{Xn = ∞}
}

≤
∞∑

n=1

P {Xn = ∞}

= 0

7.2 Distribution of N(t)
The distribution of N(t) can be obtained, at least in theory, by first noting the impor-
tant relationship that the number of renewals by time t is greater than or equal to n if
and only if the nth renewal occurs before or at time t. That is,

N(t) ≥ n ⇔ Sn ≤ t (7.2)
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From Eq. (7.2), we obtain

P {N(t) = n} = P {N(t) ≥ n} − P {N(t) ≥ n + 1}
= P {Sn ≤ t} − P {Sn+1 ≤ t} (7.3)

Now, since the random variables Xi, i ≥ 1, are independent and have a common dis-
tribution F , it follows that Sn =∑n

i=1 Xi is distributed as Fn, the n-fold convolution
of F with itself (Section 2.5). Therefore, from Eq. (7.3), we obtain

P {N(t) = n} = Fn(t) − Fn+1(t)

Example 7.1. Suppose that P {Xn = i} = p(1−p)i−1, i ≥ 1. That is, suppose that the
interarrival distribution is geometric. Now S1 = X1 may be interpreted as the number
of trials necessary to get a single success when each trial is independent and has a
probability p of being a success. Similarly, Sn may be interpreted as the number of
trials necessary to attain n successes, and hence has the negative binomial distribution

P {Sn = k} =
⎧⎨
⎩
(

k − 1
n − 1

)
pn(1 − p)k−n, k ≥ n

0, k < n

Thus, from Eq. (7.3) we have that

P {N(t) = n} =
[t]∑

k=n

(
k − 1
n − 1

)
pn(1 − p)k−n

−
[t]∑

k=n+1

(
k − 1

n

)
pn+1(1 − p)k−n−1

Equivalently, since an event independently occurs with probability p at each of the
times 1,2, . . .

P {N(t) = n} =
( [t]

n

)
pn(1 − p)[t]−n �

Another expression for P(N(t) = n) can be obtained by conditioning on Sn. This
yields

P (N(t) = n) =
∫ ∞

0
P (N(t) = n|Sn = y)fSn(y)dy

Now, if the nth event occurred at time y > t , then there would have been less than n

events by time t . On the other hand, if it occurred at a time y ≤ t , then there would be
exactly n events by time t if the next interarrival exceeds t − y. Consequently,

P (N(t) = n) =
∫ t

0
P (Xn+1 > t − y|Sn = y)fSn(y)dy
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=
∫ t

0
F̄ (t − y)fSn(y)dy

where F̄ = 1 − F .

Example 7.2. If F(x) = 1 − eλx then Sn, being the sum of n independent exponen-
tials with rate λ, will have a gamma (n,λ) distribution. Consequently, the preceding
identity gives

P (N(t) = n) =
∫ t

0
e−λ(t−y) λe−λy (λy)n−1

(n − 1)! dy

= λne−λt

(n − 1)!
∫ t

0
yn−1dy

= e−λt (λt)n

n! �

By using Eq. (7.2) we can calculate m(t), the mean value of N(t), as

m(t) = E[N(t)]

=
∞∑

n=1

P {N(t) ≥ n}

=
∞∑

n=1

P {Sn ≤ t}

=
∞∑

n=1

Fn(t)

where we have used the fact that if X is nonnegative and integer valued, then

E[X] =
∞∑

k=1

kP {X = k} =
∞∑

k=1

k∑
n=1

P {X = k}

=
∞∑

n=1

∞∑
k=n

P {X = k} =
∞∑

n=1

P {X ≥ n}

The function m(t) is known as the mean-value or the renewal function.
It can be shown that the mean-value function m(t) uniquely determines the renewal

process. Specifically, there is a one-to-one correspondence between the interarrival
distributions F and the mean-value functions m(t).

Another interesting result that we state without proof is that

m(t) < ∞ for all t < ∞
Remarks. (i) Since m(t) uniquely determines the interarrival distribution, it fol-

lows that the Poisson process is the only renewal process having a linear mean-
value function.
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(ii) Some readers might think that the finiteness of m(t) should follow directly from
the fact that, with probability 1, N(t) is finite. However, such reasoning is not
valid; consider the following: Let Y be a random variable having the following
probability distribution:

Y = 2n with probability
(

1
2

)n

, n ≥ 1

Now,

P {Y < ∞} =
∞∑

n=1

P {Y = 2n} =
∞∑

n=1

(
1
2

)n = 1

But

E[Y ] =
∞∑

n=1

2nP {Y = 2n} =
∞∑

n=1

2n
(

1
2

)n = ∞

Hence, even when Y is finite, it can still be true that E[Y ] = ∞.
An integral equation satisfied by the renewal function can be obtained by condi-

tioning on the time of the first renewal. Assuming that the interarrival distribution F

is continuous with density function f this yields

m(t) = E[N(t)] =
∫ ∞

0
E[N(t)|X1 = x]f (x)dx (7.4)

Now suppose that the first renewal occurs at a time x that is less than t . Then, using
the fact that a renewal process probabilistically starts over when a renewal occurs, it
follows that the number of renewals by time t would have the same distribution as 1
plus the number of renewals in the first t − x time units. Therefore,

E[N(t)|X1 = x] = 1 + E[N(t − x)] if x < t

Since, clearly

E[N(t)|X1 = x] = 0 when x > t

we obtain from Eq. (7.4) that

m(t) =
∫ t

0
[1 + m(t − x)]f (x)dx

= F(t) +
∫ t

0
m(t − x)f (x)dx (7.5)

Eq. (7.5) is called the renewal equation and can sometimes be solved to obtain the
renewal function.
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Example 7.3. One instance in which the renewal equation can be solved is when
the interarrival distribution is uniform—say, uniform on (0, 1). We will now present a
solution in this case when t ≤ 1. For such values of t , the renewal function becomes

m(t) = t +
∫ t

0
m(t − x)dx

= t +
∫ t

0
m(y)dy by the substitution y = t − x

Differentiating the preceding equation yields

m′(t) = 1 + m(t)

Letting h(t) = 1 + m(t), we obtain

h′(t) = h(t)

or

logh(t) = t + C

or

h(t) = Ket

or

m(t) = Ket − 1

Since m(0) = 0, we see that K = 1, and so we obtain

m(t) = et − 1, 0 ≤ t ≤ 1 �

7.3 Limit Theorems and Their Applications
We have shown previously that, with probability 1, N(t) goes to infinity as t goes to
infinity. However, it would be nice to know the rate at which N(t) goes to infinity.
That is, we would like to be able to say something about limt→∞ N(t)/t .

As a prelude to determining the rate at which N(t) grows, let us first consider the
random variable SN(t). In words, just what does this random variable represent? Pro-
ceeding inductively suppose, for instance, that N(t) = 3. Then SN(t) = S3 represents
the time of the third event. Since there are only three events that have occurred by
time t , S3 also represents the time of the last event prior to (or at) time t . This is, in
fact, what SN(t) represents—namely, the time of the last renewal prior to or at time t .
Similar reasoning leads to the conclusion that SN(t)+1 represents the time of the first
renewal after time t (see Fig. 7.2). We now are ready to prove the following.
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Figure 7.2

Proposition 7.1. With probability 1,

N(t)

t
→ 1

μ
as t → ∞

Proof. Since SN(t) is the time of the last renewal prior to or at time t , and SN(t)+1 is
the time of the first renewal after time t , we have

SN(t) ≤ t < SN(t)+1

or

SN(t)

N(t)
≤ t

N(t)
<

SN(t)+1

N(t)
(7.6)

However, since SN(t)/N(t) =∑N(t)
i=1 Xi/N(t) is the average of N(t) independent and

identically distributed random variables, it follows by the strong law of large numbers
that SN(t)/N(t) → μ as N(t) → ∞. But since N(t) → ∞ when t → ∞, we obtain

SN(t)

N(t)
→ μ as t → ∞

Furthermore, writing

SN(t)+1

N(t)
=
(

SN(t)+1

N(t) + 1

)(
N(t) + 1

N(t)

)

we have that SN(t)+1/(N(t) + 1) → μ by the same reasoning as before and

N(t) + 1

N(t)
→ 1 as t → ∞

Hence,

SN(t)+1

N(t)
→ μ as t → ∞

The result now follows by Eq. (7.6) since t/N(t) is between two random variables,
each of which converges to μ as t → ∞. �

Remarks. (i) The preceding propositions are true even when μ, the mean time
between renewals, is infinite. In this case, we interpret 1/μ to be 0.

(ii) The number 1/μ is called the rate of the renewal process.
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(iii) Because the average time between renewals is μ, it is quite intuitive that the
average rate at which renewals occur is 1 per every μ time units. �

Example 7.4. Beverly has a radio that works on a single battery. As soon as the bat-
tery in use fails, Beverly immediately replaces it with a new battery. If the lifetime of
a battery (in hours) is distributed uniformly over the interval (30, 60), then at what rate
does Beverly have to change batteries?

Solution: If we let N(t) denote the number of batteries that have failed by time t ,
we have by Proposition 7.1 that the rate at which Beverly replaces batteries is
given by

lim
t→∞

N(t)

t
= 1

μ
= 1

45

That is, in the long run, Beverly will have to replace one battery every 45
hours. �

Example 7.5. Suppose in Example 7.4 that Beverly does not keep any surplus batter-
ies on hand, and so each time a failure occurs she must go and buy a new battery. If
the amount of time it takes for her to get a new battery is uniformly distributed over
(0,1), then what is the average rate that Beverly changes batteries?

Solution: In this case the mean time between renewals is given by

μ = E[U1] + E[U2]

where U1 is uniform over (30, 60) and U2 is uniform over (0, 1). Hence,

μ = 45 + 1
2 = 45 1

2

and so in the long run, Beverly will be putting in a new battery at the rate of 2
91 .

That is, she will put in two new batteries every 91 hours. �

Example 7.6. Suppose that potential customers arrive at a single-server bank in ac-
cordance with a Poisson process having rate λ. However, suppose that the potential
customer will enter the bank only if the server is free when he arrives. That is, if
there is already a customer in the bank, then our arriver, rather than entering the bank,
will go home. If we assume that the amount of time spent in the bank by an entering
customer is a random variable having distribution G, then

(a) what is the rate at which customers enter the bank?
(b) what proportion of potential customers actually enter the bank?

Solution: In answering these questions, let us suppose that at time 0 a customer
has just entered the bank. (That is, we define the process to start when the first
customer enters the bank.) If we let μG denote the mean service time, then, by the
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memoryless property of the Poisson process, it follows that the mean time between
entering customers is

μ = μG + 1

λ

Hence, the rate at which customers enter the bank will be given by

1

μ
= λ

1 + λμG

On the other hand, since potential customers will be arriving at a rate λ, it follows
that the proportion of them entering the bank will be given by

λ/(1 + λμG)

λ
= 1

1 + λμG

In particular if λ = 2 and μG = 2, then only one customer out of five will actually
enter the system. �

A somewhat unusual application of Proposition 7.1 is provided by our next example.

Example 7.7. A sequence of independent trials, each of which results in outcome
number i with probability Pi, i = 1, . . . , n,

∑n
i=1 Pi = 1, is observed until the same

outcome occurs k times in a row; this outcome then is declared to be the winner of the
game. For instance, if k = 2 and the sequence of outcomes is 1, 2, 4, 3, 5, 2, 1, 3, 3,
then we stop after nine trials and declare outcome number 3 the winner. What is the
probability that i wins, i = 1, . . . , n, and what is the expected number of trials?

Solution: We begin by computing the expected number of coin tosses, call it
E[T ], until a run of k successive heads occurs when the tosses are independent
and each lands on heads with probability p. By conditioning on the time of the
first nonhead, we obtain

E[T ] =
k∑

j=1

(1 − p)pj−1(j + E[T ]) + kpk

Solving this for E[T ] yields

E[T ] = k + (1 − p)

pk

k∑
j=1

jpj−1

Upon simplifying, we obtain

E[T ] = 1 + p + · · · + pk−1

pk

= 1 − pk

pk(1 − p)
(7.7)
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Now, let us return to our example, and let us suppose that as soon as the winner
of a game has been determined we immediately begin playing another game. For
each i let us determine the rate at which outcome i wins. Now, every time i wins,
everything starts over again and thus wins by i constitute renewals. Hence, from
Proposition 7.1, the

rate at which i wins = 1

E[Ni]
where Ni denotes the number of trials played between successive wins of out-
come i. Hence, from Eq. (7.7) we see that

rate at which i wins = P k
i (1 − Pi)

1 − P k
i

(7.8)

Hence, the long-run proportion of games that are won by number i is given by

proportion of games i wins = rate at which i wins∑n
j=1 rate at which j wins

= P k
i (1 − Pi)/(1 − P k

i )∑n
j=1(P

k
j (1 − Pj )/(1 − P k

j ))

However, it follows from the strong law of large numbers that the long-run propor-
tion of games that i wins will, with probability 1, be equal to the probability that i

wins any given game. Hence,

P {i wins} = P k
i (1 − Pi)/(1 − P k

i )∑n
j=1(P

k
j (1 − Pj )/(1 − P k

j ))

To compute the expected time of a game, we first note that the

rate at which games end =
n∑

i=1

rate at which i wins

=
n∑

i=1

P k
i (1 − Pi)

1 − P k
i

(from Eq. (7.8))

Now, as everything starts over when a game ends, it follows by Proposition 7.1 that
the rate at which games end is equal to the reciprocal of the mean time of a game.
Hence,

E[time of a game} = 1

rate at which games end

= 1∑n
i=1(P

k
i (1 − Pi)/(1 − P k

i ))
�
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Proposition 7.1 says that the average renewal rate up to time t will, with proba-
bility 1, converge to 1/μ as t → ∞. What about the expected average renewal rate?
Is it true that m(t)/t also converges to 1/μ? This result is known as the elementary
renewal theorem.

Theorem 7.1 (Elementary Renewal Theorem).

m(t)

t
→ 1

μ
as t → ∞

As before, 1/μ is interpreted as 0 when μ = ∞.

Remark. At first glance it might seem that the elementary renewal theorem should be
a simple consequence of Proposition 7.1. That is, since the average renewal rate will,
with probability 1, converge to 1/μ, should this not imply that the expected average
renewal rate also converges to 1/μ? We must, however, be careful; consider the next
example.

Example 7.8. Let U be a random variable which is uniformly distributed on (0, 1);
and define the random variables Yn,n ≥ 1, by

Yn =
{

0, if U > 1/n

n, if U ≤ 1/n

Now, since, with probability 1, U will be greater than 0, it follows that Yn will equal
0 for all sufficiently large n. That is, Yn will equal 0 for all n large enough so that
1/n < U . Hence, with probability 1,

Yn → 0 as n → ∞
However,

E[Yn] = nP

{
U ≤ 1

n

}
= n

1

n
= 1

Therefore, even though the sequence of random variables Yn converges to 0, the ex-
pected values of the Yn are all identically 1. �

To prove the elementary renewal theorem we will make use of an identity known
as Wald’s equation. Before stating Wald’s equation we need to introduce the concept
of a stopping time for a sequence of independent random variables.

Definition. The nonnegative integer valued random variable N is said to be a stop-
ping time for a sequence of independent random variables X1,X2, . . . if the event that
{N = n} is independent of Xn+1,Xn+2, . . . , for all n = 1,2, . . . .

The idea behind a stopping time is that we imagine that the Xi are observed in se-
quence, first X1, then X2, and so on, and that N denotes the number of them observed
before stopping. Because the event that we stop after having observed X1, . . . ,Xn

can only depend on these n values, and not on future unobserved values, it must be
independent of these future values.
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Example 7.9. Suppose that X1,X2, . . . is a sequence of independent and identically
distributed random variables with

P(Xi = 1) = p = 1 − P(Xi = 0)

where p > 0. If we define

N = min(n : X1 + · · · + Xn = r)

then N is a stopping time for the sequence. If we imagine that trials are being per-
formed in sequence and that Xi = 1 corresponds to a success on trial i, then N is the
number of trials needed until there have been a total of r successes when each trial is
independently a success with probability p. �

Example 7.10. Suppose that X1,X2, . . . is a sequence of independent and identically
distributed random variables with

P(Xi = 1) = 1/2 = 1 − P(Xi = −1)

If

N = min(n : X1 + · · · + Xn = 1)

then N is a stopping time for the sequence. N can be regarded as the stopping time
for a gambler who on each play is equally likely to win or lose 1, and who is going to
stop the first time he is winning money. (Because the successive winnings of the gam-
bler are a symmetric random walk, which we showed in Chapter 4 to be a recurrent
Markov chain, it follows that P(N < ∞) = 1.) �

We are now ready for Wald’s equation.

Theorem 7.2 (Wald’s Equation). If X1,X2, . . . , is a sequence of independent and
identically distributed random variables with finite expectation E[X], and if N is a
stopping time for this sequence such that E[N ] < ∞, then

E

[
N∑

n=1

Xn

]
= E[N ]E[X]

Proof. For n = 1,2, . . . , let

In =
{

1, if n ≤ N

0, if n > N

and note that

N∑
n=1

Xn =
∞∑

n=1

XnIn



Renewal Theory and Its Applications 451

Suppose now that the random variables Xn are all nonnegative. Then, taking expecta-
tions yields

E

[
N∑

n=1

Xn

]
= E

[ ∞∑
i=1

XnIn

]

=
∞∑
i=1

E[XnIn]

where the interchange of expectation and summation is justified because XnIn ≥ 0.
Now In = 1 if N ≥ n, which means that In = 1 if we have not yet stopped after having
observed X1, . . . ,Xn−1. But this implies that the value of In is determined before Xn

has been observed, and thus Xn is independent of In. Consequently,

E[XnIn] = E[Xn]E[In] = E[X]E[In]
showing that

E

[
N∑

n=1

Xn

]
= E[X]

∞∑
n=1

E[In]

= E[X]E
[ ∞∑

n=1

In

]

= E[X]E[N ]
Thus we have proven the result when all Xn ≥ 0. In the general case, we define X+

n

and X−
n by

X+
n =

{
Xn, if Xn ≥ 0
0, if Xn < 0

and

X−
n =

{
0, if Xn ≥ 0
−Xn, if Xn < 0

Note that X+
n ≥ 0, X−

n ≥ 0, and that Xn = X+
n − X−

n . Then

E

[
N∑

n=1

Xn

]
= E

[
N∑

n=1

(X+
n − X−

n )

]

= E

[
N∑

n=1

X+
n

]
− E

[
N∑

n=1

X−
n

]

= E[N ]E[X+] − E[N ]E[X−]
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= E[N ][X]
where the next to last equation follows because N is a stopping time for the nonnega-
tive sequences X+

n , n ≥ 1 and X−
n , n ≥ 1. �

To apply Wald’s equation to renewal theory, let X1,X2, . . . be the sequence of inter-
arrival times of a renewal process. If we observe these one at a time and then stop at the
first renewal after time t , then we would stop after having observed X1, . . . ,XN(t)+1,
showing that N(t) + 1 is a stopping time for the sequence of interarrival times. For a
more formal argument that N(t)+ 1 is a stopping time for the sequence of interarrival
times, note that N(t) = n − 1 if and only if the (n − 1)st renewal occurs by time t and
the nth renewal occurs after time t . That is,

N(t) + 1 = n ⇔ N(t) = n − 1 ⇔ X1 + · · · + Xn−1 ≤ t,X1 + · · · + Xn > t

showing that the event that N(t) + 1 = n depends only on the values of X1, . . . ,Xn.
We thus have the following corollary of Wald’s equation.

Proposition 7.2. If X1,X2, . . . , are the interarrival times of a renewal process then

E[X1 + · · · + XN(t)+1] = E[X]E[N(t) + 1]
That is,

E[SN(t)+1] = μ[m(t) + 1]
We are now ready to prove the elementary renewal theorem.

Proof of Elementary Renewal Theorem. Because SN(t)+1 is the time of the first re-
newal after t , it follows that

SN(t)+1 = t + Y(t)

where Y(t), called the excess at time t , is defined as the time from t until the next
renewal. Taking expectations of the preceding yields, upon applying Proposition 7.2,
that

μ(m(t) + 1) = t + E[Y(t)] (7.9)

which can be written as

m(t)

t
= 1

μ
+ E[Y(t)]

tμ
− 1

t

Because Y(t) ≥ 0, the preceding yields that m(t)
t

≥ 1
μ

− 1
t
, showing that

lim
t→∞

m(t)

t
≥ 1

μ
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To show that limt→∞ m(t)
t

≤ 1
μ

, let us suppose that there is a value M < ∞ such that
P(Xi < M) = 1. Because this implies that Y(t) must also be less than M , we have
that E[Y(t)] < M , and so

m(t)

t
≤ 1

μ
+ M

tμ
− 1

t

which gives that

lim
t→∞

m(t)

t
≤ 1

μ

and thus completes the proof of the elementary renewal theorem when the interarrival
times are bounded. When the interarrival times X1,X2, . . . are unbounded, fix M > 0,
and let NM(t), t ≥ 0 be the renewal process with interarrival times min(Xi,M), i ≥ 1.
Because min(Xi,M) ≤ Xi for all i, it follows that NM(t) ≥ N(t) for all t . (That
is, because each interarrival time of NM(t) is smaller than its corresponding inter-
arrival time of N(t), it must have at least as many renewals by time t .) Consequently,
E[N(t)] ≤ E[NM(t)], showing that

lim
t→∞

E[N(t)]
t

≤ lim
t→∞

E[NM(t)]
t

= 1

E[min(Xi,M)]
where the equality follows because the interarrival times of NM(t) are bounded. Us-
ing that limM→∞ E[min(Xi,M)] = E[Xi] = μ, we obtain from the preceding upon
letting M → ∞ that

lim
t→∞

m(t)

t
≤ 1

μ

and the proof is completed. �

Eq. (7.9) shows that if we can determine E[Y(t)], the mean excess at time t , then
we can compute m(t) and vice versa.

Example 7.11. Consider the renewal process whose interarrival distribution is the con-
volution of two exponentials; that is,

F = F1 ∗ F2, where Fi(t) = 1 − e−μit , i = 1,2

We will determine the renewal function by first determining E[Y(t)]. To obtain the
mean excess at t , imagine that each renewal corresponds to a new machine being put
in use, and suppose that each machine has two components—initially component 1
is employed and this lasts an exponential time with rate μ1, and then component 2,
which functions for an exponential time with rate μ2, is employed. When component
2 fails, a new machine is put in use (that is, a renewal occurs). Now consider the pro-
cess {X(t), t ≥ 0} where X(t) is i if a type i component is in use at time t . It is easy
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to see that {X(t), t ≥ 0} is a two-state continuous-time Markov chain, and so, using
the results of Example 6.11, its transition probabilities are

P11(t) = μ1

μ1 + μ2
e−(μ1+μ2)t + μ2

μ1 + μ2

To compute the expected remaining life of the machine in use at time t , we condition
on whether it is using its first or second component: for if it is still using its first com-
ponent, then its remaining life is 1/μ1 +1/μ2, whereas if it is already using its second
component, then its remaining life is 1/μ2. Hence, letting p(t) denote the probability
that the machine in use at time t is using its first component, we have

E[Y(t)] =
(

1

μ1
+ 1

μ2

)
p(t) + 1 − p(t)

μ2

= 1

μ2
+ p(t)

μ1

But, since at time 0 the first machine is utilizing its first component, it follows that
p(t) = P11(t), and so, upon using the preceding expression of P11(t), we obtain

E[Y(t)] = 1

μ2
+ 1

μ1 + μ2
e−(μ1+μ2)t + μ2

μ1(μ1 + μ2)
(7.10)

Now it follows from Eq. (7.9) that

m(t) + 1 = t

μ
+ E[Y(t)]

μ
(7.11)

where μ, the mean interarrival time, is given in this case by

μ = 1

μ1
+ 1

μ2
= μ1 + μ2

μ1μ2

Substituting Eq. (7.10) and the preceding equation into (7.11) yields, after simplifying,

m(t) = μ1μ2

μ1 + μ2
t − μ1μ2

(μ1 + μ2)2
[1 − e−(μ1+μ2)t ] �

Remark. Using the relationship of Eq. (7.11) and results from the two-state con-
tinuous-time Markov chain, the renewal function can also be obtained in the same
manner as in Example 7.11 for the interarrival distributions

F(t) = pF1(t) + (1 − p)F2(t)

and

F(t) = pF1(t) + (1 − p)(F1 ∗ F2)(t)

when Fi(t) = 1 − e−μit , t > 0, i = 1,2. �
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Suppose the interarrival times of a renewal process are all positive integer valued.
Let

Ii =
{

1, if there is a renewal at time i

0, otherwise

and note that N(n), the number of renewals by time n, can be expressed as

N(n) =
n∑

i=1

Ii

Taking expectations of both sides of the preceding shows that

m(n) = E [N(n)] =
n∑

i=1

P(renewal at time i)

Hence, the elementary renewal theorem yields∑n
i=1 P(renewal at time i)

n
→ 1

E[time between renewals]
Now, for a sequence of numbers a1, a2, . . . it can be shown that

lim
n→∞an = a ⇒ lim

n→∞

∑n
i=1 ai

n
= a

Hence, if limn→∞ P(renewal at time n) exists then that limit must equal 1/E[time
between renewals].
Example 7.12. Let Xi, i ≥ 1 be independent and identically distributed random vari-
ables, and set

S0 = 0, Sn =
n∑

i=1

Xi, n > 0

The process {Sn,n ≥ 0} is called a random walk process. Suppose that E[Xi] < 0.
The strong law of large numbers yields

lim
n→∞

Sn

n
→ E [Xi]

But if Sn divided by n is converging to a negative number, then Sn must be going to
minus infinity. Let α be the probability that the random walk is always negative after
the initial movement. That is,

α = P(Sn < 0 for all n ≥ 1)
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To determine α, define a counting process by saying that an event occurs at time n

if S(n) < min(0, S1, . . . , Sn−1). That is, an event occurs each time the random walk
process reaches a new low. Now, if an event occurs at time n, then the next event will
occur k time units later if

Xn+1 ≥ 0,Xn+1 + Xn+2 ≥ 0, . . . ,Xn+1 + · · · + Xn+k−1 ≥ 0,

Xn+1 + · · · + Xn+k < 0

Because Xi, i ≥ 1 are independent and identically distributed the preceding event is
independent of the values of X1, . . . ,Xn, and its probability of occurrence does not
depend on n. Consequently, the times between successive events are independent and
identically distributed, showing that the counting process is a renewal process. Now,

P(renewal at n) = P (Sn < 0, Sn < S1, Sn < S2, . . . , Sn < Sn−1)

= P(X1 + · · · + Xn < 0,X2 + · · · + Xn < 0,

X3 + · · · + Xn < 0, . . . ,Xn < 0)

Because Xn,Xn−1, . . . ,X1 has the same joint distribution as does X1,X2, . . . ,Xn it
follows that the value of the preceding probability would be unchanged if X1 were
replaced by Xn; X2 were replaced by Xn−1; X3 were replaced by Xn−2; and so on.
Consequently,

P(renewal at n) = P(Xn + · · · + X1 < 0,Xn−1 + · · · + X1 < 0,

Xn−2 + · · · + X1 < 0,X1 < 0)

= P(Sn < 0, Sn−1 < 0, Sn−2 < 0, . . . , S1 < 0)

Hence,

lim
n→∞P(renewal at n) = P(Sn < 0 for all n ≥ 1) = α

But, by the elementary renewal theorem, this implies that

α = 1/E[T ]
where T is the time between renewals. That is,

T = min {n : Sn < 0}
For instance, in the case of left skip free random walks (which are ones for which∑∞

j=−1 P(Xi = j) = 1) we showed in Section 3.6.6 that E[T ] = −1/E[Xi] when
E[Xi] < 0, showing that for skip free random walks having a negative mean,

P(Sn < 0 for all n) = −E [Xi]

which verifies a result previously obtained in Section 3.6.6. �
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An important limit theorem is the central limit theorem for renewal processes. This
states that, for large t,N(t) is approximately normally distributed with mean t/μ and
variance tσ 2/μ3, where μ and σ 2 are, respectively, the mean and variance of the in-
terarrival distribution. That is, we have the following theorem which we state without
proof.

Theorem 7.3 (Central Limit Theorem for Renewal Processes).

lim
t→∞P

{
N(t) − t/μ√

tσ 2/μ3
< x

}
= 1√

2π

∫ x

−∞
e−x2/2dx

We now give a heuristic argument to show, for t large, that the distribution of
N(t) is approximately that of a normal random variable with mean t/μ and variance
tσ 2/μ3.

Heuristic Argument for Central Limit Theorem for Renewal Processes. To begin,
note that by the central limit theorem it follows when n is large that Sn =∑n

i=1 Xi is
approximately a normal random variable with mean nμ and variance nσ 2. Conse-
quently, using that N(t) < n ⇔ Sn > t , we see that when n is large

P(N(t) < n) = P(Sn > t)

= P

(
Sn − nμ

σ
√

n
>

t − nμ

σ
√

n

)

≈ P(Z >
t − nμ

σ
√

n
) (7.12)

where Z is a standard normal random variable. Now,

P(
N(t) − t/μ√

tσ 2/μ3
< x) = P(N(t) < t/μ + xσ

√
t/μ3 )

Treating t/μ + xσ
√

t/μ3 as if it were an integer, we see upon letting n = t/μ +
xσ
√

t/μ3 in Eq. (7.12) that

P(
N(t) − t/μ√

tσ 2/μ3
< x) ≈ P

⎛
⎜⎝Z >

t − t − xσμ
√

t/μ3

σ

√
t/μ + xσ

√
t/μ3

⎞
⎟⎠

= P

⎛
⎜⎝Z >

−x
√

t/μ√
t/μ + xσ

√
t/μ3

⎞
⎟⎠

≈ P(Z > −x) when t is large

= P(Z < x) �
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In addition, as might be expected from the central limit theorem for renewal pro-
cesses, it can be shown that Var(N(t))/t converges to σ 2/μ3. That is, it can be shown
that

lim
t→∞

Var(N(t))

t
= σ 2/μ3

Example 7.13. Two machines continually process an unending number of jobs. The
time that it takes to process a job on machine 1 is a gamma random variable with pa-
rameters n = 4, λ = 2, whereas the time that it takes to process a job on machine 2 is
uniformly distributed between 0 and 4. Approximate the probability that together the
two machines can process at least 90 jobs by time t = 100.

Solution: If we let Ni(t) denote the number of jobs that machine i can process by
time t , then {N1(t), t ≥ 0} and {N2(t), t ≥ 0} are independent renewal processes.
The interarrival distribution of the first renewal process is gamma with parameters
n = 4, λ = 2, and thus has mean 2 and variance 1. Correspondingly, the interarrival
distribution of the second renewal process is uniform between 0 and 4, and thus
has mean 2 and variance 16/12.
Therefore, N1(100) is approximately normal with mean 50 and variance 100/8;
and N2(100) is approximately normal with mean 50 and variance 100/6. Hence,
N1(100) + N2(100) is approximately normal with mean 100 and variance 175/6.
Thus, with � denoting the standard normal distribution function, we have

P {N1(100) +N2(100)>89.5} = P

{
N1(100)+N2(100)−100√

175/6
>

89.5−100√
175/6

}

≈ 1 − �

( −10.5√
175/6

)

≈ �

(
10.5√
175/6

)
≈ �(1.944)

≈ 0.9741 �

A counting process with independent interarrival times in which the time until the
first event has distribution function G, whereas all the other interarrivals have distribu-
tion F is called a delayed renewal process. For instance, consider a waiting line system
where customers arrive according to a renewal process, and either enter service if they
find a free server or join the queue if all servers are busy. Suppose service times are
independent with a distribution H . If we say that an event occurs whenever an arrival
finds the system empty, then the process probabilistically starts over after each event
(because at that time there will be a single customer in the system and that customer
will just be starting service, and the arrival process from then on is a renewal process
with interarrival distribution F ). However, assuming that the system starts empty of
customers, the time until the first event will be the time of the first arrival, which has a
different distribution than all the other interarrivals, and thus the counting process of
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events would be a delayed renewal process. For another example, if one starts observ-
ing a renewal process at time t , then the time until the first event will have a different
distribution than all the other interarrival times.

All the limiting results we have proven and will prove for renewal processes also
hold for delayed renewal processes. (That is, it makes no difference in the limit that
the renewal process is “delayed” until the first event occurs.) For instance, let Nd(t) be
the number of events that occur by time t in a delayed renewal process. Then, because
the counting process from the time of the first event X1 is a renewal process we have
that

Nd(t) = 1 + N(t − X1)

where N(s), s ≥ 0 is a renewal process with interarrival distribution F , and where
N(s) = −1 if s < 0. Hence,

Nd(t)

t
= 1

t
+ N(t − X1)

t − X1

t − X1

t

Because X1 is finite, it follows from Proposition 7.1, the strong law for renewal pro-
cesses, that

lim
t→∞

Nd(t)

t
= 1

μ

where μ = E[Xi], i > 1 is the mean of the interarrival distribution F .

7.4 Renewal Reward Processes
A large number of probability models are special cases of the following model. Con-
sider a renewal process {N(t), t ≥ 0} having interarrival times Xn, n ≥ 1, and suppose
that each time a renewal occurs we receive a reward. We denote by Rn the reward
earned at the time of the nth renewal. We shall assume that the Rn, n ≥ 1, are inde-
pendent and identically distributed. However, we do allow for the possibility that Rn

may (and usually will) depend on Xn, the length of the nth renewal interval. If we let

R(t) =
N(t)∑
n=1

Rn

then R(t) represents the total reward earned by time t . Let

E[R] = E[Rn], E[X] = E[Xn]
Proposition 7.3. If E[R] < ∞ and E[X] < ∞, then

(a) with probability 1, lim
t→∞

R(t)
t

= E[R]
E[X]

(b) lim
t→∞

E[R(t)]
t

= E[R]
E[X]
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Proof. We give the proof for (a) only. To prove this, write

R(t)

t
=
∑N(t)

n=1 Rn

t
=
(∑N(t)

n=1 Rn

N(t)

)(
N(t)

t

)

By the strong law of large numbers we obtain∑N(t)
n=1 Rn

N(t)
→ E[R] as t → ∞

and by Proposition 7.1

N(t)

t
→ 1

E[X] as t → ∞

The result thus follows. �

Remark. (i) If we say that a cycle is completed every time a renewal occurs, then
Proposition 7.3 states that the long-run average reward per unit time is equal to
the expected reward earned during a cycle divided by the expected length of a
cycle. For instance, in Example 7.6 if we suppose that the amounts that the suc-
cessive customers deposit in the bank are independent random variables having
a common distribution H , then the rate at which deposits accumulate—that is,
limt→∞(total deposits by the time t) /t)—is given by

E[deposits during a cycle]
E[time of cycle] = μH

μG + 1/λ

where μG + 1/λ is the mean time of a cycle, and μH is the mean of the distri-
bution H .

(ii) Although we have supposed that the reward is earned at the time of a renewal,
the result remains valid when the reward is earned gradually throughout the re-
newal cycle.

Example 7.14 (A Car Buying Model). The lifetime of a car is a continuous random
variable having a distribution H and probability density h. Mr. Brown has a policy
that he buys a new car as soon as his old one either breaks down or reaches the age
of T years. Suppose that a new car costs C1 dollars and also that an additional cost of
C2 dollars is incurred whenever Mr. Brown’s car breaks down. Under the assumption
that a used car has no resale value, what is Mr. Brown’s long-run average cost?

If we say that a cycle is complete every time Mr. Brown gets a new car, then it
follows from Proposition 7.3 (with costs replacing rewards) that his long-run average
cost equals

E[cost incurred during a cycle]
E[length of a cycle]

Now letting X be the lifetime of Mr. Brown’s car during an arbitrary cycle, then the
cost incurred during that cycle will be given by
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C1, if X > T

C1 + C2, if X ≤ T

so the expected cost incurred over a cycle is

C1P {X > T } + (C1 + C2)P {X ≤ T } = C1 + C2H(T )

Also, the length of the cycle is

X, if X ≤ T

T , if X > T

and so the expected length of a cycle is∫ T

0
xh(x)dx +

∫ ∞

T

T h(x)dx =
∫ T

0
xh(x)dx + T [1 − H(T )]

Therefore, Mr. Brown’s long-run average cost will be

C1 + C2H(T )∫ T

0 xh(x)dx + T [1 − H(T )]
(7.13)

Now, suppose that the lifetime of a car (in years) is uniformly distributed over
(0, 10), and suppose that C1 is 3 (thousand) dollars and C2 is 1

2 (thousand) dollars.
What value of T minimizes Mr. Brown’s long-run average cost?

If Mr. Brown uses the value T ,T ≤ 10, then from Eq. (7.13) his long-run average
cost equals

3 + 1
2 (T /10)∫ T

0 (x/10)dx + T (1 − T/10)
= 3 + T/20

T 2/20 + (10T − T 2)/10

= 60 + T

20T − T 2

We can now minimize this by using the calculus. Toward this end, let

g(T ) = 60 + T

20T − T 2

then

g′(T ) = (20T − T 2) − (60 + T )(20 − 2T )

(20T − T 2)2

Equating to 0 yields

20T − T 2 = (60 + T )(20 − 2T )

or, equivalently,

T 2 + 120T − 1200 = 0
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which yields the solutions

T ≈ 9.25 and T ≈ −129.25

Since T ≤ 10, it follows that the optimal policy for Mr. Brown would be to purchase
a new car whenever his old car reaches the age of 9.25 years. �

Example 7.15 (Dispatching a Train). Suppose that customers arrive at a train depot in
accordance with a renewal process having a mean interarrival time μ. Whenever there
are N customers waiting in the depot, a train leaves. If the depot incurs a cost at the
rate of nc dollars per unit time whenever there are n customers waiting, what is the
average cost incurred by the depot?

If we say that a cycle is completed whenever a train leaves, then the preceding is a
renewal reward process. The expected length of a cycle is the expected time required
for N customers to arrive and, since the mean interarrival time is μ, this equals

E[length of cycle] = Nμ

If we let Tn denote the time between the nth and (n + 1)st arrival in a cycle, then the
expected cost of a cycle may be expressed as

E[cost of a cycle] = E[c T1 + 2c T2 + · · · + (N − 1) c TN−1]
which, since E[Tn] = μ, equals

cμ
N

2
(N − 1)

Hence, the average cost incurred by the depot is

cμN(N − 1)

2Nμ
= c(N − 1)

2

Suppose now that each time a train leaves, the depot incurs a cost of six units. What
value of N minimizes the depot’s long-run average cost when c = 2,μ = 1?

In this case, we have that the average cost per unit time is

6 + cμN(N − 1)/2

Nμ
= N − 1 + 6

N

By treating this as a continuous function of N and using the calculus, we obtain that
the minimal value of N is

N = √
6 ≈ 2.45

Hence, the optimal integral value of N is either 2 which yields a value 4, or 3 which
also yields the value 4. Hence, either N = 2 or N = 3 minimizes the depot’s average
cost. �
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Example 7.16. Suppose that customers arrive at a single-server system in accordance
with a Poisson process with rate λ. Upon arriving a customer must pass through a
door that leads to the server. However, each time someone passes through, the door
becomes locked for the next t units of time. An arrival finding a locked door is lost,
and a cost c is incurred by the system. An arrival finding the door unlocked passes
through to the server. If the server is free, the customer enters service; if the server is
busy, the customer departs without service and a cost K is incurred. If the service time
of a customer is exponential with rate μ, find the average cost per unit time incurred
by the system.

Solution: The preceding can be considered to be a renewal reward process, with
a new cycle beginning each time a customer arrives to find the door unlocked. This
is so because whether or not the arrival finds the server free, the door will become
locked for the next t time units and the server will be busy for a time X that is
exponentially distributed with rate μ. (If the server is free, X is the service time of
the entering customer; if the server is busy, X is the remaining service time of the
customer in service.) Since the next cycle will begin at the first arrival epoch after
a time t has passed, it follows that

E[time of a cycle] = t + 1/λ

Let C1 denote the cost incurred during a cycle due to arrivals finding the door
locked. Then, since each arrival in the first t time units of a cycle will result in a
cost c, we have

E[C1] = λtc

Also, let C2 denote the cost incurred during a cycle due to an arrival finding the
door unlocked but the server busy. Then because a cost K is incurred if the server
is still busy a time t after the cycle began and, in addition, the next arrival after that
time occurs before the service completion, we see that

E[C2] = Ke−μt λ

λ + μ

Consequently,

average cost per unit time = λtc + λKe−μt/(λ + μ)

t + 1/λ
�

Example 7.17. Consider a manufacturing process that sequentially produces items,
each of which is either defective or acceptable. The following type of sampling scheme
is often employed in an attempt to detect and eliminate most of the defective items.
Initially, each item is inspected and this continues until there are k consecutive items
that are acceptable. At this point, 100% inspection ends and each successive item is
independently inspected with probability α. This partial inspection continues until a
defective item is encountered, at which time 100% inspection is reinstituted, and the
process begins anew. If each item is, independently, defective with probability q,
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(a) what proportion of items are inspected?
(b) if defective items are removed when detected, what proportion of the remaining

items are defective?

Remark. Before starting our analysis, note that the preceding inspection scheme was
devised for situations in which the probability of producing a defective item changed
over time. It was hoped that 100% inspection would correlate with times at which the
defect probability was large and partial inspection when it was small. However, it is
still important to see how such a scheme would work in the extreme case where the
defect probability remains constant throughout.

Solution: We begin our analysis by noting that we can treat the preceding as a
renewal reward process with a new cycle starting each time 100% inspection is
instituted. We then have

proportion of items inspected = E[number inspected in a cycle]
E[number produced in a cycle]

Let Nk denote the number of items inspected until there are k consecutive ac-
ceptable items. Once partial inspection begins—that is, after Nk items have been
produced—since each inspected item will be defective with probability q, it fol-
lows that the expected number that will have to be inspected to find a defective
item is 1/q. Hence,

E[number inspected in a cycle] = E[Nk] + 1

q

In addition, since at partial inspection each item produced will, independently, be
inspected and found to be defective with probability αq, it follows that the number
of items produced until one is inspected and found to be defective is 1/αq, and so

E[number produced in a cycle] = E[Nk] + 1

αq

Also, as E[Nk] is the expected number of trials needed to obtain k acceptable items
in a row when each item is acceptable with probability p = 1 − q, it follows from
Example 3.29 that

E[Nk] = 1

p
+ 1

p2
+ · · · + 1

pk
= (1/p)k − 1

q

Hence, we obtain

PI ≡ proportion of items that are inspected = (1/p)k

(1/p)k − 1 + 1/α

To answer (b), note first that since each item produced is defective with probabil-
ity q it follows that the proportion of items that are both inspected and found to be
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defective is qPI. Hence, for N large, out of the first N items produced there will
be (approximately) NqPI that are discovered to be defective and thus removed. As
the first N items will contain (approximately) Nq defective items, it follows that
there will be Nq − NqPI defective items not discovered. Hence,

proportion of the nonremoved items that are defective ≈ Nq(1 − PI)

N(1 − qPI)

As the approximation becomes exact as N → ∞, we see that

proportion of the nonremoved items that are defective = q(1 − PI)

(1 − qPI)
�

Example 7.18 (The Average Age of a Renewal Process). Consider a renewal process
having interarrival distribution F and define A(t) to be the time at t since the last re-
newal. If renewals represent old items failing and being replaced by new ones, then
A(t) represents the age of the item in use at time t . Since SN(t) represents the time of
the last event prior to or at time t , we have

A(t) = t − SN(t)

We are interested in the average value of the age—that is, in

lim
s→∞

∫ s

0 A(t)dt

s

To determine this quantity, we use renewal reward theory in the following way: Let
us assume that at any time we are being paid money at a rate equal to the age of the
renewal process at that time. That is, at time t , we are being paid at rate A(t), and
so
∫ s

0 A(t)dt represents our total earnings by time s. As everything starts over again
when a renewal occurs, it follows that∫ s

0 A(t)dt

s
→ E[reward during a renewal cycle]

E[time of a renewal cycle]
Now, since the age of the renewal process a time t into a renewal cycle is just t , we
have

reward during a renewal cycle =
∫ X

0
t dt

= X2

2

where X is the time of the renewal cycle. Hence, we have that

average value of age ≡ lim
s→∞

∫ s

0 A(t)dt

s
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= E[X2]
2E[X] (7.14)

where X is an interarrival time having distribution function F . �

Example 7.19 (The Average Excess of a Renewal Process). Another quantity asso-
ciated with a renewal process is Y(t), the excess or residual time at time t . Y(t) is
defined to equal the time from t until the next renewal and, as such, represents the re-
maining (or residual) life of the item in use at time t . The average value of the excess,
namely,

lim
s→∞

∫ s

0 Y(t)dt

s

also can be easily obtained by renewal reward theory. To do so, suppose that we are
paid at time t at a rate equal to Y(t). Then our average reward per unit time will, by
renewal reward theory, be given by

average value of excess ≡ lim
s→∞

∫ s

0 Y(t)dt

s

= E[reward during a cycle]
E[length of a cycle]

Now, letting X denote the length of a renewal cycle, we have

reward during a cycle =
∫ X

0
(X − t)dt

= X2

2

and thus the average value of the excess is

average value of excess = E[X2]
2E[X]

which was the same result obtained for the average value of the age of a renewal
process. �

Example 7.20. Suppose that passengers arrive at a bus stop according to a Poisson
process with rate λ. Suppose also that buses arrive according to a renewal process with
distribution function F , and that buses pick up all waiting passengers. Assuming that
the Poisson process of people arriving and the renewal process of buses arriving are
independent, find

(a) the average number of people who are waiting for a bus, averaged over all time;
and

(b) the average amount of time that a passenger waits, averaged over all passengers.
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Solution: We will solve this by using renewal reward processes. Say that a new
cycle begins each time a bus arrives. Let T be the time of a cycle, and note that
T has distribution function F . If we suppose that each passenger pays us money
at a rate of 1 per unit time while they wait for a bus, then the reward rate at any
time is the number waiting at that time, and so the average reward per unit time is
the average number of people that are waiting for a bus. Letting R be the reward
earned during a cycle, the renewal reward theorem gives

Average Number Waiting = E[R]
E[T ]

Let N be the number of arrivals during a cycle. To determine E[R], we will con-
dition on the values of both T and N . Now,

E[R|T = t,N = n] = nt/2

which follows because given there are n arrivals by time t their set of arrival times
are distributed as n independent uniform (0, t) random variables, and so the aver-
age amount received per passenger is t/2. Hence,

E[R|T ,N] = NT/2

Taking expectations yields

E[R] = 1

2
E[NT ]

To compute E[NT ], condition on T to obtain

E[NT |T ] = T E[N |T ] = λT 2

where the preceding follows because, given the time T until the bus arrives, the
number of people waiting is Poisson distributed with mean λT . Hence, upon tak-
ing expectations of the preceding, we obtain

E[R] = 1

2
E[NT ] = λE[T 2]/2

which gives that

Average Number Waiting = λE[T 2]
2E[T ]

where T has the interarrival distribution F .
To determine the average amount of time that a passenger waits note that, because
each passenger pays 1 per unit time while waiting for a bus, the total amount paid
by a passenger is the amount of time the passenger waits. Because R is the total
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reward earned in a cycle, it thus follows that, with Wi being the waiting time of
passenger i,

R = W1 + · · · + WN

Now, if we consider the rewards earned from successive passengers, namely
W1,W2, . . . , and imagine that the reward Wi is earned at time i, then this sequence
of rewards constitutes a discrete time renewal reward process in which a new cycle
begins at time N + 1. Consequently, from renewal reward process theory and the
preceding identity, we see that

lim
n→∞

W1 + · · · + Wn

n
= E[W1 + · · · + WN ]

E[N ] = E[R]
E[N ]

Using that

E[N ] = E[E[N |T ]] = E[λT ] = λE[T ]

along with the previously derived E[R] = λE[T 2]/2 we obtain the result

lim
n→∞

W1 + · · · + Wn

n
= E[T 2]

2E[T ]

Because E[T 2]
2E[T ] is the average value of the excess for the renewal process of arriving

buses, the preceding equation yields the interesting result that the average waiting
time of a passenger is equal to the average time until the next bus arrives when
we average over all time. Because passengers are arriving according to a Poisson
process, this result is a special case of a general result, known as the PASTA prin-
ciple, to be presented in Chapter 8. The PASTA principle says that a system as
seen by Poisson arrivals is the same as the system as averaged over all time. (In
our example, the system refers to the time until the next bus.) �

In the following subsection, we show how some Markov chains results can be
proven by using renewal theory.

7.4.1 Renewal Reward Process Applications to Markov
Chains

Consider an irreducible recurrent Markov chain {Xn,n ≥ 0} with transition probabil-
ities Pi,j , i, j ≥ 0. If we say that an event occurs whenever the chain enters state j ,
and let Nj(n) denote the number of events by time n, then it follows from the Marko-
vian property that Nj(n),n ≥ 1 is a renewal process if X0 = j , or a delayed renewal
process otherwise.

Letting mj,j denote the expected number of transitions, starting in state j , until the
chain is back in state j , it follows from the strong law for renewal processes that, for
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any distribution on the initial state,

lim
n→∞

Nj(n)

n
= 1

mj,j

Thus, if we let

πj = 1

mj,j

,

then πj is the long-run proportion of time that the chain is in state j . Because

Nj(n) =
n∑

k=1

I {Xk = j}

we have that

E[Nj(n)] =
n∑

k=1

E[I {Xk = j}] =
n∑

k=1

P(Xk = j)

Hence, from the elementary renewal theorem, it follows that for any distribution on
the initial state,

lim
n→∞

∑n
k=1 P(Xk = j)

n
= πj . (7.15)

Definition. Say that state j is positive recurrent if mj,j < ∞ or, equivalently, if
πj > 0.

We will now argue that, because the Markov chain is irreducible, either all states
are positive recurrent or none are. To show this, suppose that some state, say state 0,
is positive recurrent. Now, say that a cycle begins each time the chain enters state 0.
For a given state j , if we suppose that a reward of 1 is earned whenever the chain is in
state j , it follows from renewal reward process theory that

πj = average reward per unit time = E[Nj ]
m0,0

where Nj is the number of periods the chain is in state j during a cycle. Now, let
k = min{n : P n

0,j > 0}. (Such a value k exists because the Markov chain is irreducible.)
Because k is the fewest number of transitions that it takes to go from state 0 to state
j , it follows that if a Markov chain that starts in state 0 is in state j at time k then the
first cycle has not yet ended by that time (for otherwise the chain would have returned
to state 0 at some time m,0 < m < k, and as it would take at least an additional k

transitions to reach state j , it would not be possible for it to be in state j at time k).
Hence,

Nj ≥ I {Xk = j}
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giving that

E[Nj ] ≥ P k
0,j > 0

Because m0,0 < ∞, this verifies that πj = E[Nj ]
m0,0

> 0.

Definition. Say that the nonnegative vector {xi, i ≥ 0} is a stationary probability vec-
tor for the Markov chain if

xj =
∞∑
i=0

xiPi,j , j ≥ 0

∞∑
j=0

xj = 1

Suppose that {xi, i ≥ 0} is a stationary probability vector for the Markov chain.
Then it is straightforward to show, by induction on k, that if P(X0 = i) = xi, i ≥ 0,
then P(Xk = j) = xj , for all k and j . Using Eq. (7.15), this implies that xj = πj .
Thus, the only possible stationary probability vector is {πi, i ≥ 0}. Now, if the Markov
chain is not positive recurrent then all πi = 0, and so there is not a stationary proba-
bility vector. We now argue that if the chain is positive recurrent, then {πi, i ≥ 0} is a
stationary probability vector. To do so, we must show that

πj =
∞∑
i=0

πiPi,j

∞∑
j=1

πj = 1

To show the preceding, fix some state, say state 0. Suppose X0 = 0, and say that a new
cycle begins every time the Markov chain enters state 0. Let Ni,j denote the number
of times the Markov chain makes a transition from i to j in a cycle, and let Nj be the
number of periods the chain is in state j during the cycle. Also, let Ik, k ≥ 1 be the
indicator of the event that state j is the next state after the kth visit to state i. It follows,
by the Markovian property, that Ik, k ≥ 1 are independent and identically distributed
with P(Ik = 1) = Pi,j = 1 − P(Ik = 0). With these definitions, we have that

Ni,j =
Ni∑

k=1

Ik

Now, knowing that state i is visited n times in a cycle gives us information about the
states following these visits to i, as we know that for the first n − 1 of these visits the
subsequent states are such that a return to state i occurs before there is a transition
into state 0, with the opposite being true on the nth visit to state i. However, the event
{Ni = n} yields no information about future transitions from state i, thus showing that
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Ni is a stopping time for the sequence Ik, k ≥ 1. Consequently, Wald’s equation yields
that

E[Ni,j ] = E[Ni]Pi,j

Because

Nj =
∑

i

Ni,j

the preceding gives

E[Nj ] =
∑

i

E[Ni,j ] =
∑

i

E[Ni]Pi,j (7.16)

By assuming that a reward of 1 is earned whenever the chain enters state i, it follows
from renewal reward processes that

πi = average reward per unit time = E[Ni]
E[N ] ,

where N is the number of transitions in a cycle. Because E[N ] = m0,0 < ∞, we
obtain upon dividing both sides of (7.16) by E[N ] that

πj =
∑

i

πiPi,j

To show that
∑

j πj = 1, note that N =∑j Nj , and so

E[N ] =
∑
j

E[Nj ].

Dividing through by E[N ], gives

1 =
∑
j

E[Nj ]
E[N ] =

∑
j

πj ,

thus completing the proof that πj , j ≥ 0 is the unique stationary probability vector
when the Markov chain is positive recurrent.

7.4.2 Renewal Reward Process Applications to Patterns of
Markov Chain Generated Data

Renewal reward processes can also be used to find the expected time until a given
pattern appears in Markov chain-generated data. Suppose Y1, Y2, . . . is an irreducible
Markov chain with transition probabilities Pi,j , i, j ≥ 0 and stationary probabili-
ties πi, i ≥ 0. For a given pattern of states i1, . . . , ik , say that the first event occurs



472 Introduction to Probability Models

at time S1 = min{n + k : n ≥ 0, Yn+1 = i1, . . . , Yn+k = ik}. Then, without using
any of these data values, say that the next event occurs the next time the pattern
i1, . . . , ik appears. That is, the second event occurs at time S2 = min{n + k : n ≥
S1, Yn+1 = i1, . . . , Yn+k = ik}. For instance if the pattern is 1,1 and (Y1, Y2, . . .) =
(2,1,2,1,1,1,2,3,1,1, . . .) then S1 = 5, S2 = 10. Let μ be the mean time between
patterns. That is, μ is the mean number of transitions of the Markov chain until the
pattern appears when the first state of the chain is j with probability Pik,j .

To use renewal reward processes to determine μ, say that the successive cycles end
at times Sj , j ≥ 1. Also, suppose that a reward of 1 is earned each time the pat-
tern appears. Thus, whereas a reward of 1 is earned when a cycle ends we can
also earn rewards at times within the cycle. For instance, if the pattern is 1,1 and
(Y1, Y2, . . .) = (2,1,2,1,1,1,2,3,1,1, . . .) then a reward of 1 is earned not only at
times 5 and 10 but also at time 6. Suppose also that Y1 is distributed according to the
stationary probabilities. Because this implies that P(Yn = i) = πi for all n, i, we see
that

P(reward earned at time n + k = 1) = P(Yn+1 = i1, . . . , Yn+k = ik)

= πi1Pi1,i2 · · ·Pik−1,ik

Thus, the average expected reward per unit time is πi1Pi1,i2 · · ·Pik−1,ik . Because the
process we’ve described is a delayed renewal reward process (where the time of and
reward earned during the first cycle has a different distribution than for the others) it
follows that

πi1Pi1,i2 · · ·Pik−1,ik = E[reward earned in cycle]
μ

giving that

μ = E[reward earned in cycle]
πi1Pi1,i2 · · ·Pik−1,ik

For a given pattern, it is straightforward to determine E[reward earned in cycle]. For
instance, suppose the pattern is 1,2,1,2,1. If the pattern has just occurred, then a re-
ward of 1 is earned if the next two states following the pattern are 2,1; a reward of 1
is earned if the next four states following the pattern are 2,1,2,1; and a reward of 1 is
earned at the end of the cycle. Hence, if I {j1, . . . , jr} is the indicator of the event that
the first r states of the new cycle are j1, . . . , jr , then

reward earned in cycle = I {2,1} + I {2,1,2,1} + 1

which, since the final state of the previous cycle was 1, gives

E[reward earned in cycle] = P1,2P2,1 + P1,2P2,1P1,2P2,1 + 1

Hence,

μ = P1,2P2,1 + P1,2P2,1P1,2P2,1 + 1

π1P1,2P2,1P1,2P2,1
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Whereas the preceding shows how we can determine the mean time between succes-
sive patterns, sometimes we want to determine the mean time until the pattern occurs
given that we start observing the Markov chain after it has made a transition from
state j . That is, we want to determine E[Tj ], where Tj = min{n + k : n ≥ 0, Yn+1 =
i1, . . . , Yn+k = ik|Y0 = j}. To find E[Tj ], let m(s, i1) be the mean number of tran-
sitions, starting in state s, until the Markov chain makes a transition into state i1.
Conditioning on the next state from s yields

m(s, i1) = 1 +
∑
r =i1

Ps,rm(r, i1), s ≥ 0

These linear equations can be solved (at least when the state space is finite), so suppose
that m(j, i1) has been determined. Let A(i1) be the additional number of transitions
until the pattern appears given that Y1 = i1. Because μ is the mean time between pat-
terns and because the last pattern ended in state ik , it follows that

μ = m(ik, i1) + E[A(i1)]
giving that

E[A(i1)] = μ − m(ik, i1)

Because Tj is just the number of transitions to go from j to i1 plus A(i1), we have

E[Tj ] = m(j, i1) + μ − m(ik, i1)

7.5 Regenerative Processes
Consider a stochastic process {X(t), t ≥ 0} with state space 0,1,2, . . . , having the
property that there exist time points at which the process (probabilistically) restarts
itself. That is, suppose that with probability 1, there exists a time T1, such that the
continuation of the process beyond T1 is a probabilistic replica of the whole process
starting at 0. Note that this property implies the existence of further times T2, T3, . . . ,

having the same property as T1. Such a stochastic process is known as a regenerative
process.

From the preceding, it follows that T1, T2, . . . , constitute the arrival times of a re-
newal process, and we shall say that a cycle is completed every time a renewal occurs.

Examples. (1) A renewal process is regenerative, and T1 represents the time of the
first renewal.

(2) A recurrent Markov chain is regenerative, and T1 represents the time of the first
transition into the initial state.

We are interested in determining the long-run proportion of time that a regenerative
process spends in state j . To obtain this quantity, let us imagine that we earn a reward
at a rate 1 per unit time when the process is in state j and at rate 0 otherwise. That is,
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if I (s) represents the rate at which we earn at time s, then

I (s) =
{

1, if X(s) = j

0, if X(s) = j

and

total reward earned by t =
∫ t

0
I (s) ds

As the preceding is clearly a renewal reward process that starts over again at the cycle
time T1, we see from Proposition 7.3 that

average reward per unit time = E[reward by time T1]
E[T1]

However, the average reward per unit is just equal to the proportion of time that the
process is in state j . That is, we have the following.

Proposition 7.4. For a regenerative process, the long-run

proportion of time in state j = E[amount of time in j during a cycle]
E[time of a cycle]

Remark. If the cycle time T1 is a continuous random variable, then it can be shown
by using an advanced theorem called the “key renewal theorem” that the preceding is
equal also to the limiting probability that the system is in state j at time t . That is, if
T1 is continuous, then

lim
t→∞P {X(t) = j} = E[amount of time in j during a cycle]

E[time of a cycle]
Example 7.21. Consider a positive recurrent continuous-time Markov chain that is
initially in state i. By the Markovian property, each time the process reenters state i it
starts over again. Thus returns to state i are renewals and constitute the beginnings of
new cycles. By Proposition 7.4, it follows that the long-run

proportion of time in state j = E[amount of time in j during an i − i cycle]
μii

where μii represents the mean time to return to state i. If we take j to equal i, then
we obtain

proportion of time in state i = 1/vi

μii

�

Example 7.22 (A Queueing System with Renewal Arrivals). Consider a waiting time
system in which customers arrive in accordance with an arbitrary renewal process and
are served one at a time by a single server having an arbitrary service distribution. If
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we suppose that at time 0 the initial customer has just arrived, then {X(t), t ≥ 0} is
a regenerative process, where X(t) denotes the number of customers in the system
at time t . The process regenerates each time a customer arrives and finds the server
free. �

Example 7.23. Although a system needs only a single machine to function, it main-
tains an additional machine as a backup. A machine in use functions for a random
time with density function f and then fails. If a machine fails while the other one is
in working condition, then the latter is put in use and, simultaneously, repair begins
on the one that just failed. If a machine fails while the other machine is in repair, then
the newly failed machine waits until the repair is completed; at that time the repaired
machine is put in use and, simultaneously, repair begins on the recently failed one.
All repair times have density function g. Find P0,P1,P2, where Pi is the long-run
proportion of time that exactly i of the machines are in working condition.

Solution: Let us say that the system is in state i whenever i machines are in
working condition i = 0,1,2. It is then easy to see that every time the system en-
ters state 1 it probabilistically starts over. That is, the system restarts every time
that a machine is put in use while, simultaneously, repair begins on the other one.
Say that a cycle begins each time the system enters state 1. If we let X denote the
working time of the machine put in use at the beginning of a cycle, and let R be
the repair time of the other machine, then the length of the cycle, call it Tc, can be
expressed as

Tc = max(X,R)

The preceding follows when X ≤ R, because, in this case, the machine in use
fails before the other one has been repaired, and so a new cycle begins when that
repair is completed. Similarly, it follows when R < X, because then the repair
occurs first, and so a new cycle begins when the machine in use fails. Also, let
Ti , i = 0,1,2, be the amount of time that the system is in state i during a cycle.
Then, because the amount of time during a cycle that neither machine is working
is R − X provided that this quantity is positive or 0 otherwise, we have

T0 = (R − X)+

Similarly, because the amount of time during the cycle that a single machine is
working is min(X,R), we have

T1 = min(X,R)

Finally, because the amount of time during the cycle that both machines are work-
ing is X − R if this quantity is positive or 0 otherwise, we have

T2 = (X − R)+
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Hence, we obtain

P0 = E[(R − X)+]
E[max(X,R)]

P1 = E[min(X,R)]
E[max(X,R)]

P2 = E[(X − R)+]
E[max(X,R)]

That P0 + P1 + P2 = 1 follows from the easily checked identity

max(x, r) = min(x, r) + (x − r)+ + (r − x)+

The preceding expectations can be computed as follows:

E[max(X,R)] =
∫ ∞

0

∫ ∞

0
max(x, r)f (x)g(r)dx dr

=
∫ ∞

0

∫ r

0
rf (x)g(r)dx dr +

∫ ∞

0

∫ ∞

r

xf (x)g(r)dx dr

E[(R − X)+] =
∫ ∞

0

∫ ∞

0
(r − x)+f (x)g(r)dx dr

=
∫ ∞

0

∫ r

0
(r − x)f (x)g(r)dx dr

E[min(X,R)] =
∫ ∞

0

∫ ∞

0
min(x, r)f (x)g(r)dx dr

=
∫ ∞

0

∫ r

0
xf (x)g(r)dx dr +

∫ ∞

0

∫ ∞

r

rf (x)g(r)dx dr

E[(X − R)+] =
∫ ∞

0

∫ x

0
(x − r)f (x)g(r)dr dx �

7.5.1 Alternating Renewal Processes

Another example of a regenerative process is provided by what is known as an alter-
nating renewal process, which considers a system that can be in one of two states: on
or off. Initially it is on, and it remains on for a time Z1; it then goes off and remains
off for a time Y1. It then goes on for a time Z2; then off for a time Y2; then on, and so
on.

We suppose that the random vectors (Zn,Yn), n ≥ 1 are independent and identically
distributed. That is, both the sequence of random variables {Zn} and the sequence {Yn}
are independent and identically distributed; but we allow Zn and Yn to be dependent.
In other words, each time the process goes on, everything starts over again, but when
it then goes off, we allow the length of the off time to depend on the previous on time.

Let E[Z] = E[Zn] and E[Y ] = E[Yn] denote, respectively, the mean lengths of an
on and off period.
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We are concerned with Pon, the long-run proportion of time that the system is on.
If we let

Xn = Yn + Zn, n ≥ 1

then at time X1 the process starts over again. That is, the process starts over again af-
ter a complete cycle consisting of an on and an off interval. In other words, a renewal
occurs whenever a cycle is completed. Therefore, we obtain from Proposition 7.4 that

Pon = E[Z]
E[Y ] + E[Z]

= E[on]
E[on] + E[off] (7.17)

Also, if we let Poff denote the long-run proportion of time that the system is off, then

Poff = 1 − Pon

= E[off]
E[on] + E[off]

Example 7.24 (A Production Process). One example of an alternating renewal pro-
cess is a production process (or a machine) that works for a time Z1, then breaks down
and has to be repaired (which takes a time Y1), then works for a time Z2, then is down
for a time Y2, and so on. If we suppose that the process is as good as new after each
repair, then this constitutes an alternating renewal process. It is worthwhile to note
that in this example it makes sense to suppose that the repair time will depend on the
amount of time the process had been working before breaking down. �

Example 7.25. The rate a certain insurance company charges its policyholders alter-
nates between r1 and r0. A new policyholder is initially charged at a rate of r1 per unit
time. When a policyholder paying at rate r1 has made no claims for the most recent s

time units, then the rate charged becomes r0 per unit time. The rate charged remains
at r0 until a claim is made, at which time it reverts to r1. Suppose that a given policy-
holder lives forever and makes claims at times chosen according to a Poisson process
with rate λ, and find

(a) Pi , the proportion of time that the policyholder pays at rate ri , i = 0,1;
(b) the long-run average amount paid per unit time.

Solution: If we say that the system is “on” when the policyholder pays at rate
r1 and “off” when she pays at rate r0, then this on–off system is an alternating re-
newal process with a new cycle starting each time a claim is made. If X is the time
between successive claims, then the on time in the cycle is the smaller of s and X.
(Note that if X < s, then the off time in the cycle is 0.) Since X is exponential with
rate λ, the preceding yields

E[on time in cycle] = E[min(X, s)]
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=
∫ s

0
xλe−λx dx + se−λs

= 1

λ
(1 − e−λs)

Since E[X] = 1/λ, we see that

P1 = E[on time in cycle]
E[X] = 1 − e−λs

and

P0 = 1 − P1 = e−λs

The long-run average amount paid per unit time is

r0P0 + r1P1 = r1 − (r1 − r0)e
−λs �

Example 7.26 (The Age of a Renewal Process). Suppose we are interested in de-
termining the proportion of time that the age of a renewal process is less than some
constant c. To do so, let a cycle correspond to a renewal, and say that the system is
“on” at time t if the age at t is less than or equal to c, and say it is “off” if the age at t

is greater than c. In other words, the system is “on” the first c time units of a renewal
interval, and “off” the remaining time. Hence, letting X denote a renewal interval, we
have, from Eq. (7.17),

proportion of time age is less than c = E[min(X, c)]
E[X]

=
∫∞

0 P {min(X, c) > x}dx

E[X]
=
∫ c

0 P {X > x}dx

E[X]
=
∫ c

0 (1 − F(x))dx

E[X] (7.18)

where F is the distribution function of X and where we have used the identity that for
a nonnegative random variable Y

E[Y ] =
∫ ∞

0
P {Y > x}dx �

Example 7.27 (The Excess of a Renewal Process). Let us now consider the long-run
proportion of time that the excess of a renewal process is less than c. To determine
this quantity, let a cycle correspond to a renewal interval and say that the system is
on whenever the excess of the renewal process is greater than or equal to c and that it
is off otherwise. In other words, whenever a renewal occurs the process goes on and
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Figure 7.3 Arrowheads indicate direction of time.

stays on until the last c time units of the renewal interval when it goes off. Clearly this
is an alternating renewal process, and so we obtain from Eq. (7.17) that

long-run proportion of time the excess is less than c = E[off time in cycle]
E[cycle time]

If X is the length of a renewal interval, then since the system is off the last c time units
of this interval, it follows that the off time in the cycle will equal min(X, c). Thus,

long-run proportion of time the excess is less than c = E[min(X, c)]
E[X]

=
∫ c

0 (1 − F(x))dx

E[X]
where the final equality follows from Eq. (7.18). Thus, we see from the result of Ex-
ample 7.26 that the long-run proportion of time that the excess is less than c and the
long-run proportion of time that the age is less than c are equal. One way to understand
this equivalence is to consider a renewal process that has been in operation for a long
time and then observe it going backwards in time. In doing so, we observe a counting
process where the times between successive events are independent random variables
having distribution F . That is, when we observe a renewal process going backwards in
time we again observe a renewal process having the same probability structure as the
original. Since the excess (age) at any time for the backwards process corresponds to
the age (excess) at that time for the original renewal process (see Fig. 7.3), it follows
that all long-run properties of the age and the excess must be equal. �

If μ is the mean interarrival time, then the distribution function Fe, defined by

Fe(x) =
∫ x

0

1 − F(y)

μ
dy

is called the equilibrium distribution of F . From the preceding, it follows that Fe(x)

represents the long-run proportion of time that the age, and the excess, of the renewal
process is less than or equal to x.

Example 7.28 (The Busy Period of the M/G/∞ Queue). The infinite server queue-
ing system in which customers arrive according to a Poisson process with rate λ, and
have a general service distribution G, was analyzed in Section 5.3, where it was shown
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that the number of customers in the system at time t is Poisson distributed with mean
λ
∫ t

0 Ḡ(y)dy. If we say that the system is busy when there is at least one customer in
the system and is idle when the system is empty, find E[B], the expected length of a
busy period.

Solution: If we say that the system is on when there is at least one customer
in the system, and off when the system is empty, then we have an alternating re-
newal process. Because

∫∞
0 Ḡ(t)dt = E[S], where E[S] is the mean of the service

distribution G, it follows from the result of Section 5.3 that

lim
t→∞P {system off at t } = e−λE[S]

Consequently, from alternating renewal process theory we obtain

e−λE[S] = E[off time in cycle]
E[cycle time]

But when the system goes off, it remains off only up to the time of the next arrival,
giving that

E[off time in cycle] = 1/λ

Because

E[on time in cycle] = E[B]
we obtain

e−λE[S] = 1/λ

1/λ + E[B]
or

E[B] = 1

λ

(
eλE[S] − 1

)
�

Example 7.29 (An Inventory Example). Suppose that customers arrive at a specified
store in accordance with a renewal process having interarrival distribution F . Suppose
that the store stocks a single type of item and that each arriving customer desires a
random amount of this commodity, with the amounts desired by the different cus-
tomers being independent random variables having the common distribution G. The
store uses the following (s, S) ordering policy: If its inventory level falls below s, then
it orders enough to bring its inventory up to S. That is, if the inventory after serving a
customer is x, then the amount ordered is

S − x, if x < s

0, if x ≥ s

The order is assumed to be instantaneously filled.
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For a fixed value y, s ≤ y ≤ S, suppose that we are interested in determining the
long-run proportion of time that the inventory on hand is at least as large as y. To
determine this quantity, let us say that the system is “on” whenever the inventory level
is at least y and is “off” otherwise. With these definitions, the system will go on each
time that a customer’s demand causes the store to place an order that results in its
inventory level returning to S. Since whenever this occurs a customer must have just
arrived it follows that the times until succeeding customers arrive will constitute a re-
newal process with interarrival distribution F ; that is, the process will start over each
time the system goes back on. Thus, the on and off periods so defined constitute an
alternating renewal process, and from Eq. (7.17) we have that

long-run proportion of time inventory ≥ y = E[on time in a cycle]

E[cycle time]
(7.19)

Now, if we let D1,D2, . . . denote the successive customer demands, and let

Nx = min(n : D1 + · · · + Dn > S − x) (7.20)

then it is the Ny customer in the cycle that causes the inventory level to fall below y,
and it is the Ns customer that ends the cycle. As a result, if we let Xi , i ≥ 1, denote
the interarrival times of customers, then

on time in a cycle =
Ny∑
i=1

Xi (7.21)

cycle time =
Ns∑
i=1

Xi (7.22)

Assuming that the interarrival times are independent of the successive demands, we
have that

E

⎡
⎣ Ny∑

i=1

Xi

⎤
⎦= E

⎡
⎣E

⎡
⎣ Ny∑

i=1

Xi |Ny

⎤
⎦
⎤
⎦

= E[NyE[X]]
= E[X]E[Ny]

Similarly,

E

[
Ns∑
i=1

Xi

]
= E[X]E[Ns]

Therefore, from Eqs. (7.19), (7.21), and (7.22), we see that

long-run proportion of time inventory ≥ y = E[Ny]
E[Ns] (7.23)
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However, as the Di, i ≥ 1, are independent and identically distributed nonnegative
random variables with distribution G, it follows from Eq. (7.20) that Nx has the same
distribution as the index of the first event to occur after time S −x of a renewal process
having interarrival distribution G. That is, Nx − 1 would be the number of renewals
by time S − x of this process. Hence, we see that

E[Ny] = m(S − y) + 1,

E[Ns] = m(S − s) + 1

where

m(t) =
∞∑

n=1

Gn(t)

From Eq. (7.23), we arrive at

long-run proportion of time inventory ≥ y = m(S − y) + 1

m(S − s) + 1
, s ≤ y ≤ S

For instance, if the customer demands are exponentially distributed with mean 1/μ,
then

long-run proportion of time inventory ≥ y = μ(S − y) + 1

μ(S − s) + 1
, s ≤ y ≤ S �

7.6 Semi-Markov Processes
Consider a process that can be in state 1 or state 2 or state 3. It is initially in state 1
where it remains for a random amount of time having mean μ1, then it goes to state 2
where it remains for a random amount of time having mean μ2, then it goes to state 3
where it remains for a mean time μ3, then back to state 1, and so on. What proportion
of time is the process in state i, i = 1,2,3?

If we say that a cycle is completed each time the process returns to state 1, and if
we let the reward be the amount of time we spend in state i during that cycle, then the
preceding is a renewal reward process. Hence, from Proposition 7.3 we obtain that Pi ,
the proportion of time that the process is in state i, is given by

Pi = μi

μ1 + μ2 + μ3
, i = 1,2,3

Similarly, if we had a process that could be in any of N states 1,2, . . . ,N and that
moved from state 1 → 2 → 3 → ·· · → N − 1 → N → 1, then the long-run propor-
tion of time that the process spends in state i is

Pi = μi

μ1 + μ2 + · · · + μN

, i = 1,2, . . . ,N

where μi is the expected amount of time the process spends in state i during each
visit.
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Let us now generalize the preceding to the following situation. Suppose that a pro-
cess can be in any one of N states 1,2, . . . ,N , and that each time it enters state i it
remains there for a random amount of time having mean μi and then makes a transi-
tion into state j with probability Pij . Such a process is called a semi-Markov process.
Note that if the amount of time that the process spends in each state before making a
transition is identically 1, then the semi-Markov process is just a Markov chain.

Let us calculate Pi for a semi-Markov process. To do so, we first consider πi , the
proportion of transitions that take the process into state i. Now, if we let Xn denote
the state of the process after the nth transition, then {Xn,n ≥ 0} is a Markov chain
with transition probabilities Pij , i, j = 1,2, . . . ,N . Hence, πi will just be the limiting
(or stationary) probabilities for this Markov chain (Section 4.4). That is, πi will be the
unique nonnegative solution1 of

N∑
i=1

πi = 1,

πi =
N∑

j=1

πjPji, i = 1,2, . . . ,N (7.24)

Now, since the process spends an expected time μi in state i whenever it visits that
state, it seems intuitive that Pi should be a weighted average of the πi where πi is
weighted proportionately to μi . That is,

Pi = πiμi∑N
j=1 πjμj

, i = 1,2, . . . ,N (7.25)

where the πi are given as the solution to Eq. (7.24).

Example 7.30. Consider a machine that can be in one of three states: good condition,
fair condition, or broken down. Suppose that a machine in good condition will remain
this way for a mean time μ1 and then will go to either the fair condition or the broken
condition with respective probabilities 3

4 and 1
4 . A machine in fair condition will re-

main that way for a mean time μ2 and then will break down. A broken machine will
be repaired, which takes a mean time μ3, and when repaired will be in good condition
with probability 2

3 and fair condition with probability 1
3 . What proportion of time is

the machine in each state?

Solution: Letting the states be 1, 2, 3, we have by Eq. (7.24) that the πi satisfy

π1 + π2 + π3 = 1,

π1 = 2

3
π3,

π2 = 3

4
π1 + 1

3
π3,

1 We shall assume that there exists a solution of Eq. (7.24). That is, we assume that all of the states in the
Markov chain communicate.
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π3 = 1

4
π1 + π2

The solution is

π1 = 4

15
, π2 = 1

3
, π3 = 2

5

Hence, from Eq. (7.25), we obtain that Pi , the proportion of time the machine is in
state i, is given by

P1 = 4μ1

4μ1 + 5μ2 + 6μ3
,

P2 = 5μ2

4μ1 + 5μ2 + 6μ3
,

P3 = 6μ3

4μ1 + 5μ2 + 6μ3

For instance, if μ1 = 5,μ2 = 2,μ3 = 1, then the machine will be in good condi-
tion 5

9 of the time, in fair condition 5
18 of the time, in broken condition 1

6 of the
time. �

Remark. When the distributions of the amount of time spent in each state during a
visit are continuous, then Pi also represents the limiting (as t → ∞) probability that
the process will be in state i at time t .

Example 7.31. Consider a renewal process in which the interarrival distribution is
discrete and is such that

P {X = i} = pi, i ≥ 1

where X represents an interarrival random variable. Let L(t) denote the length of the
renewal interval that contains the point t (that is, if N(t) is the number of renewals
by time t and Xn the nth interarrival time, then L(t) = XN(t)+1). If we think of each
renewal as corresponding to the failure of a lightbulb (which is then replaced at the
beginning of the next period by a new bulb), then L(t) will equal i if the bulb in use
at time t dies in its ith period of use.

It is easy to see that L(t) is a semi-Markov process. To determine the proportion of
time that L(t) = j , note that each time a transition occurs—that is, each time a renewal
occurs—the next state will be j with probability pj . That is, the transition probabili-
ties of the embedded Markov chain are Pij = pj . Hence, the limiting probabilities of
this embedded chain are given by

πj = pj
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and, since the mean time the semi-Markov process spends in state j before a transition
occurs is j , it follows that the long-run proportion of time the state is j is

Pj = jpj∑
i ipi

�

7.7 The Inspection Paradox
Suppose that a piece of equipment, say, a battery, is installed and serves until it breaks
down. Upon failure it is instantly replaced by a like battery, and this process continues
without interruption. Letting N(t) denote the number of batteries that have failed by
time t , we have that {N(t), t ≥ 0} is a renewal process.

Suppose further that the distribution F of the lifetime of a battery is not known and
is to be estimated by the following sampling inspection scheme. We fix some time
t and observe the total lifetime of the battery that is in use at time t . Since F is the
distribution of the lifetime for all batteries, it seems reasonable that it should be the
distribution for this battery. However, this is the inspection paradox for it turns out that
the battery in use at time t tends to have a larger lifetime than an ordinary battery.

To understand the preceding so-called paradox, we reason as follows. In renewal
theoretic terms what we are interested in is the length of the renewal interval contain-
ing the point t . That is, we are interested in XN(t)+1 = SN(t)+1 − SN(t) (see Fig. 7.2).
To calculate the distribution of XN(t)+1 we condition on the time of the last renewal
prior to (or at) time t . That is,

P {XN(t)+1 > x} = E[P {XN(t)+1 > x|SN(t) = t − s}]
where we recall (Fig. 7.2) that SN(t) is the time of the last renewal prior to (or at) t .
Since there are no renewals between t − s and t , it follows that XN(t)+1 must be larger
than x if s > x. That is,

P {XN(t)+1 > x|SN(t) = t − s} = 1 if s > x (7.26)

On the other hand, suppose that s ≤ x. As before, we know that a renewal occurred at
time t − s and no additional renewals occurred between t − s and t , and we ask for the
probability that no renewals occur for an additional time x − s. That is, we are asking
for the probability that an interarrival time will be greater than x given that it is greater
than s. Therefore, for s ≤ x,

P {XN(t)+1 > x|SN(t) = t − s}
= P {interarrival time > x|interarrival time > s}
= P {interarrival time > x}/P {interarrival time > s}
= 1 − F(x)

1 − F(s)

≥ 1 − F(x) (7.27)
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Figure 7.4

Hence, from Eqs. (7.26) and (7.27) we see that, for all s,

P {XN(t)+1 > x|SN(t) = t − s} ≥ 1 − F(x)

Taking expectations on both sides yields

P {XN(t)+1 > x} ≥ 1 − F(x) (7.28)

However, 1 − F(x) is the probability that an ordinary renewal interval is larger than
x, that is, 1 − F(x) = P {Xn > x}, and thus Eq. (7.28) is a statement of the inspection
paradox that the length of the renewal interval containing the point t tends to be larger
than an ordinary renewal interval.

Remark. To obtain an intuitive feel for the so-called inspection paradox, reason as
follows. We think of the whole line being covered by renewal intervals, one of which
covers the point t . Is it not more likely that a larger interval, as opposed to a shorter
interval, covers the point t?

We can explicitly calculate the distribution of XN(t)+1 when the renewal process is
a Poisson process. (Note that, in the general case, we did not need to calculate explic-
itly P {XN(t)+1 > x} to show that it was at least as large as 1 − F(x).) To do so we
write

XN(t)+1 = A(t) + Y(t)

where A(t) denotes the time from t since the last renewal, and Y(t) denotes the time
from t until the next renewal (see Fig. 7.4). A(t) is the age of the process at time t (in
our example it would be the age at time t of the battery in use at time t), and Y(t) is
the excess life of the process at time t (it is the additional time from t until the battery
fails). Of course, it is true that A(t) = t − SN(t), and Y(t) = SN(t)+1 − t .

To calculate the distribution of XN(t)+1 we first note the important fact that, for a
Poisson process, A(t) and Y(t) are independent. This follows since by the memory-
less property of the Poisson process, the time from t until the next renewal will be
exponentially distributed and will be independent of all that has previously occurred
(including, in particular, A(t)). In fact, this shows that if {N(t), t ≥ 0} is a Poisson
process with rate λ, then

P {Y(t) ≤ x} = 1 − e−λx (7.29)

The distribution of A(t) may be obtained as follows

P {A(t) > x} =
{

P {0 renewals in [t − x, t]}, if x ≤ t

0, if x > t
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=
{

e−λx, if x ≤ t

0, if x > t

or, equivalently,

P {A(t) ≤ x} =
{

1 − e−λx, x ≤ t

1, x > t
(7.30)

Hence, by the independence of Y(t) and A(t), the distribution of XN(t)+1 is just the
convolution of the exponential distribution seen in Eq. (7.29) and the distribution of
Eq. (7.30). It is interesting to note that for t large, A(t) approximately has an expo-
nential distribution. Thus, for t large, XN(t)+1 has the distribution of the convolution
of two identically distributed exponential random variables, which by Section 5.2.3
is the gamma distribution with parameters (2, λ). In particular, for t large, the ex-
pected length of the renewal interval containing the point t is approximately twice the
expected length of an ordinary renewal interval.

Using the results obtained in Examples 7.18 and 7.19 concerning the average values
of the age and of the excess, it follows from the identity

XN(t)+1 = A(t) + Y(t)

that the average length of the renewal interval containing a specified point is

lim
s→∞

∫ s

0 XN(t)+1 dt

s
= E[X2]

E[X]
where X has the interarrival distribution. Because, except for when X is a constant,
E[X2] > (E[X])2, this average value is, as expected from the inspection paradox,
greater than the expected value of an ordinary renewal interval.

We can use an alternating renewal process argument to determine the long-run pro-
portion of time that XN(t)+1 is greater than c. To do so, let a cycle correspond to a
renewal interval, and say that the system is on at time t if the renewal interval contain-
ing t is of length greater than c (that is, if XN(t)+1 > c), and say that the system is off
at time t otherwise. In other words, the system is always on during a cycle if the cycle
time exceeds c or is always off during the cycle if the cycle time is less than c. Thus,
if X is the cycle time, we have

on time in cycle =
{

X, if X > c

0, if X ≤ c

Therefore, we obtain from alternating renewal process theory that

long-run proportion of time XN(t)+1 > c = E[on time in cycle]
E[cycle time]

=
∫∞
c

xf (x) dx

μ

where f is the density function of an interarrival.
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7.8 Computing the Renewal Function
The difficulty with attempting to use the identity

m(t) =
∞∑

n=1

Fn(t)

to compute the renewal function is that the determination of Fn(t) = P {X1 + · · · +
Xn ≤ t} requires the computation of an n-dimensional integral. Following, we present
an effective algorithm that requires as inputs only one-dimensional integrals.

Let Y be an exponential random variable having rate λ, and suppose that Y is inde-
pendent of the renewal process {N(t), t ≥ 0}. We start by determining E[N(Y)], the
expected number of renewals by the random time Y . To do so, we first condition on
X1, the time of the first renewal. This yields

E[N(Y)] =
∫ ∞

0
E[N(Y)|X1 = x]f (x)dx (7.31)

where f is the interarrival density. To determine E[N(Y)|X1=x], we now condition
on whether or not Y exceeds x. Now, if Y < x, then as the first renewal occurs at time
x, it follows that the number of renewals by time Y is equal to 0. On the other hand,
if we are given that x < Y , then the number of renewals by time Y will equal 1 (the
one at x) plus the number of additional renewals between x and Y . But by the memo-
ryless property of exponential random variables, it follows that, given that Y > x, the
amount by which it exceeds x is also exponential with rate λ, and so given that Y > x

the number of renewals between x and Y will have the same distribution as N(Y).
Hence,

E[N(Y)|X1 = x, Y < x] = 0,

E[N(Y)|X1 = x, Y > x] = 1 + E[N(Y)]
and so,

E[N(Y)|X1 = x] = E[N(Y)|X1 = x, Y < x]P {Y < x|X1 = x}
+ E[N(Y)|X1 = x, Y > x]P {Y > x|X1 = x}

= E[N(Y)|X1 = x, Y > x]P {Y > x}
since Y and X1 are independent

= (1 + E[N(Y)])e−λx

Substituting this into Eq. (7.31) gives

E[N(Y)] = (1 + E[N(Y)])
∫ ∞

0
e−λxf (x) dx

or

E[N(Y)] = E[e−λX]
1 − E[e−λX] (7.32)
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where X has the renewal interarrival distribution.
If we let λ = 1/t , then Eq. (7.32) presents an expression for the expected number of

renewals (not by time t , but) by a random exponentially distributed time with mean t .
However, as such a random variable need not be close to its mean (its variance is t2),
Eq. (7.32) need not be particularly close to m(t). To obtain an accurate approximation
suppose that Y1, Y2, . . . , Yn are independent exponentials with rate λ and suppose they
are also independent of the renewal process. Let, for r = 1, . . . , n,

mr = E[N(Y1 + · · · + Yr)]
To compute an expression for mr , we again start by conditioning on X1, the time of
the first renewal:

mr =
∫ ∞

0
E[N(Y1 + · · · + Yr)|X1 = x]f (x)dx (7.33)

To determine the foregoing conditional expectation, we now condition on the number
of partial sums

∑j

i=1 Yi, j = 1, . . . , r , that are less than x. Now, if all r partial sums
are less than x—that is, if

∑r
i=1 Yi < x—then clearly the number of renewals by time∑r

i=1 Yi is 0. On the other hand, given that k, k < r , of these partial sums are less than
x, it follows from the lack of memory property of the exponential that the number of
renewals by time

∑r
i=1 Yi will have the same distribution as 1 plus N(Yk+1 +· · ·+Yr).

Hence,

E

[
N(Y1 + · · · + Yr)

∣∣∣∣∣X1 = x, k of the sums
j∑

i=1

Yi are less than x

]

=
{

0, if k = r

1 + mr−k, if k < r
(7.34)

To determine the distribution of the number of the partial sums that are less than x,
note that the successive values of these partial sums

∑j

i=1 Yi, j = 1, . . . , r , have the
same distribution as the first r event times of a Poisson process with rate λ (since
each successive partial sum is the previous sum plus an independent exponential with
rate λ). Hence, it follows that, for k < r ,

P

⎧⎨
⎩k of the partial sums

j∑
i=1

Yi are less than x
∣∣X1 = x

⎫⎬
⎭

= e−λx(λx)k

k! (7.35)

Upon substitution of Eqs. (7.34) and (7.35) into Eq. (7.33), we obtain

mr =
∫ ∞

0

r−1∑
k=0

(1 + mr−k)
e−λx(λx)k

k! f (x)dx
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Table 7.1 Approximating m(t).

Fi Exact Approximation
i t m(t) n = 1 n = 3 n = 10 n = 25 n = 50
1 1 0.2838 0.3333 0.3040 0.2903 0.2865 0.2852
1 2 0.7546 0.8000 0.7697 0.7586 0.7561 0.7553
1 5 2.250 2.273 2.253 2.250 2.250 2.250
1 10 4.75 4.762 4.751 4.750 4.750 4.750

2 0.1 0.1733 0.1681 0.1687 0.1689 0.1690 –
2 0.3 0.5111 0.4964 0.4997 0.5010 0.5014 –
2 0.5 0.8404 0.8182 0.8245 0.8273 0.8281 0.8283
2 1 1.6400 1.6087 1.6205 1.6261 1.6277 1.6283
2 3 4.7389 4.7143 4.7294 4.7350 4.7363 4.7367
2 10 15.5089 15.5000 15.5081 15.5089 15.5089 15.5089

3 0.1 0.2819 0.2692 0.2772 0.2804 0.2813 –
3 0.3 0.7638 0.7105 0.7421 0.7567 0.7609 –
3 1 2.0890 2.0000 2.0556 2.0789 2.0850 2.0870
3 3 5.4444 5.4000 5.4375 5.4437 5.4442 5.4443

or, equivalently,

mr =
∑r−1

k=1(1 + mr−k)E
[
Xke−λX

]
(λk/k!) + E

[
e−λX

]
1 − E

[
e−λX

] (7.36)

If we set λ = n/t , then starting with m1 given by Eq. (7.32), we can use Eq. (7.36) to
recursively compute m2, . . . ,mn. The approximation of m(t) = E[N(t)] is given by
mn = E[N(Y1 + · · · + Yn)]. Since Y1 + · · · + Yn is the sum of n independent expo-
nential random variables each with mean t/n, it follows that it is (gamma) distributed
with mean t and variance nt2/n2 = t2/n. Hence, by choosing n large,

∑n
i=1 Yi will

be a random variable having most of its probability concentrated about t , and so
E
[
N
(∑n

i=1 Yi

)]
should be quite close to E[N(t)]. (Indeed, if m(t) is continuous

at t , it can be shown that these approximations converge to m(t) as n goes to infinity.)

Example 7.32. Table 7.1 compares the approximation with the exact value for the
distributions Fi with densities fi, i = 1,2,3, which are given by

f1(x) = xe−x,

1 − F2(x) = 0.3e−x + 0.7e−2x,

1 − F3(x) = 0.5e−x + 0.5e−5x �

7.9 Applications to Patterns
A counting process with independent interarrival times X1,X2, . . . is said to be a de-
layed or general renewal process if X1 has a different distribution from the identically
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distributed random variables X2,X3, . . . . That is, a delayed renewal process is a re-
newal process in which the first interarrival time has a different distribution than the
others. Delayed renewal processes often arise in practice and it is important to note
that all of the limiting theorems about N(t), the number of events by time t , remain
valid. For instance, it remains true that

E[N(t)]
t

→ 1

μ
and

Var(N(t))

t
→ σ 2/μ3 as t → ∞

where μ and σ 2 are the expected value and variance of the interarrivals Xi , i > 1.

7.9.1 Patterns of Discrete Random Variables

Let X1,X2, . . . be independent with P {Xi = j} = p(j), j ≥ 0, and let T denote the
first time the pattern x1, . . . , xr occurs. If we say that a renewal occurs at time n,n ≥ r ,
if (Xn−r+1, . . . ,Xn) = (x1, . . . , xr ), then N(n),n ≥ 1, is a delayed renewal process,
where N(n) denotes the number of renewals by time n. It follows that

E[N(n)]
n

→ 1

μ
as n → ∞ (7.37)

Var(N(n))

n
→ σ 2

μ3 as n → ∞ (7.38)

where μ and σ are, respectively, the mean and standard deviation of the time between
successive renewals. Whereas, in Section 3.6.4, we showed how to compute the ex-
pected value of T , we will now show how to use renewal theory results to compute
both its mean and its variance.

To begin, let I (i) equal 1 if there is a renewal at time i and let it be 0 otherwise,
i ≥ r . Also, let p =∏r

i=1p(xi). Since,

P {I (i) = 1} = P {Xi−r+1 = i1, . . . ,Xi = ir } = p

it follows that I (i), i ≥ r , are Bernoulli random variables with parameter p. Now,

N(n) =
n∑

i=r

I (i)

so

E[N(n)] =
n∑

i=r

E[I (i)] = (n − r + 1)p

Dividing by n and then letting n → ∞ gives, from Eq. (7.37),

μ = 1/p (7.39)
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That is, the mean time between successive occurrences of the pattern is equal to 1/p.
Also,

Var(N(n))

n
= 1

n

n∑
i=r

Var(I (i)) + 2

n

n−1∑
i=r

∑
n≥j>i

Cov(I (i), I (j))

= n − r + 1

n
p(1 − p) + 2

n

n−1∑
i=r

∑
i<j≤min(i+r−1,n)

Cov(I (i), I (j))

where the final equality used the fact that I (i) and I (j) are independent, and thus
have zero covariance, when |i − j | ≥ r . Letting n → ∞, and using the fact that
Cov(I (i), I (j)) depends on i and j only through |j − i|, gives

Var(N(n))

n
→ p(1 − p) + 2

r−1∑
j=1

Cov(I (r), I (r + j))

Therefore, using Eqs. (7.38) and (7.39), we see that

σ 2 = p−2(1 − p) + 2p−3
r−1∑
j=1

Cov(I (r), I (r + j)) (7.40)

Let us now consider the amount of “overlap” in the pattern. The overlap, equal to
the number of values at the end of one pattern that can be used as the beginning part
of the next pattern, is said to be of size k, k > 0, if

k = max{j < r : (ir−j+1, . . . , ir ) = (i1, . . . , ij )}
and is of size 0 if for all k = 1, . . . , r − 1, (ir−k+1, . . . , ir ) = (i1, . . . , ik). Thus, for
instance, the pattern 0, 0, 1, 1 has overlap 0, whereas 0, 0, 1, 0, 0 has overlap 2. We
consider two cases.

Case 1 (The Pattern Has Overlap 0). In this case, N(n),n ≥ 1, is an ordinary renewal
process and T is distributed as an interarrival time with mean μ and variance σ 2.
Hence, we have the following from Eq. (7.39):

E[T ] = μ = 1

p
(7.41)

Also, since two patterns cannot occur within a distance less than r of each other, it
follows that I (r)I (r + j) = 0 when 1 ≤ j ≤ r − 1. Hence,

Cov(I (r), I (r + j)) = −E[I (r)]E[I (r + j)] = −p2, if 1 ≤ j ≤ r − 1

Hence, from Eq. (7.40) we obtain

Var(T ) = σ 2 = p−2(1 − p) − 2p−3(r − 1)p2 = p−2 − (2r − 1)p−1 (7.42)
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Remark. In cases of “rare” patterns, if the pattern hasn’t yet occurred by some time n,
then it would seem that we would have no reason to believe that the remaining time
would be much less than if we were just beginning from scratch. That is, it would
seem that the distribution is approximately memoryless and would thus be approxi-
mately exponentially distributed. Thus, since the variance of an exponential is equal
to its mean squared, we would expect when μ is large that Var(T ) ≈ E2[T ], and this
is borne out by the preceding, which states that Var(T ) = E2[T ] − (2r − 1)E[T ].
Example 7.33. Suppose we are interested in the number of times that a fair coin needs
to be flipped before the pattern h,h, t, h, t occurs. For this pattern, r = 5,p = 1

32 , and
the overlap is 0. Hence, from Eqs. (7.41) and (7.42)

E[T ] = 32, Var(T ) = 322 − 9 × 32 = 736,

and

Var(T )/E2[T ] = 0.71875

On the other hand, if p(i) = i/10, i = 1,2,3,4 and the pattern is 1, 2, 1, 4, 1, 3, 2 then
r = 7,p = 3/625,000, and the overlap is 0. Thus, again from Eqs. (7.41) and (7.42),
we see that in this case

E[T ] = 208,333.33, Var(T ) = 4.34 × 1010,

Var(T )/E2[T ] = 0.99994 �

Case 2 (The Overlap Is of Size k). In this case,

T = Ti1,...,ik + T ∗

where Ti1,...,ik is the time until the pattern i1, . . . , ik appears and T ∗, distributed as an
interarrival time of the renewal process, is the additional time that it takes, starting
with i1, . . . , ik , to obtain the pattern i1, . . . , ir . Because these random variables are
independent, we have

E[T ] = E[Ti1,...,ik ] + E[T ∗] (7.43)

Var(T ) = Var(Ti1,...,ik ) + Var(T ∗) (7.44)

Now, from Eq. (7.39)

E[T ∗] = μ = p−1 (7.45)

Also, since no two renewals can occur within a distance r − k − 1 of each other, it
follows that I (r)I (r + j) = 0 if 1 ≤ j ≤ r − k − 1. Therefore, from Eq. (7.40) we see
that

Var(T ∗) = σ 2 = p−2(1 − p) + 2p−3

⎛
⎝ r−1∑

j=r−k

E[I (r)I (r + j)] − (r − 1)p2

⎞
⎠
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= p−2 − (2r − 1)p−1 + 2p−3
r−1∑

j=r−k

E[I (r)I (r + j)] (7.46)

The quantities E[I (r)I (r + j)] in Eq. (7.46) can be calculated by considering the
particular pattern. To complete the calculation of the first two moments of T , we then
compute the mean and variance of Ti1,...,ik by repeating the same method.

Example 7.34. Suppose that we want to determine the number of flips of a fair coin
until the pattern h,h, t, h,h occurs. For this pattern, r = 5,p = 1

32 , and the overlap
parameter is k = 2. Because

E[I (5)I (8)] = P {h,h, t, h,h, t, h,h} = 1
256 ,

E[I (5)I (9)] = P {h,h, t, h,h,h, t, h,h} = 1
512

we see from Eqs. (7.45) and (7.46) that

E[T ∗] = 32,

Var(T ∗) = (32)2 − 9(32) + 2(32)3
(

1
256 + 1

512

)
= 1120

Hence, from Eqs. (7.43) and (7.44) we obtain

E[T ] = E[Th,h] + 32, Var(T ) = Var(Th,h) + 1120

Now, consider the pattern h,h. It has r = 2, p = 1
4 , and overlap parameter 1. Since,

for this pattern, E[I (2)I (3)] = 1
8 , we obtain, as in the preceding, that

E[Th,h] = E[Th] + 4,

Var(Th,h) = Var(Th) + 16 − 3(4) + 2
(

64
8

)
= Var(Th) + 20

Finally, for the pattern h, which has r = 1,p = 1
2 , we see from Eqs. (7.41) and (7.42)

that

E[Th] = 2, Var(Th) = 2

Putting it all together gives

E[T ] = 38, Var(T ) = 1142, Var(T )/E2[T ] = 0.79086 �

Example 7.35. Suppose that P {Xn = i} = pi , and consider the pattern 0, 1, 2, 0, 1,
3, 0, 1. Then p = p3

0p
3
1p2p3, r = 8, and the overlap parameter is k = 2. Since

E[I (8)I (14)] = p5
0p

5
1p

2
2p

2
3,

E[I (8)I (15)] = 0
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we see from Eqs. (7.43) and (7.45) that

E[T ] = E[T0,1] + p−1

and from Eqs. (7.44) and (7.46) that

Var(T ) = Var(T0,1) + p−2 − 15p−1 + 2p−1(p0p1)
−1

Now, the r and p values of the pattern 0, 1 are r(0,1) = 2, p(0,1) = p0p1, and this
pattern has overlap 0. Hence, from Eqs. (7.41) and (7.42),

E[T0,1] = (p0p1)
−1, Var(T0,1) = (p0p1)

−2 − 3(p0p1)
−1

For instance, if pi = 0.2, i = 0,1,2,3 then

E[T ] = 25 + 58 = 390,650

Var(T ) = 625 − 75 + 516 + 35 × 58 = 1.526 × 1011

Var(T )/E2[T ] = 0.99996 �

Remark. It can be shown that T is a type of discrete random variable called new
better than used (NBU), which loosely means that if the pattern has not yet occurred
by some time n then the additional time until it occurs tends to be less than the time
it would take the pattern to occur if one started all over at that point. Such a random
variable is known to satisfy (see Proposition 9.6.1 of Ref. [4])

Var(T ) ≤ E2[T ] − E[T ] ≤ E2[T ] �

Now, suppose that there are s patterns, A(1), . . . ,A(s) and that we are interested
in the mean time until one of these patterns occurs, as well as the probability mass
function of the one that occurs first. Let us assume, without any loss of generality, that
none of the patterns is contained in any of the others. (That is, we rule out such trivial
cases as A(1) = h,h and A(2) = h,h, t .) To determine the quantities of interest, let
T (i) denote the time until pattern A(i) occurs, i = 1, . . . , s, and let T (i, j) denote
the additional time, starting with the occurrence of pattern A(i), until pattern A(j)

occurs, i =j . Start by computing the expected values of these random variables. We
have already shown how to compute E[T (i)], i = 1, . . . , s. To compute E[T (i, j)],
use the same approach, taking into account any “overlap” between the latter part of
A(i) and the beginning part of A(j). For instance, suppose A(1) = 0,0,1,2,0,3, and
A(2) = 2,0,3,2,0. Then

T (2) = T2,0,3 + T (1,2)

where T2,0,3 is the time to obtain the pattern 2, 0, 3. Hence,

E[T (1,2)] = E[T (2)] − E[T2,0,3]
=
(
p2

2p
2
0p3

)−1 + (p0p2)
−1 − (p2p0p3)

−1
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So, suppose now that all of the quantities E[T (i)] and E[T (i, j)] have been computed.
Let

M = min
i

T (i)

and let

P(i) = P {M = T (i)}, i = 1, . . . , s

That is, P(i) is the probability that pattern A(i) is the first pattern to occur. Now, for
each j we will derive an equation that E[T (j)] satisfies as follows:

E[T (j)] = E[M] + E[T (j) − M]
= E[M] +

∑
i:i =j

E[T (i, j)]P(i), j = 1, . . . , s (7.47)

where the final equality is obtained by conditioning on which pattern occurs first. But
Eqs. (7.47) along with the equation

s∑
i=1

P(i) = 1

constitute a set of s + 1 equations in the s + 1 unknowns E[M], P(i), i = 1, . . . , s.
Solving them yields the desired quantities.

Example 7.36. Suppose that we continually flip a fair coin. With A(1) = h, t, t, h,h

and A(2) = h,h, t, h, t , we have

E[T (1)] = 32 + E[Th] = 34,

E[T (2)] = 32,

E[T (1,2)] = E[T (2)] − E[Th,h] = 32 − (4 + E[Th]) = 26,

E[T (2,1)] = E[T (1)] − E[Th,t ] = 34 − 4 = 30

Hence, we need, solve the equations

34 = E[M] + 30P(2),

32 = E[M] + 26P(1),

1 = P(1) + P(2)

These equations are easily solved, and yield the values

P(1) = P(2) = 1
2 , E[M] = 19

Note that although the mean time for pattern A(2) is less than that for A(1), each has
the same chance of occurring first. �
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Eqs. (7.47) are easy to solve when there are no overlaps in any of the patterns. In
this case, for all i =j

E[T (i, j)] = E[T (j)]

so Eqs. (7.47) reduce to

E[T (j)] = E[M] + (1 − P(j))E[T (j)]

or

P(j) = E[M]/E[T (j)]

Summing the preceding over all j yields

E[M] = 1∑s
j=1 1/E[T (j)] , (7.48)

P(j) = 1/E[T (j)]∑s
j=1 1/E[T (j)] (7.49)

In our next example we use the preceding to reanalyze the model of Example 7.7.

Example 7.37. Suppose that each play of a game is, independently of the outcomes
of previous plays, won by player i with probability pi , i = 1, . . . , s. Suppose further
that there are specified numbers n(1), . . . , n(s) such that the first player i to win n(i)

consecutive plays is declared the winner of the match. Find the expected number of
plays until there is a winner, and also the probability that the winner is i, i = 1, . . . , s.

Solution: Letting A(i), for i = 1, . . . , s, denote the pattern of ni consecutive val-
ues of i, this problem asks for P(i), the probability that pattern A(i) occurs first,
and for E[M]. Because

E[T (i)] = (1/pi)
n(i) + (1/pi)

n(i)−1 + · · · + 1/pi = 1 − p
n(i)
i

p
n(i)
i (1 − pi)

we obtain, from Eqs. (7.48) and (7.49), that

E[M] = 1∑s
j=1

[
p

n(j)
j (1 − pj )/

(
1 − p

n(j)
j

)] ,
P (i) = p

n(i)
i (1 − pi)/

(
1 − p

n(i)
i

)
∑s

j=1

[
p

n(j)
j (1 − pj )/

(
1 − p

n(j)
j

)] �
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7.9.2 The Expected Time to a Maximal Run of Distinct
Values

Let Xi, i ≥ 1, be independent and identically distributed random variables that are
equally likely to take on any of the values 1,2, . . . ,m. Suppose that these random
variables are observed sequentially, and let T denote the first time that a run of m

consecutive values includes all the values 1, . . . ,m. That is,

T = min{n : Xn−m+1, . . . ,Xn are all distinct}

To compute E[T ], define a renewal process by letting the first renewal occur at time T .
At this point start over and, without using any of the data values up to T , let the next
renewal occur the next time a run of m consecutive values are all distinct, and so on.
For instance, if m = 3 and the data are

1,3,3,2,1,2,3,2,1,3, . . . , (7.50)

then there are two renewals by time 10, with the renewals occurring at times 5 and 9.
We call the sequence of m distinct values that constitutes a renewal a renewal run.

Let us now transform the renewal process into a delayed renewal reward process by
supposing that a reward of 1 is earned at time n,n ≥ m, if the values Xn−m+1, . . . ,Xn

are all distinct. That is, a reward is earned each time the previous m data values are all
distinct. For instance, if m = 3 and the data values are as in (7.50) then unit rewards
are earned at times 5, 7, 9, and 10. If we let Ri denote the reward earned at time i, then
by Proposition 7.3,

lim
n→∞

E
[∑n

i=1 Ri

]
n

= E[R]
E[T ] (7.51)

where R is the reward earned between renewal epochs. Now, with Ai equal to the
set of the first i data values of a renewal run, and Bi to the set of the first i values
following this renewal run, we have the following:

E[R] = 1 +
m−1∑
i=1

E[reward earned a time i after a renewal]

= 1 +
m−1∑
i=1

P {Ai = Bi}

= 1 +
m−1∑
i=1

i!
mi

=
m−1∑
i=0

i!
mi

(7.52)
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Hence, since for i ≥ m

E[Ri] = P {Xi−m+1, . . . ,Xi are all distinct} = m!
mm

it follows from Eq. (7.51) that

m!
mm

= E[R]
E[T ]

Thus, from Eq. (7.52) we obtain

E[T ] = mm

m!
m−1∑
i=0

i!/mi

The preceding delayed renewal reward process approach also gives us another way
of computing the expected time until a specified pattern appears. We illustrate by the
following example.

Example 7.38. Compute E[T ], the expected time until the pattern h,h,h, t, h,h,h

appears, when a coin that comes up heads with probability p and tails with probability
q = 1 − p is continually flipped.

Solution: Define a renewal process by letting the first renewal occur when the
pattern first appears, and then start over. Also, say that a reward of 1 is earned
whenever the pattern appears. If R is the reward earned between renewal epochs,
we have

E[R] = 1 +
6∑

i=1

E[reward earned i units after a renewal]

= 1 + 0 + 0 + 0 + p3q + p3qp + p3qp2

Hence, since the expected reward earned at time i is E[Ri] = p6q, we obtain the
following from the renewal reward theorem:

1 + qp3 + qp4 + qp5

E[T ] = qp6

or

E[T ] = q−1p−6 + p−3 + p−2 + p−1 �

7.9.3 Increasing Runs of Continuous Random Variables

Let X1,X2, . . . be a sequence of independent and identically distributed continuous
random variables, and let T denote the first time that there is a string of r consecutive
increasing values. That is,

T = min{n ≥ r : Xn−r+1 < Xn−r+2 < · · · < Xn}
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To compute E[T ], define a renewal process as follows. Let the first renewal occur
at T . Then, using only the data values after T , say that the next renewal occurs when
there is again a string of r consecutive increasing values, and continue in this fashion.
For instance, if r = 3 and the first 15 data values are

12,20,22,28,43,18,24,33,60,4,16,8,12,15,18

then 3 renewals would have occurred by time 15, namely, at times 3, 8, and 14. If we
let N(n) denote the number of renewals by time n, then by the elementary renewal
theorem

E[N(n)]
n

→ 1

E[T ]
To compute E[N(n)], define a stochastic process whose state at time k, call it Sk , is
equal to the number of consecutive increasing values at time k. That is, for 1 ≤ j ≤ k

Sk = j if Xk−j > Xk−j+1 < · · · < Xk−1 < Xk

where X0 = ∞. Note that a renewal will occur at time k if and only if Sk = ir for
some i ≥ 1. For instance, if r = 3 and

X5 > X6 < X7 < X8 < X9 < X10 < X11

then

S6 = 1, S7 = 2, S8 = 3, S9 = 4, S10 = 5, S11 = 6

and renewals occur at times 8 and 11. Now, for k > j

P {Sk = j} = P {Xk−j > Xk−j+1 < · · · < Xk−1 < Xk}
= P {Xk−j+1 < · · · < Xk−1 < Xk}

− P {Xk−j < Xk−j+1 < · · · < Xk−1 < Xk}
= 1

j ! − 1

(j + 1)!
= j

(j + 1)!
where the next to last equality follows since all possible orderings of the random vari-
ables are equally likely.

From the preceding, we see that

lim
k→∞P {a renewal occurs at time k}= lim

k→∞

∞∑
i=1

P {Sk = ir} =
∞∑
i=1

ir

(ir + 1)!
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However,

E[N(n)] =
n∑

k=1

P {a renewal occurs at time k}

Because we can show that for any numbers ak, k ≥ 1, for which limk→∞ ak exists that

lim
n→∞

∑n
k=1 ak

n
= lim

k→∞ak

we obtain from the preceding, upon using the elementary renewal theorem,

E[T ] = 1∑∞
i=1 ir/(ir + 1)!

7.10 The Insurance Ruin Problem
Suppose that claims are made to an insurance firm according to a Poisson process
with rate λ, and that the successive claim amounts Y1, Y2, . . . are independent random
variables having a common distribution function F with density f (x). Suppose also
that the claim amounts are independent of the claim arrival times. Thus, if we let M(t)

be the number of claims made by time t , then
∑M(t)

i=1 Yi is the total amount paid out in
claims by time t . Supposing that the firm starts with an initial capital x and receives
income at a constant rate c per unit time, we are interested in the probability that the
firm’s net capital ever becomes negative; that is, we are interested in

R(x) = P

⎧⎨
⎩

M(t)∑
i=1

Yi > x + ct for some t ≥ 0

⎫⎬
⎭

If the firm’s capital ever becomes negative, we say that the firm is ruined; thus R(x) is
the probability of ruin given that the firm begins with an initial capital x.

Let μ = E[Yi] be the mean claim amount, and let ρ = λμ/c. Because claims occur
at rate λ, the long-run rate at which money is paid out is λμ. (A formal argument uses
renewal reward processes. A new cycle begins when a claim occurs; the cost for the
cycle is the claim amount, and so the long-run average cost is μ, the expected cost
incurred in a cycle, divided by 1/λ, the mean cycle time.) Because the rate at which
money is received is c, it is clear that R(x) = 1 when ρ > 1. As R(x) can be shown to
also equal 1 when ρ = 1 (think of the recurrence of the symmetric random walk), we
will suppose that ρ < 1.

To determine R(x), we start by deriving a differential equation. To begin, con-
sider what can happen in the first h time units, where h is small. With probability
1 − λh + o(h) there will be no claims and the firm’s capital at time h will be x + ch;
with probability λh + o(h) there will be exactly one claim and the firm’s capital at
time h will be x + ch − Y1; with probability o(h) there will be two or more claims.
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Therefore, conditioning on what happens during the first h time units yields

R(x) = (1 − λh)R(x + ch) + λhE[R(x + ch − Y1)] + o(h)

Equivalently,

R(x + ch) − R(x) = λhR(x + ch) − λhE[R(x + ch − Y1)] + o(h)

Dividing through by ch gives

R(x + ch) − R(x)

ch
= λ

c
R(x + ch) − λ

c
E[R(x + ch − Y1)] + 1

c

o(h)

h

Letting h go to 0 yields the differential equation

R′(x) = λ

c
R(x) − λ

c
E[R(x − Y1)]

Because R(u) = 1 when u < 0, the preceding can be written as

R′(x) = λ

c
R(x) − λ

c

∫ x

0
R(x − y)f (y) dy − λ

c

∫ ∞

x

f (y) dy

or, equivalently,

R′(x) = λ

c
R(x) − λ

c

∫ x

0
R(x − y)f (y) dy − λ

c
F̄ (x) (7.53)

where F̄ (x) = 1 − F(x).
We will now use the preceding equation to show that R(x) also satisfies the equa-

tion

R(x) = R(0) + λ

c

∫ x

0
R(x − y)F̄ (y) dy − λ

c

∫ x

0
F̄ (y) dy, x ≥ 0 (7.54)

To verify Eq. (7.54), we will show that differentiating both sides of it results in
Eq. (7.53). (It can be shown that both (7.53) and (7.54) have unique solutions.) To do
so, we will need the following lemma, whose proof is given at the end of this section.

Lemma 7.5. For a function k, and a differentiable function t ,

d

dx

∫ x

0
t (x − y)k(y) dy = t (0)k(x) +

∫ x

0
t ′(x − y)k(y) dy

Differentiating both sides of Eq. (7.54) gives, upon using the preceding lemma,

R′(x) = λ

c

[
R(0)F̄ (x) +

∫ x

0
R′(x − y)F̄ (y) dy − F̄ (x)

]
(7.55)
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Differentiation by parts [u = F̄ (y), dv = R′(x − y)dy] shows that∫ x

0
R′(x − y)F̄ (y) dy = − F̄ (y)R(x − y)|x0 −

∫ x

0
R(x − y)f (y) dy

= − F̄ (x)R(0) + R(x) −
∫ x

0
R(x − y)f (y) dy

Substituting this result back in Eq. (7.55) gives Eq. (7.53). Thus, we have established
Eq. (7.54).

To obtain a more usable expression for R(x), consider a renewal process whose
interarrival times X1,X2, . . . are distributed according to the equilibrium distribution
of F . That is, the density function of the Xi is

fe(x) = F ′
e(x) = F̄ (x)

μ

Let N(t) denote the number of renewals by time t , and let us derive an expression for

q(x) = E
[
ρN(x)+1]

Conditioning on X1 gives

q(x) =
∫ ∞

0
E
[
ρN(x)+1|X1 = y

] F̄ (y)

μ
dy

Because, given that X1 = y, the number of renewals by time x is distributed as
1 + N(x − y) when y ≤ x, or is identically 0 when y > x, we see that

E[ρN(x)+1|X1 = y] =
{

ρE
[
ρN(x−y)+1

]
, if y ≤ x

ρ, if y > x

Therefore, q(x) satisfies

q(x) =
∫ x

0
ρq(x − y)

F̄ (y)

μ
dy + ρ

∫ ∞

x

F̄ (y)

μ
dy

= λ

c

∫ x

0
q(x − y)F̄ (y) dy + λ

c

[∫ ∞

0
F̄ (y) dy −

∫ x

0
F̄ (y) dy

]

= λ

c

∫ x

0
q(x − y)F̄ (y) dy + ρ − λ

c

∫ x

0
F̄ (y) dy

Because q(0) = ρ, this is exactly the same equation that is satisfied by R(x), namely
Eq. (7.54). Therefore, because the solution to (7.54) is unique, we obtain the follow-
ing.

Proposition 7.6.

R(x) = q(x) = E
[
ρN(x)+1]
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Example 7.39. Suppose that the firm does not start with any initial capital. Then,
because N(0) = 0, we see that the firm’s probability of ruin is R(0) = ρ. �

Example 7.40. If the claim distribution F is exponential with mean μ, then so is Fe.
Hence, N(x) is Poisson with mean x/μ, giving the result

R(x) = E
[
ρN(x)+1]=

∞∑
n=0

ρn+1e−x/μ(x/μ)n/n!

= ρ e−x/μ
∞∑

n=0

(ρx/μ)n/n!

= ρ e−x(1−ρ)/μ �

To obtain some intuition about the ruin probability, let T be independent of the
interarrival times Xi of the renewal process having interarrival distribution Fe, and let
T have probability mass function

P {T = n} = ρn(1 − ρ), n = 0,1, . . .

Now consider P
{∑T

i=1 Xi > x
}

, the probability that the sum of the first T of the Xi

exceeds x. Because N(x) + 1 is the first renewal that occurs after time x, we have

N(x) + 1 = min

{
n :

n∑
i=1

Xi > x

}

Therefore, conditioning on the number of renewals by time x gives

P

{
T∑

i=1

Xi > x

}
=

∞∑
j=0

P

{
T∑

i=1

Xi > x

∣∣∣∣∣N(x) = j

}
P {N(x) = j}

=
∞∑

j=0

P {T ≥ j + 1|N(x) = j}P {N(x) = j}

=
∞∑

j=0

P {T ≥ j + 1}P {N(x) = j}

=
∞∑

j=0

ρj+1P {N(x) = j}

= E
[
ρN(x)+1

]

Consequently, P
{∑T

i=1 Xi > x
}

is equal to the ruin probability. Now, as noted in

Example 7.39, the ruin probability of a firm starting with 0 initial capital is ρ. Sup-
pose that the firm starts with an initial capital x, and suppose for the moment that
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it is allowed to remain in business even if its capital becomes negative. Because the
probability that the firm’s capital ever falls below its initial starting amount x is the
same as the probability that its capital ever becomes negative when it starts with 0,
this probability is also ρ. Thus, if we say that a low occurs whenever the firm’s capital
becomes lower than it has ever previously been, then the probability that a low ever
occurs is ρ. Now, if a low does occur, then the probability that there will be another
low is the probability that the firm’s capital will ever fall below its previous low, and
clearly this is also ρ. Therefore, each new low is the final one with probability 1 − ρ.
Consequently, the total number of lows that ever occur has the same distribution as T .
In addition, if we let Wi be the amount by which the ith low is less than the low pre-
ceding it, it is easy to see that W1,W2, . . . are independent and identically distributed,
and are also independent of the number of lows. Because the minimal value over all
time of the firm’s capital (when it is allowed to remain in business even when its cap-
ital becomes negative) is x −∑T

i=1 Wi , it follows that the ruin probability of a firm
that starts with an initial capital x is

R(x) = P

{
T∑

i=1

Wi > x

}

Because

R(x) = E
[
ρN(x)+1

]
= P

{
T∑

i=1

Xi > x

}

we can identify Wi with Xi . That is, we can conclude that each new low is lower than
its predecessor by a random amount whose distribution is the equilibrium distribution
of a claim amount.

Remark. Because the times between successive customer claims are independent ex-
ponential random variables with mean 1/λ while money is being paid to the insurance
firm at a constant rate c, it follows that the amounts of money paid in to the insurance
company between consecutive claims are independent exponential random variables
with mean c/λ. Thus, because ruin can only occur when a claim arises, it follows that
the expression given in Proposition 7.6 for the ruin probability R(x) is valid for any
model in which the amounts of money paid to the insurance firm between claims are
independent exponential random variables with mean c/λ and the amounts of the suc-
cessive claims are independent random variables having distribution function F , with
these two processes being independent.

Now, imagine an insurance model in which customers buy policies at arbitrary
times, each customer pays the insurance company a fixed rate c per unit time, the time
until a customer makes a claim is exponential with rate λ, and each claim amount has
distribution F . Consider the amount of money the insurance firm takes in between
claims. Specifically, suppose a claim has just occurred and let X be the amount the in-
surance company takes in before another claim arises. Note that this amount increases
continuously in time until a claim occurs, and suppose that at the present time the
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amount t has been taken in since the last claim. Let us compute the probability that
a claim will be made before the amount taken in increases by an additional amount
h, when h is small. To determine this probability, suppose that at the present time the
firm has k customers. Because each of these k customers is paying the insurance firm
at rate c, it follows that the additional amount taken in by the firm before the next
claim occurs will be less than h if and only if a claim is made within the next h

kc
time

units. Because each of the k customers will register a claim at an exponential rate λ,
the time until one of them makes a claim is an exponential random variable with rate
kλ. Calling this random variable Ekλ, it follows that the probability that the additional
amount taken in is less than h is

P(additional amount < h|k customers) = P

(
Ekλ <

h

kc

)
= 1 − e−λh/c

= λ

c
h + o(h)

Thus,

P(X < t + h|X > t) = λ

c
h + o(h)

showing that the failure rate function of X is identically λ
c

. But this means that the
amounts taken in between claims are exponential random variables with mean c

λ
. Be-

cause the amounts of each claim have distribution function F , we can thus conclude
that the firm’s failure probability in this insurance model is exactly the same as in the
previously analyzed classical model. �

Let us now give the proof of Lemma 7.5.

Proof of Lemma 7.5. Let G(x) = ∫ x

0 t (x − y)k(y) dy. Then

G(x + h) − G(x) = G(x + h) −
∫ x

0
t (x + h − y)k(y) dy

+
∫ x

0
t (x + h − y)k(y) dy − G(x)

=
∫ x+h

x

t (x + h − y)k(y) dy

+
∫ x

0
[t (x + h − y) − t (x − y)]k(y) dy

Dividing through by h gives

G(x + h) − G(x)

h
= 1

h

∫ x+h

x

t (x + h − y)k(y) dy
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+
∫ x

0

t (x + h − y) − t (x − y)

h
k(y) dy

Letting h → 0 gives the result

G′(x) = t (0) k(x) +
∫ x

0
t ′(x − y) k(y) dy �

Exercises
1. Is it true that

(a) N(t) < n if and only if Sn > t?
(b) N(t) ≤ n if and only if Sn ≥ t?
(c) N(t) > n if and only if Sn < t?

2. Suppose that the interarrival distribution for a renewal process is Poisson dis-
tributed with mean μ. That is, suppose

P {Xn = k} = e−μ μk

k! , k = 0,1, . . .

(a) Find the distribution of Sn.
(b) Calculate P {N(t) = n}.

3. Let {N1(t), t ≥ 0} and {N2(t), t ≥ 0} be independent renewal processes. Let
N(t) = N1(t) + N2(t).
(a) Are the interarrival times of {N(t), t ≥ 0} independent?
(b) Are they identically distributed?
(c) Is {N(t), t ≥ 0} a renewal process?

4. Let U1,U2, . . . be independent uniform (0, 1) random variables, and define N

by

N = min{n : U1 + U2 + · · · + Un > 1}
What is E[N ]?

5. Consider a renewal process {N(t), t ≥ 0} having a gamma (r, λ) interarrival
distribution. That is, the interarrival density is

f (x) = λe−λx(λx)r−1

(r − 1)! , x > 0

(a) Show that

P {N(t) ≥ n} =
∞∑

i=nr

e−λt (λt)i

i!
(b) Show that

m(t) =
∞∑
i=r

[
i

r

]
e−λt (λt)i

i!
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where [i/r] is the largest integer less than or equal to i/r .

Hint: Use the relationship between the gamma (r, λ) distribution and the sum
of r independent exponentials with rate λ to define N(t) in terms of a Poisson
process with rate λ.

6. In a serve and rally competition involving players A and B, each rally that be-
gins with a serve by player A is won by player A with probability pa and is
won by player B with probability qa = 1 − pa , whereas each rally that begins
with a serve by player B is won by player A with probability pb and is won by
player B with probability qb = 1 − pb. The winner of the rally earns a point
and becomes the server of the next rally.
(a) In the long run, what proportion of points are won by A?
(b) What proportion of points are won by A if the protocol is that the players

alternate service? That is, if the service protocol is that A serves for the
first point, then B for the second, then A for the third point, and so on.

(c) Give the condition under which A wins a higher percentage of points un-
der the winner serves protocol than under the alternating service protocol.

7. S works on a temporary basis. The mean length of each job he gets is three
months. If the amount of time S spends between jobs is exponentially dis-
tributed with mean 2, then at what rate does S get new jobs?

*8. A machine in use is replaced by a new machine either when it fails or when
it reaches the age of T years. If the lifetimes of successive machines are inde-
pendent with a common distribution F having density f , show that
(a) the long-run rate at which machines are replaced equals

[∫ T

0
xf (x)dx + T (1 − F(T ))

]−1

(b) the long-run rate at which machines in use fail equals

F(T )∫ T

0 xf (x)dx + T [1 − F(T )]
9. A worker sequentially works on jobs. Each time a job is completed, a new

one is begun. Each job, independently, takes a random amount of time having
distribution F to complete. However, independently of this, shocks occur ac-
cording to a Poisson process with rate λ. Whenever a shock occurs, the worker
discontinues working on the present job and starts a new one. In the long run,
at what rate are jobs completed?

10. Consider a renewal process with mean interarrival time μ. Suppose that each
event of this process is independently “counted” with probability p. Let NC(t)

denote the number of counted events by time t, t > 0.
(a) Is NC(t), t ≥ 0 a renewal process?
(b) What is limt→∞ NC(t)/t?

11. Events occur according to a Poisson process with rate λ. Any event that occurs
within a time d of the event that immediately preceded it is called a d-event.
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For instance, if d = 1 and events occur at times 2,2.8,4,6,6.6, . . . , then the
events at times 2.8 and 6.6 would be d-events.
(a) At what rate do d-events occur?
(b) What proportion of all events are d-events?

12. Let U1, . . . ,Un, . . . be independent uniform (0,1) random variables. Let

N = min{n : Un > 0.8}
and let S =∑N

i=1 Ui .
(a) Find E[S] by conditioning on the value of U1.
(b) Find E[S] by conditioning on N .
(c) Find E[S] by using Wald’s equation.

13. In each game played one is equally likely to either win or lose 1. Let X be your
cumulative winnings if you use the strategy that quits playing if you win the
first game, and plays two more games and then quits if you lose the first game.
(a) Use Wald’s equation to determine E[X].
(b) Compute the probability mass function of X and use it to find E[X].

14. Consider the gambler’s ruin problem where on each bet the gambler either wins
1 with probability p or loses 1 with probability 1 − p. The gambler will con-
tinue to play until their winnings are either N − i or −i. (That is, starting with
i the gambler will quit when their fortune reaches either N or 0.) Let T denote
the number of bets made before the gambler stops. Use Wald’s equation, along
with the known probability that the gambler’s final winnings are N − i, to find
E[T ].
Hint: Let Xj be the gambler’s winnings on bet j, j ≥ 1. What are the possi-

ble values of
∑T

j=1 Xj ? What is E
[∑T

j=1 Xj

]
?

15. Consider a miner trapped in a room that contains three doors. Door 1 leads
him to freedom after two days of travel; door 2 returns him to his room after a
four-day journey; and door 3 returns him to his room after a six-day journey.
Suppose at all times he is equally likely to choose any of the three doors, and
let T denote the time it takes the miner to become free.
(a) Define a sequence of independent and identically distributed random

variables X1,X2 . . . and a stopping time N such that

T =
N∑

i=1

Xi

Note: You may have to imagine that the miner continues to randomly choose
doors even after he reaches safety.
(b) Use Wald’s equation to find E[T ].
(c) Compute E

[∑N
i=1Xi |N = n

]
and note that it is not equal to E[∑n

i=1Xi].
(d) Use part (c) for a second derivation of E[T ].

16. A coin having probability p of coming up heads is continually flipped. Say that
an event occurs the first time there are k heads in a row. At that point, start over
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and without using any earlier results, say that the next event occurs the next
time there are k consecutive heads, and so on. Thus, for instance, if k = 3 and
the results of the first 12 tosses are t, t, h,h,h,h,h, t, t, h,h,h,h,h,h then the
first event occurred at time 5, the second at time 12, and the third at time 15.
Let N(n) be the total number of events by time n.
(a) With N(t) = N([t]), where [t] is the largest integer less than or equal to t ,

is {N(t), t ≥ 0} an ordinary renewal process, a delayed renewal process,
or neither.

(b) Let Pn = P(event at time n). Find Prk+j , j < k.

Hint: Note that here will be an event at time n = rk + j if starting at
time n and going backwards the previous k flips were all heads and the
preceding one was a tail, or if the previous 2k flips were all heads and the
preceding one was a tail, or if, . . . , or if the preceding rk flips were all
heads and, if j > 0, the preceding one was a tail.

(c) Find limn→∞ Pn.
(d) Use the result from (c) to determine the expected number of flips until

there are k consecutive heads. Verify that your answer agrees with that
obtained in Example 3.29.

17. In Example 7.6, suppose that potential customers arrive in accordance with a
renewal process having interarrival distribution F . Would the number of events
by time t constitute a (possibly delayed) renewal process if an event corre-
sponds to a customer
(a) entering the bank?
(b) leaving the bank?
What if F were exponential?

*18. Compute the renewal function when the interarrival distribution F is such that

1 − F(t) = pe−μ1t + (1 − p)e−μ2t

19. For the renewal process whose interarrival times are uniformly distributed over
(0, 1), determine the expected time from t = 1 until the next renewal.

20. For a renewal reward process consider

Wn = R1 + R2 + · · · + Rn

X1 + X2 + · · · + Xn

where Wn represents the average reward earned during the first n cycles. Show
that Wn → E[R]/E[X] as n → ∞.

21. Consider a single-server bank for which customers arrive in accordance with
a Poisson process with rate λ. If a customer will enter the bank only if the
server is free when he arrives, and if the service time of a customer has the
distribution G, then what proportion of time is the server busy?

*22. J’s car buying policy is to always buy a new car, repair all breakdowns that
occur during the first T time units of ownership, and then junk the car and buy
a new one at the first breakdown that occurs after the car has reached age T .
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Suppose that the time until the first breakdown of a new car is exponential with
rate λ, and that each time a car is repaired the time until the next breakdown is
exponential with rate μ.
(a) At what rate does J buy new cars?
(b) Supposing that a new car costs C and that a cost r is incurred for each

repair, what is J’s long run average cost per unit time?
23. Buses arrive at a bus stop according to a renewal process with interarrival den-

sity f having mean μ. Independently, people arrive according to a Poisson
process with rate λ. Upon arrival a bus picks up all waiting people.
(a) What fraction of buses encounter no people waiting.
(b) At what rate do buses depart the stop without picking up anyone.

24. Wald’s equation can also be proved by using renewal reward processes. Let N

be a stopping time for the sequence of independent and identically distributed
random variables Xi, i ≥ 1.
(a) Let N1 = N . Argue that the sequence of random variables XN1+1,

XN1+2, . . . is independent of X1, . . . ,XN and has the same distribution
as the original sequence Xi, i ≥ 1.
Now treat XN1+1,XN1+2, . . . as a new sequence, and define a stop-
ping time N2 for this sequence that is defined exactly as N1 is on the
original sequence. (For instance, if N1 = min{n: Xn > 0}, then N2 =
min{n: XN1+n > 0}.) Similarly, define a stopping time N3 on the se-
quence XN1+N2+1,XN1+N2+2, . . . that is identically defined on this se-
quence as N1 is on the original sequence, and so on.

(b) Is the reward process in which Xi is the reward earned during period i a
renewal reward process? If so, what is the length of the successive cycles?

(c) Derive an expression for the average reward per unit time.
(d) Use the strong law of large numbers to derive a second expression for the

average reward per unit time.
(e) Conclude Wald’s equation.

25. Suppose in Example 7.15 that the arrival process is a Poisson process and sup-
pose that the policy employed is to dispatch the train every t time units.
(a) Determine the average cost per unit time.
(b) Show that the minimal average cost per unit time for such a policy is ap-

proximately c/2 plus the average cost per unit time for the best policy of
the type considered in that example.

26. Consider a train station to which customers arrive in accordance with a Poisson
process having rate λ. A train is summoned whenever there are N customers
waiting in the station, but it takes K units of time for the train to arrive at the
station. When it arrives, it picks up all waiting customers. Assuming that the
train station incurs a cost at a rate of nc per unit time whenever there are n

customers present, find the long-run average cost.
27. A machine consists of two independent components, the ith of which func-

tions for an exponential time with rate λi . The machine functions as long as at
least one of these components function. (That is, it fails when both components
have failed.) When a machine fails, a new machine having both its components
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working is put into use. A cost K is incurred whenever a machine failure oc-
curs; operating costs at rate ci per unit time are incurred whenever the machine
in use has i working components, i = 1,2. Find the long-run average cost per
unit time.

28. In Example 7.17, what proportion of the defective items produced is discov-
ered?

29. Consider a single-server queueing system in which customers arrive in accor-
dance with a renewal process. Each customer brings in a random amount of
work, chosen independently according to the distribution G. The server serves
one customer at a time. However, the server processes work at rate i per unit
time whenever there are i customers in the system. For instance, if a cus-
tomer with workload 8 enters service when there are three other customers
waiting in line, then if no one else arrives that customer will spend 2 units of
time in service. If another customer arrives after 1 unit of time, then our cus-
tomer will spend a total of 1.8 units of time in service provided no one else
arrives.
Let Wi denote the amount of time customer i spends in the system. Also, define
E[W ] by

E[W ] = lim
n→∞(W1 + · · · + Wn)/n

and so E[W ] is the average amount of time a customer spends in the system.
Let N denote the number of customers that arrive in a busy period.
(a) Argue that

E[W ] = E[W1 + · · · + WN ]/E[N ]
Let Li denote the amount of work customer i brings into the system; and
so the Li, i ≥ 1, are independent random variables having distribution G.

(b) Argue that at any time t , the sum of the times spent in the system by all
arrivals prior to t is equal to the total amount of work processed by time t .

Hint: Consider the rate at which the server processes work.
(c) Argue that

N∑
i=1

Wi =
N∑

i=1

Li

(d) Use Wald’s equation (see Exercise 13) to conclude that

E[W ] = μ

where μ is the mean of the distribution G. That is, the average time that
customers spend in the system is equal to the average work they bring to
the system.
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*30. For a renewal process, let A(t) be the age at time t . Prove that if μ < ∞, then
with probability 1

A(t)

t
→ 0 as t → ∞

31. If A(t) and Y(t) are, respectively, the age and the excess at time t of a renewal
process having an interarrival distribution F , calculate

P {Y(t) > x|A(t) = s}
32. Consider a Markov chain with states 1,2,3 and transition probability matrix⎛

⎝ 0.2 0.3 0.5
0.4 0.6 0
0.6 0.3 0.1

⎞
⎠

(a) Let m(j,1) be the mean number of transitions, starting in state j , until
the chain makes a transition into state 1. Find m(j,1), j = 1,2,3.

(b) Find the stationary probabilities of this Markov chain.
(c) Given that X0 = 3, find the expected number of transitions until the pat-

tern 1,2,2,1,3,1,2,2,1 appears.
33. In Example 7.16, find the long-run proportion of time that the server is busy.
34. An M/G/∞ queueing system is cleaned at the fixed times T , 2T , 3T , . . . . All

customers in service when a cleaning begins are forced to leave early and a
cost C1 is incurred for each customer. Suppose that a cleaning takes time T/4,
and that all customers who arrive while the system is being cleaned are lost,
and a cost C2 is incurred for each one.
(a) Find the long-run average cost per unit time.
(b) Find the long-run proportion of time the system is being cleaned.

*35. Satellites are launched according to a Poisson process with rate λ. Each satel-
lite will, independently, orbit the earth for a random time having distribution
F . Let X(t) denote the number of satellites orbiting at time t .
(a) Determine P {X(t) = k}.
Hint: Relate this to the M/G/∞ queue.
(b) If at least one satellite is orbiting, then messages can be transmitted and

we say that the system is functional. If the first satellite is orbited at time
t = 0, determine the expected time that the system remains functional.

Hint: Make use of part (a) when k = 0.
36. Each of n skiers continually, and independently, climbs up and then skis down

a particular slope. The time it takes skier i to climb up has distribution Fi , and it
is independent of her time to ski down, which has distribution Hi, i = 1, . . . , n.
Let N(t) denote the total number of times members of this group have skied
down the slope by time t . Also, let U(t) denote the number of skiers climbing
up the hill at time t .
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(a) What is limt→∞ N(t)/t?
(b) Find limt→∞ E[U(t)].
(c) If all Fi are exponential with rate λ and all Gi are exponential with rate

μ, what is P {U(t) = k}?
37. There are three machines, all of which are needed for a system to work. Ma-

chine i functions for an exponential time with rate λi before it fails, i = 1,2,3.
When a machine fails, the system is shut down and repair begins on the failed
machine. The time to fix machine 1 is exponential with rate 5; the time to fix
machine 2 is uniform on (0, 4); and the time to fix machine 3 is a gamma
random variable with parameters n = 3 and λ = 2. Once a failed machine is
repaired, it is as good as new and all machines are restarted.
(a) What proportion of time is the system working?
(b) What proportion of time is machine 1 being repaired?
(c) What proportion of time is machine 2 in a state of suspended animation

(that is, neither working nor being repaired)?
38. A truck driver regularly drives round trips from A to B and then back to A.

Each time he drives from A to B, he drives at a fixed speed that (in miles per
hour) is uniformly distributed between 40 and 60; each time he drives from B
to A, he drives at a fixed speed that is equally likely to be either 40 or 60.
(a) In the long run, what proportion of his driving time is spent going to B?
(b) In the long run, for what proportion of his driving time is he driving at a

speed of 40 miles per hour?
39. A system consists of two independent machines that each function for an ex-

ponential time with rate λ. There is a single repairperson. If the repairperson is
idle when a machine fails, then repair immediately begins on that machine; if
the repairperson is busy when a machine fails, then that machine must wait un-
til the other machine has been repaired. All repair times are independent with
distribution function G and, once repaired, a machine is as good as new. What
proportion of time is the repairperson idle?

40. Three marksmen take turns shooting at a target. Marksman 1 shoots until she
misses, then marksman 2 begins shooting until he misses, then marksman 3
until he misses, and then back to marksman 1, and so on. Each shot of marks-
man i hits the target, independently of the past, with probability Pi, i = 1,2,3.
Determine the proportion of time, in the long run, that each marksman shoots.
Also, determine the proportion of shots that hit the target.

41. Consider a waiting line system where customers arrive according to a renewal
process, and either enter service if they find a free server or join the queue if all
servers are busy. Suppose service times are independent with a distribution H .
If we say that an event occurs whenever a departure leaves the system empty,
would the counting process of events be a renewal process. If not, would it be
a delayed renewal process. If not, when would it be a renewal process.

42. Dry and wet seasons alternate, with each dry season lasting an exponential time
with rate λ and each wet season an exponential time with rate μ. The lengths
of dry and wet seasons are all independent. In addition, suppose that people
arrive to a service facility according to a Poisson process with rate v. Those
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that arrive during a dry season are allowed to enter; those that arrive during a
wet season are lost. Let Nl(t) denote the number of lost customers by time t .
(a) Find the proportion of time that we are in a wet season.
(b) Is {Nl(t), t ≥ 0} a (possibly delayed) renewal process?
(c) Find limt→∞ Nl(t)

t
.

43. Individuals arrive two at a time to a 2 server queueing station, with the pairs
arriving at times distributed according to a Poisson process with rate λ. A pair
will only enter the system if it finds both servers are free. In that case, one
member of the pair enters service with server 1 and the other with server 2.
Service times at server i are exponential with rate μi , i = 1,2.
(a) Find the rate at which pairs enter the system.
(b) Find the proportion of time exactly one of the servers is busy.

44. Consider a renewal reward process where Xn is the nth interarrival time, and
where Rn is the reward earned during the nth renewal interval.
(a) Give an interpretation of the random variable RN(t)+1.
(b) Find the average value of RN(t)+1. That is, find limt→∞

∫ t
0 RN(s)+1 ds

t
.

45. Each time a certain machine breaks down it is replaced by a new one of the
same type. In the long run, what percentage of time is the machine in use less
than one year old if the life distribution of a machine is
(a) uniformly distributed over (0, 2)?
(b) exponentially distributed with mean 1?

*46. For an interarrival distribution F having mean μ, we defined the equilibrium
distribution of F , denoted Fe, by

Fe(x) = 1

μ

∫ x

0
[1 − F(y)]dy

(a) Show that if F is an exponential distribution, then F = Fe.
(b) If for some constant c,

F(x) =
{

0, x < c

1, x ≥ c

show that Fe is the uniform distribution on (0, c). That is, if interarrival
times are identically equal to c, then the equilibrium distribution is the
uniform distribution on the interval (0, c).

(c) The city of Berkeley, California, allows for two hours parking at all non-
metered locations within one mile of the University of California. Parking
officials regularly tour around, passing the same point every two hours.
When an official encounters a car he or she marks it with chalk. If the
same car is there on the official’s return two hours later, then a parking
ticket is written. If you park your car in Berkeley and return after three
hours, what is the probability you will have received a ticket?

47. Consider a renewal process having interarrival distribution F such that

F̄ (x) = 1
2e−x + 1

2e−x/2, x > 0
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That is, interarrivals are equally likely to be exponential with mean 1 or expo-
nential with mean 2.
(a) Without any calculations, guess the equilibrium distribution Fe.
(b) Verify your guess in part (a).

*48. In Example 7.20, let π denote the proportion of passengers that wait less than
x for a bus to arrive. That is, with Wi equal to the waiting time of passenger i,
if we define

Xi =
{

1, if Wi < x

0, if Wi ≥ x

then π = limn→∞
∑n

i=1 Xi/n.
(a) With N equal to the number of passengers that get on the bus, use renewal

reward process theory to argue that

π = E[X1 + · · · + XN ]
E[N ]

(b) With T equal to the time between successive buses, determine E[X1 +
· · · + XN |T = t].

(c) Show that E[X1 + · · · + XN ] = λE[min(T , x)].
(d) Show that

π =
∫ x

0 P(T > t) dt

E[T ] = Fe(x)

(e) Using that Fe(x) is the proportion of time that the excess of a renewal
process with interarrival times distributed according to T is less than x,
relate the result of (d) to the PASTA principle that “Poisson arrivals see
the system as it averages over time”.

49. Consider a system that can be in either state 1 or 2 or 3. Each time the system
enters state i it remains there for a random amount of time having mean μi and
then makes a transition into state j with probability Pij . Suppose

P12 = 1, P21 = P23 = 1
2 , P31 = 1

(a) What proportion of transitions takes the system into state 1?
(b) If μ1 = 1,μ2 = 2,μ3 = 3, then what proportion of time does the system

spend in each state?
50. Consider a semi-Markov process in which the amount of time that the process

spends in each state before making a transition into a different state is expo-
nentially distributed. What kind of process is this?

51. In a semi-Markov process, let tij denote the conditional expected time that the
process spends in state i given that the next state is j .
(a) Present an equation relating μi to the tij .
(b) Show that the proportion of time the process is in i and will next enter j

is equal to PiPij tij /μi .
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Hint: Say that a cycle begins each time state i is entered. Imagine that you
receive a reward at a rate of 1 per unit time whenever the process is in i and
heading for j . What is the average reward per unit time?

52. A taxi alternates between three different locations. Whenever it reaches lo-
cation i, it stops and spends a random time having mean ti before obtaining
another passenger, i = 1,2,3. A passenger entering the cab at location i will
want to go to location j with probability Pij . The time to travel from i to j

is a random variable with mean mij . Suppose that t1 = 1, t2 = 2, t3 = 4,P12 =
1,P23 = 1, P31 = 2

3 = 1 − P32,m12 = 10,m23 = 20, m31 = 15,m32 = 25. De-
fine an appropriate semi-Markov process and determine
(a) the proportion of time the taxi is waiting at location i, and
(b) the proportion of time the taxi is on the road from i to j , i, j = 1,2,3.

*53. Consider a renewal process having the gamma (n,λ) interarrival distribution,
and let Y(t) denote the time from t until the next renewal. Use the theory of
semi-Markov processes to show that

lim
t→∞P {Y(t) < x} = 1

n

n∑
i=1

Gi,λ(x)

where Gi,λ(x) is the gamma (i, λ) distribution function.
54. To prove Eq. (7.25), define the following notation:

X
j
i ≡ time spent in state i on the j th visit to this state;

Ni(m) ≡ number of visits to state i in the first m transitions

In terms of this notation, write expressions for
(a) the amount of time during the first m transitions that the process is in

state i;
(b) the proportion of time during the first m transitions that the process is in

state i.
Argue that, with probability 1,

(c)
Ni(m)∑
j=1

X
j
i

Ni(m)
→ μi as m → ∞

(d) Ni(m)/m → πi as m → ∞.
(e) Combine parts (a), (b), (c), and (d) to prove Eq. (7.25).

55. In 1984 the country of Morocco in an attempt to determine the average amount
of time that tourists spend in that country on a visit tried two different sam-
pling procedures. In one, they questioned randomly chosen tourists as they
were leaving the country; in the other, they questioned randomly chosen guests
at hotels. (Each tourist stayed at a hotel.) The average visiting time of the 3000
tourists chosen from hotels was 17.8, whereas the average visiting time of the
12,321 tourists questioned at departure was 9.0. Can you explain this discrep-
ancy? Does it necessarily imply a mistake?
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56. In Example 7.20, show that if F is exponential with rate μ, then

Average Number Waiting = E[N ]
That is, when buses arrive according to a Poisson process, the average number
of people waiting at the stop, averaged over all time, is equal to the average
number of passengers waiting when a bus arrives. This may seem counterintu-
itive because the number of people waiting when the bus arrives is at least as
large as the number waiting at any time in that cycle.
(b) Can you think of an inspection paradox type explanation for how such a

result could be possible?
(c) Explain how this result follows from the PASTA principle.

57. If a coin that comes up heads with probability p is continually flipped until the
pattern HTHTHTH appears, find the expected number of flips that land heads.

58. Let Xi, i ≥ 1, be independent random variables with pj = P {X = j}, j ≥ 1.
If pj = j/10, j = 1,2,3,4, find the expected time and the variance of the
number of variables that need be observed until the pattern 1, 2, 3, 1, 2 occurs.

59. A coin that comes up heads with probability 0.6 is continually flipped. Find
the expected number of flips until either the sequence thht or the sequence t t t

occurs, and find the probability that t t t occurs first.
60. Random digits, each of which is equally likely to be any of the digits 0 through

9, are observed in sequence.
(a) Find the expected time until a run of 10 distinct values occurs.
(b) Find the expected time until a run of 5 distinct values occurs.

61. Let h(x) = P {∑T
i=1 Xi > x} where X1,X2, . . . are independent random vari-

ables having distribution function Fe and T is independent of the Xi and has
probability mass function P {T = n} = ρn(1 − ρ),n ≥ 0. Show that h(x) satis-
fies Eq. (7.54).

Hint: Start by conditioning on whether T = 0 or T > 0.
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8Queueing Theory

8.1 Introduction
In this chapter, we will study a class of models in which customers arrive in some
random manner at a service facility. Upon arrival they are made to wait in queue until
it is their turn to be served. Once served they are generally assumed to leave the sys-
tem. For such models we will be interested in determining, among other things, such
quantities as the average number of customers in the system (or in the queue) and the
average time a customer spends in the system (or spends waiting in the queue).

In Section 8.2, we derive a series of basic queueing identities that are of great use
in analyzing queueing models. We also introduce three different sets of limiting prob-
abilities that correspond to what an arrival sees, what a departure sees, and what an
outside observer would see.

In Section 8.3, we deal with queueing systems in which all of the defining probabil-
ity distributions are assumed to be exponential. For instance, the simplest such model
is to assume that customers arrive in accordance with a Poisson process (and thus the
interarrival times are exponentially distributed) and are served one at a time by a single
server who takes an exponentially distributed length of time for each service. These
exponential queueing models are special examples of continuous-time Markov chains
and so can be analyzed as in Chapter 6. However, at the cost of a (very) slight amount
of repetition we shall not assume that you are familiar with the material of Chapter 6,
but rather we shall redevelop any needed material. Specifically we shall derive anew
(by a heuristic argument) the formula for the limiting probabilities.

In Section 8.4, we consider models in which customers move randomly among a
network of servers. The model of Section 8.4.1 is an open system in which customers
are allowed to enter and depart the system, whereas the one studied in Section 8.4.2 is
closed in the sense that the set of customers in the system is constant over time.

In Section 8.5, we study the model M/G/1, which while assuming Poisson arrivals,
allows the service distribution to be arbitrary. To analyze this model we first introduce
in Section 8.5.1 the concept of work, and then use this concept in Section 8.5.2 to
help analyze this system. In Section 8.5.3, we derive the average amount of time that
a server remains busy between idle periods.

In Section 8.6, we consider some variations of the model M/G/1. In particular in
Section 8.6.1 we suppose that bus loads of customers arrive according to a Poisson
process and that each bus contains a random number of customers. In Section 8.6.2,
we suppose that there are two different classes of customers—with type 1 customers
receiving service priority over type 2.

In Section 8.6.3, we present an M/G/1 optimization example. We suppose that the
server goes on break whenever she becomes idle, and then determine, under certain
cost assumptions, the optimal time for her to return to service.

In Section 8.7, we consider a model with exponential service times but where the
interarrival times between customers is allowed to have an arbitrary distribution. We
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analyze this model by use of an appropriately defined Markov chain. We also derive
the mean length of a busy period and of an idle period for this model.

In Section 8.8, we consider a single-server system whose arrival process results
from return visits of a finite number of possible sources. Assuming a general service
distribution, we show how a Markov chain can be used to analyze this system.

In the final section of the chapter we talk about multiserver systems. We start with
loss systems, in which arrivals finding all servers busy are assumed to depart and as
such are lost to the system. This leads to the famous result known as Erlang’s loss
formula, which presents a simple formula for the number of busy servers in such a
model when the arrival process in Poisson and the service distribution is general. We
then discuss multiserver systems in which queues are allowed. However, except in the
case where exponential service times are assumed, there are very few explicit formu-
las for these models. We end by presenting an approximation for the average time a
customer waits in queue in a k-server model that assumes Poisson arrivals but allows
for a general service distribution.

8.2 Preliminaries
In this section, we will derive certain identities that are valid in the great majority of
queueing models.

8.2.1 Cost Equations

Some fundamental quantities of interest for queueing models are

L the average number of customers in the system;
LQ the average number of customers waiting in queue;
W the average amount of time a customer spends in the system;
WQ the average amount of time a customer spends waiting in queue.

A large number of interesting and useful relationships between the preceding and
other quantities of interest can be obtained by making use of the following idea: Imag-
ine that entering customers are forced to pay money (according to some rule) to the
system. We would then have the following basic cost identity:

average rate at which the system earns
= λa × average amount an entering customer pays (8.1)

where λa is defined to be average arrival rate of entering customers. That is, if N(t)

denotes the number of customer arrivals by time t , then

λa = lim
t→∞

N(t)

t

We now present a heuristic proof of Eq. (8.1).

Heuristic Proof of Eq. (8.1). Let T be a fixed large number. In two different ways, we
will compute the average amount of money the system has earned by time T . On one
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hand, this quantity approximately can be obtained by multiplying the average rate at
which the system earns by the length of time T . On the other hand, we can approx-
imately compute it by multiplying the average amount paid by an entering customer
by the average number of customers entering by time T (this latter factor is approxi-
mately λaT ). Hence, both sides of Eq. (8.1) when multiplied by T are approximately
equal to the average amount earned by T . The result then follows by letting T → ∞.1

By choosing appropriate cost rules, many useful formulas can be obtained as spe-
cial cases of Eq. (8.1). For instance, by supposing that each customer pays $1 per unit
time while in the system, Eq. (8.1) yields the so-called Little’s formula,

L = λaW (8.2)

This follows since, under this cost rule, the rate at which the system earns is just the
number in the system, and the amount a customer pays is just equal to its time in the
system.

Similarly, if we suppose that each customer pays $1 per unit time while in queue,
then Eq. (8.1) yields

LQ = λaWQ (8.3)

By supposing the cost rule that each customer pays $1 per unit time while in service
we obtain from Eq. (8.1) that the

average number of customers in service = λaE[S] (8.4)

where E[S] is defined as the average amount of time a customer spends in service.
It should be emphasized that Eqs. (8.1) through (8.4) are valid for almost all

queueing models regardless of the arrival process, the number of servers, or queue
discipline. �

8.2.2 Steady-State Probabilities

Let X(t) denote the number of customers in the system at time t and define Pn,n ≥ 0,
by

Pn = lim
t→∞P {X(t) = n}

where we assume the preceding limit exists. In other words, Pn is the limiting or long-
run probability that there will be exactly n customers in the system. It is sometimes
referred to as the steady-state probability of exactly n customers in the system. It also
usually turns out that Pn equals the (long-run) proportion of time that the system con-
tains exactly n customers. For example, if P0 = 0.3, then in the long run, the system

1 This can be made into a rigorous proof provided we assume that the queueing process is regenerative in
the sense of Section 7.5. Most models, including all the ones in this chapter, satisfy this condition.
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will be empty of customers for 30 percent of the time. Similarly, P1 = 0.2 would imply
that for 20 percent of the time the system would contain exactly one customer.2

Two other sets of limiting probabilities are {an,n ≥ 0} and {dn,n ≥ 0}, where

an = proportion of customers that find n
in the system when they arrive, and

dn = proportion of customers leaving behind n
in the system when they depart

That is, Pn is the proportion of time during which there are n in the system; an is
the proportion of arrivals that find n; and dn is the proportion of departures that leave
behind n. That these quantities need not always be equal is illustrated by the following
example.

Example 8.1. Consider a queueing model in which all customers have service times
equal to 1, and where the times between successive customers are always greater
than 1 (for instance, the interarrival times could be uniformly distributed over (1, 2)).
Hence, as every arrival finds the system empty and every departure leaves it empty,
we have

a0 = d0 = 1

However,

P0 �= 1

as the system is not always empty of customers. �

It was, however, no accident that an equaled dn in the previous example. That ar-
rivals and departures always see the same number of customers is always true as is
shown in the next proposition.

Proposition 8.1. In any system in which customers arrive and depart one at a time

the rate at which arrivals find n = the rate at which departures leave n

and

an = dn

Proof. An arrival will see n in the system whenever the number in the system goes
from n to n+ 1; similarly, a departure will leave behind n whenever the number in the
system goes from n + 1 to n. Now in any interval of time T the number of transitions
from n to n + 1 must equal to within 1 the number from n + 1 to n. (Between any
two transitions from n to n + 1, there must be one from n + 1 to n, and conversely.)

2 A sufficient condition for the validity of the dual interpretation of Pn is that the queueing process be
regenerative.
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Hence, the rate of transitions from n to n+1 equals the rate from n+1 to n; or, equiv-
alently, the rate at which arrivals find n equals the rate at which departures leave n.
Now an, the proportion of arrivals finding n, can be expressed as

an = the rate at which arrivals find n

overall arrival rate

Similarly,

dn = the rate at which departures leave n

overall departure rate

Thus, if the overall arrival rate is equal to the overall departure rate, then the preceding
shows that an = dn. On the other hand, if the overall arrival rate exceeds the overall
departure rate, then the queue size will go to infinity, implying that an = dn = 0. �

Hence, on the average, arrivals and departures always see the same number of cus-
tomers. However, as Example 8.1 illustrates, they do not, in general, see time averages.
One important exception where they do is in the case of Poisson arrivals.

Proposition 8.2. Poisson arrivals always see time averages. In particular, for Poisson
arrivals,

Pn = an

To understand why Poisson arrivals always see time averages, consider an arbitrary
Poisson arrival. If we knew that it arrived at time t , then the conditional distribution
of what it sees upon arrival is the same as the unconditional distribution of the system
state at time t . For knowing that an arrival occurs at time t gives us no information
about what occurred prior to t . (Since the Poisson process has independent incre-
ments, knowing that an event occurred at time t does not affect the distribution of
what occurred prior to t .) Hence, an arrival would just see the system according to the
limiting probabilities that exist because Poisson arrivals over an interval are uniformly
distributed on that interval.

Contrast the foregoing with the situation of Example 8.1 where knowing that an
arrival occurred at time t tells us a great deal about the past; in particular it tells us that
there have been no arrivals in (t − 1, t). Thus, in this case, we cannot conclude that
the distribution of what an arrival at time t observes is the same as the distribution of
the system state at time t .

For a second argument as to why Poisson arrivals see time averages, note that the
total time the system is in state n by time T is (roughly) PnT . Hence, as Poisson ar-
rivals always arrive at rate λ no matter what the system state, it follows that the number
of arrivals in [0, T ] that find the system in state n is (roughly) λPnT . In the long run,
therefore, the rate at which arrivals find the system in state n is λPn and, as λ is the
overall arrival rate, it follows that λPn/λ = Pn is the proportion of arrivals that find
the system in state n.

The result that Poisson arrivals see time averages is called the PASTA principle.
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Example 8.2. People arrive at a bus stop according to a Poisson process with rate λ.
Buses arrive at the stop according to a Poisson process with rate μ, with each arriving
bus picking up all the currently waiting people. Let WQ be the average amount of
time that a person waits at the stop for a bus. Because the waiting time of each person
is equal to the time from when they arrive until the next bus, which is exponentially
distributed with rate μ, we see that

WQ = 1/μ

Using LQ = λaWQ, now shows that LQ, the average number of people waiting at the
bus stop, averaged over all time, is

LQ = λ/μ

If we let Xi be the number of people picked up by the ith bus, then with Ti equal to
the time between the (i − 1)st and the ith bus arrival,

E[Xi |Ti] = λTi

which follows because the number of people that arrive at the stop in any time interval
is Poisson with a mean equal to λ times the length of the interval. Because Ti is expo-
nential with rate μ, it follows upon taking expectations of both sides of the preceding
that

E[Xi] = λE[Ti] = λ/μ

Thus, the average number of people picked up by a bus is equal to the time average
number of people waiting for a bus, an illustration of the PASTA principle. That is,
because buses arrive according to a Poisson process, it follows from PASTA that the
average number of waiting people seen by arriving buses is the same as the average
number of people waiting when we average over all time. �

8.3 Exponential Models
8.3.1 A Single-Server Exponential Queueing System

Suppose that customers arrive at a single-server service station in accordance with a
Poisson process having rate λ. That is, the times between successive arrivals are inde-
pendent exponential random variables having mean 1/λ. Each customer, upon arrival,
goes directly into service if the server is free and, if not, the customer joins the queue.
When the server finishes serving a customer, the customer leaves the system, and the
next customer in line, if there is any, enters service. The successive service times are
assumed to be independent exponential random variables having mean 1/μ.

The preceding is called the M/M/1 queue. The two Ms refer to the fact that both
the interarrival and the service distributions are exponential (and thus memoryless, or
Markovian), and the 1 to the fact that there is a single server. To analyze it, we shall
begin by determining the limiting probabilities Pn, for n = 0,1, . . . . To do so, think
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along the following lines. Suppose that we have an infinite number of rooms numbered
0,1,2, . . . , and suppose that we instruct an individual to enter room n whenever there
are n customers in the system. That is, he would be in room 2 whenever there are two
customers in the system; and if another were to arrive, then he would leave room 2
and enter room 3. Similarly, if a service would take place he would leave room 2 and
enter room 1 (as there would now be only one customer in the system).

Now suppose that in the long run our individual is seen to have entered room 1 at
the rate of ten times an hour. Then at what rate must he have left room 1? Clearly, at
this same rate of ten times an hour. For the total number of times that he enters room 1
must be equal to (or one greater than) the total number of times he leaves room 1. This
sort of argument thus yields the general principle that will enable us to determine the
state probabilities. Namely, for each n ≥ 0, the rate at which the process enters state n
equals the rate at which it leaves state n. Let us now determine these rates. Consider
first state 0. When in state 0 the process can leave only by an arrival as clearly there
cannot be a departure when the system is empty. Since the arrival rate is λ and the pro-
portion of time that the process is in state 0 is P0, it follows that the rate at which the
process leaves state 0 is λP0. On the other hand, state 0 can only be reached from state
1 via a departure. That is, if there is a single customer in the system and he completes
service, then the system becomes empty. Since the service rate is μ and the proportion
of time that the system has exactly one customer is P1, it follows that the rate at which
the process enters state 0 is μP1.

Hence, from our rate-equality principle we get our first equation,

λP0 = μP1

Now consider state 1. The process can leave this state either by an arrival (which oc-
curs at rate λ) or a departure (which occurs at rate μ). Hence, when in state 1, the
process will leave this state at a rate of λ + μ.3 Since the proportion of time the pro-
cess is in state 1 is P1, the rate at which the process leaves state 1 is (λ+μ)P1. On the
other hand, state 1 can be entered either from state 0 via an arrival or from state 2 via
a departure. Hence, the rate at which the process enters state 1 is λP0 + μP2. Because
the reasoning for other states is similar, we obtain the following set of equations:

State Rate at which the process leaves = rate at which it enters

0 λP0 = μP1
n,n ≥ 1 (λ + μ)Pn = λPn−1 + μPn+1

(8.5)

Eqs. (8.5), which balance the rate at which the process enters each state with the rate
at which it leaves that state are known as balance equations.

In order to solve Eqs. (8.5), we rewrite them to obtain

P1 = λ

μ
P0,

3 If one event occurs at a rate λ and another occurs at rate μ, then the total rate at which either event occurs
is λ + μ. Suppose one man earns $2 per hour and another earns $3 per hour; then together they clearly
earn $5 per hour.
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Pn+1 = λ

μ
Pn +

(
Pn − λ

μ
Pn−1

)
, n ≥ 1

Solving in terms of P0 yields

P0 = P0,

P1 = λ

μ
P0,

P2 = λ

μ
P1 +

(
P1 − λ

μ
P0

)
= λ

μ
P1 =

(
λ

μ

)2

P0,

P3 = λ

μ
P2 +

(
P2 − λ

μ
P1

)
= λ

μ
P2 =

(
λ

μ

)3

P0,

P4 = λ

μ
P3 +

(
P3 − λ

μ
P2

)
= λ

μ
P3 =

(
λ

μ

)4

P0,

Pn+1 = λ

μ
Pn +

(
Pn − λ

μ
Pn−1

)
= λ

μ
Pn =

(
λ

μ

)n+1

P0

To determine P0 we use the fact that the Pn must sum to 1, and thus

1 =
∞∑

n=0

Pn =
∞∑

n=0

(
λ

μ

)n

P0 = P0

1 − λ/μ

or

P0 = 1 − λ

μ
,

Pn =
(

λ

μ

)n(
1 − λ

μ

)
, n ≥ 1 (8.6)

Notice that for the preceding equations to make sense, it is necessary for λ/μ to be
less than 1. For otherwise

∑∞
n=0(λ/μ)n would be infinite and all the Pn would be 0.

Hence, we shall assume that λ/μ < 1. Note that it is quite intuitive that there would
be no limiting probabilities if λ > μ. For suppose that λ > μ. Since customers arrive
at a Poisson rate λ, it follows that the expected total number of arrivals by time t is λt .
On the other hand, what is the expected number of customers served by time t? If
there were always customers present, then the number of customers served would be
a Poisson process having rate μ since the time between successive services would
be independent exponentials having mean 1/μ. Hence, the expected number of cus-
tomers served by time t is no greater than μt ; and, therefore, the expected number in
the system at time t is at least

λt − μt = (λ − μ)t

Now, if λ > μ, then the preceding number goes to infinity as t becomes large. That is,
λ/μ > 1, the queue size increases without limit and there will be no limiting probabil-
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ities. Note also that the condition λ/μ < 1 is equivalent to the condition that the mean
service time be less than the mean time between successive arrivals. This is the general
condition that must be satisfied for limited probabilities to exist in most single-server
queueing systems.

Remarks. (i) In solving the balance equations for the M/M/1 queue, we obtained
as an intermediate step the set of equations

λPn = μPn+1, n ≥ 0

These equations could have been directly argued from the general queueing
result (shown in Proposition 8.1) that the rate at which arrivals find n in the
system—namely λPn—is equal to the rate at which departures leave behind
n—namely, μPn+1.

(ii) We can also prove that Pn = (λ/μ)n(1 − λ/μ) by using a queueing cost iden-
tity. Suppose that, for a fixed n > 0, whenever there are at least n customers in
the system the nth oldest customer (with age measured from when the customer
arrived) pays 1 per unit time. Letting X be the steady state number of customers
in the system, because the system earns 1 per unit time whenever X is at least n,
it follows that

average rate at which the system earns = P {X ≥ n}
Also, because a customer who finds fewer than n − 1 in the system when it
arrives will pay 0, while an arrival who finds at least n − 1 in the system will
pay 1 per unit time for an exponentially distributed time with rate μ,

average amount a customer pays = 1

μ
P {X ≥ n − 1}

Therefore, the queueing cost identity yields

P {X ≥ n} = (λ/μ)P {X ≥ n − 1}, n > 0

Iterating this gives

P {X ≥ n} = (λ/μ)P {X ≥ n − 1}
= (λ/μ)2P {X ≥ n − 2}
= · · ·
= (λ/μ)nP {X ≥ 0}
= (λ/μ)n

Therefore,

P {X = n} = P {X ≥ n} − P {X ≥ n + 1} = (λ/μ)n(1 − λ/μ) �



528 Introduction to Probability Models

Now let us attempt to express the quantities L,LQ,W , and WQ in terms of the
limiting probabilities Pn. Since Pn is the long-run probability that the system contains
exactly n customers, the average number of customers in the system clearly is given
by

L =
∞∑

n=0

nPn =
∞∑

n=1

n(λ/μ)n(1 − λ/μ).

To compute
∑∞

n=1 n(λ/μ)n, we relate it to the mean of a geometric random variable.
Now, if X is geometric with parameter 1 − p, then

1

1 − p
= E[X] =

∞∑
n=1

npn−1(1 − p)

= 1 − p

p

∞∑
n=1

npn

showing that

∞∑
n=1

npn = p

(1 − p)2
. (8.7)

Consequently,

L = λ/μ

(1 − λ/μ)2
(1 − λ/μ) = λ

μ − λ
(8.8)

The quantities W,WQ, and LQ now can be obtained with the help of Eqs. (8.2) and
(8.3). That is, since λa = λ, we have from Eq. (8.8) that

W = L

λ

= 1

μ − λ
,

WQ = W − E[S]
= W − 1

μ

= λ

μ(μ − λ)
,

LQ = λWQ

= λ2

μ(μ − λ)
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Example 8.3. Suppose that customers arrive at a Poisson rate of one per every 12
minutes, and that the service time is exponential at a rate of one service per 8 minutes.
What are L and W?

Solution: Since λ = 1
12 , μ = 1

8 , we have

L = 2, W = 24

Hence, the average number of customers in the system is 2, and the average time a
customer spends in the system is 24 minutes.
Now suppose that the arrival rate increases 20 percent to λ = 1

10 . What is the cor-
responding change in L and W? Using Eq. (8.7) and L = λW , gives

L = 4, W = 40

Hence, an increase of 20 percent in the arrival rate doubled the average number of
customers in the system.
To understand this better, note that

L = λ/μ

1 − λ/μ
,

W = 1/μ

1 − λ/μ

From these equations we can see that when λ/μ is near 1, a slight increase in λ/μ

will lead to a large increase in L and W . �

Example 8.4. Suppose customers arrive to a two server system according to a Pois-
son process with rate λ, and suppose that each arrival is, independently, sent either
to server 1 with probability α or to server 2 with probability 1 − α. Further, suppose
that no matter which server is used, a service time is exponential with rate μ. Letting
λ1 = λα and λ2 = λ(1 − α), then because arrivals to server i follow a Poisson process
with rate λi , it follows that the system as it relates to server i, i = 1,2, is an M/M/1
system with arrival rate λi and service rate μ. Hence, provided that λi < μ, the average
time a customer sent to server i spends in the system is Wi = 1

μ−λi
, i = 1,2. Because

the fraction of all arrivals that go to server 1 is α and the fraction that go to server 2
is 1 − α, this shows that the average time that a customer spends in the system, call it
W(α), is

W(α) = αW1 + (1 − α)W2

= α

μ − λα
+ 1 − α

μ − λ(1 − α)

Suppose now that we want to find the value of α that minimizes W(α). To do so, let

f (α) = α

μ − λα
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and note that

W(α) = f (α) + f (1 − α)

Differentiation yields that

f ′(α) = μ − λα + λα

(μ − λα)2
= μ(μ − λα)−2

and

f ′′(α) = 2λμ(μ − λα)−3

Because μ > λα, we see that f ′′(α) > 0. Similarly, because μ > λ(1 − α), we have
that f ′′(1 − α) > 0. Hence,

W ′′(α) = f ′′(α) + f ′′(1 − α) > 0

Equating

W ′(α) = f ′(α) − f ′(1 − α)

to 0 yields the solution α = 1 − α, or α = 1/2. Hence, W(α) is minimized when α =
1/2, with minimal value

min
0≤α≤1

W(α) = W(1/2) = 1

μ − λ/2
�

A Technical Remark. We have used the fact that if one event occurs at an exponen-
tial rate λ, and another independent event at an exponential rate μ, then together they
occur at an exponential rate λ + μ. To check this formally, let T1 be the time at which
the first event occurs, and T2 the time at which the second event occurs. Then

P {T1 ≤ t} = 1 − e−λt ,

P {T2 ≤ t} = 1 − e−μt

Now if we are interested in the time until either T1 or T2 occurs, then we are interested
in T = min(T1, T2). Now,

P {T ≤ t} = 1 − P {T > t}
= 1 − P {min(T1, T2) > t}

However, min(T1, T2) > t if and only if both T1 and T2 are greater than t ; hence,

P {T ≤ t} = 1 − P {T1 > t,T2 > t}
= 1 − P {T1 > t}P {T2 > t}
= 1 − e−λt e−μt
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= 1 − e−(λ+μ)t

Thus, T has an exponential distribution with rate λ+μ, and we are justified in adding
the rates. �

Given that an M/M/1 steady-state customer—that is, a customer who arrives after
the system has been in operation a long time—spends a total of t time units in the
system, let us determine the conditional distribution of N , the number of others that
were present when that customer arrived. That is, letting W ∗ be the amount of time a
customer spends in the system, we will find P {N = n|W ∗ = t}. Now,

P {N = n|W ∗ = t} = fN,W ∗(n, t)

fW ∗(t)

= P {N = n}fW ∗|N(t |n)

fW ∗(t)

where fW ∗|N(t |n) is the conditional density of W ∗ given that N = n, and fW ∗(t) is
the unconditional density of W ∗. Now, given that N = n, the time that the customer
spends in the system is distributed as the sum of n + 1 independent exponential ran-
dom variables with a common rate μ, implying that the conditional distribution of W ∗
given that N = n is the gamma distribution with parameters n + 1 and μ. Therefore,
with C = 1/fW ∗(t),

P {N = n|W ∗ = t} = CP {N = n}μe−μt (μt)n

n!
= C(λ/μ)n(1 − λ/μ)μe−μt (μt)n

n! (by PASTA)

= K
(λt)n

n!
where K = C(1 − λ/μ)μe−μt does not depend on n. Summing over n yields

1 =
∞∑

n=0

P {N = n|T = t} = K

∞∑
n=0

(λt)n

n! = Keλt

Thus, K = e−λt , showing that

P {N = n|W ∗ = t} = e−λt (λt)n

n!
Therefore, the conditional distribution of the number seen by an arrival who spends a
total of t time units in the system is the Poisson distribution with mean λt .

In addition, as a by-product of our analysis, we have

fW ∗(t) = 1/C

= 1

K
(1 − λ/μ)μe−μt
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= (μ − λ)e−(μ−λ)t

In other words, W ∗, the amount of time a customer spends in the system, is an expo-
nential random variable with rate μ−λ. (As a check, we note that E[W ∗] = 1/(μ−λ),
which checks with Eq. (8.8) since W = E[W ∗].)
Remark. Another argument as to why W ∗ is exponential with rate μ − λ is as fol-
lows. If we let N denote the number of customers in the system as seen by an arrival,
then this arrival will spend N + 1 service times in the system before departing. Now,

P {N + 1 = j} = P {N = j − 1} = (λ/μ)j−1(1 − λ/μ), j ≥ 1

In words, the number of services that have to be completed before the arrival departs
is a geometric random variable with parameter 1 − λ/μ. Therefore, after each service
completion our customer will be the one departing with probability 1 −λ/μ. Thus, no
matter how long the customer has already spent in the system, the probability he will
depart in the next h time units is μh + o(h), the probability that a service ends in that
time, multiplied by 1 − λ/μ. That is, the customer will depart in the next h time units
with probability (μ − λ)h + o(h), which says that the hazard rate function of W ∗ is
the constant μ−λ. But only the exponential has a constant hazard rate, and so we can
conclude that W ∗ is exponential with rate μ − λ.

Our next example illustrates the inspection paradox.

Example 8.5. For an M/M/1 queue in steady state, what is the probability that the
next arrival finds n in the system?

Solution: Although it might initially seem, by the PASTA principle, that this
probability should just be (λ/μ)n(1 − λ/μ), we must be careful. Because if t is
the current time, then the time from t until the next arrival is exponentially dis-
tributed with rate λ, and is independent of the time from t since the last arrival,
which (in the limit, as t goes to infinity) is also exponential with rate λ. Thus, al-
though the times between successive arrivals of a Poisson process are exponential
with rate λ, the time between the previous arrival before t and the first arrival after
t is distributed as the sum of two independent exponentials. (This is an illustration
of the inspection paradox, which results because the length of an interarrival inter-
val that contains a specified time tends to be longer than an ordinary interarrival
interval—see Section 7.7.)
Let Na denote the number found by the next arrival, and let X be the number
currently in the system. Conditioning on X yields

P {Na = n} =
∞∑

k=0

P {Na = n|X = k}P {X = k}

=
∞∑

k=0

P {Na = n|X = k}(λ/μ)k(1 − λ/μ)



Queueing Theory 533

=
∞∑

k=n

P {Na = n|X = k}(λ/μ)k(1 − λ/μ)

=
∞∑
i=0

P {Na = n|X = n + i}(λ/μ)n+i (1 − λ/μ)

Now, for n > 0, given there are currently n + i in the system, the next arrival will
find n if we have i services before an arrival and then an arrival before the next
service completion. By the lack of memory property of exponential interarrival
random variables, this gives

P {Na = n|X = n + i} =
(

μ

λ + μ

)i
λ

λ + μ
, n > 0

Consequently, for n > 0,

P {Na = n} =
∞∑
i=0

(
μ

λ + μ

)i
λ

λ + μ

(
λ

μ

)n+i

(1 − λ/μ)

= (λ/μ)n(1 − λ/μ)
λ

λ + μ

∞∑
i=0

(
λ

λ + μ

)i

= (λ/μ)n+1(1 − λ/μ)

On the other hand, the probability that the next arrival will find the system empty,
when there are currently i in the system, is the probability that there are i services
before the next arrival. Therefore, P {Na = 0|X = i} = (

μ
λ+μ

)i , giving

P {Na = 0} =
∞∑
i=0

(
μ

λ + μ

)i (
λ

μ

)i

(1 − λ/μ)

= (1 − λ/μ)

∞∑
i=0

(
λ

λ + μ

)i

= (1 + λ/μ)(1 − λ/μ)

As a check, note that

∞∑
n=0

P {Na = n} = (1 − λ/μ)

[
1 + λ/μ +

∞∑
n=1

(λ/μ)n+1

]

= (1 − λ/μ)

∞∑
i=0

(λ/μ)i

= 1
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Note that P {Na = 0} is larger than P0 = 1 − λ/μ, showing that the next arrival is
more likely to find an empty system than is an average arrival, and thus illustrating
the inspection paradox that when the next customer arrives the elapsed time since
the previous arrival is distributed as the sum of two independent exponentials with
rate λ. Also, we might expect because of the inspection paradox that E[Na] is less
than L, the average number of customers seen by an arrival. That this is indeed the
case is seen from

E[Na] =
∞∑

n=1

n(λ/μ)n+1(1 − λ/μ) = λ

μ
L < L �

8.3.2 A Single-Server Exponential Queueing System
Having Finite Capacity

In the previous model, we assumed that there was no limit on the number of customers
that could be in the system at the same time. However, in reality there is always a fi-
nite system capacity N , in the sense that there can be no more than N customers in
the system at any time. By this, we mean that if an arriving customer finds that there
are already N customers present, then he does not enter the system.

As before, we let Pn,0 ≤ n ≤ N , denote the limiting probability that there are n

customers in the system. The rate-equality principle yields the following set of bal-
ance equations:

State Rate at which the process leaves = rate at which it enters

0 λP0 = μP1
1 ≤ n ≤ N − 1 (λ + μ)Pn = λPn−1 + μPn+1

N μPN = λPN−1

The argument for state 0 is exactly as before. Namely, when in state 0, the process
will leave only via an arrival (which occurs at rate λ) and hence the rate at which the
process leaves state 0 is λP0. On the other hand, the process can enter state 0 only from
state 1 via a departure; hence, the rate at which the process enters state 0 is μP1. The
equation for state n, where 1 ≤ n < N , is the same as before. The equation for state
N is different because now state N can only be left via a departure since an arriving
customer will not enter the system when it is in state N ; also, state N can now only be
entered from state N − 1 (as there is no longer a state N + 1) via an arrival.

We could now either solve the balance equations exactly as we did for the infinite
capacity model, or we could save a few lines by directly using the result that the rate
at which departures leave behind n− 1 is equal to the rate at which arrivals find n− 1.
Invoking this result yields

μPn = λPn−1, n = 1, . . . ,N
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giving

Pn = λ

μ
Pn−1 =

(
λ

μ

)2

Pn−2 = · · · =
(

λ

μ

)n

P0, n = 1, . . . ,N

By using the fact that
∑N

n=0 Pn = 1 we obtain

1 = P0

N∑
n=0

(
λ

μ

)n

= P0

[
1 − (λ/μ)N+1

1 − λ/μ

]

or

P0 = (1 − λ/μ)

1 − (λ/μ)N+1

and hence from the preceding we obtain

Pn = (λ/μ)n(1 − λ/μ)

1 − (λ/μ)N+1
, n = 0,1, . . . ,N

Note that in this case, there is no need to impose the condition that λ/μ < 1. The queue
size is, by definition, bounded so there is no possibility of its increasing indefinitely.

As before, L may be expressed in terms of Pn to yield

L =
N∑

n=0

nPn

= (1 − λ/μ)

1 − (λ/μ)N+1

N∑
n=0

n

(
λ

μ

)n

which after some algebra yields

L = λ[1 + N(λ/μ)N+1 − (N + 1)(λ/μ)N ]
(μ − λ)(1 − (λ/μ)N+1)

In deriving W , the expected amount of time a customer spends in the system, we
must be a little careful about what we mean by a customer. Specifically, are we in-
cluding those “customers” who arrive to find the system full and thus do not spend
any time in the system? Or, do we just want the expected time spent in the system
by a customer who actually entered the system? The two questions lead, of course,
to different answers. In the first case, we have λa = λ; whereas in the second case,
since the fraction of arrivals that actually enter the system is 1 − PN , it follows that
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λa = λ(1 − PN). Once it is clear what we mean by a customer, W can be obtained
from

W = L

λa

Example 8.6. Suppose that it costs cμ dollars per hour to provide service at a rate μ.
Suppose also that we incur a gross profit of A dollars for each customer served. If the
system has a capacity N , what service rate μ maximizes our total profit?

Solution: To solve this, suppose that we use rate μ. Let us determine the amount
of money coming in per hour and subtract from this the amount going out each
hour. This will give us our profit per hour, and we can choose μ so as to maximize
this.
Now, potential customers arrive at a rate λ. However, a certain proportion of them
do not join the system—namely, those who arrive when there are N customers
already in the system. Hence, since PN is the proportion of time that the system
is full, it follows that entering customers arrive at a rate of λ(1 − PN). Since each
customer pays $A, it follows that money comes in at an hourly rate of λ(1 −PN)A

and since it goes out at an hourly rate of cμ, it follows that our total profit per hour
is given by

profit per hour = λ(1 − PN)A − cμ

= λA

[
1 − (λ/μ)N(1 − λ/μ)

1 − (λ/μ)N+1

]
− cμ

= λA[1 − (λ/μ)N ]
1 − (λ/μ)N+1

− cμ

For instance if N = 2, λ = 1,A = 10, c = 1, then

profit per hour = 10[1 − (1/μ)2]
1 − (1/μ)3 − μ

= 10(μ3 − μ)

μ3 − 1
− μ

In order to maximize profit we differentiate to obtain

d

dμ
[profit per hour] = 10

(2μ3 − 3μ2 + 1)

(μ3 − 1)2
− 1

The value of μ that maximizes our profit now can be obtained by equating to zero
and solving numerically. �

We say that a queueing system alternates between idle periods when there are no
customers in the system and busy periods in which there is at least one customer in
the system. We will end this section by determining the expected value and variance
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of the number of lost customers in a busy period, where a customer is said to be lost
if it arrives when the system is at capacity.

To determine the preceding quantities, let Ln denote the number of lost customers
in a busy period of a finite capacity M/M/1 queue in which an arrival finding n others
does not join the system. To derive an expression for E[Ln] and Var(Ln), suppose a
busy period has just begun and condition on whether the next event is an arrival or a
departure. Now, with

I =
{

0, if service completion occurs before next arrival
1, if arrival before service completion

note that if I = 0 then the busy period will end before the next arrival and so there will
be no lost customers in that busy period. As a result

E[Ln|I = 0] = Var(Ln|I = 0) = 0

Now suppose that the next arrival appears before the end of the first service time, and
so I = 1. Then if n = 1 that arrival will be lost and it will be as if the busy period
were just beginning anew at that point, yielding that the conditional number of lost
customers has the same distribution as does 1 + L1. On the other hand, if n > 1 then
at the moment of the arrival there will be two customers in the system, the one in ser-
vice and the “second customer” who has just arrived. Because the distribution of the
number of lost customers in a busy period does not depend on the order in which cus-
tomers are served, let us suppose that the “second customer” is put aside and does not
receive any service until it is the only remaining customer. Then it is easy to see that
the number of lost customers until that “second customer” begins service has the same
distribution as the number of lost customers in a busy period when the system capacity
is n− 1. Moreover, the additional number of lost customers in the busy period starting
when service begins on the “second customer” has the distribution of the number of
lost customers in a busy period when the system capacity is n. Consequently, given
I = 1,Ln has the distribution of the sum of two independent random variables: one of
which is distributed as Ln−1 and represents the number of lost customers before there
is again only a single customer in the system, and the other which is distributed as Ln

and represents the additional number of lost customers from the moment when there
is again a single customer until the busy period ends. Hence,

E[Ln|I = 1] =
{

1 + E[L1], if n = 1

E[Ln−1] + E[Ln], if n > 1

and

Var(Ln|I = 1) =
{

Var(L1), if n = 1

Var(Ln−1) + Var(Ln), if n > 1

Letting

mn = E[Ln] and vn = Var(Ln)
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then, with m0 = 1, v0 = 0, the preceding equations can be rewritten as

E[Ln|I ] = I (mn−1 + mn), (8.9)

Var(Ln|I ) = I (vn−1 + vn) (8.10)

Using that P(I = 1) = P(arrival before service) = λ
λ+μ

= 1−P(I = 0), we obtain
upon taking expectations of both sides of Eq. (8.9) that

mn = λ

λ + μ
[mn + mn−1]

or

mn = λ

μ
mn−1

Starting with m1 = λ/μ, this yields the result

mn = (λ/μ)n

To determine vn, we use the conditional variance formula. Using Eqs. (8.9) and (8.10)
it gives

vn = (vn + vn−1)E[I ] + (mn + mn−1)
2Var(I )

= λ

λ + μ
(vn + vn−1) + [(λ/μ)n + (λ/μ)n−1]2 λ

λ + μ

μ

λ + μ

= λ

λ + μ
(vn + vn−1) + (λ/μ)2n−2

(
λ

μ
+ 1

)2
λμ

(λ + μ)2

= λ

λ + μ
(vn + vn−1) + (λ/μ)2n−1

Hence,

μvn = λvn−1 + (λ + μ)(λ/μ)2n−1

or, with ρ = λ/μ

vn = ρvn−1 + ρ2n−1 + ρ2n

Therefore,

v1 = ρ + ρ2,

v2 = ρ2 + 2ρ3 + ρ4,

v3 = ρ3 + 2ρ4 + 2ρ5 + ρ6,

v4 = ρ4 + 2ρ5 + 2ρ6 + 2ρ7 + ρ8
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and, in general,

vn = ρn + 2
2n−1∑

j=n+1

ρj + ρ2n

8.3.3 Birth and Death Queueing Models

An exponential queueing system in which the arrival rates and the departure rates de-
pend on the number of customers in the system is known as a birth and death queueing
model. Let λn denote the arrival rate and let μn denote the departure rate when there
are n customers in the system. Loosely speaking, when there are n customers in the
system then the time until the next arrival is exponential with rate λn and is indepen-
dent of the time of the next departure, which is exponential with rate μn. Equivalently,
and more formally, whenever there are n customers in the system, the time until either
the next arrival or the next departure occurs is an exponential random variable with
rate λn + μn and, independent of how long it takes for this occurrence, it will be an
arrival with probability λn

λn+μn
. We now give some examples of birth and death queues.

(a) The M/M/1 Queueing System
Because the arrival rate is always λ, and the departure rate is μ when the system
is nonempty, the M/M/1 is a birth and death model with

λn = λ, n ≥ 0

μn = μ, n ≥ 1

(b) The M/M/1 Queueing System with Balking
Consider the M/M/1 system but now suppose that a customer that finds n oth-
ers in the system upon its arrival will only join the system with probability αn.
(That is, with probability 1−αn it balks at joining the system.) Then this system
is a birth and death model with

λn = λαn, n ≥ 0

μn = μ, n ≥ 1

The M/M/1 with finite capacity N is the special case where

αn =
{

1, if n < N

0, if n ≥ N

(c) The M/M/k Queueing System
Consider a k server system in which customers arrive according to a Poisson
process with rate λ. An arriving customer immediately enters service if any of
the k servers are free. If all k servers are busy, then the arrival joins the queue.
When a server completes a service the customer served departs the system and if
there are any customers in queue then the one who has been waiting longest en-
ters service with that server. All service times are exponential random variables
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with rate μ. Because customers are always arriving at rate λ,

λn = λ, n ≥ 0

Now, when there are n ≤ k customers in the system, then each customer will be
receiving service and so the time until a departure will be the minimum of n in-
dependent exponentials each having rate μ, and so will be exponential with rate
nμ. On the other hand if there are n > k in the system then only k of the n will
be in service, and so the departure rate in this case is kμ. Hence, the M/M/k is
a birth and death queueing model with arrival rates

λn = λ, n ≥ 0

and departure rates

μn =
{
nμ, if n ≤ k

kμ, if n ≥ k
�

To analyze the general birth and death queueing model, let Pn denote the long-run
proportion of time there are n in the system. Then, either as a consequence of the
balance equations given by

State Rate at which process leaves = rate at which process enters

n = 0 λ0P0 = μ1P1
n ≥ 1 (λn + μn)Pn = λn−1Pn−1 + μn+1Pn+1

or by directly using the result that the rate at which arrivals find n in the system is
equal to the rate at which departures leave behind n, we obtain

λnPn = μn+1Pn+1, n ≥ 0

or, equivalently, that

Pn+1 = λn

μn+1
Pn, n ≥ 0

Thus,

P0 = P0,

P1 = λ0

μ1
P0,

P2 = λ1

μ2
P1 = λ1λ0

μ2μ1
P0,

P3 = λ2

μ3
P2 = λ2λ1λ0

μ3μ2μ1
P0
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and, in general

Pn = λ0λ1 · · ·λn−1

μ1μ2 · · ·μn

P0, n ≥ 1

Using that
∑∞

n=0 Pn = 1 shows that

1 = P0

[
1 +

∞∑
n=1

λ0λ1 · · ·λn−1

μ1μ2 · · ·μn

]

Hence,

P0 = 1

1 +∑∞
n=1

λ0λ1···λn−1
μ1μ2···μn

and

Pn =
λ0λ1···λn−1
μ1μ2···μn

1 +∑∞
n=1

λ0λ1···λn−1
μ1μ2···μn

, n ≥ 1

The necessary and sufficient condition for the long-run probabilities to exist is that the
denominator in the preceding is finite. That is, we need have that

∞∑
n=1

λ0λ1 · · ·λn−1

μ1μ2 · · ·μn

< ∞

Example 8.7. For the M/M/k system

λ0λ1 · · ·λn−1

μ1μ2 · · ·μn

=
{

(λ/μ)n

n! , if n ≤ k

λn

μnk!kn−k , if n > k

Hence, using that λn

μnk!kn−k = (λ/kμ)nkk/k! we see that

P0 = 1

1 +∑k
n=1(λ/μ)n/n! +∑∞

n=k+1(λ/kμ)nkk/k! ,

Pn = P0(λ/μ)n/n!, if n ≤ k

Pn = P0(λ/kμ)nkk/k!, if n > k

It follows from the preceding that the condition needed for the limiting probabilities
to exist is λ < kμ. Because kμ is the service rate when all servers are busy, the pre-
ceding is just the intuitive condition that for limiting probabilities to exist the service
rate needs to be larger than the arrival rate when there are many customers in the
system. �
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Example 8.8. Find the average amount of time a customer spends in the system for
an M/M/2 system.

Solution: Letting μ2 = 2μ, the long run proportions for the M/M/2 system can
be expressed as

Pn = 2 (λ/μ2)
nP0, n ≥ 1

This yields that

1 =
∞∑

n=0

Pn

= P0

(
1 + 2

∞∑
n=1

(λ/μ2)
n

)

= P0

(
1 + λ/μ

1 − λ/μ2

)

= P0

(
1 + λ/μ2

1 − λ/μ2

)

Thus,

P0 = 1 − λ/μ2

1 + λ/μ2

To determine W , we first compute L. This gives

L =
∞∑

n=1

nPn = 2P0

∞∑
n=1

n(λ/μ2)
n

Using the identity (8.7) yields that

L = 2P0
λ/μ2

(1 − λ/μ2)2
= λ/μ

(1 − λ/μ2)(1 + λ/μ2)

Because L = λW , the preceding gives

W = 1

(μ − λ/2)(1 + λ/μ2)

It is interesting to contrast the average time in the system when there is a single
queue as in the M/M/2, with when arrivals are randomly sent to be served by
either server. As shown in Example 8.4, the average time in the system in the lat-
ter case is minimized when each customer is equally likely to be sent to either
server, with the average time being equal to 1

μ−λ/2 in this case. Hence, the aver-
age time that a customer spends in the system when using a single queue as in the
M/M/2 system is 1

1+λ/μ2
multiplied by what it would be if each customer were
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equally likely to be sent to either server’s queue. For instance, if λ = μ = 1, then
λ/μ2 = 1/2, and the use of a single queue results in the customer average time in
the system being equal to 2/3 times what it would be if two separate queues were
used. When λ = 1.5μ, the reduction factor becomes 4/7; and when λ = 1.9μ, it is
20/39. �

Example 8.9 (M/M/1 Queue with Impatient Customers). Consider a single-server
queue where customers arrive according to a Poisson process with rate λ and where
the service distribution is exponential with rate μ, but now suppose that each customer
will only spend an exponential time with rate α in queue before quitting the system.
Assume that the impatient times are independent of all else, and that a customer who
enters service always remains until its service is completed. This system can be mod-
eled as a birth and death process with birth and death rates

λn = λ, n ≥ 0

μn = μ + (n − 1)α, n ≥ 1

Using the previously obtained limiting probabilities enables us to answer a variety of
questions about this system. For instance, suppose we wanted to determine the pro-
portion of arrivals that receive service. Calling this quantity πs , it can be obtained by
letting λs be the average rate at which customers are served and noting that

πs = λs

λ

To verify the preceding equation, let Na(t) and Ns(t) denote, respectively, the number
of arrivals and the number of services by time t . Then,

πs = lim
t→∞

Ns(t)

Na(t)
= lim

t→∞
Ns(t)/t

Na(t)/t
= λs

λ

Because the service departure rate is 0 when the system is empty and is μ when the
system is nonempty, it follows that λs = μ(1 − P0), yielding that

πs = μ(1 − P0)

λ
�

Remark. As illustrated in the previous example, often the easiest way of determining
the proportion of all events that are of a certain type A is to determine the rates at
which events of type A occur and the rate at which all events occur, and then use that

proportion of events that are type A = rate at which type A events occur

rate at which all events occur

For instance, if people arrive at rate λ and women arrive at rate λw, then the proportion
of arrivals that are women is λw/λ. �
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To determine W , the average time that a customer spends in the system, for the birth
and death queueing system, we employ the fundamental queueing identity L = λaW .
Because L is the average number of customers in the system,

L =
∞∑

n=0

nPn

Also, because the arrival rate when there are n in the system is λn and the proportion
of time in which there are n in the system is Pn, we see that the average arrival rate of
customers is

λa =
∞∑

n=0

λnPn

Consequently,

W =
∑∞

n=0 nPn∑∞
n=0 λnPn

Now consider an equal to the proportion of arrivals that find n in the system. Since
arrivals are at rate λn whenever there are n in system, it follows that the rate at which
arrivals find n is λnPn. Hence, in a large time T approximately λnPnT of the approxi-
mately λaT arrivals will encounter n. Letting T go to infinity shows that the long-run
proportion of arrivals finding n in the system is

an = λnPn

λa

Let us now consider the average length of a busy period, where we say that the system
alternates between idle periods when there are no customers in the system and busy
periods in which there is at least one customer in the system. Now, an idle period be-
gins when the system is empty and ends when the next customer arrives. Because the
arrival rate when the system is empty is λ0, it thus follows that, independent of all that
previously occurred, the length of an idle period is exponential with rate λ0. Because a
busy period always begins when there is one in the system and ends when the system
is empty, it is easy to see that the lengths of successive busy periods are independent
and identically distributed. Let Ij and Bj denote, respectively, the lengths of the j th
idle and the j th busy period, j ≥ 1. Now, in the first

∑n
j=1(Ij + Bj ) time units the

system will be empty for a time
∑n

j=1 Ij . Consequently, P0, the long-run proportion
of time in which the system is empty, can be expressed as

P0 = long-run proportion of time empty

= lim
n→∞

I1 + . . . + In

I1 + . . . + In + B1 + . . . + Bn

= lim
n→∞

(I1 + . . . + In) /n

(I1 + . . . + In) /n + (B1 + . . . + Bn)/n
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= E[I ]
E[I ] + E[B] (8.11)

where I and B represent, respectively, the lengths of an idle and of a busy period, and
where the final equality follows from the strong law of large numbers. Hence, using
that E[I ] = 1/λ0, we see that

P0 = 1

1 + λ0E[B]
or,

E[B] = 1 − P0

λ0P0
(8.12)

For instance, in the M/M/1 queue, this yields E[B] = λ/μ
λ(1−λ/μ)

= 1
μ−λ

.
Another quantity of interest is Tn, the amount of time during a busy period that there

are n in the system. To determine its mean, note that E[Tn] is the average amount of
time there are n in the system in intervals between successive busy periods. Because
the average time between successive busy periods is E[B] + E[I ], it follows that

Pn = long-run proportion of time there are n in system

= E[Tn]
E[I ] + E[B]

= E[Tn]P0

E[I ] from (8.11)

Hence,

E[Tn] = Pn

λ0P0
= λ1 · · ·λn−1

μ1μ2 · · ·μn

As a check, note that

B =
∞∑

n=1

Tn

and thus,

E[B] =
∞∑

n=1

E[Tn] = 1

λ0P0

∞∑
n=1

Pn = 1 − P0

λ0P0

which is in agreement with (8.12).
For the M/M/1 system, the preceding gives E[Tn] = λn−1/μn.
Whereas in exponential birth and death queueing models the state of the system

is just the number of customers in the system, there are other exponential models in
which a more detailed state space is needed. To illustrate, we consider some examples.
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8.3.4 A Shoe Shine Shop

Consider a shoe shine shop consisting of two chairs, with each chair having its own
server. Suppose that an entering customer first will go to chair 1. When his work is
completed in chair 1, he will go either to chair 2 if that chair is empty or else wait in
chair 1 until chair 2 becomes empty. Suppose that a potential customer will enter this
shop as long as chair 1 is empty. (Thus, for instance, a potential customer might enter
even if there is a customer in chair 2.)

If we suppose that potential customers arrive in accordance with a Poisson pro-
cess at rate λ, and that the service times for the two chairs are independent and have
respective exponential rates of μ1 and μ2, then

(a) what proportion of potential customers enters the system?
(b) what is the mean number of customers in the system?
(c) what is the average amount of time that an entering customer spends in the sys-

tem?
(d) Find πb, equal to the fraction of entering customers that are blockers? That is,

find the fraction of entering customers that will have to wait after completing
service with server 1 before they can enter chair 2.

To begin, we must first decide upon an appropriate state space. It is clear that the
state of the system must include more information than merely the number of cus-
tomers in the system. For instance, it would not be enough to specify that there is one
customer in the system as we would also have to know which chair was in. Further, if
we only know that there are two customers in the system, then we would not know if
the person in chair 1 is still being served or that customer is just waiting for the person
in chair 2 to finish. To account for these points, the following state space, consisting
of the five states (0,0), (1,0), (0,1), (1,1), and (b,1), will be used. The states have
the following interpretation:

State Interpretation

(0,0) There are no customers in the system.
(1,0) There is one customer in the system, and that customer is in chair 1.
(0,1) There is one customer in the system, and that customer is in chair 2.
(1,1) There are two customers in the system, and both are presently being

served.
(b,1) There are two customers in the system, but the customer in the first

chair has completed his work in that chair and is waiting for the sec-
ond chair to become free.

It should be noted that when the system is in state (b,1), the person in chair 1,
though not being served, is nevertheless “blocking” potential arrivals from entering
the system.

As a prelude to writing down the balance equations, it is usually worthwhile to
make a transition diagram. This is done by first drawing a circle for each state and
then drawing an arrow labeled by the rate at which the process goes from one state to
another. The transition diagram for this model is shown in Fig. 8.1. The explanation
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Figure 8.1 A transition diagram.

for the diagram is as follows: The arrow from state (0,0) to state (1,0) that is labeled
λ means that when the process is in state (0,0), that is, when the system is empty, then
it goes to state (1,0) at a rate λ, that is, via an arrival. The arrow from (0,1) to (1,1)

is similarly explained.
When the process is in state (1,0), it will go to state (0,1) when the customer in

chair 1 is finished and this occurs at a rate μ1; hence the arrow from (1,0) to (0,1)

labeled μ1. The arrow from (1,1) to (b,1) is similarly explained.
When in state (b,1) the process will go to state (0,1) when the customer in chair 2

completes his service (which occurs at rate μ2); hence the arrow from (b,1) to (0,1)

labeled μ2. Also, when in state (1,1) the process will go to state (1,0) when the man
in chair 2 finishes; hence the arrow from (1,1) to (1,0) labeled μ2. Finally, if the pro-
cess is in state (0,1), then it will go to state (0,0) when the man in chair 2 completes
his service; hence the arrow from (0,1) to (0,0) labeled μ2.

Because there are no other possible transitions, this completes the transition dia-
gram.

To write the balance equations we equate the sum of the arrows (multiplied by the
probability of the states where they originate) coming into a state with the sum of the
arrows (multiplied by the probability of the state) going out of that state. This gives

State Rate that the process leaves = rate that it enters

(0,0) λP00 = μ2P01
(1,0) μ1P10 = λP00 + μ2P11
(0,1) (λ + μ2)P01 = μ1P10 + μ2Pb1
(1,1) (μ1 + μ2)P11 = λP01
(b,1) μ2Pb1 = μ1P11

These along with the equation

P00 + P10 + P01 + P11 + Pb1 = 1
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may be solved to determine the limiting probabilities. Though it is easy to solve the
preceding equations, the resulting solutions are quite involved and hence will not be
explicitly presented. However, it is easy to answer our questions in terms of these lim-
iting probabilities. To answer (a), note that a potential arrival will only enter if it finds
the system in either state (0,0) or (0,1). Because all arrivals, including those that are
lost, arrive according to a Poisson process, it follows by PASTA that the proportion
of arrivals that find the system in either of those states is the proportion of time the
system is in either of those states, namely, P00 + P01.

To answer (b), note that since there is one customer in the system whenever the
state is (0, 1) or (1, 0) and two customers in the system whenever the state is (1, 1) or
(b,1), it follows that L, the average number in the system, is given by

L = P01 + P10 + 2(P11 + Pb1)

To derive the average amount of time that an entering customer spends in the system,
we use the relationship W = L/λa . Since a potential customer will enter the system
when the state is either (0,0) or (0,1), it follows that λa = λ(P00 + P01) and hence

W = P01 + P10 + 2(P11 + Pb1)

λ(P00 + P01)

One way to determine the proportion of entering customers that are blockers is to
condition on the state seen by the customer. Because the state seen by an entering
customer is either (0,0) or (0,1), the probability that an entering customer finds the
system in state (0,1) is P(01 |00 or 01) = P01

P0,0+P0,1
. As an entering customer will be

a blocker if he or she enters the system when the state is (0,1) and then completes
service at 1 before server 2 has finished its service, we see that

πb = P01

P00 + P01

μ1

μ1 + μ2

Another way to obtain the proportion of entering customers that are blockers is to let
λb be the rate at which customers become blockers, and then use that the proportion
of entering customers that are blockers is λb/λa . Because blockers originate when the
state is (1,1) and a service at 1 occurs, it follows that λb = μ1P11, and so

πb = μ1P11

λ(P00 + P01)

That the two solutions agree follows from the balance equation for state (1,1). �

8.3.5 Queueing Systems with Bulk Service

Our next example refers to a system in which a server is able to simultaneously serve
all waiting customers.

Example 8.10. Suppose that customers arrive to a single server system according to
a Poisson process with rate λ, and that arrivals finding the server free immediately
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Figure 8.2

begin service, whereas those finding the server busy join the queue. Upon completing
a service, the server then simultaneously serves all customers waiting in queue. The
service time to serve a group of n customers is exponentially distributed with rate μn,
n ≥ 1.

To analyze this system, let the state be (m,n) if there are m customers is queue and
n in service. If the state is (0,0) and a customer arrives, then that arrival will instantly
begin service and the state will be (0,1). If an arrival comes when the state is (m,n),
n > 0, then that arrival will join the queue and so the state will become (m + 1, n).
If a service is completed when the state is (0, n) then the state becomes (0,0). If a
service is completed when the state is (m,n), m > 0, then the m customers in queue
will all enter service and so the new state will be (0,m). The transition diagram for
this system is given in Fig. 8.2.

Thus, we have the following balance equations equating the rates at which the sys-
tem leaves and enters each state:

State Rate leave = Rate enter

(0,0) λP0,0 =∑∞
n=1 μnP0,n

(0,1) (λ + μ1)P0,1 = λP0,0 +∑∞
n=1 μnP1,n

(0, n), n > 1 (λ + μn)P0,n =∑∞
m=1 μmPn,m

(m,n),mn > 0 (λ + μn)Pm,n = λPm−1,n∑
m,n Pm,n = 1

In terms of the solution of these equations, determine

(a) the average amount of time that a customer spends in service;
(b) the average amount of time that a customer spends in the system;
(c) the proportion of services that are done on n customers;
(d) the proportion of customers that are served in a batch of size n.

Solution: To determine the average amount of time that a customer spends in
service, we can use the fundamental identity that the

average number of customers in service

= λa × average time a customer spends in service
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Because there are n customers in service when the state is (m,n), it follows that

P(n customers in service) =
∞∑

m=0

Pm,n

and thus

average time a customer spends in service =
∑∞

n=1 n
∑∞

m=0 Pm,n

λ

(b) To determine W , we use the identity L = λW . Because there are m + n cus-
tomers in the system when the state is (m,n), it follows that

W = L

λ
=
∑∞

m=0
∑∞

n=1(m + n)Pm,n

λ
(8.13)

(c) Calling a service that is performed on n customers a type n service, note that
such services are completed whenever the state is (m,n) and a service occurs. Be-
cause the service rate when the state is (m,n) is μn, it follows that the rate at which
type n services are completed is μn

∑∞
m=0 Pm,n. Because the rate at which services

are completed is the sum of the rates at which type n services are completed, we
see that

proportion of all services that are type n

= rate at which type n services occur

rate at which services occur

= μn

∑∞
m=0 Pm,n∑∞

n=1 μn

∑∞
m=0 Pm,n

(d) To determine the proportion of customers that are served in a batch of size n,
call such a customer a type n customer. Because n customers depart each time
there is a type n service, it follows that

proportion of customers that are type n

= rate at which type n customers depart

rate at which customers depart

= nμn

∑∞
m=0 Pm,n

λ

where the final equality used that the rate at which customers depart is equal to the
rate at which they arrive. �

The needed computations of the preceding example simplify significantly when the
service distribution is the same no matter how many customers are being served.

Example 8.11. If in Example 8.10, the service times are all exponential with rate μ

no matter how many customers are being simultaneously served, then we can simplify
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Figure 8.3

the state space by only keeping track of the number in queue. Since when there is no
one in queue we would need to know whether or not the server was busy (so as to
know whether a new service would begin if an arrival came) we define the following
states:

State Interpretation

e system empty
n,n ≥ 0 n in queue, server busy

The transition diagram for this system is given in Fig. 8.3.
The balance equations are

State Rate leave = Rate enter

e λPe = μP0
0 (λ + μ)P0 = λPe +∑∞

n=1 μPn

n,n > 0 (λ + μ)Pn = λPn−1

These equations are easily solved. Using that the sum of all the probabilities is 1, the
second equation can be rewritten as

(λ + μ)P0 = λPe + μ(1 − Pe − P0)

In conjunction with the balance equation for state e, this yields that

P0 = λμ

λ2 + λμ + μ2 , Pe = μ

λ
P0 = μ2

λ2 + λμ + μ2

Also, from the balance equation for state n, n > 0,

Pn = λ

λ + μ
Pn−1 = (

λ

λ + μ
)2Pn−2 = . . . = (

λ

λ + μ
)nP0

Now, the amount of time a customer will spend in queue is 0 if that customer finds
the system empty, and is exponential with rate μ otherwise. By PASTA, the propor-
tion of arrivals finding the system empty is Pe, yielding that the average time that a
customer spends in queue is

WQ = 1 − Pe

μ
= λ2 + λμ

μ(λ2 + λμ + μ2)
(8.14)
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We can now determine LQ,W,L from (8.14) by using that

LQ = λWQ, W = WQ + 1/μ, L = λW

Suppose now that we want to determine �n, the proportion of services that are on
a batch of size n. To determine this, first note that because the proportion of time the
server is busy is 1−Pe, and the service rate is μ, it follows that services are completed
at rate μ(1−Pe). Also, a service involving n people originates, when n > 1, whenever
a service is completed while there are n in queue; and when n = 1, whenever either
a service is completed when there is 1 in queue or when an arrival finds the system
empty. Hence, the rate at which n customer services occur is μPn when n > 1, and is
μP1 + λPe when n = 1. Thus,

�n =
{

μP1+λPe

μ(1−Pe)
, if n = 1

μPn

μ(1−Pe)
, if n > 1 �

Another way we could have determined �n is by noting that every service will be
of a group of size 1 if there is either 0 or 1 arrivals during the previous service in-
terval, giving that �1 = μ

μ+λ
+ λ

μ+λ
μ

μ+λ
. Similarly, each service will be of a group

of size n,n > 1, if there are exactly n arrivals during a service interval, giving that
�n = ( λ

μ+λ
)n

μ
μ+λ

, n > 1.

8.4 Network of Queues
8.4.1 Open Systems

Consider a two-server system in which customers arrive at a Poisson rate λ at server
1. After being served by server 1 they then join the queue in front of server 2. We sup-
pose there is infinite waiting space at both servers. Each server serves one customer
at a time with server i taking an exponential time with rate μi for a service, i = 1,2.
Such a system is called a tandem or sequential system (see Fig. 8.3).

To analyze this system we need to keep track of the number of customers at server
1 and the number at server 2. So let us define the state by the pair (n,m)—meaning
that there are n customers at server 1 and m at server 2. The balance equations are

State Rate that the process leaves = rate that it enters

0,0 λP0,0 = μ2P0,1
n,0;n > 0 (λ + μ1)Pn,0 = μ2Pn,1 + λPn−1,0
0,m;m > 0 (λ + μ2)P0,m = μ2P0,m+1 + μ1P1,m−1
n,m;nm > 0 (λ + μ1 + μ2)Pn,m = μ2Pn,m+1 + μ1Pn+1,m−1 + λPn−1,m

(8.15)

Rather than directly attempting to solve these (along with the equation
∑

n,mPn,m = 1)
we shall guess at a solution and then verify that it indeed satisfies the preceding. We
first note that the situation at server 1 is just as in an M/M/1 model. Similarly, as it
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was shown in Section 6.6 that the departure process of an M/M/1 queue is a Pois-
son process with rate λ, it follows that what server 2 faces is also an M/M/1 queue.
Hence, the probability that there are n customers at server 1 is

P {n at server 1} =
(

λ

μ1

)n(
1 − λ

μ1

)

and, similarly,

P {m at server 2} =
(

λ

μ2

)m(
1 − λ

μ2

)

Now, if the numbers of customers at servers 1 and 2 were independent random vari-
ables, then it would follow that

Pn,m =
(

λ

μ1

)n(
1 − λ

μ1

)(
λ

μ2

)m(
1 − λ

μ2

)
(8.16)

To verify that Pn,m is indeed equal to the preceding (and thus that the number of cus-
tomers at server 1 is independent of the number at server 2), all we need do is verify
that the preceding satisfies Eqs. (8.15)—this suffices since we know that the Pn,m are
the unique solution of Eqs. (8.15). Now, for instance, if we consider the first equation
of (8.15), we need to show that

λ

(
1 − λ

μ1

)(
1 − λ

μ2

)
= μ2

(
1 − λ

μ1

)(
λ

μ2

)(
1 − λ

μ2

)

which is easily verified. We leave it as an exercise to show that the Pn,m, as given by
Eq. (8.16), satisfy all of the equations of (8.15), and are thus the limiting probabilities.

From the preceding, we see that L, the average number of customers in the system,
is given by

L =
∑
n,m

(n + m)Pn,m

=
∑
n

n

(
λ

μ1

)n(
1 − λ

μ1

)
+
∑
m

m

(
λ

μ2

)m(
1 − λ

μ2

)

= λ

μ1 − λ
+ λ

μ2 − λ

and from this, we see that the average time a customer spends in the system is

W = L

λ
= 1

μ1 − λ
+ 1

μ2 − λ

Remarks. (i) The result (Eqs. (8.15)) could have been obtained as a direct conse-
quence of the time reversibility of an M/M/1 (see Section 6.6). Not only does
time reversibility imply that the output from server 1 is a Poisson process, but it
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also implies (Exercise 26 of Chapter 6) that the number of customers at server 1
is independent of the past departure times from server 1. As these past departure
times constitute the arrival process to server 2, the independence of the numbers
of customers in the two systems follows.

(ii) Since a Poisson arrival sees time averages, it follows that in a tandem queue the
numbers of customers an arrival (to server 1) sees at the two servers are indepen-
dent random variables. However, it should be noted that this does not imply that
the waiting times of a given customer at the two servers are independent. For a
counter example suppose that λ is very small with respect to μ1 = μ2, and thus
almost all customers have zero wait in queue at both servers. However, given that
the wait in queue of a customer at server 1 is positive, his wait in queue at server
2 also will be positive with probability at least as large as 1

2 (why?). Hence, the
waiting times in queue are not independent. Remarkably enough, however, it
turns out that the total times (that is, service time plus wait in queue) that an
arrival spends at the two servers are indeed independent random variables.

The preceding result can be substantially generalized. To do so, consider a system
of k servers. Customers arrive from outside the system to server i, i = 1, . . . , k, in
accordance with independent Poisson processes at rate ri ; they then join the queue
at i until their turn at service comes. Once a customer is served by server i, he
then joins the queue in front of server j, j = 1, . . . , k, with probability Pij . Hence,∑k

j=1 Pij ≤ 1, and 1 −∑k
j=1 Pij represents the probability that a customer departs

the system after being served by server i.
If we let λj denote the total arrival rate of customers to server j , then the λj can be

obtained as the solution of

λj = rj +
k∑

i=1

λiPij , i = 1, . . . , k (8.17)

Eq. (8.17) follows since rj is the arrival rate of customers to j coming from outside
the system and, as λi is the rate at which customers depart server i (rate in must equal
rate out), λiPij is the arrival rate to j of those coming from server i.

It turns out that the number of customers at each of the servers is independent and
of the form

P {n customers at server j} =
(

λj

μj

)n(
1 − λj

μj

)
, n ≥ 1

where μj is the exponential service rate at server j and the λj are the solution to
Eq. (8.17). Of course, it is necessary that λj/μj < 1 for all j . To prove this, we first
note that it is equivalent to asserting that the limiting probabilities P(n1, n2, . . . , nk) =
P {nj at server j, j = 1, . . . , k} are given by

P(n1, n2, . . . , nk) =
k∏

j=1

(
λj

μj

)nj
(

1 − λj

μj

)
(8.18)
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which can be verified by showing that it satisfies the balance equations for this model.
The average number of customers in the system is

L =
k∑

j=1

average number at server j

=
k∑

j=1

λj

μj − λj

The average time a customer spends in the system can be obtained from L = λaW

with λa =∑k
j=1 rj . (Why not λa =∑k

j=1 λj ?) Letting r =∑k
j=1 rj , this yields

W = 1

r

k∑
j=1

λj

μj − λj

To determine WQ, the average time that a customer spends in queue from the moment
they enter the system until the moment they depart, let us first determine LQ.

LQ =
k∑

j=1

average number in queue at server j

=
k∑

j=1

λ2
j

μj (μj − λj )

The queueing identity LQ = λaWQ, now yields

WQ = 1

r

k∑
j=1

λ2
j

μj (μj − λj )

Another quantity of interest for this model is the average number of servers that a
customer visits. To determine this, note that customers arrive to the system at rate
r =∑k

j=1 rj , whereas services occur at rate λ =∑k
j=1 λj . Hence, by time t , there

would have been approximately rt arrivals and λt services, showing that the average
number of services per arrival is λ/r .

Remark. The result embodied in Eq. (8.18) is rather remarkable in that it says that
the distribution of the number of customers at server i is the same as in an M/M/1
system with rates λi and μi . What is remarkable is that in the network model the ar-
rival process at node i need not be a Poisson process. For if there is a possibility that
a customer may visit a server more than once (a situation called feedback), then the
arrival process will not be Poisson. An easy example illustrating this is to suppose that
there is a single server whose service rate is very large with respect to the arrival rate
from outside. Suppose also that with probability p = 0.9 a customer upon completion
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of service is fed back into the system. Hence, at an arrival time epoch there is a large
probability of another arrival in a short time (namely, the feedback arrival); whereas
at an arbitrary time point there will be only a very slight chance of an arrival occur-
ring shortly (since λ is so very small). Hence, the arrival process does not possess
independent increments and so cannot be Poisson.

Thus, we see that when feedback is allowed the steady-state probabilities of the
number of customers at any given station have the same distribution as in an M/M/1
model even though the model is not M/M/1. (Presumably such quantities as the joint
distribution of the number at the station at two different time points will not be the
same as for an M/M/1.)

Example 8.12. Consider a system of two servers where customers from outside the
system arrive at server 1 at a Poisson rate 4 and at server 2 at a Poisson rate 5. The
service rates of 1 and 2 are respectively 8 and 10. A customer upon completion of
service at server 1 is equally likely to go to server 2 or to leave the system (i.e.,
P11 = 0,P12 = 1

2 ); whereas a departure from server 2 will go 25 percent of the time to
server 1 and will depart the system otherwise (i.e., P21 = 1

4 ,P22 = 0). Determine the
limiting probabilities, L, and W .

Solution: The total arrival rates to servers 1 and 2—call them λ1 and λ2—can
be obtained from Eq. (8.17). That is, we have

λ1 = 4 + 1
4λ2,

λ2 = 5 + 1
2λ1

implying that

λ1 = 6, λ2 = 8

Hence,

P {n at server 1,m at server 2} =
(

3
4

)n
1
4

(
4
5

)m
1
5

= 1
20

(
3
4

)n (
4
5

)m

and

L = 6

8 − 6
+ 8

10 − 8
= 7,

W = L

9
= 7

9
�

8.4.2 Closed Systems

The queueing systems described in Section 8.4.1 are called open systems since cus-
tomers are able to enter and depart the system. A system in which new customers
never enter and existing ones never depart is called a closed system.
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Let us suppose that we have m customers moving among a system of k servers,
where the service times at server i are exponential with rate μi, i = 1, . . . , k. When
a customer completes service at server i, she then joins the queue in front of server
j, j = 1, . . . , k, with probability Pij , where we now suppose that

∑k
j=1Pij = 1 for all

i = 1, . . . , k. That is, P = [Pij ] is a Markov transition probability matrix, which we
shall assume is irreducible. Let π = (π1, . . . , πk) denote the stationary probabilities
for this Markov chain; that is, π is the unique positive solution of

πj =
k∑

i=1

πiPij ,

k∑
j=1

πj = 1 (8.19)

If we denote the average arrival rate (or equivalently the average service comple-
tion rate) at server j by λm(j), j = 1, . . . , k then, analogous to Eq. (8.17), the λm(j)

satisfy

λm(j) =
k∑

i=1

λm(i)Pij

Hence, from (8.19) we can conclude that

λm(j) = λmπj , j = 1,2, . . . , k (8.20)

where

λm =
k∑

j=1

λm(j) (8.21)

From Eq. (8.21), we see that λm is the average service completion rate of the entire
system, that is, it is the system throughput rate.4

If we let Pm(n1, n2, . . . , nk) denote the limiting probabilities

Pm(n1, n2, . . . , nk) = P {nj customers at server j, j = 1, . . . , k}

then, by verifying that they satisfy the balance equation, it can be shown that

Pm(n1, n2, . . . , nk) =
{
Km

∏k
j=1(λm(j)/μj )

nj , if
∑k

j=1 nj = m

0, otherwise

4 We are just using the notation λm(j) and λm to indicate the dependence on the number of customers in
the closed system. This will be used in recursive relations we will develop.
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But from Eq. (8.20) we thus obtain

Pm(n1, n2, . . . , nk) =
{
Cm

∏k
j=1(πj /μj )

nj , if
∑k

j=1 nj = m

0, otherwise
(8.22)

where

Cm =

⎡
⎢⎢⎣ ∑

n1,...,nk :∑
nj =m

k∏
j=1

(πj /μj )
nj

⎤
⎥⎥⎦

−1

(8.23)

Eq. (8.22) is not as useful as we might suppose, for in order to utilize it we must
determine the normalizing constant Cm given by Eq. (8.23), which requires summing
the products �k

j=1(πj /μj )
nj over all the feasible vectors (n1, . . . , nk): ∑k

j=1 nj = m.

Hence, since there are
(m + k − 1

m

)
vectors this is only computationally feasible for rel-

atively small values of m and k.
We will now present an approach that will enable us to determine recursively many

of the quantities of interest in this model without first computing the normalizing con-
stants. To begin, consider a customer who has just left server i and is headed to server
j , and let us determine the probability of the system as seen by this customer. In par-
ticular, let us determine the probability that this customer observes, at that moment, nl

customers at server l, l = 1, . . . , k,
∑k

l=1 nl = m − 1. This is done as follows:

P {customer observes nl at server l, l = 1, . . . , k | customer goes from i to j}
= P {state is (n1, . . . , ni + 1, . . . , nj , . . . , nk), customer goes from i to j}

P {customer goes from i to j}
= Pm(n1, . . . , ni + 1, . . . , nj , . . . , nk)μiPij∑

n:∑nj =m−1 Pm(n1, . . . , ni + 1, . . . , nk)μiPij

= (πi/μi)
∏k

j=1(πj /μj )
nj

K
from (8.22)

= C

k∏
j=1

(πj /μj )
nj

where C does not depend on n1, . . . , nk . But because the preceding is a probability
density on the set of vectors (n1, . . . , nk),

∑k
j=1 nj = m − 1, it follows from (8.22)

that it must equal Pm−1(n1, . . . , nk). Hence,

P {customer observes nl at server l, l = 1, . . . , k | customer goes from i to j}

= Pm−1(n1, . . . , nk),

k∑
i=1

ni = m − 1 (8.24)
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As (8.24) is true for all i, we thus have proven the following proposition, known as
the arrival theorem.

Proposition 8.3 (The Arrival Theorem). In the closed network system with m cus-
tomers, the system as seen by arrivals to server j is distributed as the stationary
distribution in the same network system when there are only m − 1 customers.

Denote by Lm(j) and Wm(j) the average number of customers and the average
time a customer spends at server j when there are m customers in the network. Upon
conditioning on the number of customers found at server j by an arrival to that server,
it follows that

Wm(j) = 1 + Em[number at server j as seen by an arrival]
μj

= 1 + Lm−1(j)

μj

(8.25)

where the last equality follows from the arrival theorem. Now when there are m − 1
customers in the system, then, from Eq. (8.20), λm−1(j), the average arrival rate to
server j , satisfies

λm−1(j) = λm−1πj

Now, applying the basic cost identity Eq. (8.1) with the cost rule being that each cus-
tomer in the network system of m−1 customers pays one per unit time while at server
j , we obtain

Lm−1(j) = λm−1πjWm−1(j) (8.26)

Using Eq. (8.25), this yields

Wm(j) = 1 + λm−1πjWm−1(j)

μj

(8.27)

Also using the fact that
∑k

j=1 Lm−1(j) = m − 1 (why?) we obtain, from Eq. (8.26),
the following:

m − 1 = λm−1

k∑
j=1

πjWm−1(j)

or

λm−1 = m − 1∑k
i=1 πiWm−1(i)

(8.28)

Hence, from Eq. (8.27), we obtain the recursion

Wm(j) = 1

μj

+ (m − 1)πjWm−1(j)

μj

∑k
i=1 πiWm−1(i)

(8.29)
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Starting with the stationary probabilities πj , j = 1, . . . , k, and W1(j) = 1/μj we can
now use Eq. (8.29) to determine recursively W2(j),W3(j), . . . ,Wm(j). We can then
determine the throughput rate λm by using Eq. (8.28), and this will determine Lm(j)

by Eq. (8.26). This recursive approach is called mean value analysis.

Example 8.13. Consider a k-server network in which the customers move in a cyclic
permutation. That is,

Pi,i+1 = 1, i = 1,2 . . . , k − 1, Pk,1 = 1

Let us determine the average number of customers at server j when there are two
customers in the system. Now, for this network,

πi = 1/k, i = 1, . . . , k

and as

W1(j) = 1

μj

we obtain from Eq. (8.29) that

W2(j) = 1

μj

+ (1/k)(1/μj )

μj

∑k
i=1(1/k)(1/μi)

= 1

μj

+ 1

μ2
j

∑k
i=1 1/μi

Hence, from Eq. (8.28),

λ2 = 2
k∑

l=1

1

k
W2(l)

= 2k

k∑
l=1

(
1

μl

+ 1

μ2
l

∑k
i=1 1/μi

)

and finally, using Eq. (8.26),

L2(j) = λ2
1

k
W2(j) =

2

(
1

μj

+ 1

μ2
j

∑k
i=1 1/μi

)

k∑
l=1

(
1

μl

+ 1

μ2
l

∑k
i=1 1/μi

) �

Another approach to learning about the stationary probabilities specified by
Eq. (8.22), which finesses the computational difficulties of computing the constant
Cm, is to use the Gibbs sampler of Section 4.9 to generate a Markov chain having
these stationary probabilities. To begin, note that since there are always a total of
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m customers in the system, Eq. (8.22) may equivalently be written as a joint mass
function of the numbers of customers at each of the servers 1, . . . , k − 1, as follows:

Pm(n1, . . . , nk−1) = Cm(πk/μk)
m−∑nj

k−1∏
j=1

(πj /μj )
nj

= K

k−1∏
j=1

(aj )
nj ,

k−1∑
j=1

nj ≤ m

where aj = (πjμk)/(πkμj ), j = 1, . . . , k − 1. Now, if N = (N1, . . . ,Nk−1) has the
preceding joint mass function then

P {Ni = n|N1 = n1, . . . ,Ni−1 = ni−1,Ni+1 = ni+1, . . . ,Nk−1 = nk−1}
= Pm(n1, . . . , ni−1, n,ni+1, . . . , nk−1)∑

rPm(n1, . . . , ni−1, r, ni+1, . . . , nk−1)

= Can
i , n ≤ m −

∑
j �=i

nj

It follows from the preceding that we may use the Gibbs sampler to gener-
ate the values of a Markov chain whose limiting probability mass function is
Pm(n1, . . . , nk−1) as follows:

1. Let (n1, . . . , nk−1) be arbitrary nonnegative integers satisfying
∑k−1

j=1 nj ≤ m.
2. Generate a random variable I that is equally likely to be any of 1, . . . , k − 1.
3. If I = i, set s = m −∑j �=inj , and generate the value of a random variable X

having probability mass function

P {X = n} = Can
i , n = 0, . . . , s

4. Let nI = X and go to step 2.

The successive values of the state vector (n1, . . . , nk−1,m −∑k−1
j=1 nj ) constitute the

sequence of states of a Markov chain with the limiting distribution Pm. All quantities
of interest can be estimated from this sequence. For instance, the average of the values
of the j th coordinate of these vectors will converge to the mean number of individuals
at station j , the proportion of vectors whose j th coordinate is less than r will converge
to the limiting probability that the number of individuals at station j is less than r , and
so on.

Other quantities of interest can also be obtained from the simulation. For instance,
suppose we want to estimate Wj , the average amount of time a customer spends at
server j on each visit. Then, as noted in the preceding, Lj , the average number of
customers at server j , can be estimated. To estimate Wj , we use the identity

Lj = λjWj
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where λj is the rate at which customers arrive at server j . Setting λj equal to the
service completion rate at server j shows that

λj = P {j is busy}μj

Using the Gibbs sampler simulation to estimate P {j is busy} then leads to an estimator
of Wj .

8.5 The System M/G/1
8.5.1 Preliminaries: Work and Another Cost Identity

For an arbitrary queueing system, let us define the work in the system at any time t to
be the sum of the remaining service times of all customers in the system at time t . For
instance, suppose there are three customers in the system—the one in service having
been there for three of his required five units of service time, and both people in queue
having service times of six units. Then the work at that time is 2 + 6 + 6 = 14. Let V

denote the (time) average work in the system.
Now recall the fundamental cost equation (8.1), which states that the

average rate at which the system earns

= λa × average amount a customer pays

and consider the following cost rule: Each customer pays at a rate of y/unit time when
his remaining service time is y, whether he is in queue or in service. Thus, the rate at
which the system earns is just the work in the system; so the basic identity yields

V = λaE[amount paid by a customer]
Now, suppose that the system is such that an arrival comes, waits in queue, is served,
and then departs, and let S and W ∗

Q denote respectively the service time and the time a
given customer spends waiting in queue. Then, since the customer pays at a constant
rate of S per unit time while waiting in queue and at a rate of S − x after spending an
amount of time x in service, we have

E[amount paid by a customer] = E

[
SW ∗

Q +
∫ S

0
(S − x)dx

]

and thus

V = λaE[SW ∗
Q] + λaE[S2]

2
(8.30)

It should be noted that the preceding is a basic queueing identity (like Eqs. (8.2)–(8.4))
and as such is valid in almost all models. In addition, if a customer’s service time is
independent of his wait in queue (as is usually, but not always the case),5 then we have

5 For an example where it is not true, see Section 8.6.2.
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from Eq. (8.30) that

V = λaE[S]WQ + λaE[S2]
2

(8.31)

8.5.2 Application of Work to M/G/1

The M/G/1 model assumes (i) Poisson arrivals at rate λ; (ii) a general service distri-
bution; and (iii) a single server. In addition, we will suppose that customers are served
in the order of their arrival.

Now, for an arbitrary customer in an M/G/1 system,

customer’s wait in queue = work in the system when he arrives (8.32)

This follows since there is only a single server (think about it!). Taking expectations
of both sides of Eq. (8.32) yields

WQ = average work as seen by an arrival

But, due to Poisson arrivals, the average work as seen by an arrival will equal V , the
time average work in the system. Hence, for the model M/G/1,

WQ = V

The preceding in conjunction with the identity

V = λE[S]WQ + λE[S2]
2

yields the so-called Pollaczek–Khintchine formula,

WQ = λE[S2]
2(1 − λE[S]) (8.33)

where E[S] and E[S2] are the first two moments of the service distribution.
The quantities L,LQ, and W can be obtained from Eq. (8.33) as

LQ = λWQ = λ2E[S2]
2(1 − λE[S]) ,

W = WQ + E[S] = λE[S2]
2(1 − λE[S]) + E[S],

L = λW = λ2E[S2]
2(1 − λE[S]) + λE[S]

(8.34)

Remarks. (i) For the preceding quantities to be finite, we need λE[S] < 1. This
condition is intuitive since we know from renewal theory that if the server was
always busy, then the departure rate would be 1/E[S] (see Section 7.3), which
must be larger than the arrival rate λ to keep things finite.
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(ii) Since E[S2] = Var(S) + (E[S])2, we see from Eqs. (8.33) and (8.34) that, for
fixed mean service time, L,LQ,W , and WQ all increase as the variance of the
service distribution increases.

(iii) Another approach to obtain WQ is presented in Exercise 42.

Example 8.14. Suppose that customers arrive to a single server system in accordance
with a Poisson process with rate λ, and that each customer is one of r types. Further,
suppose that, independently of all that has previously transpired, each new arrival is
type i with probability αi ,

∑r
i=1 αi = 1. Also, suppose that the amount of time it takes

to serve a type i customer has distribution function Fi , with mean μi and variance σ 2
i .

(a) Find the average amount of time a type j customer spends in the system,
j = 1, . . . , r .

(b) Find the average number of type j customers in the system, j = 1, . . . , r .

Solution: First note that this model is a special case of the M/G/1 model, where
if S is the service time of a customer, than the service distribution G is obtained
by conditioning on the type of the customer:

G(x) = P(S ≤ x)

=
n∑

i=1

P(S ≤ x|customer is type i) αi

=
n∑

i=1

Fi(x)αi

To compute E[S] and E[S2], we condition on the customer’s type. This yields

E[S] =
n∑

i=1

E[S|type i]αi

=
n∑

i=1

μiαi

and

E[S2] =
n∑

i=1

E[S2|type i]αi

=
n∑

i=1

(μ2
i + σ 2

i )αi

where the final equality used that E[X2] = E2[X] + Var(X). Now, because the
time that a customer spends in queue is equal to the work in the system when that
customer arrives, it follows that the average time that a type j customer spends in



Queueing Theory 565

queue, call it WQ(j), is equal to the average work seen by a time j arrival. How-
ever, because type j customers arrive according to a Poisson process with rate λαj

it follows, from the PASTA principle, that the work seen by a type j arrival has the
same distribution as the work as it averages over time, and thus the average work
seen by a type j arrival is equal to V . Consequently,

WQ(j) = V = λE[S2]
2(1 − λE[S]) = λ

∑n
i=1(μ

2
i + σ 2

i )αi

2(1 − λ
∑n

i=1 μiαi)

With W(j) being the average time that a type j customer spends in the system, we
have

W(j) = WQ(j) + μj

Finally, using that the average number of type j customers in the system is the
average arrival rate of type j customers times the average time they spend in the
system (L = λaW applied to type j customers), we see that L(j), the average
number of type j customers in the system, is

L(j) = λαjW(j) �

8.5.3 Busy Periods

The system alternates between idle periods (when there are no customers in the sys-
tem, and so the server is idle) and busy periods (when there is at least one customer in
the system, and so the server is busy).

Let I and B represent, respectively, the length of an idle and of a busy period. Be-
cause I represents the time from when a customer departs and leaves the system empty
until the next arrival, it follows, since arrivals are according to a Poisson process with
rate λ, that I is exponential with rate λ and thus

E[I ] = 1

λ
(8.35)

To determine E[B] we argue, as in Section 8.3.3, that the long-run proportion of
time the system is empty is equal to the ratio of E[I ] to E[I ] + E[B]. That is,

P0 = E[I ]
E[I ] + E[B] (8.36)

To compute P0, we note from Eq. (8.4) (obtained from the fundamental cost equa-
tion by supposing that a customer pays at a rate of one per unit time while in service)
that

average number of busy servers = λE[S]
However, as the left-hand side of the preceding equals 1 − P0 (why?), we have

P0 = 1 − λE[S] (8.37)
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and, from Eqs. (8.35)–(8.37),

1 − λE[S] = 1/λ

1/λ + E[B]
or

E[B] = E[S]
1 − λE[S]

Another quantity of interest is C, the number of customers served in a busy period.
The mean of C can be computed by noting that, on the average, for every E[C] ar-
rivals exactly one will find the system empty (namely, the first customer in the busy
period). Hence,

a0 = 1

E[C]
and, as a0 = P0 = 1 − λE[S] because of Poisson arrivals, we see that

E[C] = 1

1 − λE[S]

8.6 Variations on the M/G/1
8.6.1 The M/G/1 with Random-Sized Batch Arrivals

Suppose that, as in the M/G/1, arrivals occur in accordance with a Poisson process
having rate λ. But now suppose that each arrival consists not of a single customer but
of a random number of customers. As before, there is a single server whose service
times have distribution G.

Let us denote by αj , j ≥ 1, the probability that an arbitrary batch consists of j

customers; and let N denote a random variable representing the size of a batch and so
P {N = j} = αj . Since λa = λE[N ], the basic formula for work (Eq. (8.31)) becomes

V = λE[N ]
[
E(S)WQ + E[S2]

2

]
(8.38)

To obtain a second equation relating V to WQ, consider an average customer. We have
that

his wait in queue = work in system when he arrives

+ his waiting time due to those in his batch

Taking expectations and using the fact that Poisson arrivals see time averages yields

WQ = V + E[waiting time due to those in his batch]
= V + E[WB ] (8.39)
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Now, E(WB) can be computed by conditioning on the number in the batch, but we
must be careful because the probability that our average customer comes from a batch
of size j is not αj . For αj is the proportion of batches that are of size j , and if we
pick a customer at random, it is more likely that he comes from a larger rather than a
smaller batch. (For instance, suppose α1 = α100 = 1

2 , then half the batches are of size
1 but 100/101 of the customers will come from a batch of size 100!)

To determine the probability that our average customer came from a batch of
size j we reason as follows: Let M be a large number. Then of the first M batches
approximately Mαj will be of size j, j ≥ 1, and thus there would have been ap-
proximately jMαj customers that arrived in a batch of size j . Hence, the proportion
of arrivals in the first M batches that were from batches of size j is approximately
jMαj/

∑
j jMαj . This proportion becomes exact as M → ∞, and so we see that

proportion of customers from batches of size j = jαj∑
j jαj

= jαj

E[N ]
We are now ready to compute E(WB), the expected wait in queue due to others in the
batch:

E[WB ] =
∑
j

E[WB | batch of size j ] jαj

E[N ] (8.40)

Now if there are j customers in his batch, then our customer would have to wait for
i − 1 of them to be served if he was ith in line among his batch members. As he is
equally likely to be either 1st, 2nd, . . . , or j th in line, we see that

E[WB | batch is of size j ] =
j∑

i=1

(i − 1)E(S)
1

j

= j − 1

2
E[S]

Substituting this in Eq. (8.40) yields

E[WB ] = E[S]
2E[N ]

∑
j

(j − 1)jαj

= E[S](E[N2] − E[N ])
2E[N ]

and from Eqs. (8.38) and (8.39) we obtain

WQ = E[S](E[N2] − E[N ])/(2E[N ]) + λE[N ]E[S2]/2

1 − λE[N ]E[S]
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Remarks. (i) Note that the condition for WQ to be finite is that

λE[N ] <
1

E[S]
which again says that the arrival rate must be less than the service rate (when
the server is busy).

(ii) For fixed value of E[N ],WQ is increasing in Var(N), again indicating that
“single-server queues do not like variation.”

(iii) The other quantities L,LQ, and W can be obtained by using

W = WQ + E[S],
L = λaW = λE[N ]W,

LQ = λE[N ]WQ

8.6.2 Priority Queues

Priority queueing systems are ones in which customers are classified into types and
then given service priority according to their type. Consider the situation where there
are two types of customers, which arrive according to independent Poisson processes
with respective rates λ1 and λ2, and have service distributions G1 and G2. We suppose
that type 1 customers are given service priority, in that service will never begin on a
type 2 customer if a type 1 is waiting. However, if a type 2 is being served and a type 1
arrives, we assume that the service of the type 2 is continued until completion. That
is, there is no preemption once service has begun.

Let Wi
Q denote the average wait in queue of a type i customer, i = 1,2. Our objec-

tive is to compute the Wi
Q.

First, note that the total work in the system at any time would be exactly the same
no matter what priority rule was employed (as long as the server is always busy when-
ever there are customers in the system). This is so since the work will always decrease
at a rate of one per unit time when the server is busy (no matter who is in service) and
will always jump by the service time of an arrival. Hence, the work in the system is
exactly as it would be if there was no priority rule but rather a first-come, first-served
(called FIFO) ordering. However, under FIFO the preceding model is just M/G/1
with

λ = λ1 + λ2,

G(x) = λ1

λ
G1(x) + λ2

λ
G2(x) (8.41)

which follows since the combination of two independent Poisson processes is itself a
Poisson process whose rate is the sum of the rates of the component processes. The
service distribution G can be obtained by conditioning on which priority class the
arrival is from—as is done in Eq. (8.41).
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Hence, from the results of Section 8.5, it follows that V, the average work in the
priority queueing system, is given by

V = λE[S2]
2(1 − λE[S])

= λ((λ1/λ)E[S2
1 ] + (λ2/λ)E[S2

2 ])
2[1 − λ((λ1/λ)E[S1] + (λ2/λ)E[S2])]

= λ1E[S2
1 ] + λ2E[S2

2 ]
2(1 − λ1E[S1] − λ2E[S2]) (8.42)

where Si has distribution Gi, i = 1, 2.
Continuing in our quest for Wi

Q let us note that S and W ∗
Q, the service and wait in

queue of an arbitrary customer, are not independent in the priority model since knowl-
edge about S gives us information as to the type of customer, which in turn gives us
information about W ∗

Q. To get around this, we will compute separately the average

amount of type 1 and type 2 work in the system. Denoting V i as the average amount
of type i work we have, exactly as in Section 8.5.1,

V i = λiE[Si]Wi
Q + λiE[S2

i ]
2

, i = 1,2 (8.43)

If we define

V i
Q ≡ λiE[Si]Wi

Q,

V i
S ≡ λiE[S2

i ]
2

then we may interpret V i
Q as the average amount of type i work in queue, and V i

S as
the average amount of type i work in service (why?).

Now we are ready to compute W 1
Q. To do so, consider an arbitrary type 1 arrival.

Then

his delay = amount of type 1 work in the system when he arrives

+ amounts of type 2 work in service when he arrives

Taking expectations and using the fact that Poisson arrivals see time average yields

W 1
Q = V 1 + V 2

S

= λ1E[S1]W 1
Q + λ1E[S2

1 ]
2

+ λ2E[S2
2 ]

2
(8.44)

or

W 1
Q = λ1E[S2

1 ] + λ2E[S2
2 ]

2(1 − λ1E[S1]) (8.45)
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To obtain W 2
Q we first note that since V =V 1+V 2, we have from Eqs. (8.42) and

(8.43) that

λ1E[S2
1 ] + λ2E[S2

2 ]
2(1 − λ1E[S1] − λ2E[S2]) = λ1E[S1]W 1

Q + λ2E[S2]W 2
Q

+ λ1E[S2
1 ]

2
+ λ2E[S2

2 ]
2

= W 1
Q + λ2E[S2]W 2

Q from Eq. (8.44)

Now, using Eq. (8.45), we obtain

λ2E[S2]W 2
Q = λ1E[S2

1 ] + λ2E[S2
2 ]

2

[
1

1 − λ1E[S1] − λ2E[S2] − 1

1 − λ1E[S1]
]

or

W 2
Q = λ1E[S2

1 ] + λ2E[S2
2 ]

2(1 − λ1E[S1] − λ2E[S2])(1 − λ1E[S1]) (8.46)

Remarks. (i) Note that from Eq. (8.45), the condition for W 1
Q to be finite is that

λ1E[S1]<1, which is independent of the type 2 parameters. (Is this intuitive?)
For W 2

Q to be finite, we need, from Eq. (8.46), that

λ1E[S1] + λ2E[S2] < 1

Since the arrival rate of all customers is λ = λ1 + λ2, and the average service
time of a customer is (λ1/λ)E[S1] + (λ2/λ)E[S2], the preceding condition is
just that the average arrival rate be less than the average service rate.

(ii) If there are n types of customers, we can solve for V j , j = 1, . . . , n, in a simi-
lar fashion. First, note that the total amount of work in the system of customers
of types 1, . . . , j is independent of the internal priority rule concerning types
1, . . . , j and only depends on the fact that each of them is given priority over
any customers of types j + 1, . . . , n. (Why is this? Reason it out!) Hence,
V 1 + · · · + V j is the same as it would be if types 1, . . . , j were considered
as a single type I priority class and types j + 1, . . . , n as a single type II priority
class. Now, from Eqs. (8.43) and (8.45),

V I = λIE[S2
I ] + λIλIIE[SI]E[S2

II]
2(1 − λIE[SI])

where

λI = λ1 + · · · + λj ,

λII = λj+1 + · · · + λn,

E[SI] =
j∑

i=1

λi

λI
E[Si],
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E[S2
I ] =

j∑
i=1

λi

λI
E[S2

i ],

E[S2
II] =

n∑
i=j+1

λi

λII
E[S2

i ]

Hence, as V I = V 1 + · · · + V j , we have an expression for V 1 + · · · + V j , for
each j = 1, . . . , n, which then can be solved for the individual V 1,V 2, . . . , V n.
We now can obtain Wi

Q from Eq. (8.43). The result of all this (which we leave
for an exercise) is that

Wi
Q = λ1E[S2

1 ] + · · · + λnE[S2
n]

2
∏i

j=i−1(1 − λ1E[S1] − · · · − λjE[Sj ])
, i = 1, . . . , n (8.47)

8.6.3 An M/G/1 Optimization Example

Consider a single-server system where customers arrive according to a Poisson pro-
cess with rate λ, and where the service times are independent and have distribution
function G. Let ρ = λE[S], where S represents a service time random variable, and
suppose that ρ < 1. Suppose that the server departs whenever a busy period ends and
does not return until there are n customers waiting. At that time the server returns and
continues serving until the system is once again empty. If the system facility incurs
costs at a rate of c per unit time per customer in the system, as well as a cost K each
time the server returns, what value of n,n ≥ 1, minimizes the long-run average cost
per unit time incurred by the facility, and what is this minimal cost?

To answer the preceding, let us first determine A(n), the average cost per unit time
for the policy that returns the server whenever there are n customers waiting. To do
so, say that a new cycle begins each time the server returns. As it is easy to see that
everything probabilistically starts over when a cycle begins, it follows from the theory
of renewal reward processes that if C(n) is the cost incurred in a cycle and T (n) is the
time of a cycle, then

A(n) = E[C(n)]
E[T (n)]

To determine E[C(n)] and E[T (n)], consider the time interval of length, say, Ti , start-
ing from the first time during a cycle that there are a total of i customers in the system
until the first time afterward that there are only i −1. Therefore,

∑n
i=1 Ti is the amount

of time that the server is busy during a cycle. Adding the additional mean idle time
until n customers are in the system gives

E[T (n)] =
n∑

i=1

E[Ti] + n/λ
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Now, consider the system at the moment when a service is about to begin and there are
i − 1 customers waiting in queue. Since service times do not depend on the order in
which customers are served, suppose that the order of service is last come first served,
implying that service does not begin on the i − 1 presently in queue until these i − 1
are the only ones in the system. Thus, we see that the time that it takes to go from
i customers in the system to i − 1 has the same distribution as the time it takes the
M/G/1 system to go from a single customer (just beginning service) to empty; that
is, its distribution is that of B, the length of an M/G/1 busy period. (Essentially the
same argument was made in Example 5.25.) Hence,

E[Ti] = E[B] = E[S]
1 − ρ

implying that

E[T (n)] = nE[S]
1 − λE[S] + n

λ
= n

λ(1 − ρ)
(8.48)

To determine E[C(n)], let Ci denote the cost incurred during the interval of length
Ti that starts with i − 1 in queue and a service just beginning and ends when the i − 1
in queue are the only customers in the system. Thus, K +∑n

i=1 Ci represents the
total cost incurred during the busy part of the cycle. In addition, during the idle part
of the cycle there will be i customers in the system for an exponential time with rate
λ, i = 1, . . . , n−1, resulting in an expected cost of c(1+· · ·+n−1)/λ. Consequently,

E[C(n)] = K +
n∑

i=1

E[Ci] + n(n − 1)c

2λ
(8.49)

To find E[Ci], consider the moment when the interval of length Ti begins, and let
Wi be the sum of the initial service time plus the sum of the times spent in the system
by all the customers that arrive (and are served) until the moment when the interval
ends and there are only i − 1 customers in the system. Then,

Ci = (i − 1)cTi + cWi

where the first term refers to the cost incurred due to the i − 1 customers in queue
during the interval of length Ti . As it is easy to see that Wi has the same distribution
as Wb, the sum of the times spent in the system by all arrivals in an M/G/1 busy
period, we obtain

E[Ci] = (i − 1)c
E[S]
1 − ρ

+ cE[Wb] (8.50)

Using Eq. (8.49), this yields

E[C(n)] = K + n(n − 1)cE[S]
2(1 − ρ)

+ ncE[Wb] + n(n − 1)c

2λ
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= K + ncE[Wb] + n(n − 1)c

2λ

(
ρ

1 − ρ
+ 1

)

= K + ncE[Wb] + n(n − 1)c

2λ(1 − ρ)

Utilizing the preceding in conjunction with Eq. (8.48) shows that

A(n) = Kλ(1 − ρ)

n
+ λc(1 − ρ)E[Wb] + c(n − 1)

2
(8.51)

To determine E[Wb], we use the result that the average amount of time spent in the
system by a customer in the M/G/1 system is

W = WQ + E[S] = λE[S2]
2(1 − ρ)

+ E[S]

However, if we imagine that on day j, j ≥ 1, we earn an amount equal to the total
time spent in the system by the j th arrival at the M/G/1 system, then it follows from
renewal reward processes (since everything probabilistically restarts at the end of a
busy period) that

W = E[Wb]
E[N ]

where N is the number of customers served in an M/G/1 busy period. Since E[N ] =
1/(1 − ρ) we see that

(1 − ρ)E[Wb] = W = λE[S2]
2(1 − ρ)

+ E[S]

Therefore, using Eq. (8.51), we obtain

A(n) = Kλ(1 − ρ)

n
+ cλ2E[S2]

2(1 − ρ)
+ cρ + c(n − 1)

2

To determine the optimal value of n, treat n as a continuous variable and differentiate
the preceding to obtain

A′(n) = −Kλ(1 − ρ)

n2 + c

2

Setting this equal to 0 and solving yields that the optimal value of n is

n∗ =
√

2Kλ(1 − ρ)

c

and the minimal average cost per unit time is

A(n∗) =√2λK(1 − ρ)c + cλ2E[S2]
2(1 − ρ)

+ cρ − c

2
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It is interesting to see how close we can come to the minimal average cost when
we use a simpler policy of the following form: Whenever the server finds the system
empty of customers she departs and then returns after a fixed time t has elapsed. Let
us say that a new cycle begins each time the server departs. Both the expected costs
incurred during the idle and the busy parts of a cycle are obtained by conditioning on
N(t), the number of arrivals in the time t that the server is gone. With C̄(t) being the
cost incurred during a cycle, we obtain

E[C̄(t) | N(t)] = K +
N(t)∑
i=1

E[Ci] + cN(t)
t

2

= K + N(t)(N(t) − 1)cE[S]
2(1 − ρ)

+ N(t)cE[Wb] + cN(t)
t

2

The final term of the first equality is the conditional expected cost during the idle
time in the cycle and is obtained by using that, given the number of arrivals in the
time t , the arrival times are independent and uniformly distributed on (0, t); the sec-
ond equality used Eq. (8.50). Since N(t) is Poisson with mean λt , it follows that
E[N(t)(N(t) − 1)] = E[N2(t)] − E[N(t)] = λ2t2. Thus, taking the expected value
of the preceding gives

E[C̄(t)] = K + λ2t2cE[S]
2(1 − ρ)

+ λtcE[Wb] + cλt2

2

= K + cλt2

2(1 − ρ)
+ λtcE[Wb]

Similarly, if T̄ (t) is the time of a cycle, then

E[T̄ (t)] = E[E[T̄ (t)|N(t)]]
= E[t + N(t)E[B]]
= t + ρt

1 − ρ

= t

1 − ρ

Hence, the average cost per unit time, call it Ā(t), is

Ā(t) = E[C̄(t)]
E[T̄ (t)]

= K(1 − ρ)

t
+ cλt

2
+ cλ(1 − ρ)E[Wb]

Thus, from Eq. (8.51), we see that

Ā(n/λ) − A(n) = c/2
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which shows that allowing the return decision to depend on the number presently in
the system can reduce the average cost only by the amount c/2. �

8.6.4 The M/G/1 Queue with Server Breakdown

Consider a single server queue in which customers arrive according to a Poisson pro-
cess with rate λ, and where the amount of service time required by each customer
has distribution G. Suppose, however, that when working the server breaks down at
an exponential rate α. That is, the probability a working server will be able to work
for an additional time t without breaking down is e−αt. When the server breaks down,
it immediately goes to the repair facility. The repair time is a random variable with
distribution H . Suppose that the customer in service when a breakdown occurs has its
service continue, when the server returns, from the point it was at when the breakdown
occurred. (Therefore, the total amount of time a customer is actually receiving service
from a working server has distribution G.)

By letting a customer’s “service time” include the time that the customer is waiting
for the server to come back from being repaired, the preceding is an M/G/1 queue.
If we let T denote the amount of time from when a customer first enters service until
it departs the system, then T is a service time random variable of this M/G/1 queue.
The average amount of time a customer spends waiting in queue before its service first
commences is, thus,

WQ = λE[T 2]
2(1 − λE[T ])

To compute E[T ] and E[T 2], let S, having distribution G, be the service requirement
of the customer; let N denote the number of times that the server breaks down while
the customer is in service; let R1,R2, . . . be the amounts of time the server spends in
the repair facility on its successive visits. Then,

T =
N∑

i=1

Ri + S

Conditioning on S yields

E[T |S = s] = E

[
N∑

i=1

Ri |S = s

]
+ s,

Var(T |S = s) = Var

(
N∑

i=1

Ri |S = s

)

Now, a working server always breaks down at an exponential rate α. Therefore, given
that a customer requires s units of service time, it follows that the number of server
breakdowns while that customer is being served is a Poisson random variable with
mean αs. Consequently, conditional on S = s, the random variable

∑N
i=1 Ri is a
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compound Poisson random variable with Poisson mean αs. Using the results from
Examples 3.11 and 3.19, we thus obtain

E

[
N∑

i=1

Ri |S = s

]
= αsE[R], Var

(
N∑

i=1

Ri |S = s

)
= αsE[R2]

where R has the repair distribution H . Therefore,

E[T |S] = αSE[R] + S = S(1 + αE[R]),
Var(T |S) = αSE[R2]

Thus,

E[T ] = E[E[T |S]] = E[S](1 + αE[R])
and, by the conditional variance formula,

Var(T ) = E[Var(T |S)] + Var(E[T |S])
= αE[S]E[R2] + (1 + αE[R])2Var(S)

Therefore,

E[T 2] = Var(T ) + (E[T ])2

= αE[S]E[R2] + (1 + αE[R])2E[S2]
Consequently, assuming that λE[T ] = λE[S](1 + αE[R]) < 1, we obtain

WQ = λαE[S]E[R2] + λ(1 + αE[R])2E[S2]
2(1 − λE[S](1 + αE[R]))

From the preceding, we can now obtain

LQ = λWQ,

W = WQ + E[T ],
L = λW

Some other quantities we might be interested in are

(i) Pw, the proportion of time the server is working;
(ii) Pr , the proportion of time the server is being repaired;

(iii) PI , the proportion of time the server is idle.

These quantities can all be obtained by using the queueing cost identity. For instance,
if we suppose that customers pay 1 per unit time while actually being served, then

average rate at which system earns = Pw,

average amount a customer pays = E[S]



Queueing Theory 577

Therefore, the identity yields

Pw = λE[S]
To determine Pr , suppose a customer whose service is interrupted pays 1 per unit time
while the server is being repaired. Then,

average rate at which system earns = Pr,

average amount a customer pays = E

[
N∑

i=1

Ri

]
= αE[S]E[R]

yielding

Pr = λαE[S]E[R]
Of course, PI can be obtained from

PI = 1 − Pw − Pr

Remark. The quantities Pw and Pr could also have been obtained by first noting that
1 − PI = λE[T ] is the proportion of time the server is either working or in repair.
Thus,

Pw = λE[T ] E[S]
E[T ] = λE[S],

Pr = λE[T ]E[T ] − E[S]
E[T ] = λE[S]αE[R] �

8.7 The Model G/M/1
The model G/M/1 assumes that the times between successive arrivals have an arbi-
trary distribution G. The service times are exponentially distributed with rate μ and
there is a single server.

The immediate difficulty in analyzing this model stems from the fact that the num-
ber of customers in the system is not informative enough to serve as a state space.
For in summarizing what has occurred up to the present we would need to know not
only the number in the system, but also the amount of time that has elapsed since the
last arrival (since G is not memoryless). (Why need we not be concerned with the
amount of time the person being served has already spent in service?) To get around
this problem we shall only look at the system when a customer arrives; and so let us
define Xn,n ≥ 1, by

Xn ≡ the number in the system as seen by the nth arrival

It is easy to see that the process {Xn,n ≥ 1} is a Markov chain. To compute the
transition probabilities Pij for this Markov chain let us first note that, as long as there
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are customers to be served, the number of services in any length of time t is a Pois-
son random variable with mean μt . This is true since the time between successive
services is exponential and, as we know, this implies that the number of services thus
constitutes a Poisson process. Hence,

Pi,i+1−j =
∫ ∞

0
e−μt (μt)j

j ! dG(t), j = 0,1, . . . , i

which follows since if an arrival finds i in the system, then the next arrival will find
i + 1 minus the number served, and the probability that j will be served is easily
seen to equal the right side of the preceding (by conditioning on the time between the
successive arrivals).

The formula for Pi0 is a little different (it is the probability that at least i + 1 Pois-
son events occur in a random length of time having distribution G) and can be obtained
from

Pi0 = 1 −
i∑

j=0

Pi,i+1−j

The limiting probabilities πk, k = 0,1, . . . , can be obtained as the unique solution of

πk =
∞∑
i=0

πiPik, k ≥ 0,

∞∑
k=0

πk = 1

which, in this case, reduce to

πk =
∞∑

i=k−1

πi

∫ ∞

0
e−μt (μt)i+1−k

(i + 1 − k)! dG(t), k ≥ 1,

∞∑
k=0

πk = 1 (8.52)

(We have not included the equation π0 =∑πiPi0 since one of the equations is always
redundant.)

To solve the preceding, let us try a solution of the form πk = cβk . Substitution into
Eq. (8.52) leads to

cβk = c

∞∑
i=k−1

βi

∫ ∞

0
e−μt (μt)i+1−k

(i + 1 − k)! dG(t)

= c

∫ ∞

0
e−μtβk−1

∞∑
i=k−1

(βμt)i+1−k

(i + 1 − k)! dG(t) (8.53)



Queueing Theory 579

However,

∞∑
i=k−1

(βμt)i+1−k

(i + 1 − k)! =
∞∑

j=0

(βμt)j

j !
= eβμt

and thus Eq. (8.53) reduces to

βk = βk−1
∫ ∞

0
e−μt(1−β)dG(t)

or

β =
∫ ∞

0
e−μt(1−β)dG(t) (8.54)

The constant c can be obtained from
∑

k πk = 1, which implies that

c

∞∑
k=0

βk = 1

or

c = 1 − β

As (πk) is the unique solution to Eq. (8.52), and πk = (1 − β)βk satisfies, it follows
that

πk = (1 − β)βk, k = 0,1, . . .

where β is the solution of Eq. (8.54). (It can be shown that if the mean of G is greater
than the mean service time 1/μ, then there is a unique value of β satisfying Eq. (8.54)
which is between 0 and 1.) The exact value of β usually can only be obtained by
numerical methods.

As πk is the limiting probability that an arrival sees k customers, it is just the ak as
defined in Section 8.2. Hence,

αk = (1 − β)βk, k ≥ 0 (8.55)

We can obtain W by conditioning on the number in the system when a customer ar-
rives. This yields

W =
∑

k

E[time in system | arrival sees k](1 − β)βk

=
∑

k

k + 1

μ
(1 − β)βk (Since if an arrival sees k then he spends

k + 1 service periods in the system)
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= 1

μ(1 − β)

(
by using

∞∑
k=0

kxk = x

(1 − x)2

)

and

WQ = W − 1

μ
= β

μ(1 − β)
,

L = λW = λ

μ(1 − β)
,

LQ = λWQ = λβ

μ(1 − β)

(8.56)

where λ is the reciprocal of the mean interarrival time. That is,

1

λ
=
∫ ∞

0
x dG(x)

In fact, in exactly the same manner as shown for the M/M/1 in Section 8.3.1 and
Exercise 6 we can show that

W ∗ is exponential with rate μ(1 − β),

W ∗
Q =

{
0 with probability 1 − β

exponential with rate μ(1 − β) with probability β

where W ∗ and W ∗
Q are the amounts of time that a customer spends in system and

queue, respectively (their means are W and WQ).
Whereas ak = (1 − β)βk is the probability that an arrival sees k in the system, it is

not equal to the proportion of time during which there are k in the system (since the
arrival process is not Poisson). To obtain the Pk we first note that the rate at which the
number in the system changes from k − 1 to k must equal the rate at which it changes
from k to k − 1 (why?). Now the rate at which it changes from k − 1 to k is equal to
the arrival rate λ multiplied by the proportion of arrivals finding k − 1 in the system.
That is,

rate number in system goes from k − 1 to k = λak−1

Similarly, the rate at which the number in the system changes from k to k − 1 is equal
to the proportion of time during which there are k in the system multiplied by the
(constant) service rate. That is,

rate number in system goes from k to k − 1 = Pkμ

Equating these rates yields

Pk = λ

μ
ak−1, k ≥ 1
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and so, from Eq. (8.55),

Pk = λ

μ
(1 − β)βk−1, k ≥ 1

and, as P0 = 1 −∑∞
k=1 Pk , we obtain

P0 = 1 − λ

μ

Remarks. In the foregoing analysis we guessed at a solution of the stationary prob-
abilities of the Markov chain of the form πk = cβk , then verified such a solution by
substituting in the stationary Eq. (8.52). However, it could have been argued directly
that the stationary probabilities of the Markov chain are of this form. To do so, define
βi to be the expected number of times that state i + 1 is visited in the Markov chain
between two successive visits to state i, i ≥ 0. Now it is not difficult to see (and we
will let you argue it out for yourself) that

β0 = β1 = β2 = · · · = β

Now it can be shown by using renewal reward processes that

πi+1 = E[number of visits to state i + 1 in an i–i cycle]
E[number of transitions in an i–i cycle]

= βi

1/πi

and so,

πi+1 = βiπi = βπi, i ≥ 0

implying, since
∑∞

i=0 πi = 1, that

πi = βi(1 − β), i ≥ 0

8.7.1 The G/M/1 Busy and Idle Periods

Suppose that an arrival has just found the system empty—and so initiates a busy pe-
riod—and let N denote the number of customers served in that busy period. Since the
N th arrival (after the initiator of the busy period) will also find the system empty, it
follows that N is the number of transitions for the Markov chain (of Section 8.7) to
go from state 0 to state 0. Hence, 1/E[N ] is the proportion of transitions that take the
Markov chain into state 0; or equivalently, it is the proportion of arrivals that find the
system empty. Therefore,

E[N ] = 1

a0
= 1

1 − β
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Also, as the next busy period begins after the N th interarrival, it follows that the cycle
time (that is, the sum of a busy and idle period) is equal to the time until the N th
interarrival. In other words, the sum of a busy and idle period can be expressed as the
sum of N interarrival times. Thus, if Ti is the ith interarrival time after the busy period
begins, then

E[Busy] + E[Idle] = E

[
N∑

i=1

Ti

]

= E[N ]E[T ] (by Wald’s equation)

= 1

λ(1 − β)
(8.57)

For a second relation between E[Busy] and E[Idle], we can use the same argument as
in Section 8.5.3 to conclude that

1 − P0 = E[Busy]
E[Idle] + E[Busy]

and since P0 = 1 − λ/μ, we obtain, upon combining this with (8.57), that

E[Busy] = 1

μ(1 − β)
,

E[Idle] = μ − λ

λμ(1 − β)

8.8 A Finite Source Model
Consider a system of m machines, whose working times are independent exponential
random variables with rate λ. Upon failure, a machine instantly goes to a repair facility
that consists of a single repairperson. If the repairperson is free, repair begins on the
machine; otherwise, the machine joins the queue of failed machines. When a machine
is repaired it becomes a working machine, and repair begins on a new machine from
the queue of failed machines (provided the queue is nonempty). The successive repair
times are independent random variables having density function g, with mean

μR =
∫ ∞

0
xg(x) dx

To analyze this system, so as to determine such quantities as the average number of
machines that are down and the average time that a machine is down, we will exploit
the exponentially distributed working times to obtain a Markov chain. Specifically,
let Xn denote the number of failed machines immediately after the nth repair occurs,
n ≥ 1. Now, if Xn = i > 0, then the situation when the nth repair has just occurred
is that repair is about to begin on a machine, there are i − 1 other machines waiting
for repair, and there are m − i working machines, each of which will (independently)
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continue to work for an exponential time with rate λ. Similarly, if Xn = 0, then all
m machines are working and will (independently) continue to do so for exponentially
distributed times with rate λ. Consequently, any information about earlier states of the
system will not affect the probability distribution of the number of down machines at
the moment of the next repair completion; hence, {Xn,n ≥ 1} is a Markov chain. To
determine its transition probabilities Pi,j , suppose first that i > 0. Conditioning on R,
the length of the next repair time, and making use of the independence of the m − i

remaining working times, yields that for j ≤ m − i

Pi,i−1+j = P {j failures during R}
=
∫ ∞

0
P {j failures during R | R = r}g(r) dr

=
∫ ∞

0

(
m − i

j

)
(1 − e−λr )j (e−λr )m−i−j g(r) dr

If i = 0, then, because the next repair will not begin until one of the machines fails,

P0,j = P1,j , j ≤ m − 1

Let πj , j = 0, . . . ,m − 1, denote the stationary probabilities of this Markov chain.
That is, they are the unique solution of

πj =
∑

i

πiPi,j ,

m−1∑
j=0

πj = 1

Therefore, after explicitly determining the transition probabilities and solving the pre-
ceding equations, we would know the value of π0, the proportion of repair completions
that leaves all machines working. Let us say that the system is “on” when all machines
are working and “off” otherwise. (Thus, the system is on when the repairperson is idle
and off when he is busy.) As all machines are working when the system goes back
on, it follows from the lack of memory property of the exponential that the system
probabilistically starts over when it goes on. Hence, this on–off system is an alternat-
ing renewal process. Suppose that the system has just become on, thus starting a new
cycle, and let Ri, i ≥ 1, be the time of the ith repair from that moment. Also, let N

denote the number of repairs in the off (busy) time of the cycle. Then, it follows that
B, the length of the off period, can be expressed as

B =
N∑

i=1

Ri

Although N is not independent of the sequence R1,R2, . . . , it is easy to check that it
is a stopping time for this sequence, and thus by Wald’s equation (see Exercise 13 of
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Chapter 7) we have

E[B] = E[N ]E[R] = E[N ]μR

Also, since an on time will last until one of the machines fails, and since the minimum
of independent exponential random variables is exponential with a rate equal to the
sum of their rates, it follows that E[I ], the mean on (idle) time in a cycle, is given by

E[I ] = 1/(mλ)

Hence, PB , the proportion of time that the repairperson is busy, satisfies

PB = E[N ]μR

E[N ]μR + 1/(mλ)

However, since, on average, one out of every E[N ] repair completions will leave all
machines working, it follows that

π0 = 1

E[N ]
Consequently,

PB = μR

μR + π0/(mλ)
(8.58)

Now focus attention on one of the machines, call it machine number 1, and let P1,R

denote the proportion of time that machine 1 is being repaired. Since the proportion
of time that the repairperson is busy is PB , and since all machines fail at the same rate
and have the same repair distribution, it follows that

P1,R = PB

m
= μR

mμR + π0/λ
(8.59)

However, machine 1 alternates between time periods when it is working, when it is
waiting in queue, and when it is in repair. Let Wi,Qi, Si denote, respectively, the ith
working time, the ith queueing time, and the ith repair time of machine 1, i ≥ 1. Then,
the proportion of time that machine 1 is being repaired during its first n working–
queue–repair cycles is as follows:

proportion of time in the first n cycles that machine 1 is being repaired

=
∑n

i=1 Si∑n
i=1 Wi +∑n

i=1 Qi +∑n
i=1 Si

=
∑n

i=1 Si/n∑n
i=1 Wi/n +∑n

i=1 Qi/n +∑n
i=1 Si/n
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Letting n → ∞ and using the strong law of large numbers to conclude that the aver-
ages of the Wi and of the Si converge, respectively, to 1/λ and μR , yields

P1,R = μR

1/λ + Q̄ + μR

where Q̄ is the average amount of time that machine 1 spends in queue when it fails.
Using Eq. (8.59), the preceding gives

μR

mμR + π0/λ
= μR

1/λ + Q̄ + μR

or, equivalently, that

Q̄ = (m − 1)μR − (1 − π0)/λ

Moreover, since all machines are probabilistically equivalent it follows that Q̄ is equal
to WQ, the average amount of time that a failed machine spends in queue. To de-
termine the average number of machines in queue, we will make use of the basic
queueing identity

LQ = λaWQ = λaQ̄

where λa is the average rate at which machines fail. To determine λa , again focus at-
tention on machine 1 and suppose that we earn one per unit time whenever machine 1
is being repaired. It then follows from the basic cost identity of Eq. (8.1) that

P1,R = r1μR

where r1 is the average rate at which machine 1 fails. Thus, from Eq. (8.59), we obtain

r1 = 1

mμR + π0/λ

Because all m machines fail at the same rate, the preceding implies that

λa = mr1 = m

mμR + π0/λ

which gives that the average number of machines in queue is

LQ = m(m − 1)μR − m(1 − π0)/λ

mμR + π0/λ

Since the average number of machines being repaired is PB , the preceding, along with
Eq. (8.58), shows that the average number of down machines is

L = LQ + PB = m2μR − m(1 − π0)/λ

mμR + π0/λ
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8.9 Multiserver Queues
By and large, systems that have more than one server are much more difficult to an-
alyze than those with a single server. In Section 8.9.1, we start first with a Poisson
arrival system in which no queue is allowed, and then consider in Section 8.9.2 the
infinite capacity M/M/k system. For both of these models we are able to present the
limiting probabilities. In Section 8.9.3, we consider the model G/M/k. The analysis
here is similar to that of the G/M/1 (Section 8.7) except that in place of a single quan-
tity β given as the solution of an integral equation, we have k such quantities. We end
in Section 8.9.4 with the model M/G/k for which unfortunately our previous tech-
nique (used in M/G/1) no longer enables us to derive WQ, and we content ourselves
with an approximation.

8.9.1 Erlang’s Loss System

A loss system is a queueing system in which arrivals that find all servers busy do not
enter but rather are lost to the system. The simplest such system is the M/M/k loss
system in which customers arrive according to a Poisson process having rate λ, enter
the system if at least one of the k servers is free, and then spend an exponential amount
of time with rate μ being served. The balance equations for this system are

State Rate leave = Rate enter

0 λP0 = μP1
1 (λ + μ)P1 = 2μP2 + λP0
2 (λ + 2μ)P2 = 3μP3 + λP1

i,0 < i < k (λ + iμ)Pi = (i + 1)μPi+1 + λPi−1
k kμPk = λPk−1

Rewriting gives

λP0 = μP1,

λP1 = 2μP2,

λP2 = 3μP3,

...

λPk−1 = kμPk

or

P1 = λ

μ
P0,

P2 = λ

2μ
P1 = (λ/μ)2

2
P0,

P3 = λ

3μ
P2 = (λ/μ)3

3! P0,
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...

Pk = λ

kμ
Pk−1 = (λ/μ)k

k! P0

and using
∑k

i=0 Pi = 1, we obtain

Pi = (λ/μ)i/i!∑k
j=0(λ/μ)j /j ! , i = 0,1, . . . , k

Since E[S] = 1/μ, where E[S] is the mean service time, the preceding can be writ-
ten as

Pi = (λE[S])i/i!∑k
j=0(λE[S])j /j ! , i = 0,1, . . . , k (8.60)

Consider now the same system except that the service distribution is general—that
is, consider the M/G/k with no queue allowed. This model is sometimes called the
Erlang loss system. It can be shown (though the proof is advanced) that Eq. (8.60)
(which is called Erlang’s loss formula) remains valid for this more general system.

Remark. It is easy to see that Eq. (8.60) is valid when k = 1. For in this case,
L = P1,W = E[S], and λa = λP0. Using that L = λaW gives

P1 = λP0E[S]

which implies, since P0 + P1 = 1, that

P0 = 1

1 + λE[S] , P1 = λE[S]
1 + λE[S] �

8.9.2 The M/M/k Queue

The M/M/k infinite capacity queue can be analyzed by the balance equation tech-
nique. We leave it for you to verify that

Pi =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

(λ/μ)i

i!
k−1∑
i=0

(λ/μ)i

i! + (λ/μ)k

k!
kμ

kμ − λ

, i ≤ k

(λ/kμ)ikk

k! P0, i > k

We see from the preceding that we need to impose the condition λ < kμ.
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8.9.3 The G/M/k Queue

In this model we again suppose that there are k servers, each of whom serves at an
exponential rate μ. However, we now allow the time between successive arrivals to
have an arbitrary distribution G. To ensure that a steady-state (or limiting) distribution
exists, we assume the condition 1/μG < kμ where μG is the mean of G.6

The analysis for this model is similar to that presented in Section 8.7 for the case
k = 1. Namely, to avoid having to keep track of the time since the last arrival, we look
at the system only at arrival epochs. Once again, if we define Xn as the number in the
system at the moment of the nth arrival, then {Xn,n ≥ 0} is a Markov chain.

To derive the transition probabilities of the Markov chain, it helps to first note the
relationship

Xn+1 = Xn + 1 − Yn, n ≥ 0

where Yn denotes the number of departures during the interarrival time between the
nth and (n + 1)st arrival. The transition probabilities Pij can now be calculated as
follows:

Case 1. j > i + 1.
In this case it easily follows that Pij = 0.

Case 2. j ≤ i + 1 ≤ k.
In this case if an arrival finds i in the system, then as i < k the new arrival will also

immediately enter service. Hence, the next arrival will find j if of the i + 1 services
exactly i +1−j are completed during the interarrival time. Conditioning on the length
of this interarrival time yields

Pij = P {i + 1 − j of i + 1 services are completed in an interarrival time}
=
∫ ∞

0
P {i + 1 − j of i + 1 are completed |interarrival time is t}dG(t)

=
∫ ∞

0

(
i + 1

j

)
(i − e−μt )i+1−j (e−μt )j dG(t)

where the last equality follows since the number of service completions in a time t

will have a binomial distribution.

Case 3. i + 1 ≥ j ≥ k.
To evaluate Pij in this case, we first note that when all servers are busy, the depar-

ture process is a Poisson process with rate kμ (why?). Hence, again conditioning on
the interarrival time we have

Pij = P {i + 1 − j departures}
6 It follows from the renewal theory (Proposition 7.1) that customers arrive at rate 1/μG, and as the maxi-

mum service rate is kμ, we clearly need that 1/μG < kμ for limiting probabilities to exist.
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=
∫ ∞

0
P {i + 1 − j departures in time t}dG(t)

=
∫ ∞

0
e−kμt (kμt)i+1−j

(i + 1 − j)! dG(t)

Case 4. i + 1 ≥ k > j .
In this case since when all servers are busy the departure process is a Poisson pro-

cess, it follows that the length of time until there will only be k in the system will
have a gamma distribution with parameters i + 1 − k, kμ (the time until i + 1 − k

events of a Poisson process with rate kμ occur is gamma distributed with parameters
i + 1 − k, kμ). Conditioning first on the interarrival time and then on the time until
there are only k in the system (call this latter random variable Tk) yields

Pij =
∫ ∞

0
P {i + 1 − j departures in time t} dG(t)

=
∫ ∞

0

∫ t

0
P {i + 1 − j departures in t | Tk = s}kμe−kμs (kμs)i−k

(i − k)! ds dG(t)

=
∫ ∞

0

∫ t

0

(
k

j

)(
1 − e−μ(t−s)

)k−j (
e−μ(t−s)

)j

kμe−kμs (kμs)i−k

(i − k)! ds dG(t)

where the last equality follows since of the k people in service at time s the number
whose service will end by time t is binomial with parameters k and 1 − e−μ(t−s).

We now can verify either by a direct substitution into the equations πj =∑iπiPij ,
or by the same argument as presented in the remark at the end of Section 8.7, that the
limiting probabilities of this Markov chain are of the form

πk−1+j = cβj , j = 0,1, . . . .

Substitution into any of the equations πj =∑i πiPij when j > k yields that β is given
as the solution of

β =
∫ ∞

0
e−kμt(1−β) dG(t)

The values π0,π1, . . . , πk−2 can be obtained by recursively solving the first k − 1 of
the steady-state equations, and c can then be computed by using

∑∞
i=0 πi = 1.

If we let W ∗
Q denote the amount of time that a customer spends in queue, then in

exactly the same manner as in G/M/1, we can show that

W ∗
Q =

{
0, with probability

∑k−1
i=0 πi = 1 − cβ

1−β

Exp(kμ(1 − β)), with probability
∑∞

i=k πi = cβ
1−β

where Exp(kμ(1 − β)) is an exponential random variable with rate kμ(1 − β).
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8.9.4 The M/G/k Queue

In this section, we consider the M/G/k system in which customers arrive at a Poisson
rate λ and are served by any of k servers, each of whom has the service distribution G.
If we attempt to mimic the analysis presented in Section 8.5 for the M/G/1 system,
then we would start with the basic identity

V = λE[S]WQ + λE[S2]/2 (8.61)

and then attempt to derive a second equation relating V and WQ.
Now if we consider an arbitrary arrival, then we have the following identity:

work in system when customer arrives

= k × time customer spends in queue + R (8.62)

where R is the sum of the remaining service times of all other customers in service at
the moment when our arrival enters service.

The foregoing follows because while the arrival is waiting in queue, work is be-
ing processed at a rate k per unit time (since all servers are busy). Thus, an amount of
work k× time in queue is processed while he waits in queue. Now, all of this work was
present when he arrived and in addition the remaining work on those still being served
when he enters service was also present when he arrived—so we obtain Eq. (8.62).
For an illustration, suppose that there are three servers all of whom are busy when the
customer arrives. Suppose, in addition, that there are no other customers in the system
and also that the remaining service times of the three people in service are 3, 6, and 7.
Hence, the work seen by the arrival is 3 + 6 + 7 = 16. Now the arrival will spend 3
time units in queue, and at the moment he enters service, the remaining times of the
other two customers are 6−3 = 3 and 7−3 = 4. Hence, R = 3+4 = 7 and as a check
of Eq. (8.62) we see that 16 = 3 × 3 + 7.

Taking expectations of Eq. (8.62) and using the fact that Poisson arrivals see time
averages, we obtain

V = kWQ + E[R]
which, along with Eq. (8.61), would enable us to solve for WQ if we could compute
E[R]. However there is no known method for computing E[R] and in fact, there is no
known exact formula for WQ. The following approximation for WQ was obtained in
Reference 6 by using the foregoing approach and then approximating E[R]:

WQ ≈ λkE[S2](E[S])k−1

2(k − 1)!(k − λE[S])2

[
k−1∑
n=0

(λE[S])n
n! + (λE[S])k

(k − 1)!(k − λE[S])

] (8.63)

The preceding approximation has been shown to be quite close to WQ when the ser-
vice distribution is gamma. It is also exact when G is exponential.
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Exercises
1. For the M/M/1 queue, compute

(a) the expected number of arrivals during a service period and
(b) the probability that no customers arrive during a service period.

Hint: “Condition.”
*2. Machines in a factory break down at an exponential rate of six per hour. There

is a single repairman who fixes machines at an exponential rate of eight per
hour. The cost incurred in lost production when machines are out of service is
$10 per hour per machine. What is the average cost rate incurred due to failed
machines?

3. The manager of a market can hire either Mary or Alice. Mary, who gives ser-
vice at an exponential rate of 20 customers per hour, can be hired at a rate of $3
per hour. Alice, who gives service at an exponential rate of 30 customers per
hour, can be hired at a rate of $C per hour. The manager estimates that, on the
average, each customer’s time is worth $1 per hour and should be accounted
for in the model. Assume customers arrive at a Poisson rate of 10 per hour
(a) What is the average cost per hour if Mary is hired? If Alice is hired?
(b) Find C if the average cost per hour is the same for Mary and Alice.

4. In the M/M/1 system, derive P0 by equating the rate at which customers arrive
with the rate at which they depart.

5. Suppose customers arrive to a two server system according to a Poisson pro-
cess with rate λ, and suppose that each arrival is, independently, sent either to
server 1 with probability α or to server 2 with probability 1 − α. Suppose the
service time at server i is exponential with rate μi , i = 1,2.
(a) Find W(α), the average amount of time a customer spends in the system.
(b) If λ = 1 and μi = i, i = 1,2, find the value of α that minimizes W(α).

6. Suppose that a customer of the M/M/1 system spends the amount of time
x > 0 waiting in queue before entering service.
(a) Show that, conditional on the preceding, the number of other customers

that were in the system when the customer arrived is distributed as 1+P ,
where P is a Poisson random variable with mean λ.

(b) Let W ∗
Q denote the amount of time that an M/M/1 customer spends in

queue. As a by-product of your analysis in part (a), show that

P {W ∗
Q ≤ x} =

{
1 − λ

μ
if x = 0

1 − λ
μ

+ λ
μ
(1 − e−(μ−λ)x) if x > 0

7. It follows from Exercise 6 that if, in the M/M/1 model, W ∗
Q is the amount of

time that a customer spends waiting in queue, then

W ∗
Q =

{
0, with probability 1 − λ/μ

Exp(μ − λ), with probability λ/μ

where Exp(μ − λ) is an exponential random variable with rate μ − λ. Using
this, find Var(W ∗

Q).
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*8. Show that W is smaller in an M/M/1 model having arrivals at rate λ and ser-
vice at rate 2μ than it is in a two-server M/M/2 model with arrivals at rate λ

and with each server at rate μ. Can you give an intuitive explanation for this
result? Would it also be true for WQ?

9. Consider the M/M/1 queue with impatient customers model as presented
in Example 8.9. Give your answers in terms of the limiting probabilities
Pn,n ≥ 0.
(a) What is the average amount of time that a customer spends in the system.
(b) If en denotes the probability that a customer who finds n others in the

system upon arrival will be served, find en, n ≥ 0.
(c) Find the conditional probability that a served customer found n in the

system upon arrival. That is, find P(arrival finds n| arrival is served).
(d) Find the average amount of time spent in queue by a customer that is

served.
(e) Find the average amount of time spent in queue by a customer that de-

parts before entering service.
10. A facility produces items according to a Poisson process with rate λ. However,

it has shelf space for only k items and so it shuts down production whenever k

items are present. Customers arrive at the facility according to a Poisson pro-
cess with rate μ. Each customer wants one item and will immediately depart
either with the item or empty handed if there is no item available.
(a) Find the proportion of customers that go away empty handed.
(b) Find the average time that an item is on the shelf.
(c) Find the average number of items on the shelf.

11. A group of n customers moves around among two servers. Upon completion
of service, the served customer then joins the queue (or enters service if the
server is free) at the other server. All service times are exponential with rate μ.
Find the proportion of time that there are j customers at server 1, j = 0, . . . , n.

12. A group of m customers frequents a single-server station in the following man-
ner. When a customer arrives, he or she either enters service if the server is free
or joins the queue otherwise. Upon completing service the customer departs the
system, but then returns after an exponential time with rate θ . All service times
are exponentially distributed with rate μ.
(a) Find the average rate at which customers enter the station.
(b) Find the average time that a customer spends in the station per visit.

*13. Families arrive at a taxi stand according to a Poisson process with rate λ. An
arriving family finding N other families waiting for a taxi does not wait. Taxis
arrive at the taxi stand according to a Poisson process with rate μ. A taxi find-
ing M other taxis waiting does not wait. Derive expressions for the following
quantities.
(a) The proportion of time there are no families waiting.
(b) The proportion of time there are no taxis waiting.
(c) The average amount of time that a family waits.
(d) The average amount of time that a taxi waits.
(e) The fraction of families that take taxis.
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Now redo the problem if we assume that N = M = ∞ and that each family will
only wait for an exponential time with rate α before seeking other transporta-
tion, and each taxi will only wait for an exponential time with rate β before
departing without a fare.

14. Customers arrive to a single server system in accordance with a Poisson pro-
cess with rate λ. Arrivals only enter if the server is free. Each customer is
either a type 1 customer with probability p or a type 2 customer with probabil-
ity 1 − p. The time it takes to serve a type i customer is exponential with rate
μi , i = 1,2. Find the average amount of time an entering customer spends in
the system.

15. Customers arrive to a two server system in accordance with a Poisson process
with rate λ. Server 1 is the preferred server, and an arrival finding server 1
free enters service with 1; an arrival finding 1 busy but 2 free, enters service
with 2. Arrivals finding both servers busy do not enter. A customer who is with
server 2 at a moment when server 1 becomes free, immediately leaves server 2
and moves over to server 1. After completing a service (with either server) the
customer departs. The service times at server i are exponential with rate μi ,
i = 1,2.
(a) Define states and give the transition diagram.
(b) Find the long run proportion of time the system is in each state.
(c) Find the proportion of all arrivals that enter the system.
(d) Find the average time that an entering customer spends in the system.
(e) Find the proportion of entering customers that complete service with

server 2.
16. Consider a 2-server system where customers arrive according to a Poisson pro-

cess with rate λ, and where each arrival is sent to the server currently having
the shortest queue. (If they have the same length queue then the choice is made
at random.) The service time at either server is exponential with rate μ, where
λ < 2μ. For n ≥ 0, say that the state is (n,n) if both servers currently have n

customers, and say that the state is (n,m), n < m, if one of the servers has n

customers and the other has m.
(a) Write down the balance equation equating the rate at which the process

enters and leaves a state for state (0,0).
(b) Write down the balance equations equating the rate at which the process

enters and leaves states of the form (0,m), m > 0.
(c) Write down the balance equations for the states (n,n), n > 0.
(d) Write down the balance equations for the states (n,m), 0 < n < m.
(e) In terms of the solution of the balance equations, find the average time a

customer spends in the system.
17. Two customers move about among three servers. Upon completion of service

at server i, the customer leaves that server and enters service at whichever of
the other two servers is free. (Therefore, there are always two busy servers.)
If the service times at server i are exponential with rate μi, i = 1,2,3, what
proportion of time is server i idle?
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18. Consider a queueing system having two servers and no queue. There are two
types of customers. Type 1 customers arrive according to a Poisson process
having rate λ1, and will enter the system if either server is free. The service
time of a type 1 customer is exponential with rate μ1. Type 2 customers arrive
according to a Poisson process having rate λ2. A type 2 customer requires the
simultaneous use of both servers; hence, a type 2 arrival will only enter the
system if both servers are free. The time that it takes (the two servers) to serve
a type 2 customer is exponential with rate μ2. Once a service is completed on
a customer, that customer departs the system.
(a) Define states to analyze the preceding model.
(b) Give the balance equations.

In terms of the solution of the balance equations, find
(c) the average amount of time an entering customer spends in the system;
(d) the fraction of served customers that are type 1.

19. Consider a sequential-service system consisting of two servers, A and B. Ar-
riving customers will enter this system only if server A is free. If a customer
does enter, then he is immediately served by server A. When his service by
A is completed, he then goes to B if B is free, or if B is busy, he leaves the
system. Upon completion of service at server B, the customer departs. Assume
that the (Poisson) arrival rate is two customers an hour, and that A and B serve
at respective (exponential) rates of four and two customers an hour.
(a) What proportion of customers enter the system?
(b) What proportion of entering customers receive service from B?
(c) What is the average number of customers in the system?
(d) What is the average amount of time that an entering customer spends in

the system?
20. Customers arrive at a two-server system according to a Poisson process hav-

ing rate λ = 5. An arrival finding server 1 free will begin service with that
server. An arrival finding server 1 busy and server 2 free will enter service with
server 2. An arrival finding both servers busy goes away. Once a customer is
served by either server, he departs the system. The service times at server i are
exponential with rates μi , where μ1 = 4,μ2 = 2.
(a) What is the average time an entering customer spends in the system?
(b) What proportion of time is server 2 busy?

21. Customers arrive at a two-server station in accordance with a Poisson process
with a rate of two per hour. Arrivals finding server 1 free begin service with
that server. Arrivals finding server 1 busy and server 2 free begin service with
server 2. Arrivals finding both servers busy are lost. When a customer is served
by server 1, she then either enters service with server 2 if 2 is free or departs
the system if 2 is busy. A customer completing service at server 2 departs the
system. The service times at server 1 and server 2 are exponential random vari-
ables with respective rates of four and six per hour.
(a) What fraction of customers do not enter the system?
(b) What is the average amount of time that an entering customer spends in

the system?
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(c) What fraction of entering customers receives service from server 1?
22. Arrivals to a three-server system are according to a Poisson process with rate

λ. Arrivals finding server 1 free enter service with 1. Arrivals finding 1 busy
but 2 free enter service with 2. Arrivals finding both 1 and 2 busy do not join
the system. After completion of service at either 1 or 2 the customer will then
either go to server 3 if 3 is free or depart the system if 3 is busy. After service
at 3 customers depart the system. The service times at i are exponential with
rate μi, i = 1,2,3.
(a) Define states to analyze the above system.
(b) Give the balance equations.
(c) In terms of the solution of the balance equations, what is the average time

that an entering customer spends in the system?
(d) Find the proportion of entering customers that are served by server 3.

23. The economy alternates between good and bad periods. During good times
customers arrive at a certain single-server queueing system in accordance with
a Poisson process with rate λ1, and during bad times they arrive in accor-
dance with a Poisson process with rate λ2. A good time period lasts for an
exponentially distributed time with rate α1, and a bad time period lasts for an
exponential time with rate α2. An arriving customer will only enter the queue-
ing system if the server is free; an arrival finding the server busy goes away.
All service times are exponential with rate μ.
(a) Define states so as to be able to analyze this system.
(b) Give a set of linear equations whose solution will yield the long-run pro-

portion of time the system is in each state.
In terms of the solutions of the equations in part (b),

(c) what proportion of time is the system empty?
(d) what is the average rate at which customers enter the system?

24. There are two types of customers. Type 1 and 2 customers arrive in accordance
with independent Poisson processes with respective rate λ1 and λ2. There are
two servers. A type 1 arrival will enter service with server 1 if that server is
free; if server 1 is busy and server 2 is free, then the type 1 arrival will enter
service with server 2. If both servers are busy, then the type 1 arrival will go
away. A type 2 customer can only be served by server 2; if server 2 is free when
a type 2 customer arrives, then the customer enters service with that server. If
server 2 is busy when a type 2 arrives, then that customer goes away. Once
a customer is served by either server, he departs the system. Service times at
server i are exponential with rate μi, i = 1,2.
Suppose we want to find the average number of customers in the system.
(a) Define states.
(b) Give the balance equations. Do not attempt to solve them.

In terms of the long-run probabilities, what is
(c) the average number of customers in the system?
(d) the average time a customer spends in the system?
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*25. Suppose in Exercise 24 we want to find out the proportion of time there is a
type 1 customer with server 2. In terms of the long-run probabilities given in
Exercise 24, what is
(a) the rate at which a type 1 customer enters service with server 2?
(b) the rate at which a type 2 customer enters service with server 2?
(c) the fraction of server 2’s customers that are type 1?
(d) the proportion of time that a type 1 customer is with server 2?

26. Customers arrive at a single-server station in accordance with a Poisson pro-
cess with rate λ. All arrivals that find the server free immediately enter service.
All service times are exponentially distributed with rate μ. An arrival that finds
the server busy will leave the system and roam around “in orbit” for an expo-
nential time with rate θ at which time it will then return. If the server is busy
when an orbiting customer returns, then that customer returns to orbit for an-
other exponential time with rate θ before returning again. An arrival that finds
the server busy and N other customers in orbit will depart and not return. That
is, N is the maximum number of customers in orbit.
(a) Define states.
(b) Give the balance equations.

In terms of the solution of the balance equations, find
(c) the proportion of all customers that are eventually served;
(d) the average time that a served customer spends waiting in orbit.

27. Consider the M/M/1 system in which customers arrive at rate λ and the server
serves at rate μ. However, suppose that in any interval of length h in which the
server is busy there is a probability αh + o(h) that the server will experience
a breakdown, which causes the system to shut down. All customers that are
in the system depart, and no additional arrivals are allowed to enter until the
breakdown is fixed. The time to fix a breakdown is exponentially distributed
with rate β.
(a) Define appropriate states.
(b) Give the balance equations.

In terms of the long-run probabilities,
(c) what is the average amount of time that an entering customer spends in

the system?
(d) what proportion of entering customers complete their service?
(e) what proportion of customers arrive during a breakdown?

*28. Reconsider Exercise 27, but this time suppose that a customer that is in the
system when a breakdown occurs remains there while the server is being fixed.
In addition, suppose that new arrivals during a breakdown period are allowed
to enter the system. What is the average time a customer spends in the system?

29. Poisson (λ) arrivals join a queue in front of two parallel servers A and B, hav-
ing exponential service rates μA and μB (see Fig. 8.4). When the system is
empty, arrivals go into server A with probability α and into B with probability
1 − α. Otherwise, the head of the queue takes the first free server.
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Figure 8.4

(a) Define states and set up the balance equations. Do not solve.
(b) In terms of the probabilities in part (a), what is the average number in the

system? Average number of servers idle?
(c) In terms of the probabilities in part (a), what is the probability that an

arbitrary arrival will get serviced in A?
30. In a queue with unlimited waiting space, arrivals are Poisson (parameter λ)

and service times are exponentially distributed (parameter μ). However, the
server waits until K people are present before beginning service on the first
customer; thereafter, he services one at a time until all K units, and all subse-
quent arrivals, are serviced. The server is then “idle” until K new arrivals have
occurred.
(a) Define an appropriate state space, draw the transition diagram, and set up

the balance equations.
(b) In terms of the limiting probabilities, what is the average time a customer

spends in queue?
(c) What conditions on λ and μ are necessary?

31. Consider a single-server exponential system in which ordinary customers ar-
rive at a rate λ and have service rate μ. In addition, there is a special customer
who has a service rate μ1. Whenever this special customer arrives, she goes
directly into service (if anyone else is in service, then this person is bumped
back into queue). When the special customer is not being serviced, she spends
an exponential amount of time (with mean 1/θ ) out of the system.
(a) What is the average arrival rate of the special customer?
(b) Define an appropriate state space and set up balance equations.
(c) Find the probability that an ordinary customer is bumped n times.

*32. Let D denote the time between successive departures in a stationary M/M/1
queue with λ < μ. Show, by conditioning on whether or not a departure has
left the system empty, that D is exponential with rate λ.

Hint: By conditioning on whether or not the departure has left the system
empty we see that

D =
{

Exponential(μ), with probability λ/μ

Exponential(λ) ∗ Exponential(μ), with probability 1 − λ/μ

where Exponential(λ) ∗ Exponential(μ) represents the sum of two indepen-
dent exponential random variables having rates μ and λ. Now use moment-
generating functions to show that D has the required distribution.
Note that the preceding does not prove that the departure process is Poisson.
To prove this we need show not only that the interdeparture times are all expo-
nential with rate λ, but also that they are independent.
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33. Potential customers arrive to a single-server hair salon according to a Poisson
process with rate λ. A potential customer who finds the server free enters the
system; a potential customer who finds the server busy goes away. Each po-
tential customer is type i with probability pi , where p1 + p2 + p3 = 1. Type
1 customers have their hair washed by the server; type 2 customers have their
hair cut by the server; and type 3 customers have their hair first washed and
then cut by the server. The time that it takes the server to wash hair is exponen-
tially distributed with rate μ1, and the time that it takes the server to cut hair is
exponentially distributed with rate μ2.
(a) Explain how this system can be analyzed with four states.
(b) Give the equations whose solution yields the proportion of time the sys-

tem is in each state.
In terms of the solution of the equations of (b), find

(c) the proportion of time the server is cutting hair;
(d) the average arrival rate of entering customers.

34. For the tandem queue model verify that

Pn,m = (λ/μ1)
n(1 − λ/μ1)(λ/μ2)

m(1 − λ/μ2)

satisfies the balance Eqs. (8.15).
35. Consider a network of three stations with a single server at each station. Cus-

tomers arrive at stations 1,2,3 in accordance with Poisson processes having
respective rates 5,10, and 15. The service times at the three stations are expo-
nential with respective rates 10,50, and 100. A customer completing service at
station 1 is equally likely to (i) go to station 2, (ii) go to station 3, or (iii) leave
the system. A customer departing service at station 2 always goes to station 3.
A departure from service at station 3 is equally likely to either go to station 2
or leave the system.
(a) What is the average number of customers in the system (consisting of all

three stations)?
(b) What is the average time a customer spends in the system?

36. Consider a closed queueing network consisting of two customers moving
among two servers, and suppose that after each service completion the cus-
tomer is equally likely to go to either server—that is, P1,2 = P2,1 = 1

2 . Let μi

denote the exponential service rate at server i, i = 1,2.
(a) Determine the average number of customers at each server.
(b) Determine the service completion rate for each server.

37. Explain how a Markov chain Monte Carlo simulation using the Gibbs sampler
can be utilized to estimate
(a) the distribution of the amount of time spent at server j on a visit.

Hint: Use the arrival theorem.
(b) the proportion of time a customer is with server j (i.e., either in server

j ’s queue or in service with j ).
38. For open queueing networks

(a) state and prove the equivalent of the arrival theorem;
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(b) derive an expression for the average amount of time a customer spends
waiting in queues.

39. Customers arrive at a single-server station in accordance with a Poisson pro-
cess having rate λ. Each customer has a value. The successive values of cus-
tomers are independent and come from a uniform distribution on (0,1). The
service time of a customer having value x is a random variable with mean
3 + 4x and variance 5.
(a) What is the average time a customer spends in the system?
(b) What is the average time a customer having value x spends in the system?

*40. Compare the M/G/1 system for first-come, first-served queue discipline with
one of last-come, first-served (for instance, in which units for service are taken
from the top of a stack). Would you think that the queue size, waiting time, and
busy-period distribution differ? What about their means? What if the queue
discipline was always to choose at random among those waiting? Intuitively,
which discipline would result in the smallest variance in the waiting time dis-
tribution?

41. In an M/G/1 queue,
(a) what proportion of departures leave behind 0 work?
(b) what is the average work in the system as seen by a departure?

42. For the M/G/1 queue, let Xn denote the number in the system left behind by
the nth departure.
(a) If

Xn+1 =
{
Xn − 1 + Yn, if Xn ≥ 1
Yn, if Xn = 0

what does Yn represent?
(b) Rewrite the preceding as

Xn+1 = Xn − 1 + Yn + δn (8.64)

where

δn =
{

1, if Xn = 0
0, if Xn ≥ 1

Take expectations and let n → ∞ in Eq. (8.64) to obtain

E[δ∞] = 1 − λE[S]
(c) Square both sides of Eq. (8.64), take expectations, and then let n → ∞ to

obtain

E[X∞] = λ2E[S2]
2(1 − λE[S]) + λE[S]

(d) Argue that E[X∞], the average number as seen by a departure, is equal
to L.
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*43. Consider an M/G/1 system in which the first customer in a busy period has
the service distribution G1 and all others have distribution G2. Let C denote
the number of customers in a busy period, and let S denote the service time of
a customer chosen at random.
Argue that
(a) a0 = P0 = 1 − λE[S].
(b) E[S] = a0E[S1] + (1 − a0)E[S2] where Si has distribution Gi .
(c) Use (a) and (b) to show that E[B], the expected length of a busy period,

is given by

E[B] = E[S1]
1 − λE[S2]

(d) Find E[C].
44. Consider a M/G/1 system with λE[S] < 1.

(a) Suppose that service is about to begin at a moment when there are n cus-
tomers in the system.
(i) Argue that the additional time until there are only n − 1 customers

in the system has the same distribution as a busy period.
(ii) What is the expected additional time until the system is empty?

(b) Suppose that the work in the system at some moment is A. We are in-
terested in the expected additional time until the system is empty—call
it E[T ]. Let N denote the number of arrivals during the first A units of
time.
(i) Compute E[T |N ].

(ii) Compute E[T ].
45. Carloads of customers arrive at a single-server station in accordance with a

Poisson process with rate 4 per hour. The service times are exponentially
distributed with rate 20 per hour. If each carload contains either 1,2, or 3 cus-
tomers with respective probabilities 1

4 , 1
2 , and 1

4 , compute the average customer
delay in queue.

46. In the two-class priority queueing model of Section 8.6.2, what is WQ? Show
that WQ is less than it would be under FIFO if E[S1] < E[S2] and greater than
under FIFO if E[S1] > E[S2].

47. In a two-class priority queueing model suppose that a cost of Ci per unit time is
incurred for each type i customer that waits in queue, i = 1,2. Show that type 1
customers should be given priority over type 2 (as opposed to the reverse) if

E[S1]
C1

<
E[S2]
C2

48. Consider the priority queueing model of Section 8.6.2 but now suppose that if
a type 2 customer is being served when a type 1 arrives then the type 2 cus-
tomer is bumped out of service. This is called the preemptive case. Suppose
that when a bumped type 2 customer goes back in service his service begins at
the point where it left off when he was bumped.
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(a) Argue that the work in the system at any time is the same as in the non-
preemptive case.

(b) Derive W 1
Q.

Hint: How do type 2 customers affect type 1s?
(c) Why is it not true that

V 2
Q = λ2E[S2]W 2

Q

(d) Argue that the work seen by a type 2 arrival is the same as in the nonpre-
emptive case, and so

W 2
Q = W 2

Q(nonpreemptive) + E[extra time]
where the extra time is due to the fact that he may be bumped.

(e) Let N denote the number of times a type 2 customer is bumped. Why is

E[extra time|N ] = NE[S1]
1 − λ1E[S1]

Hint: When a type 2 is bumped, relate the time until he gets back in
service to a “busy period.”

(f) Let S2 denote the service time of a type 2. What is E[N |S2]?
(g) Combine the preceding to obtain

W 2
Q = W 2

Q(nonpreemptive) + λ1E[S1]E[S2]
1 − λ1E[S1]

*49. Calculate explicitly (not in terms of limiting probabilities) the average time a
customer spends in the system in Exercise 28.

50. In the G/M/1 model if G is exponential with rate λ show that β = λ/μ.
51. In the k server Erlang loss model, suppose that λ = 1 and E[S] = 4. Find L if

Pk = 0.2.
52. Verify the formula given for the Pi of the M/M/k.
53. In the Erlang loss system suppose the Poisson arrival rate is λ = 2, and sup-

pose there are three servers, each of whom has a service distribution that is
uniformly distributed over (0,2). What proportion of potential customers is
lost?

54. In the M/M/k system,
(a) what is the probability that a customer will have to wait in queue?
(b) determine L and W .

55. Verify the formula for the distribution of W ∗
Q given for the G/M/k model.

*56. Consider a system where the interarrival times have an arbitrary distribution
F , and there is a single server whose service distribution is G. Let Dn denote
the amount of time the nth customer spends waiting in queue. Interpret Sn,Tn

so that

Dn+1 =
{
Dn + Sn − Tn, if Dn + Sn − Tn ≥ 0
0, if Dn + Sn − Tn < 0
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57. Consider a model in which the interarrival times have an arbitrary distribution
F , and there are k servers each having service distribution G. What condi-
tion on F and G do you think would be necessary for there to exist limiting
probabilities?



9Reliability Theory

9.1 Introduction
Reliability theory is concerned with determining the probability that a system, pos-
sibly consisting of many components, will function. We shall suppose that whether
or not the system functions is determined solely from a knowledge of which compo-
nents are functioning. For instance, a series system will function if and only if all of
its components are functioning, while a parallel system will function if and only if
at least one of its components is functioning. In Section 9.2, we explore the possible
ways in which the functioning of the system may depend upon the functioning of its
components. In Section 9.3, we suppose that each component will function with some
known probability (independently of each other) and show how to obtain the proba-
bility that the system will function. As this probability often is difficult to explicitly
compute, we also present useful upper and lower bounds in Section 9.4. In Section 9.5,
we look at a system dynamically over time by supposing that each component initially
functions and does so for a random length of time at which it fails. We then discuss
the relationship between the distribution of the amount of time that a system func-
tions and the distributions of the component lifetimes. In particular, it turns out that if
the amount of time that a component functions has an increasing failure rate on the
average (IFRA) distribution, then so does the distribution of system lifetime. In Sec-
tion 9.6, we consider the problem of obtaining the mean lifetime of a system. In the
final section we analyze the system when failed components are subjected to repair.

9.2 Structure Functions
Consider a system consisting of n components, and suppose that each component is
either functioning or has failed. To indicate whether or not the ith component is func-
tioning, we define the indicator variable xi by

xi =
{

1, if the ith component is functioning
0, if the ith component has failed

The vector x = (x1, . . . , xn) is called the state vector. It indicates which of the com-
ponents are functioning and which have failed.

We further suppose that whether or not the system as a whole is functioning is com-
pletely determined by the state vector x. Specifically, it is supposed that there exists a
function φ(x) such that

φ(x) =
{

1, if the system is functioning when the state vector is x
0, if the system has failed when the state vector is x

The function φ(x) is called the structure function of the system.
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Figure 9.1 A series system.

Figure 9.2 A parallel system.

Example 9.1 (The Series Structure). A series system functions if and only if all of its
components are functioning. Hence, its structure function is given by

φ(x) = min(x1, . . . , xn) =
n∏

i=1

xi

We shall find it useful to represent the structure of a system in terms of a diagram.
The relevant diagram for the series structure is shown in Fig. 9.1. The idea is that if
a signal is initiated at the left end of the diagram then in order for it to successfully
reach the right end, it must pass through all of the components; hence, they must all
be functioning. �

Example 9.2 (The Parallel Structure). A parallel system functions if and only if at
least one of its components is functioning. Hence, its structure function is given by

φ(x) = max(x1, . . . , xn)

A parallel structure may be pictorially illustrated by Fig. 9.2. This follows since a sig-
nal at the left end can successfully reach the right end as long as at least one component
is functioning. �

Example 9.3 (The k-out-of-n Structure). The series and parallel systems are both
special cases of a k-out-of-n system. Such a system functions if and only if at least
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Figure 9.3 A two-out-of-three system.

Figure 9.4

k of the n components are functioning. As
∑n

i=1 xi equals the number of functioning
components, the structure function of a k-out-of-n system is given by

φ(x) =

⎧⎪⎪⎨
⎪⎪⎩

1, if
n∑

i=1
xi � k

0, if
n∑

i=1
xi < k

Series and parallel systems are respectively n-out-of-n and 1-out-of-n systems.
The two-out-of-three system may be diagrammed as shown in Fig. 9.3. �

Example 9.4 (A Four-Component Structure). Consider a system consisting of four
components, and suppose that the system functions if and only if components 1 and 2
both function and at least one of components 3 and 4 function. Its structure function
is given by

φ(x) = x1x2 max(x3, x4)

Pictorially, the system is as shown in Fig. 9.4. A useful identity, easily checked, is that
for binary variables,1 xi, i = 1, . . . , n,

max(x1, . . . , xn) = 1 −
n∏

i=1

(1 − xi)

1 A binary variable is one that assumes either the value 0 or 1.
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Figure 9.5

When n = 2, this yields

max(x1, x2) = 1 − (1 − x1)(1 − x2) = x1 + x2 − x1x2

Hence, the structure function in the example may be written as

φ(x) = x1x2(x3 + x4 − x3x4) �

It is natural to assume that replacing a failed component by a functioning one will
never lead to a deterioration of the system. In other words, it is natural to assume
that the structure function φ(x) is an increasing function of x, that is, if xi � yi ,
i = 1, . . . , n, then φ(x) � φ(y). Such an assumption shall be made in this chapter
and the system will be called monotone.

9.2.1 Minimal Path and Minimal Cut Sets

In this section we show how any system can be represented both as a series arrange-
ment of parallel structures and as a parallel arrangement of series structures. As a
preliminary, we need the following concepts.

A state vector x is called a path vector if φ(x) = 1. If, in addition, φ(y) = 0 for all
y < x, then x is said to be a minimal path vector.2 If x is a minimal path vector, then
the set A = {i : xi = 1} is called a minimal path set. In other words, a minimal path
set is a minimal set of components whose functioning ensures the functioning of the
system.

Example 9.5. Consider a five-component system whose structure is illustrated by
Fig. 9.5. Its structure function equals

φ(x) = max(x1, x2) max(x3x4, x5)

= (x1 + x2 − x1x2)(x3x4 + x5 − x3x4x5)

There are four minimal path sets, namely, {1, 3, 4}, {2, 3, 4}, {1, 5}, {2, 5}. �

Example 9.6. In a k-out-of-n system, there are
(
n
k

)
minimal path sets, namely, all of

the sets consisting of exactly k components. �

2 We say that y < x if yi � xi , i = 1, . . . , n, with yi < xi for some i.
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Let A1, . . . ,As denote the minimal path sets of a given system. We define αj (x),
the indicator function of the j th minimal path set, by

αj (x) =
{

1, if all the components of Aj are functioning
0, otherwise

=
∏
i∈Aj

xi

By definition, it follows that the system will function if all the components of at least
one minimal path set are functioning; that is, if αj (x) = 1 for some j . On the other
hand, if the system functions, then the set of functioning components must include a
minimal path set. Therefore, a system will function if and only if all the components
of at least one minimal path set are functioning. Hence,

φ(x) =
{

1, if αj (x) = 1 for some j

0, if αj (x) = 0 for all j

or equivalently,

φ(x) = max
j

αj (x)

= max
j

∏
i∈Aj

xi (9.1)

Since αj (x) is a series structure function of the components of the j th minimal
path set, Eq. (9.1) expresses an arbitrary system as a parallel arrangement of series
systems.

Example 9.7. Consider the system of Example 9.5. Because its minimal path sets are
A1 = {1,3,4},A2 = {2,3,4},A3 = {1,5}, and A4 = {2,5}, we have by Eq. (9.1) that

φ(x) = max{x1x3x4, x2x3x4, x1x5, x2x5}
= 1 − (1 − x1x3x4)(1 − x2x3x4)(1 − x1x5)(1 − x2x5)

You should verify that this equals the value of φ(x) given in Example 9.5. (Make use
of the fact that, since xi equals 0 or 1, x2

i = xi .) This representation may be pictured
as shown in Fig. 9.6. �

Example 9.8. The system whose structure is as pictured in Fig. 9.7 is called the bridge
system. Its minimal path sets are {1, 4}, {1, 3, 5}, {2, 5}, and {2, 3, 4}. Hence, by
Eq. (9.1), its structure function may be expressed as

φ(x) = max{x1x4, x1x3x5, x2x5, x2x3x4}
= 1 − (1 − x1x4)(1 − x1x3x5)(1 − x2x5)(1 − x2x3x4)

This representation φ(x) is diagrammed as shown in Fig. 9.8. �
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Figure 9.6

Figure 9.7 The bridge system.

Figure 9.8

A state vector x is called a cut vector if φ(x) = 0. If, in addition, φ(y) = 1 for all
y > x, then x is said to be a minimal cut vector. If x is a minimal cut vector, then the
set C = {i : xi = 0} is called a minimal cut set. In other words, a minimal cut set is a
minimal set of components whose failure ensures the failure of the system.

Let C1, . . . ,Ck denote the minimal cut sets of a given system. We define βj (x), the
indicator function of the j th minimal cut set, by

βj (x) =

⎧⎪⎪⎨
⎪⎪⎩

1, if at least one component of the j th minimal
cut set is functioning

0, if all of the components of the j th minimal
cut set are not functioning

= max
i∈Cj

xi

Since a system is not functioning if and only if all the components of at least one
minimal cut set are not functioning, it follows that

φ(x) =
k∏

j=1

βj (x) =
k∏

j=1

max
i∈Cj

xi (9.2)
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Figure 9.9

Figure 9.10 Minimal cut representation of the bridge system.

Since βj (x) is a parallel structure function of the components of the j th minimal
cut set, Eq. (9.2) represents an arbitrary system as a series arrangement of parallel
systems.

Example 9.9. The minimal cut sets of the bridge structure shown in Fig. 9.9 are
{1, 2}, {1, 3, 5}, {2, 3, 4}, and {4, 5}. Hence, from Eq. (9.2), we may express φ(x) by

φ(x) = max(x1, x2) max(x1, x3, x5) max(x2, x3, x4) max(x4, x5)

= [1 − (1 − x1)(1 − x2)][1 − (1 − x1)(1 − x3)(1 − x5)]
× [1 − (1 − x2)(1 − x3)(1 − x4)][1 − (1 − x4)(1 − x5)]

This representation of φ(x) is pictorially expressed as Fig. 9.10. �

9.3 Reliability of Systems of Independent Components
In this section, we suppose that Xi , the state of the ith component, is a random variable
such that

P {Xi = 1} = pi = 1 − P {Xi = 0}
The value pi , which equals the probability that the ith component is functioning, is
called the reliability of the ith component. If we define r by

r = P {φ(X) = 1}, where X = (X1, . . . ,Xn)

then r is called the reliability of the system. When the components, that is, the ran-
dom variables Xi, i = 1, . . . , n, are independent, we may express r as a function of
the component reliabilities. That is,

r = r(p), where p = (p1, . . . , pn)
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The function r(p) is called the reliability function. We shall assume throughout the
remainder of this chapter that the components are independent.

Example 9.10 (The Series System). The reliability function of the series system of n

independent components is given by

r(p) = P {φ(X) = 1}
= P {Xi = 1 for all i = 1, . . . , n}

=
n∏

i=1

pi �

Example 9.11 (The Parallel System). The reliability function of the parallel system
of n independent components is given by

r(p) = P {φ(X) = 1}
= P {Xi = 1 for some i = 1, . . . , n}
= 1 − P {Xi = 0 for all i = 1, . . . , n}

= 1 −
n∏

i=1

(1 − pi) �

Example 9.12 (The k-out-of-n System with Equal Probabilities). Consider a
k-out-of-n system. If pi = p for all i = 1, . . . , n, then the reliability function is
given by

r(p, . . . ,p) = P {φ(X) = 1}

= P

{
n∑

i=1

Xi � k

}

=
n∑

i=k

(
n

i

)
pi(1 − p)n−i �

Example 9.13 (The Two-out-of-Three System). The reliability function of a two-out-
of-three system is given by

r(p) = P {φ(X) = 1}
= P {X = (1,1,1)} + P {X = (1,1,0)}

+ P {X = (1,0,1)} + P {X = (0,1,1)}
= p1p2p3 + p1p2(1 − p3) + p1(1 − p2)p3 + (1 − p1)p2p3

= p1p2 + p1p3 + p2p3 − 2p1p2p3 �

Example 9.14 (The Three-out-of-Four System). The reliability function of a three-
out-of-four system is given by

r(p) = P {X = (1,1,1,1)} + P {X = (1,1,1,0)} + P {X = (1,1,0,1)}
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+ P {X = (1,0,1,1)} + P {X = (0,1,1,1)}
= p1p2p3p4 + p1p2p3(1 − p4) + p1p2(1 − p3)p4

+ p1(1 − p2)p3p4 + (1 − p1)p2p3p4

= p1p2p3 + p1p2p4 + p1p3p4 + p2p3p4 − 3p1p2p3p4 �

Example 9.15 (A Five-Component System). Consider a five-component system that
functions if and only if component 1, component 2, and at least one of the remaining
components function. Its reliability function is given by

r(p) = P {X1 = 1,X2 = 1,max(X3,X4,X5) = 1}
= P {X1 = 1}P {X2 = 1}P {max(X3,X4,X5) = 1}
= p1p2[1 − (1 − p3)(1 − p4)(1 − p5)] �

Since φ(X) is a 0–1 (that is, a Bernoulli) random variable, we may also compute
r(p) by taking its expectation. That is,

r(p) = P {φ(X) = 1}
= E[φ(X)]

Example 9.16 (A Four-Component System). A four-component system that functions
when both components 1 and 4, and at least one of the other components function has
its structure function given by

φ(x) = x1x4 max(x2, x3)

Hence,

r(p) = E[φ(X)]
= E[X1X4(1 − (1 − X2)(1 − X3))]
= p1p4[1 − (1 − p2)(1 − p3)] �

An important and intuitive property of the reliability function r(p) is given by the
following proposition.

Proposition 9.1. If r(p) is the reliability function of a system of independent compo-
nents, then r(p) is an increasing function of p.

Proof. By conditioning on Xi and using the independence of the components, we
obtain

r(p) = E[φ(X)]
= piE[φ(X) | Xi = 1] + (1 − pi)E[φ(X) | Xi = 0]
= piE[φ(1i ,X)] + (1 − pi)E[φ(0i ,X)]

where

(1i ,X) = (X1, . . . ,Xi−1,1,Xi+1, . . . ,Xn),
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(0i ,X) = (X1, . . . ,Xi−1,0,Xi+1, . . . ,Xn)

Thus,

r(p) = piE[φ(1i ,X) − φ(0i ,X)] + E[φ(0i ,X)]
However, since φ is an increasing function, it follows that

E[φ(1i ,X) − φ(0i ,X)]� 0

and so the preceding is increasing in pi for all i. Hence, the result is proven. �

Let us now consider the following situation: A system consisting of n different
components is to be built from a stockpile containing exactly two of each type of
component. How should we use the stockpile so as to maximize our probability of
attaining a functioning system? In particular, should we build two separate systems,
in which case the probability of attaining a functioning one would be

P {at least one of the two systems function}
= 1 − P {neither of the systems function}
= 1 − [(1 − r(p))(1 − r(p′))]

where pi(p
′
i ) is the probability that the first (second) number i component functions;

or should we build a single system whose ith component functions if at least one of
the number i components functions? In this latter case, the probability that the system
will function equals

r[1 − (1 − p)(1 − p′)]
since 1 − (1 − pi)(1 − p′

i ) equals the probability that the ith component in the single
system will function.3 We now show that replication at the component level is more
effective than replication at the system level.

Theorem 9.1. For any reliability function r and vectors p,p′,

r[1 − (1 − p)(1 − p′)] � 1 − [1 − r(p)][1 − r(p′)]
Proof. Let X1, . . . ,Xn,X

′
1, . . . ,X

′
n be mutually independent 0–1 random variables

with

pi = P {Xi = 1}, p′
i = P {X′

i = 1}
Since P {max(Xi,X

′
i ) = 1} = 1 − (1 − pi)(1 − p′

i ), it follows that

r[1 − (1 − p)(1 − p′)] = E[φ[max(X,X′)]]
3 Notation: If x = (x1, . . . , xn), y = (y1, . . . , yn), then xy = (x1y1, . . . , xnyn). Also, max(x,y) =

(max(x1, y1), . . . ,max(xn, yn)) and min(x,y) = (min(x1, y1), . . . ,min(xn, yn)).
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However, by the monotonicity of φ, we have that φ[max(X,X′)] is greater than or
equal to both φ(X) and φ(X′) and hence is at least as large as max[φ(X),φ(X′)].
Hence, from the preceding we have

r[1 − (1 − p)(1 − p′)] � E[max(φ(X),φ(X′))]
= P {max[φ(X),φ(X′)] = 1}
= 1 − P {φ(X) = 0, φ(X′) = 0}
= 1 − [1 − r(p)][1 − r(p′)]

where the first equality follows from the fact that max[φ(X),φ(X′)] is a 0–1 random
variable and hence its expectation equals the probability that it equals 1. �

As an illustration of the preceding theorem, suppose that we want to build a series
system of two different types of components from a stockpile consisting of two of
each of the kinds of components. Suppose that the reliability of each component is 1

2 .
If we use the stockpile to build two separate systems, then the probability of attaining
a working system is

1 −
(

3
4

)2 = 7
16

while if we build a single system, replicating components, then the probability of at-
taining a working system is

(
3
4

)2 = 9
16

Hence, replicating components leads to a higher reliability than replicating systems
(as, of course, it must by Theorem 9.1).

9.4 Bounds on the Reliability Function
Consider the bridge system of Example 9.8, which is represented by Fig. 9.11. Using
the minimal path representation, we have

φ(x) = 1 − (1 − x1x4)(1 − x1x3x5)(1 − x2x5)(1 − x2x3x4)

Hence,

r(p) = 1 − E[(1 − X1X4)(1 − X1X3X5)(1 − X2X5)(1 − X2X3X4)]

However, since the minimal path sets overlap (that is, they have components in com-
mon), the random variables (1−X1X4), (1−X1X3X5), (1−X2X5), and (1−X2X3X4)

are not independent, and thus the expected value of their product is not equal to the
product of their expected values. Therefore, in order to compute r(p), we must first
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Figure 9.11

multiply the four random variables and then take the expected value. Doing so, using
that X2

i = Xi , we obtain

r(p) = E[X1X4 + X2X5 + X1X3X5 + X2X3X4 − X1X2X3X4

− X1X2X3X5 − X1X2X4X5 − X1X3X4X5 − X2X3X4X5

+ 2X1X2X3X4X5]
= p1p4 + p2p5 + p1p3p5 + p2p3p4 − p1p2p3p4 − p1p2p3p5

− p1p2p4p5 − p1p3p4p5 − p2p3p4p5 + 2p1p2p3p4p5

As can be seen by the preceding example, it is often quite tedious to evaluate r(p),
and thus it would be useful if we had a simple way of obtaining bounds. We now
consider two methods for this.

9.4.1 Method of Inclusion and Exclusion

The following is a well-known formula for the probability of the union of the events
E1,E2, . . . ,En:

P

(
n⋃

i=1

Ei

)
=

n∑
i=1

P(Ei) −
∑∑

i < j

P (EiEj ) +
∑∑∑

i < j < k

P (EiEjEk)

− · · · + (−1)n+1P(E1E2 · · ·En) (9.3)

A result, not as well known, is the following set of inequalities:

P

(
n⋃
1

Ei

)
�

n∑
i=1

P(Ei),

P

(
n⋃
1

Ei

)
�

∑
i

P (Ei) −
∑
i<j

P (EiEj ),

P

(
n⋃
1

Ei

)
�

∑
i

P (Ei) −
∑∑

i < j

P (EiEj ) +
∑∑∑

i < j < k

P (EiEjEk),

� · · ·
� · · · (9.4)
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where the inequality always changes direction as we add an additional term of the
expansion of P(

⋃n
i=1Ei).

Eq. (9.3) is usually proven by induction on the number of events. However, let us
now present another approach that will not only prove Eq. (9.3) but also establish
Inequalities (9.4).

To begin, define the indicator variables Ij , j = 1, . . . , n, by

Ij =
{

1, if Ej occurs
0, otherwise

Letting

N =
n∑

j=1

Ij

then N denotes the number of the Ej ,1 � j � n, that occur. Also, let

I =
{

1, if N > 0
0, if N = 0

Then, as

1 − I = (1 − 1)N

we obtain, upon application of the binomial theorem, that

1 − I =
N∑

i=0

(
N

i

)
(−1)i

or

I = N −
(

N

2

)
+

(
N

3

)
− · · · ±

(
N

N

)
(9.5)

We now make use of the following combinatorial identity (which is easily established
by induction on i):(

n

i

)
−

(
n

i + 1

)
+ · · · ±

(
n

n

)
=

(
n − 1
i − 1

)
� 0, i � n

The preceding thus implies that(
N

i

)
−

(
N

i + 1

)
+ · · · ±

(
N

N

)
� 0 (9.6)

From Eqs. (9.5) and (9.6), we obtain

I � N, by letting i = 2 in (9.6)
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I � N −
(

N

2

)
, by letting i = 3 in (9.6)

I � N −
(

N

2

)
+

(
N

3

)
, (9.7)

...

and so on. Now, since N � n and
(
m
i

) = 0 whenever i > m, we can rewrite Eq. (9.5)
as

I =
n∑

i=1

(
N

i

)
(−1)i+1 (9.8)

Eq. (9.3) and Inequalities (9.4) now follow upon taking expectations of (9.7) and (9.8).
This is the case since

E[I ] = P {N > 0} = P {at least one of the Ej occurs} = P

(
n⋃
1

Ej

)
,

E[N ] = E

[ n∑
j=1

Ij

]
=

n∑
j=1

P(Ej )

Also,

E

[(
N

2

)]
= E[number of pairs of the Ej that occur]

= E

[∑∑
i<j

IiIj

]

=
∑∑

i<j

P (EiEj )

and, in general

E

[(
N

i

)]
= E[number of sets of size i that occur]

= E

[ ∑∑
j1<j2<···<ji

Ij1Ij2 · · · Iji

]

=
∑∑

j1<j2<···<ji

P (Ej1Ej2 · · ·Eji
)

The bounds expressed in (9.4) are commonly called the inclusion–exclusion
bounds. To apply them in order to obtain bounds on the reliability function, let
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A1A2, . . . ,As denote the minimal path sets of a given structure φ, and define the
events E1,E2, . . . ,Es by

Ei = {all components in Ai function}
Now, since the system functions if and only if at least one of the events Ei occur, we
have

r(p) = P

(
s⋃

i=1

Ei

)

Applying (9.4) yields the desired bounds on r(p). The terms in the summation are
computed thusly:

P(Ei) =
∏
l∈Ai

pl,

P (EiEj ) =
∏

l∈Ai∪Aj

pl,

P (EiEjEk) =
∏

l∈Ai∪Aj ∪Ak

pl

and so forth for intersections of more than three of the events. (The preceding follows
since, for instance, in order for the event EiEj to occur, all of the components in Ai

and all of them in Aj must function; or, in other words, all components in Ai ∪ Aj

must function.)
When the pis are small the probabilities of the intersection of many of the events

Ei should be quite small and the convergence should be relatively rapid.

Example 9.17. Consider the bridge structure with identical component probabilities.
That is, take pi to equal p for all i. Letting A1 = {1,4},A2 = {1,3,5},A3 = {2,5},
and A4 = {2,3,4} denote the minimal path sets, we have

P(E1) = P(E3) = p2,

P (E2) = P(E4) = p3

Also, because exactly five of the six = (4
2

)
unions of Ai and Aj contain four compo-

nents (the exception being A2 ∪ A4, which contains all five components), we have

P(E1E2) = P(E1E3) = P(E1E4) = P(E2E3) = P(E3E4) = p4,

P (E2E4) = p5

Hence, the first two inclusion–exclusion bounds yield

2(p2 + p3) − 5p4 − p5 � r(p) � 2(p2 + p3)
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where r(p) = r(p,p,p,p,p). For instance, when p = 0.2, we have

0.08768 � r(0.2) � 0.09600

and, when p = 0.1,

0.02149 � r(0.1) � 0.02200 �

Just as we can define events in terms of the minimal path sets whose union is the
event that the system functions, so can we define events in terms of the minimal cut
sets whose union is the event that the system fails. Let C1,C2, . . . ,Cr denote the min-
imal cut sets and define the events F1, . . . ,Fr by

Fi = {all components in Ci are failed}
Now, because the system is failed if and only if all of the components of at least one
minimal cut set are failed, we have

1 − r(p) = P

(
r⋃
1

Fi

)
,

1 − r(p) �
∑

i

P (Fi),

1 − r(p) �
∑

i

P (Fi) −
∑∑

i <j

P (FiFj ),

1 − r(p) �
∑

i

P (Fi) −
∑∑

i <j

P (FiFj ) +
∑∑∑

i <j <k

P (FiFjFk),

and so on. As

P(Fi) =
∏
l∈Ci

(1 − pl),

P (FiFj ) =
∏

l∈Ci∪Cj

(1 − pl),

P (FiFjFk) =
∏

l∈Ci∪Cj ∪Ck

(1 − pl)

the convergence should be relatively rapid when the pis are large.

Example 9.18 (A Random Graph). Let us recall from Section 3.6.2 that a graph con-
sists of a set N of nodes and a set A of pairs of nodes, called arcs. For any two nodes
i and j we say that the sequence of arcs (i, i1)(i1, i2), . . . , (ik, j) constitutes an i–j

path. If there is an i–j path between all the
(
n
2

)
pairs of nodes i and j, i �= j , then the

graph is said to be connected. If we think of the nodes of a graph as representing ge-
ographical locations and the arcs as representing direct communication links between
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Figure 9.12

the nodes, then the graph will be connected if any two nodes can communicate with
each other—if not directly, then at least through the use of intermediary nodes.

A graph can always be subdivided into nonoverlapping connected subgraphs called
components. For instance, the graph in Fig. 9.12 with nodes N = {1,2,3,4,5,6} and
arcs A = {(1,2), (1,3), (2,3), (4,5)} consists of three components (a graph consisting
of a single node is considered to be connected).

Consider now the random graph having nodes 1,2, . . . , n, which is such that there
is an arc from node i to node j with probability Pij . Assume in addition that the occur-
rences of these arcs constitute independent events. That is, assume that the

(
n
2

)
random

variables Xij , i �= j , are independent where

Xij =
{

1, if (i, j) is an arc
0, otherwise

We are interested in the probability that this graph will be connected.
We can think of the preceding as being a reliability system of

(
n
2

)
components—

each component corresponding to a potential arc. The component is said to work if
the corresponding arc is indeed an arc of the network, and the system is said to work if
the corresponding graph is connected. As the addition of an arc to a connected graph
cannot disconnect the graph, it follows that the structure so defined is monotone.

Let us start by determining the minimal path and minimal cut sets. It is easy to see
that a graph will not be connected if and only if the set of nodes can be partitioned
into two nonempty subsets X and Xc in such a way that there is no arc connecting a
node from X with one from Xc. For instance, if there are six nodes and if there are no
arcs connecting any of the nodes 1, 2, 3, 4 with either 5 or 6, then clearly the graph
will not be connected. Thus, we see that any partition of the nodes into two nonempty
subsets X and Xc corresponds to the minimal cut set defined by

{(i, j) : i ∈ X,j ∈ Xc}
As there are 2n−1 − 1 such partitions (there are 2n − 2 ways of choosing a nonempty
proper subset X and, as the partition X,Xc is the same as Xc,X, we must divide by 2),
there are therefore this number of minimal cut sets.

To determine the minimal path sets, we must characterize a minimal set of arcs that
results in a connected graph. The graph in Fig. 9.13 is connected but it would remain
connected if any one of the arcs from the cycle shown in Fig. 9.14 were removed. In
fact it is not difficult to see that the minimal path sets are exactly those sets of arcs that
result in a graph being connected but not having any cycles (a cycle being a path from
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Figure 9.13

Figure 9.14

Figure 9.15 Two spanning trees (minimal path sets) when n = 4.

a node to itself). Such sets of arcs are called spanning trees (Fig. 9.15). It is easily
verified that any spanning tree contains exactly n − 1 arcs, and it is a famous result in
graph theory (due to Cayley) that there are exactly nn−2 of these minimal path sets.

Because of the large number of minimal path and minimal cut sets (nn−2 and
2n−1 − 1, respectively), it is difficult to obtain any useful bounds without making fur-
ther restrictions. So, let us assume that all the Pij equal the common value p. That is,
we suppose that each of the possible arcs exists, independently, with the same prob-
ability p. We shall start by deriving a recursive formula for the probability that the
graph is connected, which is computationally useful when n is not too large, and then
we shall present an asymptotic formula for this probability when n is large.

Let us denote by Pn the probability that the random graph having n nodes is con-
nected. To derive a recursive formula for Pn we first concentrate attention on a single
node—say, node 1—and try to determine the probability that node 1 will be part of a
component of size k in the resultant graph. Now, for a given set of k − 1 other nodes
these nodes along with node 1 will form a component if

(i) there are no arcs connecting any of these k nodes with any of the remaining
n − k nodes;

(ii) the random graph restricted to these k nodes (and
(
k
2

)
potential arcs—each inde-

pendently appearing with probability p) is connected.

The probability that (i) and (ii) both occur is

qk(n−k)Pk
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where q = 1 − p. As there are
(
n−1
k−1

)
ways of choosing k − 1 other nodes (to form

along with node 1 a component of size k) we see that

P {node 1 is part of a component of size k}
=

(
n − 1
k − 1

)
qk(n−k)Pk, k = 1,2, . . . , n

Now, since the sum of the foregoing probabilities as k ranges from 1 through n clearly
must equal 1, and as the graph is connected if and only if node 1 is part of a component
of size n, we see that

Pn = 1 −
n−1∑
k=1

(
n − 1
k − 1

)
qk(n−k)Pk, n = 2,3, . . . (9.9)

Starting with P1 = 1,P2 = p, Eq. (9.9) can be used to determine Pn recursively
when n is not too large. It is particularly suited for numerical computation.

To determine an asymptotic formula for Pn when n is large, first note from Eq. (9.9)
that since Pk � 1, we have

1 − Pn �
n−1∑
k=1

(
n − 1
k − 1

)
qk(n−k)

As it can be shown that for q < 1 and n sufficiently large,

n−1∑
k=1

(
n − 1
k − 1

)
qk(n−k) � (n + 1)qn−1

we have that for n large

1 − Pn � (n + 1)qn−1 (9.10)

To obtain a bound in the other direction, we concentrate our attention on a particular
type of minimal cut set—namely, those that separate one node from all others in the
graph. Specifically, define the minimal cut set Ci as

Ci = {(i, j) : j �= i}

and define Fi to be the event that all arcs in Ci are not working (and thus, node i is
isolated from the other nodes). Now,

1 − Pn = P(graph is not connected) � P

(⋃
i

Fi

)
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since, if any of the events Fi occur, then the graph will be disconnected. By the
inclusion–exclusion bounds, we have

P

(⋃
i

Fi

)
�

∑
i

P (Fi) −
∑∑

i<j

P (FiFj )

As P(Fi) and P(FiFj ) are just the respective probabilities that a given set of n– 1
arcs and a given set of 2n − 3 arcs are not in the graph (why?), it follows that

P(Fi) = qn−1,

P (FiFj ) = q2n−3, i �= j

and so

1 − Pn � nqn−1 −
(

n

2

)
q2n−3

Combining this with Eq. (9.10) yields that for n sufficiently large,

nqn−1 −
(

n

2

)
q2n−3 � 1 − Pn � (n + 1)qn−1

and as(
n

2

)
q2n−3

nqn−1
→ 0

as n → ∞, we see that, for large n,

1 − Pn ≈ nqn−1

Thus, for instance, when n = 20 and p = 1
2 , the probability that the random graph will

be connected is approximately given by

P20 ≈ 1 − 20
( 1

2

)19 = 0.99996 �

9.4.2 Second Method for Obtaining Bounds on r (p)

Our second approach to obtaining bounds on r(p) is based on expressing the desired
probability as the probability of the intersection of events. To do so, let A1,A2, . . . ,As

denote the minimal path sets as before, and define the events, Di, i = 1, . . . , s by

Di = {at least one component in Ai has failed}
Now since the system will have failed if and only if at least one component in each of
the minimal path sets has failed, we have

1 − r(p) = P(D1D2 · · ·Ds)
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= P(D1)P (D2 | D1) · · ·P(Ds | D1D2 · · ·Ds−1) (9.11)

Now it is quite intuitive that the information that at least one component of A1 is down
can only increase the probability that at least one component of A2 is down (or else
leave the probability unchanged if A1 and A2 do not overlap). Hence, intuitively

P(D2 | D1)� P(D2)

To prove this inequality, we write

P(D2) = P(D2 | D1)P (D1) + P(D2 | Dc
1)(1 − P(D1)) (9.12)

and note that

P(D2 | Dc
1) = P {at least one failed in A2 | all functioning in A1}

= 1 −
∏
j∈A2
j /∈A1

pj

� 1 −
∏

j∈A2

pj

= P(D2)

Hence, from Eq. (9.12), we see that

P(D2) � P(D2 | D1)P (D1) + P(D2)(1 − P(D1))

or

P(D2 | D1)� P(D2)

By the same reasoning, it also follows that

P(Di | D1 · · ·Di−1) � P(Di)

and so from Eq. (9.11) we have

1 − r(p) �
∏
i

P (Di)

or, equivalently,

r(p) � 1 −
∏
i

(
1 −

∏
j∈Ai

pj

)

To obtain a bound in the other direction, let C1, . . . ,Cr denote the minimal cut sets
and define the events U1, . . . ,Ur by

Ui = {at least one component in Ci is functioning}
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Then, since the system will function if and only if all of the events Ui occur, we have

r(p) = P(U1U2 · · ·Ur)

= P(U1)P (U2 | U1) · · ·P(Ur | U1 · · · Ur−1)

�
∏
i

P (Ui)

where the last inequality is established in exactly the same manner as for the Di .
Hence,

r(p) �
∏
i

[
1 −

∏
j∈Ci

(1 − pj )

]

and we thus have the following bounds for the reliability function:

∏
i

[
1 −

∏
j∈Ci

(1 − pj )

]
� r(p) � 1 −

∏
i

(
1 −

∏
j∈Ai

pj

)
(9.13)

It is to be expected that the upper bound should be close to the actual r(p) if there is
not too much overlap in the minimal path sets, and the lower bound to be close if there
is not too much overlap in the minimal cut sets.

Example 9.19. For the three-out-of-four system the minimal path sets are A1 =
{1,2,3},A2 = {1,2,4},A3 = {1,3,4}, and A4 = {2,3,4}; and the minimal cut sets
are C1 = {1,2}, C2 = {1,3},C3 = {1,4},C4 = {2,3},C5 = {2,4}, and C6 = {3,4}.
Hence, by Eq. (9.13) we have

(1 − q1q2)(1 − q1q3)(1 − q1q4)(1 − q2q3)(1 − q2q4)(1 − q3q4)

� r(p) � 1 − (1 − p1p2p3)(1 − p1p2p4)(1 − p1p3p4)(1 − p2p3p4)

where qi ≡ 1 − pi . For instance, if pi = 1
2 for all i, then the preceding yields

0.18 � r
(

1
2 , . . . , 1

2

)
� 0.59

The exact value for this structure is easily computed to be

r
(

1
2 , . . . , 1

2

)
= 5

16 = 0.31 �

9.5 System Life as a Function of Component Lives
For a random variable having distribution function G, we define Ḡ(a) ≡ 1 − G(a) to
be the probability that the random variable is greater than a.

Consider a system in which the ith component functions for a random length of
time having distribution Fi and then fails. Once failed it remains in that state forever.
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Assuming that the individual component lifetimes are independent, how can we ex-
press the distribution of system lifetime as a function of the system reliability function
r(p) and the individual component lifetime distributions Fi, i = 1, . . . , n?

To answer this we first note that the system will function for a length of time t

or greater if and only if it is still functioning at time t . That is, letting F denote the
distribution of system lifetime, we have

F̄ (t) = P {system life > t}
= P {system is functioning at time t}

But, by the definition of r(p) we have

P {system is functioning at time t} = r(P1(t), . . . ,Pn(t))

where

Pi(t) = P {component i is functioning at t}
= P {lifetime of i > t}
= F̄i(t)

Hence, we see that

F̄ (t) = r(F̄1(t), . . . , F̄n(t)) (9.14)

Example 9.20. In a series system, r(p) = ∏n
1pi and so from Eq. (9.14)

F̄ (t) =
n∏
1

F̄i(t)

which is, of course, quite obvious since for a series system the system life is equal to
the minimum of the component lives and so will be greater than t if and only if all
component lives are greater than t . �

Example 9.21. In a parallel system r(p) = 1 − ∏n
1(1 − pi) and so

F̄ (t) = 1 −
n∏
1

Fi(t)

The preceding is also easily derived by noting that, in the case of a parallel system,
the system life is equal to the maximum of the component lives. �

For a continuous distribution G, we define λ(t), the failure rate function of G, by

λ(t) = g(t)

Ḡ(t)
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where g(t) = d/dtG(t). In Section 5.2.2, it is shown that if G is the distribution of
the lifetime of an item, then λ(t) represents the probability intensity that a t-year-old
item will fail. We say that G is an increasing failure rate (IFR) distribution if λ(t) is
an increasing function of t . Similarly, we say that G is a decreasing failure rate (DFR)
distribution if λ(t) is a decreasing function of t .

Example 9.22 (The Weibull Distribution). A random variable is said to have the
Weibull distribution if its distribution is given, for some λ > 0, α > 0, by

G(t) = 1 − e−(λt)α , t � 0

The failure rate function for a Weibull distribution equals

λ(t) = e−(λt)αα(λt)α−1λ

e−(λt)α
= αλ(λt)α−1

Thus, the Weibull distribution is IFR when α � 1, and DFR when 0 < α � 1; when
α = 1,G(t) = 1−e−λt , the exponential distribution, which is both IFR and DFR. �

Example 9.23 (The Gamma Distribution). A random variable is said to have a gamma
distribution if its density is given, for some λ > 0, α > 0, by

g(t) = λe−λt (λt)α−1

�(α)
for t � 0

where

�(α) ≡
∫ ∞

0
e−t tα−1 dt

For the gamma distribution,

1

λ(t)
= Ḡ(t)

g(t)
=

∫ ∞
t

λe−λx(λx)α−1dx

λe−λt (λt)α−1

=
∫ ∞

t

e−λ(x−t)
(x

t

)α−1
dx

With the change of variables u = x − t , we obtain

1

λ(t)
=

∫ ∞

0
e−λu

(
1 + u

t

)α−1
du

Hence, G is IFR when α � 1 and is DFR when 0 < α � 1. �

Suppose that the lifetime distribution of each component in a monotone system is
IFR. Does this imply that the system lifetime is also IFR? To answer this, let us at
first suppose that each component has the same lifetime distribution, which we denote
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by G. That is, Fi(t) = G(t), i = 1, . . . , n. To determine whether the system lifetime is
IFR, we must compute λF (t), the failure rate function of F . Now, by definition,

λF (t) = (d/dt)F (t)

F̄ (t)

= (d/dt)[1 − r(Ḡ(t))]
r(Ḡ(t))

where

r(Ḡ(t)) ≡ r(Ḡ(t), . . . , Ḡ(t))

Hence,

λF (t) = r ′(Ḡ(t))

r(Ḡ(t))
G′(t)

= Ḡ(t)r ′(Ḡ(t))

r(Ḡ(t))

G′(t)
Ḡ(t)

= λG(t)
pr ′(p)

r(p)

∣∣∣∣
p=Ḡ(t)

(9.15)

Since Ḡ(t) is a decreasing function of t , it follows from Eq. (9.15) that if each
component of a coherent system has the same IFR lifetime distribution, then the dis-
tribution of system lifetime will be IFR if pr ′(p)/r(p) is a decreasing function of p.

Example 9.24 (The k-out-of-n System with Identical Components). Consider the k-
out-of-n system, which will function if and only if k or more components function.
When each component has the same probability p of functioning, the number of func-
tioning components will have a binomial distribution with parameters n and p. Hence,

r(p) =
n∑

i=k

(
n

i

)
pi(1 − p)n−i

which, by continual integration by parts, can be shown to be equal to

r(p) = n!
(k − 1)!(n − k)!

∫ p

0
xk−1(1 − x)n−kdx

Upon differentiation, we obtain

r ′(p) = n!
(k − 1)!(n − k)!p

k−1(1 − p)n−k

Therefore,

pr ′(p)

r(p)
=

[
r(p)

pr ′(p)

]−1
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=
[

1

p

∫ p

0

(
x

p

)k−1 (
1 − x

1 − p

)n−k

dx

]−1

Letting y = x/p yields

pr ′(p)

r(p)
=

[∫ 1

0
yk−1

(
1 − yp

1 − p

)n−k

dy

]−1

Since (1 − yp)/(1 − p) is increasing in p, it follows that pr ′(p)/r(p) is decreas-
ing in p. Thus, if a k-out-of-n system is composed of independent, like components
having an increasing failure rate, the system itself has an increasing failure rate. �

It turns out, however, that for a k-out-of-n system, in which the independent com-
ponents have different IFR lifetime distributions, the system lifetime need not be IFR.
Consider the following example of a two-out-of-two (that is, a parallel) system.

Example 9.25 (A Parallel System That Is Not IFR). The life distribution of a paral-
lel system of two independent components, the ith component having an exponential
distribution with mean 1/i, i = 1,2, is given by

F̄ (t) = 1 − (1 − e−t )(1 − e−2t )

= e−2t + e−t − e−3t

Therefore,

λ(t) = f (t)

F̄ (t)

= 2e−2t + e−t − 3e−3t

e−2t + e−t − e−3t

It easily follows upon differentiation that the sign of λ′(t) is determined by e−5t −
e−3t + 3e−4t , which is positive for small values and negative for large values of t .
Therefore, λ(t) is initially strictly increasing, and then strictly decreasing. Hence, F

is not IFR. �

Remark. The result of the preceding example is quite surprising at first glance. To
obtain a better feel for it we need the concept of a mixture of distribution functions.
The distribution function G is said to be a mixture of the distributions G1 and G2 if
for some p,0 < p < 1,

G(x) = pG1(x) + (1 − p)G2(x) (9.16)

Mixtures occur when we sample from a population made up of two distinct groups.
For example, suppose we have a stockpile of items of which the fraction p are type 1
and the fraction 1 −p are type 2. Suppose that the lifetime distribution of type 1 items
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is G1 and of type 2 items is G2. If we choose an item at random from the stockpile,
then its life distribution is as given by Eq. (9.16).

Consider now a mixture of two exponential distributions having rates λ1 and λ2

where λ1 < λ2. We are interested in determining whether or not this mixture distribu-
tion is IFR. To do so, we note that if the item selected has survived up to time t , then
its distribution of remaining life is still a mixture of the two exponential distributions.
This is so since its remaining life will still be exponential with rate λ1 if it is type 1 or
with rate λ2 if it is a type 2 item. However, the probability that it is a type 1 item is no
longer the (prior) probability p but is now a conditional probability given that it has
survived to time t . In fact, its probability of being a type 1 is

P {type 1 | life > t} = P {type 1, life > t}
P {life > t}

= pe−λ1t

pe−λ1t + (1 − p)e−λ2t

As the preceding is increasing in t , it follows that the larger t is, the more likely it is
that the item in use is a type 1 (the better one, since λ1 < λ2). Hence, the older the
item is, the less likely it is to fail, and thus the mixture of exponentials far from being
IFR is, in fact, DFR.

Now, let us return to the parallel system of two exponential components having
respective rates λ1 and λ2. The lifetime of such a system can be expressed as the sum
of two independent random variables, namely,

system life = Exp(λ1 + λ2) +

⎧⎪⎪⎨
⎪⎪⎩

Exp(λ1) with probability
λ2

λ1 + λ2

Exp(λ2) with probability
λ1

λ1 + λ2

The first random variable whose distribution is exponential with rate λ1 + λ2 repre-
sents the time until one of the components fails, and the second, which is a mixture
of exponentials, is the additional time until the other component fails. (Why are these
two random variables independent?)

Now, given that the system has survived a time t , it is very unlikely when t is large
that both components are still functioning, but instead it is far more likely that one
of the components has failed. Hence, for large t , the distribution of remaining life is
basically a mixture of two exponentials—and so as t becomes even larger its failure
rate should decrease (as indeed occurs). �

Recall that the failure rate function of a distribution F(t) having density f (t) =
F ′(t) is defined by

λ(t) = f (t)

1 − F(t)
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By integrating both sides, we obtain∫ t

0
λ(s) ds =

∫ t

0

f (s)

1 − F(s)
ds

= − log F̄ (t)

Hence,

F̄ (t) = e−�(t) (9.17)

where

�(t) =
∫ t

0
λ(s) ds

The function �(t) is called the hazard function of the distribution F .

Definition 9.1. A distribution F is said to have increasing failure on the average
(IFRA) if

�(t)

t
=

∫ t

0 λ(s) ds

t
(9.18)

increases in t for t � 0.

In other words, Eq. (9.18) states that the average failure rate up to time t increases
as t increases. It is not difficult to show that if F is IFR, then F is IFRA; but the
reverse need not be true.

Note that F is IFRA if �(s)/s � �(t)/t whenever 0 � s � t , which is equivalent
to

�(αt)

αt
� �(t)

t
for 0 � α � 1, all t � 0

But by Eq. (9.17) we see that �(t) = − log F̄ (t), and so the preceding is equivalent to

− log F̄ (αt) �−α log F̄ (t)

or equivalently,

log F̄ (αt) � log F̄ α(t)

which, since log x is a monotone function of x, shows that F is IFRA if and only if

F̄ (αt) � F̄ α(t) for 0 � α � 1, all t � 0 (9.19)

For a vector p = (p1, . . . , pn) we define pα = (pα
1 , . . . , pα

n ). We shall need the
following proposition.
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Proposition 9.2. Any reliability function r(p) satisfies

r(pα) � [r(p)]α, 0 � α � 1

Proof. We prove this by induction on n, the number of components in the system. If
n = 1, then either r(p) ≡ 0, r(p) ≡ 1, or r(p) ≡ p. Hence, the proposition follows in
this case.

Assume that Proposition 9.2 is valid for all monotone systems of n−1 components
and consider a system of n components having structure function φ. By conditioning
upon whether or not the nth component is functioning, we obtain

r(pα) = pα
n r(1n,pα) + (1 − pα

n )r(0n,pα) (9.20)

Now consider a system of components 1 through n − 1 having a structure function
φ1(x) = φ(1n,x). The reliability function for this system is given by r1(p) = r(1n,p);
hence, from the induction assumption (valid for all monotone systems of n − 1 com-
ponents), we have

r(1n,pα)� [r(1n,p)]α

Similarly, by considering the system of components 1 through n − 1 and structure
function φ0(x) = φ(0n,x), we obtain

r(0n,pα)� [r(0n,p)]α

Thus, from Eq. (9.20), we obtain

r(pα) � pα
n [r(1n,p)]α + (1 − pα

n )[r(0n,p)]α

which, by using the lemma to follow (with λ = pn, x = r(1n,p), y = r(0n,p)), im-
plies that

r(pα) � [pnr(1n,p) + (1 − pn)r(0n,p)]α
= [r(p)]α

which proves the result. �

Lemma 9.3. If 0 � α � 1,0 � λ� 1, then

h(y) = λαxα + (1 − λα)yα − (λx + (1 − λ)y)α � 0

for all 0 � y � x.

Proof. The proof is left as an exercise. �

We are now ready to prove the following important theorem.

Theorem 9.2. For a monotone system of independent components, if each component
has an IFRA lifetime distribution, then the distribution of system lifetime is itself IFRA.
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Proof. The distribution of system lifetime F is given by

F̄ (αt) = r(F̄1(αt), . . . , F̄n(αt))

Hence, since r is a monotone function, and since each of the component distributions
F̄i is IFRA, we obtain from Eq. (9.19)

F̄ (αt) � r(F̄ α
1 (t), . . . , F̄ α

n (t))

� [r(F̄1(t), . . . , F̄n(t))]α
= F̄ α(t)

which by Eq. (9.19) proves the theorem. The last inequality followed, of course, from
Proposition 9.2. �

9.6 Expected System Lifetime
In this section, we show how the mean lifetime of a system can be determined, at
least in theory, from a knowledge of the reliability function r(p) and the component
lifetime distributions Fi, i = 1, . . . , n.

Since the system’s lifetime will be t or larger if and only if the system is still func-
tioning at time t , we have

P {system life > t} = r
(
F̄(t)

)
where F̄(t) = (F̄1(t), . . . , F̄n(t)). Hence, by a well-known formula that states that for
any nonnegative random variable X,

E[X] =
∫ ∞

0
P {X > x}dx,

we see that4

E[system life] =
∫ ∞

0
r
(
F̄(t)

)
dt (9.21)

Example 9.26 (A Series System of Uniformly Distributed Components). Consider a
series system of three independent components each of which functions for an amount
of time (in hours) uniformly distributed over (0,10). Hence, r(p) = p1p2p3 and

Fi(t) =
{
t/10, 0 � t � 10
1, t > 10

i = 1,2,3

4 That E[X] = ∫ ∞
0 P {X > x}dx can be shown as follows when X has density f :∫ ∞

0
P {X > x}dx =

∫ ∞
0

∫ ∞
x

f (y)dy dx =
∫ ∞

0

∫ y

0
f (y)dx dy =

∫ ∞
0

yf (y)dy = E[X]
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Therefore,

r
(
F̄(t)

) =

⎧⎪⎨
⎪⎩

(
10 − t

10

)3

, 0 � t � 10

0, t > 10

and so from Eq. (9.21), we obtain

E[system life] =
∫ 10

0

(
10 − t

10

)3

dt

= 10
∫ 1

0
y3 dy

= 5
2 �

Example 9.27 (A Two-out-of-Three System). Consider a two-out-of-three system
of independent components, in which each component’s lifetime is (in months) uni-
formly distributed over (0,1). As was shown in Example 9.13, the reliability of such
a system is given by

r(p) = p1p2 + p1p3 + p2p3 − 2p1p2p3

Since

Fi(t) =
{
t, 0 � t � 1
1, t > 1

we see from Eq. (9.21) that

E[system life] =
∫ 1

0
[3(1 − t)2 − 2(1 − t)3]dt

=
∫ 1

0
(3y2 − 2y3) dy

= 1 − 1
2

= 1
2 �

Example 9.28 (A Four-Component System). Consider the four-component system
that functions when components 1 and 2 and at least one of components 3 and 4 func-
tions. Its structure function is given by

φ(x) = x1x2(x3 + x4 − x3x4)

and thus its reliability function equals

r(p) = p1p2(p3 + p4 − p3p4)
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Let us compute the mean system lifetime when the ith component is uniformly dis-
tributed over (0, i), i = 1,2,3,4. Now,

F̄1(t) =
{

1 − t, 0 � t � 1
0, t > 1

F̄2(t) =
{

1 − t/2, 0 � t � 2
0, t > 2

F̄3(t) =
{

1 − t/3, 0 � t � 3
0, t > 3

F̄4(t) =
{

1 − t/4, 0 � t � 4
0, t > 4

Hence,

r
(
F̄(t)

) =
⎧⎨
⎩(1 − t)

(
2 − t

2

)[
3 − t

3
+ 4 − t

4
− (3 − t)(4 − t)

12

]
, 0 � t � 1

0, t > 1

Therefore,

E[system life] = 1

24

∫ 1

0
(1 − t)(2 − t)(12 − t2) dt

= 593

(24)(60)

≈ 0.41 �

We end this section by obtaining the mean lifetime of a k-out-of-n system of in-
dependent identically distributed exponential components. If θ is the mean lifetime of
each component, then

F̄i(t) = e−t/θ

Hence, since for a k-out-of-n system,

r(p,p, . . . ,p) =
n∑

i=k

(
n

i

)
pi(1 − p)n−i

we obtain from Eq. (9.21)

E[system life] =
∫ ∞

0

n∑
i=k

(
n

i

)
(e−t/θ )i(1 − e−t/θ )n−idt

Making the substitution

y = e−t/θ , dy = −1

θ
e−t/θ dt = −y

θ
dt
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yields

E[system life] = θ

n∑
i=k

(
n

i

)∫ 1

0
yi−1(1 − y)n−idy

Now, it is not difficult to show that5

∫ 1

0
yn(1 − y)mdy = m!n!

(m + n + 1)! (9.22)

Thus, the foregoing equals

E[system life] = θ

n∑
i=k

n!
(n − i)!i!

(i − 1)!(n − i)!
n!

= θ

n∑
i=k

1

i
(9.23)

Remark. Eq. (9.23) could have been proven directly by making use of special prop-
erties of the exponential distribution. First note that the lifetime of a k-out-of-n system
can be written as T1 +· · ·+Tn−k+1, where Ti represents the time between the (i −1)st
and ith failure. This is true since T1 + · · · + Tn−k+1 equals the time at which the
(n − k + 1)st component fails, which is also the first time that the number of func-
tioning components is less than k. Now, when all n components are functioning,
the rate at which failures occur is n/θ . That is, T1 is exponentially distributed with
mean θ/n. Similarly, since Ti represents the time until the next failure when there are
n− (i −1) functioning components, it follows that Ti is exponentially distributed with
mean θ/(n − i + 1). Hence, the mean system lifetime equals

E[T1 + · · · + Tn−k+1] = θ

[
1

n
+ · · · + 1

k

]

Note also that it follows, from the lack of memory of the exponential, that the Ti, i =
1, . . . , n − k + 1, are independent random variables.

5 Let

C(n,m) =
∫ 1

0
yn(1 − y)mdy

Integration by parts yields C(n,m) = [m/(n + 1)]C(n + 1,m − 1). Starting with C(n,0) = 1/(n + 1),
Eq. (9.22) follows by mathematical induction.
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9.6.1 An Upper Bound on the Expected Life of a Parallel
System

Consider a parallel system of n components, whose lifetimes are not necessarily inde-
pendent. The system lifetime can be expressed as

system life = max
i

Xi

where Xi is the lifetime of component i, i = 1, . . . , n. We can bound the expected sys-
tem lifetime by making use of the following inequality. Namely, for any constant c

max
i

Xi � c +
n∑

i=1

(Xi − c)+ (9.24)

where x+, the positive part of x, is equal to x if x > 0 and is equal to 0 if x � 0. The
validity of Inequality (9.24) is immediate since if maxXi < c then the left side is equal
to maxXi and the right side is equal to c. On the other hand, if X(n) = maxXi > c then
the right side is at least as large as c + (X(n) − c) = X(n). It follows from Inequality
(9.24), upon taking expectations, that

E
[

max
i

Xi

]
� c +

n∑
i=1

E[(Xi − c)+] (9.25)

Now, (Xi − c)+ is a nonnegative random variable and so

E[(Xi − c)+] =
∫ ∞

0
P {(Xi − c)+ > x}dx

=
∫ ∞

0
P {Xi − c > x}dx

=
∫ ∞

c

P {Xi > y}dy

Thus, we obtain

E
[

max
i

Xi

]
� c +

n∑
i=1

∫ ∞

c

P {Xi > y}dy (9.26)

Because the preceding is true for all c, it follows that we obtain the best bound by
letting c equal the value that minimizes the right side of the preceding. To determine
that value, differentiate the right side of the preceding and set the result equal to 0, to
obtain

1 −
n∑

i=1

P {Xi > c} = 0
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That is, the minimizing value of c is that value c∗ for which

n∑
i=1

P {Xi > c∗} = 1

Since
∑n

i=1 P {Xi > c} is a decreasing function of c, the value of c∗ can be easily
approximated and then utilized in Inequality (9.26). Also, it is interesting to note that
c∗ is such that the expected number of the Xi that exceed c∗ is equal to 1 (see Ex-
ercise 32). That the optimal value of c has this property is interesting and somewhat
intuitive in as much as Inequality (9.24) is an equality when exactly one of the Xi

exceeds c.

Example 9.29. Suppose the lifetime of component i is exponentially distributed with
rate λi, i = 1, . . . , n. Then the minimizing value of c is such that

1 =
n∑

i=1

P {Xi > c∗} =
n∑

i=1

e−λic
∗

and the resulting bound of the mean system life is

E
[

max
i

Xi

]
� c∗ +

n∑
i=1

E[(Xi − c∗)+]

= c∗ +
n∑

i=1

(
E[(Xi − c∗)+ | Xi > c∗]P {Xi > c∗]

+ E[(Xi − c∗)+ | Xi � c∗] P {Xi � c∗])
= c∗ +

n∑
i=1

1

λi

e−λic
∗

In the special case where all the rates are equal, say, λi = λ, i = 1, . . . , n, then

1 = ne−λc∗
or c∗ = 1

λ
log(n)

and the bound is

E
[

max
i

Xi

]
� 1

λ
(log(n) + 1)

That is, if X1, . . . ,Xn are identically distributed exponential random variables with
rate λ, then the preceding gives a bound on the expected value of their maximum. In
the special case where these random variables are also independent, the following ex-
act expression, given by Eq. (9.25), is not much less than the preceding upper bound:

E
[

max
i

Xi

] = 1

λ

n∑
i=1

1/i ≈ 1

λ

∫ n

1

1

x
dx ≈ 1

λ
log(n) �
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9.7 Systems with Repair
Consider an n-component system having reliability function r(p). Suppose that com-
ponent i functions for an exponentially distributed time with rate λi and then fails;
once failed it takes an exponential time with rate μi to be repaired, i = 1, . . . , n. All
components act independently.

Let us suppose that all components are initially working, and let

A(t) = P {system is working at t}
A(t) is called the availability at time t . Since the components act independently, A(t)

can be expressed in terms of the reliability function as follows:

A(t) = r(A1(t), . . . ,An(t)) (9.27)

where

Ai(t) = P {component i is functioning at t}
Now the state of component i—either on or off—changes in accordance with a two-
state continuous time Markov chain. Hence, from the results of Example 6.11, we
have

Ai(t) = P00(t) = μi

μi + λi

+ λi

μi + λi

e−(λi+μi)t

Thus, we obtain

A(t) = r

(
μ

μ + λ
+ λ

μ + λ
e−(λ+μ)t

)

If we let t approach ∞, then we obtain the limiting availability—call it A—which is
given by

A = lim
t→∞A(t) = r

(
μ

λ + μ

)

Remarks. (i) If the on and off distribution for component i are arbitrary contin-
uous distributions with respective means 1/λi and 1/μi, i = 1, . . . , n, then it
follows from the theory of alternating renewal processes (see Section 7.5.1) that

Ai(t) → 1/λi

1/λi + 1/μi

= μi

μi + λi

and thus using the continuity of the reliability function, it follows from (9.27)
that the limiting availability is

A = lim
t→∞ A(t) = r

(
μ

μ + λ

)

Hence, A depends only on the on and off distributions through their means.
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(ii) It can be shown (using the theory of regenerative processes as presented in Sec-
tion 7.5) that A will also equal the long-run proportion of time that the system
will be functioning.

Example 9.30. For a series system, r(p) = ∏n
i=1pi and so

A(t) =
n∏

i=1

[
μi

μi + λi

+ λi

μi + λi

e−(λi+μi)t

]

and

A =
n∏

i=1

μi

μi + λi

�

Example 9.31. For a parallel system, r(p) = 1 − ∏n
i=1 (1 − pi) and thus

A(t) = 1 −
n∏

i=1

[
λi

μi + λi

(1 − e−(λi+μi)t )

]

and

A(t) = 1 −
n∏

i=1

λi

μi + λi

�

The preceding system will alternate between periods when it is up and periods
when it is down. Let us denote by Ui and Di, i � 1, the lengths of the ith up and
down period respectively. For instance in a two-out-of-three system, U1 will be the
time until two components are down; D1, the additional time until two are up; U2 the
additional time until two are down, and so on. Let

Ū = lim
n→∞

U1 + · · · + Un

n
,

D̄ = lim
n→∞

D1 + · · · + Dn

n

denote the average length of an up and down period respectively.6

To determine Ū and D̄, note first that in the first n up–down cycles—that is, in time∑n
i=1(Ui + Di)—the system will be up for a time

∑n
i=1 Ui . Hence, the proportion of

time the system will be up in the first n up–down cycles is

U1 + · · · + Un

U1 + · · · + Un + D1 + · · · + Dn

=
∑n

i=1 Ui/n∑n
i=1 Ui/n + ∑n

i=1 Di/n

6 It can be shown using the theory of regenerative processes that, with probability 1, the preceding limits
will exist and will be constants.
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As n → ∞, this must converge to A, the long-run proportion of time the system is up.
Hence,

Ū

Ū + D̄
= A = r

(
μ

λ + μ

)
(9.28)

However, to solve for Ū and D̄ we need a second equation. To obtain one consider the
rate at which the system fails. As there will be n failures in time

∑n
i=1(Ui + Di), it

follows that the rate at which the system fails is

rate at which system fails = lim
n→∞

n∑n
1 Ui + ∑n

1 Di

= lim
n→∞

1∑n
1 Ui/n + ∑n

1 Di/n
= 1

Ū + D̄
(9.29)

That is, the foregoing yields the intuitive result that, on average, there is one failure
every Ū + D̄ time units. To utilize this, let us determine the rate at which a fail-
ure of component i causes the system to go from up to down. Now, the system will
go from up to down when component i fails if the states of the other components
x1, . . . , xi−1, xi−1, . . . , xn are such that φ(1i ,x) = 1, φ(0i ,x) = 0. That is, the states
of the other components must be such that

φ(1i ,x) − φ(0i ,x) = 1 (9.30)

Since component i will, on average, have one failure every 1/λi + 1/μi time units,
it follows that the rate at which component i fails is equal to (1/λi + 1/μi)

−1 =
λiμi/(λi +μi). In addition, the states of the other components will be such that (9.30)
holds with probability

P {φ(1i ,X(∞)) − φ(0i ,X(∞)) = 1}
= E[φ(1i ,X(∞)) − φ(0i ,X(∞))] since φ(1i ,X(∞)) − φ(0i ,X(∞))

is a Bernoulli random variable

= r

(
1i ,

μ

λ + μ

)
− r

(
0i ,

μ

λ + μ

)

Hence, putting the preceding together, we see that

rate at which component
i causes the system to fail

= λiμi

λi + μi

[
r

(
1i ,

μ

λ + μ

)
− r

(
0i ,

μ

λ + μ

)]

Summing this over all components i thus gives

rate at which system fails =
∑

i

λiμi

λi + μi

[
r

(
1i ,

μ

λ + μ

)
− r

(
0i ,

μ

λ + μ

)]



Reliability Theory 641

Finally, equating the preceding with (9.29) yields

1

Ū + D̄
=

∑
i

λiμi

λi + μi

[
r

(
1i ,

μ

λ + μ

)
− r

(
0i ,

μ

λ + μ

)]
(9.31)

Solving (9.28) and (9.31), we obtain

Ū =
r

(
μ

λ + μ

)
n∑

i=1

λiμi

λi + μi

[
r

(
1i ,

μ

λ + μ

)
− r

(
0i ,

μ

λ + μ

)] , (9.32)

D̄ =

[
1 − r

(
μ

λ + μ

)]
Ū

r

(
μ

λ + μ

) (9.33)

Also, (9.31) yields the rate at which the system fails.

Remark. In establishing the formulas for Ū and D̄, we did not make use of the
assumption of exponential on and off times and in fact, our derivation is valid and
Eqs. (9.32) and (9.33) hold whenever Ū and D̄ are well defined (a sufficient condition
is that all on and off distributions are continuous). The quantities λi,μi, i = 1, . . . , n,
will represent, respectively, the reciprocals of the mean lifetimes and mean repair
times.

Example 9.32. For a series system,

Ū =
∏

i

μi

μi + λi∑
i

λiμi

λi + μi

∏
j �=i

μj

μj + λj

= 1∑
i λi

,

D̄ =
1 − ∏

i

μi

μi + λi∏
i

μi

μi + λi

× 1∑
i λi

whereas for a parallel system,

Ū =
1 − ∏

i

λi

μi + λi∑
i

λiμi

λi + μi

∏
j �=i

λj

μj + λj

=
1 − ∏

i

λi

μi + λi∏
j

λj

μj + λj

× 1∑
i μi

,
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D̄ =
∏

i

λi

μi + λi

1 − ∏
i

λi

μi + λi

Ū = 1∑
i μi

The preceding formulas hold for arbitrary continuous up and down distributions with
1/λi and 1/μi denoting respectively the mean up and down times of component
i, i = 1, . . . , n. �

9.7.1 A Series Model with Suspended Animation

Consider a series consisting of n components, and suppose that whenever a compo-
nent (and thus the system) goes down, repair begins on that component and each of
the other components enters a state of suspended animation. That is, after the down
component is repaired, the other components resume operation in exactly the same
condition as when the failure occurred. If two or more components go down simulta-
neously, one of them is arbitrarily chosen as being the failed component and repair on
that component begins; the others that went down at the same time are considered to
be in a state of suspended animation, and they will instantaneously go down when the
repair is completed. We suppose that (not counting any time in suspended animation)
the distribution of time that component i functions is Fi with mean ui , whereas its
repair distribution is Gi with mean di, i = 1, . . . , n.

To determine the long-run proportion of time this system is working, we reason as
follows. To begin, consider the time, call it T , at which the system has been up for
a time t . Now, when the system is up, the failure times of component i constitute a
renewal process with mean interarrival time ui . Therefore, it follows that

number of failures of i in time T ≈ t

ui

As the average repair time of i is di , the preceding implies that

total repair time of i in time T ≈ tdi

ui

Therefore, in the period of time in which the system has been up for a time t , the total
system downtime has approximately been

t

n∑
i=1

di/ui

Hence, the proportion of time that the system has been up is approximately

t

t + t
∑n

i=1 di/ui
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Because this approximation should become exact as we let t become larger, it follows
that

proportion of time the system is up = 1

1 + ∑
i di/ui

(9.34)

which also shows that

proportion of time the system is down = 1−proportion of time the system is up

=
∑

i di/ui

1 + ∑
i di/ui

Moreover, in the time interval from 0 to T , the proportion of the repair time that has
been devoted to component i is approximately

tdi/ui∑
i tdi/ui

Thus, in the long run,

proportion of down time that is due to component i = di/ui∑
i di/ui

Multiplying the preceding by the proportion of time the system is down gives

proportion of time component i is being repaired = di/ui

1 + ∑
i di/ui

Also, since component j will be in suspended animation whenever any of the other
components is in repair, we see that

proportion of time component j is in suspended animation =
∑

i �=j di/ui

1 + ∑
i di/ui

Another quantity of interest is the long-run rate at which the system fails. Since
component i fails at rate 1/ui when the system is up, and does not fail when the
system is down, it follows that

rate at which i fails = proportion of time system is up

ui

= 1/ui

1 + ∑
i di/ui

Since the system fails when any of its components fail, the preceding yields that

rate at which the system fails =
∑

i 1/ui

1 + ∑
idi/ui

(9.35)
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If we partition the time axis into periods when the system is up and those when it
is down, we can determine the average length of an up period by noting that if U(t) is
the total amount of time that the system is up in the interval [0, t], and if N(t) is the
number of failures by time t , then

average length of an up period = lim
t→∞

U(t)

N(t)

= lim
t→∞

U(t)/t

N(t)/t

= 1∑
i 1/ui

where the final equality used Eqs. (9.34) and (9.35). Also, in a similar manner, it can
be shown that

average length of a down period =
∑

i di/ui∑
i 1/ui

(9.36)

Exercises
1. Prove that, for any structure function φ,

φ(x) = xiφ(1i ,x) + (1 − xi)φ(0i ,x)

where

(1i ,x) = (x1, . . . , xi−1,1, xi+1, . . . , xn),

(0i ,x) = (x1, . . . , xi−1,0, xi+1, . . . , xn)

2. Show that
(a) if φ(0,0, . . . ,0) = 0 and φ(1,1, . . . ,1) = 1, then

minxi � φ(x) � maxxi

(b) φ(max(x,y)) � max(φ(x),φ(y))

(c) φ(min(x,y)) � min(φ(x),φ(y))

3. For any structure function φ, we define the dual structure φD by

φD(x) = 1 − φ(1 − x)

(a) Show that the dual of a parallel (series) system is a series (parallel) sys-
tem.

(b) Show that the dual of a dual structure is the original structure.
(c) What is the dual of a k-out-of-n structure?
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(d) Show that a minimal path (cut) set of the dual system is a minimal cut
(path) set of the original structure.

*4. Write the structure function corresponding to the following:
(a) See Fig. 9.16:

Figure 9.16

(b) See Fig. 9.17:

Figure 9.17

(c) See Fig. 9.18:

Figure 9.18

5. Find the minimal path and minimal cut sets for:
(a) See Fig. 9.19:

Figure 9.19

(b) See Fig. 9.20:
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Figure 9.20

*6. The minimal path sets are {1, 2, 4}, {1, 3, 5}, and {5, 6}. Give the minimal cut
sets.

7. The minimal cut sets are {1, 2, 3}, {2, 3, 4}, and {3, 5}. What are the minimal
path sets?

8. Give the minimal path sets and the minimal cut sets for the structure given by
Fig. 9.21.

Figure 9.21

9. Component i is said to be relevant to the system if for some state vector x,

φ(1i ,x) = 1, φ(0i ,x) = 0

Otherwise, it is said to be irrelevant.
(a) Explain in words what it means for a component to be irrelevant.
(b) Let A1, . . . ,As be the minimal path sets of a system, and let S denote the

set of components. Show that S = ⋃s
i=1Ai if and only if all components

are relevant.
(c) Let C1, . . . ,Ck denote the minimal cut sets. Show that S = ⋃k

i=1Ci if
and only if all components are relevant.

10. Let ti denote the time of failure of the ith component; let τφ(t) denote the time
to failure of the system φ as a function of the vector t = (t1, . . . , tn). Show that

max
1�j�s

min
i∈Aj

ti = τφ(t) = min
1�j�k

max
i∈Cj

ti

where C1, . . . ,Ck are the minimal cut sets, and A1, . . . ,As the minimal path
sets.

11. Give the reliability function of the structure of Exercise 8.
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*12. Give the minimal path sets and the reliability function for the structure in
Fig. 9.22.

Figure 9.22

13. Let r(p) be the reliability function. Show that

r(p) = pir(1i ,p) + (1 − pi)r(0i ,p)

14. Compute the reliability function of the bridge system (see Fig. 9.11) by condi-
tioning upon whether or not component 3 is working.

15. Compute upper and lower bounds of the reliability function (using Method 2)
for the systems given in Exercise 4, and compare them with the exact values
when pi ≡ 1

2 .
16. Compute the upper and lower bounds of r(p) using both methods for the

(a) two-out-of-three system and
(b) two-out-of-four system.
(c) Compare these bounds with the exact reliability when

(i) pi ≡ 0.5
(ii) pi ≡ 0.8

(iii) pi ≡ 0.2
*17. Let N be a nonnegative, integer-valued random variable. Show that

P {N > 0}� (E[N ])2

E[N2]
and explain how this inequality can be used to derive additional bounds on a
reliability function.

Hint:

E[N2] = E[N2 | N > 0]P {N > 0} (Why?)

� (E[N | N > 0])2P {N > 0} (Why?)

Now multiply both sides by P {N > 0}.
18. Consider a structure in which the minimal path sets are {1, 2, 3} and {3, 4, 5}.

(a) What are the minimal cut sets?
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(b) If the component lifetimes are independent uniform (0,1) random vari-
ables, determine the probability that the system life will be less than 1

2 .
19. Let X1,X2, . . . ,Xn denote independent and identically distributed random

variables and define the order statistics X(1), . . . ,X(n) by

X(i) ≡ ith smallest of X1, . . . ,Xn

Show that if the distribution of Xj is IFR, then so is the distribution of X(i).
Hint: Relate this to one of the examples of this chapter.

20. Let F be a continuous distribution function. For some positive α, define the
distribution function G by

Ḡ(t) = (F̄ (t))α

Find the relationship between λG(t) and λF (t), the respective failure rate func-
tions of G and F .

21. Consider the following four structures:
(i) See Fig. 9.23:

Figure 9.23

(ii) See Fig. 9.24:

Figure 9.24

(iii) See Fig. 9.25:

Figure 9.25

(iv) See Fig. 9.26:
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Figure 9.26

Let F1,F2, and F3 be the corresponding component failure distributions; each
of which is assumed to be IFR (increasing failure rate). Let F be the system
failure distribution. All components are independent.
(a) For which structures is F necessarily IFR if F1 = F2 = F3? Give reasons.
(b) For which structures is F necessarily IFR if F2 = F3? Give reasons.
(c) For which structures is F necessarily IFR if F1 �= F2 �= F3? Give reasons.

*22. Let X denote the lifetime of an item. Suppose the item has reached the age of t .
Let Xt denote its remaining life and define

F̄t (a) = P {Xt > a}
In words, F̄t (a) is the probability that a t-year-old item survives an additional
time a. Show that
(a) F̄t (a) = F̄ (t + a)/F̄ (t) where F is the distribution function of X.
(b) Another definition of IFR is to say that F is IFR if F̄t (a) decreases in t ,

for all a. Show that this definition is equivalent to the one given in the
text when F has a density.

23. Show that if each (independent) component of a series system has an IFR dis-
tribution, then the system lifetime is itself IFR by
(a) showing that

λF (t) =
∑

i

λi(t)

where λF (t) is the failure rate function of the system; and λi(t) the failure
rate function of the lifetime of component i.

(b) using the definition of IFR given in Exercise 22.
24. Show that if F is IFR, then it is also IFRA, and show by counterexample that

the reverse is not true.
*25. We say that ζ is a p-percentile of the distribution F if F(ζ ) = p. Show that if

ζ is a p-percentile of the IFRA distribution F , then

F̄ (x) � e−θx, x � ζ

F̄ (x) � e−θx, x � ζ

where

θ = − log(1 − p)

ζ
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26. Prove Lemma 9.3.

Hint: Let x = y + δ. Note that f (t) = tα is a concave function when
0 � α � 1, and use the fact that for a concave function f (t + h) − f (t) is
decreasing in t .

27. Let r(p) = r(p,p, . . . ,p). Show that if r(p0) = p0, then

r(p) � p for p � p0
r(p) � p for p � p0

Hint: Use Proposition 9.2.
28. Find the mean lifetime of a series system of two components when the compo-

nent lifetimes are respectively uniform on (0,1) and uniform on (0,2). Repeat
for a parallel system.

29. Show that the mean lifetime of a parallel system of two components is

1

μ1 + μ2
+ μ1

(μ1 + μ2)μ2
+ μ2

(μ1 + μ2)μ1

when the first component is exponentially distributed with mean 1/μ1 and the
second is exponential with mean 1/μ2.

*30. Compute the expected system lifetime of a three-out-of-four system when the
first two component lifetimes are uniform on (0,1) and the second two are
uniform on (0,2).

31. Show that the variance of the lifetime of a k-out-of-n system of components,
each of whose lifetimes is exponential with mean θ , is given by

θ2
n∑

i=k

1

i2

32. In Section 9.6.1, show that the expected number of Xi that exceed c∗ is equal
to 1.

33. Let Xi be an exponential random variable with mean 8 + 2i, for i = 1,2,3.
Use the results of Section 9.6.1 to obtain an upper bound on E[maxXi], and
then compare this with the exact result when the Xi are independent.

34. For the model of Section 9.7, compute for a k-out-of-n structure (i) the average
up time, (ii) the average down time, and (iii) the system failure rate.

35. Prove the combinatorial identity(
n − 1
i − 1

)
=

(
n

i

)
−

(
n

i + 1

)
+ · · · ±

(
n

n

)
, i � n

(a) by induction on i;
(b) by a backwards induction argument on i—that is, prove it first for i = n,

then assume it for i = k and show that this implies that it is true for
i = k − 1.

36. Verify Eq. (9.36).
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10Brownian Motion and Stationary
Processes

10.1 Brownian Motion
Let us start by considering the symmetric random walk, which in each time unit is
equally likely to take a unit step either to the left or to the right. That is, it is a Markov
chain with Pi,i+1 = 1

2 = Pi,i−1, i = 0,±1, . . . . Now, suppose that we speed up this
process by taking smaller and smaller steps in smaller and smaller time intervals. If
we now go to the limit in the right manner what we obtain is Brownian motion.

More precisely, suppose that each �t time unit we take a step of size �x either to
the left or the right with equal probabilities. If we let X(t) denote the position at time
t then

X(t) = �x(X1 + · · · + X[t/�t]) (10.1)

where

Xi =
{+1, if the ith step of length �x is to the right

−1, if it is to the left

[t/�t] is the largest integer less than or equal to t/�t , and the Xi are assumed inde-
pendent with

P {Xi = 1} = P {Xi = −1} = 1
2

As E[Xi] = 0,Var(Xi) = E[X2
i ] = 1, we see from Eq. (10.1) that

E[X(t)] = 0,

Var(X(t)) = (�x)2
[

t

�t

]
(10.2)

We shall now let �x and �t go to 0. However, we must do it in a way such that the re-
sulting limiting process is nontrivial (for instance, if we let �x = �t and let �t → 0,
then from the preceding we see that E[X(t)] and Var(X(t)) would both converge to
0 and thus X(t) would equal 0 with probability 1). If we let �x = σ

√
�t for some

positive constant σ then from Eq. (10.2) we see that as �t → 0

E[X(t)] = 0,

Var(X(t)) → σ 2t

We now list some intuitive properties of this limiting process obtained by taking
�x = σ

√
�t and then letting �t → 0. From Eq. (10.1) and the central limit theorem,

the following seems reasonable:

Introduction to Probability Models. https://doi.org/10.1016/B978-0-44-318761-2.00015-4
Copyright © 2024 Elsevier Inc. All rights reserved.
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(i) X(t) is normal with mean 0 and variance σ 2t . In addition, because the changes
of value of the random walk in nonoverlapping time intervals are independent,

(ii) {X(t), t ≥ 0} has independent increments, in that for all t1 < t2 < · · · < tn

X(tn) − X(tn−1),X(tn−1) − X(tn−2), . . . ,X(t2) − X(t1),X(t1)

are independent. Finally, because the distribution of the change in position of
the random walk over any time interval depends only on the length of that in-
terval, it would appear that

(iii) {X(t), t ≥ 0} has stationary increments, in that the distribution of X(t + s) −
X(t) does not depend on t . We are now ready for the following formal defini-
tion.

Definition 10.1. A stochastic process {X(t), t ≥ 0} is said to be a Brownian motion
process if

(i) X(0) = 0;
(ii) {X(t), t ≥ 0} has stationary and independent increments;

(iii) for every t > 0,X(t) is normally distributed with mean 0 and variance σ 2t .

The Brownian motion process, sometimes called the Wiener process, is one of the
most useful stochastic processes in applied probability theory. It originated in physics
as a description of Brownian motion. This phenomenon, named after the English bota-
nist Robert Brown who discovered it, is the motion exhibited by a small particle that is
totally immersed in a liquid or gas. Since then, the process has been used beneficially
in such areas as statistical testing of goodness of fit, analyzing the price levels on the
stock market, and quantum mechanics.

The first explanation of the phenomenon of Brownian motion was given by Einstein
in 1905. He showed that Brownian motion could be explained by assuming that the im-
mersed particle was continually being subjected to bombardment by the molecules of
the surrounding medium. However, the preceding concise definition of this stochas-
tic process underlying Brownian motion was given by Wiener in a series of papers
originating in 1918.

When σ =1, the process is called standard Brownian motion. Because any Brow-
nian motion can be converted to the standard process by letting B(t) = X(t)/σ we
shall, unless otherwise stated, suppose throughout this chapter that σ = 1.

The interpretation of Brownian motion as the limit of the random walks (Eq. (10.1))
suggests that X(t) should be a continuous function of t , which turns out to be true. To
prove this, we must show that with probability 1

lim
h→0

(X(t + h) − X(t)) = 0

Although a rigorous proof of the preceding is beyond the scope of this text, a plausi-
bility argument is obtained by noting that the random variable X(t + h) − X(t) has
mean 0 and variance h, and so would seem to converge to a random variable with
mean 0 and variance 0 as h → 0. That is, it seems reasonable that X(t + h) − X(t)

converges to 0, thus yielding continuity.
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Although X(t) will, with probability 1, be a continuous function of t , it possesses
the interesting property of being nowhere differentiable. To see why this might be
the case, note that X(t+h)−X(t)

h
has mean 0 and variance 1/h. Because the variance

of X(t+h)−X(t)
h

converges to ∞ as h → 0, it is not surprising that the ratio does not
converge.

As X(t) is normal with mean 0 and variance t , its density function is given by

ft (x) = 1√
2πt

e−x2/2t

To obtain the joint density function of X(t1),X(t2), . . . ,X(tn) for t1 < · · · < tn, note
first that the set of equalities

X(t1) = x1,

X(t2) = x2,

...

X(tn) = xn

is equivalent to

X(t1) = x1,

X(t2) − X(t1) = x2 − x1,

...

X(tn) − X(tn−1) = xn − xn−1

However, by the independent increment assumption it follows that X(t1),X(t2) −
X(t1), . . . ,X(tn)−X(tn−1), are independent and, by the stationary increment assump-
tion, that X(tk) − X(tk−1) is normal with mean 0 and variance tk − tk−1. Hence, the
joint density of X(t1), . . . ,X(tn) is given by

f (x1, x2, . . . , xn) = ft1(x1)ft2−t1(x2 − x1) · · ·ftn−tn−1(xn − xn−1)

=
exp

{
−1

2

[
x2

1

t1
+ (x2 − x1)

2

t2 − t1
+ · · · + (xn − xn−1)

2

tn − tn−1

]}
(2π)n/2[t1(t2 − t1) · · · (tn − tn−1)]1/2

(10.3)

From this equation, we can compute in principle any desired probabilities. For in-
stance, suppose we require the conditional distribution of X(s) given that X(t) = B

where s < t . The conditional density is

fs|t (x|B) = fs(x)ft−s(B − x)

ft (B)

= K1 exp{−x2/2s − (B − x)2/2(t − s)}
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= K2 exp

{
−x2

(
1

2s
+ 1

2(t − s)

)
+ Bx

t − s

}
= K2 exp

{
− t

2s(t − s)

(
x2 − 2

sB

t
x

)}
= K3 exp

{
− (x − Bs/t)2

2s(t − s)/t

}
where K1,K2, and K3 do not depend on x. Hence, we see from the preceding that the
conditional distribution of X(s) given that X(t) = B is, for s < t , normal with mean
and variance given by

E[X(s)|X(t) = B] = s

t
B,

Var[X(s)|X(t) = B] = s

t
(t − s) (10.4)

Example 10.1. In a bicycle race between two competitors, let Y(t) denote the amount
of time (in seconds) by which the racer that started in the inside position is ahead when
100t percent of the race has been completed, and suppose that {Y(t), 0 ≤ t ≤ 1} can
be effectively modeled as a Brownian motion process with variance parameter σ 2.

(a) If the inside racer is leading by σ seconds at the midpoint of the race, what is
the probability that she is the winner?

(b) If the inside racer wins the race by a margin of σ seconds, what is the probability
that she was ahead at the midpoint?

Solution:

(a) P {Y(1) > 0|Y(1/2) = σ }
= P {Y(1) − Y(1/2) > −σ |Y(1/2) = σ }
= P {Y(1) − Y(1/2) > −σ } by independent increments

= P {Y(1/2) > −σ } by stationary increments

= P

{
Y(1/2)

σ/
√

2
> −√

2

}
= �(

√
2)

≈ 0.9213

where �(x) = P {N(0,1) ≤ x} is the standard normal distribution function.
(b) Because we must compute P {Y(1/2) > 0|Y(1) = σ }, let us first determine

the conditional distribution of Y(s) given that Y(t) = C, when s < t . Now,
since {X(t), t ≥ 0} is standard Brownian motion when X(t) = Y(t)/σ , we
obtain from Eq. (10.4) that the conditional distribution of X(s), given that
X(t) = C/σ , is normal with mean sC/tσ and variance s(t − s)/t . Hence,
the conditional distribution of Y(s) = σX(s) given that Y(t) = C is normal
with mean sC/t and variance σ 2s(t − s)/t . Hence,

P {Y(1/2) > 0|Y(1) = σ } = P {N(σ/2, σ 2/4) > 0}
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= �(1)

≈ 0.8413 �

10.2 Hitting Times, Maximum Variable, and the Gambler’s Ruin
Problem

Let Ta denote the first time the Brownian motion process hits a. When a > 0 we will
compute P {Ta ≤ t} by considering P {X(t) ≥ a} and conditioning on whether or not
Ta ≤ t . This gives

P {X(t) ≥ a} = P {X(t) ≥ a|Ta ≤ t}P {Ta ≤ t}
+ P {X(t) ≥ a|Ta > t}P {Ta > t} (10.5)

Now if Ta ≤ t , then the process hits a at some point in [0, t] and, by symmetry, it is
just as likely to be above a or below a at time t . That is,

P {X(t) ≥ a|Ta ≤ t} = 1
2

As the second right-hand term of Eq. (10.5) is clearly equal to 0 (since, by con-
tinuity, the process value cannot be greater than a without having yet hit a), we see
that

P {Ta ≤ t} = 2P {X(t) ≥ a}
= 2√

2πt

∫ ∞

a

e−x2/2t dx

= 2√
2π

∫ ∞

a/
√

t

e−y2/2 dy, a > 0 (10.6)

For a < 0, the distribution of Ta is, by symmetry, the same as that of T−a . Hence,
from Eq. (10.6) we obtain

P {Ta ≤ t} = 2√
2π

∫ ∞

|a|/√t

e−y2/2 dy (10.7)

Another random variable of interest is the maximum value the process attains in
[0, t]. Its distribution is obtained as follows: For a > 0

P

{
max

0≤s≤t
X(s) ≥ a

}
= P {Ta ≤ t} by continuity

= 2P {X(t) ≥ a} from (10.6)

= 2√
2π

∫ ∞

a/
√

t

e−y2/2 dy

Let us now consider the probability that Brownian motion hits A before −B where
A > 0, B > 0. To compute this we shall make use of the interpretation of Brow-
nian motion as being a limit of the symmetric random walk. To start let us recall



658 Introduction to Probability Models

from the results of the gambler’s ruin problem (see Section 4.5.1) that the proba-
bility that the symmetric random walk goes up A before going down B when each
step is equally likely to be either up or down a distance �x is (by Eq. (4.14) with
N = (A + B)/�x, i = B/�x) equal to B�x/(A + B)�x = B/(A + B).

Hence, upon letting �x → 0, we see that

P {up A before down B} = B

A + B

10.3 Variations on Brownian Motion
10.3.1 Brownian Motion with Drift

We say that {X(t), t ≥ 0} is a Brownian motion process with drift coefficient μ and
variance parameter σ 2 if

(i) X(0) = 0;
(ii) {X(t), t ≥ 0} has stationary and independent increments;

(iii) X(t) is normally distributed with mean μt and variance tσ 2.

An equivalent definition is to let {B(t), t ≥ 0} be standard Brownian motion and
then define

X(t) = σB(t) + μt

It follows from this representation that X(t) will also be a continuous function of t .

10.3.2 Geometric Brownian Motion

If {Y(t), t ≥ 0} is a Brownian motion process with drift coefficient μ and variance
parameter σ 2, then the process {X(t), t ≥ 0} defined by

X(t) = eY(t)

is called geometric Brownian motion.
For a geometric Brownian motion process {X(t)}, let us compute the expected

value of the process at time t given the history of the process up to time s. That is, for
s < t , consider E[X(t)|X(u), 0 ≤ u ≤ s]. Now,

E[X(t)|X(u), 0 ≤ u ≤ s] = E[eY(t)|Y(u), 0 ≤ u ≤ s]
= E[eY(s)+Y(t)−Y(s)|Y(u), 0 ≤ u ≤ s]
= eY(s)E[eY(t)−Y(s)|Y(u), 0 ≤ u ≤ s]
= X(s)E[eY(t)−Y(s)]

where the next to last equality follows from the fact that Y(s) is given, and the last
equality from the independent increment property of Brownian motion. Now, the mo-
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ment generating function of a normal random variable W is given by

E[eaW ] = eaE[W ]+a2Var(W)/2

Hence, since Y(t) − Y(s) is normal with mean μ(t − s) and variance (t − s)σ 2, it
follows by setting a = 1 that

E[eY(t)−Y (s)] = eμ(t−s)+(t−s)σ 2/2

Thus, we obtain

E[X(t)|X(u), 0 ≤ u ≤ s] = X(s)e(t−s)(μ+σ 2/2) (10.8)

Geometric Brownian motion is useful in the modeling of stock prices over time
when you feel that the percentage changes are independent and identically distributed.
For instance, suppose that Xn is the price of some stock at time n. Then, it might
be reasonable to suppose that Xn/Xn−1, n ≥ 1, are independent and identically dis-
tributed. Let

Yn = Xn/Xn−1

and so

Xn = YnXn−1

Iterating this equality gives

Xn = YnYn−1Xn−2

= YnYn−1Yn−2Xn−3

...

= YnYn−1 · · ·Y1X0

Thus,

log(Xn) =
n∑

i=1

log(Yi) + log(X0)

Since log(Yi), i ≥ 1 are independent and identically distributed, {log(Xn)} will, when
suitably normalized, approximately be Brownian motion with a drift, and so {Xn} will
be approximately geometric Brownian motion.

10.4 Pricing Stock Options
10.4.1 An Example in Options Pricing

In situations in which money is to be received or paid out in differing time periods, we
must take into account the time value of money. That is, to be given the amount v a
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time t in the future is not worth as much as being given v immediately. The reason for
this is that if we were immediately given v, then it could be loaned out with interest
and so be worth more than v at time t . To take this into account, we will suppose that
the time 0 value, also called the present value, of the amount v to be earned at time
t is ve−αt . The quantity α is often called the discount factor. In economic terms, the
assumption of the discount function e−αt is equivalent to the assumption that we can
earn interest at a continuously compounded rate of 100α percent per unit time.

We will now consider a simple model for pricing an option to purchase a stock at a
future time at a fixed price.

Suppose the present price of a stock is $100 per unit share, and suppose we know
that after one time period it will be, in present value dollars, either $200 or $50 (see
Fig. 10.1). It should be noted that the prices at time 1 are the present value (or time 0)
prices. That is, if the discount factor is α, then the actual possible prices at time 1
are either 200eα or 50eα . To keep the notation simple, we will suppose that all prices
given are time 0 prices.

Suppose that for any y, at a cost of cy, you can purchase at time 0 the option to
buy y shares of the stock at time 1 at a (time 0) cost of $150 per share. Thus, for
instance, if you do purchase this option and the stock rises to $200, then you would
exercise the option at time 1 and realize a gain of $200 − 150 = $50 for each of the
y option units purchased. On the other hand, if the price at time 1 was $50, then the
option would be worthless at time 1. In addition, at a cost of 100x you can purchase x

units of the stock at time 0, and this will be worth either 200x or 50x at time 1.
We will suppose that both x or y can be either positive or negative (or zero). That

is, you can either buy or sell both the stock and the option. For instance, if x were
negative then you would be selling −x shares of the stock, yielding you a return of
−100x, and you would then be responsible for buying −x shares of the stock at time 1
at a cost of either $200 or $50 per share.

We are interested in determining the appropriate value of c, the unit cost of an op-
tion. Specifically, we will show that unless c = 50/3, there will be a combination of
purchases that will always result in a positive gain.

To show this, suppose that at time 0, we

buy x units of stock, and
buy y units of options

where x and y (which can be either positive or negative) are to be determined. The
value of our holding at time 1 depends on the price of the stock at that time; and it is

Figure 10.1
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given by the following

value =
{

200x + 50y, if price is 200
50x, if price is 50

The preceding formula follows by noting that if the price is 200 then the x units of
the stock are worth 200x, and the y units of the option to buy the stock at a unit price
of 150 are worth (200 − 150)y. On the other hand, if the stock price is 50, then the
x units are worth 50x and the y units of the option are worthless. Now, suppose we
choose y to be such that the preceding value is the same no matter what the price at
time 1. That is, we choose y so that

200x + 50y = 50x

or

y = −3x

(Note that y has the opposite sign of x, and so if x is positive and as a result x units of
the stock are purchased at time 0, then 3x units of stock options are also sold at that
time. Similarly, if x is negative, then −x units of stock are sold and −3x units of stock
options are purchased at time 0.)

Thus, with y = −3x, the value of our holding at time 1 is

value = 50x

Since the original cost of purchasing x units of the stock and −3x units of options is

original cost = 100x − 3xc,

we see that our gain on the transaction is

gain = 50x − (100x − 3xc) = x(3c − 50)

Thus, if 3c = 50, then the gain is 0; on the other hand if 3c �= 50, we can guarantee a
positive gain (no matter what the price of the stock at time 1) by letting x be positive
when 3c > 50 and letting it be negative when 3c < 50.

For instance, if the unit cost per option is c = 20, then purchasing 1 unit of the
stock (x = 1) and simultaneously selling 3 units of the option (y = −3) initially costs
us 100 − 60 = 40. However, the value of this holding at time 1 is 50 whether the stock
goes up to 200 or down to 50. Thus, a guaranteed profit of 10 is attained. Similarly,
if the unit cost per option is c = 15, then selling 1 unit of the stock (x = −1) and
buying 3 units of the option (y = 3) leads to an initial gain of 100 − 45 = 55. On the
other hand, the value of this holding at time 1 is −50. Thus, a guaranteed profit of 5 is
attained.

A sure win betting scheme is called an arbitrage. Thus, as we have just seen, the
only option cost c that does not result in an arbitrage is c = 50/3.
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10.4.2 The Arbitrage Theorem

Consider an experiment whose set of possible outcomes is S = {1,2, . . . ,m}. Suppose
that n wagers are available. If the amount x is bet on wager i, then the return xri(j) is
earned if the outcome of the experiment is j . In other words, ri(·) is the return function
for a unit bet on wager i. The amount bet on a wager is allowed to be either positive
or negative or zero.

A betting scheme is a vector x = (x1, . . . , xn) with the interpretation that x1 is bet
on wager 1, x2 on wager 2, . . . , and xn on wager n. If the outcome of the experiment
is j , then the return from the betting scheme x is

return from x =
n∑

i=1

xiri(j)

The following theorem states that either there exists a probability vector p =
(p1, . . . , pm) on the set of possible outcomes of the experiment under which each
of the wagers has expected return 0, or else there is a betting scheme that guarantees a
positive win.

Theorem 10.1 (The Arbitrage Theorem). Exactly one of the following is true: Either

(i) there exists a probability vector p = (p1, . . . , pm) for which

m∑
j=1

pj ri(j) = 0, for all i = 1, . . . , n

or
(ii) there exists a betting scheme x = (x1, . . . , xn) for which

n∑
i=1

xiri(j) > 0, for all j = 1, . . . ,m

In other words, if X is the outcome of the experiment, then the arbitrage theorem
states that either there is a probability vector p for X such that

Ep[ri(X)] = 0, for all i = 1, . . . , n

or else there is a betting scheme that leads to a sure win.

Remark. This theorem is a consequence of the (linear algebra) theorem of the sepa-
rating hyperplane, which is often used as a mechanism to prove the duality theorem
of linear programming.

The theory of linear programming can be used to determine a betting strategy that
guarantees the greatest return. Suppose that the absolute value of the amount bet on
each wager must be less than or equal to 1. To determine the vector x that yields the
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greatest guaranteed win—call this win v—we need to choose x and v so as to maxi-
mize v, subject to the constraints

n∑
i=1

xiri(j) ≥ v, for j = 1, . . . ,m

−1 ≤ xi ≤ 1, i = 1, . . . , n

This optimization problem is a linear program and can be solved by standard tech-
niques (such as by using the simplex algorithm). The arbitrage theorem yields that
the optimal v will be positive unless there is a probability vector p for which∑m

j=1 pj ri(j) = 0 for all i = 1, . . . , n.

Example 10.2. In some situations, the only types of wagers allowed are to choose
one of the outcomes i, i = 1, . . . ,m, and bet that i is the outcome of the experiment.
The return from such a bet is often quoted in terms of “odds.” If the odds for outcome
i are oi (often written as “oi to 1”) then a 1-unit bet will return oi if the outcome of
the experiment is i and will return −1 otherwise. That is,

ri(j) =
{
oi, if j = i

−1 otherwise

Suppose the odds o1, . . . , om are posted. In order for there not to be a sure win there
must be a probability vector p = (p1, . . . , pm) such that

0 ≡ Ep[ri(X)] = oipi − (1 − pi)

That is, we must have

pi = 1

1 + oi

Since the pi must sum to 1, this means that the condition for there not to be an arbi-
trage is that

m∑
i=1

(1 + oi)
−1 = 1

Thus, if the posted odds are such that
∑

i (1 + oi)
−1 �= 1, then a sure win is possible.

For instance, suppose there are three possible outcomes and the odds are as follows:

Outcome Odds

1 1
2 2
3 3
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That is, the odds for outcome 1 are 1 − 1, the odds for outcome 2 are 2 − 1, and that
for outcome 3 are 3 − 1. Since

1
2 + 1

3 + 1
4 > 1

a sure win is possible. One possibility is to bet −1 on outcome 1 (and so you either
win 1 if the outcome is not 1 and lose 1 if the outcome is 1) and bet −0.7 on out-
come 2, and −0.5 on outcome 3. If the experiment results in outcome 1, then we win
−1 + 0.7 + 0.5 = 0.2; if it results in outcome 2, then we win 1 − 1.4 + 0.5 = 0.1; if
it results in outcome 3, then we win 1 + 0.7 − 1.5 = 0.2. Hence, in all cases we win a
positive amount. �

Remark. If
∑

i (1 + oi)
−1 �= 1, then the betting scheme

xi = (1 + oi)
−1

1 − ∑
i (1 + oi)−1 , i = 1, . . . , n

will always yield a gain of exactly 1.

Example 10.3. Let us reconsider the option pricing example of the previous section,
where the initial price of a stock is 100 and the present value of the price at time 1 is
either 200 or 50. At a cost of c per share we can purchase at time 0 the option to buy
the stock at time 1 at a present value price of 150 per share. The problem is to set the
value of c so that no sure win is possible.

In the context of this section, the outcome of the experiment is the value of the
stock at time 1. Thus, there are two possible outcomes. There are also two different
wagers: to buy (or sell) the stock, and to buy (or sell) the option. By the arbitrage the-
orem, there will be no sure win if there is a probability vector (p,1 − p) that makes
the expected return under both wagers equal to 0.

Now, the return from purchasing 1 unit of the stock is

return =
{

200 − 100 = 100, if the price is 200 at time 1
50 − 100 = −50, if the price is 50 at time 1

Hence, if p is the probability that the price is 200 at time 1, then

E[return] = 100p − 50(1 − p)

Setting this equal to 0 yields

p = 1
3

That is, the only probability vector (p,1 − p) for which wager 1 yields an expected
return 0 is the vector ( 1

3 , 2
3 ).

Now, the return from purchasing one share of the option is

return =
{

50 − c, if price is 200
−c, if price is 50
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Hence, the expected return when p = 1
3 is

E[return] = (50 − c) 1
3 − c 2

3

= 50
3 − c

Thus, it follows from the arbitrage theorem that the only value of c for which there
will not be a sure win is c = 50

3 , which verifies the result of Section 10.4.1. �

10.4.3 The Black–Scholes Option Pricing Formula

Suppose the present price of a stock is X(0) = x0, and let X(t) denote its price at
time t . Suppose we are interested in the stock over the time interval 0 to T . As-
sume that the discount factor is α (equivalently, the interest rate is 100α percent
compounded continuously), and so the present value of the stock price at time t is
e−αtX(t).

We can regard the evolution of the price of the stock over time as our experiment,
and thus the outcome of the experiment is the value of the function X(t),0 ≤ t ≤ T .
The types of wagers available are that for any s < t we can observe the process for a
time s and then buy (or sell) shares of the stock at price X(s) and then sell (or buy)
these shares at time t for the price X(t). In addition, we will suppose that we may
purchase any of N different options at time 0. Option i, costing ci per share, gives
us the option of purchasing shares of the stock at time ti for the fixed price of Ki per
share, i = 1, . . . ,N .

Suppose we want to determine values of the ci for which there is no betting strategy
that leads to a sure win. Assuming that the arbitrage theorem can be generalized (to
handle the preceding situation, where the outcome of the experiment is a function), it
follows that there will be no sure win if and only if there exists a probability measure
over the set of outcomes under which all of the wagers have expected return 0. Let P
be a probability measure on the set of outcomes. Consider first the wager of observing
the stock for a time s and then purchasing (or selling) one share with the intention of
selling (or purchasing) it at time t,0 ≤ s < t ≤ T . The present value of the amount
paid for the stock is e−αsX(s), whereas the present value of the amount received is
e−αtX(t). Hence, in order for the expected return of this wager to be 0 when P is the
probability measure on X(t),0 ≤ t ≤ T , we must have

EP[e−αtX(t)|X(u),0 ≤ u ≤ s] = e−αsX(s) (10.9)

Consider now the wager of purchasing an option. Suppose the option gives us the right
to buy one share of the stock at time t for a price K . At time t , the worth of this option
will be as follows:

worth of option at time t =
{
X(t) − K, if X(t) ≥ K

0, if X(t) < K

That is, the time t worth of the option is (X(t) − K)+. Hence, the present value of the
worth of the option is e−αt (X(t) − K)+. If c is the (time 0) cost of the option, we see
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that, in order for purchasing the option to have expected (present value) return 0, we
must have

EP[e−αt (X(t) − K)+] = c (10.10)

By the arbitrage theorem, if we can find a probability measure P on the set of out-
comes that satisfies Eq. (10.9), then if c, the cost of an option to purchase one share at
time t at the fixed price K , is as given in Eq. (10.10), then no arbitrage is possible. On
the other hand, if for given prices ci, i = 1, . . . ,N , there is no probability measure P
that satisfies both (10.9) and the equality

ci = EP[e−αti (X(ti) − Ki)
+], i = 1, . . . ,N

then a sure win is possible.
We will now present a probability measure P on the outcome X(t),0 ≤ t ≤ T , that

satisfies Eq. (10.9).
Suppose that

X(t) = x0e
Y(t)

where {Y(t), t ≥ 0} is a Brownian motion process with drift coefficient μ and vari-
ance parameter σ 2. That is, {X(t), t ≥ 0} is a geometric Brownian motion process
(see Section 10.3.2). From Eq. (10.8) we have that, for s < t ,

E[X(t)|X(u),0 ≤ u ≤ s] = X(s)e(t−s)(μ+σ 2/2)

Hence, if we choose μ and σ 2 so that

μ + σ 2/2 = α

then Eq. (10.9) will be satisfied. That is, by letting P be the probability measure gov-
erning the stochastic process {x0e

Y(t),0 ≤ t ≤ T }, where {Y(t)} is Brownian motion
with drift parameter μ and variance parameter σ 2, and where μ+σ 2/2 = α, Eq. (10.9)
is satisfied.

It follows from the preceding that if we price an option to purchase a share of the
stock at time t for a fixed price K by

c = EP[e−αt (X(t) − K)+]
then no arbitrage is possible. Since X(t) = x0e

Y(t), where Y(t) is normal with mean
μt and variance tσ 2, we see that

ceαt =
∫ ∞

−∞
(x0e

y − K)+ 1√
2πtσ 2

e−(y−μt)2/2tσ 2
dy

=
∫ ∞

log(K/x0)

(x0e
y − K)

1√
2πtσ 2

e−(y−μt)2/2tσ 2
dy
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Making the change of variable w = (y − μt)/(σ t1/2) yields

ceαt = x0e
μt 1√

2π

∫ ∞

a

eσw
√

t e−w2/2 dw − K
1√
2π

∫ ∞

a

e−w2/2 dw (10.11)

where

a = log(K/x0) − μt

σ
√

t

Now,

1√
2π

∫ ∞

a

eσw
√

t e−w2/2 dw = etσ 2/2 1√
2π

∫ ∞

a

e−(w−σ
√

t)2/2 dw

= etσ 2/2P {N(σ
√

t,1) ≥ a}
= etσ 2/2P {N(0,1) ≥ a − σ

√
t}

= etσ 2/2P {N(0,1) ≤ −(a − σ
√

t)}
= etσ 2/2φ(σ

√
t − a)

where N(m,v) is a normal random variable with mean m and variance v, and φ is the
standard normal distribution function.

Thus, we see from Eq. (10.11) that

ceαt = x0e
μt+σ 2t/2φ(σ

√
t − a) − Kφ(−a)

Using that

μ + σ 2/2 = α

and letting b = −a, we can write this as follows:

c = x0φ(σ
√

t + b) − Ke−αtφ(b) (10.12)

where

b = αt − σ 2t/2 − log(K/x0)

σ
√

t

The option price formula given by Eq. (10.12) depends on the initial price of the
stock x0, the option exercise time t , the option exercise price K , the discount (or in-
terest rate) factor α, and the value σ 2. Note that for any value of σ 2, if the options are
priced according to the formula of Eq. (10.12) then no arbitrage is possible. However,
as many people believe that the price of a stock actually follows a geometric Brown-
ian motion—that is, X(t) = x0e

Y(t) where Y(t) is Brownian motion with parameters
μ and σ 2—it has been suggested that it is natural to price the option according to the
formula of Eq. (10.12) with the parameter σ 2 taken equal to the estimated value (see
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the remark that follows) of the variance parameter under the assumption of a geomet-
ric Brownian motion model. When this is done, the formula of Eq. (10.12) is known
as the Black–Scholes option cost valuation. It is interesting that this valuation does not
depend on the value of the drift parameter μ but only on the variance parameter σ 2.

If the option itself can be traded, then the formula of Eq. (10.12) can be used to set
its price in such a way so that no arbitrage is possible. If at time s the price of the stock
is X(s) = xs , then the price of a (t,K) option—that is, an option to purchase one unit
of the stock at time t for a price K—should be set by replacing t by t − s and x0 by
xs in Eq. (10.12).

Remark. If we observe a Brownian motion process with variance parameter σ 2 over
any time interval, then we could theoretically obtain an arbitrarily precise estimate of
σ 2. For suppose we observe such a process {Y(s)} for a time t . Then, for fixed h, let
N = [t/h] and set

W1 = Y(h) − Y(0),

W2 = Y(2h) − Y(h),

...

WN = Y(Nh) − Y(Nh − h)

Then random variables W1, . . . ,WN are independent and identically distributed nor-
mal random variables having variance hσ 2. We now use the fact (see Section 3.6.4)
that (N − 1)S2/(σ 2h) has a chi-squared distribution with N − 1 degrees of freedom,
where S2 is the sample variance defined by

S2 =
N∑

i=1

(Wi − W̄ )2/(N − 1)

Since the expected value and variance of a chi-squared with k degrees of freedom are
equal to k and 2k, respectively, we see that

E[(N − 1)S2/(σ 2h)] = N − 1

and

Var[(N − 1)S2/(σ 2h)] = 2(N − 1)

From this, we see that

E[S2/h] = σ 2

and

Var[S2/h] = 2σ 4/(N − 1)

Hence, as we let h become smaller (and so N = [t/h] becomes larger) the variance of
the unbiased estimator of σ 2 becomes arbitrarily small. �
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Eq. (10.12) is not the only way in which options can be priced so that no arbitrage
is possible. Let {X(t),0 ≤ t ≤ T } be any stochastic process satisfying, for s < t ,

E[e−αtX(t)|X(u), 0 ≤ u ≤ s] = e−αsX(s) (10.13)

(that is, Eq. (10.9) is satisfied). By setting c, the cost of an option to purchase one
share of the stock at time t for price K , equal to

c = E[e−αt (X(t) − K)+] (10.14)

it follows that no arbitrage is possible.
Another type of stochastic process, aside from geometric Brownian motion, that

satisfies Eq. (10.13) is obtained as follows. Let Y1, Y2, . . . be a sequence of indepen-
dent random variables having a common mean μ, and suppose that this process is
independent of {N(t), t ≥ 0}, which is a Poisson process with rate λ. Let

X(t) = x0

N(t)∏
i=1

Yi

Using the identity

X(t) = x0

N(s)∏
i=1

Yi

N(t)∏
j=N(s)+1

Yj

and the independent increment assumption of the Poisson process, we see that, for
s < t ,

E[X(t)|X(u), 0 ≤ u ≤ s] = X(s) E

⎡⎣ N(t)∏
j=N(s)+1

Yj

⎤⎦
Conditioning on the number of events between s and t yields

E

⎡⎣ N(t)∏
j=N(s)+1

Yj

⎤⎦ =
∞∑

n=0

μne−λ(t−s)[λ(t − s)]n/n!

= e−λ(t−s)(1−μ)

Hence,

E[X(t)|X(u), 0 ≤ u ≤ s] = X(s)e−λ(t−s)(1−μ)

Thus, if we choose λ and μ to satisfy

λ(1 − μ) = −α
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then Eq. (10.13) is satisfied. Therefore, if for any value of λ we let the Yi have any
distributions with a common mean equal to μ = 1 + α/λ and then price the options
according to Eq. (10.14), then no arbitrage is possible.

Remark. If {X(t), t ≥ 0} satisfies Eq. (10.13), then the process {e−αtX(t), t ≥ 0}
is called a Martingale. Thus, any pricing of options for which the expected gain on the
option is equal to 0 when {e−αtX(t)} follows the probability law of some Martingale
will result in no arbitrage possibilities.

That is, if we choose any Martingale process {Z(t)} and let the cost of a (t,K)

option be

c = E[e−αt (eαtZ(t) − K)+]
= E[(Z(t) − Ke−αt )+]

then there is no sure win.
In addition, while we did not consider the type of wager where a stock that is pur-

chased at time s is sold not at a fixed time t but rather at some random time that
depends on the movement of the stock, it can be shown using results about Martin-
gales that the expected return of such wagers is also equal to 0.

Remark. A variation of the arbitrage theorem was first noted by de Finetti in 1937.
A more general version of de Finetti’s result, of which the arbitrage theorem is a spe-
cial case, is given in Reference [3].

10.5 The Maximum of Brownian Motion with Drift
For {X(y), y ≥0} being a Brownian motion process with drift coefficient μ and vari-
ance parameter σ 2, define

M(t) = max
0≤y≤t

X(y)

to be the maximal value of the process up to time t .
We will determine the distribution of M(t) by deriving the conditional distribution

of M(t) given the value of X(t). To do so, we first show that the conditional distribu-
tion of X(y),0 ≤ y ≤ t , given the value of X(t), does not depend on μ. That is, given
the value of the process at time t , the distribution of its history up to time t does not
depend on μ.

We start with a lemma.

Lemma 10.1. If Y1, . . . , Yn are independent and identically distributed normal ran-
dom variables with mean θ and variance v2, then the conditional distribution of
Y1, . . . , Yn given that

∑n
i=1 Yi = x does not depend on θ .

Proof. Because, given
∑n

i=1 Yi = x, the value of Yn is determined by knowledge of
those of Y1, . . . , Yn−1, it suffices to consider the conditional density of Y1, . . . , Yn−1
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given that
∑n

i=1 Yi = x. Letting X = ∑n
i=1 Yi , this is obtained as follows.

fY1,...,Yn−1|X(y1, . . . , yn−1|x) = fY1,...,Yn−1,X(y1, . . . , yn−1, x)

fX(x)

Now, because

Y1 = y1, . . . , Yn−1 = yn−1,X = x ⇔ Y1 = y1, . . . , Yn−1 = yn−1, Yn = x −
n−1∑
i=1

yi

it follows that

fY1,...,Yn−1,X(y1, . . . , yn−1, x) = fY1,...,Yn−1,Yn(y1, . . . , yn−1, x −
n−1∑
i=1

yi)

= fY1(y1) · · ·fYn−1(yn−1)fYn(x −
n−1∑
i=1

yi)

where the last equality used that Y1, . . . , Yn are independent. Hence, using that
X = ∑n

i=1 Yi is normal with mean nθ and variance nv2, we obtain

fY1,...,Yn−1|X(y1, . . . , yn−1|x) = fYn(x − ∑n−1
i=1 yi)fY1(y1) · · ·fYn−1(yn−1)

fX(x)

= K
e−(x−∑n−1

i=1 yi−θ)2/2v2 ∏n−1
i=1 e−(yi−θ)2/2v2

e−(x−nθ)2/2nv2

= K exp{− 1

2v2 [(x −
n−1∑
i=1

yi − θ)2

+
n−1∑
i=1

(yi − θ)2 − (x − nθ)2/n]}

where K does not depend on θ . Expanding the squares in the preceding, and treating
everything that does not depend on θ as a constant, shows that

fY1,...,Yn−1|X(y1, . . . , yn−1|x)

= K ′ exp{− 1

2v2
[−2θ(x −

n−1∑
i=1

yi) + θ2 − 2θ

n−1∑
i=1

yi + (n − 1)θ2 + 2θx − nθ2]}

= K ′

where K ′ = K ′(v, y1, . . . , yn−1, x) is a function that does not depend on θ . Thus the
result is proven. �
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Remark. Suppose that the distribution of random variables Y1, . . . , Yn depends
on some parameter θ . Further, suppose that there is some function D(Y1, . . . , Yn)

of Y1, . . . , Yn such that the conditional distribution of Y1, . . . , Yn given the value
of D(Y1, . . . , Yn) does not depend on θ . Then it is said in statistical theory that
D(Y1, . . . , Yn) is a sufficient statistic for θ . For suppose we wanted to use the data
Y1, . . . , Yn to estimate the value of θ . Because, given the value of D(Y1, . . . , Yn), the
conditional distribution of the data Y1, . . . , Yn does not depend on θ , it follows that if
the value of D(Y1, . . . , Yn) is known then no additional information about θ can be ob-
tained from knowing all the data values Y1, . . . , Yn. Thus our preceding lemma proves
that the sum of the data values of independent and identically distributed normal ran-
dom variables is a sufficient statistic for their mean. (Because knowing the value of
the sum is equivalent to knowing the value of

∑n
i=1 Yi/n, called the sample mean, the

common terminology in statistics is that the sample mean is a sufficient statistic for
the mean of a normal population.) �

Theorem 10.2. Let X(t), t ≥ 0 be a Brownian motion process with drift coefficient
μ and variance parameter σ 2. Given that X(t) = x, the conditional distribution of
X(y),0 ≤ y ≤ t is the same for all values of μ.

Proof. Fix n and set ti = i t/n, i = 1, . . . , n. To prove the theorem we will show for
any n that the conditional distribution of X(t1), . . . ,X(tn) given the value of X(t) does
not depend on μ. To do so, let Y1 = X(t1), Yi = X(ti) − X(ti−1), i = 2, . . . , n and
note that Y1, . . . , Yn are independent and identically distributed normal random vari-
ables with mean θ = μt/n. Because

∑n
i=1 Yi = X(t) it follows from Lemma 10.1 that

the conditional distribution of Y1, . . . , Yn given X(t) does not depend on μ. Because
knowing Y1, . . . , Yn is equivalent to knowing X(t1), . . . ,X(tn) the result follows. �

We now derive the conditional distribution of M(t) given the value of X(t).

Theorem 10.3. For y > x

P (M(t) ≥ y|X(t) = x) = e−2y(y−x)/tσ 2
, y ≥ 0

Proof. Because X(0) = 0 it follows that M(t) ≥ 0, and so the result is true when y = 0
(since both sides are equal to 1 in this case). So suppose that y > 0. Because it follows
from Theorem 10.2 that P(M(t) ≥ y|X(t) = x) does not depend on the value of μ,
let us suppose that μ = 0. Now, let Ty denote the first time that the Brownian motion
reaches the value y, and note that it follows from the continuity property of Brownian
motion that the event that M(t) ≥ y is equivalent to the event that Ty ≤ t. This is true
because before the process can exceed the positive value y, it must, by continuity, first
pass through that value. Now, let h be a small positive number for which y > x + h.
Then

P(M(t) ≥ y, x ≤ X(t) ≤ x + h) = P(Ty ≤ t, x ≤ X(t) ≤ x + h)

= P(x ≤ X(t) ≤ x + h|Ty ≤ t)P (Ty ≤ t)



Brownian Motion and Stationary Processes 673

Now, given Ty ≤ t , the event x ≤ X(t) ≤ x +h will occur if after hitting y the process
will decrease by an amount between y − x − h and y − x in the time between Ty and
t . But because μ = 0, in any period of time the process is just as likely to increase as
it is to decrease by an amount between y − x − h and y − x. Consequently,

P(x ≤ X(t) ≤ x + h|Ty ≤ t) = P(2y − x − h ≤ X(t) ≤ 2y − x|Ty ≤ t)

which gives that

P(M(t) ≥ y, x ≤ X(t) ≤ x + h) = P(2y − x − h ≤ X(t) ≤ 2y − x|Ty ≤ t)

× P(Ty ≤ t)

= P(2y − x − h ≤ X(t) ≤ 2y − x, Ty ≤ t)

= P(2y − x − h ≤ X(t) ≤ 2y − x)

where the final equation follows because the assumption y >x +h implies that
2y − x − h > y and so, by the continuity of Brownian motion, if 2y − x − h ≤ X(t)

then Ty ≤ t . Hence,

P(M(t) ≥ y|x ≤ X(t) ≤ x + h) = P(2y − x − h ≤ X(t) ≤ 2y − x)

P (x ≤ X(t) ≤ x + h)

= fX(t)(2y − x)h + o(h)

fX(t)(x)h + o(h)

= fX(t)(2y − x) + o(h)/h

fX(t)(x) + o(h)/h

where fX(t), the density function of X(t), is the density function of a normal random
variable with mean 0 and variance tσ 2. Letting h → 0 in the preceding gives

P(M(t) ≥ y|X(t) = x) = fX(t)(2y − x)

fX(t)(x)

= e−(2y−x)2/2tσ 2

e−x2/2tσ 2

= e−2y(y−x)/tσ 2 �

With Z being a standard normal random variable, and � its distribution function,
let

�̄(x) = 1 − �(x) = P(Z > x)

We now have

Corollary 10.1.

P(M(t) ≥ y) = e2yμ/σ 2
�̄

(
μt + y

σ
√

t

)
+ �̄

(
y − μt

σ
√

t

)
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Proof. Conditioning on X(t) and using Theorem 10.3 yields

P(M(t) ≥ y) =
∫ ∞

−∞
P(M(t) ≥ y|X(t) = x)fX(t)(x)dx

=
∫ y

−∞
P(M(t) ≥ y|X(t) = x)fX(t)(x)dx +

∫ ∞

y

fX(t)(x)dx

=
∫ y

−∞
e−2y(y−x)/tσ 2 1√

2πtσ 2
e−(x−μt)2/2tσ 2

dx + P(X(t) > y)

= 1√
2πt σ

e−2y2/tσ 2
e−μ2t2/2tσ 2

∫ y

−∞
exp

{
− 1

2tσ 2
(x2 − 2μtx

−4yx)

}
dx + P(X(t) > y)

= 1√
2πt σ

e−(4y2+μ2t2)/2tσ 2

×
∫ y

−∞
exp

{
− 1

2tσ 2 (x2 − 2x(μt + 2y))

}
dx + P(X(t) > y)

Now,

x2 − 2x(μt + 2y) = (x − (μt + 2y))2 − (μt + 2y)2

giving that

P(M(t) ≥ y) = e−(4y2+μ2t2−(μt+2y)2)/2tσ 2 1√
2πt σ

∫ y

−∞
e−(x−μt−2y)2/2tσ 2

dx

+ P(X(t) > y)

Making the change of variable

w = x − μt − 2y

σ
√

t
, dx = σ

√
t dw

gives

P(M(t) ≥ y) = e2yμ/σ 2 1√
2π

∫ −μt−y

σ
√

t

−∞
e−w2/2dw + P(X(t) > y)

= e2yμ/σ 2
�

(−μt − y

σ
√

t

)
+ P(X(t) > y)

= e2yμ/σ 2
�̄

(
μt + y

σ
√

t

)
+ �̄

(
y − μt

σ
√

t

)
and the proof is complete. �

In the proof of Theorem 10.3, we let Ty denote the first time the Brownian motion
is equal to y. In addition, as previously noted, the continuity of Brownian motion im-
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plies that, for y > 0, the process would have hit y by time t if and only if the maximum
of the process by time t was at least y. Consequently, for y > 0,

Ty ≤ t ⇔ M(t) ≥ y

which, using Corollary 10.1, gives

P(Ty ≤ t) = e2yμ/σ 2
�̄

(
y + μt

σ
√

t

)
+ �̄

(
y − μt

σ
√

t

)
, y > 0

10.6 White Noise
Let {X(t), t ≥ 0} denote a standard Brownian motion process and let f be a func-
tion having a continuous derivative in the region [a, b]. The stochastic integral∫ b

a
f (t) dX(t) is defined as follows:

∫ b

a

f (t) dX(t) ≡ lim
n→∞

n∑
i=1

max(ti−ti−1)→0

f (ti−1)[X(ti) − X(ti−1)] (10.15)

where a = t0 < t1 < · · · < tn = b is a partition of the region [a, b]. Using the identity
(the integration by parts formula applied to sums)

n∑
i=1

f (ti−1)[X(ti) − X(ti−1)]

= f (b)X(b) − f (a)X(a) −
n∑

i=1

X(ti)[f (ti) − f (ti−1)]

we see that∫ b

a

f (t) dX(t) = f (b)X(b) − f (a)X(a) −
∫ b

a

X(t) df (t) (10.16)

Eq. (10.16) is usually taken as the definition of
∫ b

a
f (t) dX(t).

By using the right side of Eq. (10.16) we obtain, upon assuming the interchange-
ability of expectation and limit, that

E

[∫ b

a

f (t) dX(t)

]
= 0

Also,

Var

(
n∑

i=1

f (ti−1)[X(ti) − X(ti−1)]
)

=
n∑

i=1

f 2(ti−1)Var[X(ti) − X(ti−1)]
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=
n∑

i=1

f 2(ti−1)(ti − ti−1)

where the top equality follows from the independent increments of Brownian motion.
Hence, we obtain from Eq. (10.15) upon taking limits of the preceding that

Var

[∫ b

a

f (t) dX(t)

]
=

∫ b

a

f 2(t) dt

Remark. The preceding gives operational meaning to the family of quantities {dX(t),

0 ≤ t < ∞} by viewing it as an operator that carries functions f into the values∫ b

a
f (t) dX(t). This is called a white noise transformation, or more loosely {dX(t),

0 ≤ t < ∞} is called white noise since it can be imagined that a time varying function
f travels through a white noise medium to yield the output (at time b)

∫ b

a
f (t) dX(t).

Example 10.4. Consider a particle of unit mass that is suspended in a liquid and sup-
pose that, due to the liquid, there is a viscous force that retards the velocity of the
particle at a rate proportional to its present velocity. In addition, let us suppose that
the velocity instantaneously changes according to a constant multiple of white noise.
That is, if V (t) denotes the particle’s velocity at t , suppose that

V ′(t) = −βV (t) + αX′(t)

where {X(t), t ≥ 0} is standard Brownian motion. This can be written as follows:

eβt [V ′(t) + βV (t)] = αeβtX′(t)

or

d

dt
[eβtV (t)] = αeβtX′(t)

Hence, upon integration, we obtain

eβtV (t) = V (0) + α

∫ t

0
eβsX′(s) ds

or

V (t) = V (0)e−βt + α

∫ t

0
e−β(t−s) dX(s)

Hence, from Eq. (10.16),

V (t) = V (0)e−βt + α

[
X(t) −

∫ t

0
X(s)βe−β(t−s) ds

]
�
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10.7 Gaussian Processes
We start with the following definition.

Definition 10.2. A stochastic process X(t), t ≥ 0 is called a Gaussian, or a normal,
process if X(t1), . . . ,X(tn) has a multivariate normal distribution for all t1, . . . , tn.

If {X(t), t ≥ 0} is a Brownian motion process, then because each of X(t1),X(t2),

. . . ,X(tn) can be expressed as a linear combination of the independent normal ran-
dom variables X(t1),X(t2) − X(t1),X(t3) − X(t2), . . . ,X(tn) − X(tn−1) it follows
that Brownian motion is a Gaussian process.

Because a multivariate normal distribution is completely determined by the
marginal mean values and the covariance values (see Section 2.6) it follows that
standard Brownian motion could also be defined as a Gaussian process having
E[X(t)] = 0 and, for s ≤ t ,

Cov(X(s),X(t)) = Cov(X(s),X(s) + X(t) − X(s))

= Cov(X(s),X(s)) + Cov(X(s),X(t) − X(s))

= Cov(X(s),X(s)) by independent increments

= s since Var(X(s)) = s (10.17)

Let {X(t), t ≥ 0} be a standard Brownian motion process and consider the process
values between 0 and 1 conditional on X(1) = 0. That is, consider the conditional
stochastic process {X(t), 0 ≤ t ≤ 1|X(1) = 0}. Since the conditional distribution of
X(t1), . . . ,X(tn) is multivariate normal it follows that this conditional process, known
as the Brownian bridge (as it is tied down both at 0 and at 1), is a Gaussian process.
Let us compute its covariance function. As, from Eq. (10.4),

E[X(s)|X(1) = 0] = 0, for s < 1

we have that, for s < t < 1,

Cov[(X(s),X(t))|X(1) = 0]
= E[X(s)X(t)|X(1) = 0]
= E[E[X(s)X(t)|X(t),X(1) = 0]|X(1) = 0]
= E[X(t)E[X(s)|X(t)]|X(1) = 0]
= E

[
X(t)

s

t
X(t)|X(1) = 0

]
by (10.4)

= s

t
E[X2(t)|X(1) = 0]

= s

t
t (1 − t) by (10.4)

= s(1 − t)

Thus, the Brownian bridge can be defined as a Gaussian process with mean value 0 and
covariance function s(1 − t), s ≤ t . This leads to an alternative approach to obtaining
such a process.
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Proposition 10.1. If {X(t), t ≥ 0} is standard Brownian motion, then {Z(t), 0 ≤ t ≤
1} is a Brownian bridge process when Z(t) = X(t) − tX(1).

Proof. As it is immediate that {Z(t), t ≥ 0} is a Gaussian process, all we need ver-
ify is that E[Z(t)] = 0 and Cov(Z(s),Z(t)) = s(1 − t), when s ≤ t . The former is
immediate and the latter follows from

Cov(Z(s),Z(t)) = Cov(X(s) − sX(1),X(t) − tX(1))

= Cov(X(s),X(t)) − tCov(X(s),X(1))

− s Cov(X(1),X(t)) + st Cov(X(1),X(1))

= s − st − st + st

= s(1 − t)

and the proof is complete. �

If {X(t), t ≥ 0} is Brownian motion, then the process {Z(t), t ≥ 0} defined by

Z(t) =
∫ t

0
X(s)ds (10.18)

is called integrated Brownian motion. As an illustration of how such a process may
arise in practice, suppose we are interested in modeling the price of a commodity
throughout time. Letting Z(t) denote the price at t then, rather than assuming that
{Z(t)} is Brownian motion (or that log Z(t) is Brownian motion), we might want to
assume that the rate of change of Z(t) follows a Brownian motion. For instance, we
might suppose that the rate of change of the commodity’s price is the current inflation
rate, which is imagined to vary as Brownian motion. Hence,

d

dt
Z(t) = X(t),

Z(t) = Z(0) +
∫ t

0
X(s)ds

It follows from the fact that Brownian motion is a Gaussian process that
{Z(t), t ≥ 0} is also Gaussian. To prove this, first recall that W1, . . . ,Wn is said to
have a multivariate normal distribution if they can be represented as

Wi =
m∑

j=1

aijUj , i = 1, . . . , n

where Uj , j = 1, . . . ,m are independent normal random variables. From this it fol-
lows that any set of partial sums of W1, . . . ,Wn are also jointly normal. The fact that
Z(t1), . . . ,Z(tn) is multivariate normal can now be shown by writing the integral in
Eq. (10.18) as a limit of approximating sums.
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As {Z(t), t ≥ 0} is Gaussian it follows that its distribution is characterized by its
mean value and covariance function. We now compute these when {X(t), t ≥ 0} is
standard Brownian motion.

E[Z(t)] = E

[∫ t

0
X(s)ds

]
=

∫ t

0
E[X(s)]ds

= 0

For s ≤ t ,

Cov[Z(s),Z(t)] = E[Z(s)Z(t)]
= E

[∫ t

0
X(y)dy

∫ s

0
X(u)du

]
= E

[∫ s

0

∫ t

0
X(y)X(u)dy du

]
=

∫ s

0

∫ t

0
E[X(y)X(u)]dy du

=
∫ s

0

∫ t

0
min(y,u) dy du by (10.17)

=
∫ s

0

(∫ u

0
y dy +

∫ t

u

udy

)
du = s2

(
t

2
− s

6

)
�

10.8 Stationary and Weakly Stationary Processes
A stochastic process {X(t), t ≥ 0} is said to be a stationary process if for all n, s,

t1, . . . , tn the random vectors X(t1), . . . ,X(tn) and X(t1 + s), . . . ,X(tn + s) have the
same joint distribution. In other words, a process is stationary if, in choosing any fixed
point s as the origin, the ensuing process has the same probability law. Two examples
of stationary processes are:

(i) An ergodic continuous-time Markov chain {X(t), t ≥ 0} when

P {X(0) = j} = Pj , j ≥ 0

where {Pj , j ≥ 0} are the limiting probabilities.
(ii) {X(t), t ≥ 0} when X(t) = N(t + L) − N(t), t ≥ 0, where L > 0 is a fixed

constant and {N(t), t ≥ 0} is a Poisson process having rate λ.

The first one of these processes is stationary for it is a Markov chain whose initial
state is chosen according to the limiting probabilities, and it can thus be regarded as
an ergodic Markov chain that we start observing at time ∞. Hence, the continuation
of this process at time s after observation begins is just the continuation of the chain
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starting at time ∞ + s, which clearly has the same probability for all s. That the sec-
ond example—where X(t) represents the number of events of a Poisson process that
occur between t and t + L—is stationary follows from the stationary and independent
increment assumption of the Poisson process, which implies that the continuation of
a Poisson process at any time s remains a Poisson process.

Example 10.5 (The Random Telegraph Signal Process). Let {N(t), t ≥ 0} denote
a Poisson process, and let X0 be independent of this process and be such that
P {X0 = 1} = P {X0 = −1} = 1

2 . Defining X(t) = X0(−1)N(t) then {X(t), t ≥ 0}
is called a random telegraph signal process. To see that it is stationary, note first that
starting at any time t , no matter what the value of N(t), as X0 is equally likely to be
either plus or minus 1, it follows that X(t) is equally likely to be either plus or mi-
nus 1. Hence, because the continuation of a Poisson process beyond any time remains
a Poisson process, it follows that {X(t), t ≥ 0} is a stationary process.

Let us compute the mean and covariance function of the random telegraph signal.

E[X(t)] = E[X0(−1)N(t)]
= E[X0]E[(−1)N(t)] by independence

= 0 since E[X0] = 0,

Cov[X(t),X(t + s)] = E[X(t)X(t + s)]
= E[X2

0(−1)N(t)+N(t+s)]
= E[(−1)2N(t)(−1)N(t+s)−N(t)]
= E[(−1)N(t+s)−N(t)]
= E[(−1)N(s)]

=
∞∑
i=0

(−1)ie−λs (λs)i

i!
= e−2λs (10.19)

For an application of the random telegraph signal consider a particle moving at a
constant unit velocity along a straight line and suppose that collisions involving this
particle occur at a Poisson rate λ. Also suppose that each time the particle suffers a
collision it reverses direction. Therefore, if X0 represents the initial velocity of the
particle, then its velocity at time t—call it X(t)—is given by X(t) = X0(−1)N(t),
where N(t) denotes the number of collisions involving the particle by time t . Hence,
if X0 is equally likely to be plus or minus 1, and is independent of {N(t), t ≥ 0}, then
{X(t), t ≥ 0} is a random telegraph signal process. If we now let

D(t) =
∫ t

0
X(s)ds
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then D(t) represents the displacement of the particle at time t from its position at
time 0. The mean and variance of D(t) are obtained as follows:

E[D(t)] =
∫ t

0
E[X(s)]ds = 0,

Var[D(t)] = E[D2(t)]
= E

[∫ t

0
X(y)dy

∫ t

0
X(u)du

]
=

∫ t

0

∫ t

0
E[X(y)X(u)]dy du

= 2
∫∫

0<y<u<t

E[X(y)X(u)]dy du

= 2
∫ t

0

∫ u

0
e−2λ(u−y)dy du by (10.19)

= 1

λ

(
t − 1

2λ
+ 1

2λ
e−2λt

)
�

The condition for a process to be stationary is rather stringent and so we define the
process {X(t), t ≥ 0} to be a second-order stationary or a weakly stationary process
if E[X(t)] = c and Cov[X(t),X(t + s)] does not depend on t . That is, a process is
second-order stationary if the first two moments of X(t) are the same for all t and
the covariance between X(s) and X(t) depends only on |t − s|. For a second-order
stationary process, let

R(s) = Cov[X(t),X(t + s)]
As the finite dimensional distributions of a Gaussian process (being multivariate nor-
mal) are determined by their means and covariance, it follows that a second-order
stationary Gaussian process is stationary.

Example 10.6 (The Ornstein–Uhlenbeck Process). Let {X(t), t ≥ 0} be a standard
Brownian motion process, and define, for α > 0,

V (t) = e−αt/2X(eαt )

The process {V (t), t ≥ 0} is called the Ornstein–Uhlenbeck process. It has been pro-
posed as a model for describing the velocity of a particle immersed in a liquid or gas,
and as such is useful in statistical mechanics. Let us compute its mean and covariance
function.

E[V (t)] = 0,

Cov[V (t),V (t + s)] = e−αt/2e−α(t+s)/2

Cov[X(eαt ),X(eα(t+s))] = e−αt e−αs/2eαt by Eq. (10.17)
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= e−αs/2

Hence, {V (t), t ≥ 0} is weakly stationary and as it is clearly a Gaussian process
(since Brownian motion is Gaussian) we can conclude that it is stationary. It is in-
teresting to note that (with α = 4λ) it has the same mean and covariance function as
the random telegraph signal process, thus illustrating that two quite different processes
can have the same second-order properties. (Of course, if two Gaussian processes have
the same mean and covariance functions then they are identically distributed.) �

As the following examples show, there are many types of second-order stationary
processes that are not stationary.

Example 10.7 (An Autoregressive Process). Let Z0,Z1,Z2, . . . be uncorrelated ran-
dom variables with E[Zn] = 0, n ≥ 0 and

Var(Zn) =
{
σ 2/(1 − λ2), n = 0
σ 2, n ≥ 1

where λ2 < 1. Define

X0 = Z0,

Xn = λXn−1 + Zn, n ≥ 1 (10.20)

The process {Xn, n ≥ 0} is called a first-order autoregressive process. It says that the
state at time n (that is, Xn) is a constant multiple of the state at time n − 1 plus a
random error term Zn.

Iterating Eq. (10.20) yields

Xn = λ(λXn−2 + Zn−1) + Zn

= λ2Xn−2 + λZn−1 + Zn

...

=
n∑

i=0

λn−iZi

and so

Cov(Xn,Xn+m) = Cov

(
n∑

i=0

λn−iZi,

n+m∑
i=0

λn+m−iZi

)

=
n∑

i=0

λn−iλn+m−iCov(Zi,Zi)

= σ 2λ2n+m

(
1

1 − λ2
+

n∑
i=1

λ−2i

)
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= σ 2λm

1 − λ2

where the preceding uses the fact that Zi and Zj are uncorrelated when i �= j . As
E[Xn] = 0, we see that {Xn, n ≥ 0} is weakly stationary (the definition for a discrete
time process is the obvious analog of that given for continuous time processes). �

Example 10.8. If, in the random telegraph signal process, we drop the requirement
that P {X0 = 1} = P {X0 = −1} = 1

2 and only require that E[X0] = 0, then the process
{X(t), t ≥ 0} need no longer be stationary. (It will remain stationary if X0 has a sym-
metric distribution in the sense that −X0 has the same distribution as X0.) However,
the process will be weakly stationary since

E[X(t)] = E[X0]E[(−1)N(t)] = 0,

Cov[X(t),X(t + s)] = E[X(t)X(t + s)]
= E[X2

0]E[(−1)N(t)+N(t+s)]
= E[X2

0]e−2λs from (10.19) �

Example 10.9. Let W0,W1,W2, . . . be uncorrelated with E[Wn] = μ and Var(Wn) =
σ 2, n ≥ 0, and for some positive integer k define

Xn = Wn + Wn−1 + · · · + Wn−k

k + 1
, n ≥ k

The process {Xn,n ≥ k}, which at each time keeps track of the arithmetic average of
the most recent k + 1 values of the W s, is called a moving average process. Using the
fact that the Wn,n ≥ 0 are uncorrelated, we see that

Cov(Xn,Xn+m) =
{

(k+1−m)σ 2

(k+1)2 , if 0 ≤ m ≤ k

0, if m > k

Hence, {Xn, n ≥ k} is a second-order stationary process. �

Let {Xn, n ≥ 1} be a second-order stationary process with E[Xn] = μ. An impor-
tant question is when, if ever, does X̄n ≡ ∑n

i=1 Xi/n converge to μ? The following
proposition, which we state without proof, shows that E[(X̄n − μ)2] → 0 if and only
if

∑n
i=1 R(i)/n → 0. That is, the expected square of the difference between X̄n and

μ will converge to 0 if and only if the limiting average value of R(i) converges to 0.

Proposition 10.2. Let {Xn,n ≥ 1} be a second-order stationary process having mean
μ and covariance function R(i) = Cov(Xn,Xn+i ), and let X̄n ≡ ∑n

i=1 Xi/n. Then
limn→∞ E[(X̄n − μ)2] = 0 if and only if limn→∞

∑n
i=1 R(i)/n = 0.



684 Introduction to Probability Models

10.9 Harmonic Analysis of Weakly Stationary Processes
Suppose that the stochastic processes {X(t), −∞ < t < ∞} and {Y(t),−∞ < t <

∞} are related as follows:

Y(t) =
∫ ∞

−∞
X(t − s)h(s) ds (10.21)

We can imagine that a signal, whose value at time t is X(t), is passed through a phys-
ical system that distorts its value so that Y(t), the received value at t , is given by
Eq. (10.21). The processes {X(t)} and {Y(t)} are called, respectively, the input and
output processes. The function h is called the impulse response function. If h(s) = 0
whenever s < 0, then h is also called a weighting function since Eq. (10.21) expresses
the output at t as a weighted integral of all the inputs prior to t with h(s) representing
the weight given the input s time units ago.

The relationship expressed by Eq. (10.21) is a special case of a time invariant lin-
ear filter. It is called a filter because we can imagine that the input process {X(t)}
is passed through a medium and then filtered to yield the output process {Y(t)}. It
is a linear filter because if the input processes {Xi(t)}, i = 1,2, result in the output
processes {Yi(t)}—that is, if Yi(t) = ∫ ∞

0 Xi(t − s)h(s) ds—then the output process
corresponding to the input process {aX1(t) + bX2(t)} is just {aY1(t) + bY2(t)}. It is
called time invariant since lagging the input process by a time τ—that is, considering
the new input process X̄(t) = X(t + τ)—results in a lag of τ in the output process
since ∫ ∞

0
X̄(t − s)h(s) ds =

∫ ∞

0
X(t + τ − s)h(s) ds = Y(t + τ)

Let us now suppose that the input process {X(t), −∞ < t < ∞} is weakly station-
ary with E[X(t)] = 0 and covariance function

RX(s) = Cov[X(t),X(t + s)]
Let us compute the mean value and covariance function of the output process {Y(t)}.

Assuming that we can interchange the expectation and integration operations (a suf-
ficient condition being that

∫ |h(s)| < ∞ 1 and, for some M < ∞,E[|X(t)|] < M for
all t) we obtain

E[Y(t)] =
∫

E[X(t − s)]h(s) ds = 0

Similarly,

Cov[Y(t1), Y (t2)] = Cov

[∫
X(t1 − s1)h(s1) ds1,

∫
X(t2 − s2)h(s2) ds2

]
=

∫∫
Cov[X(t1 − s1),X(t2 − s2)]h(s1)h(s2) ds1 ds2

1 The range of all integrals in this section is from −∞ to +∞.
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=
∫∫

RX(t2 − s2 − t1 + s1)h(s1)h(s2) ds1 ds2 (10.22)

Hence, Cov[Y(t1), Y (t2)] depends on t1, t2 only through t2 − t1; thus showing that
{Y(t)} is also weakly stationary.

The preceding expression for RY (t2 − t1) = Cov[Y(t1), Y (t2)] is, however, more
compactly and usefully expressed in terms of Fourier transforms of RX and RY . Let,
for i = √−1,

R̃X(w) =
∫

e−iwsRX(s) ds

and

R̃Y (w) =
∫

e−iwsRY (s) ds

denote the Fourier transforms, respectively, of RX and RY . The function R̃X(w) is
also called the power spectral density of the process {X(t)}. Also, let

h̃(w) =
∫

e−iwsh(s) ds

denote the Fourier transform of the function h. Then, from Eq. (10.22),

R̃Y (w) =
∫∫∫

eiwsRX(s − s2 + s1)h(s1)h(s2) ds1 ds2 ds

=
∫∫∫

eiw(s−s2+s1)RX(s − s2 + s1) dse−iws2h(s2) ds2e
iws1h(s1) ds1

= R̃X(w)̃h(w)̃h(−w) (10.23)

Now, using the representation

eix = cosx + i sinx,

e−ix = cos(−x) + i sin(−x) = cosx − i sinx

we obtain

h̃(w)̃h(−w) =
[∫

h(s) cos(ws)ds − i

∫
h(s) sin(ws)ds

]
×

[∫
h(s) cos(ws)ds + i

∫
h(s) sin(ws)ds

]
=

[∫
h(s) cos(ws)ds

]2

+
[∫

h(s) sin(ws)ds

]2

=
∣∣∣∣∫ h(s)e−iws ds

∣∣∣∣2

= |̃h(w)|2
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Hence, from Eq. (10.23) we obtain

R̃Y (w) = R̃X(w)|̃h(w)|2

In words, the Fourier transform of the covariance function of the output process is
equal to the square of the amplitude of the Fourier transform of the impulse function
multiplied by the Fourier transform of the covariance function of the input process.

Exercises
In the following exercises {B(t), t ≥ 0} is a standard Brownian motion process and
Ta denotes the time it takes this process to hit a.

*1. What is the distribution of B(s) + B(t), s ≤ t?
2. Compute the conditional distribution of B(s) given that B(t1) = A and B(t2) =

B, where 0 < t1 < s < t2.
*3. Compute E[B(t1)B(t2)B(t3)] for t1 < t2 < t3.

4. Show that

P {Ta < ∞} = 1,

E[Ta] = ∞, a �= 0

*5. What is P {T1 < T−1 < T2}?
6. Suppose you own one share of a stock whose price changes according to a

standard Brownian motion process. Suppose that you purchased the stock at a
price b + c, c > 0, and the present price is b. You have decided to sell the stock
either when it reaches the price b + c or when an additional time t goes by
(whichever occurs first). What is the probability that you do not recover your
purchase price?

7. Compute an expression for

P

{
max

t1≤s≤t2
B(s) > x

}
8. Consider the random walk that in each �t time unit either goes up or down

the amount
√

�t with respective probabilities p and 1 − p, where p = 1
2 (1 +

μ
√

�t).
(a) Argue that as �t → 0 the resulting limiting process is a Brownian motion

process with drift rate μ.
(b) Using part (a) and the results of the gambler’s ruin problem (Sec-

tion 4.5.1), compute the probability that a Brownian motion process with
drift rate μ goes up A before going down B,A > 0,B > 0.

9. Let {X(t), t ≥ 0} be a Brownian motion process with drift coefficient μ

and variance parameter σ 2. What is the joint density function of X(s) and
X(t), s < t?
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*10. Let {X(t), t ≥ 0} be a Brownian motion process with drift coefficient μ and
variance parameter σ 2. What is the conditional distribution of X(t) given that
X(s) = c when
(a) s < t?
(b) t < s?

11. Consider a process whose value changes every h time units; its new value
being its old value multiplied either by the factor eσ

√
h with probability

p = 1
2 (1 + μ

σ

√
h), or by the factor e−σ

√
h with probability 1 − p. As h goes

to zero, show that this process converges to geometric Brownian motion with
drift coefficient μ and variance parameter σ 2.

12. A stock is presently selling at a price of $50 per share. After one time period,
its selling price will (in present value dollars) be either $150 or $25. An option
to purchase y units of the stock at time 1 can be purchased at cost cy.
(a) What should c be in order for there to be no sure win?
(b) If c = 4, explain how you could guarantee a sure win.
(c) If c = 10, explain how you could guarantee a sure win.
(d) Use the arbitrage theorem to verify your answer to part (a).

13. Verify the statement made in the remark following Example 10.2.
14. The present price of a stock is 100. The price at time 1 will be either 50, 100,

or 200. An option to purchase y shares of the stock at time 1 for the (present
value) price ky costs cy.
(a) If k = 120, show that an arbitrage opportunity occurs if and only if

c > 80/3.
(b) If k = 80, show that there is not an arbitrage opportunity if and only if

20 ≤ c ≤ 40.
15. The current price of a stock is 100. Suppose that the logarithm of the price of

the stock changes according to a Brownian motion process with drift coeffi-
cient μ = 2 and variance parameter σ 2 = 1. Give the Black–Scholes cost of an
option to buy the stock at time 10 for a cost of
(a) 100 per unit.
(b) 120 per unit.
(c) 80 per unit.

Assume that the continuously compounded interest rate is 5 percent.

A stochastic process {Y(t), t ≥ 0} is said to be a Martingale process if, for
s < t ,

E[Y(t)|Y(u), 0 ≤ u ≤ s] = Y(s)

16. If {Y(t), t ≥ 0} is a Martingale, show that

E[Y(t)] = E[Y(0)]
17. Show that standard Brownian motion is a Martingale.
18. Show that {Y(t), t ≥ 0} is a Martingale when

Y(t) = B2(t) − t
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What is E[Y(t)]?
Hint: First compute E[Y(t)|B(u), 0 ≤ u ≤ s].

*19. Show that {Y(t), t ≥ 0} is a Martingale when

Y(t) = exp{cB(t) − c2t/2}
where c is an arbitrary constant. What is E[Y(t)]?
An important property of a Martingale is that if you continually observe the
process and then stop at some time T , then, subject to some technical condi-
tions (which will hold in the problems to be considered),

E[Y(T )] = E[Y(0)]
The time T usually depends on the values of the process and is known as a stop-
ping time for the Martingale. This result, that the expected value of the stopped
Martingale is equal to its fixed time expectation, is known as the Martingale
stopping theorem.

*20. Let

T = Min{t : B(t) = 2 − 4t}
That is, T is the first time that standard Brownian motion hits the line 2 − 4t .
Use the Martingale stopping theorem to find E[T ].

21. Let {X(t), t ≥ 0} be Brownian motion with drift coefficient μ and variance
parameter σ 2. That is,

X(t) = σB(t) + μt

Let μ > 0, and for a positive constant x let

T = Min{t : X(t) = x}
= Min

{
t : B(t) = x − μt

σ

}
That is, T is the first time the process {X(t), t ≥ 0} hits x. Use the Martingale
stopping theorem to show that

E[T ] = x/μ

22. Let X(t) = σB(t)+μt , and for given positive constants A and B, let p denote
the probability that {X(t), t ≥ 0} hits A before it hits −B.
(a) Define the stopping time T to be the first time the process hits either A or

−B. Use this stopping time and the Martingale defined in Exercise 19 to
show that

E[exp{c(X(T ) − μT )/σ − c2T/2}] = 1
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(b) Let c = −2μ/σ , and show that

E[exp{−2μX(T )/σ }] = 1

(c) Use part (b) and the definition of T to find p.

Hint: What are the possible values of exp{−2μX(T )/σ 2}?
23. Let X(t) = σB(t)+μt , and define T to be the first time the process {X(t), t ≥

0} hits either A or −B, where A and B are given positive numbers. Use the
Martingale stopping theorem and part (c) of Exercise 22 to find E[T ].

*24. Let {X(t), t ≥ 0} be Brownian motion with drift coefficient μ and variance
parameter σ 2. Suppose that μ > 0. Let x > 0 and define the stopping time T

(as in Exercise 21) by

T = Min{t : X(t) = x}
Use the Martingale defined in Exercise 18, along with the result of Exercise 21,
to show that

Var(T ) = xσ 2/μ3

In Exercises 25 to 27, {X(t), t ≥ 0} is a Brownian motion process with drift
parameter μ and variance parameter σ 2.

25. Suppose every � time units a process either increases by the amount σ
√

�

with probability p or decreases by the amount σ
√

� with probability 1 − p

where

p = 1

2
(1 + μ

σ

√
�).

Show that as � goes to 0, this process converges to a Brownian motion process
with drift parameter μ and variance parameter σ 2.

26. Let Ty be the first time that the process is equal to y. For y > 0, show that

P(Ty < ∞) =
{

1, if μ ≥ 0

e2yμ/σ 2
, if μ < 0

Let M = max0≤t<∞ X(t) be the maximal value ever attained. Explain why the
preceding implies that, when μ < 0, M is an exponential random variable with
rate −2μ/σ 2.

27. Determine the distribution function of min0≤y≤t X(y).
28. Compute the mean and variance of

(a)
∫ 1

0 t dB(t)

(b)
∫ 1

0 t2 dB(t)

29. Let Y(t) = tB(1/t), t > 0 and Y(0) = 0.
(a) What is the distribution of Y(t)?
(b) Compare Cov(Y (s), Y (t)).
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(c) Argue that {Y(t), t ≥ 0} is a standard Brownian motion process.
30. Let Y(t) = B(a2t)/a for a > 0. Argue that {Y(t)} is a standard Brownian mo-

tion process.
31. For s < t , argue that B(s) − s

t
B(t) and B(t) are independent.

32. Let {Z(t), t ≥ 0} denote a Brownian bridge process. Show that if

Y(t) = (t + 1)Z(t/(t + 1))

then {Y(t), t ≥ 0} is a standard Brownian motion process.
33. Let X(t) = N(t + 1) − N(t) where {N(t), t ≥ 0} is a Poisson process with

rate λ. Compute

Cov[X(t),X(t + s)]
34. Let {N(t), t ≥ 0} denote a Poisson process with rate λ and define Y(t) to be

the time from t until the next Poisson event.
(a) Argue that {Y(t), t ≥ 0} is a stationary process.
(b) Compute Cov[Y(t), Y (t + s)].

35. Let {X(t),−∞ < t < ∞} be a weakly stationary process having covariance
function RX(s) = Cov[X(t),X(t + s)].
(a) Show that

Var(X(t + s) − X(t)) = 2RX(0) − 2RX(t)

(b) If Y(t) = X(t +1)−X(t) show that {Y(t), −∞ < t < ∞} is also weakly
stationary having a covariance function RY (s) = Cov[Y(t), Y (t + s)] that
satisfies

RY (s) = 2RX(s) − RX(s − 1) − RX(s + 1)

36. Let Y1 and Y2 be independent unit normal random variables and for some con-
stant w set

X(t) = Y1 coswt + Y2 sinwt, −∞ < t < ∞
(a) Show that {X(t)} is a weakly stationary process.
(b) Argue that {X(t)} is a stationary process.

37. Let {X(t), −∞ < t < ∞} be weakly stationary with covariance function
R(s) = Cov(X(t),X(t + s)) and let R̃(w) denote the power spectral density
of the process.

(i) Show that R̃(w) = R̃(−w). It can be shown that

R(s) = 1

2π

∫ ∞

−∞
R̃(w)eiws dw

(ii) Use the preceding to show that∫ ∞

−∞
R̃(w)dw = 2πE[X2(t)]
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11Simulation

11.1 Introduction
Let X = (X1, . . . ,Xn) denote a random vector having a given density function
f (x1, . . . , xn) and suppose we are interested in computing

E[g(X)] =
∫∫

· · ·
∫

g(x1, . . . , xn)f (x1, . . . , xn) dx1 dx2 · · ·dxn

for some n-dimensional function g. For instance, g could represent the total delay in
queue of the first [n/2] customers when the X values represent the first [n/2] inter-
arrival and service times.1 In many situations, it is not analytically possible either to
compute the preceding multiple integral exactly or even to numerically approximate
it within a given accuracy. One possibility that remains is to approximate E[g(X)] by
means of simulation.

To approximate E[g(X)], start by generating a random vector

X(1) =
(
X

(1)
1 , . . . ,X

(1)
n

)
having the joint density f (x1, . . . , xn) and then compute

Y (1) = g
(
X(1)

)
. Now generate a second random vector (independent of the first) X(2)

and compute Y (2) = g
(
X(2)

)
. Keep on doing this until r , a fixed number of indepen-

dent and identically distributed random variables Y (i) = g
(
X(i)

)
, i = 1, . . . , r have

been generated. Now by the strong law of large numbers, we know that

lim
r→∞

Y (1) + · · · + Y (r)

r
= E[Y (i)] = E[g(X)]

and so we can use the average of the generated Y s as an estimate of E[g(X)]. This
approach to estimating E[g(X)] is called the Monte Carlo simulation approach.

Clearly there remains the problem of how to generate, or simulate, random vectors
having a specified joint distribution. The first step in doing this is to be able to gener-
ate random variables from a uniform distribution on (0,1). One way to do this would
be to take 10 identical slips of paper, numbered 0,1, . . . ,9, place them in a hat and
then successively select n slips, with replacement, from the hat. The sequence of dig-
its obtained (with a decimal point in front) can be regarded as the value of a uniform
(0,1) random variable rounded off to the nearest

( 1
10

)n
. For instance, if the sequence

of digits selected is 3, 8, 7, 2, 1, then the value of the uniform (0,1) random variable is
0.38721 (to the nearest 0.00001). Tables of the values of uniform (0,1) random vari-
ables, known as random number tables, have been extensively published (for instance,
see The RAND Corporation, A Million Random Digits with 100,000 Normal Deviates
(New York: The Free Press, 1955)). Table 11.1 is such a table.

However, this is not the way in which digital computers simulate uniform (0,1)

random variables. In practice, they use pseudo random numbers instead of truly ran-
dom ones. Most random number generators start with an initial value X0, called the

1 We are using the notation [a] to represent the largest integer less than or equal to a.

Introduction to Probability Models. https://doi.org/10.1016/B978-0-44-318761-2.00016-6
Copyright © 2024 Elsevier Inc. All rights reserved.
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Table 11.1 A Random Number Table.

04839 96423 24878 82651 66566 14778 76797 14780 13300 87074
68086 26432 46901 20848 89768 81536 86645 12659 92259 57102
39064 66432 84673 40027 32832 61362 98947 96067 64760 64584
25669 26422 44407 44048 37937 63904 45766 66134 75470 66520
64117 94305 26766 25940 39972 22209 71500 64568 91402 42416
87917 77341 42206 35126 74087 99547 81817 42607 43808 76655
62797 56170 86324 88072 76222 36086 84637 93161 76038 65855
95876 55293 18988 27354 26575 08625 40801 59920 29841 80150
29888 88604 67917 48708 18912 82271 65424 69774 33611 54262
73577 12908 30883 18317 28290 35797 05998 41688 34952 37888
27958 30134 04024 86385 29880 99730 55536 84855 29080 09250
90999 49127 20044 59931 06115 20542 18059 02008 73708 83517
18845 49618 02304 51038 20655 58727 28168 15475 56942 53389
94824 78171 84610 82834 09922 25417 44137 48413 25555 21246
35605 81263 39667 47358 56873 56307 61607 49518 89356 20103
33362 64270 01638 92477 66969 98420 04880 45585 46565 04102
88720 82765 34476 17032 87589 40836 32427 70002 70663 88863
39475 46473 23219 53416 94970 25832 69975 94884 19661 72828
06990 67245 68350 82948 11398 42878 80287 88267 47363 46634
40980 07391 58745 25774 22987 80059 39911 96189 41151 14222
83974 29992 65381 38857 50490 83765 55657 14361 31720 57375
33339 31926 14883 24413 59744 92351 97473 89286 35931 04110
31662 25388 61642 34072 81249 35648 56891 69352 48373 45578
93526 70765 10592 04542 76463 54328 02349 17247 28865 14777
20492 38391 91132 21999 59516 81652 27195 48223 46751 22923
04153 53381 79401 21438 83035 92350 36693 31238 59649 91754
05520 91962 04739 13092 97662 24822 94730 06496 35090 04822
47498 87637 99016 71060 88824 71013 18735 20286 23153 72924
23167 49323 45021 33132 12544 41035 80780 45393 44812 12515
23792 14422 15059 45799 22716 19792 09983 74353 68668 30429
85900 98275 32388 52390 16815 69298 82732 38480 73817 32523
42559 78985 05300 22164 24369 54224 35083 19687 11062 91491
14349 82674 66523 44133 00697 35552 35970 19124 63318 29686
17403 53363 44167 64486 64758 75366 76554 31601 12614 33072
23632 27889 47914 02584 37680 20801 72152 39339 34806 08930

seed, and then recursively compute values by specifying positive integers a, c, and m,
and then letting

Xn+1 = (aXn + c) modulo m, n ≥ 0

where the preceding means that aXn + c is divided by m and the remainder is taken
as the value of Xn+1. Thus each Xn is either 0,1, . . ., or m− 1 and the quantity Xn/m
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is taken as an approximation to a uniform (0,1) random variable. It can be shown
that subject to suitable choices for a, c,m, the preceding gives rise to a sequence of
numbers that looks as if it were generated from independent uniform (0,1) random
variables.

As our starting point in the simulation of random variables from an arbitrary dis-
tribution, we shall suppose that we can simulate from the uniform (0,1) distribution,
and we shall use the term “random numbers” to mean independent random variables
from this distribution. In Sections 11.2 and 11.3, we present both general and special
techniques for simulating continuous random variables; and in Section 11.4, we do the
same for discrete random variables. In Section 11.5, we discuss the simulation both
of jointly distributed random variables and stochastic processes. Particular attention
is given to the simulation of nonhomogeneous Poisson processes, and in fact three
different approaches for this are discussed. Simulation of two-dimensional Poisson
processes is discussed in Section 11.5.2. In Section 11.6, we discuss various methods
for increasing the precision of the simulation estimates by reducing their variance; and
in Section 11.7 we consider the problem of choosing the number of simulation runs
needed to attain a desired level of precision. Before beginning this program, however,
let us consider two applications of simulation to combinatorial problems.

Example 11.1 (Generating a Random Permutation). Suppose we are interested in
generating a permutation of the numbers 1,2, . . . , n that is such that all n! possible
orderings are equally likely. The following algorithm will accomplish this by first
choosing one of the numbers 1, . . . , n at random and then putting that number in po-
sition n; it then chooses at random one of the remaining n − 1 numbers and puts
that number in position n − 1; it then chooses at random one of the remaining n − 2
numbers and puts it in position n − 2, and so on (where choosing a number at random
means that each of the remaining numbers is equally likely to be chosen). However, so
that we do not have to consider exactly which of the numbers remain to be positioned,
it is convenient and efficient to keep the numbers in an ordered list and then randomly
choose the position of the number rather than the number itself. That is, starting with
any initial ordering p1,p2, . . . , pn, we pick one of the positions 1, . . . , n at random
and then interchange the number in that position with the one in position n. Now we
randomly choose one of the positions 1, . . . , n − 1 and interchange the number in this
position with the one in position n − 1, and so on.

To implement the preceding, we need to be able to generate a random variable that
is equally likely to take on any of the values 1,2, . . . , k. To accomplish this, let U

denote a random number—that is, U is uniformly distributed over (0,1)—and note
that kU is uniform on (0, k) and so

P {i − 1 < kU < i} = 1

k
, i = 1, . . . , k

Hence, the random variable I = [kU ] + 1 will be such that

P {I = i} = P {[kU ] = i − 1} = P {i − 1 < kU < i} = 1

k
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The preceding algorithm for generating a random permutation can now be written as
follows:

Step 1: Let p1,p2, . . . , pn be any permutation of 1,2, . . . , n (for instance, we can
choose pj = j, j = 1, . . . , n).

Step 2: Set k = n.
Step 3: Generate a random number U and let I = [kU ] + 1.
Step 4: Interchange the values of pI and pk .
Step 5: Let k = k − 1 and if k > 1 go to step 3.
Step 6: p1, . . . , pn is the desired random permutation.

For instance, suppose n = 4 and the initial permutation is 1, 2, 3, 4. If the first value
of I (which is equally likely to be either 1, 2, 3, 4) is I = 3, then the new permutation
is 1, 2, 4, 3. If the next value of I is I = 2 then the new permutation is 1, 4, 2, 3. If the
final value of I is I = 2, then the final permutation is 1, 4, 2, 3, and this is the value of
the random permutation.

One very important property of the preceding algorithm is that it can also be used
to generate a random subset, say of size r , of the integers 1, . . . , n. Namely, just fol-
low the algorithm until the positions n,n − 1, . . . , n − r + 1 are filled. The elements
in these positions constitute the random subset. �

Example 11.2 (Estimating the Number of Distinct Entries in a Large List). Consider
a list of n entries where n is very large, and suppose we are interested in estimating
d , the number of distinct elements in the list. If we let mi denote the number of times
that the element in position i appears on the list, then we can express d by

d =
n∑

i=1

1

mi

To estimate d , suppose that we generate a random value X equally likely to be either
1,2, . . . , n (that is, we take X = [nU ] + 1) and then let m(X) denote the number of
times the element in position X appears on the list. Then

E

[
1

m(X)

]
=

n∑
i=1

1

mi

1

n
= d

n

Hence, if we generate k such random variables X1, . . . ,Xk we can estimate d by

d ≈ n
∑k

i=1 1/m(Xi)

k

Suppose now that each item in the list has a value attached to it—v(i) being the value
of the ith element. The sum of the values of the distinct items—call it v—can be
expressed as

v =
n∑

i=1

v(i)

m(i)
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Now if X = [nU ] + 1, where U is a random number, then

E

[
v(X)

m(X)

]
=

n∑
i=1

v(i)

m(i)

1

n
= v

n

Hence, we can estimate v by generating X1, . . . ,Xk and then estimating v by

v ≈ n

k

k∑
i=1

v(Xi)

m(Xi)

For an important application of the preceding, let Ai = {ai,1, . . . , ai,ni
}, i = 1, . . . , s

denote events, and suppose we are interested in estimating P
(⋃s

i=1 Ai

)
. Since

P

(
s⋃

i=1

Ai

)
=
∑

a∈∪Ai

P (a) =
s∑

i=1

ni∑
j=1

P(ai,j )

m(ai,j )

where m(ai,j ) is the number of events to which the point ai,j belongs, the preceding
method can be used to estimate P

(⋃s
1 Ai

)
.

Note that the preceding procedure for estimating v can be effected without prior
knowledge of the set of values {v1, . . . , vn}. That is, it suffices that we can determine
the value of an element in a specific place and the number of times that element ap-
pears on the list. When the set of values is a priori known, there is another approach
available as will be shown in Example 11.11. �

11.2 General Techniques for Simulating Continuous Random
Variables

In this section we present three methods for simulating continuous random variables.

11.2.1 The Inverse Transformation Method

A general method for simulating a random variable having a continuous distribution—
called the inverse transformation method—is based on the following proposition.

Proposition 11.1. Let U be a uniform (0,1) random variable. For any continuous
distribution function F if we define the random variable X by

X = F−1(U)

then the random variable X has distribution function F . (F−1(u) is defined to equal
that value x for which F(x) = u.)

Proof.

FX(a) = P {X ≤ a}
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= P {F−1(U) ≤ a} (11.1)

Now, since F(x) is a monotone function, it follows that F−1(U) ≤ a if and only if
U ≤ F(a). Hence, from Eq. (11.1), we see that

FX(a) = P {U ≤ F(a)}
= F(a) �

Hence, we can simulate a random variable X from the continuous distribution
F , when F−1 is computable, by simulating a random number U and then setting
X = F−1(U).

Example 11.3 (Simulating an Exponential Random Variable). If F(x) = 1 − e−x ,
then F−1(u) is that value of x such that

1 − e−x = u

or

x = − log(1 − u)

Hence, if U is a uniform (0,1) variable, then

F−1(U) = − log(1 − U)

is exponentially distributed with mean 1. Since 1 − U is also uniformly distributed on
(0, 1) it follows that − logU is exponential with mean 1. Since cX is exponential with
mean c when X is exponential with mean 1, it follows that −c logU is exponential
with mean c. �

11.2.2 The Rejection Method

Suppose that we have a method for simulating a random variable having density func-
tion g(x). We can use this as the basis for simulating from the continuous distribution
having density f (x) by simulating Y from g and then accepting this simulated value
with a probability proportional to f (Y )/g(Y ).

Specifically, let c be a constant such that

f (y)

g(y)
≤ c for all y

We then have the following technique for simulating a random variable having
density f .
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Rejection Method

Step 1: Simulate Y having density g and simulate a random number U .
Step 2: If U ≤ f (Y )/cg(Y ) set X = Y . Otherwise return to step 1.

Proposition 11.2. The random variable X generated by the rejection method has
density function f .

Proof. Let X be the value obtained, and let N denote the number of necessary itera-
tions. Then

P {X ≤ x} = P {YN ≤ x}
= P {Y ≤ x|U ≤ f (Y )/cg(Y )}

= P {Y ≤ x,U ≤ f (Y )/cg(Y )}
K

=
∫

P {Y ≤ x,U ≤ f (Y )/cg(Y )|Y = y}g(y) dy

K

=
∫ x

−∞(f (y)/cg(y))g(y) dy

K

=
∫ x

−∞ f (y) dy

Kc

where K = P {U ≤ f (Y )/cg(Y )}. Letting x → ∞ shows that K = 1/c and the proof
is complete. �

Remarks. (i) The preceding method was originally presented by Von Neumann
in the special case where g was positive only in some finite interval (a, b), and
Y was chosen to be uniform over (a, b) (that is, Y = a + (b − a)U ).

(ii) Note that the way in which we “accept the value Y with probability
f (Y )/cg(Y )” is by generating a uniform (0,1) random variable U and then
accepting Y if U ≤ f (Y )/cg(Y ).

(iii) Since each iteration of the method will, independently, result in an accepted
value with probability P {U ≤ f (Y )/cg(Y )} = 1/c it follows that the number
of iterations is geometric with mean c.

(iv) Actually, it is not necessary to generate a new uniform random number when
deciding whether or not to accept, since at a cost of some additional compu-
tation, a single random number, suitably modified at each iteration, can be
used throughout. To see how, note that the actual value of U is not used—
only whether or not U ≤ f (Y )/cg(Y ). Hence, if Y is rejected—that is, if
U > f (Y )/cg(Y )—we can use the fact that, given Y ,

U − f (Y )/cg(Y )

1 − f (Y )/cg(Y )
= cUg(Y ) − f (Y )

cg(Y ) − f (Y )

is uniform on (0,1). Hence, this may be used as a uniform random number in
the next iteration. As this saves the generation of a random number at the cost
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of the preceding computation, whether it is a net savings depends greatly upon
the method being used to generate random numbers. �

Example 11.4. Let us use the rejection method to generate a random variable having
density function

f (x) = 20x(1 − x)3, 0 < x < 1

Since this random variable (which is beta with parameters 2, 4) is concentrated in the
interval (0,1), let us consider the rejection method with

g(x) = 1, 0 < x < 1

To determine the constant c such that f (x)/g(x) ≤ c, we use calculus to determine
the maximum value of

f (x)

g(x)
= 20x(1 − x)3

Differentiation of this quantity yields

d

dx

[
f (x)

g(x)

]
= 20

[
(1 − x)3 − 3x(1 − x)2

]

Setting this equal to 0 shows that the maximal value is attained when x = 1
4 , and thus

f (x)

g(x)
≤ 20

(
1

4

)(
3

4

)3

= 135

64
≡ c

Hence,

f (x)

cg(x)
= 256

27
x(1 − x)3

and thus the rejection procedure is as follows:

Step 1: Generate random numbers U1 and U2.
Step 2: If U2 ≤ 256

27 U1(1 − U1)
3, stop and set X = U1. Otherwise return to step 1.

The average number of times that step 1 will be performed is c = 135
64 . �

Example 11.5 (Simulating a Normal Random Variable). To simulate a standard nor-
mal random variable Z (that is, one with mean 0 and variance 1), note first that the
absolute value of Z has density function

f (x) = 2√
2π

e−x2/2, 0 < x < ∞ (11.2)

We will start by simulating from the preceding density by using the rejection method
with

g(x) = e−x, 0 < x < ∞



Simulation 701

Now, note that

f (x)

g(x)
=√2e/π exp{−(x − 1)2/2} ≤√2e/π

Hence, using the rejection method we can simulate from Eq. (11.2) as follows:

(a) Generate independent random variables Y and U,Y being exponential with rate
1 and U being uniform on (0,1).

(b) If U ≤ exp{−(Y − 1)2/2}, or equivalently, if

− logU ≥ (Y − 1)2/2

set X = Y . Otherwise return to step (a).

Once we have simulated a random variable X having Density Function (11.2), we can
then generate a standard normal random variable Z by letting Z be equally likely to
be either X or −X.

To improve upon the foregoing, note first that from Example 11.3 it follows that
− logU will also be exponential with rate 1. Hence, steps (a) and (b) are equivalent to
the following:

(a′) Generate independent exponentials with rate 1, Y1, and Y2.
(b′) Set X = Y1 if Y2 ≥ (Y1 − 1)2/2. Otherwise return to step (a′).
Now suppose that we accept step (b′). It then follows by the lack of memory prop-
erty of the exponential that the amount by which Y2 exceeds (Y1 − 1)2/2 will also be
exponential with rate 1.

Hence, summing up, we have the following algorithm which generates an expo-
nential with rate 1 and an independent standard normal random variable:

Step 1: Generate Y1, an exponential random variable with rate 1.
Step 2: Generate Y2, an exponential with rate 1.
Step 3: If Y2 − (Y1 − 1)2/2 > 0, set Y = Y2 − (Y1 − 1)2/2 and go to step 4. Other-

wise go to step 1.
Step 4: Generate a random number U and set

Z =
{

Y1, if U ≤ 1
2

−Y1, if U > 1
2

The random variables Z and Y generated by the preceding are independent with Z

being normal with mean 0 and variance 1 and Y being exponential with rate 1. (If
we want the normal random variable to have mean μ and variance σ 2, just take
μ + σZ.) �

Remarks. (i) Since c = √
2e/π ≈ 1.32, the preceding requires a geometric dis-

tributed number of iterations of step 2 with mean 1.32.
(ii) The final random number of step 4 need not be separately simulated but rather

can be obtained from the first digit of any random number used earlier. That
is, suppose we generate a random number to simulate an exponential; then we
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can strip off the initial digit of this random number and just use the remain-
ing digits (with the decimal point moved one step to the right) as the random
number. If this initial digit is 0, 1, 2, 3, or 4 (or 0 if the computer is generating
binary digits), then we take the sign of Z to be positive and take it to be negative
otherwise.

(iii) If we are generating a sequence of standard normal random variables, then we
can use the exponential obtained in step 3 as the initial exponential needed in
step 1 for the next normal to be generated. Hence, on the average, we can simu-
late a unit normal by generating 1.64 exponentials and computing 1.32 squares.

11.2.3 The Hazard Rate Method

Let F be a continuous distribution function with F̄ (0) = 1. Recall that λ(t), the hazard
rate function of F , is defined by

λ(t) = f (t)

F̄ (t)
, t ≥ 0

(where f (t) = F ′(t) is the density function). Recall also that λ(t) represents the in-
stantaneous probability intensity that an item having life distribution F will fail at time
t given it has survived to that time.

Suppose now that we are given a bounded function λ(t), such that
∫∞

0 λ(t) dt = ∞,
and we desire to simulate a random variable S having λ(t) as its hazard rate function.

To do so let λ be such that

λ(t) ≤ λ for all t ≥ 0

To simulate from λ(t), t ≥ 0, we will

(a) simulate a Poisson process having rate λ. We will then only “accept” or “count”
certain of these Poisson events. Specifically we will

(b) count an event that occurs at time t , independently of all else, with probability
λ(t)/λ.

We now have the following proposition.

Proposition 11.3. The time of the first counted event—call it S— is a random variable
whose distribution has hazard rate function λ(t), t ≥ 0.

Proof.

P {t < S < t + dt |S > t}
= P {first counted event in (t, t + dt)|no counted events prior to t}
= P {Poisson event in (t, t + dt), it is counted|no counted events prior to t}
= P {Poisson event in (t, t + dt), it is counted}
= [λ dt + o(dt)]λ(t)

λ
= λ(t) dt + o(dt)
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which completes the proof. Note that the next to last equality follows from the inde-
pendent increment property of Poisson processes. �

Because the interarrival times of a Poisson process having rate λ are exponen-
tial with rate λ, it thus follows from Example 11.3 and the previous proposition that
the following algorithm will generate a random variable having hazard rate function
λ(t), t ≥ 0.

Hazard Rate Method for Generating S:λs(t) = λ(t)

Let λ be such that λ(t) ≤ λ for all t ≥ 0. Generate pairs of random variables Ui , Xi ,
i ≥ 1, with Xi being exponential with rate λ and Ui being uniform (0,1), stopping at

N = min

{
n: Un ≤ λ

(
n∑

i=1

Xi

)/
λ

}

Set

S =
N∑

i=1

Xi �

To compute E[N ] we need the result, known as Wald’s equation, which states that
if X1,X2, . . . are independent and identically distributed random variables that are
observed in sequence up to some random time N then

E

[
N∑

i=1

Xi

]
= E[N ]E[X]

More precisely let X1,X2, . . . denote a sequence of independent random variables and
consider the following definition.

Definition 11.1. An integer-valued random variable N is said to be a stopping time
for the sequence X1,X2, . . . if the event {N = n} is independent of Xn+1,Xn+2, . . .

for all n = 1,2, . . . .
Intuitively, we observe the Xns in sequential order and N denotes the number ob-

served before stopping. If N = n, then we have stopped after observing X1, . . . ,Xn

and before observing Xn+1,Xn+2, . . . for all n = 1,2, . . . .

Example 11.6. Let Xn,n = 1,2, . . . , be independent and such that

P {Xn = 0} = P {Xn = 1} = 1
2 , n = 1,2, . . .

If we let

N = min{n: X1 + · · · + Xn = 10}
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then N is a stopping time. We may regard N as being the stopping time of an ex-
periment that successively flips a fair coin and then stops when the number of heads
reaches 10. �

Proposition 11.4 (Wald’s Equation). If X1,X2, . . . are independent and identically
distributed random variables having finite expectations, and if N is a stopping time
for X1,X2, . . . such that E[N ] < ∞, then

E

[
N∑
1

Xn

]
= E[N ]E[X]

Proof. Letting

In =
{

1, if N ≥ n

0, if N < n

we have

N∑
n=1

Xn =
∞∑

n=1

XnIn

Hence,

E

[
N∑

n=1

Xn

]
= E

[ ∞∑
n=1

XnIn

]
=

∞∑
n=1

E[XnIn] (11.3)

However, In = 1 if and only if we have not stopped after successively observing
X1, . . . ,Xn−1. Therefore, In is determined by X1, . . . ,Xn−1 and is thus independent
of Xn. From Eq. (11.3), we thus obtain

E

[
N∑

n=1

Xn

]
=

∞∑
n=1

E[Xn]E[In]

= E[X]
∞∑

n=1

E[In]

= E[X]E
[ ∞∑

n=1

In

]

= E[X]E[N ] �

Returning to the hazard rate method, we have

S =
N∑

i=1

Xi
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As N = min{n: Un ≤ λ
(∑n

1 Xi

)
/λ} it follows that the event that N = n is indepen-

dent of Xn+1,Xn+2, . . .. Hence, by Wald’s equation,

E[S] = E[N ]E[Xi]

= E[N ]
λ

or

E[N ] = λE[S]
where E[S] is the mean of the desired random variable.

11.3 Special Techniques for Simulating Continuous Random
Variables

Special techniques have been devised to simulate from most of the common continu-
ous distributions. We now present certain of these.

11.3.1 The Normal Distribution

Let X and Y denote independent standard normal random variables and thus have the
joint density function

f (x, y) = 1

2π
e−(x2+y2

)
/2, −∞ < x < ∞,−∞ < y < ∞

Consider now the polar coordinates of the point (X,Y ). As shown in Fig. 11.1,

R2 = X2 + Y 2,

� = tan−1 Y/X

Figure 11.1
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To obtain the joint density of R2 and �, consider the transformation

d = x2 + y2, θ = tan−1 y/x

The Jacobian of this transformation is

J =

∣∣∣∣∣∣∣∣
∂d

∂x

∂d

∂y

∂θ

∂x

∂θ

∂y

∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣
2x 2y

1

1 + y2/x2

(−y

x2

)
1

1 + y2/x2

(
1

x

)
∣∣∣∣∣∣∣

= 2

∣∣∣∣∣∣
x y

− y

x2 + y2

x

x2 + y2

∣∣∣∣∣∣= 2

Hence, from Section 2.5.3, the joint density of R2 and � is given by

fR2,�(d, θ) = 1

2π
e−d/2 1

2

= 1

2
e−d/2 1

2π
, 0 < d < ∞,0 < θ < 2π

Thus, we can conclude that R2 and � are independent with R2 having an exponential
distribution with rate 1

2 and � being uniform on (0,2π).
Let us now go in reverse from the polar to the rectangular coordinates. From the

preceding if we start with W , an exponential random variable with rate 1
2 (W plays

the role of R2) and with V , independent of W and uniformly distributed over (0,2π)

(V plays the role of �) then X = √
W cosV,Y = √

W sinV will be independent stan-
dard normals. Hence, using the results of Example 11.3, we see that if U1 and U2 are
independent uniform (0,1) random numbers, then

X = (−2 log U1)
1/2 cos(2πU2),

Y = (−2 log U1)
1/2 sin(2πU2)

(11.4)

are independent standard normal random variables.

Remark. The fact that X2 + Y 2 has an exponential distribution with rate 1
2 is quite

interesting for, by the definition of the chi-square distribution, X2 + Y 2 has a chi-
squared distribution with two degrees of freedom. Hence, these two distributions are
identical.

The preceding approach to generating standard normal random variables is called
the Box–Muller approach. Its efficiency suffers somewhat from its need to compute
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Figure 11.2

the preceding sine and cosine values. There is, however, a way to get around this po-
tentially time-consuming difficulty. To begin, note that if U is uniform on (0,1), then
2U is uniform on (0,2), and so 2U − 1 is uniform on (−1,1). Thus, if we generate
random numbers U1 and U2 and set

V1 = 2U1 − 1,

V2 = 2U2 − 1

then (V1,V2) is uniformly distributed in the square of area 4 centered at (0, 0) (see
Fig. 11.2).

Suppose now that we continually generate such pairs (V1,V2) until we obtain one
that is contained in the circle of radius 1 centered at (0,0)—that is, until (V1,V2) is
such that V 2

1 + V 2
2 ≤ 1. It now follows that such a pair (V1,V2) is uniformly dis-

tributed in the circle. If we let R̄, �̄ denote the polar coordinates of this pair, then it is
easy to verify that R̄ and �̄ are independent, with R̄2 being uniformly distributed on
(0,1), and �̄ uniformly distributed on (0,2π).

Since

sin �̄ = V2/R̄ = V2√
V 2

1 + V 2
2

,

cos �̄ = V1/R̄ = V1√
V 2

1 + V 2
2

it follows from Eq. (11.4) that we can generate independent standard normals X and
Y by generating another random number U and setting

X = (−2 log U)1/2V1/R̄,

Y = (−2 log U)1/2V2/R̄
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In fact, since (conditional on V 2
1 +V 2

2 ≤ 1) R̄2 is uniform on (0,1) and is independent
of �̄, we can use it instead of generating a new random number U ; thus showing that

X = (−2 log R̄2)1/2V1/R̄ =
√−2 logS

S
V1,

Y = (−2 log R̄2)1/2V2/R̄ =
√−2 logS

S
V2

are independent standard normals, where

S = R̄2 = V 2
1 + V 2

2

Summing up, we thus have the following approach to generating a pair of indepen-
dent standard normals:

Step 1: Generate random numbers U1 and U2.
Step 2: Set V1 = 2U1 − 1, V2 = 2U2 − 1, S = V 2

1 + V 2
2 .

Step 3: If S > 1, return to step 1.
Step 4: Return the independent unit normals

X =
√−2 logS

S
V1, Y =

√−2 logS

S
V2

The preceding is called the polar method. Since the probability that a random point
in the square will fall within the circle is equal to π/4 (the area of the circle divided
by the area of the square), it follows that, on average, the polar method will require
4/π = 1.273 iterations of step 1. Hence, it will, on average, require 2.546 random
numbers, 1 logarithm, 1 square root, 1 division, and 4.546 multiplications to generate
2 independent standard normals.

11.3.2 The Gamma Distribution

To simulate from a gamma distribution with parameters (n,λ), where n is an integer,
we use the fact that the sum of n independent exponential random variables each hav-
ing rate λ has this distribution. Hence, if U1, . . . ,Un are independent uniform (0,1)

random variables,

X = 1

λ

n∑
i=1

log Ui = −1

λ
log

(
n∏

i=1

Ui

)

has the desired distribution.
When n is large, there are other techniques available that do not require so many

random numbers. One possibility is to use the rejection procedure with g(x) being
taken as the density of an exponential random variable with mean n/λ (as this is the
mean of the gamma). It can be shown that for large n the average number of iterations
needed by the rejection algorithm is e[(n − 1)/2π]1/2. In addition, if we wanted to
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generate a series of gammas, then, just as in Example 11.4, we can arrange things so
that upon acceptance we obtain not only a gamma random variable but also, for free,
an exponential random variable that can then be used in obtaining the next gamma
(see Exercise 8).

11.3.3 The Chi-Squared Distribution

The chi-squared distribution with n degrees of freedom is the distribution of χ2
n =

Z2
1 +· · ·+Z2

n where Zi, i = 1, . . . , n are independent standard normals. Using the fact
noted in the remark at the end of Section 3.1, we see that Z2

1 + Z2
2 has an exponen-

tial distribution with rate 1
2 . Hence, when n is even—say, n = 2k—χ2

2k has a gamma

distribution with parameters
(
k, 1

2

)
. Hence, −2 log (

∏k
i=1 Ui) has a chi-squared dis-

tribution with 2k degrees of freedom. We can simulate a chi-squared random variable
with 2k + 1 degrees of freedom by first simulating a standard normal random variable
Z and then adding Z2 to the preceding. That is,

χ2
2k+1 = Z2 − 2 log

(
k∏

i=1

Ui

)

where Z,U1, . . . ,Un are independent with Z being a standard normal and the others
being uniform (0,1) random variables.

11.3.4 The Beta (n, m) Distribution

The random variable X is said to have a beta distribution with parameters n,m if its
density is given by

f (x) = (n + m − 1)!
(n − 1)!(m − 1)!x

n−1(1 − x)m−1, 0 < x < 1

One approach to simulating from the preceding distribution is to let U1, . . . ,Un+m−1
be independent uniform (0,1) random variables and consider the nth smallest value
of this set—call it U(n). Now U(n) will equal x if, of the n + m − 1 variables,

(i) n − 1 are smaller than x,
(ii) one equals x,

(iii) m − 1 are greater than x.

Hence, if the n + m − 1 uniform random variables are partitioned into three subsets
of sizes n − 1, 1, and m − 1 the probability (density) that each of the variables in the
first set is less than x, the variable in the second set equals x, and all the variables in
the third set are greater than x is given by

(P {U < x})n−1fU(x)(P {U > x})m−1 = xn−1(1 − x)m−1

Hence, as there are (n + m − 1)!/(n − 1)!(m − 1)! possible partitions, it follows that
U(n) is beta with parameters (n,m).
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Thus, one way to simulate from the beta distribution is to find the nth smallest of a
set of n + m − 1 random numbers. However, when n and m are large, this procedure
is not particularly efficient.

For another approach consider a Poisson process with rate 1, and recall that given
Sn+m, the time of the (n + m)th event, the set of the first n + m − 1 event times
is distributed independently and uniformly on (0, Sn+m). Hence, given Sn+m, the nth
smallest of the first n+m−1 event times—that is, Sn—is distributed as the nth small-
est of a set of n + m − 1 uniform (0, Sn+m) random variables. But from the preceding
we can thus conclude that Sn/Sn+m has a beta distribution with parameters (n,m).
Therefore, if U1, . . . ,Un+m are random numbers,

− log
∏n

i=1Ui

− log
∏m+n

i=1 Ui

is beta with parameters (n,m)

By writing the preceding as

− log
∏n

i=1 Ui

− log
∏n

1 Ui − log
∏n+m

n+1 Ui

we see that it has the same distribution as X/(X + Y) where X and Y are independent
gamma random variables with respective parameters (n,1) and (m,1). Hence, when
n and m are large, we can efficiently simulate a beta by first simulating two gamma
random variables.

11.3.5 The Exponential Distribution—The Von Neumann
Algorithm

As we have seen, an exponential random variable with rate 1 can be simulated by com-
puting the negative of the logarithm of a random number. Most computer programs for
computing a logarithm, however, involve a power series expansion, and so it might be
useful to have at hand a second method that is computationally easier. We now present
such a method due to Von Neumann.

To begin let U1,U2, . . . be independent uniform (0,1) random variables and define
N,N ≥ 2, by

N = min{n: U1 ≥ U2 ≥ · · · ≥ Un−1 < Un}
That is, N is the index of the first random number that is greater than its predecessor.
Let us now compute the joint distribution of N and U1.

P {N > n,U1 ≤ y} =
∫ 1

0
P {N > n,U1 ≤ y|U1 = x}dx

=
∫ y

0
P {N > n|U1 = x}dx

Now, given that U1 = x,N will be greater than n if x ≥ U2 ≥ · · · ≥ Un or, equivalently,
if
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(a) Ui ≤ x, i = 2, . . . , n

and

(b) U2 ≥ · · · ≥ Un

Now, (a) has probability xn−1 of occurring and given (a), since all of the (n − 1)!
possible rankings of U2, . . . ,Un are equally likely, (b) has probability 1/(n − 1)! of
occurring. Hence,

P {N > n|U1 = x} = xn−1

(n − 1)!
and so

P {N > n,U1 ≤ y} =
∫ y

0

xn−1

(n − 1)! dx = yn

n!
which yields

P {N = n,U1 ≤ y} = P {N > n − 1,U1 ≤ y} − P {N > n,U1 ≤ y}

= yn−1

(n − 1)! − yn

n!
Upon summing over all the even integers, we see that

P {N is even, U1 ≤ y} = y − y2

2! + y3

3! − y4

4! − · · ·
= 1 − e−y (11.5)

We are now ready for the following algorithm for generating an exponential ran-
dom variable with rate 1.

Step 1: Generate uniform random numbers U1,U2, . . . stopping at N = min{n: U1 ≥
· · · ≥ Un−1 < Un}.

Step 2: If N is even accept that run, and go to step 3. If N is odd reject the run, and
return to step 1.

Step 3: Set X equal to the number of failed runs plus the first random number in the
successful run.

To show that X is exponential with rate 1, first note that the probability of a suc-
cessful run is, from Eq. (11.5) with y = 1,

P {N is even} = 1 − e−1

Now, in order for X to exceed x, the first [x] runs must all be unsuccessful and the
next run must either be unsuccessful or be successful but have U1 > x − [x] (where
[x] is the largest integer not exceeding x). As

P {N even, U1 > y} = P {N even} − P {N even, U1 ≤ y}
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= 1 − e−1 − (1 − e−y) = e−y − e−1

we see that

P {X > x} = e−[x][e−1 + e−(x−[x]) − e−1] = e−x

which yields the result.
Let T denote the number of trials needed to generate a successful run. As each

trial is a success with probability 1 − e−1 it follows that T is geometric with mean
1/(1 − e−1). If we let Ni denote the number of uniform random variables used on the
ith run, i ≥ 1, then T (being the first run i for which Ni is even) is a stopping time
for this sequence. Hence, by Wald’s equation, the mean number of uniform random
variables needed by this algorithm is given by

E

[
T∑

i=1

Ni

]
= E[N ]E[T ]

Now,

E[N ] =
∞∑

n=0

P {N > n}

= 1 +
∞∑

n=1

P {U1 ≥ · · · ≥ Un}

= 1 +
∞∑

n=1

1/n! = e

and so

E

[
T∑

i=1

Ni

]
= e

1 − e−1
≈ 4.3

Hence, this algorithm, which computationally speaking is quite easy to perform, re-
quires on the average about 4.3 random numbers to execute.

11.4 Simulating from Discrete Distributions
All of the general methods for simulating from continuous distributions have analogs
in the discrete case. For instance, if we want to simulate a random variable X having
probability mass function

P {X = xj } = Pj , j = 1,2, . . . ,
∑
j

Pj = 1
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we can use the following discrete time analog of the inverse transform technique:

To simulate X for which P {X = xj } = Pj

let U be uniformly distributed over (0,1), and set

X =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x1, if U < P1
x2, if P1 < U < P1 + P2
...

xj , if
j−1∑

1

Pi < U <

j∑
i

Pi

...

As,

P {X = xj } = P

⎧⎨
⎩

j−1∑
1

Pi < U <

j∑
1

Pi

⎫⎬
⎭= Pj

we see that X has the desired distribution.

Example 11.7 (The Geometric Distribution). Suppose we want to simulate X such
that

P {X = i} = p(1 − p)i−1, i ≥ 1

As

j−1∑
i=1

P {X = i} = 1 − P {X > j − 1} = 1 − (1 − p)j−1

we can simulate such a random variable by generating a random number U and then
setting X equal to that value j for which

1 − (1 − p)j−1 < U < 1 − (1 − p)j

or, equivalently, for which

(1 − p)j < 1 − U < (1 − p)j−1

As 1 − U has the same distribution as U , we can thus define X by

X = min{j : (1 − p)j < U} = min

{
j : j >

logU

log(1 − p)

}

= 1 +
[

log U

log(1 − p)

]
�
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As in the continuous case, special simulation techniques have been developed for
the more common discrete distributions. We now present certain of these.

Example 11.8 (Simulating a Binomial Random Variable). A binomial (n,p) random
variable can be most easily simulated by recalling that it can be expressed as the sum
of n independent Bernoulli random variables. That is, if U1, . . . ,Un are independent
uniform (0,1) variables, then letting

Xi =
{

1, if Ui < p

0, otherwise

it follows that X ≡∑n
i=1 Xi is a binomial random variable with parameters n and p.

One difficulty with this procedure is that it requires the generation of n random
numbers. To show how to reduce the number of random numbers needed, note first
that this procedure does not use the actual value of a random number U but only
whether or not it exceeds p. Using this and the result that the conditional distribution
of U given that U <p is uniform on (0,p) and the conditional distribution of U given
that U >p is uniform on (p,1), we now show how we can simulate a binomial (n,p)

random variable using only a single random number:

Step 1: Let α = 1/p,β = 1/(1 − p).
Step 2: Set k = 0.
Step 3: Generate a uniform random number U .
Step 4: If k = n stop. Otherwise reset k to equal k + 1.
Step 5: If U ≤ p set Xk = 1 and reset U to equal αU . If U > p set Xk = 0 and reset

U to equal β(U − p). Return to step 4.

This procedure generates X1, . . . ,Xn and X =∑n
i=1 Xi is the desired random vari-

able. It works by noting whether Uk ≤ p or Uk > p; in the former case it takes Uk+1
to equal Uk/p, and in the latter case it takes Uk+1 to equal (Uk − p)/(1 − p).2 �

Example 11.9 (Simulating a Poisson Random Variable). To simulate a Poisson ran-
dom variable with mean λ, generate independent uniform (0,1) random variables
U1,U2, . . . stopping at

N + 1 = min

{
n:

n∏
i=1

Ui < e−λ

}

The random variable N has the desired distribution, which can be seen by noting that

N = max

{
n:

n∑
i=1

− logUi < λ

}

But − logUi is exponential with rate 1, and so if we interpret − logUi, i ≥ 1 as the
interarrival times of a Poisson process having rate 1, we see that N = N(λ) would
equal the number of events by time λ. Hence N is Poisson with mean λ.

2 Because of computer round-off errors, a single random number should not be continuously used when n

is large.
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When λ is large we can reduce the amount of computation in the preceding simu-
lation of N(λ), the number of events by time λ of a Poisson process having rate 1, by
first choosing an integer m and simulating Sm, the time of the mth event of the Poisson
process, and then simulating N(λ) according to the conditional distribution of N(λ)

given Sm. Now the conditional distribution of N(λ) given Sm is as follows:

N(λ)|Sm = s ∼ m + Poisson(λ − s), if s < λ

N(λ)|Sm = s ∼ Binomial

(
m − 1,

λ

s

)
, if s > λ

where ∼ means “has the distribution of.” This follows since if the mth event occurs
at time s, where s < λ, then the number of events by time λ is m plus the number of
events in (s, λ). On the other hand given that Sm = s the set of times at which the first
m − 1 events occur has the same distribution as a set of m − 1 uniform (0, s) random
variables (see Section 5.3.4). Hence, when λ < s, the number of these that occur by
time λ is binomial with parameters m − 1 and λ/s. Hence, we can simulate N(λ) by
first simulating Sm and then simulating, either P(λ − Sm), a Poisson random variable
with mean λ−Sm, when Sm < λ, or simulating Bin(m−1, λ/Sm), a binomial random
variable with parameters m − 1 and λ/Sm, when Sm > λ; and then setting

N(λ) =
{
m + P(λ − Sm), if Sm < λ

Bin(m − 1, λ/Sm), if Sm > λ

In the preceding it has been found computationally effective to let m be approximately
7
8λ. Of course, Sm is simulated by simulating from a gamma (m,λ) distribution via an
approach that is computationally fast when m is large (see Section 11.3.3). �

There are also rejection and hazard rate methods for discrete distributions but we
leave their development as exercises. However, there is a technique available for
simulating finite discrete random variables—called the alias method—which, though
requiring some setup time, is very fast to implement.

11.4.1 The Alias Method

In what follows, the quantities P,P(k),Q(k), k ≤ n − 1 will represent probability mass
functions on the integers 1,2, . . . , n—that is, they will be n-vectors of nonnegative
numbers summing to 1. In addition, the vector P(k) will have at most k nonzero com-
ponents, and each of the Q(k) will have at most two nonzero components. We show that
any probability mass function P can be represented as an equally weighted mixture of
n − 1 probability mass functions Q (each having at most two nonzero components).
That is, we show that for suitably defined Q(1), . . . ,Q(n−1),P can be expressed as

P = 1

n − 1

n−1∑
k=1

Q(k) (11.6)

As a prelude to presenting the method for obtaining this representation, we will need
the following simple lemma whose proof is left as an exercise.
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Lemma 11.5. Let P = {Pi, i = 1, . . . , n} denote a probability mass function, then

(a) there exists an i,1 ≤ i ≤ n, such that Pi < 1/(n − 1), and
(b) for this i, there exists a j, j = i, such that Pi + Pj ≥ 1/(n − 1).

Before presenting the general technique for obtaining the representation of
Eq. (11.6), let us illustrate it by an example.

Example 11.10. Consider the three-point distribution P with P1 = 7
16 ,P2 = 1

2 ,P3 =
1
16 . We start by choosing i and j such that they satisfy the conditions of Lemma 11.5.
As P3 < 1

2 and P3 + P2 > 1
2 , we can work with i = 3 and j = 2. We will now define a

two-point mass function Q(1) putting all of its weight on 3 and 2 and such that P will
be expressible as an equally weighted mixture between Q(1) and a second two-point
mass function Q(2). Secondly, all of the mass of point 3 will be contained in Q(1). As
we will have

Pj = 1

2
(Q

(1)
j + Q

(2)
j ), j = 1,2,3 (11.7)

and, by the preceding, Q
(2)
3 is supposed to equal 0, we must therefore take

Q
(1)
3 = 2P3 = 1

8
, Q

(1)
2 = 1 − Q

(1)
3 = 7

8
, Q

(1)
1 = 0

To satisfy Eq. (11.7), we must then set

Q
(2)
3 = 0, Q

(2)
2 = 2P2 − 7

8
= 1

8
, Q

(2)
1 = 2P1 = 7

8

Hence, we have the desired representation in this case. Suppose now that the original
distribution was the following four-point mass function:

P1 = 7

16
, P2 = 1

4
, P3 = 1

8
, P4 = 3

16

Now, P3 < 1
3 and P3 +P1 > 1

3 . Hence our initial two-point mass function—Q(1)—will
concentrate on points 3 and 1 (giving no weights to 2 and 4). As the final representa-
tion will give weight 1

3 to Q(1) and in addition the other Q(j), j = 2,3, will not give
any mass to the value 3, we must have

1

3
Q

(1)
3 = P3 = 1

8

Hence,

Q
(1)
3 = 3

8
, Q

(1)
1 = 1 − 3

8
= 5

8

Also, we can write

P = 1

3
Q(1) + 2

3
P(3)
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where P(3), to satisfy the preceding, must be the vector

P(3)
1 = 3

2

(
P1 − 1

3
Q

(1)
1

)
= 1

3

1

2
,

P(3)
2 = 3

2
P2 = 3

8
,

P(3)
3 = 0,

P(3)
4 = 3

2
P4 = 9

32

Note that P(3) gives no mass to the value 3. We can now express the mass function
P(3) as an equally weighted mixture of two-point mass functions Q(2) and Q(3), and
we will end up with

P = 1

3
Q(1) + 2

3

(
1

2
Q(2) + 1

2
Q(3)

)

= 1

3
(Q(1) + Q(2) + Q(3))

(We leave it as an exercise for you to fill in the details.) �
The preceding example outlines the following general procedure for writing the

n-point mass function P in the form of Eq. (11.6) where each of the Q(i) are mass
functions giving all their mass to at most two points. To start, we choose i and j

satisfying the conditions of Lemma 11.5. We now define the mass function Q(1) con-
centrating on the points i and j and which will contain all of the mass for point i by
noting that, in the representation of Eq. (11.6), Q(k)

i = 0 for k = 2, . . . , n−1, implying
that

Q
(1)
i = (n − 1)Pi, and so Q

(1)
j = 1 − (n − 1)Pi

Writing

P = 1

n − 1
Q(1) + n − 2

n − 1
P(n−1) (11.8)

where P(n−1) represents the remaining mass, we see that

P
(n−1)
i = 0,

P
(n−1)
j = n − 1

n − 2

(
Pj − 1

n − 1
Q

(1)
j

)
= n − 1

n − 2

(
Pi + Pj − 1

n − 1

)
,

P
(n−1)
k = n − 1

n − 2
Pk, k = i or j

That the foregoing is indeed a probability mass function is easily checked—for in-
stance, the nonnegativity of P

(n−1)
j follows from the fact that j was chosen so that

Pi + Pj ≥ 1/(n − 1).
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We may now repeat the foregoing procedure on the (n − 1)-point probability mass
function P(n−1) to obtain

P(n−1) = 1

n − 2
Q(2) + n − 3

n − 2
P(n−2)

and thus from Eq. (11.8) we have

P = 1

n − 1
Q(1) + 1

n − 1
Q(2) + n − 3

n − 1
P(n−2)

We now repeat the procedure on P(n−2) and so on until we finally obtain

P = 1

n − 1
(Q(1) + · · · + Q(n−1))

In this way we are able to represent P as an equally weighted mixture of n − 1 two-
point mass functions. We can now easily simulate from P by first generating a random
integer N equally likely to be either 1,2, . . . , or n − 1. If the resulting value N is
such that Q(N) puts positive weight only on the points iN and jN , then we can set X

equal to iN if a second random number is less than Q
(N)
iN

and equal to jN otherwise.
The random variable X will have probability mass function P. That is, we have the
following procedure for simulating from P:

Step 1: Generate U1 and set N = 1 + [(n − 1)U1].
Step 2: Generate U2 and set

X =
{

iN , if U2 < Q
(N)
iN

jN , otherwise

Remarks. (i) The preceding is called the alias method because by a renumbering
of the Qs we can always arrange things so that for each k,Q

(k)
k > 0. (That is, we

can arrange things so that the kth two-point mass function gives positive weight
to the value k.) Hence, the procedure calls for simulating N , equally likely to
be 1,2, . . ., or n − 1, and then if N = k it either accepts k as the value of X, or
it accepts for the value of X the “alias” of k (namely, the other value that Q(k)

gives positive weight).
(ii) Actually, it is not necessary to generate a new random number in step 2. Be-

cause N − 1 is the integer part of (n − 1)U1, it follows that the remainder
(n− 1)U1 − (N − 1) is independent of U1 and is uniformly distributed in (0,1).
Hence, rather than generating a new random number U2 in step 2, we can use
(n − 1)U1 − (N − 1) = (n − 1)U1 − [(n − 1)U1].

Example 11.11. Let us return to the problem of Example 11.2, which considers a list
of n, not necessarily distinct, items. Each item has a value—v(i) being the value of
the item in position i—and we are interested in estimating

v =
n∑

i=1

v(i)/m(i)
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where m(i) is the number of times the item in position i appears on the list. In words,
v is the sum of the values of the (distinct) items on the list.

To estimate v, note that if X is a random variable such that

P {X = i} = v(i)
/ n∑

1

v(j), i = 1, . . . , n

then

E[1/m(X)] =
∑

i v(i)/m(i)∑
j v(j)

= v
/ n∑

j=1

v(j)

Hence, we can estimate v by using the alias (or any other) method to generate in-
dependent random variables X1, . . . ,Xk having the same distribution as X and then
estimating v by

v ≈ 1

k

n∑
j=1

v(j)

k∑
i=1

1/m(Xi) �

11.5 Stochastic Processes
We can easily simulate a stochastic process by simulating a sequence of random vari-
ables. For instance, to simulate the first t time units of a renewal process having
interarrival distribution F we can simulate independent random variables X1,X2, . . .

having distribution F , stopping at

N = min{n: X1 + · · · + Xn > t}
The Xi, i ≥ 1, represent the interarrival times of the renewal process and so the
preceding simulation yields N − 1 events by time t—the events occurring at times
X1,X1 + X2, . . . ,X1 + · · · + XN−1.

Actually there is another approach for simulating a Poisson process that is quite
efficient. Suppose we want to simulate the first t time units of a Poisson process hav-
ing rate λ. To do so, we can first simulate N(t), the number of events by t , and then
use the result that given the value of N(t), the set of N(t) event times is distributed
as a set of n independent uniform (0, t) random variables. Hence, we start by simu-
lating N(t), a Poisson random variable with mean λt (by one of the methods given
in Example 11.9). Then, if N(t) = n, generate a new set of n random numbers—call
them U1, . . . ,Un—and {tU1, . . . , tUn} will represent the set of N(t) event times. If we
could stop here, this would be much more efficient than simulating the exponentially
distributed interarrival times. However, we usually desire the event times in increasing
order—for instance, for s < t ,

N(s) = number of Ui : tUi ≤ s



720 Introduction to Probability Models

and so to compute the function N(s), s ≤ t , it is best to first order the values
Ui, i = 1, . . . , n before multiplying by t . However, in doing so you should not use
an all-purpose sorting algorithm, such as quick sort (see Example 3.15), but rather one
that takes into account that the elements to be sorted come from a uniform (0,1) pop-
ulation. Such a sorting algorithm of n uniform (0,1) variables is as follows: Rather
than a single list to be sorted of length n we will consider n ordered, or linked, lists
of random size. The value U will be put in list i if its value is between (i − 1)/n

and i/n—that is, U is put in list [nU ] + 1. The individual lists are then ordered, and
the total linkage of all the lists is the desired ordering. As almost all of the n lists
will be of relatively small size (for instance, if n = 1000, the mean number of lists of
size greater than 4 is [using the Poisson approximation to the binomial] approximately
equal to 1000(1− 65

24e−1) � 4) the sorting of individual lists will be quite quick, and so
the running time of such an algorithm will be proportional to n (rather than to n logn

as in the best all-purpose sorting algorithms).
An extremely important counting process for modeling purposes is the nonhomo-

geneous Poisson process, which relaxes the Poisson process assumption of stationary
increments. Thus it allows for the possibility that the arrival rate need not be constant
but can vary with time. However, there are few analytical studies that assume a non-
homogeneous Poisson arrival process for the simple reason that such models are not
usually mathematically tractable. (For example, there is no known expression for the
average customer delay in the single-server exponential service distribution queue-
ing model that assumes a nonhomogeneous arrival process.)3 Clearly such models are
strong candidates for simulation studies.

11.5.1 Simulating a Nonhomogeneous Poisson Process

We now present three methods for simulating a nonhomogeneous Poisson process
having intensity function λ(t),0 ≤ t < ∞.

Method 1. Sampling a Poisson Process

To simulate the first T time units of a nonhomogeneous Poisson process with intensity
function λ(t), let λ be such that

λ(t) ≤ λ for all t ≤ T

Now, as shown in Chapter 5, such a nonhomogeneous Poisson process can be gen-
erated by a random selection of the event times of a Poisson process having rate λ.
That is, if an event of a Poisson process with rate λ that occurs at time t is counted
(independently of what has transpired previously) with probability λ(t)/λ then the
process of counted events is a nonhomogeneous Poisson process with intensity func-
tion λ(t),0 ≤ t ≤ T . Hence, by simulating a Poisson process and then randomly

3 One queueing model that assumes a nonhomogeneous Poisson arrival process and is mathematically
tractable is the infinite server model.
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counting its events, we can generate the desired nonhomogeneous Poisson process.
We thus have the following procedure:

Generate independent random variables X1,U1,X2,U2, . . . where the Xi are ex-
ponential with rate λ and the Ui are random numbers, stopping at

N = min

{
n:

n∑
i=1

Xi > T

}

Now let, for j = 1, . . . ,N − 1,

Ij =
{

1, if Uj ≤ λ
(∑j

i=1 Xi

)
/λ

0, otherwise

and set

J = {j : Ij = 1}

Thus, the counting process having events at the set of times {∑j

i=1 Xi : j ∈ J } consti-
tutes the desired process.

The foregoing procedure, referred to as the thinning algorithm (because it “thins”
the homogeneous Poisson points) will clearly be most efficient, in the sense of having
the fewest number of rejected event times, when λ(t) is near λ throughout the inter-
val. Thus, an obvious improvement is to break up the interval into subintervals and
then use the procedure over each subinterval. That is, determine appropriate values
k,0 < t1 < t2 < · · · < tk < T,λ1, . . . , λk+1, such that

λ(s) ≤ λi when ti−1 ≤ s < ti, i = 1, . . . , k +1 (where t0 = 0, tk+1 = T ) (11.9)

Now simulate the nonhomogeneous Poisson process over the interval (ti−1, ti ) by gen-
erating exponential random variables with rate λi and accepting the generated event
occurring at time s, s ∈ (ti−1, ti), with probability λ(s)/λi . Because of the memory-
less property of the exponential and the fact that the rate of an exponential can be
changed upon multiplication by a constant, it follows that there is no loss of efficiency
in going from one subinterval to the next. In other words, if we are at t ∈ [ti−1, ti ) and
generate X, an exponential with rate λi , which is such that t + X > ti then we can
use λi[X − (ti − t)]/λi+1 as the next exponential with rate λi+1. Thus, we have the
following algorithm for generating the first t time units of a nonhomogeneous Pois-
son process with intensity function λ(s) when the relations (11.9) are satisfied. In the
algorithm, t will represent the present time and I the present interval (that is, I = i

when ti−1 ≤ t < ti).

Step 1: t = 0, I = 1.
Step 2: Generate an exponential random variable X having rate λI .
Step 3: If t + X < tI , reset t = t + X, generate a random number U , and accept the

event time t if U ≤ λ(t)/λI . Return to step 2.
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Step 4: (Step reached if t + X ≥ tI .) Stop if I = k + 1. Otherwise, reset X = (X −
tI + t)λI /λI+1. Also reset t = tI and I = I + 1, and go to step 3.

Suppose now that over some subinterval (ti−1, ti) it follows that λi > 0 where

λi ≡ infimum {λ(s): ti−1 ≤ s < ti}
In such a situation, we should not use the thinning algorithm directly but rather should
first simulate a Poisson process with rate λi over the desired interval and then simu-
late a nonhomogeneous Poisson process with the intensity function λ(s) − λi when
s ∈ (ti−1, ti ). (The final exponential generated for the Poisson process, which carries
one beyond the desired boundary, need not be wasted but can be suitably transformed
so as to be reusable.) The superposition (or, merging) of the two processes yields the
desired process over the interval. The reason for doing it this way is that it saves the
need to generate uniform random variables for a Poisson distributed number, with
mean λi(ti − ti−1) of the event times. For instance, consider the case where

λ(s) = 10 + s, 0 < s < 1

Using the thinning method with λ = 11 would generate an expected number of 11
events each of which would require a random number to determine whether or not to
accept it. On the other hand, to generate a Poisson process with rate 10 and then merge
it with a generated nonhomogeneous Poisson process with rate λ(s) = s,0 < s < 1,
would yield an equally distributed number of event times but with the expected num-
ber needing to be checked to determine acceptance being equal to 1.

Another way to make the simulation of nonhomogeneous Poisson processes more
efficient is to make use of superpositions. For instance, consider the process where

λ(t) =
⎧⎨
⎩

exp{t2}, 0 < t < 1.5
exp{2.25}, 1.5 < t < 2.5
exp{(4 − t)2}, 2.5 < t < 4

A plot of this intensity function is given in Fig. 11.3. One way of simulating this pro-
cess up to time 4 is to first generate a Poisson process with rate 1 over this interval;
then generate a Poisson process with rate e − 1 over this interval, accept all events in
(1, 3), and only accept an event at time t that is not contained in (1, 3) with probability
[λ(t)−1]/(e−1); then generate a Poisson process with rate e2.25 − e over the interval
(1, 3), accepting all event times between 1.5 and 2.5 and any event time t outside this
interval with probability [λ(t) − e]/(e2.25 − e). The superposition of these processes
is the desired nonhomogeneous Poisson process. In other words, what we have done
is to break up λ(t) into the following nonnegative parts:

λ(t) = λ1(t) + λ2(t) + λ3(t), 0 < t < 4

where

λ1(t) ≡ 1,
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Figure 11.3

λ2(t) =
⎧⎨
⎩

λ(t) − 1, 0 < t < 1
e − 1, 1 < t < 3
λ(t) − 1, 3 < t < 4

λ3(t) =

⎧⎪⎪⎨
⎪⎪⎩

λ(t) − e, 1 < t < 1.5
e2.25 − e, 1.5 < t < 2.5
λ(t) − e, 2.5 < t < 3
0, 3 < t < 4

and where the thinning algorithm (with a single interval in each case) was used to
simulate the constituent nonhomogeneous processes.

Method 2. Conditional Distribution of the Arrival Times

Recall the result for a Poisson process having rate λ that given the number of events by
time T the set of event times are independent and identically distributed uniform (0, T )

random variables. Now suppose that each of these events is independently counted
with a probability that is equal to λ(t)/λ when the event occurred at time t . Hence,
given the number of counted events, it follows that the set of times of these counted
events are independent with a common distribution given by F(s), where

F(s) = P {time ≤ s|counted}

= P {time ≤ s, counted}
P {counted}

=
∫ T

0 P {time ≤ s, counted|time = x}dx/T

P {counted}
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=
∫ s

0 λ(x)dx∫ T

0 λ(x)dx

The preceding (somewhat heuristic) argument thus shows that given n events of a
nonhomogeneous Poisson process by time T the n event times are independent with a
common density function

f (s) = λ(s)

m(T )
, 0 < s < T, m(T ) =

∫ T

0
λ(s) ds (11.10)

Since N(T ), the number of events by time T , is Poisson distributed with mean m(T ),
we can simulate the nonhomogeneous Poisson process by first simulating N(T ) and
then simulating N(T ) random variables from the density function of (11.10).

Example 11.12. If λ(s) = cs, then we can simulate the first T time units of the non-
homogeneous Poisson process by first simulating N(T ), a Poisson random variable
having mean m(T ) = ∫ T

0 cs ds = cT 2/2, and then simulating N(T ) random variables
having distribution

F(s) = s2

T 2
, 0 < s < T

Random variables having the preceding distribution either can be simulated by use
of the inverse transform method (since F−1(U) = T

√
U ) or by noting that F is the

distribution function of max(T U1, T U2) when U1 and U2 are independent random
numbers. �

If the distribution function specified by Eq. (11.10) is not easily invertible, we
can always simulate from (11.10) by using the rejection method where we either
accept or reject simulated values of uniform (0, T ) random variables. That is, let
h(s) = 1/T ,0 < s < T . Then

f (s)

h(s)
= T λ(s)

m(T )
≤ λT

m(T )
≡ C

where λ is a bound on λ(s),0 ≤ s ≤ T . Hence, the rejection method is to generate
random numbers U1 and U2 then accept T U1 if

U2 ≤ f (T U1)

Ch(T U1)

or, equivalently, if

U2 ≤ λ(T U1)

λ
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Method 3. Simulating the Event Times

The third method we shall present for simulating a nonhomogeneous Poisson process
having intensity function λ(t), t ≥ 0 is probably the most basic approach—namely,
to simulate the successive event times. So let X1,X2, . . . denote the event times of
such a process. As these random variables are dependent we will use the conditional
distribution approach to simulation. Hence, we need the conditional distribution of Xi

given X1, . . . ,Xi−1.
To start, note that if an event occurs at time x then, independent of what has oc-

curred prior to x, the time until the next event has the distribution Fx given by

F̄x(t) = P {0 events in (x, x + t)|event at x}
= P {0 events in (x, x + t)} by independent increments

= exp

{
−
∫ t

0
λ(x + y)dy

}

Differentiation yields that the density corresponding to Fx is

fx(t) = λ(x + t) exp

{
−
∫ t

0
λ(x + y)dy

}

implying that the hazard rate function of Fx is

rx(t) = fx(t)

F̄x(t)
= λ(x + t)

We can now simulate the event times X1,X2, . . . by simulating X1 from F0; then
if the simulated value of X1 is x1, simulate X2 by adding x1 to a value generated from
Fx1 , and if this sum is x2 simulate X3 by adding x2 to a value generated from Fx2 ,
and so on. The method used to simulate from these distributions should depend, of
course, on the form of these distributions. However, it is interesting to note that if we
let λ be such that λ(t) ≤ λ and use the hazard rate method to simulate, then we end up
with the approach of Method 1 (we leave the verification of this fact as an exercise).
Sometimes, however, the distributions Fx can be easily inverted and so the inverse
transform method can be applied.

Example 11.13. Suppose that λ(x) = 1/(x + a), x ≥ 0. Then∫ t

0
λ(x + y)dy = log

(
x + a + t

x + a

)

Hence,

Fx(t) = 1 − x + a

x + a + t
= t

x + a + t

and so

F−1
x (u) = (x + a)

u

1 − u
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We can, therefore, simulate the successive event times X1,X2, . . . by generating
U1,U2, . . . and then setting

X1 = aU1

1 − U1
,

X2 = (X1 + a)
U2

1 − U2
+ X1

and, in general,

Xj = (Xj−1 + a)
Uj

1 − Uj

+ Xj−1, j ≥ 2 �

11.5.2 Simulating a Two-Dimensional Poisson Process

A point process consisting of randomly occurring points in the plane is said to be a
two-dimensional Poisson process having rate λ if

(a) the number of points in any given region of area A is Poisson distributed with
mean λA; and

(b) the numbers of points in disjoint regions are independent.

For a given fixed point O in the plane, we now show how to simulate events occur-
ring according to a two-dimensional Poisson process with rate λ in a circular region
of radius r centered about O. Let Ri, i ≥ 1, denote the distance between O and its ith
nearest Poisson point, and let C(a) denote the circle of radius a centered at O. Then

P
{
πR2

1 > b
}

= P

{
R1 >

√
b

π

}
= P

{
no points in C

(√
b/π

)}= e−λb

Also, with C(a2) − C(a1) denoting the region between C(a2) and C(a1):

P
{
πR2

2 − πR2
1 > b|R1 = r

}
= P

{
R2 >

√
(b + πr2)/π |R1 = r

}

= P

{
no points in C

(√
(b + πr2)/π

)
− C(r)|R1 = r

}

= P

{
no points in C

(√
(b + πr2)/π

)
− C(r)

}
by (b)

= e−λb

In fact, the same argument can be repeated to obtain the following.

Proposition 11.6. With R0 = 0,

πR2
i − πR2

i−1, i ≥ 1,
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are independent exponentials with rate λ.

In other words, the amount of area that needs to be traversed to encompass a Pois-
son point is exponential with rate λ. Since, by symmetry, the respective angles of the
Poisson points are independent and uniformly distributed over (0,2π), we thus have
the following algorithm for simulating the Poisson process over a circular region of
radius r about O:

Step 1: Generate independent exponentials with rate 1, X1,X2, . . . , stopping at

N = min

{
n: X1 + · · · + Xn

λπ
> r2

}

Step 2: If N = 1, stop. There are no points in C(r). Otherwise, for i = 1, . . . ,N −
1, set

Ri =√(X1 + · · · + Xi)/λπ

Step 3: Generate independent uniform (0,1) random variables U1, . . . ,UN−1.
Step 4: Return the N − 1 Poisson points in C(r) whose polar coordinates are

(Ri,2πUi), i = 1, . . . ,N − 1

The preceding algorithm requires, on average, 1+λπr2 exponentials and an equal
number of uniform random numbers. Another approach to simulating points in C(r)

is to first simulate N , the number of such points, and then use the fact that, given N ,
the points are uniformly distributed in C(r). This latter procedure requires the sim-
ulation of N , a Poisson random variable with mean λπr2; we must then simulate N

uniform points on C(r), by simulating R from the distribution FR(a) = a2/r2 (see
Exercise 25) and θ from uniform (0,2π) and must then sort these N uniform values
in increasing order of R. The main advantage of the first procedure is that it eliminates
the need to sort.

The preceding algorithm can be thought of as the fanning out of a circle centered at
O with a radius that expands continuously from 0 to r . The successive radii at which
Poisson points are encountered is simulated by noting that the additional area neces-
sary to encompass a Poisson point is always, independent of the past, exponential with
rate λ. This technique can be used to simulate the process over noncircular regions.
For instance, consider a nonnegative function g(x), and suppose we are interested in
simulating the Poisson process in the region between the x-axis and g with x going
from 0 to T (see Fig. 11.4). To do so we can start at the left-hand end and fan vertically
to the right by considering the successive areas

∫ a

0 g(x)dx. Now if X1 < X2 < · · · de-
note the successive projections of the Poisson points on the x-axis, then analogous to
Proposition 11.6, it will follow that (with X0 = 0) λ

∫ Xi

Xi−1
g(x)dx, i ≥ 1, will be inde-

pendent exponentials with rate 1. Hence, we should simulate ε1, ε2, . . . , independent
exponentials with rate 1, stopping at

N = min

{
n: ε1 + · · · + εn > λ

∫ T

0
g(x)dx

}
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Figure 11.4

and determine X1, . . . ,XN−1 by

λ

∫ X1

0
g(x)dx = ε1,

λ

∫ X2

X1

g(x)dx = ε2,

...

λ

∫ XN−1

XN−2

g(x)dx = εN−1

If we now simulate U1, . . . ,UN−1—independent uniform (0,1) random numbers—
then as the projection on the y-axis of the Poisson point whose x-coordinate is Xi is
uniform on (0, g(Xi)), it follows that the simulated Poisson points in the interval are
(Xi,Uig(Xi)), i = 1, . . . ,N − 1.

Of course, the preceding technique is most useful when g is regular enough so that
the foregoing equations can be solved for the Xi . For instance, if g(x) = y (and so the
region of interest is a rectangle), then

Xi = ε1 + · · · + εi

λy
, i = 1, . . . ,N − 1

and the Poisson points are

(Xi, yUi), i = 1, . . . ,N − 1

11.6 Variance Reduction Techniques
Let X1, . . . ,Xn have a given joint distribution, and suppose we are interested in com-
puting

θ ≡ E[g(X1, . . . ,Xn)]
where g is some specified function. It is often the case that it is not possible to an-
alytically compute the preceding, and when such is the case we can attempt to use
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simulation to estimate θ . This is done as follows: Generate X
(1)
1 , . . . ,X

(1)
n having the

same joint distribution as X1, . . . ,Xn and set

Y1 = g
(
X

(1)
1 , . . . ,X(1)

n

)
Now, simulate a second set of random variables (independent of the first set)
X

(2)
1 , . . . ,X

(2)
n having the distribution of X1, . . . ,Xn and set

Y2 = g
(
X

(2)
1 , . . . ,X(2)

n

)
Continue this until you have generated k (some predetermined number) sets, and so
have also computed Y1, Y2, . . . , Yk . Now, Y1, . . . , Yk are independent and identically
distributed random variables each having the same distribution of g(X1, . . . ,Xn).
Thus, if we let Ȳ denote the average of these k random variables—that is,

Ȳ =
k∑

i=1

Yi/k

then

E[Ȳ ] = θ,

E
[
(Ȳ − θ)2

]
= Var(Ȳ )

Hence, we can use Ȳ as an estimate of θ . As the expected square of the difference
between Ȳ and θ is equal to the variance of Ȳ , we would like this quantity to be as
small as possible. In the preceding situation, Var(Ȳ )=Var(Yi)/k, which is usually not
known in advance but must be estimated from the generated values Y1, . . . , Yn. We
now present three general techniques for reducing the variance of our estimator.

11.6.1 Use of Antithetic Variables

In the preceding situation, suppose that we have generated Y1 and Y2, identically dis-
tributed random variables having mean θ . Now,

Var

(
Y1 + Y2

2

)
= 1

4
[Var(Y1)+Var(Y2)+2Cov(Y1, Y2)]

= Var(Y1)

2
+Cov(Y1, Y2)

2

Hence, it would be advantageous (in the sense that the variance would be reduced)
if Y1 and Y2 rather than being independent were negatively correlated. To see how
we could arrange this, let us suppose that the random variables X1, . . . ,Xn are inde-
pendent and, in addition, that each is simulated via the inverse transform technique.



730 Introduction to Probability Models

That is, Xi is simulated from F−1
i (Ui) where Ui is a random number and Fi is the

distribution of Xi . Hence, Y1 can be expressed as

Y1 = g
(
F−1

1 (U1), . . . ,F
−1
n (Un)

)
Now, since 1 − U is also uniform over (0,1) whenever U is a random number (and is
negatively correlated with U ) it follows that Y2 defined by

Y2 = g
(
F−1

1 (1 − U1), . . . ,F
−1
n (1 − Un)

)
will have the same distribution as Y1. Hence, if Y1 and Y2 were negatively correlated,
then generating Y2 by this means would lead to a smaller variance than if it were gen-
erated by a new set of random numbers. (In addition, there is a computational savings
since rather than having to generate n additional random numbers, we need only sub-
tract each of the previous n from 1.) The following theorem will be the key to showing
that this technique—known as the use of antithetic variables—will lead to a reduction
in variance whenever g is a monotone function.

Theorem 11.1. If X1, . . . ,Xn are independent, then, for any increasing functions f

and g of n variables,

E[f (X)g(X)] ≥ E[f (X)]E[g(X)] (11.11)

where X = (X1, . . . ,Xn).

Proof. The proof is by induction on n. To prove it when n = 1, let f and g be increas-
ing functions of a single variable. Then, for any x and y,

(f (x) − f (y))(g(x) − g(y)) ≥ 0

since if x ≥ y (x ≤ y), then both factors are nonnegative (nonpositive). Hence, for any
random variables X and Y ,

(f (X) − f (Y ))(g(X) − g(Y )) ≥ 0

implying that

E[(f (X) − f (Y ))(g(X) − g(Y ))] ≥ 0

or, equivalently,

E[f (X)g(X)] + E[f (Y )g(Y )] ≥ E[f (X)g(Y )] + E[f (Y )g(X)]
If we suppose that X and Y are independent and identically distributed, as in this case,
then

E[f (X)g(X)] = E[f (Y )g(Y )],
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E[f (X)g(Y )] = E[f (Y )g(X)] = E[f (X)]E[g(X)]
and so we obtain the result when n = 1.

So assume that (11.11) holds for n− 1 variables, and now suppose that X1, . . . ,Xn

are independent and f and g are increasing functions. Then

E[f (X)g(X)|Xn = xn]
= E[f (X1, . . . ,Xn−1, xn)g(X1, . . . ,Xn−1, xn)|Xn = x]
= E[f (X1, . . . ,Xn−1, xn)g(X1, . . . ,Xn−1, xn)] by independence

≥ E[f (X1, . . . ,Xn−1, xn)]E[g(X1, . . . ,Xn−1, xn)]
by the induction hypothesis

= E[f (X)|Xn = xn]E[g(X)|Xn = xn]
Hence,

E[f (X)g(X)|Xn] ≥ E[f (X)|Xn]E[g(X)|Xn]
and, upon taking expectations of both sides,

E[f (X)g(X)] ≥ E[E[f (X)|Xn]E[g(X)|Xn]]
≥ E[f (X)]E[g(X)]

The last inequality follows because E[f (X)|Xn] and E[g(X)|Xn] are both increasing
functions of Xn, and so, by the result for n = 1,

E[E[f (X)|Xn]E[g(X)|Xn]] ≥ E[E[f (X)|Xn]]E[E[g(X)|Xn]]
= E[f (X)]E[g(X)] �

Corollary 11.7. If U1, . . . ,Un are independent, and k is either an increasing or de-
creasing function, then

Cov(k(U1, . . . ,Un), k(1 − U1, . . . ,1 − Un)) ≤ 0

Proof. Suppose k is increasing. As −k(1 − U1, . . . ,1 − Un) is increasing in U1, . . . ,

Un, then, from Theorem 11.1,

Cov(k(U1, . . . ,Un),−k(1 − U1, . . . ,1 − Un)) ≥ 0

When k is decreasing just replace k by its negative. �

Since F−1
i (Ui) is increasing in Ui (as Fi , being a distribution function, is increas-

ing) it follows that g(F−1
1 (U1), . . . ,F

−1
n (Un)) is a monotone function of U1, . . . ,Un

whenever g is monotone. Hence, if g is monotone the antithetic variable ap-
proach of twice using each set of random numbers U1, . . . ,Un by first computing
g(F−1

1 (U1), . . . ,F
−1
n (Un)) and then g(F−1

1 (1 − U1), . . . ,F
−1
n (1 − Un)) will reduce

the variance of the estimate of E[g(X1, . . . ,Xn)]. That is, rather than generating k

sets of n random numbers, we should generate k/2 sets and use each set twice.
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Example 11.14 (Simulating the Reliability Function). Consider a system of n com-
ponents in which component i, independently of other components, works with prob-
ability pi, i = 1, . . . , n. Letting

Xi =
{

1, if component i works
0, otherwise

suppose there is a monotone structure function φ such that

φ(X1, . . . ,Xn) =
{

1, if the system works under X1, . . . ,Xn

0, otherwise

We are interested in using simulation to estimate

r(p1, . . . , pn) ≡ E[φ(X1, . . . ,Xn)] = P {φ(X1, . . . ,Xn) = 1}
Now, we can simulate the Xi by generating uniform random numbers U1, . . . ,Un and
then setting

Xi =
{

1, if Ui < pi

0, otherwise

Hence, we see that

φ(X1, . . . ,Xn) = k(U1, . . . ,Un)

where k is a decreasing function of U1, . . . ,Un. Hence,

Cov(k(U), k(1 − U)) ≤ 0

and so the antithetic variable approach of using U1, . . . ,Un to generate both
k(U1, . . . ,Un) and k(1 − U1, . . . ,1 − Un) results in a smaller variance than if an
independent set of random numbers was used to generate the second k. �

Example 11.15 (Simulating a Queueing System). Consider a given queueing system,
let Di denote the delay in queue of the ith arriving customer, and suppose we are
interested in simulating the system so as to estimate

θ = E[D1 + · · · + Dn]
Let X1, . . . ,Xn denote the first n interarrival times and S1, . . . , Sn the first n service
times of this system, and suppose these random variables are all independent. Now in
most systems D1 + · · · + Dn will be a function of X1, . . . ,Xn,S1, . . . , Sn—say,

D1 + · · · + Dn = g(X1, . . . ,Xn,S1, . . . , Sn)

Also, g will usually be increasing in Si and decreasing in Xi, i=1, . . . , n. If we use
the inverse transform method to simulate Xi,Si, i = 1, . . . , n—say, Xi = F−1

i (1 −
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Ui), Si = G−1
i (Ūi) where U1, . . . ,Un, Ū1, . . . , Ūn are independent uniform random

numbers—then we may write

D1 + · · · + Dn = k(U1, . . . ,Un, Ū1, . . . , Ūn)

where k is increasing in its variates. Hence, the antithetic variable approach will re-
duce the variance of the estimator of θ . (Thus, we would generate Ui, Ūi, i = 1, . . . , n

and set Xi = F−1
i (1 − Ui) and Yi = G−1

i (Ūi) for the first run, and Xi = F−1
i (Ui) and

Yi = G−1
i (1− Ūi) for the second.) As all the Ui and Ūi are independent, however, this

is equivalent to setting Xi = F−1
i (Ui), Yi = G−1

i (Ūi) in the first run and using 1 − Ui

for Ui and 1 − Ūi for Ūi in the second. �

11.6.2 Variance Reduction by Conditioning

Let us start by recalling (see Proposition 3.1) the conditional variance formula

Var(Y ) = E[Var(Y |Z)] + Var(E[Y |Z]) (11.12)

Now suppose we are interested in estimating E[g(X1, . . . ,Xn)] by simulating X =
(X1, . . . ,Xn) and then computing Y = g(X1, . . . ,Xn). Now, if for some random vari-
able Z we can compute E[Y |Z] then, as Var(Y |Z) ≥ 0, it follows from the conditional
variance formula that

Var(E[Y |Z]) ≤ Var(Y )

implying, since E[E[Y |Z]] = E[Y ], that E[Y |Z] is a better estimator of E[Y ] than
is Y .

In many situations, there are a variety of Zi that can be conditioned on to obtain
an improved estimator. Each of these estimators E[Y |Zi] will have mean E[Y ] and
smaller variance than does the raw estimator Y . We now show that for any choice of
weights λi, λi ≥ 0,

∑
i λi = 1,

∑
i λiE[Y |Zi] is also an improvement over Y .

Proposition 11.8. For any λi ≥ 0,
∑∞

i=1 λi = 1,

(a) E
[∑

i λiE[Y |Zi]
]= E[Y ],

(b) Var
(∑

i λiE[Y |Zi]
)≤ Var (Y ).

Proof. The proof of (a) is immediate. To prove (b), let N denote an integer valued
random variable independent of all the other random variables under consideration
and such that

P {N = i} = λi, i ≥ 1

Applying the conditional variance formula twice yields

Var(Y ) ≥ Var(E[Y |N,ZN ])
≥ Var(E[E[Y |N,ZN ]|Z1, . . .])
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= Var

(∑
i

λiE[Y |Zi]
)

�

Example 11.16. Consider a queueing system having Poisson arrivals and suppose that
any customer arriving when there are already N others in the system is lost. Suppose
that we are interested in using simulation to estimate the expected number of lost cus-
tomers by time t . The raw simulation approach would be to simulate the system up to
time t and determine L, the number of lost customers for that run. A better estimate,
however, can be obtained by conditioning on the total time in [0, t] that the system is
at capacity. Indeed, if we let T denote the time in [0, t] that there are N in the system,
then

E[L|T ] = λT

where λ is the Poisson arrival rate. Hence, a better estimate for E[L] than the average
value of L over all simulation runs can be obtained by multiplying the average value
of T per simulation run by λ. If the arrival process were a nonhomogeneous Poisson
process, then we could improve over the raw estimator L by keeping track of those
time periods for which the system is at capacity. If we let I1, . . . , IC denote the time
intervals in [0, t] in which there are N in the system, then

E[L|I1, . . . , IC] =
C∑

i=1

∫
Ii

λ(s) ds

where λ(s) is the intensity function of the nonhomogeneous Poisson arrival process.
The use of the right side of the preceding would thus lead to a better estimate of E[L]
than the raw estimator L. �

Example 11.17. Suppose that we wanted to estimate the expected sum of the times
in the system of the first n customers in a queueing system. That is, if Wi is the time
that the ith customer spends in the system, then we are interested in estimating

θ = E

[
n∑

i=1

Wi

]

Let Yi denote the “state of the system” at the moment at which the ith customer arrives.
It can be shown4 that for a wide class of models the estimator

∑n
i=1 E[Wi |Yi] has (the

same mean and) a smaller variance than the estimator
∑n

i=1 Wi . (It should be noted
that whereas it is immediate that E[Wi |Yi] has smaller variance than Wi , because of
the covariance terms involved it is not immediately apparent that

∑n
i=1 E[Wi |Yi] has

smaller variance than
∑n

i=1 Wi .) For instance, in the model G/M/1

E[Wi |Yi] = (Ni + 1)/μ

4 S. M. Ross, “Simulating Average Delay—Variance Reduction by Conditioning,” Probability in the Engi-
neering and Informational Sciences 2(3), (1988), pp. 309–312.



Simulation 735

where Ni is the number in the system encountered by the ith arrival and 1/μ is the
mean service time; the result implies that

∑n
i=1(Ni + 1)/μ is a better estimate of the

expected total time in the system of the first n customers than is the raw estimator∑n
i=1 Wi . �

Example 11.18 (Estimating the Renewal Function by Simulation). Consider a queue-
ing model in which customers arrive daily in accordance with a renewal process
having interarrival distribution F . However, suppose that at some fixed time T , for
instance 5 P.M., no additional arrivals are permitted and those customers that are still
in the system are serviced. At the start of the next and each succeeding day customers
again begin to arrive in accordance with the renewal process. Suppose we are in-
terested in determining the average time that a customer spends in the system. Upon
using the theory of renewal reward processes (with a cycle starting every T time units),
it can be shown that

average time that a customer spends in the system

= E[sum of the times in the system of arrivals in (0, T )]
m(T )

where m(T ) is the expected number of renewals in (0, T ).
If we were to use simulation to estimate the preceding quantity, a run would con-

sist of simulating a single day, and as part of a simulation run, we would observe
the quantity N(T ), the number of arrivals by time T . Since E[N(T )] = m(T ), the
natural simulation estimator of m(T ) would be the average (over all simulated days)
value of N(T ) obtained. However, Var(N(T )) is, for large T , proportional to T (its
asymptotic form being T σ 2/μ3, where σ 2 is the variance and μ the mean of the in-
terarrival distribution F ), and so, for large T , the variance of our estimator would be
large. A considerable improvement can be obtained by using the analytic formula (see
Section 7.3)

m(T ) = T

μ
− 1 + E[Y(T )]

μ
(11.13)

where Y(T ) denotes the time from T until the next renewal—that is, it is the excess
life at T . Since the variance of Y(T ) does not grow with T (indeed, it converges to
a finite value provided the moments of F are finite), it follows that for T large, we
would do much better by using the simulation to estimate E[Y(T )] and then using
Eq. (11.13) to estimate m(T ).

However, by employing conditioning, we can improve further on our estimate of
m(T ). To do so, let A(T ) denote the age of the renewal process at time T —that is, it
is the time at T since the last renewal. Then, rather than using the value of Y(T ), we
can reduce the variance by considering E[Y(T )|A(T )]. Now, knowing that the age at
T is equal to x is equivalent to knowing that there was a renewal at time T − x and
the next interarrival time X is greater than x. Since the excess at T will equal X − x
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Figure 11.5 A(T ) = x.

(see Fig. 11.5), it follows that

E[Y(T )|A(T ) = x] = E[X − x|X > x]

=
∫ ∞

0

P {X − x > t}
P {X > x} dt

=
∫ ∞

0

1 − F(t + x)

1 − F(x)
dt

which can be numerically evaluated if necessary.
As an illustration of the preceding note that if the renewal process is a Poisson

process with rate λ, then the raw simulation estimator N(T ) will have variance λT ;
since Y(T ) will be exponential with rate λ, the estimator based on (11.13) will have
variance λ2 Var {Y(T )} = 1. On the other hand, since Y(T ) will be independent of
A(T ) (and E[Y(T )|A(T )] = 1/λ), it follows that the variance of the improved esti-
mator E[Y(T )|A(T )] is 0. That is, conditioning on the age at time T yields, in this
case, the exact answer. �

Example 11.19. Consider the M/G/1 queueing system where customers arrive in
accordance with a Poisson process with rate λ to a single server having service distri-
bution G with mean E[S]. Suppose that, for a specified time t0, the server will take
a break at the first time t ≥ t0 at which the system is empty. That is, if X(t) is the
number of customers in the system at time t , then the server will take a break at time

T = min{t ≥ t0: X(t) = 0}
To efficiently use simulation to estimate E[T ], generate the system to time t0; let R

denote the remaining service time of the customer in service at time t0, and let XQ

equal the number of customers waiting in queue at time t0. (Note that R is equal to 0
if X(t0) = 0, and XQ = (X(t0)−1)+.) Now, with N equal to the number of customers
that arrive in the remaining service time R, it follows that if N = n and XQ = nQ, then
the additional amount of time from t0 + R until the server can take a break is equal
to the amount of time that it takes until the system, starting with n + nQ customers,
becomes empty. Because this is equal to the sum of n + nQ busy periods, it follows
from Section 8.5.3 that

E[T |R,N,XQ] = t0 + R + (N + XQ)
E[S]

1 − λE[S]
Consequently,

E[T |R,XQ] = E
[
E[T |R,N,XQ]|R,XQ

]
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= t0 + R + (E[N |R,XQ] + XQ)
E[S]

1 − λE[S]
= t0 + R + (λR + XQ)

E[S]
1 − λE[S]

Thus, rather than using the generated value of T as the estimator from a sim-
ulation run, it is better to stop the simulation at time t0 and use the estimator
t0 + (λR +XQ) E[S]

1−λE[S] . �

11.6.3 Control Variates

Again suppose we want to use simulation to estimate E[g(X)] where X = (X1, . . . ,

Xn). But now suppose that for some function f the expected value of f (X) is
known—say, E[f (X)] = μ. Then for any constant a we can also use

W = g(X) + a(f (X) − μ)

as an estimator of E[g(X)]. Now,

Var(W) = Var(g(X)) + a2 Var(f (X)) + 2a Cov(g(X), f (X))

Simple calculus shows that the preceding is minimized when

a = −Cov(f (X), g(X))

Var(f (X))

and, for this value of a,

Var(W) = Var(g(X)) − [Cov(f (X), g(X))]2

Var(f (X))

Because Var(f (X)) and Cov(f (X), g(X)) are usually unknown, the simulated data
should be used to estimate these quantities.

Dividing the preceding equation by Var(g(X)) shows that

Var(W)

Var(g(X))
= 1 − Corr2(f (X), g(X))

where Corr(X,Y ) is the correlation between X and Y . Consequently, the use of a con-
trol variate will greatly reduce the variance of the simulation estimator whenever f (X)

and g(X) are strongly correlated.

Example 11.20. Consider a continuous-time Markov chain that, upon entering state i,
spends an exponential time with rate vi in that state before making a transition into
some other state, with the transition being into state j with probability Pi,j , i ≥ 0, j =
i. Suppose that costs are incurred at rate C(i) ≥ 0 per unit time whenever the chain is
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in state i, i ≥ 0. With X(t) equal to the state at time t , and α being a constant such that
0 < α < 1, the quantity

W =
∫ ∞

0
e−αtC(X(t)) dt

represents the total discounted cost. For a given initial state, suppose we want to use
simulation to estimate E[W ]. Whereas at first it might seem that we cannot obtain an
unbiased estimator without simulating the continuous-time Markov chain for an infi-
nite amount of time (which is clearly impossible), we can make use of the results of
Example 5.1, which gives the equivalent expression for E[W ]:

E[W ] = E

[∫ T

0
C(X(t)) dt

]

where T is an exponential random variable with rate α that is independent of the
continuous-time Markov chain. Therefore, we can first generate the value of T , then
generate the states of the continuous-time Markov chain up to time T , to obtain the
unbiased estimator

∫ T

0 C(X(t)) dt . Because all the cost rates are nonnegative this es-
timator is strongly positively correlated with T , which will thus make an effective
control variate. �

Example 11.21 (A Queueing System). Let Dn+1 denote the delay in queue of the
n + 1 customer in a queueing system in which the interarrival times are independent
and identically distributed (i.i.d.) with distribution F having mean μF and are inde-
pendent of the service times, which are i.i.d. with distribution G having mean μG. If
Xi is the interarrival time between arrival i and i + 1, and if Si is the service time of
customer i, i ≥ 1, we may write

Dn+1 = g(X1, . . . ,Xn,S1, . . . , Sn)

To take into account the possibility that the simulated variables Xi,Si may by chance
be quite different from what might be expected we can let

f (X1, . . . ,Xn,S1, . . . , Sn) =
n∑

i=1

(Si − Xi)

As E[f (X,S)] = n(μG − μF ) we could use

g(X,S) + a[f (X,S) − n(μG − μF )]
as an estimator of E[Dn+1]. Since Dn+1 and f are both increasing functions of
Si,−Xi, i = 1, . . . , n it follows from Theorem 11.1 that f (X,S) and Dn+1 are posi-
tively correlated, and so the simulated estimate of a should turn out to be negative.

If we wanted to estimate the expected sum of the delays in queue of the first N(T )

arrivals, then we could use
∑N(T )

i=1 Si as our control variable. Indeed as the arrival
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process is usually assumed independent of the service times, it follows that

E

⎡
⎣N(T )∑

i=1

Si

⎤
⎦= E[S]E[N(T )]

where E[N(T )] can either be computed by the method suggested in Section 7.8 or
estimated from the simulation as in Example 11.18. This control variable could also
be used if the arrival process were a nonhomogeneous Poisson with rate λ(t); in this
case,

E[N(T )] =
∫ T

0
λ(t) dt �

11.6.4 Importance Sampling

Let X = (X1, . . . ,Xn) denote a vector of random variables having a joint density func-
tion (or joint mass function in the discrete case) f (x) = f (x1, . . . , xn), and suppose
that we are interested in estimating

θ = E[h(X)] =
∫

h(x)f (x) dx

where the preceding is an n-dimensional integral. (If the Xi are discrete, then interpret
the integral as an n-fold summation.)

Suppose that a direct simulation of the random vector X, so as to compute values
of h(X), is inefficient, possibly because (a) it is difficult to simulate a random vector
having density function f (x), or (b) the variance of h(X) is large, or (c) a combination
of (a) and (b).

Another way in which we can use simulation to estimate θ is to note that if g(x)

is another probability density such that f (x) = 0 whenever g(x) = 0, then we can
express θ as

θ =
∫

h(x)f (x)

g(x)
g(x) dx

= Eg

[
h(X)f (X)

g(X)

]
(11.14)

where we have written Eg to emphasize that the random vector X has joint density
g(x).

It follows from Eq. (11.14) that θ can be estimated by successively generating val-
ues of a random vector X having density function g(x) and then using as the estimator
the average of the values of h(X)f (X)/g(X). If a density function g(x) can be chosen
so that the random variable h(X)f (X)/g(X) has a small variance then this approach—
referred to as importance sampling—can result in an efficient estimator of θ .

Let us now try to obtain a feel for why importance sampling can be useful. To
begin, note that f (X) and g(X) represent the respective likelihoods of obtaining the
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vector X when X is a random vector with respective densities f and g. Hence, if X
is distributed according to g, then it will usually be the case that f (X) will be small
in relation to g(X) and thus when X is simulated according to g the likelihood ratio
f (X)/g(X) will usually be small in comparison to 1. However, it is easy to check that
its mean is 1:

Eg

[
f (X)

g(X)

]
=
∫

f (x)

g(x)
g(x) dx =

∫
f (x) dx = 1

Thus we see that even though f (X)/g(X) is usually smaller than 1, its mean is equal
to 1; thus implying that it is occasionally large and so will tend to have a large variance.
So how can h(X)f (X)/g(X) have a small variance? The answer is that we can some-
times arrange to choose a density g such that those values of x for which f (x)/g(x)

is large are precisely the values for which h(x) is exceedingly small, and thus the ra-
tio h(X)f (X)/g(X) is always small. Since this will require that h(x) sometimes be
small, importance sampling seems to work best when estimating a small probability;
for in this case the function h(x) is equal to 1 when x lies in some set and is equal to
0 otherwise.

We will now consider how to select an appropriate density g. We will find that
the so-called tilted densities are useful. Let M(t) = Ef [etX] = ∫ etxf (x) dx be the
moment generating function corresponding to a one-dimensional density f .

Definition 11.2. A density function

ft (x) = etxf (x)

M(t)

is called a tilted density of f,−∞ < t < ∞.

A random variable with density ft tends to be larger than one with density f when
t > 0 and tends to be smaller when t < 0.

In certain cases the tilted distributions ft have the same parametric form as does f .

Example 11.22. If f is the exponential density with rate λ then

ft (x) = Cetxλe−λx = λCe−(λ−t)x

where C = 1/M(t) does not depend on x. Therefore, for t ≤ λ,ft is an exponential
density with rate λ − t .

If f is a Bernoulli probability mass function with parameter p, then

f (x) = px(1 − p)1−x, x = 0,1

Hence, M(t) = Ef [etX] = pet + 1 − p and so

ft (x) = 1

M(t)
(pet )x(1 − p)1−x
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=
(

pet

pet + 1 − p

)x ( 1 − p

pet + 1 − p

)1−x

(11.15)

That is, ft is the probability mass function of a Bernoulli random variable with pa-
rameter

pt = pet

pet + 1 − p

We leave it as an exercise to show that if f is a normal density with parameters μ and
σ 2 then ft is a normal density with mean μ + σ 2t and variance σ 2. �

In certain situations the quantity of interest is the sum of the independent random
variables X1, . . . ,Xn. In this case the joint density f is the product of one-dimensional
densities. That is,

f (x1, . . . , xn) = f1(x1) · · ·fn(xn)

where fi is the density function of Xi . In this situation it is often useful to generate
the Xi according to their tilted densities, with a common choice of t employed.

Example 11.23. Let X1, . . . ,Xn be independent random variables having respective
probability density (or mass) functions fi , for i = 1, . . . , n. Suppose we are interested
in approximating the probability that their sum is at least as large as a, where a is
much larger than the mean of the sum. That is, we are interested in

θ = P {S ≥ a}
where S =∑n

i=1 Xi , and where a >
∑n

i=1 E[Xi]. Letting I {S ≥ a} equal 1 if S ≥ a

and letting it be 0 otherwise, we have that

θ = Ef[I {S ≥ a}]
where f = (f1, . . . , fn). Suppose now that we simulate Xi according to the tilted mass
function fi,t , i = 1, . . . , n, with the value of t, t > 0 left to be determined. The impor-
tance sampling estimator of θ would then be

θ̂ = I {S ≥ a}
∏ fi(Xi)

fi,t (Xi)

Now,

fi(Xi)

fi,t (Xi)
= Mi(t)e

−tXi

and so

θ̂ = I {S ≥ a}M(t)e−tS
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where M(t) = ∏
Mi(t) is the moment generating function of S. Since t > 0 and

I {S ≥ a} is equal to 0 when S < a, it follows that

I {S ≥ a}e−tS ≤ e−ta

and so

θ̂ ≤ M(t)e−ta

To make the bound on the estimator as small as possible we thus choose t, t > 0, to
minimize M(t)e−ta . In doing so, we will obtain an estimator whose value on each
iteration is between 0 and mintM(t)e−ta . It can be shown that the minimizing t , call
it t∗, is such that

Et∗ [S] = Et∗

[
n∑

i=1

Xi

]
= a

where, in the preceding, we mean that the expected value is to be taken under the
assumption that the distribution of Xi is fi,t∗ for i = 1, . . . , n.

For instance, suppose that X1, . . . ,Xn are independent Bernoulli random variables
having respective parameters pi , for i = 1, . . . , n. Then, if we generate the Xi accord-
ing to their tilted mass functions pi,t , i = 1, . . . , n, the importance sampling estimator
of θ = P {S ≥ a} is

θ̂ = I {S ≥ a}e−tS

n∏
i=1

(
pie

t + 1 − pi

)

Since pi,t is the mass function of a Bernoulli random variable with parameter
pie

t/(pie
t + 1 − pi) it follows that

Et

[
n∑

i=1

Xi

]
=

n∑
i=1

pie
t

piet + 1 − pi

The value of t that makes the preceding equal to a can be numerically approximated
and then utilized in the simulation.

As an illustration, suppose that n = 20, pi = 0.4, and a = 16. Then

Et [S] = 20
0.4et

0.4et + 0.6

Setting this equal to 16 yields, after a little algebra,

et∗ = 6

Thus, if we generate the Bernoullis using the parameter

0.4et∗

0.4et∗ + 0.6
= 0.8
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then because

M(t∗) = (0.4et∗ + 0.6)20 and e−t∗S = (1/6)S

we see that the importance sampling estimator is

θ̂ = I {S ≥ 16}(1/6)S320

It follows from the preceding that

θ̂ ≤ (1/6)16320 = 81/216 = 0.001236

That is, on each iteration the value of the estimator is between 0 and 0.001236. Since,
in this case, θ is the probability that a binomial random variable with parameters 20,
0.4 is at least 16, it can be explicitly computed with the result θ = 0.000317. Hence,
the raw simulation estimator I , which on each iteration takes the value 0 if the sum of
the Bernoullis with parameter 0.4 is less than 16 and takes the value 1 otherwise, will
have variance

Var(I ) = θ(1 − θ) = 3.169 × 10−4

On the other hand, it follows from the fact that 0 ≤ θ̂ ≤ 0.001236 that (see Exer-
cise 33)

Var(θ̂) ≤ 2.9131 × 10−7 �

Example 11.24. Consider a single-server queue in which the times between succes-
sive customer arrivals have density function f and the service times have density g.
Let Dn denote the amount of time that the nth arrival spends waiting in queue and
suppose we are interested in estimating α = P {Dn ≥ a} when a is much larger than
E[Dn]. Rather than generating the successive interarrival and service times according
to f and g, respectively, they should be generated according to the densities f−t and
gt , where t is a positive number to be determined. Note that using these distributions
as opposed to f and g will result in smaller interarrival times (since −t < 0) and larger
service times. Hence, there will be a greater chance that Dn > a than if we had simu-
lated using the densities f and g. The importance sampling estimator of α would then
be

α̂ = I {Dn > a}et(Sn−Yn)[Mf (−t)Mg(t)]n

where Sn is the sum of the first n interarrival times, Yn is the sum of the first n service
times, and Mf and Mg are the moment generating functions of the densities f and
g, respectively. The value of t used should be determined by experimenting with a
variety of different choices. �
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11.7 Determining the Number of Runs
Suppose that we are going to use simulation to generate r independent and identically
distributed random variables Y (1), . . . , Y (r) having mean μ and variance σ 2. We are
then going to use

Ȳr = Y (1) + · · · + Y (r)

r

as an estimate of μ. The precision of this estimate can be measured by its variance

Var(Ȳr ) = E[(Ȳr − μ)2]
= σ 2/r

Hence, we would want to choose r , the number of necessary runs, large enough so
that σ 2/r is acceptably small. However, the difficulty is that σ 2 is not known in
advance. To get around this, you should initially simulate k runs (where k ≥ 30)
and then use the simulated values Y (1), . . . , Y (k) to estimate σ 2 by the sample vari-
ance

k∑
i=1

(Y (i) − Ȳk)
2/(k − 1)

Based on this estimate of σ 2 the value of r that attains the desired level of precision
can now be determined and an additional r − k runs can be generated.

11.8 Generating from the Stationary Distribution of a Markov
Chain

11.8.1 Coupling from the Past

Consider an irreducible Markov chain with states 1, . . . ,m and transition probabilities
Pi,j and suppose we want to generate the value of a random variable whose distri-
bution is that of the stationary distribution of this Markov chain. Whereas we could
approximately generate such a random variable by arbitrarily choosing an initial state,
simulating the resulting Markov chain for a large fixed number of time periods, and
then choosing the final state as the value of the random variable, we will now present
a procedure that generates a random variable whose distribution is exactly that of the
stationary distribution.

If, in theory, we generated the Markov chain starting at time −∞ in any arbitrary
state, then the state at time 0 would have the stationary distribution. So imagine that
we do this, and suppose that a different person is to generate the next state at each
of these times. Thus, if X(−n), the state at time −n, is i, then person −n would
generate a random variable that is equal to j with probability Pi,j , j = 1, . . . ,m,
and the value generated would be the state at time −(n − 1). Now suppose that
person −1 wants to do his random variable generation early. Because he does not
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know what the state at time −1 will be, he generates a sequence of random variables
N−1(i), i = 1, . . . ,m, where N−1(i), the next state if X(−1) = i, is equal to j with
probability Pi,j , j = 1, . . . ,m. If it results that X(−1) = i, then person −1 would
report that the state at time 0 is

S−1(i) = N−1(i), i = 1, . . . ,m

(That is, S−1(i) is the simulated state at time 0 when the simulated state at time −1
is i.)

Now suppose that person −2, hearing that person −1 is doing his simulation
early, decides to do the same thing. She generates a sequence of random variables
N−2(i), i = 1, . . . ,m, where N−2(i) is equal to j with probability Pi,j , j = 1, . . . ,m.
Consequently, if it is reported to her that X(−2) = i, then she will report that
X(−1) = N−2(i). Combining this with the early generation of person −1 shows that
if X(−2) = i, then the simulated state at time 0 is

S−2(i) = S−1(N−2(i)), i = 1, . . . ,m

Continuing in the preceding manner, suppose that person −3 generates a sequence
of random variables N−3(i), i = 1, . . . ,m, where N−3(i) is to be the generated value
of the next state when X(−3) = i. Consequently, if X(−3) = i then the simulated
state at time 0 would be

S−3(i) = S−2(N−3(i)), i = 1, . . . ,m

Now suppose we continue the preceding, and so obtain the simulated functions

S−1(i), S−2(i), S−3(i), . . . , i = 1, . . . ,m

Going backward in time in this manner, we will at some time, say −r , have a simu-
lated function S−r (i) that is a constant function. That is, for some state j, S−r (i) will
equal j for all states i = 1, . . . ,m. But this means that no matter what the simulated
values from time −∞ to −r , we can be certain that the simulated value at time 0
is j . Consequently, j can be taken as the value of a generated random variable whose
distribution is exactly that of the stationary distribution of the Markov chain.

Example 11.25. Consider a Markov chain with states 1, 2, 3 and suppose that simu-
lation yielded the values

N−1(i) =
⎧⎨
⎩

3, if i = 1
2, if i = 2
2, if i = 3

and

N−2(i) =
⎧⎨
⎩

1, if i = 1
3, if i = 2
1, if i = 3
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Then

S−2(i) =
⎧⎨
⎩

3, if i = 1
2, if i = 2
3, if i = 3

If

N−3(i) =
⎧⎨
⎩

3, if i = 1
1, if i = 2
1, if i = 3

then

S−3(i) =
⎧⎨
⎩

3, if i = 1
3, if i = 2
3, if i = 3

Therefore, no matter what the state is at time −3, the state at time 0 will be 3. �

Remark. The procedure developed in this section for generating a random variable
whose distribution is the stationary distribution of the Markov chain is called coupling
from the past.

11.8.2 Another Approach

Consider a Markov chain whose state space is the nonnegative integers. Suppose the
chain has stationary probabilities, and denote them by πi, i ≥ 0. We now present an-
other way of simulating a random variable whose distribution is given by the πi, i ≥ 0,
which can be utilized if the chain satisfies the following property. Namely, that for
some state, which we will call state 0, and some positive number α

Pi,0 ≥ α > 0

for all states i. That is, whatever the current state, the probability that the next state
will be 0 is at least some positive value α.

To simulate a random variable distributed according to the stationary probabili-
ties, start by simulating the Markov chain in the obvious manner. Namely, whenever
the chain is in state i, generate a random variable that is equal to j with probability
Pi,j , j ≥ 0, and then set the next state equal to the generated value of this random
variable. In addition, however, whenever a transition into state 0 occurs a coin, whose
probability of coming up heads depends on the state from which the transition oc-
curred, is flipped. Specifically, if the transition into state 0 was from state i, then the
coin flipped has probability α/Pi,0 of coming up heads. Call such a coin an i-coin,
i ≥ 0. If the coin comes up heads then we say that an event has occurred. Conse-
quently, each transition of the Markov chain results in an event with probability α,
implying that events occur at rate α. Now say that an event is an i-event if it resulted
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from a transition out of state i; that is, an event is an i-event if it resulted from the flip
of an i-coin. Because πi is the proportion of transitions that are out of state i, and each
such transition will result in an i-event with probability α, it follows that the rate at
which i-events occur is απi . Therefore, the proportion of all events that are i-events
is απi/α = πi, i ≥ 0.

Now, suppose that X0 = 0. Fix i, and let Ij equal 1 if the j th event that occurs is
an i-event, and let Ij equal 0 otherwise. Because an event always leaves the chain in
state 0 it follows that Ij , j ≥ 1, are independent and identically distributed random
variables. Because the proportion of the Ij that are equal to 1 is πi , we see that

πi = lim
n→∞

I1 + . . . + In

n

= E[I1]
= P(I1 = 1)

where the second equality follows from the strong law of large numbers. Hence, if we
let

T = min{n > 0 : an event occurs at time n}

denote the time of the first event, then it follows from the preceding that

πi = P(I1 = 1) = P(XT −1 = i)

As the preceding is true for all states i, it follows that XT −1, the state of the Markov
chain at time T − 1, has the stationary distribution.

Exercises
*1. Suppose it is relatively easy to simulate from the distributions Fi , i =

1,2, . . . , n. If n is small, how can we simulate from

F(x) =
n∑

i=1

PiFi(x), Pi ≥ 0,
∑

i

Pi = 1?

Give a method for simulating from

F(x) =

⎧⎪⎪⎨
⎪⎪⎩

1 − e−2x + 2x

3
, 0 < x < 1

3 − e−2x

3
, 1 < x < ∞

2. Give a method for simulating a negative binomial random variable.
*3. Give a method for simulating a hypergeometric random variable.
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Figure 11.6

4. Suppose we want to simulate a point located at random in a circle of radius r

centered at the origin. That is, we want to simulate X,Y having joint density

f (x, y) = 1

πr2
, x2 + y2 ≤ r2

(a) Let R = √
X2 + Y 2, θ = tan−1 Y/X denote the polar coordinates. Com-

pute the joint density of R,θ and use this to give a simulation method.
Another method for simulating X,Y is as follows:
Step 1: Generate independent random numbers U1,U2 and set Z1 =

2rU1 − r,Z2 = 2rU2 − r . Then Z1,Z2 is uniform in the square
whose sides are of length 2r and which encloses, the circle of
radius r (see Fig. 11.6).

Step 2: If (Z1,Z2) lies in the circle of radius r—that is, if Z2
1 + Z2

2 ≤
r2—set (X,Y ) = (Z1,Z2). Otherwise return to step 1.

(b) Prove that this method works, and compute the distribution of the number
of random numbers it requires.

5. Suppose it is relatively easy to simulate from Fi for each i = 1, . . . , n. How
can we simulate from
(a) F(x) =∏n

i=1Fi(x)?
(b) F(x) = 1 −∏n

i=1(1 − Fi(x))?
(c) Give two methods for simulating from the distribution F(x) = xn,0 <

x < 1.
*6. In Example 11.5, we simulated the absolute value of a standard normal by

using the Von Neumann rejection procedure on exponential random variables
with rate 1. This raises the question of whether we could obtain a more effi-
cient algorithm by using a different exponential density—that is, we could use
the density g(x) = λe−λx . Show that the mean number of iterations needed in
the rejection scheme is minimized when λ = 1.

7. Give an algorithm for simulating a random variable having density function

f (x) = 30(x2 − 2x3 + x4), 0 < x < 1
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8. Consider the technique of simulating a gamma (n,λ) random variable by using
the rejection method with g being an exponential density with rate λ/n.
(a) Show that the average number of iterations of the algorithm needed to

generate a gamma is nne1−n/(n − 1)!.
(b) Use Stirling’s approximation to show that for large n the answer to

part (a) is approximately equal to e[(n − 1)/(2π)]1/2.
(c) Show that the procedure is equivalent to the following:

Step 1: Generate Y1 and Y2, independent exponentials with rate 1.
Step 2: If Y1 < (n − 1)[Y2 − log(Y2) − 1], return to step 1.
Step 3: Set X = nY2/λ.

(d) Explain how to obtain an independent exponential along with a gamma
from the preceding algorithm.

9. Set up the alias method for simulating from a binomial random variable with
parameters n = 6,p = 0.4.

10. Explain how we can number the Q(k) in the alias method so that k is one of the
two points that Q(k) gives weight.

Hint: Rather than giving the initial Q the name Q(1), what else could we
call it?

11. Complete the details of Example 11.10.
12. Let X1, . . . ,Xk be independent with

P {Xi = j} = 1

n
, j = 1, . . . , n, i = 1, . . . , k

If D is the number of distinct values among X1, . . . ,Xk show that

E[D] = n

[
1 −

(
n − 1

n

)k
]

≈ k − k2

2n
when

k2

n
is small

13. The Discrete Rejection Method: Suppose we want to simulate X having prob-
ability mass function P {X = i} = Pi, i = 1, . . . , n and suppose we can easily
simulate from the probability mass function Qi,

∑
iQi = 1,Qi ≥ 0. Let C be

such that Pi ≤ CQi, i = 1, . . . , n. Show that the following algorithm generates
the desired random variable:
Step 1: Generate Y having mass function Q and U an independent random

number.
Step 2: If U ≤ PY /CQY , set X = Y . Otherwise return to step 1.

14. The Discrete Hazard Rate Method: Let X denote a nonnegative integer valued
random variable. The function λ(n) = P {X = n |X ≥ n}, n ≥ 0, is called the
discrete hazard rate function.
(a) Show that P {X = n} = λ(n)

∏n−1
i=0 (1 − λ(i)).
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(b) Show that we can simulate X by generating random numbers U1,U2, . . .

stopping at

X = min{n: Un ≤ λ(n)}
(c) Apply this method to simulating a geometric random variable. Explain,

intuitively, why it works.
(d) Suppose that λ(n) ≤ p < 1 for all n. Consider the following algo-

rithm for simulating X and explain why it works: Simulate Xi,Ui, i ≥ 1
where Xi is geometric with mean 1/p and Ui is a random number. Set
Sk = X1 + · · · + Xk and let

X = min{Sk: Uk ≤ λ(Sk)/p}
15. Suppose you have just simulated a normal random variable X with mean μ and

variance σ 2. Give an easy way to generate a second normal variable with the
same mean and variance that is negatively correlated with X.

*16. Suppose n balls having weights w1,w2, . . . ,wn are in an urn. These balls are
sequentially removed in the following manner: At each selection, a given ball
in the urn is chosen with a probability equal to its weight divided by the sum
of the weights of the other balls that are still in the urn. Let I1, I2, . . . , In de-
note the order in which the balls are removed—thus I1, . . . , In is a random
permutation with weights.
(a) Give a method for simulating I1, . . . , In.
(b) Let Xi be independent exponentials with rates wi, i = 1, . . . , n. Explain

how Xi can be utilized to simulate I1, . . . , In.
17. Order Statistics: Let X1, . . . ,Xn be i.i.d. from a continuous distribution F , and

let X(i) denote the ith smallest of X1, . . . ,Xn, i = 1, . . . , n. Suppose we want
to simulate X(1) < X(2) < · · · < X(n). One approach is to simulate n values
from F , and then order these values. However, this ordering, or sorting, can be
time consuming when n is large.
(a) Suppose that λ(t), the hazard rate function of F , is bounded. Show how

the hazard rate method can be applied to generate the n variables in such
a manner that no sorting is necessary.

Suppose now that F−1 is easily computed.
(b) Argue that X(1), . . . ,X(n) can be generated by simulating U(1) < U(2) <

· · · < U(n)—the ordered values of n independent random numbers—and
then setting X(i) = F−1(U(i)). Explain why this means that X(i) can be
generated from F−1(βi) where βi is beta with parameters i, n + i + 1.

(c) Argue that U(1), . . . ,U(n) can be generated, without any need for sorting,
by simulating i.i.d. exponentials Y1, . . . , Yn+1 and then setting

U(i) = Y1 + · · · + Yi

Y1 + · · · + Yn+1
, i = 1, . . . , n

Hint: Given the time of the (n + 1)st event of a Poisson process, what can
be said about the set of times of the first n events?



Simulation 751

(d) Show that if U(n) = y then U(1), . . . ,U(n−1) has the same joint distri-
bution as the order statistics of a set of n − 1 uniform (0, y) random
variables.

(e) Use part (d) to show that U(1), . . . ,U(n) can be generated as follows:

Step 1: Generate random numbers U1, . . . ,Un.
Step 2: Set

U(n) = U
1/n

1 ,

U(j−1) = U(j)(Un−j+2)
1/(j−1), j = 2, . . . , n − 1

18. Let X1, . . . ,Xn be independent exponential random variables each having
rate 1. Set

W1 = X1/n,

Wi = Wi−1 + Xi

n − i + 1
, i = 2, . . . , n

Explain why W1, . . . ,Wn has the same joint distribution as the order statistics
of a sample of n exponentials each having rate 1.

19. Suppose we want to simulate a large number n of independent exponentials
with rate 1—call them X1,X2, . . . ,Xn. If we were to employ the inverse
transform technique we would require one logarithmic computation for each
exponential generated. One way to avoid this is to first simulate Sn, a gamma
random variable with parameters (n,1) (say, by the method of Section 11.3.3).
Now interpret Sn as the time of the nth event of a Poisson process with rate 1
and use the result that given Sn the set of the first n−1 event times is distributed
as the set of n−1 independent uniform (0, Sn) random variables. Based on this,
explain why the following algorithm simulates n independent exponentials:
Step 1: Generate Sn, a gamma random variable with parameters (n,1).
Step 2: Generate n − 1 random numbers U1,U2, . . . ,Un−1.
Step 3: Order the Ui, i = 1, . . . , n − 1 to obtain U(1) < U(2) < · · · < U(n−1).
Step 4: Let U(0) = 0,U(n) = 1, and set Xi = Sn(U(i) −U(i−1)), i = 1, . . . , n.

When the ordering (step 3) is performed according to the algorithm described
in Section 11.5, the preceding is an efficient method for simulating n expo-
nentials when all n are simultaneously required. If memory space is limited,
however, and the exponentials can be employed sequentially, discarding each
exponential from memory once it has been used, then the preceding may not
be appropriate.

20. Consider the following procedure for randomly choosing a subset of size
k from the numbers 1,2, . . . , n: Fix p and generate the first n time units
of a renewal process whose interarrival distribution is geometric with mean
1/p—that is, P {interarrival time= k} = p(1 − p)k−1, k =1,2, . . .. Suppose
events occur at times i1 < i2 < · · · < im ≤ n. If m = k, stop; i1, . . . , im is the
desired set. If m > k, then randomly choose (by some method) a subset of size
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k from i1, . . . , im and then stop. If m < k, take i1, . . . , im as part of the sub-
set of size k and then select (by some method) a random subset of size k − m

from the set {1,2, . . . , n}− {i1, . . . , im}. Explain why this algorithm works. As
E[N(n)] = np a reasonable choice of p is to take p ≈ k/n. (This approach is
due to Dieter.)

21. Consider the following algorithm for generating a random permutation of the
elements 1,2, . . . , n. In this algorithm, P(i) can be interpreted as the element
in position i.
Step 1: Set k = 1.
Step 2: Set P(1) = 1.
Step 3: If k = n, stop. Otherwise, let k = k + 1.
Step 4: Generate a random number U , and let

P(k) = P([kU ] + 1),

P ([kU ] + 1) = k.

Go to step 3.

(a) Explain in words what the algorithm is doing.
(b) Show that at iteration k—that is, when the value of P(k) is initially set—

that P(1),P (2), . . . ,P (k) is a random permutation of 1,2, . . . , k.

Hint: Use induction and argue that

Pk{i1, i2, . . . , ij−1, k, ij , . . . , ik−2, i}
= Pk−1{i1, i2, . . . , ij−1, i, ij , . . . , ik−2}1

k

= 1

k! by the induction hypothesis

The preceding algorithm can be used even if n is not initially known.
22. Verify that if we use the hazard rate approach to simulate the event times of

a nonhomogeneous Poisson process whose intensity function λ(t) is such that
λ(t) ≤ λ, then we end up with the approach given in method 1 of Section 11.5.

*23. For a nonhomogeneous Poisson process with intensity function λ(t), t ≥ 0,
where

∫∞
0 λ(t) dt = ∞, let X1,X2, . . . denote the sequence of times at which

events occur.
(a) Show that

∫ X1
0 λ(t) dt is exponential with rate 1.

(b) Show that
∫ Xi

Xi−1
λ(t) dt, i ≥ 1, are independent exponentials with rate 1,

where X0 = 0.
In words, independent of the past, the additional amount of hazard that must
be experienced until an event occurs is exponential with rate 1.

24. Give an efficient method for simulating a nonhomogeneous Poisson process
with intensity function

λ(t) = b + 1

t + a
, t ≥ 0
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25. Let (X,Y ) be uniformly distributed in a circle of radius r about the origin. That
is, their joint density is given by

f (x, y) = 1

πr2 , 0 ≤ x2 + y2 ≤ r2

Let R = √
X2 + Y 2 and θ = arc tanY/X denote their polar coordinates. Show

that R and θ are independent with θ being uniform on (0,2π) and P {R < a} =
a2/r2,0 < a < r .

26. Let R denote a region in the two-dimensional plane. Show that for a two-
dimensional Poisson process, given that there are n points located in R, the
points are independently and uniformly distributed in R—that is, their density
is f (x, y) = c, (x, y) ∈ R where c is the inverse of the area of R.

27. Let X1, . . . ,Xn be independent random variables with E[Xi] = θ,Var(Xi) =
σ 2

i i = 1, . . . , n, and consider estimates of θ of the form
∑n

i=1 λiXi where∑n
i=1 λi = 1. Show that Var

(∑n
i=1 λiXi

)
is minimized when

λi = (1/σ 2
i )

/⎛
⎝ n∑

j=1

1/σ 2
j

⎞
⎠, i = 1, . . . , n.

Possible Hint: If you cannot do this for general n, try it first when n = 2.

The following two problems are concerned with the estimation of
∫ 1

0 g(x)dx =
E[g(U)] where U is uniform (0,1).

28. The Hit–Miss Method: Suppose g is bounded in [0,1]—for instance, suppose
0 ≤ g(x) ≤ b for x ∈[0,1]. Let U1,U2 be independent random numbers and set
X =U1, Y =bU2—so the point (X,Y ) is uniformly distributed in a rectangle
of length 1 and height b. Now set

I =
{

1, if Y < g(X)

0, otherwise

That is, accept (X,Y ) if it falls in the shaded area of Fig. 11.7.
(a) Show that E[bI ] = ∫ 1

0 g(x)dx.
(b) Show that Var(bI)≥Var(g(U)), and so hit–miss has larger variance than

simply computing g of a random number.
29. Stratified Sampling: Let U1, . . . ,Un be independent random numbers and

set Ūi = (Ui + i − 1)/n, i = 1, . . . , n. Hence, Ūi , i ≥ 1, is uniform on
((i − 1)/n, i/n).

∑n
i=1 g(Ūi)/n is called the stratified sampling estimator of∫ 1

0 g(x)dx.

(a) Show that E[∑n
i=1 g(Ūi)/n] = ∫ 1

0 g(x)dx.
(b) Show that Var[∑n

i=1 g(Ūi)/n] ≤ Var[∑n
i=1 g(Ui)/n].
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Figure 11.7

Hint: Let U be uniform (0,1) and define N by N = i if (i − 1)/n < U <

i/n, i = 1, . . . , n. Now use the conditional variance formula to obtain

Var(g(U)) = E[Var(g(U)|N)] + Var(E[g(U)|N ])
≥ E[Var(g(U)|N)]

=
n∑

i=1

Var(g(U)|N = i)

n
=

n∑
i=1

Var[g(Ūi)]
n

30. If f is the density function of a normal random variable with mean μ and
variance σ 2, show that the tilted density ft is the density of a normal random
variable with mean μ + σ 2t and variance σ 2.

31. Consider a queueing system in which each service time, independent of the
past, has mean μ. Let Wn and Dn denote, respectively, the amounts of time
customer n spends in the system and in queue. Hence, Dn = Wn − Sn where
Sn is the service time of customer n. Therefore,

E[Dn] = E[Wn] − μ

If we use simulation to estimate E[Dn], should we
(a) use the simulated data to determine Dn, which is then used as an estimate

of E[Dn]; or
(b) use the simulated data to determine Wn and then use this quantity minus

μ as an estimate of E[Dn]?
Repeat for when we want to estimate E[Wn].

*32. Show that if X and Y have the same distribution then

Var((X + Y)/2) ≤ Var(X)

Hence, conclude that the use of antithetic variables can never increase variance
(though it need not be as efficient as generating an independent set of random
numbers).
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33. If 0 ≤ X ≤ a, show that
(a) E[X2] ≤ aE[X],
(b) Var(X) ≤ E[X](a − E[X]),
(c) Var(X) ≤ a2/4.

34. Suppose in Example 11.19 that no new customers are allowed in the system
after time t0. Give an efficient simulation estimator of the expected additional
time after t0 until the system becomes empty.

35. Suppose we are able to simulate independent random variables X and Y . If we
simulate 2k independent random variables X1, . . . ,Xk and Y1, . . . , Yk , where
the Xi have the same distribution as does X, and the Yj have the same distri-
bution as does Y , how would you use them to estimate P(X < Y)?

36. If U1, U2, U3 are independent uniform (0,1) random variables, find

P
(∏3

i=1Ui > 0.1
)

.

Hint: Relate the desired probability to one about a Poisson process.
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12Coupling

12.1 A Brief Introduction
In this chapter, we will introduce the concept of coupling and show how it can be ef-
fectively employed in showing stochastic order relations between random variables
and between processes, in bounding the distance between distributions, in bound-
ing the error obtained when utilizing the Poisson paradigm, in determining stochastic
optimization results, and in other areas of applied probability. Occasionally, for con-
venience, we will repeat arguments given earlier in the text.

For an event A, we will use the notation I {A} to stand for the indicator random
variable for A, defined to equal 1 when A occurs and to equal 0 otherwise.

12.2 Coupling and Stochastic Order Relations
We say that (X′, Y ′) is a coupling of the pair of random variables (X,Y ) if X′ has the
same distribution as X and Y ′ has the same distribution as Y . That is, if X has distri-
bution F and Y has distribution G, then any pair of random variables X′, Y ′ having
respective distributions F and G is a coupling of X, Y .

Couplings are useful in many areas of probability. We start by indicating their use in
establishing stochastic order relations. To begin, we define the concept of one random
variable being stochastically larger than another.

Definition. Say that the random variable X is stochastically larger than the random
variable Y , written as X ≥st Y , if

P(X > x) ≥ P(Y > x) for all x

Because the preceding inequality is equivalent to P(X ≤ x) ≤ P(Y ≤ x), it follows
that if X and Y have respective distribution functions F and G, then X ≥st Y if
F(x) ≤ G(x) for all x.

One way to establish that X ≥st Y is to find a coupling (X′, Y ′) of (X,Y ) such
that X′ ≥ Y ′ with probability 1. For suppose such a coupling existed. Then, because
Y ′ > x ⇒ X′ > x, we have that

P(Y > x) = P(Y ′ > x) ≤ P(X′ > x) = P(X > x)

showing that X ≥st Y .

Example 12.1. Suppose that X is Poisson with mean λ and that Y is Poisson with
mean μ, where λ > μ. We could attempt to show that X ≥st Y by directly showing
that, for all k,

P(X ≤ k) =
k∑

i=0

e−λλi/i! ≤
k∑

i=0

e−μμi/i! = P(Y ≤ k)
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That is, we could try to show that
∑k

i=0 e−λλi/i! is, for all k, a decreasing function
of λ. However, another way is to let Z be a Poisson random variable with mean λ − μ

that is independent of Y . Because the sum of independent Poisson random variables
is also Poisson, we have that Z + Y is Poisson with mean λ. Hence, (Z + Y,Y ) is
a coupling of (X,Y ). Because Z + Y ≥ Y , we can conclude that a Poisson random
variable increases stochastically in its mean. �

Example 12.2. We now show that a binomial random variable X(n,p) with parame-
ters (n,p) stochastically increases in both n and p. That is, for all k ≥ 0

P(X(n,p) ≥ k) =
n∑

i=k

(
n

i

)
pi(1 − p)n−i

is an increasing function of both n and p. To use coupling to show that it is stochas-
tically increasing in n, let X1,X2, . . . be a sequence of independent Bernoulli random
variables with P(Xi = 1) = p = 1 − P(Xi = 0). Then

X1 + . . .Xn + Xn+1 ≥ X1 + . . .Xn

which proves the result since X1 + . . .Xr is binomial with parameters (r,p). To show
that X(n,p) is stochastically increasing in p, we will argue that X(n,p) ≥st X(n,αp)

for 0 < α < 1. To do so, let U1, . . . ,Un be independent uniform (0,1) random vari-
ables, and for i = 1, . . . , n, let Xi = I {Ui ≤ p}, and let Yi = I {Ui ≤ αp}. That is Xi is
1 if Ui ≤ p and is 0 otherwise, whereas Yi is 1 if Ui ≤ αp and is 0 otherwise. Because
αp < p, we see that Xi ≥ Yi , and thus

X1 + . . . + Xn ≥ Y1 + . . . + Yn

As X1 + . . .+Xn is binomial with parameters (n,p), whereas Y1 + . . .+Yn is binomial
with parameters (n,αp), the result follows. �

If X is a positive random variable, for t > 0 let RX(t) denote a random variable
whose distribution is the conditional distribution of X − t given that X > t . That is,

P(RX(t) > x) = P(X − t > x|X > t), t, x > 0

If we interpret X as the lifetime of an item, then RX(t) can be thought of as being the
remaining life of an item that has reached age t .

Suppose now that X is a hypoexponential random variable; that is, X = ∑n
i=1 Yi ,

where Y1, . . . , Yn are independent exponential random variables with respective rates
λ1, . . . λn. With j being such that λj = mini λi , we now show by a coupling argument
that RX(t) ≥st Yj . To show this, imagine that X is the time to complete n jobs, where
the jobs are done one at a time, and where the times to complete the jobs are the inde-
pendent exponential random variables Y1, . . . , Yn. Furthermore, suppose job j is the
last of these jobs to be done. If X > t , then either job j has not yet been started or it is
in progress. In either case, the remaining amount of time that will be needed on job j
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is exponential with rate λj . Because RX(t) is greater than or equal to this remaining
time, the result follows.

It turns out that if X ≥st Y , then there is always a coupling (X′, Y ′) such that X′ ≥
Y ′.
Proposition 12.1. X ≥st Y if and only if there is a coupling (X′, Y ′) of (X,Y ) such
that P(X′ ≥ Y ′) = 1.

Proof. We have already argued that if there is a coupling (X′, Y ′) such that P(X′ ≥
Y ′) = 1, then X ≥st Y . So, now suppose that X ≥st Y . We show that this implies that
there is a coupling (X′, Y ′) such that X′ ≥ Y ′ in the case where X and Y are con-
tinuous random variables, with respective distributions F and G. (The proof in the
general case is similar.) Recall that if h−1(x) is the inverse of the function h(x), then
h−1(x) = y if h(y) = x.

To obtain the desired coupling, let U be uniform over (0,1). Because F is an in-
creasing function it follows that

F−1(U) ≤ x ⇔ F(F−1(U)) ≤ F(x).

Hence,

P(F−1(U) ≤ x) = P
(
F(F−1(U)) ≤ F(x)

)
= P (U ≤ F(x))

= F(x)

Thus, F−1(U) has distribution F . Similarly, G−1(U) has distribution G. Because
X ≥st Y is equivalent to F(x) ≤ G(x), from which it follows that F−1(x) ≥ G−1(x),
we obtain an (X,Y ) coupling

(
X′ = F−1(U), Y ′ = G−1(U)

)
for which X′ ≥ Y ′. �

An equivalent definition of stochastically larger is given by the following proposi-
tion.

Proposition 12.2. X ≥st Y if and only if E[h(X)] ≥ E[h(Y )] for all increasing func-
tions h.

Proof. If X ≥st Y then, by Proposition 12.1, we can couple them so that X ≥ Y

with probability 1. But as h is increasing this yields that h(X) ≥ h(Y ) and tak-
ing expectations shows that E[h(X)] ≥ E[h(Y )]. To go the other way, suppose that
E[h(X)] ≥ E[h(Y )] for any increasing function h. To show that this implies that
P(X > x) ≥ P(Y > x) for all x, fix x and define the function h by

h(y) = I {y > x} =
{

0, if y ≤ x

1, if y > x

Because h is an increasing function, it follows that E[h(X)] ≥ E[h(Y )], which proves
the result because

E[h(X)] = P(X > x), E[h(Y )] = P(Y > x). �



760 Introduction to Probability Models

We now define the concept of one random n-vector being stochastically larger than
another.

Definition. Say that X = (X1, . . . ,Xn) is stochastically larger than Y = (Y1, . . . , Yn)

if

h(X) ≥st h(Y)

for all increasing functions h.

Proposition 12.3. Suppose that X1, . . . ,Xn are independent, that Y1, . . . , Yn are in-
dependent, and that Xi ≥st Yi for all i. Then (X1, . . . ,Xn) ≥st (Y1, . . . , Yn).

Proof. To prove this, for each i couple Xi and Yi so that Xi ≥ Yi . It is easy to see that
this can be done in such a way that the vectors (Xi, Yi), i = 1, . . . , n are independent.
(For instance, do the coupling via the approach used to prove Proposition 12.1, using
n independent uniforms for the n couplings.) Now let h be an increasing function.
Then, h(X1, . . . ,Xn) ≥ h(Y1, . . . , Yn), which implies that h(X1, . . . ,Xn) ≥st h(Y1,

. . . , Yn). �

Definition. We say that X is stochastically equal to Y , written as X =st Y , if X and
Y have the same distribution function.

12.3 Stochastic Ordering of Stochastic Processes
We start with a definition.

Definition. Say that the stochastic process {X(t), t ∈ T } is stochastically larger
than the stochastic process {Y(t), t ∈ T } if, for any n and values t1, . . . , tn ∈ T ,
(X(t1), . . . ,X(tn)) ≥st (Y (t1), . . . , Y (tn)).

To use coupling to show that {X(t), t ∈ T } is stochastically larger than {Y(t), t ∈
T }, we try to find stochastic processes {X′(t), t ∈ T } having the same probability law
as {X(t), t ∈ T } and {Y ′(t), t ∈ T } having the same probability law as {Y(t), t ∈ T }
such that X′(t) ≥ Y ′(t) for all t .

Our first result gives a sufficient condition for one discrete time Markov chain to
be stochastically larger than another. Letting X = {Xn,n ≥ 0} and Y = {Yn,n ≥ 0} be
discrete time Markov chains with respective transition probabilities Pi,j and Qi,j , our
objective is to determine a sufficient condition on these transition probabilities so that
{Xn,n ≥ 0} ≥st {Yn,n ≥ 0} whenever X0 ≥st Y0. To state our result, let Nx(i) be a
random variable having the distribution of the next state from state i of the Markov
chain X, and Ny(i) be one having the distribution of the next state from state i of the
Markov chain Y. That is,

P(Nx(i) = k) = Pi,k, P (Ny(i) = k) = Qi,k

Proposition 12.4. If X0 ≥st Y0 and Nx(i) ≥st Ny(j) for all i ≥ j , then X ≥st Y.
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Proof. Assume the conditions of the proposition. We will prove the result by show-
ing how the two Markov chains can be coupled so that Xn ≥ Yn for every n. Because
X0 ≥st Y0 we can couple them so that X0 ≥ Y0. But then, by the conditions of the
proposition, we have that

X1 =st Nx(X0) ≥st Ny(Y0) =st Y1

Hence, X1 ≥st Y1 and so they can be coupled so that X1 ≥ Y1. Continuing in this man-
ner shows that there are coupled versions of the two Markov chains such that Xn ≥ Yn

for every n, thus proving the result. �

Corollary 12.5. If X0 ≥st Y0, Nx(i) ≥st Ny(i) for all i, and either Nx(i) or Ny(i) is
stochastically increasing in i, then X ≥st Y.

Proof. By Proposition 12.4, it suffices to prove that Nx(i) ≥st Ny(j) for all i ≥ j .
Now, suppose that Nx(i) ≥st Ny(i) for all i. Then, for i ≥ j ,

Nx(i) ↑st i ⇒ Nx(i) ≥st Nx(j) ≥st Ny(j)

whereas

Ny(i) ↑st i ⇒ Nx(i) ≥st Ny(i) ≥st Ny(j)

Hence, the conditions of Proposition 12.4 are met, which proves the result. �

Remark. By letting the transition probabilities of the two chains be identical, the
preceding shows that if Nx(i) stochastically increases in i, then the Markov chain
{Xn,n ≥ 0} is stochastically increasing in its initial state.

Recall that a birth and death process is a continuous time Markov chain with inte-
ger states in which a transition always either increases or decreases the state by 1. Let
X = {X(t), t ≥ 0} be such a process. We now show that X stochastically increases in
its initial state.

Proposition 12.6. {X(t), t ≥ 0} increases stochastically in its initial state.

Proof. Let X = {X(t), t ≥ 0} and Y = {Y(t), t ≥ 0} be independent birth and death
processes having the same transition probabilities, but with X(0) > Y(0). Because the
birth and death processes are independent and their change points are continuous, it
follows that either the processes are equal at some point or that X(t) > Y(t) for all t .
Consequently, if we let T be the first time their value is the same, then

T =
{∞, if X(t) > Y(t) for all t

min{t : X(t) = Y(t)} otherwise

Now, define Z(t) by

Z(t) =
{
X(t), if t ≤ T

Y (t), if t > T
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Figure 12.1

Because the continuations of the X and the Y processes beyond time T are iden-
tically distributed, it follows that the Z process, which follows the X process up
to time T and then the Y process from then on, has the same distribution as does
the X process and, moreover, is never below the Y process (see Fig. 12.1). Conse-
quently, (Z,Y) is a coupling of (X,Y) having Z(t) ≥ Y(t) for all t , thus proving that
{X(t), t ≥ 0} ≥st {Y(t), t ≥ 0}. �

We next show that if the birth and death process has only nonnegative states, then
X(0) = 0 implies that X(t) stochastically increases in t .

Proposition 12.7. Let {X(t), t ≥ 0} be a birth and death process with nonnegative
states. If X(0) = 0, then X(t) stochastically increases in t .

Proof. To show, for s > 0, that P(X(t + s) > j |X(0) = 0) ≥ P(X(t) > j |X(0) = 0),
condition on X(s) to obtain

P(X(t + s) > j |X(0) = 0)

=
∞∑
i=0

P(X(t + s) > j |X(0) = 0, X(s) = i)P (X(s) = i|X(0) = 0)

=
∞∑
i=0

P(X(t + s) > j |X(s) = i)P (X(s) = i|X(0) = 0)

=
∞∑
i=0

P(X(t) > j |X(0) = i)P (X(s) = i|X(0) = 0)

≥
∞∑
i=0

P(X(t) > j |X(0) = 0)P (X(s) = i|X(0) = 0) by Proposition 12.6
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= P(X(t) > j |X(0) = 0)

∞∑
i=0

P(X(s) = i|X(0) = 0)

= P(X(t) > j |X(0) = 0) �

12.4 Maximum Couplings, Total Variation Distance,
and the Coupling Identity

When X has distribution function F and Y has distribution function G, we call the
pair (X,Y ) an F , G couple. With C denoting the set of all F , G couples, say that
(X̂, Ŷ ) ∈ C is a maximum F , G couple if

P(X̂ = Ŷ ) = max
(X,Y )∈C

P (X = Y)

That is, (X̂, Ŷ ) is a maximum F , G couple if among all such couples its components
are most likely to be equal.

Proposition 12.8. A maximum F , G couple always exists. If (X̂, Ŷ ) is a maximum F ,
G couple, then

(a) if F and G are continuous with respective densities F ′ = f and G′ = g

P (X̂ = Ŷ ) =
∫

x

m(x)dx

where m(x) = min(f (x), g(x));
(b) if F and G are discrete with respective mass functions {pi} and {qi}, then

P(X̂ = Ŷ ) =
∑

i

m(i)

where m(i) = min(pi, qi).

Proof. To prove (a), let p = ∫ ∞
−∞ m(x)dx. Also, let

A = {x : f (x) > g(x)}
and note that

m(x) =
{
g(x), if x ∈ A

f (x), if x ∈ Ac

Now, for any random variables X and Y , with respective distributions F and G

P(X = Y) = P(X = Y ∈ A) + P(X = Y /∈ A)

≤ P(Y ∈ A) + P(X /∈ A)

=
∫

A

g(x)dx +
∫

Ac

f (x)dx
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=
∫

A

m(x)dx +
∫

Ac

m(x)dx

= p

Hence, for any F , G coupling, P(X = Y) ≤ p. To prove that we obtain an equality for
the maximum coupling, we exhibit an F , G coupling (X,Y ) for which P(X = Y) = p.
To do so, let V1, V2, V3, U be independent random variables with respective density
functions

fV1(x) = m(x)

p

fV2(x) = f (x) − m(x)

1 − p

fV3(x) = g(x) − m(x)

1 − p

fU(x) = 1 , 0 < x < 1

Now, define X and Y as follows:

U ≤ p ⇒ X = Y = V1

U > p ⇒ X = V2, Y = V3

Because P(V2 = V3) = 0, we see that

P(X = Y) = P(U ≤ p) = p

and so the result will follow if we show that (X,Y ) is an F , G couple. To prove this,
condition on whether U ≤ p to obtain

fX(x) = pfV1(x) + (1 − p)fV2(x) = m(x) + f (x) − m(x) = f (x)

and, similarly, that

fY (x) = pfV1(x) + (1 − p)fV3(x) = m(x) + g(x) − m(x) = g(x)

and the proof in the continuous case is complete. The proof in the discrete case is
identical with mass functions replacing densities and sums replacing integrals. �

Example 12.3. Suppose that X1 and X2 are such that

Xi =
{

1, with probability pi

0, with probability 1 − pi

where p1 > p2. The usual way to couple X1 and X2 is to let U be uniform on (0,1)

and set

Xi = 1 ⇔ U < pi



Coupling 765

Because U < p2 ⇒ U < p1 it follows that X2 = 1 ⇒ X1 = 1 and thus that X1 ≥ X2.
One might wonder if this is the maximal couple. To determine whether this is so,
note that X = Y if either U < p2 or U > p1. Because these two events are mutually
exclusive (since p1 > p2), we see that

P(X = Y) = P(U < p2) + P(U > p1) = p2 + 1 − p1

Because∑
j

min (P (X1 = j),P (X2 = j)) = min(1 − p1,1 − p2) + min(p1,p2)

= 1 − p1 + p2

it follows by Proposition 12.8 that the preceding is indeed a maximum couple. �

There is a relationship between how closely two random variables can be coupled
and how close they are in distribution. One common measure of distance between the
distributions of two random variables X and Y is the total variation distance, defined
as

ρ(X,Y ) = max
B

|P (X ∈ B) − P (Y ∈ B)| .

We next show the link between total variation distance and couplings.

Proposition 12.9 (The Coupling Identity). If (X̂, Ŷ ) is a maximal coupling for (X,Y ),
then ρ(X,Y ) = P(X̂ 
= Ŷ ).

Proof. The result will be proven under the assumption that X, Y are continuous with
respective density functions f , g. Let m(x) = min (f (x), g(x)). Now, note that

ρ(X,Y ) = max

(
max

B
(P (X ∈ B) − P(Y ∈ B)) , max

B
(P (Y ∈ B) − P(X ∈ B))

)

Let A = {x : f (x) > g(x)}. Because P(X ∈ B) − P(Y ∈ B) is increased when adding
to B points in A and is decreased by adding to B points not in A, it follows that

max
B

(P (X ∈ B) − P(Y ∈ B)) = P(X ∈ A) − P(Y ∈ A)

and, similarly, that

max
B

(P (Y ∈ B) − P(X ∈ B)) = P(Y ∈ Ac) − P(X ∈ Ac)

= 1 − P(Y ∈ A) − 1 + P(X ∈ A)

= P(X ∈ A) − P(Y ∈ A)

Hence,

ρ(X,Y ) = P(X ∈ A) − P(Y ∈ A)
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= 1 − P(X /∈ A) − P(Y ∈ A)

= 1 −
∫

Ac

f (x) dx −
∫

A

g(x)dx

= 1 −
∫

Ac

m(x)dx −
∫

A

m(x)dx

= 1 −
∫

m(x)dx

= 1 − P(X̂ = Ŷ )

where the final equality used Proposition 12.8. �

12.5 Applications of the Coupling Identity
The coupling identity can often be used to effectively bound total variation distance.
For instance, let (X̂, Ŷ ) be a maximum couple of (X,Y ), and let (X′, Y ′) be any other
(X,Y ) couple. Because the maximum couple has the largest probability of being
equal, it thus has the smallest probability of being unequal. Consequently, Proposi-
tion 12.9 implies that

ρ(X,Y ) = P(X̂ 
= Ŷ ) ≤ P(X′ 
= Y ′)

12.5.1 Applications to Markov Chains

Consider a Markov chain {Xn, n ≥ 0}, with state space S and transition probabili-
ties Pi,j . Recall that the set of nonnegative values πj , j ∈ S is said to be a stationary
probability vector for the Markov chain if

πj =
∑

i

πiPi,j , j ∈ S

∑
j

πj = 1

Proposition 12.10. Let πj , j ∈ S be a stationary probability vector for the Markov
chain. If P(X0 = j) = πj , j ∈ S then P(Xn = j) = πj for all n and j .

Proof. The proof is by induction on n. As it is true by assumption when n = 0, assume
that P(Xn−1 = i) = πi for all i. Then

P(Xn = j) =
∑

i

P (Xn = j |Xn−1 = i)P (Xn−1 = i)

=
∑

i

Pi,jπi

= πj

and the proof is complete. �
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Corollary 12.11. If πj , j ∈ S is a stationary probability vector for the Markov chain
{Xn,n ≥ 0}, then for any n

πj =
∑

i

πiP
n
i,j

Proof. Suppose that P(X0 = i) = πi , i ∈ S. Then

πj = P(Xn = j)

=
∑

i

P (Xn = j |X0 = i)P (X0 = i)

=
∑

i

P n
i,jπi �

Definition. A Markov chain is said to be stationary when the probability of its initial
state is a stationary probability vector.

Proposition 12.12. If πj , j ∈ S is a stationary probability vector for an irreducible
Markov chain, then πj > 0 for all j .

Proof. Because πi ≥ 0 and
∑

i πi = 1, it follows that πi > 0 for at least one i. So,
suppose that πk > 0. To show that πj > 0 for all j , fix j . Because j is accessible from
k, there exists a value n for which P n

k,j > 0. The result now follows upon using that

πj =
∑

i

πiP
n
ij ≥ πkP

n
kj > 0 �

Proposition 12.13. Let {Xn,n ≥ 0} and {Yn,n ≥ 0} be Markov chains with the
same transition probabilities Pi,j . Suppose X0 has an arbitrary distribution, whereas
P(Y0 = j) = πj where πj , j ∈ S is a stationary probability vector for the chain. Sup-
pose also that the chain is both irreducible and aperiodic. Then

ρ(Xn,Yn) → 0 as n → ∞

Proof. Let the two chains be independent, and define

N = min{n : Xn = Yn}

where N = ∞ if Xn 
= Yn for all n. Now, define

Zn =
{
Xn, if n < N

Yn, if n ≥ N

Because ZN+k =st XN+k for any k ≥ 0, it follows that Zn =st Xn. Hence, (Zn,Yn) is
an (Xn,Yn) couple, and so by the coupling identity
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ρ(Xn,Yn) ≤ P(Zn 
= Yn)

= P(N > n)

Thus we must show that P(N > n) → 0, or (by the continuity property of probability
as a set function) that P(N < ∞) = 1. We now argue that it suffices to prove that
P(N < ∞) = 1 when Xn,n ≥ 0 is also stationary; that is, when P(X0 = j) = πj ,
j ∈ S. To see why, suppose that P(X0 = j) = πj , j ∈ S, then

P(N < ∞) =
∑
j

P (N < ∞|X0 = j)πj

Hence, if P(N < ∞|X0 = i) < 1 for some i, then as πi > 0 the preceding would
imply that

P(N < ∞) < πi +
∑
j 
=i

P (N < ∞|X0 = j)πj

≤ πi +
∑
j 
=i

πj

= 1

Hence, P(N < ∞|X0 = i) < 1 for some i implies that P(N < ∞) < 1, showing that
P(N < ∞) = 1 implies that P(N < ∞|X0 = i) = 1 for all i.

So let us assume that P(X0 = j) = πj , j ∈ S. Because {Xn,n ≥ 0} and {Yn,n ≥ 0}
are independent, it follows that {(Xn,Yn), n ≥ 0} is also a Markov chain. Because the
individual chains are irreducible and aperiodic it can be shown that the bivariate chain
{(Xn,Yn), n ≥ 0}. is also irreducible. By independence,

P ((Xn,Yn) = (i, j)) = P(Xn = i)P (Yn = j) = πiπj > 0

which shows that the chain {(Xn,Yn)} is not transient. (Recall that if a state is tran-
sient then the limiting probability of being in that state is 0.) Thus the bivariate chain
is recurrent, and so, with probability 1, it will eventually enter state (i, i), which shows
that P(N < ∞) = 1. �

Remarks. (a) Because

ρ(Xn,Yn) = max
B

|P(Xn ∈ B) − P(Yn ∈ B)|
≥ |P(Xn = j) − P(Yn = j)|
= ∣∣P(Xn = j) − πj

∣∣
the preceding shows that for any distribution on X0

πj = lim
n→∞P(Xn = j)
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(b) It follows from the preceding that if there can be at most one stationary proba-
bility vector.

(c) It can be shown that if a Markov chain with transition probabilities Pi,j is irre-
ducible and aperiodic, then for any states i and j , P n

i,j > 0 for all sufficiently
large n. Using this, it is easy to show that the bivariate chain introduced in the
proof of Proposition 12.13 is irreducible. �

The next proposition uses the coupling identity to prove that if {Xn,n ≥ 0} and
{Yn,n ≥ 0} are Markov chains with the same transition probabilities then the distance
between Xn and Yn decreases in n.

Proposition 12.14. If {Xn,n ≥ 0} and {Yn,n ≥ 0} are Markov chains with the same
transition probabilities then, for any distributions on their initial states X0 and Y0,

ρ(Xn,Yn) decreases in n

Proof. Fix n and let (X̂n, Ŷn) be the maximum coupling of (Xn,Yn), and note by the
coupling identity that

ρ(Xn,Yn) = P(X̂n 
= Ŷn)

Let X̂n and Ŷn be the states of the two Markov chains at time n, and let the chains
evolve independently from that point on. Let

N = min{k ≥ n : Xk = Yk}
be the first time from n on until the chains are in the same state (and let it be ∞ if they
are never equal from n on). Also, for m ≥ n, define

Zm =
{
Xm, m < N

Ym, m ≥ N

Noting that Zm has the same distribution as Xm, it follows that for m > n

ρ(Xm,Ym) ≤ P(Zm 
= Ym)

= P(N > m)

≤ P(N > n)

= P(X̂n 
= Ŷn)

= ρ(Xn,Yn) �

Our next result uses the coupling identity to bound the Poisson approximation of a
sum of independent but not necessarily identically distributed Bernoulli random vari-
ables.

Proposition 12.15. Let X1, . . . ,Xn be independent Bernoulli random variables with

P(Xi = 1) = pi = 1 − P(Xi = 0), i = 1, . . . , n
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and let Y be a Poisson random variable with mean
∑n

i=1 pi . Then

ρ

(
n∑

i=1

Xi,Y

)
≤

n∑
i=1

p2
i

Proof. Let Yi be Poisson with mean pi and let (X̂i, Ŷi ) be a maximum coupling of
(Xi, Yi), i = 1, . . . , n. Let these n maximum couplings (X̂i , Ŷi ), i = 1, . . . , n be inde-
pendent. By Proposition 12.8,

P(X̂i 
= Ŷi ) = 1 − P(X̂i = Ŷi )

= 1 −
∑
j

min (P (Xi = j),P (Yi = j))

= 1 −
1∑

j=0

min (P (Xi = j),P (Yi = j))

= 1 − min(1 − pi, e−pi ) − min(pi, pie
−pi )

= pi − pie
−pi

where the preceding used the inequality e−pi ≥ 1 − pi . Because the sum of indepen-
dent Poisson random variables is also Poisson, it follows that

∑n
i=1 Ŷi is Poisson with

mean
∑n

i=1 pi . Hence, by the coupling identity

ρ

(
n∑

i=1

Xi,Y

)
≤ P

(
n∑

i=1

X̂i 
=
n∑

i=1

Ŷi

)

Because
∑n

i=1 X̂i 
= ∑n
i=1 Ŷi implies that X̂i 
= Ŷi for some i, the preceding gives that

ρ

(
n∑

i=1

Xi,Y

)
≤ P(X̂i 
= Ŷi for some i)

= P(∪n
i=1{X̂i 
= Ŷi})

≤
n∑

i=1

P(X̂i 
= Ŷi )

=
n∑

i=1

pi(1 − e−pi )

≤
n∑

i=1

p2
i

where final inequality again used the inequality e−pi ≥ 1 − pi . �

Our next two examples deal with shuffling and the one dimensional symmetric
random walk.
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Example 12.4. In random to top shuffling of a deck of k cards numbered 1 through
k, at each stage one of the k positions is randomly chosen, with the chosen one being
equally likely to be any of the k positions, and the card in that position is moved to the
top of the deck. (An equivalent description is that at each stage one of the k cards is
randomly chosen and that card is moved to the top of the deck.) If we let Xn denote the
ordering of the deck after stage n, then {Xn,n ≥ 0} is a Markov chain with k! states. It
is clear by symmetry (or by noting that this Markov chain is doubly stochastic) that in
the limit all k! possible orderings are equally likely. We would like to bound the total
variation distance between the limiting distribution and the distribution of the state
after shuffle n.

So let Xn denote the state at time n when X0 has an arbitrary distribution and let Yn

denote the state when Y0 is equally likely to be any of the k! orderings. To determine
ρ(Xn,Yn), couple {Xn,n ≥ 0} and {Yn,n ≥ 0} by choosing at each shuffle the same
card (not the same position) to be moved to the top of the deck. Using this coupling,
the coupling identity gives that

ρ(Xn,Yn) ≤ P(Xn 
= Yn)

Now, once a card is chosen it will be moved to the top of the deck in both chains
and, furthermore, it will from then on be in the same position in both chains. Conse-
quently, if we let N denote the number of shuffles until all cards have been chosen at
least once, then the two deck orderings will be identical from time N on, showing that
P(Xn 
= Yn) ≤ P(N > n). Therefore,

ρ(Xn,Yn) ≤ P(N > n)

To bound P(N > n), which is the probability that it takes more than n coupons to
obtain a complete set in the coupon collectors problem with k equally likely coupon
types, let Ai be the event that card i is not selected in the first n shuffles. Then,

P(N > n) = P(∪k
i=1Ai)

≤
k∑

i=1

P(Ai)

= k

(
1 − 1

k

)n

Thus the distribution of Xn converges to the equally likely limiting distribution expo-
nentially fast. �

Our next example shows that in the one-dimensional symmetric random walk the
effect of the initial value goes to 0 as the number of transitions increase.

Example 12.5. The Markov chain whose state space is the set of all integers and
whose transition probabilities are Pi,i+1 = Pi,i−1 = 1/2 is called a symmetric random
walk. As shown in Example 4.19 and Exercise 39 of Chapter 4, it is a null recurrent
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Markov chain and so does not have stationary probabilities. Let {Xn} be a symmetric
random walk with X0 = 0 and let {Yn} be one with Y0 = 2k. We show that

ρ(Xn,Yn) → 0

To show the preceding, let {Xn,n ≥ 0} and {Yn,n ≥ 0} be independent. Define

N = min{n : Xn = Yn}
and set

Zn =
{
Xn, if n < N

Yn, if n ≥ N

Because Zn =st Xn we have, by the coupling identity, that

ρ(Xn,Yn) ≤ P(Zn 
= Yn)

= P(N > n)

Hence, we must show that limn→∞ P(N > n) = 0 or, equivalently, that P(N <

∞) = 1. To do so, let

Wn = Xn − Yn, n ≥ 0

and note that we need to show that P(Wn = 0 for some n) = 1. Because

Wn+1 − Wn =
⎧⎨
⎩

−2, with probability 1/4
0, with probability 1/2
2, with probability 1/4

it follows that {Wn,n ≥ 0} is, if we ignore those transitions that leave it in the same
state, itself a symmetric random walk. Hence, {Wn,n ≥ 0} is recurrent, showing that
with probability 1 it will eventually equal 0. �

12.6 Coupling and Stochastic Optimization
Stochastic optimization problems are typically of two types: either static or dynamic in
nature. A static problem results when all decisions are made at a single time, whereas a
dynamic problem results when decisions are made sequentially in time. Coupling has
important applications in both types of stochastic optimization problems. In this sec-
tion, we briefly indicate the potential uses of coupling, first in some dynamic stochastic
optimization problems and then in a static one.

Example 12.6. Suppose one has an asset to sell, and that in each period, an offer for
that asset is presented, with the values of successive offers being independent and hav-
ing a known distribution function F . Suppose that after being presented with an offer,
the decision maker must decide whether to accept it and thus end the problem or reject
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it and wait for the next offer. Suppose that a cost c per offer is incurred, and that the
objective is to maximize the expected net return, where the net return is the accepted
price minus c multiplied by the number of offers presented before the item is sold.

Let VF denote the maximal expected net return when the offer distribution is spec-
ified to be F , and suppose that we want to prove that VF ≥ VG when F ≤ G. That is,
in two problems, in which the offers in the first problem are stochastically larger than
in the second, we want to show that the optimal expected return in the first problem is
at least as large as in the second. To prove this via a coupling argument, suppose the
two problems run concurrently, and let Xn and Yn denote the offers in period n,n ≥ 1.
Because Xn ≥st Yn for each n, we can couple the two sequences {Xn,n ≥ 1} and
{Yn,n ≥ 1} so that the first sequence is that of independent and identical random vari-
ables having distribution F and the second is that of independent and identical random
variables having distribution G and, in addition, Xn ≥ Yn for every n. Suppose that
the optimal policy is employed in Problem 2 (where the offers are the Y values). Let
the decision maker in the Problem 1 only accept an offer at a time when an offer is
accepted in Problem 2. Thus, if offer YN is accepted in Problem 2 then offer XN will
be accepted in Problem 1. Call this policy π . Because XN ≥ YN , it follows that the
net return obtained in Problem 1 when using policy π is at least as large as the net
return obtained in Problem 2 when using the optimal policy for Problem 2. Taking
expectations shows that the expected net return in Problem 1 when π is employed is
at least as large as the optimal expected net return in Problem 2. Because the optimal
expected net return in Problem 1 is at least as large as the expected return when the
policy π is used, we can conclude that VF ≥ VG. �

Example 12.7. Consider an asset selling problem where one initially has n items to
sell. Suppose that in each period an offer vector (Y1, . . . , Yn) is presented, with the
interpretation being that the maker of the offer is bidding for all items and is willing to
pay Yi for item i. Upon receiving such an offer vector, the decision maker can either
reject the offer or can elect to sell any subset S of as yet unsold items for the amount∑

i∈S Yi . Suppose that all offer vectors are independent with a known joint distribu-
tion function F , that a cost c is incurred each period until all items are sold, and that
the objective is to maximize the expected net return, defined as the sum of the selling
prices for each of the n items minus c multiplied by the number of periods until all
items are sold.

An intuitive result for this model is that if the optimal policy would call for item i

to be sold when the set of unsold items is S, i ∈ S, and the offer vector is (y1, . . . , yn)

then it would also call for i to be sold if when the set of unsold items is S, i ∈ S, and
the offer vector is (w1, . . . ,wn) when wj ≥ yj , j = 1, . . . , n. That is, if it would be
optimal to sell item i then it would be optimal to sell it if everything else remained the
same and the offer vector was even larger. However, although this is quite intuitive it
is not so immediate to prove. One method of proving this result first establishes the
inequality

V (S ∪ T ) + V (S ∩ T ) ≥ V (S) + V (T ) (12.1)

where V (U) is the maximal expected net additional return when the set of unsold
items is U . To give a coupling proof of the inequality (12.1), let us change the prob-
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lem interpretation a bit by imagining that there are n types of items and that an offer
vector (y1, . . . , yn) means that the bidder is willing to buy any amount of each of the
item types at a price of yi per type i item, i = 1, . . . , n. Consider two sellers having
the same |S| + |T | items for sale. Namely, two of each of item types in S ∩ T , one of
each of the types in S ∩ T c, and one of each of the types in Sc ∩ T . Suppose that both
of these sellers are required to divide their items into two groups, with each of their
groups being sold in a separate room, and with each room costing the seller c per offer
until all items in that room are sold. Suppose that seller one divides his items so that
one group consists of one item of each of the types in S, and the second consists of
one item of each of the types in T . On the other hand, suppose that seller two divides
her items so that one group consists of one item of each of the types in S ∪ T , and
the other of one item of each of the types in S ∩ T . Couple the offer vectors for the
two sellers to be identical. Suppose that seller one uses the optimal policy based on
his division. If so, then that seller’s expected net return from the items in the group
consisting of the item types in S is V (S), and his expected net return from the items in
the other group is V (T ). Hence, using the optimal policy yields seller one an expected
net return V (S) + V (T ). Suppose that seller two always sells exactly the same items
that seller one does, but when there is a choice of groups from which to sell (that is,
for instance, when both of seller one’s groups contain a type i item and seller one
makes the decision to sell only one of them) then seller two sells the item of that type
that resides in the group that initially consisted of one of each of the types in S ∩ T .
Using this policy, it is easy to see that the amounts received by the two sellers for their
|S| + |T | items are identical, and that seller two will empty one of her rooms at a time
that is either the same as or earlier than the time at which seller one empties one of
his rooms. Thus, the net return for seller two is at least as large as that for seller one.
Taking expectations shows that there is a policy for seller two whose expected net
return is at least V (S) + V (T ). Because the expected return for seller two when using
this policy cannot be higher than the maximal expected return for seller two, which is
V (S ∪ T ) + V (S ∩ T ), the inequality (12.1) is established. �

Example 12.8. There are n initially empty boxes, labeled 1, . . . , n. At each stage a
ball appears. Attached to each ball is a vector of binary values, say (x1, . . . , xn) with
the interpretation that the ball is eligible to be put in box i if xi = 1 and is ineligible
if xi = 0. If there are no empty boxes for which the ball is eligible, then that ball is
discarded; if there are empty boxes for which the ball is eligible, then a decision must
be made as to which box the ball is put. The problem continues until all boxes are
nonempty. Let N denote the number of stages needed until there are no nonempty
boxes. Assuming that each new ball is independently eligible for box i with probabil-
ity pi, i = 1, . . . , n, we are looking for a policy that minimizes E[N ].

Without loss of generality, let us suppose that the boxes are numbered so that
p1 ≤ p2 ≤ . . . ≤ pn. Because it is hardest to fill a box i having a small eligibility prob-
ability pi , it is intuitive that the optimal policy is the one that always puts a ball into
the smallest indexed empty box for which it is eligible. To prove this result, consider
any policy that does not always make the preceding choice, and consider a situation
where it does something different. That is, suppose that the policy, call it π , would put
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a ball into box j when it could have been put in box i and i < j . We compare what
happens in this case, called scenario one, with what transpires in a second scenario
in which the ball is put in box i. In comparing these scenarios, we couple all follow-
ing eligibility vectors and use a policy in scenario two so that there are never more
nonempty boxes in scenario two than in scenario one. Because we must be careful
that there is not a resulting eligibility vector that allows one to put a ball into urn i in
scenario one but does not allow for it to be put in urn j in scenario two, we cannot
couple the eligibility vectors in the two scenarios to be identical. Instead we do the
following: We let U1, . . . ,Un be independent uniform (0,1) random variables. The
eligibility vector (X

(1)
1 , . . . ,X

(1)
n ) in scenario one is then defined by

X
(1)
k = 1 ⇔ Uk ≤ pk, k = 1, . . . , n

whereas the eligibility vector (X
(2)
1 , . . . ,X

(2)
n ) in scenario two is

X
(2)
k = 1 ⇔ Uk ≤ pk, k 
= i, j

X
(2)
i = 1 ⇔ Uj ≤ pi

X
(2)
j = 1 ⇔ Ui ≤ pj

Because pi ≤ pj it follows from the preceding that X
(1)
i = 1 ⇒ X

(2)
j = 1. That is, if

the ball is eligible for box i in scenario one then it is also eligible for box j in sce-
nario two. Now we couple the decisions made in scenario two with those in scenario
one in the following manner: if the ball is put into box i in scenario one then we put
it in box j in scenario two; otherwise whatever box π puts the ball into in scenario
one is the box we put the ball into in scenario two. It is easy to see that all boxes are
filled in scenario two at least as quickly as in scenario one, showing that we need not
consider any policy that does not always put balls in the lowest indexed empty and
eligible box, which proves that E[N ] is minimized by one that always put a ball in the
empty and eligible box whose eligibility probability is lowest. In fact, the preceding
argument can be used to show that not only does this policy minimize E[N ] but it also
stochastically minimizes N , in that it maximizes P(N < k) for all k. �

Our next example deals with a static optimization problem.

Example 12.9. Consider the coupon collector’s problem where each new coupon
is independently any of n types, with pi being the probability that it is type i,∑n

i=1 pi = 1. We continue to collect coupons until we have at least one of each type.
Letting N(p1, . . . , pn) equal the number of coupons needed when the probability vec-
tor is (p1, . . . , pn), we claim that N(p1, . . . , pn) is stochastically minimized when
pi = 1/n, i = 1, . . . , n.

To show the preceding, first suppose that n = 2, and let p1 = p, p2 = 1 − p. Be-
cause N > m if the first m coupons are all of the same type, we have that

P(N > m) = pm + (1 − p)m
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Differentiating and setting equal to 0 gives that

mpm−1 = m(1 − p)m−1

or (
p

1 − p

)m−1

= 1

which shows that the minimizing value occurs when p = 1 −p. Thus, the result holds
when n = 2. Now consider N(p1, . . . , pn) where at least two of the pi are not equal,
say that p1 
= p2. We will show that for any m ≥ n

P (N(p1,p2,p3, . . . , pn) > m) ≥ P(N(pa,pa,p3, . . . , pn) > m)

where pa = p1+p2
2 . To show the preceding, let Np1,p2 be the number of coupons of

type either 1 or 2 that need be collected until there have been at least one of each
of these two types, when the probability of these types is p1, p2; and let Npa,pa be
the number of coupons of type 1 or 2 that need be collected until there have been
at least one of each of these two types, when the probabilities of these types are pa ,
pa . Also, let N ′ be the number of types 3, . . . , n that need to be collected to obtain
at least one of each of the types 3, . . . , n when the probabilities of types 3, . . . , n are
p3, . . . , pn. Because Np1,p2 is the number of coupons needed for a complete set when
there are two types of coupons, with coupon type probabilities pi

p1+p2
, i = 1,2; and

Npa,pa is the number needed when the two types have probabilities 1/2, 1/2, it fol-
lows from the result when n = 2 that Np1,p2 ≥st Npa,pa . So let us couple Np1,p2 and
Npa,pa so that Np1,p2 ≥ Npa,pa . Letting N ′ be independent of Np1,p2 and Npa,pa , it
follows that N(p1,p2, . . . , pn) has the distribution of the number of coupons needed
until there have been at least Np1,p2 that are either of types 1 or 2, and at least
N ′ that are one of the types 3, . . . , n; whereas N(pa,pa, . . . ,pn) is the number of
coupons needed until there have been at least Npa,pa that are either of types 1 or
2 and at least N ′ that are one of the types 3, . . . , n. Because Np1,p2 ≥ Npa,pa , this
yields a coupling for which N(p1,p2, . . . , pn) ≥ N(pa,pa, . . . ,pn), which shows
that N(p1,p2,p3, . . . , pn) ≥st N(pa,pa,p3, . . . , pn). Taking the limit of continual
repetitions of this argument proves that N(p1,p2, . . . , pn) ≥st N(1/n, . . . ,1/n). �

12.7 Chen–Stein Poisson Approximation Bounds
Let X1,X2, . . . ,Xn be Bernoulli random variables with respective means λ1, λ2, . . . ,

λn. That is,

P(Xi = 1) = λi = 1 − P(Xi = 0) , i = 1, . . . , n

Set W = ∑n
i=1 Xi , and let λ = E[W ] = ∑n

i=1 λi . For Z being a Poisson random vari-
able with mean λ, the Chen–Stein method often enables us to bound

ρ(W,Z) = max
A

{∣∣∣∣∣P(W ∈ A) −
∑
i∈A

e−λλi/i!
∣∣∣∣∣
}
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the total variation distance between W and Z. The germ of the method is that for any
function f

E[Zf (Z)] =
∞∑
i=0

if (i)e−λλi/i!

=
∞∑
i=1

f (i)e−λλi/(i − 1)!

= λ

∞∑
j=0

f (j + 1)e−λλj /j ! (by letting j = i − 1)

= λE[f (Z + 1)]
Motivated by the preceding, for any given set A, we will define a function fA(j),

j ≥ 0, such that

E[λfA(W + 1) − WfA(W)] = P(W ∈ A) −
∑
i∈A

e−λλi/i! (12.2)

To do so, let fA(0) = 0, and then recursively define fA by letting

λfA(j + 1) = jfA(j) + I {j ∈ A} −
∑
i∈A

e−λλi/i! , j ≥ 0

where I {j ∈ A} is the indicator function of the event that j ∈ A. As the above holds
for all j ≥ 0, it follows that

λfA(W + 1) − WfA(W) = I {W ∈ A} −
∑
i∈A

e−λλi/i!

Taking expectations of both sides of the preceding yields (12.2).
We state the following technical Lemma without giving a proof.

Lemma 12.16. For any set A

|fA(j) − fA(i)| ≤ 1 − e−λ

λ
|j − i| (12.3)

To utilize (12.2), note that

E[λfA(W + 1)] = E

[
n∑

i=1

λifA(W + 1)

]

=
n∑

i=1

λiE[fA(W + 1)] (12.4)
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In addition,

E[WfA(W)] = E

[
n∑

i=1

XifA(W)

]

=
n∑

i=1

E[XifA(W)]

=
n∑

i=1

(E[XifA(W)|Xi = 1]λi + E[XifA(W)|Xi = 0](1 − λi))

=
n∑

i=1

E[fA(W)|Xi = 1]λi

=
n∑

i=1

E

⎡
⎣fA

⎛
⎝1 +

n∑
j 
=i

Xj

⎞
⎠ |Xi = 1

⎤
⎦ λi

=
n∑

i=1

E[fA(1 + Vi)]λi (12.5)

where Vi is any random variable whose distribution is that of the conditional distribu-
tion of

∑
j 
=i Xj given that Xi = 1. That is, Vi is any random variable such that

Vi =st

∑
j 
=i

Xj |Xi = 1

Hence, from (12.4) and (12.5) we see that

E[λfA(W + 1) − WfA(W)] =
n∑

i=1

λi (E[fA(W + 1)] − E[fA(1 + Vi)])

=
n∑

i=1

λi E[fA(W + 1) − fA(1 + Vi)]

Taking absolute values of both sides yields, upon using the triangle inequality, that

|E[λfA(W + 1) − WfA(W)]| ≤
n∑

i=1

λi |E[fA(W + 1) − fA(1 + Vi)]|

≤
n∑

i=1

λi E[|fA(W + 1) − fA(1 + Vi)|]

≤ 1 − e−λ

λ

n∑
i=1

λiE[|W − Vi |]
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where the second inequality used that |E[Y ]| ≤ E[|Y |] for any random variable Y , and
the final inequality used Lemma 12.16.

Hence, we have proven the following:

Theorem 12.17 (Chen–Stein Poisson Approximation Bound Theorem). Let W =∑n
j=1 Xj where Xj is Bernoulli with mean λj , j = 1, . . . , n, and let Z be Poisson

with mean λ = ∑n
i=1 λi . Then for any random variables Vi, i = 1, . . . , n for which

Vi =st

∑
j 
=i Xj |Xi = 1

ρ(W,Z) ≤ 1 − e−λ

λ

n∑
i=1

λiE[|W − Vi |]

Example 12.10. If X1, . . . ,Xn are independent, then

Vi =st

∑
j 
=i

Xj |Xi = 1

=st

∑
j 
=i

Xj

where the final equation is true because
∑

j 
=i Xj and Xi are independent. Hence, we
can let Vi = ∑

j 
=i Xj , and apply the Chen–Stein bound to obtain

ρ(W,Z) ≤ 1 − e−λ

λ

n∑
i=1

λiE[|W − Vi |]

= 1 − e−λ

λ

n∑
i=1

λiE[|Xi |]

= 1 − e−λ

λ

n∑
i=1

λ2
i

The preceding inequality is stronger than the inequality given in Proposition 12.15,
which stated that ρ(W,Z) ≤ ∑n

i=1 λ2
i . For instance, if n = 100 and λi ≡ 0.1 then

Proposition 12.15 gives that ρ(W,Z) ≤ 1, whereas the Chen–Stein bound yields that
ρ(W,Z) ≤ 0.1. �

Suppose now that W ≥st Vi for all i. In this case, there is, by the inverse transform
argument, a coupling for which W ≥ Vi for each i = 1, . . . , n. For this coupling

E[|W − Vi |] = E[W − Vi] = E[W ] − E[Vi] = λ − E[Vi]

Thus, we have the following corollary to the Chen–Stein bound.
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Corollary 12.18. If W ≥st Vi for all i = 1, . . . , n, then

ρ(W,Z) ≤ 1 − e−λ

λ

n∑
i=1

λi(λ − E[Vi]) = 1 − e−λ

λ

(
λ2 −

n∑
i=1

λiE[Vi]
)

Remark. In cases where there is a negative dependence between X1, . . . ,Xn, in the
sense that knowing that Xi = 1 makes it less likely that Xj = 1 for j 
= i, we might
expect that W ≥st Vi .

Example 12.11. Suppose that k balls are independently distributed among n urns,
with each ball going into urn j with probability pj ,

∑n
j=1 pj = 1. Let Xj be the indi-

cator for the event that none of the balls go into urn j , and let W = ∑n
j=1 Xj denote

the number of empty urns. Because having no balls in urn i makes it less likely that
there will be no balls in box j, j 
= i, it seems intuitive that W ≥st Vi . To prove this,
we show how to couple W and Vi so that W ≥ Vi . First distribute the balls into the
urns as previously described, and let W denote the number of empty urns. If we now
take any ball that was put in urn i, and move it to one of the other urns, choosing urn
j with probability

pj

1−pi
, j 
= i, then the number of urns j , j 
= i, that are empty has

the distribution of Vi . Because the redistribution of the balls that were initially in urn i

cannot increase the number of the urns j, j 
= i, that are empty, it follows that W ≥ Vi

for this coupling, which shows that W ≥st Vi . Because

λi = E[Xi] = (1 − pi)
k

λ =
n∑

i=1

λi =
n∑

i=1

(1 − pi)
k

E[Vi] =
∑
j 
=i

E[Xj |Xi = 1] =
∑
j 
=i

(
1 − pj

1 − pi

)k

we obtain from Corollary 12.18 that

ρ(W,Z) ≤ 1 − e−λ

λ

⎛
⎝λ2 −

n∑
i=1

λi

∑
j 
=i

(
1 − pj

1 − pi

)k
⎞
⎠

where Z is Poisson with mean λ. �

Example 12.12. Suppose, in the scenario of Example 12.11, that we are interested in
the probability that there is an urn that contains at least m balls. To analyze this, let
Ni be the number of balls in box i, and let Xi = I {Ni ≥ m} be the indicator of the
event that box i contains at least m balls. Letting B(r,p) represent a binomial random
variable with parameters (r,p), it follows, because Ni is binomial with parameters
(k,pi), that

λi = P(Xi = 1) = P(Ni ≥ m) = P(B(k,pi) ≥ m), i = 1, . . . , n.
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It is easily shown (see Exercise 10) that Ni |{Ni ≥ m} ≥st Ni . (That is, Ni becomes
stochastically larger when we are told that Ni ≥ m.) Consequently, the information
that Xi = 1 stochastically increases the number of balls in box i, and thus stochasti-
cally reduces the number of balls available to go in the other boxes, making it likely
that a coupling such that W ≥ Vi is possible. Indeed, the coupling can be accomplished
by coupling random variables N∗

i , having the conditional distribution of a binomial
(k,pi) random variable given that it is at least m, and Ni , a binomial (k,pi) random
variable, so that N∗

i ≥ Ni . Now consider two scenarios: in scenario 1 put Ni balls in
urn i and in scenario 2 put N∗

i balls in urn i. Then distribute n − N∗
i balls to the same

urns in both scenarios, putting each one in urn j, j 
= i, with probability
pj

1−pi
. Then

in scenario 1, independently put each of an additional N∗
i − Ni balls into urn j with

probability
pj

1−pi
, j 
= i. Because every urn j, j 
= i, contains at least as many balls

in scenario 1 as it does in scenario 2, it follows that the number of urns containing at
least m balls in scenario 1 is at least as large as the number of urns j, j 
= i, containing
at least m balls in scenario 2. Because the number of urns with at least m balls in
scenario 1 is distributed as W , whereas the number of urns j, j 
= i, having at least m

balls in scenario 2 is distributed as Vi , this coupling shows that W ≥st Vi . Now,

E[Vi] =
∑
j 
=i

E[Xj |Xi = 1]

To determine E[Xj |Xi = 1] we condition on Ni . This yields

E[Xj |Xi = 1] = E[Xj |Ni ≥ m]

=
k∑

r=m

E[Xj |Ni = r]P(Ni = r|Ni ≥ m)

=
k∑

r=m

P (Nj ≥ m|Ni = r)P (B(k,pi) = r|B(k,pi) ≥ m)

=
k∑

r=m

P

(
B

(
k − r,

pj

1 − pi

)
≥ m

)
P(B(k,pi) = r|B(k,pi) ≥ m)

In cases where λi is small, the approximation

E[Xj |Xi = 1] = E[Xj |Ni ≥ m] ≈ E[Xj |Ni = m] = P

(
B

(
k − m,

pj

1 − pi

)
≥ m

)

should be quite precise. Hence, in this case where all λi are small

E[Vi] ≈
∑
j 
=i

P

(
B

(
k − m,

pj

1 − pi

)
≥ m

)
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yielding, by Corollary 12.18, the error bound

ρ(W,Z) ≤ 1 − e−λ

λ

⎛
⎝λ2 −

n∑
i=1

λi

∑
j 
=i

P

(
B

(
k − m,

pj

1 − pi

)
≥ m

)⎞
⎠

One application of the preceding is the generalized birthday problem, which sup-
poses that each of k people independently has birthday j with probability pj , j =
1, . . . , n, and we are interested in the probability that among the k people there is a
set of m all having the same birthday. If we let Xi, i = 1, . . . , n be the indicator of
the event that at least m of the k people were born on day i, then the desired prob-
ability is P(W > 0), where W = ∑n

i=1 Xi . For instance, suppose that n = 365 and
pi = 1/365 for all i. Then, when m = 3, we are asking for the probability that among
k people, whose birthdays are assumed independent and equally likely to be any of the
365 days, there will be a group of size three that all share the same birthday. Because
λi = P(Xi = 1) = P(B(k,1/365) ≥ 3) we have when k = 88 that λi ≈ 0.0018966.
Hence, with W being the number of days of the year that are the birthdays of at least 3
people, the Poisson approximation yields that W is approximately Poisson with mean
λ = 365(0.0018966) = 0.69226. Thus, the Poisson approximation of the probability
that there will be a set of size three having the same birthday is

P(W > 0) ≈ 1 − e−0.69226 ≈ 0.49956.

Using that E[Vi] ≈ 364P(B(85,1/364) ≥ 3) ≈ 0.63006, we see that the error of the
Poisson approximation is bounded by

ρ(W,Z) ≤ 1 − e−0.69226

0.69226
(0.692262 − 0.69226 × 0.63006) ≈ 0.031.

(It was shown in Exercise 20 of Chapter 2 that, to 3 decimal places, P(W > 0) =
0.504.) �

In cases where there is a positive dependence of X1, . . . ,Xn which results in
Vi ≥st

∑
j 
=i Xj for all i, we can implement the Chen–Stein approach by coupling

Vi and X1, . . . ,Xn so that Vi ≥ ∑
j 
=i Xj . With this coupling, we then have

|Vi − W | =
∣∣∣∣∣Vi −

∑
j 
=i

Xj − Xi

∣∣∣∣∣
≤

∣∣∣∣∣Vi −
∑
j 
=i

Xj

∣∣∣∣∣ + |Xi | (by the triangle inequality)

= Vi −
∑
j 
=i

Xj + Xi

= Vi − W + 2Xi
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which yields

E[|Vi − W |] ≤ E[Vi] − λ + 2λi

Using this, along with the Chen–Stein Theorem, yields the following.

Proposition 12.19. If Vi ≥st

∑
j 
=i Xj for all i = 1, . . . , n, then

ρ(W,Z) ≤ 1 − e−λ

λ

(∑
i

λiE[Vi] − λ2 + 2
∑

i

λ2
i

)
(12.6)

Example 12.13. Consider an m component system where component j is failed
with probability qj , j = 1, . . . ,m and where the components are independent. Let
C1, . . . ,Cn be subsets, none of which is contained in another, such that the system is
failed if and only if all of the components of at least one of these subsets is failed.
(C1, . . . ,Cn are called the minimal cut sets of the system.) With Xk being the indi-
cator of the event that all components in Ck are failed, λk = E[Xk] = ∏

j∈Ck
qj . The

system will be failed if W ≡ ∑n
k=1 Xk > 0. To bound the error involved when we

approximate the distribution of W by a Poisson distribution with mean λ = ∑n
k=1 λk ,

we use that we can couple X1, . . . ,Xn and Vi so that Vi ≥ ∑
k 
=i Xk . The coupling is

obtained by first letting Y1, . . . , Ym be independent Bernoulli random variables with
means q1, . . . , qm. Now, set Xk = ∏

j∈Ck
Yj , k = 1, . . . , n. Also, let

Y ∗
j =

{
Yj , if j /∈ Ci

1, if j ∈ Ci

Set X∗
k = ∏

j∈Ck
Y ∗

j , k = 1, . . . , n, and let Vi = ∑
k 
=i X

∗
k . Because Y ∗

j ≥ Yj for all j ,
it follows that X∗

k ≥ Xk for all k, thus yielding a coupling where Vi ≥ ∑
k 
=i Xk . �

Exercises
1. Show that a normal random variable is stochastically increasing in its mean.

That is, with N(μ,σ) being a normal random variable with mean μ and vari-
ance σ 2, show that N(μ1, σ ) ≥st N(μ2, σ ) when μ1 > μ2.

2. If σ1 
= σ2, is it possible to have N(μ1, σ1) ≥st N(μ2, σ2).
3. Show that a gamma (n,λ) random variable, whose density is

f (x) = λe−λx(λx)n−1/(n − 1)!, x > 0

is stochastically increasing in n and stochastically decreasing in λ.
4. Let Ni = {Ni(t), t ≥ 0} be a renewal process with interarrival distribution

Fi, i = 1,2. If F1 ≤ F2, show that N1 ≤st N2.
5. Let Ni = {Ni(t), t ≥ 0}, i = 1,2, be nonhomogeneous Poisson processes with

respective intensity functions λi(t), i = 1,2. Suppose λ1(t) ≥ λ2(t) for all t .
Let Aj , j = 1, . . . , n be arbitrary subsets of the real line, and for i = 1,2, let
Ni(Aj ) be the number of points of the process Ni that are in Aj , j = 1, . . . , n.
Show that (N1(A1), . . . ,N1(An)) ≥st (N2(A1), . . . ,N2(An)).
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6. A new item will fail on its ith day of use with probability pi,
∑∞

i=1 pi = 1.
An item that fails during a period is replaced by a new one at the beginning of
the next period. Let An denote the age of the item in use at the beginning of
period n. That is, An = i if the item in use is beginning its ith day. The random
variables An can be interpreted as the age at time n of a renewal process whose
interarrival times have mass function {pi, i ≥ 1}, with An = 1 signifying that a
renewal occurs at time n.
(a) Argue that {An,n ≥ 1} is a Markov chain and give its transition probabili-

ties.
(b) Suppose A0 = 1. If pi∑∞

j=i pj
decreases in i, show that An stochastically

increases in n.
7. If X is a positive integer valued random variable, with mass function pi =

P(X = i), i ≥ 1, then the function

λ(i) = P(X = i|X ≥ i)

is called the (discrete) hazard rate function of X.
(a) Express P(X > n) in terms of the values λ(i), i ≥ 1.
(b) If λ(i) is increasing (decreasing) in i then the random variable X is said

to have increasing (decreasing) failure rate. Let X∗
n be a random variable

whose distribution is that of the conditional distribution of X − n given
that X ≥ n. That is,

P(X∗
n = j) = P(X = n + j |X ≥ n).

Show that if X has increasing (decreasing) failure rate it and only if X∗
n

stochastically decreases (increases) in n.
8. Consider two renewal processes: Nx = {Nx(t), t ≥ 0} and Ny = {Ny(t), t ≥ 0}

whose interarrival distributions are discrete with, respective, hazard rate func-
tions λx(i) and λy(i). For any set of points A, let Nx(A) and Ny(A) denote,
respectively, the numbers of renewals that occur at time points in A for the two
processes. If λx(i) ≤ λy(i) for all i and either λx(i) or λy(i) is decreasing, show
that Nx(A) ≤st Ny(A) for any A.

9. A discrete time birth and death process is a Markov chain {Xn,n ≥ 0} with
transition probabilities of the form Pi,i+1 = pi = 1 − Pi,i−1. Prove or give a
counterexample to the claim that {Xn,n ≥ 0|X0 = i} is stochastically increas-
ing in i.

10. If Xa is a random variable whose distribution is that of the conditional distribu-
tion of X given that X > a, show that Xa ≥st X for every a.

11. Let {N(t), t ≥ 0} be a renewal process whose interarrival times Xi, i ≥ 1, have
distribution F .
(a) The random variable XN(t)+1 is the length of the renewal interval that does

what.
(b) Show that XN(t)+1 ≥st Xi .

12. Let {Xn,n ≥ 0} and {Yn,n ≥ 0} be independent irreducible Markov chains with
states 0,1, . . . ,m, and with respective transition probabilities Pi,j and Qi,j .
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(a) Give the transition probabilities of the Markov chain {(Xn,Yn), n ≥ 0}.
(b) Show by giving a counterexample that {(Xn,Yn), n ≥ 0} is not necessarily

irreducible.
13. If X and Y are discrete integer valued random variables with respective mass

functions pi and qi , show that

ρ(X,Y ) = 1

2

∑
i

|pi − qi |

14. With W and Vi as defined in Section 12.7, show that
(a)

∑n
i=1 λiE[1 + Vi] = E[W 2]

(b) If for each i = 1, . . . , n, W and Vi can be coupled so that W ≥ Vi , show
that

ρ(W,Z) ≤ 1 − e−λ

λ
(λ − Var(W))

15. A coin with probability p of coming up heads is flipped n + k times. Let Rk

denote the event that a run of k consecutive heads occurs at least once. Let X1
be the indicator variable of the event that flips 1, . . . , k all land heads, and for
i = 2, . . . , n+ 1, let Xi be the indicator variable of the event that flip i − 1 lands
tails and flips i, . . . , i + k − 1 all land heads. With W = ∑n+1

i=1 Xi show that
(a) P(Rk) = P(W > 0).
(b) Approximate P(W > 0).
(c) Bound the error of the approximation.

16. Show that |E[X]| ≤ E[|X|].
17. In Example 12.12 show that E[Xj |Ni = m], the approximation of E[Xj |Xi = 1]

when λi is small, is an upper bound. That is, show that E[Xj |Xi = 1] ≤
E[Xj |Ni = m].

18. In a group of size 101 each pair of individuals are, independently, friends with
probability 0.01. With N4 equal to the number of individuals that have at least
4 friends, approximate the probability that P(N4 ≥ 3), and give a bound on the
error of your approximation.



13Martingales

13.1 Introduction
In this chapter, we consider a process that evolves at discrete time points, and we let
Hn be the set of all random variables whose values have been determined by time n.
Note that Hn ⊂ Hn+1, and also that Hn can be thought of as being the history of the
process by time n.

The sequence of random variables Z1,Z2, . . . is said to be a martingale if for all
n ≥ 1

(a) Zn ∈Hn;
(b) E[ |Zn| ] < ∞;
(c) E[Zn+1|Hn] = Zn.

Martingales can be thought of as models for fair games. For consider a particular gam-
bler and let Zn be their fortune (or cumulative winnings) after game n. Then, Zn,n ≥ 0
is a martingale if, no matter what has previously occurred, the gambler’s expected for-
tune after the next gamble is what it was before that gamble; that is, the gambler’s
expected gain in each play of the game is always zero.

Taking expectations of both sides of the martingale equality (c) shows that

E[Zn+1] = E[Zn], n ≥ 1

implying that

E[Zn] = E[Z1]
For random variables X1, . . . ,Xn, we let σ(X1, . . . ,Xn) be the set of all random vari-
ables whose values are determined by X1, . . . ,Xn. (More formally, σ(X1, . . . ,Xn) is
the set of all functions f (X1, . . . ,Xn) of X1, . . . ,Xn.)

We now present some examples of martingales. Our first two examples show that
the successive partial sums of independent random variables with mean 0, and the suc-
cessive partial products of independent random variables with mean 1 are martingales.

Example 13.1. Let X1,X2, . . . , be independent random variables such that E[Xi] = 0
for all i ≥ 1. If Hn = σ(X1, . . . ,Xn), then Zn = ∑n

i=1 Xi, n ≥ 1 is a martingale with
mean 0. To verify this, note that

Zn+1 = Zn + Xn+1

Because Zn is determined by period n, the preceding yields that

E[Zn+1|Hn] = Zn + E[Xn+1|Hn]
= Zn + E[Xn+1] by independence of X1, . . . ,Xn+1

= Zn �
Introduction to Probability Models. https://doi.org/10.1016/B978-0-44-318761-2.00018-X
Copyright © 2024 Elsevier Inc. All rights reserved.
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Example 13.2. Let X1,X2, . . . , be independent random variables such that E[Xi] = 1
for all i ≥ 1. If Hn = σ(X1, . . . ,Xn), then Zn = ∏n

i=1 Xi, n ≥ 1 is a martingale with
mean 1. To verify this, note that

Zn+1 = Zn Xn+1

giving that

E[Zn+1|Hn] = Zn E[Xn+1|Hn]
= Zn E[Xn+1] by independence

= Zn �

Example 13.3. Let Xi, i ≥ 1 be independent and identically distributed random vari-
ables with mean 0 and variance σ 2, and let Sn = ∑n

i=1 Xi . If Hn = σ(X1, . . . ,Xn),
show that Zn = S2

n − nσ 2, n ≥ 1 is a martingale with mean 0.

Solution: Because

S2
n+1 = (Sn + Xn+1)

2 = S2
n + 2SnXn+1 + X2

n+1

we see that

E[S2
n+1|Hn] = E[S2

n|Hn] + 2E[SnXn+1|Hn] + E[X2
n+1|Hn]

= S2
n + 2SnE[Xn+1|Hn] + E[X2

n+1|Hn]
= S2

n + 2SnE[Xn+1] + E[X2
n+1] by independence

= S2
n + σ 2

and the result follows upon subtracting (n + 1)σ 2 from both sides. �

Example 13.4. Let X be a random variable such that E||X|] < ∞. The sequence
Z0 = E[X], Zn = E[X|Hn], n ≥ 1 is said to be a Doob martingale. To verify it is a
martingale we need to show that E[Zn+1|Hn] = Zn. That is, we need to show that

E [E[X|Hn+1] |Hn ] = E[X|Hn]
Because E[X|Hn] can be thought of as an ordinary expectation on a probability space
where all probabilities are computed conditional on being given the value of all ran-
dom variables in Hn, the conditioning identity E[X] = E[E[X|Y]] implies that

E[X|Hn] = E[E[X|Hn,Y] |Hn]
With Y = Hn+1, the preceding yields

E[X|Hn] = E[E[X|Hn+1] |Hn]
verifying that Zn,n ≥ 1 is a martingale. �
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Example 13.5. This example generalizes the result that the successive partial sums
of independent random variables with mean 0 is a martingale. Consider random
variables X0,X1, . . . , such that Xn ∈ Hn, and note that the random variables Xi −
E[Xi |Hi−1], i ≥ 1 have mean 0. Even though these random variables need not be
independent, their partial sums constitute a martingale. That is, if

Zn =
n∑

i=1

(Xi − E[Xi |Hi−1]), n ≥ 1

then Zn,n ≥ 1 is a martingale with mean 0. To verify this, note that

Zn+1 = Zn + Xn+1 − E[Xn+1|Hn].
Because Zn and E[Xn+1|Hn] are both in Hn, the preceding gives that

E[Zn+1|Hn] = Zn + E[Xn+1|Hn] − E[Xn+1|Hn]
= Zn

showing that Zn,n ≥ 1 is a martingale. �

13.2 The Martingale Stopping Theorem
Whereas in Chapter 7, we defined a stopping time for a sequence of independent ran-
dom variables, we now need a more general definition.

Definition. The positive integer valued random variable N is said to be a stopping
time if

(a) P(N < ∞) = 1; and
(b) For all n, I {N = n} ∈Hn.

In other words, whether we stop at time n depends on the values of all random
variables revealed by that time, and not on any future as yet unseen values. When
Xn, n ≥ 1 are independent and Xn ∈ Hn, Xn+j /∈ Hn, j > 0, this reduces to the defi-
nition of Chapter 7.

Lemma 13.1. Suppose that Zn, n ≥ 1 is a martingale, and that N is a stopping time.
If we let

Z̄n =
{
Zn, if n ≤ N

ZN, if n ≥ N

then Z̄n = Zmin(N,n), n ≥ 1, called the stopped process, is also a martingale.

Proof. We claim that

Z̄n+1 = Z̄n + I {N ≥ n + 1}(Zn+1 − Zn) (13.1)
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To verify the preceding, we consider two cases:

Case 1. N ≤ n.

The identity holds in this case since Z̄n+1 = ZN, Z̄n = ZN, I {N ≥ n + 1} = 0.

Case 2. N ≥ n + 1.

The identity holds in this case since Z̄n+1 = Zn+1, Z̄n = Zn, I {N ≥ n + 1} = 1.
Because I {N ≥ n + 1} = 1 if we have not yet stopped by period n and is 0 other-

wise, it follows that its value is determined by the results of the first n periods. Hence,
I {N ≥ n + 1} ∈Hn, and the equality (13.1) yields that

E[Z̄n+1|Hn] = Z̄n + I {N ≥ n + 1}E[Zn+1 − Zn|Hn]
= Z̄n + I {N ≥ n + 1} (E[Zn+1|Hn] − E[Zn|Hn])
= Z̄n + I {N ≥ n + 1} (Zn − Zn)

= Z̄n

where the preceding used that E[Z̄n|Hn] = Z̄n and E[Zn|Hn] = Zn, which is true
because the values of Z̄n and Zn are known by period n. �

Suppose now that N is a stopping time for the martingale Zn,n ≥ 1. Because
Z̄n, n ≥ 1 is also a martingale, it follows that

E[Z̄n] = E[Z̄1] = E[Z1]
Also, because P(N < ∞) = 1 and Z̄n = Zmin(N,n), it follows that with probability 1

lim
n→∞ Z̄n = ZN.

Hence, it would appear that E[ZN ] = E[Z1]. However, while this is usually the case,
it need not always be true, and the following theorem gives three sufficient conditions
(not the most general) under which it is true.

The Martingale Stopping Theorem. Suppose that N is a stopping time for the mar-
tingale Zn,n ≥ 1. Then

E[ZN ] = E[Z1]
if any of the following conditions hold:

(a) The stopping time N is bounded; that is, there exists m < ∞ such that P(N <

m) = 1.
(b) |Z̄n| are uniformly bounded; that is, there exists m < ∞ such that P(|Z̄n| <

m) = 1 for all n.
(c) E[N ] < ∞, and there exists m < ∞ such that E[ |Zn+1 − Zn| |Hn] < m for all

n.

Remark. Suppose that Zn is a gambler’s fortune after the nth game, and that the
gambler will stop after N games. If the game is fair and N is a stopping time, then
Zn,n ≥ 0 is a martingale and the martingale stopping theorem says that the gambler’s
expected fortune when they stop is just their initial fortune Z0.



Martingales 791

13.3 Applications of the Martingale Stopping Theorem
13.3.1 Wald’s Equation

Wald’s Equation is a simple consequence of the martingale stopping theorem.

Wald’s Equation. If X1,X2, . . . are independent and identically distributed with fi-
nite mean μ = E[Xi], and if N is a stopping time such that E[N ] < ∞, then

E

[
N∑

i=1

Xi

]
= μE[N ]

Proof. If we let Zn = ∑n
i=1(Xi − μ), n ≥ 1, then, as the Zn are the successive par-

tial sums of independent zero mean random variables, it follows that Zn,n ≥ 1 is a
martingale with mean 0. Hence, by the martingale stopping theorem

0 = E[ZN ]

= E

[
N∑

i=1

(Xi − μ)

]

= E

[
N∑

i=1

Xi − Nμ

]

= E

[
N∑

i=1

Xi

]
− E[Nμ]

showing that E[∑N
i=1 Xi] = E[N ]μ. �

13.3.2 Means and Variances of Pattern Occurrence Times

Suppose independent and identically distributed discrete random variables X1,X2, . . . ,
are observed in sequence. With P(Xi = j) = pj , we show how to use the martingale
stopping theorem to find the expected value and the variance of the number of random
variables that must be observed until the subsequence 2,1,0,2 occurs.

To determine these quantities, consider a fair gambling casino—that is, one in
which the expected casino winning for every bet is 0. Because each bet is fair, it
follows that if a gambler bets her entire fortune of a that the next outcome is j , then
her fortune after the bet will either be 0 with probability 1 − pj , or a/pj with prob-
ability pj . (That is, she will either win a/pj − a with probability pj or lose a with
probability 1 −pj .) Now, imagine a sequence of gamblers betting at this casino. Each
gambler starts with an initial fortune 1 and stops playing if his or her fortune ever
becomes 0. Gambler i bets 1 that Xi = 2; if she wins, she bets her entire fortune (of
1/p2) that Xi+1 = 1; if she wins that bet, she bets her entire fortune that Xi+2 = 0; if
she wins that bet, she bets her entire fortune that Xi+3 = 2; if she wins that bet, she
quits with a final fortune of 1/(p2

2p1p0).
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Let Zn denote the casino’s winnings after the data value Xn is observed. Be-
cause it is a fair casino, Zn,n ≥ 1, is a martingale with mean 0. Let N denote
the number of random variables that need be observed until the pattern 2,1,0,2
appears—so (XN−3,XN−2,XN−1,XN) = (2,1,0,2). When XN has been observed,
each of the gamblers 1, . . . ,N − 4 would have lost 1; gambler N − 3 would have won
1/(p2

2p1p0) − 1; gamblers N − 2 and N − 1 would each have lost 1; and gambler N

would have won 1/p2 − 1. Consequently,

ZN = N − 1

p2
2p1p0

− 1

p2

Because N is a stopping time, it follows from the martingale stopping theorem that
E[ZN ] = 0, showing that

E[N ] = 1

p2
2p1p0

+ 1

p2

To determine Var(N), suppose now that gambler i again starts betting at time i and
bets that the next 4 values will be 2,1,0,2. But now suppose that gambler i starts with
an initial fortune of i and, as before stakes her entire fortune on each bet. With N being
the first time the pattern appears, it follows that after XN is observed, gambler i would
have lost i for i = 1, . . . ,N − 4; gambler N − 3 would have won N−3

p2
2p1p0

− (N − 3),

gambler N − 2 would have lost N − 2, gambler N − 1 would have lost N − 1, and
gambler N would have won N

p2
− N . The casino’s winnings at time N is thus

ZN = 1 + 2 + . . . + N − N − 3

p2
2p1p0

− N

p2

= N(N + 1)

2
− N − 3

p2
2p1p0

− N

p2

It again follows from the martingale stopping theorem that

0 = E[ZN ] = E

[
N(N + 1)

2

]
− E

[
N − 3

p2
2p1p0

]
− E

[
N

p2

]

or, equivalently,

E[N2] + E[N ]
2

= E[N ] − 3

p2
2p1p0

+ E[N ]
p2

Using the previously obtained value of E[N ], the preceding can now be solved for
E[N2], to obtain Var(N) = E[N2] − (E[N ])2. For instance, suppose p0 = 1/8,p1 =
1/4,p2 = 1/2,p3 = 1/8. Then,

E[N ] = 128 + 2 = 130,
E[N2] + E[N ]

2
= 128(E[N ] − 3) + 2E[N ]
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Solving yields that E[N ] = 130, E[N2] = 32,902, giving that Var(N) = 16,002. �

13.3.3 Random Walks

Let X1,X2, . . . , be a sequence of independent and identically distributed random vari-
ables such that P(Xi = 0) �= 1. The process

S0 = 0, Sn =
n∑

i=1

Xi, n ≥ 1

is said to be a random walk process. For given positive constants a and b, let P(a, b)

denote the probability that the random walk becomes larger than a before it becomes
smaller than −b. That is, if we let

N = min{n : Sn > a or Sn < −b}
be the time until the random walk is either larger than a or less than −b, then

P(a, b) = P(SN > a)

(Because P(Xi = 0) �= 1, it can be shown that P(N < ∞) = 1.)
We now show how to use the martingale stopping theorem to approximate P(a, b).

To begin, assume that there is a value θ �= 0 such that E[eθX] = 1. Let

Zn =
n∏

i=1

eθXi = eθSn, n ≥ 1

Because Zn,n ≥ 1 are the partial products of independent random variables with mean
1 it follows that Zn,n ≥ is a martingale with mean 1 when Hn = σ(X1, . . . ,Xn). Be-
cause N is clearly a stopping time, it follows from the martingale stopping theorem
that

E[eθSN ] = 1

Conditioning on whether SN > a or SN < −b gives

1 = E[eθSN |SN > a]P(a, b) + E[eθSN |SN < −b](1 − P(a, b))

≈ eθa P (a, b) + e−θb (1 − P(a, b))

where the approximations are obtained by neglecting the amount by which SN either
exceeds a or is less than −b. (This is often referred to as “neglecting the excess.”)
Hence, we have that

P(a, b) ≈ 1 − e−θb

eθa − e−θb
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Suppose now that we want to approximate E[N ]. If E[X] �= 0, we can use Wald’s
equation and again neglect the excess. This yields that

E[N ]E[X] = E[SN ]
= E[SN |SN > a]P(a, b) + E[SN |SN < −b] (1 − P(a, b))

≈ aP (a, b) − b(1 − P(a, b))

Hence,

E[N ] ≈ aP (a, b) − b(1 − P(a, b))

E[X]
≈ a(1 − e−θb) − b(eθa − 1)

(eθa − e−θb)E[X]
When E[X] = 0 we use the zero mean martingale Zn = S2

n − nσ 2, n ≥ 1, where
σ 2 = Var(X). (See Example 13.3.) The martingale stopping theorem gives that

0 = E[ZN ]
= E[S2

N ] − E[N ]σ 2

= E[S2
N |SN > a]P(a, b) + E[S2

N |SN < −b] (1 − P(a, b)) − E[N ]σ 2

≈ a2P(a, b) + b2(1 − P(a, b)) − E[N ]σ 2

Hence, when E[X] = 0,

E[N ] ≈ a2P(a, b) + b2(1 − P(a, b))

σ 2

≈ a2(1 − e−θb) + b2(eθa − e−θb)

(eθa − e−θb) σ 2

Suppose now that E[X] < 0, and that we are interested in Pa , the probability that
the random walk ever exceeds the positive value a. To begin, we will first show that
θ > 0 when E[X] < 0. To do so, we use Jensen’s inequality, which states that if h is
convex, then E[h(Y )] ≥ h(E[Y ]) for any random variable Y . Consequently, because
h(x) = eθx is a convex function of x, we have that

1 = E[eθX] ≥ eθE[X]

showing that θE[X] < 0. Now,

Pa = P(Sn > a for some n)

= P(a,∞)

= lim
b→∞P(a, b)
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where the last equality follows from the continuity property of probabilities. Also,

1 = E[eθSN |SN > a]P(a, b) + E[eθSN |SN < −b] (1 − P(a, b))

> eθa P (a, b) + E[eθSN |SN < −b] (1 − P(a, b))

> eθa P (a, b)

where the first inequality follows because θ > 0. Hence, P(a, b) < e−θa . Letting
b → ∞ gives that

Pa ≤ e−θa

For instance, suppose Xi are normal with mean μ and variance σ 2. The formula for
the moment generating function of X gives that

E[etX] = exp{μt + σ 2t2/2}
Because μt + σ 2t2/2 = 0 if t = −2μ

σ 2 , it follows that E[eθX] = 1 if θ = −2μ

σ 2 . Hence,
when μ < 0, it follows for a > 0 that

P(random walk is ever larger than a) ≤ exp

{
2μa

σ 2

}

13.4 Submartingales
We say that the sequence of random variables X0,X1, . . . is a submartingale if for all
n ≥ 0

(a) Xn ∈ Hn;
(b) E[ |Xn| ] < ∞;
(c) E[Xn+1|Hn] ≥ Xn.

Suppose Xn,n ≥ 0 is a submartingale. If we let Yn = E[Xn+1|Hn] − Xn, then Yn ≥ 0
and

E[Xn+1|Hn] = Xn + Yn.

Letting

Z1 = X1, Zn = Xn −
n−1∑
i=1

Yi, n ≥ 2,

we claim that Zn,n ≥ 1 is a martingale. To verify this, note that

E[Zn+1|Hn] = E[Xn+1|Hn] − E

[
n∑

i=1

Yi |Hn

]

= Xn + Yn −
n∑

i=0

Yi because
n∑

i=1

Yi ∈ Hn
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= Xn −
n−1∑
i=1

Yi

= Zn

which shows that Zn,n ≥ 1 is a martingale.

The Submartingale Stopping Theorem. Suppose that Xn,n ≥ 1 is a submartingale,
and that N is a stopping time. Provided one of the conditions of The Martingale Stop-
ping Theorem holds,

E[XN ] ≥ E[X1]
Proof. Because Zn = Xn − ∑n−1

i=1 Yi, n ≥ 1, is a martingale, it follows from the mar-
tingale stopping theorem that

E[ZN ] = E[Z1] = E[X1].
Because Yi ≥ 0 implies that Zn ≤ Xn, and thus that ZN ≤ XN , it follows from the
preceding equation that E[X1] = E[ZN ] ≤ E[XN ]. �

Exercises
1. Let X0,X1, . . . be such that X0 = 1, and the conditional distribution of Xn+1

given X0, . . . ,Xn is Poisson with mean Xn. If Hn = σ(X0, . . . ,Xn), show that
Xn,n ≥ 0 is a martingale.

2. Let Xi, i ≥ 1 be positive random variables. Show that

Zn =
n∏

i=1

Xi

E[Xi |Hi−1] , n ≥ 1

is a martingale with mean 1.
3. Consider a branching process (see Section 4.7) where individuals act inde-

pendently, with each having a random number of offspring with mean μ. Let
Xn be the size of the nth generation, and let Hn = σ(X0, . . . ,Xn). Show that
Zn = Xn/μ

n, n ≥ 0 is a martingale.
4. Consider a Markov chain Xn,n ≥ 0 whose states are the nonnegative integers.

Suppose that P0,0 = 1, and let P(j) be the probability of ever entering state 0
given X0 = j . Show that P(Xn),n ≥ 0 is a Doob martingale.

5. Consider the matching rounds problem introduced in Example 3.15. Let Rn be
the number of rounds needed when there are initially n people. Use the martin-
gale stopping theorem to show that E[Rn] = n.

Hint: Let Xi denote the number of people who have matches in round i, and
use the martingale Zn = ∑n

i=1(Xi − E[Xi |Hi−1]), n ≥ 1.
6. The ante one game involves k players, with initial integral fortunes w1, . . . ,wk .

At each play each of the players whose current fortune is positive puts 1 in the
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pot, which is then equally likely to be won by each of them. That is, if there
are currently r players with a positive fortune then each has probability 1/r of
winning the r dollars in the pot. This continues until one of the players has a
fortune of w = ∑k

i=1 wi . Find Pj , the probability that player j is the one with
final fortune w.

Hint: Let Zn be the fortune of player j before game n.
7. Suppose a fair coin is successively flipped. Find the mean and variance until the

pattern h,h, t, h,h occurs.
8. Prove Jensen’s Inequality, which states that if f is a convex function, then

E[f (X)] ≥ f (E[X]) for any random variable X.

Hint: Consider the following Taylor series expansion for f (x) with a remain-
der term:

f (x) = f (a) + f ′(a)(x − a) + f ′′(c)(x − a)2/2

Exercises 9 and 10 refer to the gambler’s ruin problem, where in each game the
gambler either wins 1 with probability p or loses 1 with probability q = 1 − p,
with the gambler stopping when their fortune is either m or 0. Assume that the
results of separate games are independent, and let P(i) be the probability the
gambler’s fortune reaches m before falling to 0 when the gambler starts with
i, 0 ≤ i ≤ m. Also, let Sn be the gambler’s fortune after n games, and let N be
the number of games played.

9. Suppose p �= 1/2.
(a) Show that (q/p)Sn, n ≥ 0 is a martingale.
(b) Use the martingale stopping theorem to find P(i).
(c) Use Wald’s equation to find E[N ].

10. Suppose p = 1/2.
(a) Find P(i).
(b) Find E[N ].

11. Suppose Yi,Vi, i ≥ 1 are independent, with Yi being exponential with rate λ and
Vi being exponential with rate μ. Let Sn = ∑n

i=1(Yi − Vi), n ≥ 1. For positive
constants a and b,
(a) Find Pa , the probability that Sn,n ≥ 1 is greater than a before it is less than

−b.
(b) With N = min(n : Sn ≥ a or Sn ≤ −b), find E[N ].



Solutions to Starred Exercises

Chapter 1
2. S = {(r, g), (r, b), (g, r), (g, b), (b, r), (b, g)} where, for instance, (r, g) means

that the first marble drawn was red and the second one green. The probability of
each one of these outcomes is 1

6 .

5. 3
4 . If he wins, he only wins $1; if he loses, he loses $3.

9. F = E ∪ FEc, implying since E and FEc are disjoint that P(F)=P(E) +
P(FEc).

17. P {end} = 1 − P {continue}
= 1 − [Prob(H,H,H) + Prob(T,T,T )]

Fair coin: P {end} = 1 −
[

1

2
· 1

2
· 1

2
+ 1

2
· 1

2
· 1

2

]

= 3

4

Biased coin: P {end} = 1 −
[

1

4
· 1

4
· 1

4
+ 3

4
· 3

4
· 3

4

]

= 9

16

19. E = event at least 1 six

P(E) = number of ways to get E

number of sample points
= 11

36
D = event two faces are different

P(D) = 1 − P(two faces the same) = 1 − 6

36
= 5

6

P(E|D) = P(ED)

P (D)
= 10/36

5/6
= 1

3

25. (a) P {pair} = P {second card is same denomination as first}
= 3

51

(b) P {pair |different suits} = P {pair,different suits}
P {different suits}

= P {pair}
P {different suits}

= 3/51

39/51
= 1

13
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27. P(E1) = 1

P(E2|E1) = 39

51

since 12 cards are in the ace of spades pile and 39 are not.

P(E3|E1E2) = 26

50

since 24 cards are in the piles of the two aces, and 26 are in the other two piles.

P(E4|E1E2E3) = 13

49

So

P {each pile has an ace} =
(

39

51

)(
26

50

)(
13

49

)

30. (a) P {George | exactly 1 hit} = P {George,not Bill}
P {exactly 1}

= P {G,not B}
P {G,not B} + P {B, not G}

= (0.4)(0.3)

(0.4)(0.3) + (0.7)(0.6)

= 2

9

(b) P {G |hit} = P {G,hit}
P {hit}

= P {G}
P {hit} = 0.4

1 − (0.3)(0.6)
= 20

41

32. Let Ei = event person i selects own hat.

P (no one selects hat)

= 1 − P(E1 ∪ E2 ∪ · · · ∪ En)

= 1 −
[∑

i1

P(Ei1) −
∑
i1<i2

P(Ei1Ei2) + · · · + (−1)n+1P(E1E2 · · ·En)

]

= 1 −
∑
i1

P(Ei1) +
∑
i1<i2

P(Ei1Ei2) −
∑

i1<i2<i3

P(Ei1Ei2Ei3) + · · ·

+ (−1)nP (E1E2 · · ·En)

Let k ∈ {1,2, . . . , n}. P(Ei1Ei2Eik ) = number of ways k specific men can select
own hats ÷ total number of ways hats can be arranged = (n − k)!/n!. Number
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of terms in summation
∑

i1<i2<···<ik
= number of ways to choose k variables

out of n variables = (
n
k

) = n!/k!(n − k)!. Thus,

∑
i1<···<ik

P (Ei1Ei2 · · ·Eik ) =
∑

i1<···<ik

(n − k)!
n!

=
(

n

k

)
(n − k)!

n! = 1

k!
∴ P(no one selects own hat) = 1 − 1

1! + 1

2! − 1

3! + · · · + (−1)n
1

n!
= 1

2! − 1

3! + · · · + (−1)n
1

n!
40. (a) F = event fair coin flipped; U = event two-headed coin flipped.

P(F |H) = P(H |F)P (F )

P (H |F)P (F ) + P(H |U)P (U)

=
1
2 · 1

2
1
2 · 1

2 + 1 · 1
2

=
1
4
3
4

= 1

3

(b) P(F |HH) = P(HH |F)P (F )

P (HH |F)P (F ) + P(HH |U)P (U)

=
1
4 · 1

2
1
4 · 1

2 + 1 · 1
2

=
1
8
5
8

= 1

5

(c) P(F |HHT) = P(HHT |F)P (F )

P (HHT |F)P (F ) + P(HHT |U)P (U)

= P(HHT |F)P (F )

P (HHT |F)P (F ) + 0
= 1

since the fair coin is the only one that can show tails.

43. Let B be the event that Flo has a blue eyed gene. Using that Jo and Joe both have
one blue-eyed gene yields, upon letting X be the number of blue-eyed genes a
daughter of possessed by a daughter of theirs, that

P(B) = P(X = 1|X < 2) = 1/2

3/4
= 2/3

Hence, with C being the event that Flo’s daughter is blue eyed, we obtain

P(C) = P(CB) = P(B)P (C|B) = 1/3

45. Let Bi = event ith ball is black; Ri = event ith ball is red.
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P(B1|R2) = P(R2|B1)P (B1)

P (R2|B1)P (B1) + P(R2|R1)P (R1)

=
r

b + r + c
· b

b + r
r

b + r + c
· b

b + r
+ r + c

b + r + c
· r

b + r

= rb

rb + (r + c)r

= b

b + r + c

48. Let C be the event that the randomly chosen family owns a car, and let H be the
event that the randomly chosen family owns a house.

P(CHc) = P(C) − P(CH) = 0.6 − 0.2 = 0.4

and

P(CcH) = P(H) − P(CH) = 0.3 − 0.2 = 0.1

giving the result

P(CHc) + P(CcH) = 0.5

Chapter 2
4. (a) 1,2,3,4,5,6.

(b) 1,2,3,4,5,6.
(c) 2,3, . . . ,11,12.
(d) −5,4, . . . ,4,5.

11.
(

4
2

)(
1

2

)2 (1

2

)2

= 3

8
.

16. 1 − (0.95)52 − 52(0.95)51(0.05).
18. (a) P(Xi = xi, i = 1, . . . , r − 1|Xr = j)

= P(Xi = xi, i = 1, . . . , r − 1,Xr = j)

P (Xr = j)

=
n!

x1!···xr−1!j !p
x1
1 · · ·pxr−1

r−1 p
j
r

n!
j !(n−j)!p

j
r (1 − pr)n−j

= (n − j)!
x1! · · ·xr−1!

r−1∏
i=1

(
pi

1 − pr

)xi

(b) The conditional distribution of X1, . . . ,Xr−1 given that Xr = j is multi-
nomial with parameters n − j,

pi

1−pr
, i = 1, . . . , r − 1.
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(c) The preceding is true because given that Xr = j , each of the n − j tri-
als that did not result in outcome r resulted in outcome i with probability

pi

1−pr
, i = 1, . . . , r − 1.

23. In order for X to equal n, the first n − 1 flips must have r − 1 heads, and then
the nth flip must land heads. By independence, the desired probability is thus(

n − 1

r − 1

)
pr−1(1 − p)n−r × p

27. P {same number of heads} =
∑

i

P {A = i,B = i}

=
∑

i

(
k

i

)(
1

2

)k (
n − k

i

)(
1

2

)n−k

=
∑

i

(
k

i

)(
n − k

i

)(
1

2

)n

=
∑

i

(
k

k − i

)(
n − k

i

)(
1

2

)n

=
(

n

k

)(
1

2

)n

Another argument is as follows:

P {# heads of A = # heads of B}
= P {# tails of A = # heads of B} since coin is fair

= P {k − # heads of A = # heads of B}
= P {k = total # heads}

38. c = 2, P {X > 2} =
∫ ∞

2
2e−2xdx = e−4

47. Let Xi be 1 if trial i is a success and 0 otherwise.
(a) The largest value is 0.6. If X1 = X2 = X3, then

1.8 = E[X] = 3E[X1] = 3P {X1 = 1}
and so P {X = 3} = P {X1 = 1} = 0.6. That this is the largest value is seen
by Markov’s inequality, which yields

P {X ≥ 3} ≤ E[X]/3 = 0.6

(b) The smallest value is 0. To construct a probability scenario for which
P {X = 3} = 0, let U be a uniform random variable on (0,1), and define

X1 =
{

1, if U ≤ 0.6
0, otherwise
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X2 =
{

1, if U ≥ 0.4
0, otherwise

X3 =
{

1, if either U ≤ 0.3 or U ≥ 0.7
0, otherwise

It is easy to see that

P {X1 = X2 = X3 = 1} = 0

49. E[X2] − (E[X])2 = Var(X) = E[(X − E[X])2] ≥ 0. There is equality when
Var(X) = 0, that is, when X is constant.

64. For the matching problem, letting X = X1 + · · · + XN , where

Xi =
{

1, if ith man selects his own hat
0, otherwise

we obtain

Var(X) =
N∑

i=1

Var(Xi) + 2
∑∑

i<j

Cov(Xi,Xj )

Since P {Xi = 1} = 1/N , we see

Var(Xi) = 1

N

(
1 − 1

N

)
= N − 1

N2

Also,

Cov(Xi,Xj ) = E[XiXj ] − E[Xi]E[Xj ]
Now,

XiXj =
{

1, if the ith and j th men both select their own hats
0, otherwise

and thus

E[XiXj ] = P {Xi = 1,Xj = 1}
= P {Xi = 1}P {Xj = 1|Xi = 1}
= 1

N

1

N − 1

Hence,

Cov(Xi,Xj ) = 1

N(N − 1)
−

(
1

N

)2

= 1

N2(N − 1)

and
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Var(X) = N − 1

N
+ 2

(
N

2

)
1

N2(N − 1)

= N − 1

N
+ 1

N

= 1

66. Letting Bi be the event that Xi ∈ Ai, i = 1, . . . , n, we have

P(B1 · · ·Bn) = P(B1)

n∏
i=2

P(Bi |B1 · · ·Bi−1) = P(B1)

n∏
i=2

P(Bi)

71. See Section 5.2.3 of Chapter 5. Another way is to use moment generating func-
tions. The moment generating function of the sum of n independent exponentials
with rate λ is equal to the product of their moment generating functions. That
is, it is [λ/(λ − t)]n. But this is precisely the moment generating function of a
gamma with parameters n and λ.

74. E[e−uX] =
∑
n

e−une−λλn/n! = e−λ
∑
n

(λe−u)n/n! = eλ(e−u−1)

80. Let Xi be Poisson with mean 1. Then

P

{
n∑
1

Xi ≤ n

}
= e−n

n∑
k=0

nk

k!

But for n large
∑n

1 Xi −n has approximately a normal distribution with mean 0,
and so the result follows.

85. (a) Using that Var
(

W
σW

)
= 1 along with the formula for the variance of a sum

gives

2 + 2
Cov(X,Y )

σXσY

≥ 0

(b) Start with Var
(

X
σX

− Y
σY

)
≥ 0, and proceed as in part (a).

(c) Squaring both sides yields that the inequality is equivalent to

Var(X + Y) ≤ Var(X) + Var(Y ) + 2σXσY

or, using the formula for the variance of a sum

Cov(X,Y ) ≤ σXσY

which is part (b).
86. Let Xi be the time it takes to process book i. With Z being a standard normal

(a) P
(∑40

i=1 Xi > 420) ≈ P(Z > 420−400√
9·40

)
(b) P

(∑25
i=1 Xi < 240) ≈ P(Z < 240−250√

9·25

) = P(Z > 2/3)
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Chapter 3
2. Intuitively, it would seem that the first head would be equally likely to occur

on any of trials 1, . . . , n − 1. That is, it is intuitive that

P {X1 = i|X1 + X2 = n} = 1

n − 1
, i = 1, . . . , n − 1

Formally,

P {X1 = i|X1 + X2 = n} = P {X1 = i,X1 + X2 = n}
P {X1 + X2 = n}

= P {X1 = i,X2 = n − i}
P {X1 + X2 = n}

= p(1 − p)i−1p(1 − p)n−i−1(
n−1

1

)
p(1 − p)n−2p

= 1

n − 1

In the preceding, the next to last equality uses the independence of X1 and X2
to evaluate the numerator and the fact that X1 + X2 has a negative binomial
distribution to evaluate the denominator.

6. pX|Y (1 |3) = P {X = 1, Y = 3}
P {Y = 3}

= P {1 white,3 black,2 red}
P {3 black}

=
6!

1!3!2!
(

3

14

)1 ( 5

14

)3 ( 6

14

)2

6!
3!3!

(
5

14

)3 ( 9

14

)3

= 4

9

pX|Y (0 |3) = 8

27

pX|Y (2 |3) = 2

9

pX|Y (3 |3) = 1

27

E[X |Y = 1] = 5

3

13. The conditional density of X given that X > 1 is

fX|X>1(X) = f (x)

P {X > 1} = λe−λx

e−λ
when x > 1
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E[X |X > 1] = eλ

∫ ∞

1
xλe−λxdx = 1 + 1/λ

by integration by parts. This latter result also follows immediately by the lack
of memory property of the exponential.

19.

∫
E[X |Y = y]fY (y) dy =

∫∫
xfX|Y (x|y)dxfY (y) dy

=
∫∫

x
f (x, y)

fY (y)
dxfY (y) dy

=
∫

x

∫
f (x, y) dy dx

=
∫

xfX(x)dx

= E[X]
23. Let X denote the first time a head appears. Let us obtain an equation for

E[N |X] by conditioning on the next two flips after X. This gives

E[N |X] = E[N |X,h,h]p2 + E[N |X,h, t]pq + E[N |X, t,h]pq

+ E[N |X, t, t]q2

where q = 1 − p. Now

E[N |X,h,h] = X + 1, E[N |X,h, t] = X + 1

E[N |X, t,h] = X + 2, E[N |X, t, t] = X + 2 + E[N ]
Substituting back gives

E[N |X] = (X + 1)(p2 + pq) + (X + 2)pq + (X + 2 + E[N ]) q2

Taking expectations, and using the fact that X is geometric with mean 1/p, we
obtain

E[N ] = 1 + p + q + 2pq + q2/p + 2q2 + q2E[N ]
Solving for E[N ] yields

E[N ] = 2 + 2q + q2/p

1 − q2

40. E[X] = E[E[X|Y ]] = E[Y/2] = 1/4

Var(X) = E[Var(X|Y)] + Var(E[X|Y ])
= E[Y 2/12] + Var(Y/2)

= 1/36 + 1/48 = 1/12
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Suppose Y is uniformly distributed on (0,1), and that the conditional distribu-
tion of X given that Y = y is uniform on (0, y). Find E[X] and Var(X).

43. Condition on whether any of the workers is eligible and then use symmetry.
This gives

P(1) = P(1|someone is eligible)P (someone is eligible) = 1

n
[1− (1−p)n]

44. (a) E[etX2] = 1√
2π

∫ ∞

−∞
etx2

e−(x−μ)2/2dx

= 1√
2π

∫ ∞

−∞
exp{−(x2 − 2μx + μ2 − 2tx2)/2}dx

= 1√
2π

e−μ2/2
∫ ∞

−∞
exp{−(x2(1 − 2t) − 2μx)/2}dx

Thus, with σ 2 = 1
1−2t

E[etX2] = 1√
2π

e−μ2/2
∫ ∞

−∞
exp{−(x2 − 2σ 2μx)/2σ 2}dx

Using that

x2 − 2σ 2μx = (x − σ 2μ)2 − μ2σ 4

we have

E[etX2] = e−μ2/2+μ2σ 2/2 1√
2π

∫ ∞

−∞
exp{−(x − σ 2μ)2/2σ 2}dx

= e−(1−σ 2)μ2/2 1√
2π

∫ ∞

−∞
exp{−y2/2σ 2}dy

= σe−(1−σ 2)μ2/2

= (1 − 2t)−1/2 exp
{

−
(

1 − 1

1 − 2t

)
μ2/2

}
= (1 − 2t)−1/2e

tμ2

1−2t

(b) E

[
exp

{
t

n∑
i=1

X2
i

}]
=

n∏
i=1

E
[
etX2

i

]

= (1 − 2t)−n/2 exp

{
t

1 − 2t

n∑
i=1

μ2
i

}

(c)
d

dt
(1 − 2t)−n/2 = n(1 − 2t)−n/2−1

d2

dt2
(1 − 2t)−n/2 = 2n(n/2 + 1)(1 − 2t)−n/2−2
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Hence, if χ2
n is chi-squared with n degrees of freedom, then evaluating

the preceding at t = 0 gives

E
[
χ2

n

]
= n, Var

(
χ2

n

)
= n2 + 2n − n2 = 2n

(d) Conditioning on K yields

E
[
etW

]
=

∞∑
k=0

E
[
etW |K = k

]
e−θ/2(θ/2)k /k!

=
∞∑

k=0

(1 − 2t)−(n+2k)/2e−θ/2(θ/2)k /k!

= (1 − 2t)−n/2e−θ/2
∞∑

k=0

(1 − 2t)−k(θ/2)k/k!

= (1 − 2t)−n/2e−θ/2
∞∑

k=0

(
θ

2(1 − 2t)

)k
/

k!

= (1 − 2t)−n/2 exp

{
−θ

2
+ θ

2(1 − 2t)

}

= (1 − 2t)−n/2 exp

{
tθ

1 − 2t

}

Because the preceding is the moment generating function of a noncentral
chi-squared random variable with parameters n and θ , and the moment
generating function uniquely determines the distribution, the result is
proven.

(e) From the preceding, we have

E[W |K = k] = E[χ2
n+2k] = n + 2k

Var(W |K = k) = Var(χ2
n+2k) = 2n + 4k

Hence,

E[W ] = E[E[W |K]] = E[n + 2K] = n + 2E[K] = n + θ

and the conditional variance formula yields

Var(W) = E[2n + 4K] + Var(n + 2K) = 2n + 2θ + 2θ = 2n + 4θ

45. With I = I {Y ∈ A}

E[XI ]=E[XI |I =1]P(I =1)+E[XI |I =0]P(I =0)=E[X|I =1]P(I =1)
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49. E[X2Y 2|X] = X2E[Y 2|X]
≥ X2(E[Y |X])2 = X2

The inequality follows since for any random variable U,E[U2] ≥ (E[U ])2 and
this remains true when conditioning on some other random variable X. Taking
expectations of the preceding shows that

E[(XY)2] ≥ E[X2]
As

E[XY ] = E[E[XY |X]] = E[XE[Y |X]] = E[X]
the results follow.

55. P {X = n} =
∫ ∞

0
P {X = n|λ}e−λdλ

=
∫ ∞

0

e−λλn

n! e−λdλ

=
∫ ∞

0
e−2λλn dλ

n!
=

∫ ∞

0
e−t tn

dt

n!
(

1

2

)n+1

The results follow since
∫ ∞

0 e−t tndt = �(n + 1) = n!
60. (a) r/λ;

(b) E[Var(N |Y)] + Var(E[N |Y ]) = E[Y ] + Var(Y ) = r
λ

+ r
λ2

(c) With p = λ
λ+1

P(N = n) =
∫

P(N = n|Y = y)fY (y) dy

=
∫

e−y yn

n!
λe−λy(λy)r−1

(r − 1)! dy

= λr

n!(r − 1)!
∫

e−(λ+1)yyn+r−1 dy

= λr

n!(r − 1)!(λ + 1)n+r

∫
e−xxn+r−1 dx

= λr(n + r − 1)!
n!(r − 1)!(λ + 1)n+r

=
(

n + r − 1
r − 1

)
pr(1 − p)n

(d) The total number of failures before the rth success when each trial is in-
dependently a success with probability p is distributed as X− r where X,
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equal to the number of trials until the rth success, is negative binomial.
Hence,

P(X − r = n) = P(X = n + r) =
(

n + r − 1
r − 1

)
pr(1 − p)n

62. (a) Intuitive that f (p) is increasing in p, since the larger p is the greater is
the advantage of going first.

(b) 1.
(c) 1

2 since the advantage of going first becomes nil.
(d) Condition on the outcome of the first flip:

f (p) = P {I wins |h}p + P {I wins | t}(1 − p)

= p + [1 − f (p)](1 − p)

Therefore,

f (p) = 1

2 − p

69. Part (a) is proven by noting that a run of j successive heads can occur within
the first n flips in two mutually exclusive ways. Either there is a run of j suc-
cessive heads within the first n − 1 flips; or there is no run of j successive
heads within the first n− j −1 flips, flip n− j is not a head, and flips n− j +1
through n are all heads.
Let A be the event that a run of j successive heads occurs within the first n,
(n ≥ j), flips. Conditioning on X, the trial number of the first non-head, gives
the following

Pj (n) =
∑

k

P (A|X = k)pk−1(1 − p)

=
j∑

k=1

P(A|X = k)pk−1(1 − p) +
∞∑

k=j+1

P(A|X = k)pk−1(1 − p)

=
j∑

i=1

Pj (n − k)pk−1(1 − p) +
∞∑

k=j+1

pk−1(1 − p)

=
j∑

i=1

Pj (n − k)pk−1(1 − p) + pj

76. Condition on the value of the sum prior to going over 100. In all cases, the
most likely value is 101. (For instance, if this sum is 98, then the final sum is
equally likely to be either 101, 102, 103, or 104. If the sum prior to going over
is 95, then the final sum is 101 with certainty.)
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87. Suppose in Example 3.36 that a point is only won if the winner of the rally was
the server of that rally.
(a) If A is currently serving, what is the probability that A wins the next

point?
(b) Explain how to obtain the final score probabilities.

96. (a) By symmetry, for any value of (T1, . . . ,Tm), the random vector
(I1, . . . , Im) is equally likely to be any of the m! permutations.

(b) E[N ] =
m∑

i=1

E[N |X = i]P {X = i}

= 1

m

m∑
i=1

E[N |X = i]

= 1

m

(
m−1∑
i=1

(E[Ti] + E[N ]) + E[Tm−1]
)

where the final equality used the independence of X and Ti . Therefore,

E[N ] = E[Tm−1] +
m−1∑
i=1

E[Ti]

(c) E[Ti] =
i∑

j=1

m

m + 1 − j

(d) E[N ] =
m−1∑
j=1

m

m + 1 − j
+

m−1∑
i=1

i∑
j=1

m

m + 1 − j

=
m−1∑
j=1

m

m + 1 − j
+

m−1∑
j=1

m−1∑
i=j

m

m + 1 − j

=
m−1∑
j=1

m

m + 1 − j
+

m−1∑
j=1

m(m − j)

m + 1 − j

=
m−1∑
j=1

(
m

m + 1 − j
+ m(m − j)

m + 1 − j

)

= m(m − 1)

100. Let X be geometric with parameter p. To compute Var (X), we will use the
conditional variance formula, conditioning on the outcome of the first trial. Let
I equal 1 if the first trial is a success, and let it equal 0 otherwise. If I = 1, then
X = 1; since the variance of a constant is 0, this gives

Var(X|I = 1) = 0
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On the other hand, if I = 0 then the conditional distribution of X given that
I = 0 is the same as the unconditional distribution of 1 (the first trial) plus
a geometric with parameter p (the number of additional trials needed for a
success). Therefore,

Var(X|I = 0) = Var(X)

yielding

E[Var(X|I )] = Var(X|I = 1)P (I = 1) + Var(X|I = 0)P (I = 0)

= (1 − p)Var(X)

Similarly,

E[X|I = 1] = 1, E[X|I = 0] = 1 + E[X] = 1 + 1

p

which can be written as

E[X|I ] = 1 + 1

p
(1 − I )

yielding

Var(E[X|I ]) = 1

p2
Var(I ) = 1

p2
p(1 − p) = 1 − p

p

The conditional variance formula now gives

Var(X) = E[Var(X|I )] + Var(E[X|I ])
= (1 − p)Var(X) + 1 − p

p

or

Var(X) = 1 − p

p2

Chapter 4
1. P01 = 1,P10 = 1

9 , P21 = 4
9 , P32 = 1

P11 = 4
9 , P22 = 4

9

P12 = 4
9 , P23 = 1

9

9. P 10
0,3 = 0.5078.
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16. If Pij were (strictly) positive, then P n
ji would be 0 for all n (otherwise, i and j

would communicate). But then the process, starting in i, has a positive proba-
bility of at least Pij of never returning to i. This contradicts the recurrence of i.
Hence Pij = 0.

21. The transition probabilities are

Pi,j =
{

1 − 3α, if j = i

α, if j 	= i

By symmetry,

P n
ij = 1

3
(1 − P n

ii), j 	= i

So, let us prove by induction that

P n
i,j =

{
1
4 + 3

4 (1 − 4α)n if j = i

1
4 − 1

4 (1 − 4α)n if j 	= i

As the preceding is true for n = 1, assume it for n. To complete the induction
proof, we need to show that

P n+1
i,j =

{
1
4 + 3

4 (1 − 4α)n+1 if j = i

1
4 − 1

4 (1 − 4α)n+1 if j 	= i

Now,

P n+1
i,i = P n

i,iPi,i +
∑
j 	=i

P n
i,jPj,i

=
(

1

4
+ 3

4
(1 − 4α)n

)
(1 − 3α) + 3

(
1

4
− 1

4
(1 − 4α)n

)
α

= 1

4
+ 3

4
(1 − 4α)n(1 − 3α − α)

= 1

4
+ 3

4
(1 − 4α)n+1

By symmetry, for j 	= i

P n+1
ij = 1

3
(1 − P n+1

ii ) = 1

4
− 1

4
(1 − 4α)n+1

and the induction is complete.
By letting n → ∞ in the preceding, or by using that the transition probability
matrix is doubly stochastic, or by just using a symmetry argument, we obtain
that πi = 1/4, i = 1,2,3,4.
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27. (a) It is a Markov chain because each individual’s state the next period de-
pends only on its current state and not on any information about earlier
times.

(b) If i of the N individuals are currently active, then the number of actives
in the next period is the sum of two independent random variables; Ri ,
the number of the i currently active who remain active in the next period;
and Bi , the number of the N − i inactives who become active in the next
period. Because Ri is binomial (i, α), and Bi is binomial (N − i,1 − β),
we see that

E[Xn|Xn−1 = i] = iα + (N − i)(1 − β) = N(1 − β) + (α + β − 1)i

Hence,

E[Xn|Xn−1] = N(1 − β) + (α + β − 1)Xn−1

giving that

E[Xn] = N(1 − β) + (α + β − 1)E[Xn−1]
Letting a = N(1 − β), b = α + β − 1, the preceding gives

E[Xn] = a + bE[Xn−1]
= a + b(a + bE[Xn−2]) = a + ba + b2E[Xn−2]
= a + ba + b2a + b3E[Xn−3]

Continuing this, we arrive at

E[Xn] = a
(

1 + b + · · · + bn−1
)

+ bnE [X0]

Thus,

E[Xn|X0 = i] = a
(

1 + b + · · · + bn−1
)

+ bni

Note that

lim
n→∞E[Xn] = a

1 − b
= N

1 − β

2 − α − β

(c) With Ri,Bi as previously defined

Pi,j = P(Ri + Bi = j)

=
∑

k

P (Ri + Bi = j |Ri = k)

(
i

k

)
αi(1 − α)i−k

=
∑

k

(
N − i

j − k

)
(1 − β)j−kβN−i−j+k

(
i

k

)
αi(1 − α)i−k
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where
(
m
r

) = 0 if r < 0 or r > m.

(d) Suppose N = 1. Then, with 1 standing for active and 0 for inactive, the
limiting probabilities are such that

π0 = π0β + π1 (1 − α)

π1 = π0 (1 − β) + π1α

π0 + π1 = 1

Solving yields

π1 = 1 − β

2 − α − β
, π0 = 1 − α

2 − α − β

Now consider the case of population size N . Because each member will,
in steady state, be active with probability π1 and because each of the mem-
bers changes states independently of each other it follows that the steady
state number of actives has a binomial (N,π1) distribution. Hence, the
long-run proportion of time that exactly j people are active is

πj (N) =
(

N

j

)(
1 − β

2 − α − β

)j ( 1 − α

2 − α − β

)N−j

Note that the steady state expected number of actives is N 1−α
2−α−β

, in accord
with what we saw in part (b).

32. With the state being the number of on switches this is a three-state Markov chain.
The equations for the long-run proportions are

π0 = 9

16
π0 + 1

4
π1 + 1

16
π2,

π1 = 3

8
π0 + 1

2
π1 + 3

8
π2,

π0 + π1 + π2 = 1

This gives the solution

π0 = 2

7
, π1 = 3

7
, π2 = 2

7

41. ej =
j−1∑
i=0

P(enters j directly from i) =
j−1∑
i=0

eiPi,j

e1 = 1/3

e2 = 1/3 + 1/3(1/3) = 4/9

e3 = 1/3 + 1/3(1/3) + 4/9(1/3) = 16/27

e4 = 1/3(1/3) + 4/9(1/3) + 16/27(1/3) = 37/81

e5 = 4/9(1/3) + 16/27(1/3) + 37/81(1/3) = 158/243
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47. {Yn,n ≥ 1} is a Markov chain with states (i, j).

P(i,j),(k,l) =
{

0, if j 	= k

Pjl, if j = k

where Pjl is the transition probability for {Xn}.
lim

n→∞P {Yn = (i, j)} = lim
n

P {Xn = i,Xn+1 = j}
= lim

n
[P {Xn = i}Pij ]

= πiPij

62. It is easy to verify that the stationary probabilities are πi = 1
n+1 . Hence, the

mean time to return to the initial position is n + 1.

69. (a)
∑

i

πiQij =
∑

i

πjPji = πj

∑
i

Pji = πj

(b) Whether perusing the sequence of states in the forward direction of time
or in the reverse direction, the proportion of time the state is i will be the
same.

Chapter 5
6. Using that 1−F(s) = e− ∫ s

0 λ(t) dt , it follows that − log(1−F(X)) = ∫ X

0 λ(t) dt .
Because F(y) is an increasing function of y,

P(F(X) < x) = P(X < F−1(x)) = F(F−1(x)) = x.

Hence, F(X) is uniformly distributed on (0,1), implying that 1−F(X) is also.
Therefore,

P(− log(1 − F(X)) > x) = P(log(1 − F(X)) < −x)

= P(1 − F(X) < e−x)

= e−x

Hence, − log(1 − F(X)) is exponential with rate 1, which proves the result
since − log(1 − F(X)) = ∫ X

0 λ(t) dt .

7. P {X1 < X2|min(X1,X2) = t}

= P {X1 < X2,min(X1,X2) = t}
P {min(X1,X2) = t}

= P {X1 = t,X2 > t}
P {X1 = t,X2 > t} + P {X2 = t,X1 > t}

= f1(t)[1 − F2(t)]
f1(t)[1 − F2(t)] + f2(t)[1 − F1(t)]
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Dividing through by [1−F1(t)][1−F2(t)] yields the result. (Of course, fi and
Fi are the density and distribution function of Xi, i = 1,2.) To make the pre-
ceding derivation rigorous, we should replace “= t” by ∈ (t, t + ε) throughout
and then let ε → 0.

10. (a) Cov(X,min(X,Y )) = E[X min(X,Y )] − 1
λ(λ+μ)

. Now,

E[X min(X,Y )] = E[X min(X,Y )|X < Y ] λ

λ + μ

+ E[X min(X,Y )|Y < X] μ

λ + μ

= E[X2|X < Y ] λ

λ + μ
+ E[XY |Y < X] μ

λ + μ

Because the distribution of X given that X < Y is exponential with rate
λ + μ, it follows that

E[X2|X < Y ] = 2

(λ + μ)2
.

Also, the conditional distribution of (X,Y ) given that Y < X is the un-
conditional distribution of (M + X,M), where M is independent of X

and is exponential with rate λ + μ. Consequently,

E[XY |Y < X] = E[(M + X)M] = 2

(λ + μ)2
+ 1

λ(λ + μ)
.

Hence,

E[X min(X,Y )] = 2λ

(λ + μ)3
+ 2μ

(λ + μ)3
+ μ

λ(λ + μ)2

= 2

(λ + μ)2 + μ

λ(λ + μ)2

giving that

Cov(X,min(X,Y )) = 1

(λ + μ)2

(b) Using that min(X,Y ) + max(X,Y ) = X + Y , we have

Cov(X,X + Y) = Cov(X,min(X,Y ) + max(X,Y ))

= Cov(X,min(X,Y )) + Cov(X,max(X,Y ))

Using (a), this gives that

Cov(X,max(X,Y )) = 1

λ2 − 1

(λ + μ)2
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(c) Let M0 = min(X,Y ), M1 = max(X,Y ). Because M1 − M0 is inde-
pendent of M0 (and has distribution P(M1 − M0 > x) = e−μx λ

λ+μ
+

e−λx μ
λ+μ

,) it follows that

Cov(M0,M1) = Cov(M0,M0) + Cov(M0,M1 − M0)

= Var(M0) = 1

(λ + μ)2

18. (a) 1/(2μ).
(b) 1/(4μ2), since the variance of an exponential is its mean squared.

(c), (d) By the lack of memory property of the exponential it follows that A, the
amount by which X(2) exceeds X(1), is exponentially distributed with rate
μ and is independent of X(1). Therefore,

E[X(2)] = E[X(1) + A] = 1

2μ
+ 1

μ

Var(X(2)) = Var(X(1) + A) = 1

4μ2 + 1

μ2 = 5

4μ2

23. (a) 1
2 .

(b) ( 1
2 )n−1. Whenever battery 1 is in use and a failure occurs the probability

is 1
2 that it is not battery 1 that has failed.

(c) ( 1
2 )n−i+1, i > 1.

(d) T is the sum of n − 1 independent exponentials with rate 2μ (since each
time a failure occurs the time until the next failure is exponential with
rate 2μ).

(e) Gamma with parameters n − 1 and 2μ.

36. E[S(t)|N(t) = n] = sE

⎡
⎣N(t)∏

i=1

Xi |N(t) = n

⎤
⎦

= sE

[
n∏

i=1

Xi |N(t) = n

]

= sE

[
n∏

i=1

Xi

]

= s(E[X])n
= s(1/μ)n

Thus,

E[S(t)] = s
∑
n

(1/μ)ne−λt (λt)n/n!

= se−λt
∑
n

(λt/μ)n/n!
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= se−λt+λt/μ

By the same reasoning,

E[S2(t)|N(t) = n] = s2(E[X2])n = s2(2/μ2)n

and

E[S2(t)] = s2e−λt+2λt/μ2

40. The easiest way is to use Definition 5.3. It is easy to see that {N(t), t ≥ 0}
will also possess stationary and independent increments. Since the sum of two
independent Poisson random variables is also Poisson, it follows that N(t) is a
Poisson random variable with mean (λ1 + λ2)t .

57. (a) e−2.
(b) 2 P.M.

(c) 1 − 5e−4.

60. (a) 1
9 .

(b) 5
9 .

64. (a) Since, given N(t), each arrival is uniformly distributed on (0, t) it follows
that

E[X|N(t)] = N(t)

∫ t

0
(t − s)

ds

t
= N(t)

t

2

(b) Let U1,U2, . . . be independent uniform (0, t) random variables. Then

Var(X|N(t) = n) = Var

[
n∑

i=1

(t − Ui)

]

= n Var(Ui) = n
t2

12

(c) By parts (a) and (b) and the conditional variance formula,

Var(X) = Var

(
N(t)t

2

)
+ E

[
N(t)t2

12

]

= λtt2

4
+ λtt2

12
= λt3

3

79. It is a nonhomogeneous Poisson process with intensity function p(t)λ(t),
t > 0.

84. There is a record whose value is between t and t +dt if the first X larger than t

lies between t and t + dt . From this we see that, independent of all record val-
ues less than t , there will be one between t and t + dt with probability λ(t) dt
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where λ(t) is the failure rate function given by

λ(t) = f (t)

1 − F(t)

Since the counting process of record values has, by the preceding, independent
increments we can conclude (since there cannot be multiple record values be-
cause the Xi are continuous) that it is a nonhomogeneous Poisson process with
intensity function λ(t). When f is the exponential density, λ(t) = λ and so the
counting process of record values becomes an ordinary Poisson process with
rate λ.

91. To begin, note that

P

{
X1 >

n∑
2

Xi

}
= P {X1 >X2}P {X1 − X2 >X3|X1 >X2}

× P {X1 − X2 − X3 >X4|X1 >X2 + X3} · · ·
× P {X1 − X2 · · · − Xn−1 >Xn|X1 >X2 + · · · + Xn−1}

=
(

1

2

)n−1

by lack of memory

Hence,

P

{
M >

n∑
i=1

Xi − M

}
=

n∑
i=1

P

{
Xi >

∑
j 	=i

Xj

}
= n

2n−1

Chapter 6
2. Let NA(t) be the number of organisms in state A and let NB(t) be the number of

organisms in state B. Then {NA(t),NB(t)} is a continuous Markov chain with

ν{n,m} = αn + βm

P{n,m},{n−1,m+1} = αn

αn + βm

P{n,m},{n+2,m−1} = βm

αn + βm

4. Let N(t) denote the number of customers in the station at time t . Then {N(t)}
is a birth and death process with

λn = λαn, μn = μ

7. (a) Yes!
(b) For n = (n1, . . . , ni, ni+1, . . . , nk−1) let

Si(n) = (n1, . . . , ni − 1, ni+1 + 1, . . . , nk−1), i = 1, . . . , k − 2
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Sk−1(n) = (n1, . . . , ni, ni+1, . . . , nk−1 − 1),

S0(n) = (n1 + 1, . . . , ni, ni+1, . . . , nk−1).

Then

qn,Si (n) = niμ, i = 1, . . . , k − 1

qn,S0(n) = λ

11. (b) Follows from the hint about using the lack of memory property and the
fact that εi , the minimum of j − (i − 1) independent exponentials with
rate λ, is exponential with rate (j − i + 1)λ.

(c) From parts (a) and (b)

P {T1 + · · · + Tj ≤ t} = P
{

max
1≤i≤j

Xi ≤ t
}

= (1 − e−λt )j

(d) With all probabilities conditional on X(0) = 1,

P1j (t) = P {X(t) = j}
= P {X(t) ≥ j} − P {X(t) ≥ j + 1}
= P {T1 + · · · + Tj ≤ t} − P {T1 + · · · + Tj+1 ≤ t}

(e) The sum of i independent geometrics, each having parameter p = e−λt , is
a negative binomial with parameters i,p. The result follows since starting
with an initial population of i is equivalent to having i independent Yule
processes, each starting with a single individual.

16. Let the state be

2: an acceptable molecule is attached
0: no molecule attached
1: an unacceptable molecule is attached.

Then, this is a birth and death process with balance equations

μ1P1 = λ(1 − α)P0

μ2P2 = λαP0

Since
∑2

0 Pi = 1, we get

P2 =
[

1 + μ2

λα
+ 1 − α

α

μ2

μ1

]−1

= λαμ1

λαμ1 + μ1μ2 + λ(1 − α)μ2

where P2 is the percentage of time the site is occupied by an acceptable mole-
cule. The percentage of time the site is occupied by an unacceptable molecule is

P1 = 1 − α

α

μ2

μ1
P1 = λ(1 − α)μ2

λαμ1 + μ1μ2 + λ(1 − α)μ2
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19. There are four states. Let state 0 mean that no machines are down, state 1 that
machine 1 is down and 2 is up, state 2 that machine 1 is up and 2 is down, and
state 3 that both machines are down. The balance equations are as follows:

(λ1 + λ2)P0 = μ1P1 + μ2P2

(μ1 + λ2)P1 = λ1P0

(λ1 + μ2)P2 = λ2P0 + μ1P3

μ1P3 = λ2P1 + λ1P2

P0 + P1 + P2 + P3 = 1

The equations are easily solved and the proportion of time machine 2 is down is
P2 + P3.

24. We will let the state be the number of taxis waiting. Then, we get a birth and
death process with λn = 1,μn = 2. This is an M/M/1. Therefore:

(a) Average number of taxis waiting = 1

μ − λ
= 1

2 − 1
= 1.

(b) The proportion of arriving customers that gets taxis is the proportion of
arriving customers that find at least one taxi waiting. The rate of arrival of
such customers is 2(1 − P0). The proportion of such arrivals is therefore

2(1 − P0)

2
= 1 − P0 = 1 −

(
1 − λ

μ

)
= λ

μ
= 1

2

28. Let P x
ij , v

x
i denote the parameters of the X(t) and P

y
ij , v

y
i of the Y(t) process;

and let the limiting probabilities be P x
i ,P

y
i , respectively. By independence, we

have that for the Markov chain {X(t), Y (t)} its parameters are

v(i,l) = vx
i + v

y
l ,

P(i,l)(j,l) = vx
i

vx
i + v

y
l

P x
ij ,

P(i,l)(i,k) = v
y
l

vx
i + v

y
l

P
y
lk,

and

lim
t→∞P {(X(t), Y (t)) = (i, j)} = P x

i P
y
j

Hence, we need to show that

P x
i P

y
l vx

i P x
ij = P x

j P
y
l vx

j P x
ji

(That is, the rate from (i, l) to (j, l) equals the rate from (j, l) to (i, l).) But this
follows from the fact that the rate from i to j in X(t) equals the rate from j to i;
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that is,

P x
i vx

i P x
ij = P x

j vx
j P x

ji

The analysis is similar in looking at pairs (i, l) and (i, k).

33. Suppose first that the waiting room is of infinite size. Let Xi(t) denote the num-
ber of customers at server i, i = 1,2. Then since each of the M/M/1 processes
{X1(t)} is time reversible, it follows from Exercise 28 that the vector process
{(X1(t), (X(t)), t ≥ 0} is a time reversible Markov chain. Now the process of
interest is just the truncation of this vector process to the set of states A where

A = {(0,m): m ≤ 4} ∪ {(n,0): n ≤ 4} ∪ {(n,m): nm > 0, n + m ≤ 5}

Hence, the probability that there are n with server 1 and m with server 2 is

Pn,m = k

(
λ1

μ1

)n (
1 − λ1

μ1

)(
λ2

μ2

)m (
1 − λ2

μ2

)

= C

(
λ1

μ1

)n (
λ2

μ2

)m

, (n,m) ∈ A

The constant C is determined from∑
Pn,m = 1

where the sum is over all (n,m) in A.

40. The time reversible equations are

P(i)
vi

n − 1
= P(j)

vj

n − 1

yielding the solution

P(j) = 1/vj∑n
i=1 1/vi

Hence, the chain is time reversible with long run proportions given by the pre-
ceding.

41. Show in Example 6.22 that the limiting probabilities satisfy Eqs. (6.33), (6.34),
and (6.35).

49. (a) The matrix P∗ can be written as

P∗ = I + R/v

and so P ∗n
ij can be obtained by taking the i, j element of (I+R/v)n, which

gives the result when v = n/t .
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(b) Uniformization shows that Pij (t) = E[P ∗N
ij ], where N is independent of

the Markov chain with transition probabilities P ∗
ij and is Poisson distrib-

uted with mean vt . Since a Poisson random variable with mean vt has
standard deviation (vt)1/2, it follows that for large values of vt it should
be near vt . (For instance, a Poisson random variable with mean 106 has
standard deviation 103 and thus will, with high probability, be within 3000
of 106.) Hence, since for fixed i and j,P ∗m

ij should not vary much for
values of m about vt where vt is large, it follows that, for large vt ,

E[P ∗N
ij ] ≈ P ∗n

ij where n = vt

Chapter 7
8. (a) The number of replaced machines by time t constitutes a renewal process.

The time between replacements equals T , if the lifetime of new machine
is ≥ T ;x, if the lifetime of new machine is x, x < T . Hence,

E[time between replacements] =
∫ T

0
xf (x) dx + T [1 − F(T )]

and the result follows by Proposition 7.1.
(b) The number of machines that have failed in use by time t constitutes

a renewal process. The mean time between in-use failures, E[F ], can
be calculated by conditioning on the lifetime of the initial machine as
E[F ] = E[E[F | lifetime of initial machine]]. Now

E[F | lifetime of machine is x] =
{
x, if x ≤ T

T + E[F ], if x > T

Hence,

E[F ] =
∫ T

0
xf (x)dx + (T + E[F ])[1 − F(T )]

or

E[F ] =
∫ T

0 xf (x)dx + T [1 − F(T )]
F(T )

and the result follows from Proposition 7.1.

18. We can imagine that a renewal corresponds to a machine failure, and each time
a new machine is put in use its life distribution will be exponential with rate μ1
with probability p, and exponential with rate μ2 otherwise. Hence, if our state
is the index of the exponential life distribution of the machine presently in use,
then this is a two-state continuous-time Markov chain with intensity rates

q1,2 = μ1(1 − p), q2,1 = μ2p
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Hence,

P11(t) = μ1(1 − p)

μ1(1 − p) + μ2p
exp{−[μ1(1 − p) + μ2p]t}

+ μ2p

μ1(1 − p) + μ2p

with similar expressions for the other transition probabilities (P12(t) = 1 −
P11(t), and P22(t) is the same with μ2p and μ1(1 − p) switching places). Con-
ditioning on the initial machine now gives

E[Y(t)] = pE[Y(t)|X(0) = 1] + (1 − p)E[Y(t)|X(0) = 2]
= p

[
P11(t)

μ1
+ P12(t)

μ2

]
+ (1 − p)

[
P21(t)

μ1
+ P22(t)

μ2

]

Finally, we can obtain m(t) from

μ[m(t) + 1] = t + E[Y(t)]
where

μ = p/μ1 + (1 − p)/μ2

is the mean interarrival time.

22. (a) Let X denote the length of time that J keeps a car. Let I equal 1 if there is
a breakdown by time T and equal 0 otherwise. Then

E[X] = E[X|I = 1](1 − e−λT ) + E[X|I = 0]e−λT

=
(

T + 1

μ

)
(1 − e−λT ) +

(
T + 1

λ

)
e−λT

= T + 1 − e−λT

μ
+ e−λT

λ

1/E[X] is the rate that J buys a new car.
(b) Let W equal to the total cost involved with purchasing a car. Then, with Y

equal to the time of the first breakdown

E[W ] =
∫ ∞

0
E[W |Y = y]λe−λydy

= C +
∫ T

0
r(1 + μ(T − y) + 1)λe−λydy +

∫ ∞

T

rλe−λy dy

= C + r(2 − e−λT ) + r

∫ T

0
μ(T − y)λe−λy dy

J’s long run average cost is E[W ]/E[X].
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30.
A(t)

t
= t − SN(t)

t

= 1 − SN(t)

t

= 1 − SN(t)

N(t)

N(t)

t

The result follows since SN(t)/N(t) → μ (by the strong law of large numbers)
and N(t)/t → 1/μ.

35. (a) We can view this as an M/G/∞ system where a satellite launching corre-
sponds to an arrival and F is the service distribution. Hence,

P {X(t) = k} = e−λ(t)[λ(t)]k/k!
where λ(t) = λ

∫ t

0 (1 − F(s)) ds.
(b) By viewing the system as an alternating renewal process that is on when

there is at least one satellite orbiting, we obtain

limP {X(t) = 0} = 1/λ

1/λ + E[T ]
where T , the on time in a cycle, is the quantity of interest. From part (a)

limP {X(t) = 0} = e−λμ

where μ = ∫ ∞
0 (1−F(s)) ds is the mean time that a satellite orbits. Hence,

e−λμ = 1/λ

1/λ + E[T ]
so

E[T ] = 1 − e−λμ

λe−λμ

46. (a) Fe(x) = 1

μ

∫ x

0
e−y/μ dy = 1 − e−x/μ.

(b) Fe(x) = 1

c

∫ x

0
dy = x

c
, 0 ≤ x ≤ c.

(c) You will receive a ticket if, starting when you park, an official appears
within one hour. From Example 7.27, the time until the official appears
has the distribution Fe which, by part (a), is the uniform distribution on
(0, 2). Thus, the probability is equal to 1

2 .

48. (a) Let Ni denote the number of passengers that get on bus i. If we interpret
Xi as the reward incurred at time i then we have a renewal reward pro-
cess whose ith cycle is of length Ni , and has reward XN1+···+Ni−1+1 +
· · · + XN1+···+Ni

. Hence, part (a) follows because N is the time and
X1 + · · · + XN is the cost of the first cycle.
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(b) Condition on N(t) and use that conditional on N(t) = n the n arrival times
are independently and uniformly distributed on (0, t). As S ≡ X1 + · · · +
XN is the number of these n passengers whose waiting time is less than x,
this gives

E[S|T = t,N(t) = n] =
{
nx/t, if x < t

n, if x > t

That is, E[S|T = t,N(t)] = N(t)min(x, t)/t . Taking expectations yields

E[S|T = t] = λmin(x, t)

(c) From (b), E[S|T ] = λmin(x, T ) and (c) follows upon taking expectations.
(d) This follows from parts (a) and (c) using that

E[min(x, T )] =
∫ ∞

0
P(min(x, T ) > t)dt =

∫ x

0
P(T > t)dt

along with the identity E[N ] = λE[T ].
(e) Because the waiting time for an arrival is the time until the next bus, the

preceding result yields the PASTA result that the proportion of arrivals
who see the excess life of the renewal process of bus arrivals to be less
than x is equal to the proportion of time it is less than x.

53. Think of each interarrival time as consisting of n independent phases—each of
which is exponentially distributed with rate λ—and consider the semi-Markov
process whose state at any time is the phase of the present interarrival time.
Hence, this semi-Markov process goes from state 1 to 2 to 3 . . . to n to 1, and
so on. Also the time spent in each state has the same distribution. Thus, clearly
the limiting probability of this semi-Markov chain is Pi = 1/n, i = 1, . . . , n. To
compute limP {Y(t) < x}, we condition on the phase at time t and note that if
it is n − i + 1, which will be the case with probability 1/n, then the time until
a renewal occurs will be sum of i exponential phases, which will thus have a
gamma distribution with parameters i and λ.

Chapter 8
2. This problem can be modeled by an M/M/1 queue in which λ = 6,μ = 8. The

average cost rate will be

$10 per hour per machine × average number of broken machines

The average number of broken machines is just L, which can be computed from
Eq. (3.2):

L = λ

μ − λ
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= 6

2
= 3

Hence, the average cost rate = $30/hour.

8. To compute W for the M/M/2, set up balance equations as follows:

λP0 = μP1 (each server has rate μ)

(λ + μ)P1 = λP0 + 2μP2

(λ + 2μ)Pn = λPn−1 + 2μPn+1, n ≥ 2

These have solutions Pn = (ρn/2n−1)P0 where ρ = λ/μ. The boundary condi-
tion

∑∞
n=0 Pn = 1 implies

P0 = 1 − ρ/2

1 + ρ/2
= (2 − ρ)

(2 + ρ)

Now we have Pn, so we can compute L, and hence W from L = λW :

L =
∞∑

n=0

nPn = ρP0

∞∑
n=0

n
(ρ

2

)n−1

= 2P0

∞∑
n=0

n
(ρ

2

)n

= 2
(2 − ρ)

(2 + ρ)

(ρ/2)

(1 − ρ/2)2 (See derivation of Eq. (8.7).)

= 4ρ

(2 + ρ)(2 − ρ)

= 4μλ

(2μ + λ)(2μ − λ)

From L = λW we have

W = W(M/M/2) = 4μ

(2μ + λ)(2μ − λ)

The M/M/1 queue with service rate 2μ has

W(M/M/1) = 1

2μ − λ

from Eq. (8.8). We assume that in the M/M/1 queue, 2μ > λ so that the
queue is stable. But then 4μ > 2μ + λ,or 4μ/(2μ + λ) > 1, which implies
W(M/M/2) > W(M/M/1). The intuitive explanation is that if one finds the
queue empty in the M/M/2 case, it would do no good to have two servers. One
would be better off with one faster server. Now let W 1

Q = WQ(M/M/1) and
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W 2
Q = WQ(M/M/2). Then,

W 1
Q = W(M/M/1) − 1/2μ

W 2
Q = W(M/M/2) − 1/μ

So,

W 1
Q = λ

2μ(2μ − λ)
from Eq. (8.8)

and

W 2
Q = λ2

μ(2μ − λ)(2μ + λ)

Then,

W 1
Q > W 2

Q ⇔ 1

2
>

λ

(2μ + λ)

λ < 2μ

Since we assume λ < 2μ for stability in the M/M/1 case, W 2
Q < W 1

Q whenever
this comparison is possible, that is, whenever λ < 2μ.

13. Let the state be (n,m) if there are n families and m taxis waiting, nm = 0. The
time reversibility equations are

Pn−1,0λ = Pn,0μ, n = 1, . . . ,N

P0,m−1μ = P0,mλ, m = 1, . . . ,M

Solving yields

Pn,0 = (λ/μ)nP0,0, n = 0,1, . . . ,N

P0,m = (μ/λ)mP0,0, m = 0,1, . . . ,M

where

1

P0,0
=

N∑
n=0

(λ/μ)n +
M∑

m=1

(μ/λ)m

(a)
∑M

m=0 P0,m

(b)
∑N

n=0 Pn,0

(c)
∑N

n=0 nPn,0
λ(1−PN,0)

(d)
∑M

m=0 mP0,m

μ(1−P0,M )



Solutions to Starred Exercises 831

(e) 1 − PN,0
When N = M = ∞ the time reversibility equations become

Pn−1,0λ = Pn,0(μ + nα), n ≥ 1

P0,m−1μ = P0,m(λ + mβ), m ≥ 1

which yields

Pn,0 = P0,0

n∏
i=1

λ

μ + iα
, n ≥ 1

P0,m = P0,0

m∏
i=1

μ

λ + iβ
, m ≥ 1

The rest is similar to the preceding.

25. (a) λ1P10.
(b) λ2(P0 + P10).
(c) λ1P10/[λ1P10 + λ2(P0 + P10)].
(d) This is equal to the fraction of server 2’s customers that are type 1 mul-

tiplied by the proportion of time server 2 is busy. (This is true since the
amount of time server 2 spends with a customer does not depend on which
type of customer it is.) By (c), the answer is thus

(P01 + P11)λ1P10

λ1P10 + λ2(P0 + P10)

28. The states are now n,n ≥ 0, and n′, n ≥ 1 where the state is n when there are n

in the system and no breakdown, and n′ when there are n in the system and a
breakdown is in progress. The balance equations are

λP0 = μP1

(λ + μ + α)Pn = λPn−1 + μPn+1 + βPn′ , n ≥ 1

(β + λ)P1′ = αP1

(β + λ)Pn′ = αPn + λP(n−1)′ , n ≥ 2
∞∑

n=0

Pn +
∞∑

n=1

Pn′ = 1

In terms of the solution to the preceding,

L =
∞∑

n=1

n(Pn + Pn′)

and so

W = L

λa

= L

λ
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32. If a customer leaves the system busy, the time until the next departure is the
time of a service. If a customer leaves the system empty, the time until the next
departure is the time until an arrival plus the time of a service.
Using moment generating functions we get

E
{
esD

} = λ

μ
E{esD|system left busy}

+
(

1 − λ

μ

)
E{esD|system left empty}

=
(

λ

μ

)(
μ

μ − s

)
+

(
1 − λ

μ

)
E{es(X+Y)}

where X has the distribution of interarrival times, Y has the distribution of ser-
vice times, and X and Y are independent. Then

E
[
es(X+Y)

] = E
[
esXesY

]
= E

[
esX

]
E
[
esY

]
by independence

=
(

λ

λ − s

)(
μ

μ − s

)

So,

E
{
esD

} =
(

λ

μ

)(
μ

μ − s

)
+

(
1 − λ

μ

)(
λ

λ − s

)(
μ

μ − s

)

= λ

(λ − s)

By the uniqueness of generating functions, it follows that D has an exponential
distribution with parameter λ.

40. The distributions of the queue size and busy period are the same for all three dis-
ciplines; that of the waiting time is different. However, the means are identical.
This can be seen by using W = L/λ, since L is the same for all. The smallest
variance in the waiting time occurs under first-come, first-served and the largest
under last-come, first-served.

43. (a) a0 = P0 due to Poisson arrivals. Assuming that each customer pays 1 per
unit time while in service the cost identity of Eq. (8.1) states that

average number in service = λE[S]
or

1 − P0 = λE[S]
(b) Since a0 is the proportion of arrivals that have service distribution G1 and

1 − a0 the proportion having service distribution G2, the result follows.
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(c) We have

P0 = E[I ]
E[I ] + E[B]

and E[I ] = 1/λ and thus,

E[B] = 1 − P0

λP0

= E[S]
1 − λE[S]

Now from parts (a) and (b) we have

E[S] = (1 − λE[S])E[S1] + λE[S]E[S2]
or

E[S] = E[S1]
1 + λE[S1] + λE[S2]

Substituting into E[B] = E[S]/(1 − λE[S]) now yields the result.
(d) a0 = 1/E[C], implying that

E[C] = E[S1] + 1/λ − E[S2]
1/λ − E[S2]

49. By regarding any breakdowns that occur during a service as being part of that
service, we see that this is an M/G/1 model. We need to calculate the first two
moments of a service time. Now the time of a service is the time T until some-
thing happens (either a service completion or a breakdown) plus any additional
time A. Thus,

E[S] = E[T + A]
= E[T ] + E[A]

To compute E[A], we condition upon whether the happening is a service or a
breakdown. This gives

E[A] = E[A|service] μ

μ + α
+ E[A|breakdown] α

μ + α

= E[A|breakdown] α

μ + α

=
(

1

β
+ E[S]

)
α

μ + α

Since E[T ] = 1/(α + μ) we obtain

E[S] = 1

α + μ
+

(
1

β
+ E[S]

)
α

μ + α
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or

E[S] = 1

μ
+ α

μβ

We also need E[S2], which is obtained as follows:

E[S2] = E[(T + A)2]
= E[T 2] + 2E[AT ] + E[A2]
= E[T 2] + 2E[A]E[T ] + E[A2]

The independence of A and T follows because the time of the first happening is
independent of whether the happening was a service or a breakdown. Now,

E[A2] = E[A2|breakdown] α

μ + α

= α

μ + α
E[(downtime + S∗)2]

= α

μ + α

{
E[down2] + 2E[down]E[S] + E[S2]}

= α

μ + α

{
2

β2 + 2

β

[
1

μ
+ α

μβ

]
+ E[S2]

}

Hence,

E[S2] = 2

(μ + β)2
+ 2

[
α

β(μ + α)
+ α

μ + α

(
1

μ
+ α

μβ

)]

+ α

μ + α

{
2

β2
+ 2

β

[
1

μ
+ α

μβ

]
+ E[S2]

}

Now solve for E[S2]. The desired answer is

WQ = λE[S2]
2(1 − λE[S])

In the preceding, S∗ is the additional service needed after the breakdown is over
and S∗ has the same distribution as S. The preceding also uses the fact that the
expected square of an exponential is twice the square of its mean.
Another way of calculating the moments of S is to use the representation

S =
N∑

i=1

(Ti + Bi) + TN+1

where N is the number of breakdowns while a customer is in service, Ti is the
time starting when service commences for the ith time until a happening occurs,
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and Bi is the length of the ith breakdown. We now use the fact that, given N , all
of the random variables in the representation are independent exponentials with
the Ti having rate μ + α and the Bi having rate β. This yields

E[S|N ] = N + 1

μ + α
+ N

β
,

Var(S|N) = N + 1

(μ + α)2 + N

β2

Therefore, since 1 + N is geometric with mean (μ + α)/μ (and variance
α(α + μ)/μ2) we obtain

E[S] = 1

μ
+ α

μβ

and, using the conditional variance formula,

Var(S) =
[

1

μ + α
+ 1

β

]2
α(α + μ)

μ2
+ 1

μ(μ + α)
+ α

μβ2

56. Sn is the service time of the nth customer; Tn is the time between the arrival of
the nth and (n + 1)st customer.

Chapter 9
4. (a) φ(x) = x1 max(x2, x3, x4)x5.

(b) φ(x) = x1 max(x2x4, x3x5)x6.
(c) φ(x) = max(x1, x2x3)x4.

6. A minimal cut set has to contain at least one component of each minimal path
set. There are six minimal cut sets: {1,5}, {1,6}, {2,5}, {2,3,6}, {3,4,6}, {4,5}.

12. The minimal path sets are {1, 4}, {1, 5}, {2, 4}, {2, 5}, {3, 4}, {3, 5}. With
qi = 1 − pi , the reliability function is

r(p) = P {either of 1,2,or 3 works}P {either of 4 or 5 works}
= (1 − q1q2q3)(1 − q4q5)

17. E[N2] = E[N2|N > 0]P {N > 0}
≥ (E[N |N > 0])2P {N > 0}, since E[X2] ≥ (E[X])2

Thus,

E[N2]P {N > 0} ≥ (E[N |N > 0]P [N > 0])2

= (E[N ])2

Let N denote the number of minimal path sets having all of its components
functioning. Then r(p) = P {N > 0}. Similarly, if we define N as the number of
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minimal cut sets having all of its components failed, then 1− r(p) = P {N > 0}.
In both cases, we can compute expressions for E[N ] and E[N2] by writing N

as the sum of indicator (i.e., Bernoulli) random variables. Then we can use the
inequality to derive bounds on r(p).

22. (a) F̄t (a) = P {X > t + a|X > t}

= P [X > t + a}
P {X > t} = F̄ (t + a)

F̄ (t)

(b) Suppose λ(t) is increasing. Recall that

F̄ (t) = e− ∫ t
0 λ(s) ds

Hence,

F̄ (t + a)

F̄ (t)
= exp

{
−
∫ t+a

t

λ(s)ds

}

which decreases in t since λ(t) is increasing. To go the other way, suppose
F̄ (t + a)/F̄ (t) decreases in t . Now when a is small

F̄ (t + a)

F̄ (t)
≈ e−aλ(t)

Hence, e−aλ(t) must decrease in t and thus λ(t) increases.

25. For x ≥ ξ ,

1 − p = F̄ (ξ) = F̄ (x(ξ/x)) ≥ [F̄ (x)]ξ/x

since IFRA. Hence, F̄ (x) ≤ (1 − p)x/ξ = e−θx .
For x ≤ ξ ,

F̄ (x) = F̄ (ξ(x/ξ)) ≥ [F̄ (ξ)]x/ξ

since IFRA. Hence, F̄ (x) ≥ (1 − p)x/ξ = e−θx .

30. r(p) = p1p2p3 + p1p2p4 + p1p3p4 + p2p3p4 − 3p1p2p3p4

r(1 − F (t)) =

⎧⎪⎨
⎪⎩

2(1 − t)2(1 − t/2) + 2(1 − t)(1 − t/2)2

−3(1 − t)2(1 − t/2)2, 0 ≤ t ≤ 1

0, 1 ≤ t ≤ 2

E[lifetime] =
∫ 1

0

[
2(1 − t)2(1 − t/2) + 2(1 − t)(1 − t/2)2

−3(1 − t)2(1 − t/2)2
]
dt

= 31

60
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Chapter 10
1. B(s) + B(t) = 2B(s) + B(t) − B(s). Now 2B(s) is normal with mean 0 and

variance 4s and B(t) − B(s) is normal with mean 0 and variance t − s. Because
B(s) and B(t) − B(s) are independent, it follows that B(s) + B(t) is normal
with mean 0 and variance 4s + t − s = 3s + t .

3. E[B(t1)B(t2)B(t3)] = E[E[B(t1)B(t2)B(t3)|B(t1),B(t2)]]
= E[B(t1)B(t2)E[B(t3)|B(t1),B(t2)]]
= E[B(t1)B(t2)B(t2)]
= E[E[B(t1)B

2(t2)|B(t1)]]
= E[B(t1)E[B2(t2)|B(t1)]]
= E[B(t1){(t2 − t1) + B2(t1)}] (∗)

= E[B3(t1)] + (t2 − t1)E[B(t1)]
= 0

where the equality (∗) follows since given B(t1),B(t2) is normal with mean
B(t1) and variance t2 − t1. Also, E[B3(t)] = 0 since B(t) is normal with mean 0.

5. P {T1 < T−1 < T2} = P {hit 1 before −1 before 2}
= P {hit 1 before −1}

× P {hit −1 before 2|hit 1 before −1}
= 1

2P {down 2 before up 1}
= 1

2

1

3
= 1

6

The next to last equality follows by looking at the Brownian motion when it first
hits 1.

10. (a) Writing X(t) = X(s) + X(t) − X(s) and using independent increments,
we see that given X(s) = c,X(t) is distributed as c + X(t) − X(s). By
stationary increments this has the same distribution as c +X(t − s), and is
thus normal with mean c + μ(t − s) and variance (t − s)σ 2.

(b) Use the representation X(t) = σB(t)+μt , where {B(t)} is standard Brow-
nian motion. Using Eq. (10.4), but reversing s and t , we see that the
conditional distribution of B(t) given that B(s) = (c − μs)/σ is normal
with mean t (c − μs)/(σ s) and variance t (s − t)/s. Thus, the conditional
distribution of X(t) given that X(s) = c, s > t , is normal with mean

σ

[
t (c − μs)

σs

]
+ μt = (c − μs)t

s
+ μt

and variance

σ 2t (s − t)

s
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19. Since knowing the value of Y(t) is equivalent to knowing B(t), we have

E[Y(t)|Y(u),0 ≤ u ≤ s] = e−c2t/2E[ecB(t)|B(u),0 ≤ u ≤ s]
= e−c2t/2E[ecB(t)|B(s)]

Now, given B(s), the conditional distribution of B(t) is normal with mean B(s)

and variance t − s. Using the formula for the moment generating function of a
normal random variable we see that

e−c2t/2E[ecB(t)|B(s)] = e−c2t/2ecB(s)+(t−s)c2/2

= e−c2s/2ecB(s)

= Y(s)

Thus {Y(t)} is a Martingale.

E[Y(t)] = E[Y(0)] = 1

20. By the Martingale stopping theorem

E[B(T )] = E[B(0)] = 0

However, B(T ) = 2 − 4T and so 2 − 4E[T ] = 0, or E[T ] = 1
2 .

24. It follows from the Martingale stopping theorem and the result of Exercise 18
that

E[B2(T ) − T ] = 0

where T is the stopping time given in this problem and

B(t) = X(t) − μt

σ

Therefore,

E

[
(X(T ) − μT )2

σ 2
− T

]
= 0

However, X(T ) = x and so the preceding gives that

E[(x − μT )2] = σ 2E[T ]

But, from Exercise 21, E[T ] = x/μ and so the preceding is equivalent to

Var(μT ) = σ 2 x

μ
or Var(T ) = σ 2 x

μ3
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Chapter 11
1. (a) Let U be a random number. If

∑i−1
j=1 Pj < U ≤ ∑i

j=1 Pj then simulate

from Fi . (In the preceding
∑i−1

j=1 Pj ≡ 0 when i = 1.)
(b) Note that

F(x) = 1

3
F1(x) + 2

3
F2(x)

where

F1(x) = 1 − e2x, 0 < x < ∞
F2(x) =

{
x, 0 < x < 1
1, 1 < x

Hence, using part (a), let U1,U2,U3 be random numbers and set

X =
⎧⎨
⎩

− logU2

2
, if U1 < 1

3

U3, if U1 > 1
3

The preceding uses the fact that − logU2/2 is exponential with rate 2.

3. If a random sample of size n is chosen from a set of N + M items of which N

are acceptable, then X, the number of acceptable items in the sample, is such
that

P {X = k} =
(

N

k

) (
M

n − k

)/(
N + M

k

)

To simulate X, note that if

Ij =
{

1, if the j th selection is acceptable
0, otherwise

then

P {Ij = 1|I1, . . . , Ij−1} = N −∑j−1
1 Ii

N + M − (j − 1)

Hence, we can simulate I1, . . . , In by generating random numbers U1, . . . ,Un

and then setting

Ij =
⎧⎨
⎩1, if Uj <

N −∑j−1
1 Ii

N + M − (j − 1)
0, otherwise

and X = ∑n
j=1 Ij has the desired distribution.
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Another way is to let

Xj =
{

1, the j th acceptable item is in the sample
0, otherwise

and then simulate X1, . . . ,XN by generating random numbers U1, . . . ,UN and
then setting

Xj =
⎧⎨
⎩1, if Uj <

n −∑j−1
i=1 Xi

N + M − (j − 1)
0, otherwise

and X = ∑N
j=1 Xj then has the desired distribution.

The former method is preferable when n ≤ N and the latter when N ≤ n.

6. Let

c(λ) = max
x

{
f (x)

λe−λx

}
= 2

λ
√

2π
max

x

[
exp

{−x2

2
+ λx

}]

= 2

λ
√

2π
exp

{
λ2

2

}

Hence,

d

dλ
c(λ) = √

2/π exp

{
λ2

2

}[
1 − 1

λ2

]

Hence (d/dλ)c(λ) = 0 when λ = 1 and it is easy to check that this yields the
minimal value of c(λ).

16. (a) They can be simulated in the same sequential fashion in which they are
defined. That is, first generate the value of a random variable I1 such that

P {I1 = i} = wi∑n
j=1 wj

, i = 1, . . . , n

Then, if I1 = k, generate the value of I2 where

P {I2 = i} = wi∑
j 	=k wj

, i 	= k

and so on. However, the approach given in part (b) is more efficient.
(b) Let Ij denote the index of the j th smallest Xi .

23. Let m(t) = ∫ t

0 λ(s) ds, and let m−1(t) be the inverse function. That is,
m(m−1(t)) = t .

(a) P {m(X1) > x} = P {X1 > m−1(x)}
= P {N(m−1(x)) = 0}
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= e−m(m−1(x))

= e−x

(b) P {m(Xi) − m(Xi−1) > x|m(X1), . . . ,m(Xi−1) − m(Xi−2)}
= P {m(Xi) − m(Xi−1) > x|X1, . . . ,Xi−1}
= P {m(Xi) − m(Xi−1) > x|Xi−1}
= P {m(Xi) − m(Xi−1) > x|m(Xi−1)}

Now,

P {m(Xi) − m(Xi−1) > x|Xi−1 = y}

= P

{∫ Xi

y

λ(t)dt > x|Xi−1 = y

}

= P {Xi > c|Xi−1 = y} where
∫ c

y

λ(t) dt = x

= P {N(c) − N(y) = 0|Xi−1 = y}
= P {N(c) − N(y) = 0}
= exp

{
−
∫ c

y

λ(t) dt

}
= e−x

32. Var[(X + Y)/2] = 1
4 [Var(X) + Var(Y ) + 2Cov(X,Y )]

= Var(X) + Cov(X,Y )

2

Now it is always true that

Cov(V ,W)√
Var(V )Var(W)

≤ 1

and so when X and Y have the same distribution Cov(X,Y ) ≤ Var(X).
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A
Absorbing states, 203
Algorithmic efficiency, model for, 245
Aloha protocol, instability of the, 221
Alternating renewal process, 476
Ante one game, 796
Aperiodic chain, 767
Arbitrage, 661
Arbitrage theorem, 662
Arbitrary queueing system, 562
Arrival theorem, 559
Asset selling problem, 773
Autoregressive process, 682

B
Backward approach, 280
Balance equations, 403, 408, 525, 534, 540,

547, 549, 551, 586, 593–597, 822,
823, 829, 831

Bayes’ formula, 11, 13
Bernoulli probability mass function, 740
Bernoulli random variables, 57, 78, 86, 129,

349, 491, 714, 742, 758, 769, 776,
783

expectation of, 37
independent, 129, 742, 769

Best prize problem, 130
Beta density with parameters, 63
Beta distribution, 64, 709, 710
Binomial compounding distribution, 180
Binomial distribution with parameters, 65
Binomial probabilities, 128, 140, 217, 262
Binomial random variables, 28, 29, 31, 68,

104, 105, 159, 180, 181, 714
expectation of, 37
variance of, 57

Birth and death model, 383, 539
Birth and death processes, 385, 761, 762

forward equations for, 402
limiting probabilities for, 404

Birth and death queueing models, 539

Birthday problem, 91
Bivariate chain, 768, 769
Black–Scholes option pricing formula, 665
Bonus Malus automobile insurance system,

204, 239
Boolean formula, 251
Boolean variables, 251
Borel–Cantelli lemma, 82, 83

converse to, 85
Borel–Cantelli theorem, 82
Bose–Einstein statistics, 159
Box–Muller approach, 706
Boxes

eligible, 775
empty, 774
nonempty, 94, 774, 775

Bridge system, 607
Brownian bridge, 677, 678
Brownian motion, 653

Gaussian processes, 677
independent increment assumption, 655,

680
integrated, 678
interpretation of, 654, 657
maximum variable and gambler’s ruin

problem, 657
pricing stock options

arbitrage theorem, 662
Black–Scholes option pricing formula,

665
Brownian motion with drift, 658, 670
example in options pricing, 659

process, 654
geometric, 658, 666
standard, 654
with drift, 658, 666
with variance parameter, 656, 668

stationary processes, 679
stochastic process, 654
variations on

geometric, 658
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with drift, 658
weakly stationary processes, 681
white noise, 675

C
Car buying model, 460
Casino, 792
Central limit theorem, 78

for renewal processes, 457
heuristic proof of, 81

Chapman–Kolmogorov equations, 205, 398,
409

Chebyshev’s inequality, 77
Chen–Stein bound, 779

Poisson approximation, 776
Chi-squared density, 108
Chi-squared distribution, 709

definition of, 706
Chi-squared random variable, 74, 75, 101
Class mobility model, 227
Closed systems, network of queues, 556
Common distribution function, 142, 501
Communications system, 202
Compound Poisson process, 353

examples of, 353
Compound Poisson random variable, 125,

180, 353, 576
Compound random variable, 114, 177

identity for, 177
variance of, 124

Compounding distribution, 179–181
Computer software package, 344
Conditional density function, 108, 110, 359
Conditional distribution

function, 359
of arrival times, 334, 723

Conditional expectation, 103
probability, and, see Conditional

probability and expectation
Conditional Poisson process, 358
Conditional probability, 6

density function, 106
mass function, 103, 105, 281

Conditional probability and expectation
applications

Bose–Einstein statistics, 159
k-record values of discrete random

variables, 168

left skip free random walks, 171, 456
list model, 150
mean time for patterns, 163
Polya’s urn model, 159
random graph, 152, 154, 618

computing expectations by conditioning,
111

computing probabilities by conditioning,
126

continuous case, 39
discrete case, 103
identity for compound random variables,

177
binomial compounding distribution, 180
compounding distribution related to

negative binomial, 181
Poisson compounding distribution, 179

introduction, 103
variances, 122

Conditional variance
defined, 123
formula, 123–125, 172, 249, 250, 256,

257, 305, 356, 359, 391, 538, 576,
733, 754, 812, 813, 820, 835

Conditional/mixed Poisson processes, 358
Continuous case, 39, 106

random variables, 32
Continuous event function, 14
Continuous Markov chain, 821
Continuous random variables, 26, 32, 499,

697, 705, 759
exponential random variables, 35
gamma random variables, 35
general techniques for, 697

hazard rate method, 702
inverse transformation method, 697
rejection method, 698

increasing runs of, 499
normal random variables, 35

independent standard, 705
special techniques for, 705

beta distribution, 709
chi-squared distribution, 709
exponential distribution, 710
gamma distribution, 708
normal distribution, 705
Von Neumann algorithm, 710

uniform random variable, 33
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with probability density function, 42
Continuous-time Markov chain, 383–385,

392, 396, 397, 399, 402, 407, 409,
410, 412–414, 417, 419, 421, 422,
424, 428, 429, 432–436, 454, 474,
519, 679, 737, 738, 825

birth and death processes, 385
limiting probabilities, 271
reversed chain, 417
time reversibility, 409
transition probabilities of, 210, 484, 588
transition probability function, 392
uniformization, 422

Continuous-time process, 87
Continuous-time stochastic process, 87, 383
Convolution of distributions, 59
Cost equations, 520
Coupling, 757
Coupling identity, 765
Coupon collecting problem, 331
Coupon collector’s problem, 771, 775
Covariance, properties of, 55
Coxian random variable, 320
Cumulative distribution function, 26, 27, 33,

34, 36, 45, 59
and probability density, relationship

between, 33
of random variable, 34, 36

Cure probability, 85
Cut vector, 608

D
Data sequence, defined, 168
Decreasing failure rate (DFR), 626
Delayed renewal processes, 491
Density function, 740
Density function, of gamma random variable,

127
Desired probability, 243
Dirichlet distribution, 161, 321, 322
Disconnected graph, 153
Discrete case, 37, 103

random variables, 103
Discrete random variables, 26, 28, 168, 491

Bernoulli random variable, 28
binomial random variable, 28
distributed, 163
geometric random variable, 30
k-record values of, 168

patterns of, 491
Poisson random variable, 31
with probability mass function, 42

Discrete-time Markov chains, 402, 412
Discrete-time process, 87
Distributed discrete random variables, 163
Distributed random variables, independent

and identically, 61, 82, 83, 114,
124, 168, 171, 177, 221, 238, 353,
445, 450, 456, 498, 499, 693, 703,
704, 729, 744, 747

Doob martingale, 788
Drift, Brownian motion with, 658, 670

E
Elementary renewal theorem, 449, 452, 500

proof of, 452
Embedded chain, 409
Equilibrium distribution, 479
Ergodic continuous-time Markov chain, 417
Ergodic Markov chain, 258, 679
Erlang’s loss formula, 587
Erlang’s loss system, 586
Event times, simulating, 725
Expected net return, 329, 773

maximal, 773
optimal, 773

Exponential distribution, 710
definition, 301
exponential random variables,

convolutions of, 317
properties of, 303, 310
with parameter λ, 832,301

Exponential interarrival random variables,
533

Exponential models, 524
birth and death queueing models, 539
queueing system with bulk service, 548
shoe shine shop, 385, 546
single-server exponential queueing system,

524
single-server exponential queueing system

having finite capacity, 534
with finite capacity, 539

Exponential random variables, 35, 302, 317,
698

and expected discounted returns, 302
convolutions of, 317
expectation of, 40
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F
Failure rate function, 308–310, 319, 320,

324, 506, 625, 627, 629
of distribution, 626
of hyperexponential random variable, 310

Feedback arrival, 556
FIFO, 568
Finite source model, 582
Finite-state Markov chain, 215
First-order autoregressive process, 682
Five-component system, 606, 611
Forward approach, 280
Four-component structure, 605
Fourier transforms, 685
Front-of-the-line rule, 152, 266, 267
Fundamental queueing identity, 544

G
G/M/1 model, 577

busy and idle periods, 581
G/M/k queue, 588
Gambler’s fortune, 119, 172, 176, 203, 241,

243, 255
Gambler’s ruin problem, 132, 241, 243, 253,

657, 658
Gambling model, 203
Gamma distribution, 185, 531, 626, 708
Gamma random variables, 35

density function of, 128
Gaussian processes, 677, 682

finite dimensional distributions of, 681
Genetics, Markov chain in, 228
Geometric Brownian motion, 658, 659
Geometric distribution, 114, 713
Geometric random variable, 30, 31, 38, 122

expectation of, 38
variance of, 122

Gibbs sampler, 271–273, 560, 561
simulation, 562

Graph, 27, 152, 618
connected, 153–156, 619–621

components, 158
disconnected, 153
random, 152, 618

Greedy algorithms, 312

H
Hardy–Weinberg law, 228, 229

Hastings–Metropolis algorithm, 269, 271,
272

Hawkes processes, random intensity
functions and, 361

Hazard function, 630
Hazard rate function, see Failure rate function
Hazard rate method, 702

discrete, 749
Heuristic proof of equation, 520
Hidden Markov chains, 277

predicting the states, 281
Hitting time theorem, 173
Hyperexponential random variable, 310
Hypergeometric distribution, 105
Hypoexponential random variable, 317

I
Ignatov’s theorem, 143, 168
Impulse response function, 684
Inclusion–exclusion bounds, 616
Inclusion–exclusion identity, 6
Inclusion–exclusion theorem, 145
Increasing failure rate (IFR) distribution, 626
Increasing failure rate on the average (IFRA)

distribution, 603, 630
Independent Bernoulli random variables, 57,

78, 129, 349, 714, 742, 758, 783
distribution of, 129

Independent components, reliability systems
of, 619

Independent events, 9
Independent geometrics, 822
Independent increments, 323, 334, 347, 352,

358, 523, 676, 677, 820
assumption, 323

Independent random variables, 52, 56, 59, 77,
113, 144, 179, 201, 250, 256, 331,
335, 355, 385, 460, 479, 480, 501,
537, 553, 582, 629, 635, 669, 695,
703, 741, 764, 815

binomial, 68, 104
distributed, 44, 61, 78, 82, 83, 114, 124,

168, 171, 177, 221, 238, 353, 445,
450, 456, 498, 499, 693, 703, 704,
729, 744, 747

exponential, 385
finite-valued, 169
normal, 75, 668, 670, 672
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Poisson, 60, 69, 105, 129, 156, 222, 232,
234, 235, 330, 331, 336, 337, 340,
352, 356, 758, 770

sequence of, 171, 449, 476, 719, 745
standard normal, 67, 72, 74, 75, 700, 701,

706
Independent time reversible continuous-time

Markov chains, 415
Independent with distribution function, 338
Indicator random variable, 24, 126, 757
Induction hypothesis, 117, 125, 126, 139,

141, 154, 197, 232, 731, 752
Infinite server Poisson queue, output process

of, 352
Infinite server queue, 336, 352, 479
Instantaneous transition rates, 397, 413, 417,

419, 421, 432, 436
Integrated Brownian motion, 678
Intensity function, nonhomogeneous Poisson

process with, 347
Interarrival density, 488, 507
Inverse transformation method, 697
Irreducible Markov chain, 216, 226, 235,

238, 267, 744

J
Jensen’s inequality, 794, 797
Joint cumulative probability distribution

function, 45
Joint density function of the n random

variables, 64
Joint distribution functions, 44
Joint probability distributions, 46
Joint probability mass function, 45, 52, 104,

128
Jointly distributed random variables

covariance and variance of, 53
independent random variables, 52
joint distribution functions, 44
joint probability distribution of functions,

62

K
k-out-of-n system, 604–606, 628, 634, 635

with equal probabilities, 610
with identical components, 627

“Key renewal theorem”, 474
Kolmogorov backward equations, 426
Kolmogorov forward equations, 400, 401

L
Laplace transform, 71
Limit theorems, 76, 444
Limiting probabilities for Markov chain, 229
Linear birth rate, birth process with, 386
Linear growth model with immigration, 386
Linear program, 663
Little’s formula, 521
Long-run proportions, Markov chain, 223

M
m-step transition probability, 209
M/G/1 system, 563, 572, 573

application of, 563
busy periods, 565
optimization example, 571
preliminaries, 562
queue with server breakdown, 575
variations on, 566

M/G/k queue, 590
M/M/1

queue, 389, 412, 539
with balking, 539
with impatient customers, 543

steady-state customer, 531
M/M/2 system, 542
M/M/k queue, 539, 587
Machine repair model, 405
Markov chain, 201–204, 207–211, 214,

216–219, 221, 223–229, 232,
234–236, 238, 239, 330, 331,
383–385, 392, 399, 402, 403, 407,
409–415, 450, 454, 468–471, 473,
474, 483, 484, 519, 520, 557, 560,
561, 577, 581–583, 588, 589, 598,
638, 653, 679, 737, 738, 744–747,
760, 761, 766–769, 771, 772, 784,
785, 796, 815–817, 821, 823–825

aperiodic, 241
applications, 241, 766

Gambler’s ruin problem, 241
model for algorithmic efficiency, 245
probabilistic algorithm for satisfiability

problem, 247
branching processes, 255
Chapman–Kolmogorov equations, 205
classification of states, 213
defined, 208
ergodic, 241, 258, 274, 409, 411, 417, 679
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finite-state, 215
hidden, 277

predicting the States, 281
in genetics, 228
irreducible, 214, 216, 224, 226, 229, 235,

238, 241, 267, 270, 418, 468, 469,
557, 744, 767, 768

limiting probabilities for, 223, 229
long-run proportions and, 223
Markov decision processes, 273
mean pattern times in, 235
mean time spent in transient states, 253
Monte Carlo methods, 269
of successive states, 239
recurrent, 224, 226, 229, 473
stationary distribution of, 235, 744, 745
stationary probabilities, 232, 235, 236,

238, 239, 258, 267, 269, 270, 409,
560, 581, 583, 746, 772

time reversible, 258–260, 263–265, 267,
269, 270, 411, 412, 415

transforming process into, 202
transition probabilities, 202–204, 207–210,

217, 229, 232, 235, 241, 258, 259,
267, 270, 274, 277, 330, 331, 384,
392, 396, 409, 410, 423, 454, 483,
484, 577, 583, 588, 744, 760, 761,
766, 767, 769, 771

transition probability matrix, 202–204,
206–209, 211, 214, 216, 227–229,
231, 239, 240, 267, 270, 271, 423,
557, 814

two-dimensional, 274
two-state, 202, 206, 240, 284, 289, 424,

454, 825
Markov decision processes, 273
Markov transition probability matrix, 270,

271, 557
Markovian property, 383, 384, 392, 474
Markov’s inequality, 76
Martingale, 787–791, 795, 796

Doob, 788
Martingale process, 670
Martingale stopping theorem, 688, 689, 789,

790, 838
applications of, 791

Matching rounds problem, 116
variance in, 125

Maximum coupling, 763

Mean value
analysis, 560
function, 347–349, 362

Minimal cut set, 608
Minimal cut vector, 608
Minimal path set, 606, 607, 617, 619
Minimal path vector, 606
Moment generating functions, 64, 68, 302,

659, 740, 809
formula for, 838
joint distribution of mean and variance, 73,

74
Monotone, 606
Monotone system of independent

components, 631
Monte Carlo methods, 269
Monte Carlo simulation, 269

approach, 693
Moving average process, 683
Multinomial distribution, 115, 129, 161, 162
Multinomial probability, 218, 342
Multiserver exponential queueing system,

389
Multiserver queues, 586
Multiserver systems, 520
Multivariate normal distribution, 72

N
n-step transition probabilities, 205
NBU, see New better than used (NBU)
Negative binomial distribution, 91, 147, 394,

441, 806
of noncentral chi-squared random variable,

189, 809
Neglecting the excess, 793
Network of queues

closed systems, 556
open systems, 552

New better than used (NBU), 495
Nodes, 152
Nonhomogeneous Poisson process, 347, 720

with intensity function, 347, 350, 351, 720,
721

Nonnegative random variable, 71, 439, 636
Nonoverlapping patterns, 164
Nonstationary Poisson process, see

Nonhomogeneous Poisson
process

Normal distribution, 72, 705
with parameter μ, 67
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Normal random variables, 35, 70
expectation of, 40
variance of, 43

O
One-closer rule, 152, 265–267
One-step transition probabilities, 202
Open systems, network of queues, 552
Order statistics, 750
Ornstein–Uhlenbeck process, 681

P
Pairwise independent events, 10
Parallel structure, 604
Parallel system, 610, 628, 636
PASTA principle, 468, 516, 523, 532, 565
Path vector, 606
Pattern occurrence times, 791
Periodic chain, 240
Poisson approximation, 782
Poisson compounding distribution, 179
Poisson distribution, 32, 380

with mean λ, 380, 531, 783,179
Poisson mean, 127, 576
Poisson paradigm, 70, 71
Poisson process, 322–329, 331–334, 336,

338, 340, 342, 343, 345–347, 350,
352–354, 356, 358–361, 383, 385,
386, 388, 389, 395, 411, 420–422,
439, 442, 446, 447, 463, 466, 468,
477, 479, 486, 489, 501, 519, 523,
524, 526, 529, 532, 539, 543, 546,
548, 553–555, 564–566, 568, 571,
575, 578, 586, 588, 589, 669, 679,
680, 695, 702, 703, 710, 714, 715,
719, 720, 722, 723, 726, 727, 736,
783

assumption, 669, 680, 720
bivariate, 370
conditional distribution of the arrival

times, 334, 723
counting processes, 322, 336, 361
definition of, 323
generalizations of, 347
interarrival times, 703, 714
nonhomogeneous, 347–353, 720–722, 724,

725, 734, 820, 821
properties of, 310, 328, 334, 703
sampling, 336, 350, 352, 720

software reliability, estimating, 344
two-dimensional, 726

Poisson random variables, 39, 60, 69, 105,
129, 149, 156, 222, 232, 234, 235,
330, 331, 336, 337, 340, 352, 356,
758, 770

expectation of, 39
variance of, 223

Polar method, 708
Pollaczek–Khintchine formula, 563
Polya’s Urn model, 159
Power spectral density, 685
Present value, 302, 660, 664–666
Pricing stock options, 659

arbitrage theorem, 662
Black–Scholes option pricing formula, 665
example in options pricing, 659

Priority queueing systems, 568
Priority queues, 568
Probabilistic algorithm, 247
Probability density

function, 32, 59, 69, 335, 739
relationship between cumulative

distribution and, 33
Probability mass function, 27, 28, 31, 37, 41,

42, 45, 68, 115, 129, 142, 144,
169, 269, 338, 715, 716, 740, 741

Probability theory, 1
Bayes’ formula, 11
conditional probabilities, 6
independent events, 9
probabilities defined on events, 3
sample space and events, 1

Production process, 477
Pure birth process, 383, 386

Q
Queueing cost identity, 527, 576
Queueing models, fundamental quantities for,

520
Queueing system, 388, 389, 420, 474, 524,

534, 539, 732, 738
with bulk service, 548

Queueing theory, 519
exponential models, 524

birth and death queueing models, 539
queueing system with bulk service, 548
shoe shine shop, 546
single-server exponential queueing

system, 524, 534
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finite source model, 582
G/M/1 model, 577
M/G/1 system

busy periods, 565
optimization example, 571
preliminaries, 562
queue with server breakdown, 575
variations on, 566

multiserver queues, 586
network of queues

closed systems, 556
open systems, 552

preliminaries
cost equations, 520
steady-state probabilities, 521, 556

Quick-sort algorithm, 120

R
Random graph, 152, 618
Random intensity functions, 361

and Hawkes processes, 361
Random numbers, 269, 695
Random permutation, generating, 695
Random telegraph signal process, 680
Random variables, 23, 24, 26, 28, 30–47,

50–64, 67–79, 81–83, 86, 87, 113,
114, 129, 168, 177, 302, 317, 491,
499, 697, 705, 724

covariance and variance of sums of, 53
density function, 32, 35, 41, 59–62, 64,

317, 705
expectation of

continuous case, 32, 39
discrete case, 37
function of, 41

expected value, 37
joint probability distribution of functions,

62
Random walk, 793
Random walk model, 203
Random walk process, 455, 793
Random-sized batch arrivals, M/G/1 with,

566
Rate of the distribution, 308
Rate-equality principle, 525, 534
Recursive equation, 118, 138, 394
Rejection method, 698

discrete, 749
Reliability function, 613, 732

bounds on, 613
inclusion and exclusion, 614
obtaining bounds on r(p), 622

Reliability theory, 603
parallel system, upper bound on, 636
reliability function

bounds on, 613
inclusion and exclusion method, 614
obtaining bounds on r(p), 622

structure functions, 603
minimal path and minimal cut sets, 606

system lifetime, expected, 632
systems with repair, 638

suspended animation, series model with,
642

Renewal arrivals, queueing system with, 474
Renewal equation, 443, 444
Renewal function, 442, 735

computing, 488
Renewal interarrival distribution, 489
Renewal process, 439, 465, 478

age of, 478
average, 465

average excess of, 466
excess of, 478
reward processes, 459

Renewal reward theory, 465, 466
Renewal theory and applications

distribution of N(t), 440
inspection paradox, 485
introduction, 439
limit theorems and applications, 444
patterns, applications to

continuous random variables, 499
discrete random variables, 491
distinct values, expected time to

maximal run of, 498
insurance ruin problem, 501

regenerative processes, 473
alternating, 476

renewal function, computing, 488
renewal reward processes, 459
semi-Markov processes, 482

Reverse chain equations, 418
Reverse time equations, 422
Reversed process, 259, 410

S
Sample mean, 73
Sample variance, 73
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Satisfiability problem, 251
probabilistic algorithm for, 247

Scenario one, 775
Scenario two, 775
Second-order stationary process, 681–683
Self-exciting process, 361
Semi-Markov processes, 482
Sequence of events

decreasing, 14, 20, 21
increasing, 14, 20

Sequence of interarrival times, 325, 452
Sequential queueing system, 420
Series system, 610, 632
Server queueing station, 515
Simplex algorithm, 245, 247, 276
Simulation, 693

continuous random variables, see
Continuous random variables

determining number of runs, 744
from discrete distributions, 712

alias method, 715, 718
of two-dimensional Poisson processes,

695, 726
renewal function by, 735
stationary distribution of Markov chain,

235, 745
coupling from past, 746

stochastic processes, 695
nonhomogeneous Poisson process, 720
two-dimensional Poisson process, 726

variance reduction techniques, 728
by conditioning, 733
control variates, 737
importance sampling, 739
use of antithetic variables, 729

Single-server exponential queueing system,
524

finite capacity, 534
Single-server Poisson arrival queues, 354
Single-server queue, 543, 743
Single-server system, 463, 571
Sorting algorithm, 720
Standard Brownian motion, 654, 656, 658,

675–679, 681, 837
Standard normal distribution function, 82,

458, 656, 667
Standard normal random variables, 72, 74,

702
Standard/unit normal distribution, 36

State space of stochastic process, 87
State vector, 603
Stationary distribution of Markov chain, 744
Stationary ergodic Markov chain, 258
Stationary increments, 323, 350, 720
Stationary probabilities, 232–236, 238, 239,

258, 267–270, 409, 420, 557, 560,
581, 583, 746, 772, 817

Stationary probability vector, 470
Stationary processes, 653

weakly, 679
Steady-state distribution, 588
Steady-state probability, 274–276, 521
Stirling’s approximation, 218, 222, 223, 247
Stochastic processes, 86, 719, 760
Stochastically larger, 759, 760, 773, 781
Stopped process, 789
Stopping time, 789
Strong law of large numbers, 77, 78, 82, 83
Structure function, 603
Submartingale, 795, 796
Submartingale stopping theorem, 796
Symmetric random walk, 218–220, 290, 406,

450, 501, 653, 657, 770–772

T
T -random variable, 108
Tail distribution function, 319, 393
Tandem queue, 554
Tandem/sequential system, 552
Taylor series expansion, 81
Time inventory, long-run proportion of, 481,

482
Time reversibility, 409

equations, 263, 297, 830
Time reversible chain, 414
Time reversible equations, 413, 414
Time reversible Markov chain, 258, 270
Total variation distance, 765
Transition probabilities, 425

computing, 425
defined, 271
function, 271, 392
matrix, 202, 204, 206, 209, 231, 239, 557,

814
of continuous-time Markov chain, 392

Two independent uniform random variables,
sum of, 60

Two-dimensional Poisson process, 726
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Two-state continuous-time Markov chain,
424, 454, 825

Two-state Markov chain, 202, 206, 240
Two-step transition matrix, 206

U
Unconditional probabilities, 212
Uniform distribution, 159
Uniform priors, 159
Uniform random variable, 33, 803

expectation of, 39
Uniformization, 422, 423
Uniformly distributed components, series

system of, 632
Upper record value, 110, 365

V
Variance parameter, process with, 658
Viterbi algorithm, 283
Von Neumann algorithm, 710

W
Wald’s equation, 449, 450, 452, 471, 582,

703, 704, 791
Weakly stationary processes, 679

harmonic analysis of, 684
Weibull distribution, 626
White noise transformation, 676
Wiener process, 654

Y
Yule process, 386, 393–395
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