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Building on the core content and style of its predecessor, this
eighth edition (8/e) of Applied Electromagnetics includes fea-

tures designed to help students develop deep understanding of

electromagnetic concepts and applications. Prominent among
them is a set of 52 web-based simulation modules∗ that allow

the user to interactively analyze and design transmission line

circuits; generate spatial patterns of the electric and magnetic
fields induced by charges and currents; visualize in 2-D and

3-D space how the gradient, divergence, and curl operate on

spatial functions; observe the temporal and spatial waveforms
of plane waves propagating in lossless and lossy media;

calculate and display field distributions inside a rectangular

waveguide; and generate radiation patterns for linear anten-
nas and parabolic dishes. These are valuable learning tools;

we encourage students to use them and urge instructors to
incorporate them into their lecture materials and homework

assignments.

Additionally, by enhancing the book’s graphs and illustra-
tions and by expanding the scope of topics of the Technology

Briefs, additional bridges between electromagnetic fundamen-

tals and their countless engineering and scientific applications
are established.

NEW TO THIS EDITION

• Additional exercises

• Updated Technology Briefs

• Enhanced figures and images

• New/updated end-of-chapter problems

* The interactive modules and Technology Briefs

can be found at the book companion website:
em8e.eecs.umich.edu.
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CONTENT

This book begins by building a bridge between what should
be familiar to a third-year electrical engineering student and

the electromagnetics (EM) material covered in the book. Prior

to enrolling in an EM course, a typical student will have
taken one or more courses in circuits. He or she should be

familiar with circuit analysis, Ohm’s law, Kirchhoff’s current
and voltage laws, and related topics.

Transmission lines constitute a natural bridge between elec-

tric circuits and electromagnetics. Without having to deal with
vectors or fields, the student will use already familiar concepts

to learn about wave motion, the reflection and transmission

of power, phasors, impedance matching, and many of the
properties of wave propagation in a guided structure. All of

these newly learned concepts will prove invaluable later (in

Chapters 7 through 9) and will facilitate the learning of how
plane waves propagate in free space and in material media.

Transmission lines are covered in Chapter 2, which is preceded

in Chapter 1 with reviews of complex numbers and phasor
analysis.

The next part of this book, contained in Chapters 3
through 5, covers vector analysis, electrostatics, and magneto-

statics. The electrostatics chapter begins with Maxwell’s equa-

tions for the time-varying case, which are then specialized to
electrostatics and magnetostatics. These chapters will provide

the student with an overall framework for what is to come

and show him or her why electrostatics and magnetostatics are
special cases of the more general time-varying case.

Chapter 6 deals with time-varying fields and sets the stage

for the material in Chapters 7 through 9. Chapter 7 covers
plane-wave propagation in dielectric and conducting media,

and Chapter 8 covers reflection and transmission at discon-

tinuous boundaries and introduces the student to fiber optics,
waveguides, and resonators. In Chapter 9, the student is in-

troduced to the principles of radiation by currents flowing in
wires, such as dipoles, as well as to radiation by apertures,

such as a horn antenna or an opening in an opaque screen

illuminated by a light source.
To give the student a taste of the wide-ranging applications

of electromagnetics in today’s technological society, Chap-

ter 10 concludes this book with presentations of two system
examples: satellite communication systems and radar sensors.

The material in this book was written for a two-semester

sequence of six credits, but it is possible to trim it down to
generate a syllabus for a one-semester, four-credit course. The

accompanying table provides syllabi for each of these options.

Suggested Syllabi

Two-Semester Syllabus One-Semester Syllabus

6 credits (42 contact hours per semester) 4 credits (56 contact hours)

Chapter Sections Hours Sections Hours

1 Introduction: All 4 All 4
Waves and Phasors

2 Transmission Lines All 12 2-1 to 2-8 and 2-11 8

3 Vector Analysis All 8 All 8

4 Electrostatics All 8 4-1 to 4-10 6

5 Magnetostatics All 7 5-1 to 5-5 and 5-7 to 5-8 5

Exams 3 2

Total for first semester 42

6 Maxwell’s Equations All 6 6-1 to 6-3, and 6-6 3

for Time-Varying Fields

7 Plane-Wave Propagation All 7 7-1 to 7-4, and 7-6 6

8 Wave Reflection All 9 8-1 to 8-3, and 8-6 7

and Transmission

9 Radiation and Antennas All 10 9-1 to 9-6 6

10 Satellite Communication All 5 None —

Systems and Radar Sensors

Exams 3 1

Total for second semester 40 Total 56
Extra Hours 2 0

PREFACE
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MESSAGE TO THE STUDENT

The web-based interactive modules of this book were devel-

oped with you, the student, in mind. Take the time to use them

in conjunction with the material in the textbook. The multiple-
window feature of electronic displays makes it possible to

design interactive modules with “help” buttons to guide you

through the solution of a problem when needed. Video anima-
tions can show you how fields and waves propagate in time and

space, how the beam of an antenna array can be made to scan

electronically, and how current is induced in a circuit under
the influence of a changing magnetic field. The modules are a

useful resource for self-study. You can find them at the book
companion website em8e.eecs.umich.edu. Use them!

BOOK COMPANION WEBSITE

Throughout the book, we use the symbol EM to denote the book
companion website em8e.eecs.umich.edu, which contains a

wealth of information and tons of useful tools.
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Objectives

Upon learning the material presented in this chapter, you

should be able to:

1. Describe the basic properties of electric and magnetic

forces.

2. Ascribe mathematical formulations to sinusoidal waves

traveling in both lossless and lossy media.

3. Apply complex algebra in rectangular and polar forms.

4. Apply the phasor-domain technique to analyze circuits

driven by sinusoidal sources.
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Figure 1-1 2-D LCD array.

Overview

Liquid crystal displays (LCDs) have become integral parts
of many electronic consumer products, ranging from alarm

clocks and cell phones to laptop computers and television sys-

tems. LCD technology relies on special electrical and optical
properties of a class of materials known as liquid crystals,

which are neither pure solids nor pure liquids but rather a

hybrid of both. The molecular structure of these materials is
such that when light travels through them, the polarization

of the emerging light depends on whether or not a voltage

exists across the material. Consequently, when no voltage is
applied, the exit surface appears bright. Conversely, when a

voltage of a certain level is applied across the LCD material,
no light passes through it, resulting in a dark pixel. In-between

voltages translate into a range of grey levels. By controlling the

voltages across individual pixels in a two-dimensional array, a
complete image can be displayed (Fig. 1-1). Color displays are

composed of three subpixels with red, green, and blue filters.

◮ The polarization behavior of light in a LCD is a

prime example of how electromagnetics is at the heart of
electrical and computer engineering. ◭

The subject of this book is applied electromagnetics (EM),

which encompasses the study of both static and dynamic

electric and magnetic phenomena and their engineering
applications. Primary emphasis is placed on the fundamental

properties of dynamic (time-varying) electromagnetic fields

because of their greater relevance to practical applications,
including wireless and optical communications, radar, bio-

electromagnetics, and high-speed microelectronics. We study
wave propagation in guided media, such as coaxial transmis-

sion lines, optical fibers, and waveguides; wave reflection and

transmission at interfaces between dissimilar media; radiation
by antennas, and several other related topics. The concluding

chapter is intended to illustrate a few aspects of applied EM

through an examination of design considerations associated
with the use and operation of radar sensors and satellite

communication systems.

We begin this chapter with a chronology of the history of
electricity and magnetism. Next, we introduce the fundamental

electric and magnetic field quantities of electromagnetics, as

well as their relationships to each other and to the electric
charges and currents that generate them. These relationships

constitute the underpinnings of the study of electromagnetic

phenomena. Then, in preparation for the material presented in
Chapter 2, we provide short reviews of three topics: traveling

waves, complex numbers, and phasors, which are all useful in
solving time-harmonic problems.
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1-1 Historical Timeline

The history of EM may be divided into two overlapping eras.

The first is the classical era, during which the fundamental

laws of electricity and magnetism were discovered and formu-
lated. Building on these formulations, the modern era of the

past 100 years ushered in the birth of the field of applied EM

as we know it today.

1-1.1 EM in the Classical Era

Chronology 1-1 provides a timeline for the development of

electromagnetic theory in the classical era. It highlights those
discoveries and inventions that have impacted the historical

development of EM in a very significant way, even though the

selected discoveries represent only a small fraction of those
responsible for our current understanding of electromagnet-

ics. As we proceed through this book, some of the names

highlighted in Chronology 1-1, such as those of Coulomb
and Faraday, will appear again as we discuss the laws and

formulations named after them.

The attractive force of magnetite was reported by the Greeks
some 2800 years ago. It was also a Greek, Thales of Miletus,

who first wrote about what we now call static electricity: He

described how rubbing amber caused it to develop a force
that could pick up light objects such as feathers. The term

“electric” first appeared in print around 1600 in a treatise

on the (electric) force generated by friction, authored by the
physician to Queen Elizabeth I, William Gilbert.

About a century later, in 1733, Charles-François du Fay
introduced the notion that electricity involves two types of

“fluids,” one “positive” and the other “negative,” and that

like-fluids repel and opposite-fluids attract. His notion of a
fluid is what we today call electric charge. The invention

of the capacitor in 1745, originally called the Leyden jar,

made it possible to store significant amounts of electric charge
in a single device. A few years later, in 1752, Benjamin
Franklin demonstrated that lightning is a form of electricity.

He transferred electric charge from a cloud to a Leyden jar via
a silk kite flown in a thunderstorm. The collective eighteenth-

century knowledge about electricity was integrated in 1785 by

Charles-Augustin de Coulomb, in the form of a mathematical
formulation characterizing the electrical force between two

charges in terms of their strengths and polarities and the
distance between them.

The year 1800 is noted for the development of the first elec-

tric battery by Alessandro Volta, and 1820 was a banner year
for discoveries about how electric currents induce magnetism.

This knowledge was put to good use by Joseph Henry, who

developed one of the earliest electromagnets and dc (direct
current) electric motors. Shortly thereafter, Michael Faraday
built the first electric generator (the converse of the electric

motor). Faraday, in essence, demonstrated that a changing

magnetic field induces an electric field (and hence a voltage).

The converse relation, namely that a changing electric field

induces a magnetic field, was first proposed by James Clerk
Maxwell in 1864 and then incorporated into his four (now)

famous equations in 1873.

◮ Maxwell’s equations represent the foundation of classi-

cal electromagnetic theory. ◭

Maxwell’s theory, which predicted the existence of elec-

tromagnetic waves, was not fully accepted by the scientific
community at that time. It was later verified experimentally

by means of radio waves by Heinrich Hertz in the 1880s. X-

rays, another member of the EM family, were discovered in
1895 by Wilhelm Röntgen. In the same decade, Nikola Tesla
was the first to develop the ac motor, which was considered a

major advance over its predecessor, the dc motor.
Despite the advances made in the 19th century in our

understanding of electricity and magnetism and how to put

them to practical use, it was not until 1897 that the fundamental
carrier of electric charge, the electron, was identified and its

properties quantified by Joseph Thomson. The ability to eject
electrons from a material by shining electromagnetic energy,

such as light, on it is known as the photoelectric effect.

◮ To explain the photoelectric effect, Albert Einstein
adopted the quantum concept of energy that had been

advanced a few years earlier (1900) by Max Planck.

Symbolically, this step represents the bridge between the
classical and modern eras of electromagnetics. ◭

1-1.2 EM in the Modern Era

Electromagnetics play a role in the design and operation

of every conceivable electronic device, including the diode,
transistor, integrated circuit, laser, display screen, bar-code

reader, cell phone, and microwave oven, to name but a few.

Given the breadth and diversity of these applications (Fig. 1-2),
it is far more difficult to construct a meaningful timeline

for the modern era than for the classical era. That said,
one can develop timelines for specific technologies and link

their milestone innovations to EM. Chronologies 1-2 and 1-3

present timelines for the development of telecommunications
and computers, technologies that have become integral parts

of today’s societal infrastructure. Some of the entries in these

chronologies refer to specific inventions, such as the telegraph,
the transistor, and the laser. The operational principles and

capabilities of some of these technologies are highlighted in
special sections called Technology Briefs that are scattered
throughout this book.
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ca. 900 Legend has it that, while walking across a field in northern

Greece, a shepherd named Magnus experiences a pull

on the iron nails in his sandals by the black rock he is

standing on. The region was later named Magnesia and

the rock became known as magnetite [a form of iron with

permanent magnetism].

ca. 600 Greek philosopher Thales

describes how amber, after being

rubbed with cat fur, can pick up

feathers [static electricity].

ca. 

1000

Magnetic compass used as a

navigational device. 

1600 William Gilbert (English) coins the term electric after the

Greek word for amber (elektron), and observes that a

compass needle points north–south because the Earth

acts as a bar magnet.

1671 Isaac Newton (English) demonstrates that white light is a

mixture of all the colors.

1733 Charles-François du Fay (French) discovers that

electric charges are of two forms and that like charges

repel and unlike charges attract.

1745 Pieter van Musschenbroek (Dutch) invents the Leyden

jar, which was the first electrical capacitor.

1752 Benjamin Franklin

(American) invents

the lightning rod and

demonstrates that 

lightning is electricity.

1785

 

Charles-Augustin 

de Coulomb (French)

demonstrates that the 

electrical force between

charges is proportional to

the inverse of the square

of the distance between 

them.

1800

 

Alessandro Volta (Italian)

develops the first electric 

battery.

1820

 

Hans Christian Oersted

(Danish) demonstrates the

interconnection between

electricity and magnetism 

through his discovery that

an electric current in a 

wire causes a compass 

needle to orient itself 

perpendicular to 

the wire.

1820 André-Marie Ampère (French)

notes that parallel currents in

wires attract each other and 

opposite currents repel.

1820
 

Jean-Baptiste Biot (French)

and Félix Savart (French) 

develop the Biot–Savart law 

relating the magnetic field 

induced by a wire segment 

to the current flowing through it.

Chronology 1-1:  TIMELINE FOR ELECTROMAGNETICS IN THE CLASSICAL ERA

Electromagnetics in the Classical Era

BC

BC
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1888 Nikola Tesla (American)

invents the ac (alternating 

current) electric motor.

1895 Wilhelm Röntgen (German)

discovers X-rays.  One of

his first X-ray images was

of the bones in his wife's

hands. [1901 Nobel prize

 in physics.]

1897 Joseph John Thomson (English) discovers the electron

and measures its charge-to-mass ratio.  [1906 Nobel prize

in physics.]

1905 Albert Einstein (German-American) explains the

photoelectric effect discovered earlier by Hertz in 1887.

[1921 Nobel prize in physics.]

1827 Georg Simon Ohm (German) formulates Ohm's law

relating electric potential to current and resistance.

1827 Joseph Henry (American) introduces the concept of 

inductance and builds one of the earliest electric motors.  

He also assisted Samual Morse in the development 

of the telegraph.

1831 Michael Faraday (English) 

discovers that a changing 

magnetic flux can induce

an electromotive force.

1873 James Clerk Maxwell 

(Scottish) publishes his 

Treatise on Electricity and 

Magnetism, in which he unites 

the discoveries of Coulomb, 

Oersted, Ampère, Faraday, 

and others into four elegantly 

constructed mathematical

equations, now known as 

Maxwell’s Equations.

1887

Chronology 1-1:  TIMELINE FOR ELECTROMAGNETICS IN THE CLASSICAL ERA (continued)

Electromagnetics in the Classical Era

Heinrich Hertz 

(German) builds 

a system that 

can generate 

electromagnetic 

waves (at radio 

frequencies) and 

detect them.

1835 Carl Friedrich Gauss (German) formulates Gauss's law

relating the electric flux flowing through an enclosed 

surface to the enclosed electric charge.
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Chronology 1-2:  TIMELINE FOR TELECOMMUNICATIONS

Telecommunications

1825

1837 Samuel Morse

(American) patents the 

electromagnetic telegraph 

using a code of dots and 

dashes to represent letters 

and numbers.

 

1872    Thomas Edison (American) 

patents the electric 

typewriter.

1876 Alexander Graham Bell 

(Scottish-American) invents 

the telephone. The rotary dial 

becomes available in 1890, 

and by 1900, telephone 

systems are installed in 

many communities.

1887 Heinrich Hertz (German) 

generates radio waves and 

demonstrates that they 

share the same properties

as light.

1887 Emil Berliner (American) invents the flat gramophone

disc, or record.

Guglielmo Marconi (Italian) 

files his first of many patents

on wireless transmission 

by radio.  In 1901, he 

demonstrates radio telegraphy 

across the Atlantic Ocean. 

[1909 Nobel prize in physics,  

shared with Karl Braun 

(German).]

1897 Karl Braun (German) invents the cathode ray tube (CRT).   

[1909 Nobel prize in physics, shared with Marconi.]

1902 Reginald Fessenden (American) invents amplitude 

modulation for telephone transmission.  In 1906, he 

introduces AM radio broadcasting of speech and music 

on Christmas Eve.

1912 Lee De Forest

(American) 

develops the triode 

tube amplifier for

wireless telegraphy. 

Also in 1912, the 

wireless distress 

call issued by the 

Titanic was heard 

58 miles away by 

the ocean liner 

Carpathia, which 

managed to rescue 

705 Titanic passengers 

3.5 hours later.

1919 Edwin Armstong (American) invents the 

superheterodyne radio receiver.

1920 Birth of commercial radio

broadcasting; Westinghouse Corporation 

establishes radio station 

KDKA in Pittsburgh, 

Pennsylvania.

1896William Sturgeon

(English) develops 

the multiturn  

electromagnet.
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1958 Jack Kilby (American) builds first integrated circuit (IC) on 

germanium and, independently, Robert Noyce (American)

builds first IC on silicon.

Echo, the first passive 

communication satellite, is 

launched and successfully 

reflects radio signals back 

to Earth. In 1963, the first 

communication satellite is 

placed in geosynchronous orbit.

1969 ARPANET is established by the U.S. Department of 

Defense and will evolve later into the Internet. 

1979 Japan builds the first cellular telephone network:

• 1983: Cellular phone networks start in the United States.

• 1990: Electronic beepers become common.

• 1995: Cell phones become widely available.

• 2002: Cell phone supports video and Internet.

1984 Worldwide Internet becomes operational.

1988 First transatlantic optical

fiber cable deployed between 

the U.S. and Europe.

1997 The Mars Pathfinder sends 

images to Earth.

 2004 Wireless communication is supported by many airports, 

university campuses, and other facilities.

 2012 Smartphones worldwide exceed 1 billion.

Vladimir Zworykin 

(Russian-American) 

invents television.  In 

1926, John Baird (Scottish) 

transmits TV images 

over telephone wires 

from London to Glasgow.  

Regular TV broadcasting 

began in Germany (1935), 

England (1936), and the 

United States (1939).

1926 Transatlantic telephone service between London and 

New York.

1932 First microwave telephone link, installed (by Marconi) 

between Vatican City and the Pope’s summer residence.

1933 Edwin Armstrong (American) invents frequency 

modulation (FM) for radio transmission.

1935 Robert Watson-Watt

(Scottish) invents radar.

1938 H. A. Reeves (American) 

invents pulse code 

modulation (PCM).

1947 William Shockley, 

Walter Brattain, and 

John Bardeen (all 

Americans) invent the 

junction transistor at Bell 

Labs [1956 Nobel prize 

in physics].

1955 Pager is introduced as a radio communication product in 

hospitals and factories.

1955 Narinder Kapany (Indian-American) demonstrates the 

optical fiber as a low-loss, light-transmission medium.

1923

1960

Chronology 1-2:  TIMELINE FOR TELECOMMUNICATIONS (continued)

Telecommunications
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1941 Konrad Zuze (German) develops the first programmable 

digital computer, making use of binary arithmetic and 

electric relays.

1945 John Mauchly and J. Presper Eckert (both American) 

develop the ENIAC, which is the first all-electronic 

computer.

1950 Yoshiro Nakama (Japanese) patents the floppy disk as a

magnetic medium for storing data.

1956 John Backus (American) 

develops FORTRAN, which 

is the first major programming

language.

1958 Bell Labs develops the modem.

1960 Digital Equipment 

Corporation introduces the 

first minicomputer, the PDP-1, 

to be followed with the PDP-8

in 1965.

1964 IBM’s 360 mainframe 

becomes the standard 

computer for major businesses.

1965 John Kemeny and 

Thomas Kurtz

(both American)

develop the BASIC

computer language.

Chronology 1-3:  TIMELINE FOR COMPUTER TECHNOLOGY

Computer Technology

ca 1100 The abacus is the earliest known calculating device.

1614 John Napier (Scottish) develops the logarithm system.

Blaise Pascal

(French) builds

the first adding

machine using 

multiple dials.

Gottfried von Leibniz (German) builds calculator that can 

do both addition and multiplication.

Charles Xavier Thomas de Colmar (French) builds the 

Arithmometer: the first mass-produced calculator.

1642 

1671 

1820 

1885 Dorr Felt (American) invents and markets a key-operated 

adding machine (and adds a printer in 1889).

1930 Vannevar Bush (American) develops the differential analyzer, 

which is an analog computer for solving differential equations.

BC

PRINT

FOR Counter = 1 TO Items

   PRINT USING “##.”; Counter;

    LOCATE , ItemColumn

    PRINT Item$(Counter);

    LOCATE , PriceColumn

  PRINT Price$(Counter)

NEXT Counter
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Chronology 1-3:  TIMELINE FOR COMPUTER TECHNOLOGY (continued)

Computer Technology

1989 Tim Berners-Lee (British) invents the World Wide Web by 

introducing a networked hypertext system.

1991 The internet connects to 600,000 hosts in more than 100 

countries.

1995 Sun Microsystems introduces the Java programming

language.

1996 Sabeer Bhatia (Indian-American) and Jack Smith 

(American) launch Hotmail, which is the first 

webmail service.

1997 IBM’s Deep Blue computer defeats World Chess 

Champion Garry Kasparov.

2002 The billionth personal computer is sold; the second

billion is reached in 2007.

2010 The iPad is introduced in 2010.

1968 

1971 Texas Instruments introduces the pocket 

calculator.

1971 Ted Hoff (American) invents the Intel 

4004, which is the first computer microprocessor.

1976 IBM introduces the laser printer.

1976 Apple Computer sells 

Apple I in kit form, which

is followed by the fully 

assembled Apple II in 

1977 and the Macintosh 

in 1984.

1980 Microsoft introduces the

MS-DOS computer disk 

operating system.  

Microsoft Windows 

is marketed in 1985.

1981 IBM introduces the PC.

Douglas Engelbart (American) demonstrates a 

word-processor system, the mouse pointing device 

and the use of “windows.”
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Microwave ablation for liver cancer treatment

Ultrasound transducer

Ablation catheter

Liver

Ultrasound
   image

LCD
Screen

Optical fiber

Plasma
propulsion

Global Positioning System (GPS) Motor

Radar

Astronomy:
The Very Large
Array of Radio
Telescopes

Cell phone

Telecommunication

Figure 1-2 Electromagnetics is at the heart of numerous systems and applications.
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Table 1-1 Fundamental SI units.

Dimension Unit Symbol

Length meter m

Mass kilogram kg

Time second s

Electric charge coulomb C

Temperature kelvin K

Amount of substance mole mol

Luminous intensity candela cd

1-2 Dimensions, Units, and Notation

The International System of Units, abbreviated SI after its

French name Système Internationale, is the standard system
used in today’s scientific literature for expressing the units

of physical quantities. Length is a dimension and meter is

the unit by which it is expressed relative to a reference
standard. The SI system is based on the units for the seven

fundamental dimensions listed in Table 1-1. The units for
all other dimensions are regarded as secondary because they

are based on, and can be expressed in terms of, the seven

fundamental units. Appendix A contains a list of quantities
used in this book, together with their symbols and units.

For quantities ranging in value between 10−18 and 1018, a

set of prefixes arranged in steps of 103 are commonly used to
denote multiples and submultiples of units. These prefixes, all

of which were derived from Greek, Latin, Spanish, and Danish

terms, are listed in Table 1-2. A length of 5× 10−9 m, for
example, may be written as 5 nm.

In EM, we work with scalar and vector quantities. In

this book, we use a medium-weight italic font for symbols
denoting scalar quantities, such as R for resistance, and a

boldface roman font for symbols denoting vectors, such as E

for the electric field vector. A vector consists of a magnitude
(scalar) and a direction, with the direction usually denoted by

a unit vector. For example,

E = x̂E , (1.1)

where E is the magnitude of E and x̂ is its direction. A symbol
denoting a unit vector is printed in boldface with a circumflex

(ˆ) above it.

Throughout this book, we make extensive use of phasor
representation in solving problems involving electromagnetic

quantities that vary sinusoidally in time. Letters denoting

Table 1-2 Multiple and submultiple prefixes.

Prefix Symbol Magnitude

exa E 1018

peta P 1015

tera T 1012

giga G 109

mega M 106

kilo k 103

milli m 10−3

micro µ 10−6

nano n 10−9

pico p 10−12

femto f 10−15

atto a 10−18

phasor quantities are printed with a tilde (∼) over the letter.

Thus, Ẽ is the phasor electric field vector corresponding to

the instantaneous electric field vector E(t). This notation is
discussed in more detail in Section 1-7.

Notation Summary

• Scalar quantity: medium-weight italic, such as C for

capacitance.

• Units: medium-weight roman, as in V/m for volts per

meter.

• Vector quantities: boldface roman, such as E for
electric field vector

• Unit vectors: boldface roman with circumflex (ˆ)

over the letter, as in x̂.

• Phasors: a tilde (∼) over the letter; Ẽ is the phasor

counterpart of the sinusoidally time-varying scalar

field E(t), and Ẽ is the phasor counterpart of the

sinusoidally time-varying vector field E(t).

1-3 The Nature of Electromagnetism

Our physical universe is governed by four fundamental forces

of nature:

• The nuclear force, which is the strongest of the four, but

its range is limited to subatomic scales, such as nuclei.

• The electromagnetic force exists between all charged
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particles. It is the dominant force in microscopic systems,
such as atoms and molecules, and its strength is on the

order of 10−2 that of the nuclear force.

• The weak-interaction force, whose strength is only 10−14

that of the nuclear force. Its primary role is in interactions

involving certain radioactive elementary particles.

• The gravitational force is the weakest of all four forces,

having a strength on the order of 10−41 of the nuclear
force. However, it often is the dominant force in macro-
scopic systems, such as the solar system.

This book focuses on the electromagnetic force and its conse-

quences. Even though the electromagnetic force operates at the
atomic scale, its effects can be transmitted in the form of elec-

tromagnetic waves that can propagate through both free space
and material media. The purpose of this section is to provide an

overview of the basic framework of electromagnetism, which

consists of certain fundamental laws governing the electric and
magnetic fields induced by static and moving electric charges,

the relations between the electric and magnetic fields, and how

these fields interact with matter. As a precursor, however, we
will take advantage of our familiarity with gravitational force

by describing some of its properties because they provide a

useful analogue to those of electromagnetic force.

1-3.1 Gravitational Force: A Useful Analogue

According to Newton’s law of gravity, the gravitational

force Fg21
acting on mass m2 due to a mass m1 at a distance

R12 from m2 (Fig. 1-3) is given by

Fg21
= −R̂12

Gm1m2

R2
12

(N), (1.2)

where G is the universal gravitational constant, R̂12 is a unit

vector that points from m1 to m2, and the unit for force

is newton (N). The negative sign in Eq. (1.2) accounts for
the fact that the gravitational force is attractive. Conversely,

Fg12
=−Fg21

, where Fg12
is the force acting on mass m1 due to

the gravitational pull of mass m2. Note that the first subscript

of Fg denotes the mass experiencing the force and the second

subscript denotes the source of the force.

◮ The force of gravitation acts at a distance. ◭

The two objects do not have to be in direct contact for each to

experience the pull by the other. This phenomenon of action
at a distance has led to the concept of fields. An object of

mass m1 induces a gravitational field ψψψ1 (Fig. 1-4) that does

m1

m2

Fg12

Fg21

R12 R12
ˆ

Figure 1-3 Gravitational forces between two masses.

−R

Gravitational 
field ψ1

m1

ˆ

Figure 1-4 Gravitational field ψψψ1 induced by a mass m1.

not physically emanate from the object, yet its influence exists
at every point in space such that, if another object of mass m2

were to exist at a distance R12 from the object of mass m1, the

object of mass m2 would experience a force acting on it equal
to

Fg21
= ψψψ1m2, (1.3)

where

ψψψ1 = −R̂
Gm1

R2
(N/kg). (1.4)

In Eq. (1.4), R̂ is a unit vector that points in the radial direction

away from object m1; therefore, −R̂ points toward m1. The
force due to ψψψ1 acting on a mass m2, for example, is obtained

from the combination of Eqs. (1.3) and (1.4) with R = R12 and
R̂ = R̂12. The field concept may be generalized by defining the

gravitational field ψψψ at any point in space such that, when a

test mass m is placed at that point, the force Fg acting on it is
related to ψψψ by

ψψψ =
Fg

m
. (1.5)

The force Fg may be due to a single mass or a collection of

many masses.
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1-3.2 Electric Fields

The electromagnetic force consists of an electrical component

Fe and a magnetic component Fm.

◮ The electrical force Fe is similar to the gravitational

force, but with two major differences:

(1) the source of the electrical field is electric charge, not

mass, and

(2) even though both types of fields vary inversely
as the square of the distance from their respec-

tive sources, electric charges may have positive or

negative polarity, resulting in a force that may be
attractive or repulsive. ◭

We know from atomic physics that all matter contains a
mixture of neutrons, positively charged protons, and neg-

atively charged electrons with the fundamental quantity of
charge being that of a single electron, usually denoted by

the letter e. The unit by which electric charge is measured is

the coulomb (C), named in honor of the eighteenth-century
French scientist Charles Augustin de Coulomb (1736–1806).

The magnitude of e is

e = 1.6×10−19 (C). (1.6)

The charge of a single electron is qe = −e and that of a proton
is equal in magnitude but opposite in polarity: qp = e.

◮ Coulomb’s experiments demonstrated that:

(1) two like charges repel one another, whereas two
charges of opposite polarity attract,

(2) the force acts along the line joining the charges, and

(3) its strength is proportional to the product of the mag-
nitudes of the two charges and inversely proportional

to the square of the distance between them. ◭

These properties constitute what today is called Coulomb’s
law, which can be expressed mathematically as

Fe21
= R̂12

q1q2

4πε0R2
12

(N) (in free space), (1.7)

where Fe21
is the electrical force acting on charge q2 due

to charge q1 when both are in free space (vacuum), R12 is

+q1

+q2
Force on charge q1
due to charge q2

Fe12

Fe21

R12
R12

ˆ

Figure 1-5 Electric forces on two positive point charges in free

space.

the distance between the two charges, R̂12 is a unit vector

pointing from charge q1 to charge q2 (Fig. 1-5), and ε0 is
a universal constant called the electrical permittivity of free
space [ε0 = 8.854× 10−12 farad per meter (F/m)]. The two
charges are assumed to be isolated from all other charges.

The force Fe12
acting on charge q1 due to charge q2 is

equal to force Fe21
in magnitude, but opposite in direction:

Fe12
= −Fe21

.

The expression given by Eq. (1.7) for the electrical force

is analogous to that given by Eq. (1.2) for the gravitational
force, and we can extend the analogy further by defining the

existence of an electric field intensity E due to any charge q as

E = R̂
q

4πε0R2
(V/m) (in free space), (1.8)

where R is the distance between the charge and the observation

point, and R̂ is the radial unit vector pointing away from the

charge. Figure 1-6 depicts the electric field lines due to a
positive charge. For reasons that will become apparent in later

chapters, the unit for E is volt per meter (V/m).

◮ If a point charge q
′ is present in an electric field E (due

to other charges), the point charge will experience a force
acting on it equal to Fe = q

′E. ◭

Electric charge exhibits two important properties.

◮ The first property of electric charge is encapsulated by

the law of conservation of electric charge, which states
that the (net) electric charge can neither be created nor

destroyed. ◭
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R

Electric 
field lines

+q

ˆ

Figure 1-6 Electric field E due to charge q.

If a volume contains np protons and ne electrons, then its total
charge is

q = npe−nee = (np −ne)e (C). (1.9)

Even if some of the protons were to combine with an equal

number of electrons to produce neutrons or other elementary
particles, the net charge q remains unchanged. In matter,

the quantum mechanical laws governing the behavior of the

protons inside the atom’s nucleus and the electrons outside it
do not allow them to combine.

◮ The second important property of electric charge is

embodied by the principle of linear superposition, which
states that the total vector electric field at a point in space

due to a system of point charges is equal to the vector

sum of the electric fields at that point due to the individual

charges. ◭

This seemingly simple concept allows us in future chapters

to compute the electric field due to complex distributions of
charge without having to be concerned with the forces acting

on each individual charge due to the fields by all of the other

charges.
The expression given by Eq. (1.8) describes the field

induced by an electric charge residing in free space. Let us
now consider what happens when we place a positive point

charge in a material composed of atoms. In the absence of

the point charge, the material is electrically neutral with each
atom having a positively charged nucleus surrounded by a

cloud of electrons of equal but opposite polarity. Hence, at

any point in the material not occupied by an atom, the electric
field E is zero. Upon placing a point charge in the material, as

shown in Fig. 1-7, the atoms experience forces that cause them
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Figure 1-7 Polarization of the atoms of a dielectric material by

a positive charge q.

to become distorted. The center of symmetry of the electron

cloud is altered with respect to the nucleus with one pole of

the atom becoming positively charged relative to the other
pole. Such a polarized atom is called an electric dipole, and

the distortion process is called polarization. The degree of

polarization depends on the distance between the atom and
the isolated point charge, and the orientation of the dipole is

such that the axis connecting its two poles is directed toward
the point charge, as illustrated schematically in Fig. 1-7. The

net result of this polarization process is that the electric fields

of the dipoles of the atoms (or molecules) tend to counteract
the field due to the point charge. Consequently, the electric

field at any point in the material is different from the field that

would have been induced by the point charge in the absence
of the material. To extend Eq. (1.8) from the free-space case

to any medium, we replace the permittivity of free space ε0

with ε , where ε is the permittivity of the material in which the
electric field is measured and is therefore characteristic of that

particular material. Thus,

E = R̂
q

4πεR2
(V/m).

(material with permittivity ε)

(1.10)

Often, ε is expressed in the form

ε = εrε0 (F/m), (1.11)

where εr is a dimensionless quantity called the relative per-
mittivity or dielectric constant of the material. For a vacuum,

εr = 1; for air near the Earth’s surface, εr = 1.0006; and the
values of εr for materials that we have occasion to use in this

book are tabulated in Appendix B.
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In addition to the electric field intensity E, we often find it
convenient to also use a related quantity called the electric flux
density D given by

D = εE (C/m2), (1.12)

with unit of coulomb per square meter (C/m2).

◮ These two electric quantities, E and D, constitute
one of two fundamental pairs of electromagnetic fields.

The second pair consists of the magnetic fields discussed

next. ◭

1-3.3 Magnetic Fields

As early as 800 BC, the Greeks discovered that certain kinds
of stones exhibit a force that attracts pieces of iron. These

stones are now called magnetite (Fe3O4), and the phenomenon

they exhibit is known as magnetism. In the thirteenth century,
French scientists discovered that, when a needle was placed on

the surface of a spherical natural magnet, the needle oriented

itself along different directions for different locations on the
magnet. By mapping the directions indicated by the needle, it

was determined that the magnetic force formed magnetic field

lines that encircled the sphere and appeared to pass through
two points diametrically opposite to each other. These points,

called the north and south poles of the magnet, were found to

exist for every magnet, regardless of its shape. The magnetic-
field pattern of a bar magnet is displayed in Fig. 1-8. It was

also observed that like poles of different magnets repel each
other and unlike poles attract each other.

◮ The attraction–repulsion property for magnets is similar

to the electric force between electric charges, except
for one important difference: Electric charges can be
isolated, but magnetic poles always exist in pairs. ◭

If a permanent magnet is cut into small pieces, no matter how
small each piece is, it will always have a north and a south

pole.
The magnetic lines surrounding a magnet represent the

magnetic flux density B. A magnetic field not only exists

around permanent magnets but also can be created by electric
current. This connection between electricity and magnetism

was discovered in 1819 by the Danish scientist Hans Oersted

(1777–1851), who observed that an electric current in a wire
caused a compass needle placed in its vicinity to deflect

and that the needle turned so that its direction was always

S

N

B

Magnetic
field lines

Figure 1-8 Pattern of magnetic field lines around a bar magnet.
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Figure 1-9 The magnetic field induced by a steady current

flowing in the z direction.

perpendicular to the wire and to the radial line connecting the
wire to the needle. From these observations, he deduced that

the current-carrying wire induced a magnetic field that formed

closed circular loops around the wire (Fig. 1-9). Shortly after
Oersted’s discovery, French scientists Jean-Baptiste Biot and

F lix Savart developed an expression that relates the magnetic

flux density B at a point in space to the current I in the
conductor. Application of their formulation, known today as

the Biot–Savart law, to the situation depicted in Fig. 1-9 for

é
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a very long wire residing in free space leads to the result that
the magnetic flux density B induced by a constant current I

flowing in the z direction is given by

B = φ̂φφ
µ0I

2πr
(T), (1.13)

where r is the radial distance from the current and φ̂φφ is an

azimuthal unit vector expressing the fact that the magnetic
field direction is tangential to the circle surrounding the cur-

rent. The magnetic field is measured in tesla (T), named in

honor of Nikola Tesla (1856–1943). Tesla was an electrical
engineer whose work on transformers made it possible to

transport electricity over long wires without too much loss.

The quantity µ0 is called the magnetic permeability of free
space [µ0 = 4π × 10−7 henry per meter (H/m)], and it is

analogous to the electric permittivity ε0. In fact, as we will

see in Chapter 2, the product of ε0 and µ0 specifies c, which is
the velocity of light in free space:

c =
1√

µ0ε0

= 3×108 (m/s). (1.14)

We noted in Section 1-3.2 that, when an electric charge q
′ is

subjected to an electric field E, it experiences an electric force

Fe = q
′E. Similarly, if a charge q

′ resides in the presence of a
magnetic flux density B, it experiences a magnetic force Fm,

but only if the charge is in motion and its velocity u is in

a direction not parallel (or anti-parallel) to B. In fact, as we
learn in more detail in Chapter 5, Fm points in a direction

perpendicular to both B and u.

To extend Eq. (1.13) to a medium other than free space, µ0

should be replaced with µ , which is the magnetic permeability
of the material in which B is being observed. The majority of

natural materials are nonmagnetic, meaning that they exhibit
a magnetic permeability µ = µ0. For ferromagnetic materials,

such as iron and nickel, µ can be much larger than µ0. The

magnetic permeability µ accounts for magnetization proper-
ties of a material. In analogy with Eq. (1.11), µ of a particular

material can be defined as

µ = µrµ0 (H/m), (1.15)

where µr is a dimensionless quantity called the relative mag-
netic permeability of the material. The values of µr for com-

monly used ferromagnetic materials are given in Appendix B.

◮ We stated earlier that E and D constitute one of two
pairs of electromagnetic field quantities. The second pair

is B and the magnetic field intensity H, which are related

to each other through µ :

B = µH. (1.16)

◭

1-3.4 Static and Dynamic Fields

In EM, the time variable t, or more precisely if and how

electric and magnetic quantities vary with time, is of crucial
importance. Before we elaborate further on the significance of

this statement, it will prove useful to define the following time-

related adjectives unambiguously:

• Static—describes a quantity that does not change with

time. The term dc (i.e., direct current) is often used as a

synonym for static to describe not only currents, but other
electromagnetic quantities as well.

• Dynamic—refers to a quantity that does vary with time,
but conveys no specific information about the character of

the variation.

• Waveform—refers to a plot of the magnitude profile of a

quantity as a function of time.

• Periodic—a quantity is periodic if its waveform repeats

itself at a regular interval, namely its period T . Examples
include the sinusoid and the square wave. By application

of the Fourier series analysis technique, any periodic

waveform can be expressed as the sum of an infinite series
of sinusoids.

• Sinusoidal—also called ac (i.e., alternating current),
describes a quantity that varies sinusoidally (or cosinu-

soidally) with time.

In view of these terms, let us now examine the relationship
between the electric field E and the magnetic flux density B.

Because E is governed by the charge q and B is governed by

I = dq/dt, one might expect that E and B must be somehow
related to each other. As we learn later, they may or may not

be interrelated, depending on whether I is static or dynamic.
Let us start by examining the dc case in which I remains

constant with time. Consider a small section of a beam of

charged particles, all moving at a constant velocity. The
moving charges constitute a dc current. The electric field due

to that section of the beam is determined by the total charge q

contained in it. The magnetic field does not depend on q,
but rather on the rate of charge (current) flowing through that

section. Few charges moving very fast can constitute the same
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Table 1-3 The three branches of electromagnetics.

Branch Condition Field Quantities (Units)

Electrostatics Stationary charges Electric field intensity E (V/m)

(∂q/∂ t = 0) Electric flux density D (C/m2)

D = εE

Magnetostatics Steady currents Magnetic flux density B (T)

(∂ I/∂ t = 0) Magnetic field intensity H (A/m)

B = µH

Dynamics Time-varying currents E, D, B, and H

(time-varying fields) (∂ I/∂ t 6= 0) (E,D) coupled to (B,H)

current as many charges moving slowly. In these two cases, the

induced magnetic field is the same because the current I is the
same, but the induced electric field is quite different because

the numbers of charges are not the same.

Electrostatics and magnetostatics refer to the study of EM
under the specific, respective conditions of stationary charges

and dc currents. They represent two independent branches, so

characterized because the induced electric and magnetic fields
do not couple to each other. Dynamics, the third and more

general branch of electromagnetics, involves time-varying
fields induced by time-varying sources, that is, currents and
associated charge densities. If the current associated with the

beam of moving charged particles varies with time, then the
amount of charge present in a given section of the beam also

varies with time, and vice versa. As we will see in Chapter 6,

the electric and magnetic fields become coupled to each other
in that case.

◮ A time-varying electric field generates a time-varying

magnetic field, and vice versa. ◭

Table 1-3 provides a summary of the three branches of

electromagnetics.
The electric and magnetic properties of materials are char-

acterized by the parameters ε and µ , respectively. A third
fundamental parameter also needed is the conductivity of a

material σ , which is measured in siemens per meter (S/m).

The conductivity characterizes the ease with which charges
(electrons) can move freely in a material. If σ = 0, the charges

do not move more than atomic distances, and the material

is said to be a perfect dielectric. Conversely, if σ = ∞, the
charges can move very freely throughout the material, which

is then called a perfect conductor.

Table 1-4 Constitutive parameters of materials.

Parameter Units Free-Space Value

Electrical

permittivity ε
F/m ε0 = 8.854×10−12

≈ 1

36π
×10−9

Magnetic

permeability µ H/m µ0 = 4π ×10−7

Conductivity σ S/m 0

◮ The parameters ε , µ , and σ are often referred to as

the constitutive parameters of a material (Table 1-4).
A medium is said to be homogeneous if its constitutive

parameters are constant throughout the medium. ◭

Concept Question 1-1: What are the four fundamental
forces of nature, and what are their relative strengths?

Concept Question 1-2: What is Coulomb’s law? State
its properties.

Concept Question 1-3: What are the two important

properties of electric charge?

(continued on p. 38)
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Technology Brief 1: LED Lighting

After lighting our homes, buildings, and streets for
over 100 years, the incandescent light bulb created
by Thomas Edison (1879) will soon become a relic of
the past. Many countries have taken steps to phase it
out and replace it with a much more energy-efficient
alternative: the light-emitting diode (LED).

Light Sources

The three dominant sources of electric light are
the incandescent, fluorescent, and LED light bulbs
(Fig. TF1-1). We examine each briefly.

Incandescent Light Bulb

◮ Incandescence is the emission of light from a hot
object due to its temperature. ◭

By passing electric current through a thin tungsten fila-
ment, which basically is a resistor, the filament’s temper-
ature rises to a very high level, causing the filament to
glow and emit visible light. The intensity and shape of
the emitted spectrum depends on the filament’s temper-
ature. A typical example is shown by the green curve in
Fig. TF1-2. The tungsten spectrum is similar in shape to
that of sunlight (yellow curve in Fig. TF1-2), particularly
in the blue and green parts of the spectrum (400–
550 nm). Despite the relatively strong (compared with
sunlight) yellow light emitted by incandescent sources,
the quasi-white light they produce has a quality that the
human eye finds rather comfortable.

◮ The incandescent light bulb is significantly less
expensive to manufacture than the fluorescent and
LED light bulbs, but it is far inferior with re-
gard to energy efficacy and operational lifetime
(Fig. TF1-7). ◭

Of the energy supplied to an incandescent light bulb,
only about 2% is converted into light, with the remainder
wasted as heat! In fact, the incandescent light bulb is
the weakest link in the overall conversion sequence from
coal to light (Fig. TF1-3).

(a)

(b)

(c)

Figure TF1-1 (a) Incandescent light bulb; (b) fluorescent

mercury vapor lamp; (c) white LED.

Fluorescent Light Bulb

To fluoresce means to emit radiation in consequence to
incident radiation of a shorter wavelength. By passing a
stream of electrons between two electrodes at the ends
of a tube (Fig. TF1-1(b)) containing mercury gas (or the
noble gases neon, argon, and xenon) at very low pres-
sure, the electrons collide with the mercury atoms, caus-
ing them to excite their own electrons to higher energy
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Figure TF1-2 Spectra of common sources of visible light.

levels. When the excited electrons return to the ground
state, they emit photons at specific wavelengths, mostly
in the ultraviolet part of the spectrum. Consequently, the
spectrum of a mercury lamp is concentrated into narrow
lines, as shown by the blue curve in Fig. TF1-2.

◮ To broaden the mercury spectrum into one that
resembles that of white light, the inside surface of the
fluorescent light tube is coated with phosphor parti-
cles [such as yttrium aluminum garnet (YAG) doped
with cerium]. The particles absorb the UV energy
and then reradiate it as a broad spectrum extending
from blue to red; hence the name fluorescent . ◭

Light-Emitting Diode

The LED contained inside the polymer jacket in
Fig. TF1-1(c) is a p-n junction diode fabricated on a
semiconductor chip. When a voltage is applied in a
forward-biased direction across the diode (Fig. TF1-4),
current flows through the junction and some of the
streaming electrons are captured by positive charges
(holes). Associated with each electron-hole recombining
act is the release of energy in the form of a photon.

Electrons

V

Holes

Photon Photon

e 

_I

_
+

p-type n-type

Figure TF1-4 Photons are emitted when electrons combine

with holes.

Coal

Power plant

E1 = 0.35

Transmission lines

E2 = 0.92

Light

E3 = 0.024

Overall e!ciency for conversion of chemical energy to light energy is 

E1 × E2 × E3 = 0.35 × 0.92 × 0.024 ═ 0.8%

Figure TF1-3 Lighting efficiency. (Source: National Research Council, 2009.)
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Figure TF1-5 The addition of spectra from three monochro-

matic LEDs.

◮ The wavelength of the emitted photon depends on
the diode’s semiconductor material. The materials
most commonly used are aluminum gallium arsenide
(AIGaAs) to generate red light, indium gallium nitride
(InGaN) to generate blue light, and aluminum gallium
phosphide (AIGaP) to generate green light. In each
case, the emitted energy is confined to a narrow
spectral band. ◭

Two basic techniques are available for generating
white light with LEDs: (a) RGB and (b) blue/conversion.
The RGB approach involves the use of three monochro-
matic LEDs whose primary colors (red, green, and blue)
are mixed to generate an approximation of a white-
light spectrum. An example is shown in Fig. TF1-5. The
advantage of this approach is that the relative intensities
of the three LEDs can be controlled independently,
thereby making it possible to “tune” the shape of the
overall spectrum to generate an esthetically pleasing
color of “white.” The major shortcoming of the RGB
technique is cost: manufacturing three LEDs instead of
just one.
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Figure TF1-6 Phosphor-based white LED emission spectrum.

With the blue LED/phosphor conversion technique,
a blue LED is used with phosphor powder particles
suspended in the epoxy resin that encapsulates it. The
blue light emitted by the LED is absorbed by the phos-
phor particles and then reemitted as a broad spectrum
(Fig. TF1-6). To generate high-intensity light, several
LEDs are clustered into a single enclosure.

Comparison

◮ Luminous efficacy (LE) is a measure of how
much light in lumens is produced by a light source
for each watt of electricity consumed by it. ◭

Of the three types of light bulbs we discussed, the
incandescent light bulb is by far the most inefficient
and its useful lifespan is the shortest (Fig. TF1-7).
For a typical household scenario, the 10-year cost—
including electricity and replacement cost—is several
times smaller for the LED than for the alternatives.
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Parameter Type of Light Bulb

Luminous Efficacy

(lumens/W)

Incandescent

~12 ~40 ~70 ~150

Useful Lifetime

(hours)
~1000 ~20,000 ~60,000 ~100,000

Purchase Price ~$1.50 ~$5 ~$10 ~$5

Estimated Cost

over 10 Years
~$410 ~$110 ~$100 ~$40

Fluorescent White LED

Circa 2010 Circa 2025

Figure TF1-7 Even though the initial purchase price of a white LED is several times greater than that of the incandescent light bulb, the

total 10-year cost of using the LED is only one-fourth of the incandescent’s (in 2010) and is expected to decrease to one-tenth by 2025.



38 CHAPTER 1 INTRODUCTION: WAVES AND PHASORS

Concept Question 1-4: What do the electrical permit-
tivity and magnetic permeability of a material account

for?

Concept Question 1-5: What are the three branches

and associated conditions of electromagnetics?

Exercise 1-1: Given charges q1 = 10 mC, q2 = −10 mC,

and q3 = 5 mC, all in free space, what is the direction of

the force acting on charge q3?

2 m 2 m

x

q3

q1 q2

y

2 m

Figure E1.1

Answer: Along +x̂ direction. [See EM (the “ EM ” symbol

refers to the book website: em8e.eecs.umich.edu).]

Exercise 1-2: Two parallel, very long, wires carry cur-
rents I1 and I2. The magnetic field due to current I1 alone

is B1. What is the magnetic field due to both currents at a

point midway between the wires if

(a) I1 = I2 and both currents flow along the +ŷ direction?

(b) I1 = I2, but I2 flows along the −ŷ direction?

Figure E1.2

I1 I2

B = ?

Answer: (a) B = 0, (b) B = 2B1. (See EM .)

1-4 Traveling Waves

Waves are a natural consequence of many physical processes:

Waves manifest themselves as ripples on the surfaces of

oceans and lakes; sound waves constitute pressure distur-
bances that travel through air; mechanical waves modulate

stretched strings; and electromagnetic waves carry electric

and magnetic fields through free space and material media as
microwaves, light, and X-rays. All of these various types of

waves exhibit a number of common properties, including:

• Moving waves carry energy.

• Waves have velocity; it takes time for a wave to travel

from one point to another. Electromagnetic waves in a
vacuum travel at a speed of 3×108 m/s, and sound waves

in air travel at a speed approximately a million times

slower, specifically 330 m/s. Sound waves cannot travel
in a vacuum.

• Many waves exhibit a property called linearity. Waves
that do not affect the passage of other waves are called

linear because they can pass right through each other.
The total of two linear waves is simply the sum of

the two waves as they would exist separately. Electro-

magnetic waves are linear, as are sound waves. When
two people speak to one another, the sound waves they

generate do not interact with one another but simply

pass through each other. Water waves are approximately
linear; the expanding circles of ripples caused by two

pebbles thrown into two locations on a lake’s surface do

not affect each other. Although the interaction of the two
circles may exhibit a complicated pattern, it is simply

the linear superposition of two independent expanding

circles.

Waves are of two types: transient waves caused by sudden

disturbances and continuous periodic waves generated by a

repetitive source. We encounter both types of waves in this
book, but most of our discussion deals with the propagation of

continuous waves that vary sinusoidally with time.
An essential feature of a propagating wave is that it is a

self-sustaining disturbance of the medium through which it

travels. If this disturbance varies as a function of one space
variable, such as the vertical displacement of the string shown

in Fig. 1-10, we call the wave one-dimensional. The vertical

displacement varies with time and with the location along
the length of the string. Even though the string rises up

into a second dimension, the wave is only one-dimensional

http://em8e.eecs.umich.edu
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u

Figure 1-10 A one-dimensional wave traveling on a string.

because the disturbance varies with only one space variable.

A two-dimensional wave propagates out across a surface,
like the ripples on a pond (Fig. 1-11(a)), and its disturbance

can be described by two space variables. By extension, a

three-dimensional wave propagates through a volume, and its
disturbance may be a function of all three space variables.

Three-dimensional waves may take on many different shapes;

they include plane waves, cylindrical waves, and spherical
waves. A plane wave is characterized by a disturbance that

at a given point in time has uniform properties across an

infinite plane perpendicular to its direction of propagation
(Fig. 1-11(b)). Similarly, for cylindrical and spherical waves,

the disturbances are uniform across cylindrical and spherical

surfaces (Figs. 1-11(b) and (c)).
In the material that follows, we examine some of the basic

properties of waves by developing mathematical formulations

that describe their functional dependence on time and space
variables. To keep the presentation simple, we limit our

discussion to sinusoidally varying waves whose disturbances
are functions of only one space variable, and we defer the

discussion of more complicated waves to later chapters.

1-4.1 Sinusoidal Waves in a Lossless Medium

Regardless of the mechanism responsible for generating them,

all linear waves can be described mathematically in common

terms.

◮ A medium is said to be lossless if it does not attenuate

the amplitude of the wave traveling within it or on its
surface. ◭

By way of an example, let us consider a wave traveling on

a lake’s surface, and let us assume for the time being that

frictional forces can be ignored, thereby allowing a wave
generated on the water’s surface to travel indefinitely with no

loss in energy. If y denotes the height of the water’s surface

(a) Circular waves (c) Spherical wave(b) Plane and cylindrical waves

Plane wavefront
Two-dimensional wave

Cylindrical wavefront Spherical wavefront

Figure 1-11 Examples of two-dimensional and three-dimensional waves: (a) circular waves on a pond, (b) a plane light wave exciting a

cylindrical light wave through the use of a long narrow slit in an opaque screen, and (c) a sliced section of a spherical wave.
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relative to the mean height (undisturbed condition) and x

denotes the distance of wave travel, the functional dependence

of y on time t and the spatial coordinate x has the general form

y(x, t) = Acos

(
2πt

T
− 2πx

λ
+ φ0

)
(m), (1.17)

where A is the amplitude of the wave, T is its time period,

λ is its spatial wavelength, and φ0 is a reference phase. The
quantity y(x, t) also can be expressed in the form

y(x, t) = Acosφ(x, t) (m), (1.18)

where

φ(x, t) =

(
2πt

T
− 2πx

λ
+ φ0

)
(rad). (1.19)

The angle φ(x, t) is called the phase of the wave, and it should

not be confused with the reference phase φ0, which is constant

with respect to both time and space. Phase is measured by the
same units as angles, that is, radians (rad) or degrees, with 2π
radians = 360◦.

Let us first analyze the simple case when φ0 = 0:

y(x, t) = Acos

(
2πt

T
− 2πx

λ

)
(m). (1.20)

The plots in Fig. 1-12 show the variation of y(x, t) with x at

t = 0 and with t at x = 0. The wave pattern repeats itself at a
spatial period λ along x and at a temporal period T along t.

If we take time snapshots of the water’s surface, the height
profile y(x, t) would exhibit the sinusoidal patterns shown

in Fig. 1-13. All three profiles correspond to three different

values of t, and the spacing between peaks is equal to the
wavelength λ , even though the patterns are shifted relative to

one another because they correspond to different observation

times. Because the pattern advances along the +x direction at
progressively increasing values of t, y(x, t) is called a wave

traveling in the +x direction. If we track a given point on

the wave, such as the peak P, and follow it in time, we can
measure the phase velocity of the wave. At the peaks of the

wave pattern, the phase φ(x, t) is equal to zero or multiples

of 2π radians. Thus,

φ(x, t)=
2πt

T
−2πx

λ
=2nπ , n = 0,1,2, . . . (1.21)

Had we chosen any other fixed height of the wave, say y0,

and monitored its movement as a function of t and x, this

again would have been equivalent to setting the phase φ(x, t)
constant such that

y(x, t) = y0 = Acos

(
2πt

T
− 2πx

λ

)
(1.22)

(a) y(x, t) versus x at t = 0

(b) y(x, t) versus t at x = 0
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T

y(0, t)
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At x = 0

−A

0 λ
2

3λ
2

A

y(x, 0)

x

At t = 0

λ

λ

Figure 1-12 Plots of y(x, t) = Acos
(

2πt

T
− 2πx

λ

)
as a function

of (a) x at t = 0 and (b) t at x = 0.

or

2πt

T
− 2πx

λ
= cos−1

(
y0

A

)
= constant. (1.23)

The apparent velocity of that fixed height is obtained by taking

the time derivative of Eq. (1.23), so

2π

T
− 2π

λ

dx

dt
= 0, (1.24)

which gives the phase velocity up as

up =
dx

dt
=

λ

T
(m/s). (1.25)

◮ The phase velocity, also called the propagation veloc-
ity, is the velocity of the wave pattern as it moves across

the water’s surface. ◭

The water itself mostly moves up and down; when the wave
moves from one point to another, the water does not move

physically along with it.
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Figure 1-13 Plots of y(x, t) = Acos
(

2πt

T
− 2πx

λ

)
as a function

of x at (a) t = 0, (b) t = T/4, and (c) t = T/2. Note that the wave

moves in the +x direction with a velocity up = λ/T .

The frequency of a sinusoidal wave, f , is the reciprocal of

its time period T :

f =
1

T
(Hz). (1.26)

Combining the preceding two equations yields

up = f λ (m/s). (1.27)

The wave frequency f is measured in cycles per second and

has been assigned the unit hertz (Hz), named in honor of the

German physicist Heinrich Hertz (1857–1894), who pioneered
the development of radio-wave instrumentation.

Using Eq. (1.26), Eq. (1.20) can be rewritten in a more

compact form as

y(x, t) = Acos

(
2π f t − 2π

λ
x

)

= Acos(ωt −β x),

(wave moving along +x direction)

(1.28)

where ω is the angular velocity of the wave and β is its phase
constant (or wavenumber), defined as

ω = 2π f (rad/s),

β =
2π

λ
(rad/m).

(1.29a)

(1.29b)

In terms of these two quantities,

up = f λ =
ω

β
. (1.30)

So far, we have examined the behavior of a wave traveling
in the +x direction. To describe a wave traveling in the −x

direction, we reverse the sign of x in Eq. (1.28):

y(x, t) = Acos(ωt + β x).

(wave moving along −x direction)

(1.31)

◮ The direction of wave propagation is easily determined

by inspecting the signs of the t and x terms in the

expression for the phase φ(x, t) given by Eq. (1.19): If one
of the signs is positive and the other is negative, then the

wave is traveling in the positive x direction, and if both

signs are positive or both are negative, then the wave is
traveling in the negative x direction. The constant phase

reference φ0 has no influence on either the speed or the

direction of wave propagation. ◭

We now examine the role of the phase reference φ0 given

previously in Eq. (1.17). If φ0 is not zero, then Eq. (1.28)

should be written as

y(x, t) = Acos(ωt −β x + φ0). (1.32)

A plot of y(x, t) as a function of x at a specified t or as
a function of t at a specified x is shifted in space or time,

respectively, relative to a plot with φ0 = 0 by an amount
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φ0 = π/4 φ0 = −π/4

T
t

T
2

3T
2

y

−A

A

Leads ahead of
reference wave Lags behind reference wave

Reference wave  (φ0 = 0)

Figure 1-14 Plots of y(0, t) = Acos [(2πt/T )+φ0] for three different values of the reference phase φ0.

proportional to φ0. This is illustrated by the plots shown in

Fig. 1-14. We observe that when φ0 is positive, y(t) reaches
its peak value, or any other specified value, sooner than when

φ0 = 0. Thus, the wave with φ0 = π/4 is said to lead the wave

with φ0 = 0 by a phase lead of π/4; and similarly, the wave
with φ0 =−π/4 is said to lag the wave with φ0 = 0 by a phase
lag of π/4. A wave function with a negative φ0 takes longer to

reach a given value of y(t), such as its peak, than the zero-
phase reference function.

◮ When its value is positive, φ0 signifies a phase lead in
time, and when it is negative, it signifies a phase lag. ◭

Exercise 1-3: Consider the red wave shown in Fig. E1.3.
What is the wave’s (a) amplitude, (b) wavelength, and

(c) frequency given that its phase velocity is 6 m/s?

Figure E1.3

-2
-4
-6

6
4
2
0

21 3 4 5 6 7 8 9 10
x (cm)

υ (volts)

Answer: (a) A = 6 V, (b) λ = 4 cm, (c) f = 150 Hz.

(See EM .)

Exercise 1-4: The wave shown in red in Fig. E1.4 is given

by υ = 5cos2πt/8. Of the following four equations:

(1) υ = 5cos(2πt/8−π/4),

(2) υ = 5cos(2πt/8 + π/4),

(3) υ = −5cos(2πt/8−π/4),

(4) υ = 5sin2πt/8,

(a) which equation applies to the green wave? (b) which

equation applies to the blue wave?

Figure E1.4

-5

5

0 t (s)

υ (volts)

21 3 4 5 6 7 8 9 10 11 12 13 14

Answer: (a) #2, (b) #4. (See EM .)
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Module 1.1 Sinusoidal Waveforms Learn how the shape of the waveform is related to the amplitude, frequency, and
reference phase angle of a sinusoidal wave.

Exercise 1-5: The electric field of a traveling electromag-

netic wave is given by

E(z, t) = 10cos(π ×107
t + πz/15 + π/6) (V/m).

Determine (a) the direction of wave propagation, (b) the

wave frequency f , (c) its wavelength λ , and (d) its phase
velocity up.

Answer: (a) −z direction, (b) f = 5 MHz, (c) λ = 30 m,
(d) up = 1.5×108 m/s. (See EM .)

1-4.2 Sinusoidal Waves in a Lossy Medium

If a wave is traveling in the x direction in a lossy medium,
its amplitude decreases as e

−αx. This factor is called the

attenuation factor, and α is called the attenuation constant
of the medium and its unit is neper per meter (Np/m). Thus, in
general,

y(x, t) = Ae
−αx cos(ωt −β x + φ0). (1.33)

The wave amplitude is now Ae
−αx, not just A. Figure 1-15

shows a plot of y(x, t) as a function of x at t = 0 for A = 10 m,

λ = 2 m, α = 0.2 Np/m, and φ0 = 0. Note that the envelope of
the wave pattern decreases as e

−αx.
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Wave envelope
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Figure 1-15 Plot of y(x) = (10e
−0.2x cosπx) meters. Note that the envelope is bounded between the curve given by 10e

−0.2x and its

mirror image.

The real unit of α is (1/m); the neper (Np) part is a dimen-

sionless, artificial adjective traditionally used as a reminder
that the unit (Np/m) refers to the attenuation constant of

the medium, α . A similar practice is applied to the phase

constant β by assigning it the unit (rad/m) instead of just (l/m).

Concept Question 1-6: How can you tell if a wave is
traveling in the positive x direction or the negative x

direction?

Concept Question 1-7: How does the envelope of the

wave pattern vary with distance in (a) a lossless medium

and (b) a lossy medium?

Concept Question 1-8: Why does a negative value

of φ0 signify a phase lag?

Example 1-1: Sound Wave in Water

An acoustic wave traveling in the x direction in a fluid (liquid
or gas) is characterized by a differential pressure p(x, t). The

unit for pressure is newton per square meter (N/m2). Find an

expression for p(x, t) for a sinusoidal sound wave traveling in
the positive x direction in water given that the wave frequency

is 1 kHz, the velocity of sound in water is 1.5 km/s, the wave

amplitude is 10 N/m2, and p(x, t) was observed to be at its
maximum value at t = 0 and x = 0.25 m. Treat water as a

lossless medium.

Solution: According to the general form given by Eq. (1.17)

for a wave traveling in the positive x direction,

p(x, t) = A cos

(
2π

T
t − 2π

λ
x + φ0

)
(N/m2).

The amplitude A = 10 N/m2, T = 1/ f = 10−3 s, and from

up = f λ ,

λ =
up

f
=

1.5×103

103
= 1.5 m.

Hence,

p(x, t) = 10cos

(
2π ×103

t − 4π

3
x + φ0

)
(N/m2).

Since at t = 0 and x = 0.25 m, p(0.25,0) = 10 N/m2, we have

10 = 10cos

(−4π

3
0.25 + φ0

)
= 10cos

(−π

3
+ φ0

)
,

which yields the result (φ0 −π/3) = cos−1(1), or φ0 = π/3.
Hence,

p(x, t) = 10cos

(
2π ×103

t − 4π

3
x +

π

3

)
(N/m2).
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Module 1.2 Traveling Waves Learn how the shape of a traveling wave is related to its frequency and wavelength and to
the attenuation constant of the medium.

Example 1-2: Power Loss

A laser beam of light propagating through the atmosphere is

characterized by an electric field given by

E(x, t) = 150e
−0.03x cos(3×1015

t −107
x) (V/m),

where x is the distance from the source in meters. The attenu-

ation is due to absorption by atmospheric gases. Determine

(a) the direction of wave travel,

(b) the wave velocity, and

(c) the wave amplitude at a distance of 200 m.

Solution: (a) Since the coefficients of t and x in the argument

of the cosine function have opposite signs, the wave must be
traveling in the +x direction.

(b)

up =
ω

β
=

3×1015

107
= 3×108 m/s,

and this is equal to c, which is the velocity of light in free
space.

(c) At x = 200 m, the amplitude of E(x, t) is

150e
−0.03×200 = 0.37 (V/m).

Exercise 1-6: Consider the red wave shown in Fig. E1.6.
What is the wave’s (a) amplitude (at x = 0), (b) wave-

length, and (c) attenuation constant?
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Figure E1.6

-5

5

0 x (cm)

υ (volts)

(2.8, 4.23)
(8.4, 3.02)

21 3 4 5 6 7 8 9 10 11 12 13 14

Answer: (a) 5 V, (b) 5.6 cm, (c) α = 0.06 Np/cm.
(See EM .)

Exercise 1-7: The red wave shown in Fig. E1.7 is given
by υ = 5cos4πx (V). What expression is applicable to

(a) the blue wave and (b) the green wave?

Figure E1.7

-5

5

0 x (m)

υ (volts)

0.25 0.5 0.75 1.0 1.25

5 V

3.52 V

1.01 V

Answer: (a) υ = 5e
−0.7x cos4πx (V),

(b) υ = 5e
−3.2x cos4πx (V). (See EM .)

Exercise 1-8: An electromagnetic wave is propagating in

the z direction in a lossy medium with attenuation con-

stant α = 0.5 Np/m. If the wave’s electric-field amplitude
is 100 V/m at z = 0, how far can the wave travel before

its amplitude is reduced to (a) 10 V/m, (b) 1 V/m, and

(c) 1 µV/m?

Answer: (a) 4.6 m, (b) 9.2 m, (c) 37 m. (See EM .)

1-5 The Electromagnetic Spectrum

Visible light belongs to a family of waves arranged according

to frequency and wavelength along a continuum called the

electromagnetic spectrum (Fig. 1-16). Other members of this
family include gamma rays, X-rays, infrared waves, and radio

waves. Generically, they all are called EM waves because they

share the following fundamental properties:

• A monochromatic (single frequency) EM wave consists

of electric and magnetic fields that oscillate at the same
frequency f .

• The phase velocity of an EM wave propagating in a

vacuum is a universal constant given by the velocity of
light c, defined earlier by Eq. (1.14).

• In a vacuum, the wavelength λ of an EM wave is related
to its oscillation frequency f by

λ =
c

f
. (1.34)

Whereas all monochromatic EM waves share these properties,

each is distinguished by its own wavelength λ , or equivalently

by its own oscillation frequency f .
The visible part of the EM spectrum shown in Fig. 1-16

covers a very narrow wavelength range extending between

λ = 0.4 µm (violet) and λ = 0.7 µm (red). As we move
progressively toward shorter wavelengths, we encounter the

ultraviolet, X-ray, and gamma-ray bands, each so named

because of historical reasons associated with the discovery
of waves with those wavelengths. On the other side of the

visible spectrum lie the infrared band and then the microwave
part of the radio region. Because of the link between λ and

f given by Eq. (1.34), each of these spectral ranges may be

specified in terms of its wavelength range or its frequency
range. In practice, however, a wave is specified in terms of

its wavelength λ if λ < 1 mm, which encompasses all parts

of the EM spectrum except for the radio region, and the wave
is specified in terms of its frequency f if λ > 1 mm (i.e., in

the radio region). A wavelength of 1 mm corresponds to a

frequency of 3×1011 Hz = 300 GHz in free space.
The radio spectrum consists of several individual bands,

as shown in the chart of Fig. 1-17 (see p. 48). Each band

covers one decade of the radio spectrum and has a letter
designation based on a nomenclature defined by the Inter-

national Telecommunication Union. Waves of different fre-
quencies have different applications because they are excited

by different mechanisms, and the properties of an EM wave

propagating in a nonvacuum material may vary considerably
from one band to another.

Although no precise definition exists for the extent of the

microwave band, it is conventionally regarded to cover the full
ranges of the UHF, SHF, and EHF bands. The EHF band is

sometimes referred to as the millimeter-wave band because
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1 fm 1 pm 1 nm1 Å

1 EHz 1 PHz 1 THz 1 GHz 1 MHz 1 kHz 1 Hz
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Ionosphere opaque

Figure 1-16 The electromagnetic spectrum.

the wavelength range covered by this band extends from 1 mm

(300 GHz) to 1 cm (30 GHz).

Concept Question 1-9: What are the three fundamental
properties of EM waves?

Concept Question 1-10: What is the range of frequen-

cies covered by the microwave band?

Concept Question 1-11: What is the wavelength range
of the visible spectrum? What are some of the applications

of the infrared band?

1-6 Review of Complex Numbers

Any complex number z can be expressed in rectangular form
as

z = x + jy, (1.35)

where x and y are the real (Re) and imaginary (Im) parts of z,

respectively, and j =
√
−1. That is,

x = Re(z), y = Im(z). (1.36)

Alternatively, z may be cast in polar form as

z = |z|e jθ = |z| θ (1.37)

where |z| is the magnitude of z, θ is its phase angle,and θ

is a useful shorthand representation for e
jθ . Applying Euler’s

identity,

e
jθ = cosθ + j sinθ , (1.38)

we can convert z from polar form, as in Eq. (1.37), into

rectangular form,

z = |z|e jθ = |z|cosθ + j|z|sinθ . (1.39)

This leads to the relations

x = |z|cosθ , y = |z|sin θ ,

|z| = +
√

x2 + y2 , θ = tan−1(y/x).

(1.40)

(1.41)

The two forms are illustrated graphically in Fig. 1-18. When
using Eq. (1.41), care should be taken to ensure that θ is

in the proper quadrant. Also note that, since |z| is a positive

quantity, only the positive root in Eq. (1.41) is applicable. This
is denoted by the + sign above the square-root sign.

The complex conjugate of z, denoted with a star superscript

(or asterisk), is obtained by replacing j (wherever it appears)
with − j, so that

z
∗ = (x + jy)∗ = x− jy = |z|e− jθ = |z| −θ . (1.42)

The magnitude |z| is equal to the positive square root of the

product of z and its complex conjugate:

|z| = +
√

zz∗ . (1.43)
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Figure 1-17 Individual bands of the radio spectrum and their primary allocations in the U.S. [See expandable version on book website:

em8e.eecs.umich.edu.]

http://em8e.eecs.umich.edu


1-6 REVIEW OF COMPLEX NUMBERS 49

Module 1.3 Phase Lead/Lag Examine sinusoidal waveforms with different values of the reference phase constant φ0.

We now highlight some of the properties of complex algebra

that will be encountered in future chapters.

Equality: If two complex numbers z1 and z2 are given by

z1 = x1 + jy1 = |z1|e jθ1 , (1.44)

z2 = x2 + jy2 = |z2|e jθ2 , (1.45)

then z1 = z2 if and only if x1 = x2 and y1 = y2 or, equivalently,

|z1| = |z2| and θ1 = θ2.

Addition:
z1 + z2 = (x1 + x2)+ j(y1 + y2). (1.46)

Multiplication:

z1z2 = (x1 + jy1)(x2 + jy2)

= (x1x2 − y1y2)+ j(x1y2 + x2y1), (1.47a)

θ
(z)

y
z

x

|z|

x = |z| cos θ

y = |z| sin θ

θ = tan−1 (y/x)

|z| =    x2 + y2+

(z)

Figure 1-18 Relation between rectangular and polar represen-

tations of a complex number z = x+ jy = |z|e jθ .
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or

z1z2 = |z1|e jθ1 · |z2|e jθ2

= |z1||z2|e j(θ1+θ2)

= |z1||z2|[cos(θ1 + θ2)+ j sin(θ1 + θ2)]. (1.47b)

Division: For z2 6= 0,

z1

z2

=
x1 + jy1

x2 + jy2

=
(x1 + jy1)

(x2 + jy2)
· (x2 − jy2)

(x2 − jy2)

=
(x1x2 + y1y2)+ j(x2y1 − x1y2)

x2
2 + y2

2

, (1.48a)

or

z1

z2

=
|z1|e jθ1

|z2|e jθ2
=

|z1|
|z2|

e
j(θ1−θ2)

=
|z1|
|z2|

[cos(θ1 −θ2)+ j sin(θ1 −θ2)]. (1.48b)

Powers: For any positive integer n,

z
n = (|z|e jθ )n

= |z|ne
jnθ = |z|n(cosnθ + j sinnθ ), (1.49)

z
1/2 = ±|z|1/2

e
jθ/2 = ±|z|1/2[cos(θ/2)+ j sin(θ/2)].

(1.50)

Useful Relations:

−1 = e
jπ = e

− jπ = 1 180◦ ,

j = e
jπ/2 = 1 90◦ , (1.51)

− j = −e
jπ/2 = e

− jπ/2 = 1 −90◦ , (1.52)

√
j = (e jπ/2)1/2 = ±e

jπ/4 =
±(1 + j)√

2
, (1.53)

√
− j = ±e

− jπ/4 =
±(1− j)√

2
. (1.54)

Example 1-3: Working with Complex
Numbers

Given two complex numbers

V = 3− j4, I = −(2 + j3),

θI

θV

|V |

V

|I |

I

−2

−3

−4

3

Figure 1-19 Complex numbers V and I in the complex plane

(Example 1-3).

(a) express V and I in polar form, and find (b) VI, (c) VI
∗,

(d) V/I, and (e)
√

I .

Solution:

(a) |V | = +
√

VV ∗

= +
√

(3− j4)(3 + j4) = +
√

9 + 16 = 5,

θV = tan−1(−4/3) = −53.1◦,

V = |V |e jθV = 5e
− j53.1◦ = 5 −53.1◦ ,

|I| = +
√

22 + 32 = +
√

13 = 3.61.

Since I = (−2− j3) is in the third quadrant in the complex

plane (Fig. 1-19),

θI = 180◦+ tan−1
(

3
2

)
= 236.3◦,

I = 3.61 236.3◦ .

(b) VI = 5e
− j53.1◦ ×3.61e

j236.3◦

= 18.03e
j(236.3◦−53.1◦) = 18.03e

j183.2◦.

(c) VI
∗ = 5e

− j53.1◦ ×3.61e
− j236.3◦

= 18.03e
− j289.4◦ = 18.03e

j70.6◦.

(d)
V

I
=

5e
− j53.1◦

3.61e j236.3◦ = 1.39e
− j289.4◦ = 1.39e

j70.6◦.

(e)
√

I =
√

3.61e j236.3◦

= ±
√

3.61 e
j236.3◦/2 = ±1.90e

j118.15◦.
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Technology Brief 2: Solar Cells

A solar cell is a photovoltaic device that converts solar
energy into electricity. The conversion process relies
on the photovoltaic effect , which was first reported
by 19-year-old Edmund Bequerel in 1839 when he
observed that a platinum electrode produced a small
current if exposed to light. The photovoltaic effect is
often confused with the photoelectric effect ; they are
interrelated, but not identical (Fig. TF2-1).

The photoelectric effect explains the mechanism
responsible for why an electron is ejected by a material
in consequence to a photon incident upon its surface
(Fig. TF2-1(a)). For this to happen, the photon energy E

(which is governed by its wavelength through E = hc/λ ,
with h being Planck’s constant and c the velocity of light)
has to exceed the binding energy with which the electron
is held by the material. For his 1905 quantum-mechanical
model of the photoelectric effect, Albert Einstein was
awarded the 1921 Nobel Prize in physics.

Whereas a single material is sufficient for the photo-
electric effect to occur, at least two adjoining materials
with different electronic properties (to form a junction

(a) Photoelectric effect

(b) Photovoltaic effect

e 

_

n-type

p-type

I
Load

Photon

e 

_
Photon

Metal

Figure TF2-1 Comparison of photoelectric effect with the

photovoltaic effect.

that can support a voltage across it) are needed to
establish a photovoltaic current through an external
load (Fig. TF2-1(b)). Thus, the two effects are governed
by the same quantum-mechanical rules associated with
how photon energy can be used to liberate electrons
away from their hosts, but the followup step of what
happens to the liberated electrons is different in the two
cases.

The PV Cell

Today’s photovoltaic (PV) cells are made of semiconduc-
tor materials. The basic structure of a PV cell consists of
a p-n junction connected to a load (Fig. TF2-2).

Typically, the n-type layer is made of silicon doped
with a material that creates an abundance of negatively
charged atoms, and the p-type layer also is made of
silicon but doped with a different material that creates an
abundance of holes (atoms with missing electrons). The
combination of the two layers induces an electric field
across the junction, so when an incident photon liberates
an electron, the electron is swept under the influence
of the electric field through the n-layer and out to the
external circuit connected to the load.

The conversion efficiency of a PV cell depends on
several factors, including the fraction of the incident light
that gets absorbed by the semiconductor material, as
opposed to getting reflected by the n-type front surface
or transmitted through to the back conducting electrode.
To minimize the reflected component, an antireflective
coating usually is inserted between the upper glass cover
and the n-type layer (Fig. TF2-2).

The PV cell shown in Fig. TF2-2 is called a single-
junction cell because it contains only one p-n junction.
The semiconductor material is characterized by a quan-
tity called its band gap energy , which is the amount of
energy needed to free an electron away from its host
atom. For that to occur, the wavelength of the incident
photon (which in turn defines its energy) has to be such
that the photon’s energy exceeds the band gap of the
material. Solar energy extends over a broad spectrum,
so only a fraction of the solar spectrum (photons with
energies greater than the band gap) is absorbed by
a single-junction material. To overcome this limitation,
multiple p-n layers can be cascaded together to form a
multijunction PV device (Fig. TF2-3). The cells usually
are arranged such that the top cell has the highest band
gap energy, thereby capturing the high-energy (short-
wavelength) photons, followed by the cell with the next
lower band gap, and so on.
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Light photons

Front conducting electrode

Antireflective coating Glass cover

Back conducting electrode

p-n junction

−

+

p-type layer (silicon)

n-type layer
(silicon)

Figure TF2-2 Basic structure of a photovoltaic cell.

Wavelength (nm)

IR

400 500 600 700 800
InGaP

InGaAs
Ge

Figure TF2-3 In a multijunction PV device, different layers absorb different parts of the light spectrum.
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PV cell PV module PV array

Figure TF2-4 PV cells, modules, and arrays.

◮ The multijunction technique offers an improvement
in conversion efficiency of 2–4 times over that of the
single-junction cell. However, the fabrication cost is
significantly greater. ◭

Modules, Arrays, and Systems

A photovoltaic module consists of multiple PV cells
connected together in order to supply electrical power
at a specified voltage level, such as 12 or 24 V. The
combination of multiple modules generates a PV array
(Fig. TF2-4). The amount of generated power depends
on the intensity of the intercepted sunlight, the total area
of the module or array, and the conversion efficiencies
of the individual cells. If the PV energy source is to
serve multiple functions, it is integrated into an energy
management system that includes a dc to ac current
converter and batteries to store energy for later use
(Fig. TF2-5).

PV array

dc

dc

ac

dc/ac
dc to ac
inverter

Battery
storage
system

Figure TF2-5 Components of a large-scale photovoltaic

system.
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Exercise 1-9: Express the following complex functions in
polar form:

z1 = (4− j3)2,

z2 = (4− j3)1/2.

Answer: z1 = 25 −73.7◦ , z2 = ±
√

5 −18.4◦ . (See EM .)

Exercise 1-10: Show that
√

2 j = ±(1 + j).

Answer: (See EM .)

1-7 Review of Phasors

Phasor analysis is a useful mathematical tool for solving
problems involving linear systems in which the excitation

is a periodic time function. Many engineering problems are
cast in the form of linear integro-differential equations. If the

excitation, more commonly known as the forcing function,

varies sinusoidally with time, the use of phasor notation to
represent time-dependent variables allows us to convert a

linear integro-differential equation into a linear equation with

no sinusoidal functions, thereby simplifying the method of
solution. After solving for the desired variable, such as the

voltage or current in a circuit, conversion from the phasor

domain back to the time domain provides the desired result.
The phasor technique also can be used to analyze lin-

ear systems when the forcing function is a (nonsinusoidal)

periodic time function, such as a square wave or a sequence
of pulses. By expanding the forcing function into a Fourier

series of sinusoidal components, we can solve for the desired

variable using phasor analysis for each Fourier component of
the forcing function separately. According to the principle of

superposition, the sum of the solutions due to all of the Fourier
components gives the same result as one would obtain had the

problem been solved entirely in the time domain without the

aid of Fourier representation. The obvious advantage of the
phasor–Fourier approach is simplicity. Moreover, in the case

of nonperiodic source functions, such as a single pulse, the

functions can be expressed as Fourier integrals, and a similar
application of the principle of superposition can be used as

well.

The simple RC circuit shown in Fig. 1-20 contains a
sinusoidally time-varying voltage source given by

υs(t) = V0 sin(ωt + φ0), (1.55)

where V0 is the amplitude, ω is the angular frequency, and φ0

is a reference phase. Application of Kirchhoff’s voltage law

C

R

i
υs(t)

+

−

Figure 1-20 RC circuit connected to a voltage source υs(t).

gives the following loop equation:

Ri(t)+
1

C

∫
i(t) dt = υs(t).

(time domain)

(1.56)

Our objective is to obtain an expression for the current i(t). We

can do this by solving Eq. (1.56) in the time domain, which is
somewhat cumbersome because the forcing function υs(t) is a

sinusoid. Alternatively, we can take advantage of the phasor-

domain solution technique as follows.

1-7.1 Solution Procedure

Step 1: Adopt a cosine reference

To establish a phase reference for all time-varying currents and

voltages in the circuit, the forcing function is expressed as a

cosine (if not already in that form). In the present example,

υs(t) = V0 sin(ωt + φ0)

= V0 cos
(π

2
−ωt −φ0

)

= V0 cos
(

ωt + φ0 −
π

2

)
, (1.57)

where we used the properties sinx = cos(π/2 − x) and

cos(−x) = cosx.

Step 2: Express time-dependent variables as phasors

Any cosinusoidally time-varying function z(t) can be

expressed as

z(t) = Re

[
Z̃ e

jωt

]
, (1.58)

where Z̃ is a time-independent function called the phasor of
the instantaneous function z(t). To distinguish instantaneous

quantities from their phasor counterparts, a tilde (∼) is added
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over the letter representing a phasor. For the voltage υs(t)

given by Eq. (1.57), its phasor equivalent Ṽs is given by

Ṽs = V0e
j(φ0−π/2). (1.59)

Thus, Ṽs has the same amplitude as υs(t), and its exponential

function is j(φ0 − π/2), where (φ0 − π/2) is the phase part
of the cosine function in Eq. (1.57) without the ωt term. To

verify that the expression for Ṽs given by Eq. (1.59) is indeed

the phasor equivalent of υs(t), we apply the right-hand side of
Eq. (1.58):

Re[Ṽse
jωt ] = Re[V0e

j(φ0−π/2) · e jωt ]

= V0 cos(ωt + φ0 −π/2),

which is, indeed, the expression for υs(t) given by Eq. (1.57).
The time-domain and phasor-domain correspondence can be

expressed in the general form

υs(t) = V0 cos(ωt + φ) Ṽs = V0e
jφ , (1.60)

for any phase angle φ . Hence, φ may be a constant, such
as φ0 − π/2, or it may be a function of one or more spatial

variables, such as φ = β x.

The phasor Ṽs, corresponding to the time function υs(t),
contains amplitude and phase information but it is independent
of the time variable t. Next we define the unknown variable i(t)

in terms of a phasor equivalent Ĩ as

i(t) = Re(Ĩe
jωt). (1.61)

If the equation we are trying to solve contains derivatives or
integrals, we use the following two properties:

di

dt
=

d

dt

[
Re(Ĩe

jωt)
]

= Re

[
d

dt
(Ĩe

jωt)

]
= Re[ jω Ĩe

jωt ],

(1.62)

and

∫
i dt =

∫
Re(Ĩe

jωt) dt

= Re

(∫
Ĩe

jωt
dt

)
= Re

(
Ĩ

jω
e

jωt

)
. (1.63)

◮ Thus, differentiation of the time function i(t) with

respect to time is equivalent to multiplication of its phasor

Ĩ by jω , and integration is equivalent to division by jω . ◭

Step 3: Recast the differential / integral equation in phasor

form

Upon using the form of Eq. (1.58) to represent i(t) and υs(t)
in Eq. (1.56) in terms of their phasor equivalents, we have

R Re(Ĩe
jωt)+

1

C
Re

(
Ĩ

jω
e

jωt

)
= Re(Ṽse

jωt). (1.64)

Combining all three terms under the same real-part (Re)

operator leads to

Re

{[(
R +

1

jωC

)
Ĩ− Ṽs

]
e

jωt

}
= 0. (1.65a)

Had we adopted a sine reference—instead of a cosine

reference—to define sinusoidal functions, the preceding treat-

ment would have led to the result

Im

{[(
R +

1

jωC

)
Ĩ− Ṽs

]
e

jωt

}
= 0. (1.65b)

Since both the real and imaginary parts of the expression inside

the curly brackets are zero, the expression itself must be zero.
Moreover, since e

jωt 6= 0, it follows that

Ĩ

(
R +

1

jωC

)
= Ṽs (phasor domain). (1.66)

The time factor e
jωt has disappeared because it was contained

in all three terms. Equation (1.66) is the phasor-domain equiv-

alent of Eq. (1.56).

Step 4: Solve the phasor-domain equation

From Eq. (1.66), the phasor current Ĩ is given by

Ĩ =
Ṽs

R + 1/( jωC)
. (1.67)

Before we apply the next step, we need to convert the right-
hand side of Eq. (1.67) into the form I0e

jθ with I0 being a real

quantity. Thus,

Ĩ = V0e
j(φ0−π/2)

[
jωC

1 + jωRC

]

= V0e
j(φ0−π/2)

[
ωCe

jπ/2

√
1 + ω2R2C2 e jφ1

]

=
V0ωC√

1 + ω2R2C2
e

j(φ0−φ1), (1.68)

where we have used the identity j = e
jπ/2. The phase angle

associated with (1 + jωRC) is φ1 = tan−1(ωRC) and lies in

the first quadrant of the complex plane.
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Phasor Technique Solution Procedure

(1) Adopt a cosine reference for all sinusoidally varying
quantities, as in

x(t) = Acos(ωt + φ0).

• Coefficient A should be positive. If not, retain

its positive magnitude and add or subtract π
from φ0.

• If the time function is a sine instead of a cosine,
convert it using Eq. (1.57).

(2) Convert time-dependent quantities into phasor equiv-

alents:

z(t) Z̃ (Table 1-5).

(3) Cast equations in the phasor domain, and then solve

them for the quantity of interest.

(4) If necessary, modify the solution Ỹ into the form

Ỹ = Be
jθ ,

where B is a positive, real quantity.

(5) Convert the phasor-domain solution to the time

domain:

y(t) = Re[Be
jθ · e jωt ] = Bcos(ωt + θ )

Step 5: Convert back to the time domain

To find i(t), we simply apply Eq. (1.61). That is, we multiply

the phasor Ĩ given by Eq. (1.68) by e
jωt and then take the real

part:

i(t) = Re[Ĩe jωt ] = Re

[
V0ωC√

1 + ω2R2C2
e

j(φ0−φ1)
e

jωt

]

=
V0ωC√

1 + ω2R2C2
cos(ωt + φ0 −φ1). (1.69)

In summary, we converted all time-varying quantities into

the phasor domain, solved for the phasor Ĩ of the desired

instantaneous current i(t), and then converted back to the time

domain to obtain an expression for i(t). Table 1-5 provides
a summary of some time-domain functions and their phasor-

domain equivalents.

Table 1-5 Time-domain sinusoidal functions z(t) and

their cosine-reference phasor-domain counterparts Z̃, where

z(t) = Re[Z̃e
jωt ].

z(t) Z̃

Acosωt A

Acos(ωt +φ0) Ae
jφ0

Acos(ωt +βx+φ0) Ae
j(βx+φ0)

Ae
−αx cos(ωt +βx+φ0) Ae

−αx
e

j(βx+φ0)

Asinωt Ae
− jπ/2

Asin(ωt +φ0) Ae
j(φ0−π/2)

d

dt
(z(t)) jωZ̃

d

dt
[Acos(ωt +φ0)] jωAe

jφ0

∫
z(t) dt

1

jω
Z̃

∫
Asin(ωt +φ0) dt

1

jω
Ae

j(φ0−π/2)

Example 1-4: RL Circuit

The voltage source of the circuit shown in Fig. 1-21 is given

by
υs(t) = 5sin(4×104

t −30◦) (V). (1.70)

Obtain an expression for the voltage across the inductor.

R = 6 Ω

L = 0.2 mH

i

υs(t)
+

−

+

−

υL

Figure 1-21 RL circuit (Example 1-4).

Solution: The voltage loop equation of the RL circuit is

Ri+ L
di

dt
= υs(t). (1.71)
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Before converting Eq. (1.71) into the phasor domain, we
express Eq. (1.70) in terms of a cosine reference:

υs(t) = 5sin(4×104
t −30◦)

= 5cos(4×104
t −120◦) (V). (1.72)

The coefficient of t specifies the angular frequency as
ω = 4× 104 (rad/s). Per the second entry in Table 1-5, the

voltage phasor corresponding to υs(t) is

Ṽs = 5e
− j120◦ (V),

and the phasor equation corresponding to Eq. (1.71) is

RĨ + jωLĨ = Ṽs. (1.73)

Solving for the current phasor Ĩ, we have

Ĩ =
Ṽs

R + jωL

=
5e

− j120◦

6 + j4×104×2×10−4

=
5e

− j120◦

6 + j8
=

5e
− j120◦

10e j53.1◦ = 0.5e
− j173.1◦ (A).

The voltage phasor across the inductor is related to Ĩ by

ṼL = jωLĨ

= j4×104×2×10−4×0.5e
− j173.1◦

= 4e
j(90◦−173.1◦) = 4e

− j83.1◦ (V),

and the corresponding instantaneous voltage υL(t) is therefore

υL(t) = Re

[
ṼLe

jωt

]

= Re

[
4e

− j83.1◦
e

j4×104
t

]

= 4cos(4×104
t −83.1◦) (V).

Concept Question 1-12: Why is the phasor technique
useful? When is it used? Describe the process.

Concept Question 1-13: How is the phasor technique

used when the forcing function is a nonsinusoidal periodic

waveform, such as a train of pulses?

Exercise 1-11: A series RL circuit is connected to a
voltage source given by υs(t) = 150cosωt (V). Find

(a) the phasor current Ĩ and (b) the instantaneous current

i(t) for R = 400 Ω, L = 3 mH, and ω = 105 rad/s.

Answer: (a) Ĩ = 150/(R + jωL) = 0.3 −36.9◦ (A),

(b) i(t) = 0.3cos(ωt −36.9◦) (A). (See EM .)

Exercise 1-12: A phasor voltage is given by Ṽ = j5 V.

Find υ(t).

Answer: υ(t) = 5cos(ωt + π/2) = −5sinωt (V).

(See EM .)

1-7.2 Traveling Waves in the Phasor Domain

According to Table 1-5, if we set φ0 = 0, its third entry

becomes
Acos(ωt + β x) Ae

jβ x. (1.74)

From the discussion associated with Eq. (1.31), we concluded
that Acos(ωt + β x) describes a wave traveling in the negative

x direction.

◮ In the phasor domain, a wave of amplitude A traveling

in the positive x direction in a lossless medium with a
phase constant β is given by the negative exponential

Ae
− jβ x. Conversely, a wave traveling in the negative x

direction is given by Ae
jβ x. Thus, the sign of x in the

exponential is opposite to the direction of travel. ◭
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Chapter 1 Summary

Concepts

• Electromagnetics is the study of electric and magnetic

phenomena and their engineering applications.
• The International System of Units consists of the six

fundamental dimensions listed in Table 1-1. The units

of all other physical quantities can be expressed in
terms of the six fundamental units.

• The four fundamental forces of nature are nuclear,
weak-interaction, electromagnetic, and gravitational

forces.

• The source of the electric field quantities E and D

is the electric charge q. In a material, E and D

are related by D = εE, where ε is the elec-

trical permittivity of the material. In free space,
ε = ε0 ≈ (1/36π)×10−9 (F/m).

• The source of the magnetic field quantities B and H is

the electric current I. In a material, B and H are related
by B = µH, where µ is the magnetic permeability of

the medium. In free space, µ = µ0 = 4π ×10−7 (H/m).

• Electromagnetics consists of three branches:

(1) electrostatics, which pertains to stationary charg-

es,

(2) magnetostatics, which pertains to dc currents, and

(3) electrodynamics, which pertains to time-varying

currents.

• A traveling wave is characterized by a spatial wave-

length λ , a time period T , and a phase velocity
up = λ/T .

• An electromagnetic (EM) wave consists of oscillating

electric and magnetic field intensities and travels in free
space at the velocity of light: c = 1/

√
ε0µ0 . The EM

spectrum encompasses gamma rays, X-rays, visible

light, infrared waves, and radio waves.
• Phasor analysis is a useful mathematical tool for solv-

ing problems involving time-periodic sources.

Mathematical and Physical Models

Electric field due to charge q in free space

E = R̂
q

4πε0R2

Magnetic field due to current I in free space

B = φ̂φφ
µ0I

2πr

Plane wave y(x, t) = Ae
−αx cos(ωt −β x + φ0)

• α = 0 in lossless medium
• phase velocity up = f λ = ω

β

• ω = 2π f ; β = 2π/λ
• φ0 = phase reference

Complex numbers

• Euler’s identity

e
jθ = cosθ + j sinθ

• Rectangular-polar relations

x = |z|cosθ , y = |z|sinθ ,

|z| = +
√

x2 + y2 , θ = tan−1(y/x)

Phasor-domain equivalents

See Table 1-5

PROBLEMS

Section 1-4: Traveling Waves

∗
1.1 A harmonic wave traveling along a string is generated
by an oscillator that completes 360 vibrations per minute. If it

is observed that a given crest, or maximum, travels 300 cm in

10 s, what is the wavelength?

1.2 For the pressure wave described in Example 1-1, plot

∗
Answer(s) available in Appendix E.

(a) p(x, t) versus x at t = 0,

(b) p(x, t) versus t at x = 0.
Be sure to use appropriate scales for x and t so that each of

your plots covers at least two cycles.

∗
1.3 A 2 kHz sound wave traveling in the x direction in air

was observed to have a differential pressure p(x, t) = 30 N/m2

at x = 0 and t = 25 µs. If the reference phase of p(x, t) is 36◦,
find a complete expression for p(x, t). The velocity of sound in

air is 330 m/s.
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Important Terms Provide definitions or explain the meaning of the following terms:

angular velocity ω
attenuation constant α
attenuation factor

Biot–Savart law

complex conjugate
complex number

conductivity σ
constitutive parameters

continuous periodic wave

Coulomb’s law
dielectric constant

dynamic

electric dipole
electric field intensity E

electric flux density D

electric polarization
electrical force

electrical permittivity ε
electrodynamics
electrostatics

EM spectrum

Euler’s identity
forcing function

fundamental dimensions

instantaneous function
law of conservation of electric charge

LCD
liquid crystal

lossless or lossy medium

magnetic field intensity H

magnetic flux density B

magnetic force

magnetic permeability µ
magnetostatics

microwave band

monochromatic
nonmagnetic materials

perfect conductor

perfect dielectric
periodic

phase

phase constant (wave number) β
phase lag and lead

phase velocity (propagation

velocity) up

phasor

plane wave
principle of linear superposition

reference phase φ0

relative permittivity or
dielectric constant εr

SI system of units

static
transient wave

velocity of light c

wave amplitude
wave frequency f

wave period T

waveform
wavelength λ

1.4 A wave traveling along a string is given by

y(x, t) = 2sin(4πt + 10πx) (cm),

where x is the distance along the string in meters and y is
the vertical displacement. Determine: (a) the direction of wave

travel, (b) the reference phase φ0, (c) the frequency, (d) the

wavelength, and (e) the phase velocity.

1.5 Two waves, y1(t) and y2(t), have identical amplitudes

and oscillate at the same frequency, but y2(t) leads y1(t) by

a phase angle of 60◦. If

y1(t) = 4cos(2π ×103
t),

write the expression appropriate for y2(t) and plot both func-

tions over the time span from 0 to 2 ms.

∗
1.6 The height of an ocean wave is described by the function

y(x, t) = 1.5sin(0.5t −0.6x) (m).

Determine the phase velocity and the wavelength, and then

sketch y(x, t) at t = 2 s over the range from x = 0 to x = 2λ .

1.7 A wave traveling along a string in the +x-direction is

given by

y1(x, t) = Acos(ωt −β x),

where x = 0 is the end of the string, which is tied rigidly to

a wall, as shown in Fig. P1.7. When wave y1(x, t) arrives at

the wall, a reflected wave y2(x, t) is generated. Hence, at any

location on the string, the vertical displacement ys is the sum
of the incident and reflected waves:

ys(x, t) = y1(x, t)+ y2(x, t).

(a) Write an expression for y2(x, t), keeping in mind its

direction of travel and the fact that the end of the string

cannot move.

(b) Generate plots of y1(x, t), y2(x, t) and ys(x, t) versus x over

the range −2λ ≤ x ≤ 0 at ωt = π/4 and at ωt = π/2.

x

x = 0

Incident wave

y

Figure P1.7 Wave on a string tied to a wall at x = 0

(Problem 1.7).
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1.8 Two waves on a string are given by the following func-
tions:

y1(x, t) = 4cos(20t −30x) (cm)

y2(x, t) = −4cos(20t + 30x) (cm)

where x is in centimeters. The waves are said to interfere
constructively when their superposition |ys| = |y1 + y2| is a

maximum, and they interfere destructively when |ys| is a

minimum.
∗

(a) What are the directions of propagation of waves y1(x, t)
and y2(x, t)?

(b) At t = (π/50) s, at what location x do the two waves

interfere constructively, and what is the corresponding

value of |ys|?
(c) At t = (π/50) s, at what location x do the two waves

interfere destructively, and what is the corresponding

value of |ys|?
1.9 Give expressions for y(x, t) for a sinusoidal wave trav-

eling along a string in the negative x-direction, given that

ymax = 40 cm, λ = 30 cm, f = 10 Hz, and

(a) y(x,0) = 0 at x = 0,

(b) y(x,0) = 0 at x = 3.75 cm.

∗
1.10 Given two waves characterized by

y1(t) = 3cosωt

y2(t) = 3sin(ωt + 60◦),

does y2(t) lead or lag y1(t) and by what phase angle?

1.11 The vertical displacement of a string is given by the

harmonic function:

y(x, t) = 4cos(16πt−20πx) (m),

where x is the horizontal distance along the string in meters.

Suppose a tiny particle were attached to the string at x = 5 cm.
Obtain an expression for the vertical velocity of the particle as

a function of time.

∗
1.12 An oscillator that generates a sinusoidal wave on a
string completes 40 vibrations in 50 s. The wave peak is

observed to travel a distance of 1.4 m along the string in 5 s.

What is the wavelength?

1.13 The voltage of an electromagnetic wave traveling on a

transmission line is given by

υ(z, t) = 5e
−αz sin(4π ×109

t −20πz) (V),

where z is the distance in meters from the generator.

(a) Find the frequency, wavelength, and phase velocity of the
wave.

(b) At z = 4 m, the amplitude of the wave was measured to

be 2 V. Find α .

∗
1.14 A certain electromagnetic wave traveling in seawater

was observed to have an amplitude of 98.02 (V/m) at a depth
of 10 m, and an amplitude of 81.87 (V/m) at a depth of 100 m.

What is the attenuation constant of seawater?

1.15 A laser beam traveling through fog was observed to

have an intensity of 1 (µW/m2) at a distance of 2 m from
the laser gun and an intensity of 0.2 (µW/m2) at a distance

of 3 m. Given that the intensity of an electromagnetic wave is

proportional to the square of its electric-field amplitude, find
the attenuation constant α of fog.

Section 1-5: Complex Numbers

1.16 Complex numbers z1 and z2 are given by

z1 = 3− j2

z2 = −4 + j3

(a) Express z1 and z2 in polar form.

(b) Find |z1| by first applying Eq. (1.41) and then by applying

Eq. (1.43).

∗
(c) Determine the product z1z2 in polar form.

(b) Determine the ratio z1/z2 in polar form.

(c) Determine z
3
1 in polar form.

1.17 Evaluate each of the following complex numbers and

express the result in rectangular form:

(a) z1 = 8e
jπ/3

∗
(b) z2 =

√
3 e

j3π/4

(c) z3 = 2e
− jπ/2

(d) z4 = j
3

(e) z5 = j
−4

(f) z6 = (1− j)3

(g) z7 = (1− j)1/2

1.18 Complex numbers z1 and z2 are given by

z1 = −3 + j2

z2 = 1− j2

Determine (a) z1z2, (b) z1/z
∗
2, (c) z

2
1, and (d) z1z

∗
1, all in polar

form.
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1.19 If z = −2 + j4, determine the following quantities in
polar form:

(a) 1/z,

(b) z
3,

∗
(c) |z|2,

(d) Im{z},

(e) Im{z
∗}.

1.20 Find complex numbers t = z1 + z2 and s = z1 − z2, both
in polar form, for each of the following pairs:

(a) z1 = 2 + j3 and z2 = 1− j2,

(b) z1 = 3 and z2 = j3,

(c) z1 = 3∠ 30◦ and z2 = 3∠−30◦ ,
∗

(d) z1 = 3∠ 30◦ and z2 = 3∠−150◦ .

1.21 Complex numbers z1 and z2 are given by

z1 = 5∠−60◦

z2 = 4∠45◦ .

(a) Determine the product z1z2 in polar form.

(b) Determine the product z1z
∗
2 in polar form.

(c) Determine the ratio z1/z2 in polar form.

(d) Determine the ratio z
∗
1/z

∗
2 in polar form.

(e) Determine
√

z1 in polar form.

∗
1.22 If z = 3 + j5, find the value of ln(z).

1.23 If z = 3e
jπ/6, find the value of e

z.

1.24 If z = 3− j4, find the value of e
z.

Section 1-6: Phasors

∗
1.25 A voltage source given by

υs(t) = 25cos(2π ×103
t −30◦) (V)

is connected to a series RC load as shown in Fig. 1-20. If

R = 1 MΩ and C = 200 pF, obtain an expression for υc(t),
the voltage across the capacitor.

1.26 Find the instantaneous time sinusoidal functions corre-

sponding to the following phasors:

(a) Ṽ = −5e
jπ/3 (V)

(b) Ṽ = j6e
− jπ/4 (V)

(c) Ĩ = (6 + j8) (A)

∗
(d) Ĩ = −3 + j2 (A)

(c) Ĩ = j (A)

(e) Ĩ = 2e
jπ/6 (A)

1.27 Find the phasors of the following time functions:

(a) υ(t) = 6cos(ωt −π/6) (V)

(b) υ(t) = 12sin(ωt −π/4) (V)

(c) i(x, t) = 5e
−2x sin(ωt + π/6) (A)

∗
(d) i(t) = −2cos(ωt −3π/4) (A)

(e) i(t) = 4sin(ωt + π/3)+ 7cos(ωt −π/6) (A)

1.28 A series RLC circuit is connected to a generator with a

voltage υs(t) = V0 cos(ωt + π/3) (V).

(a) Write the voltage loop equation in terms of the current

i(t), R, L, C, and vs(t).

(b) Obtain the corresponding phasor-domain equation.

(c) Solve the equation to obtain an expression for the phasor

current Ĩ.

1.29 The voltage source of the circuit shown in Fig. P1.29 is
given by

vs(t) = 25cos(4×104
t −45◦) (V).

Obtain an expression for iL(t), the current flowing through the
inductor.

R1 = 20 Ω,  R2 = 30 Ω,  L = 0.4 mH

υs(t) L

iR1

R2

iLiR2

A

+

−

Figure P1.29 Circuit for Problem 1.29.
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Objectives

Upon learning the material presented in this chapter, you

should be able to:

1. Calculate the line parameters, characteristic impedance,

and propagation constant of coaxial, two-wire, parallel-

plate, and microstrip transmission lines.

2. Determine the reflection coefficient at the load-end of

the transmission line, the standing-wave pattern, and the

locations of voltage and current maxima and minima.

3. Calculate the amount of power transferred from the gen-

erator to the load through the transmission line.

4. Use the Smith chart to perform transmission-line calcula-

tions.

5. Analyze the response of a transmission line to a voltage

pulse.

62

Transmission Lines
Chapter 2
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Sending-end
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A

~
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B

B'
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+

−

Vg

Zg

ZL

Figure 2-1 A transmission line is a two-port network connecting a generator circuit at the sending end to a load at the receiving end.

2-1 General Considerations

In most electrical engineering curricula, the study of electro-
magnetics is preceded by one or more courses on electrical

circuits. In this book, we use this background to build a

bridge between circuit theory and electromagnetic theory. The
bridge is provided by transmission lines, which is the topic

of this chapter. By modeling transmission lines in the form of

equivalent circuits, we can use Kirchhoff’s voltage and cur-
rent laws to develop wave equations whose solutions provide

an understanding of wave propagation, standing waves, and

power transfer. Familiarity with these concepts facilitates the
presentation of material in later chapters.

Although the notion of transmission lines may encompass
all structures and media that serve to transfer energy or

information between two points, including nerve fibers in the

human body and fluids and solids that support the propaga-
tion of mechanical pressure waves, this chapter focuses on

transmission lines that guide electromagnetic signals. Such

transmission lines include telephone wires, coaxial cables
carrying audio and video information to TV sets or digital

data to computer monitors, microstrips printed on microwave

circuit boards, and optical fibers carrying light waves for the
transmission of data at very high rates.

Fundamentally, a transmission line is a two-port network,

with each port consisting of two terminals, as illustrated in
Fig. 2-1. One of the ports, the line’s sending end, is connected

to a source (also called the generator). The other port, the line’s
receiving end, is connected to a load. The source connected

to the transmission line’s sending end may be any circuit

generating an output voltage, such as a radar transmitter, an
amplifier, or a computer terminal operating in transmission

mode. From circuit theory, a dc source can be represented by a

Thévenin-equivalent generator circuit consisting of a genera-
tor voltage Vg in series with a generator resistance Rg, as shown

in Fig. 2-1. In the case of alternating-current (ac) signals, the

generator circuit is represented by a voltage phasor Ṽg and an
impedance Zg.

The load circuit, or simply the load, may be a transmitting

antenna in the case of radar, a computer terminal operating in
the receiving mode, the input terminals of an amplifier, or any

output circuit whose input terminals can be represented by an

equivalent load impedance ZL.

2-1.1 The Role of Wavelength

In low-frequency circuits, circuit elements usually are inter-

connected using simple wires. In the circuit shown in Fig. 2-2,

for example, the generator is connected to a simple RC load
via a pair of wires. In view of our definition in the preceding

paragraphs of what constitutes a transmission line, we pose

the question: Is the pair of wires between terminals AA
′

and

terminals BB
′

a transmission line? If so, under what set of

circumstances should we explicitly treat the pair of wires

as a transmission line as opposed to ignoring their presence
altogether and treating the circuit as only an RC load connected

to a generator Ṽg? The answer to the first question is: Yes,

C

R

i

Vg VAA'

l

A

A'

B

B'

+

+

−

−

VBB'

+

−

Transmission line

Figure 2-2 Generator connected to an RC circuit through a

transmission line of length l.
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the pair of wires does constitute a transmission line. The
answer to the second question is: The factors that determine

whether or not we should treat the wires as a transmission line

is governed by the length of the line l and the frequency f

of the signal provided by the generator. (As we will see

later, the determining factor is the ratio of the length l to the

wavelength λ of the wave propagating on the transmission
line between the source at terminals AA

′ and the load at

terminals BB
′.) If the generator voltage is cosinusoidal in time,

then the voltage across the input terminals AA
′ is

VAA′ = Vg(t) = V0 cosωt (V), (2.1)

where ω = 2π f is the angular frequency. If we assume that the
current flowing through the wires travels at the speed of light,

c = 3× 108 m/s, then the voltage across the output terminals
BB

′ will have to be delayed in time relative to that across AA
′

by the travel delay time l/c. Thus, assuming no ohmic losses

in the transmission line and ignoring other transmission-line
effects discussed later in this chapter,

VBB′(t) =VAA′(t− l/c) =V0 cos [ω(t − l/c)] =V0 cos(ωt−φ0),
(2.2)

with

φ0 =
ω l

c
(rad). (2.3)

Thus, the time delay associated with the length of the

line l manifests itself as a constant phase shift φ0 in

the argument of the cosine. Let us compare VBB′ with
VAA′ at t = 0 for an ultralow-frequency electronic circuit

operating at a frequency f = 1 kHz. For a typical wire

length l = 5 cm, Eqs. (2.1) and (2.2) give VAA′ = V0 and
VBB′ = V0 cos(2π f l/c) = 0.999999999998V0. Hence, for all

practical purposes, the presence of the transmission line may
be ignored, and terminal AA

′ may be treated as identical with

BB
′ so far as its voltage is concerned. On the other hand,

had the line been a 20-km long telephone cable carrying a
1 kHz voice signal, then the same calculation would have led

to VBB′ = 0.91V0, which is a deviation of 9%. Furthermore, had

the frequency of the signal on the 5-cm long wire been 1.5 GHz
instead of 1 kHz, the voltage at the end of the line would have

been VBB′ = 0 ! Thus, the pair of wires would have a voltage V0

at AA
′ and zero at BB

′ simultaneously. The determining factor
is the magnitude of φ0 = ω l/c. From Eq. (1.27), the velocity of

propagation up of a traveling wave is related to the oscillation

frequency f and the wavelength λ by

up = f λ (m/s).

In the present case, up = c. Hence, the phase delay is

φ0 =
ω l

c
=

2π f l

c
= 2π

l

λ
radians. (2.4)

Dispersionless line

Short dispersive line

Long dispersive line

Figure 2-3 A dispersionless line does not distort signals

passing through it regardless of its length, whereas a dispersive

line distorts the shape of the input pulses because the different

frequency components propagate at different velocities. The

degree of distortion is proportional to the length of the dispersive

line.

◮ When l/λ is very small, transmission-line effects may
be ignored, but when l/λ & 0.01, it may be necessary to

account not only for the phase shift due to the time delay
but also for the presence of reflected signals that may have

been bounced back by the load toward the generator. ◭

Power loss on the line and dispersive effects may need to be
considered as well.

◮ A dispersive transmission line is one on which the wave

velocity is not constant as a function of the frequency f . ◭

This means that the shape of a rectangular pulse, which

through Fourier analysis can be decomposed into many sinu-

soidal waves of different frequencies, gets distorted as it travels
down the line because its different frequency components do

not propagate at the same velocity (Fig. 2-3). Preservation of
pulse shape is very important in high-speed data transmission

not only between terminals but also across transmission line

segments fabricated within high-speed integrated circuits. At
10 GHz, for example, the wavelength is λ = 3 cm in air but

only on the order of 1 cm in a semiconductor material. Hence,

even lengths between devices on the order of millimeters
become significant, and their presence has to be accounted for

in the design of the circuit.
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Figure 2-4 A few examples of transverse electromagnetic (TEM) and higher-order transmission lines.

2-1.2 Propagation Modes

A few examples of common types of transmission lines are
shown in Fig. 2-4. Transmission lines may be classified into

two basic types:

• Transverse electromagnetic (TEM) transmission lines:
Waves propagating along these lines are characterized by
electric and magnetic fields that are entirely transverse
to the direction of propagation. Such an orthogonal con-

figuration is called a TEM mode. A good example is the
coaxial line shown in Fig. 2-5. The electric field is in the

radial direction between the inner and outer conductors,

while the magnetic field circles the inner conductor,
and neither has a component along the line axis (the

direction of wave propagation). Other TEM transmission

lines include the two-wire line and the parallel-plate line
(both shown in Fig. 2-4). Although the fields present on

a microstrip line do not adhere to the exact definition

of a TEM mode, the nontransverse field components
are sufficiently small (in comparison with the transverse

components) that they may be ignored, thereby allowing

the inclusion of microstrip lines in the TEM class. A
common feature among TEM lines is that they consist of

two parallel conducting surfaces.

• Higher-order transmission lines: Waves propagating

along these lines have at least one significant field compo-

nent in the direction of propagation. Hollow conducting
waveguides, dielectric rods, and optical fibers belong to

this class of lines (Chapter 8).
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Vg

Rg
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Load

Cross section
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Electric field lines

Generator
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Figure 2-5 In a coaxial line, the electric field is in the radial direction between the inner and outer conductors, and the magnetic field

forms circles around the inner conductor. The coaxial line is a transverse electromagnetic (TEM) transmission line because both the electric

and magnetic fields are orthogonal to the direction of propagation between the generator and the load.

Only TEM-mode transmission lines are treated in this chap-
ter. This is because they are more commonly used in practice,

and fortunately, less mathematical rigor is required for treating

them than is required for lines that support higher-order modes.
We start our treatment by representing the transmission line

in terms of a lumped-element circuit model, and then we
apply Kirchhoff’s voltage and current laws to derive a pair of

equations governing their behavior, known as the telegrapher’s
equations. By combining these equations, we obtain wave
equations for the voltage and current at any location along

the line. Solution of the wave equations for the sinusoidal

steady-state case leads to a set of formulas that can be used
to solve a wide range of practical problems. In the latter part

of this chapter, we introduce a graphical tool known as the

Smith chart, which facilitates the solution of transmission-
line problems without having to perform laborious calculations

involving complex numbers.

2-2 Lumped-Element Model

When we draw a schematic of an electronic circuit, we use

specific symbols to represent resistors, capacitors, inductors,
diodes, and the like. In each case, the symbol represents the

functionality of the device rather than its shape, size, or other

attributes. We shall do the same for transmission lines.

◮ A transmission line will be represented by a parallel-
wire configuration (Fig. 2-6(a)), regardless of its specific

shape or constitutive parameters. ◭

Thus, Fig. 2-6(a) may represent a coaxial line, a two-wire line,
or any other TEM line.

Drawing again on our familiarity with electronic circuits,

when we analyze a circuit containing a transistor, we mimic
the functionality of the transistor by an equivalent circuit com-

posed of sources, resistors, and capacitors. We apply the same
approach to the transmission line by orienting the line along

the z direction, subdividing it into differential sections each

of length ∆z (Fig. 2-6(b)), and then representing each section
by an equivalent circuit, as illustrated in Fig. 2-6(c). This

representation, often called the lumped-element circuit model,

consists of four basic elements with values that henceforth will
be called the transmission line parameters. These are:

• R
′: The combined resistance of both conductors per unit

length, in Ω/m,

• L
′: The combined inductance of both conductors per unit

length, in H/m,

• G
′: The conductance of the insulation medium between the

two conductors per unit length, in S/m, and

• C
′: The capacitance of the two conductors per unit length, in

F/m.

Whereas the four line parameters are characterized by different
formulas for different types of transmission lines, the equiva-

lent model represented by Fig. 2-6(c) is equally applicable to

all TEM transmission lines. The prime superscript is used as

a reminder that the line parameters are differential quantities

whose units are per unit length.

Expressions for the line parameters R
′, L

′, G
′, and C

′ are
given in Table 2-1 for the three types of TEM transmission

lines diagrammed in parts (a) through (c) of Fig. 2-4. For
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(a) Parallel-wire representation

(b) Differential sections each ∆z long

(c) Each section is represented by an equivalent circuit

G' ∆z C' ∆z G' ∆z C' ∆z G' ∆z C' ∆z G' ∆z C' ∆z

∆z ∆z ∆z ∆z

Figure 2-6 Regardless of its cross-sectional shape, a TEM transmission line is represented by the parallel-wire configuration shown in

part (a). To obtain equations relating voltages and currents, the line is subdivided into small differential sections in part (b), each of which

is then represented by an equivalent circuit in part (c).

each of these lines, the expressions are functions of two sets

of parameters: (1) geometric parameters defining the cross-
sectional dimensions of the given line and (2) the electromag-

netic constitutive parameters of the conducting and insulating
materials. The pertinent geometric parameters are:

• Coaxial line (Fig. 2-4(a)):

a = outer radius of inner conductor, m

b = inner radius of outer conductor, m

• Two-wire line (Fig. 2-4(b)):

d = diameter of each wire, m
D = spacing between wires’ centers, m

• Parallel-plate line (Fig. 2-4(c)):

w = width of each plate, m

h = thickness of insulation between plates, m

◮ The pertinent constitutive parameters apply to all three

lines and consist of two groups:

(1) µc and σc are the magnetic permeability and electri-
cal conductivity of the conductors, and

(2) ε , µ , and σ are the electrical permittivity, magnetic

permeability, and electrical conductivity of the insu-

lation material separating them. ◭

Appendix B contains tabulated values for these constitutive

parameters for various materials. For the purposes of this chap-
ter, we need not concern ourselves with the derivations leading

to the expressions in Table 2-1. The techniques necessary for

computing R
′, L

′, G
′, and C

′ for the general case of an arbitrary
two-conductor configuration are presented in later chapters.

The lumped-element model shown in Fig. 2-6(c) reflects the

physical phenomena associated with the currents and voltages
on any TEM transmission line. It consists of two in-series

elements, R
′ and L

′, and two shunt elements, G
′ and C

′. To
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Table 2-1 Transmission-line parameters R
′, L

′, G
′, and C

′ for three types of lines.

Parameter Coaxial Two-Wire Parallel-Plate Unit

R
′ Rs

2π

(
1

a
+

1

b

)
2Rs

πd

2Rs

w
Ω/m

L
′ µ

2π
ln(b/a)

µ

π
ln

[
(D/d)+

√
(D/d)2 −1

]
µh

w
H/m

G
′ 2πσ

ln(b/a)

πσ

ln
[
(D/d)+

√
(D/d)2 −1

] σw

h
S/m

C
′ 2πε

ln(b/a)

πε

ln
[
(D/d)+

√
(D/d)2 −1

] εw

h
F/m

Notes: (1) Refer to Fig. 2-4 for definitions of dimensions. (2) µ ,ε , and σ pertain to the insulating

material between the conductors. (3) Rs =
√

π f µc/σc. (4) µc and σc pertain to the conductors.

(5) If (D/d)2 ≫ 1, then ln
[
(D/d)+

√
(D/d)2 −1

]
≈ ln(2D/d).

explain the lumped-element model, consider a small section of

a coaxial line, as shown in Fig. 2-7. The line consists of inner

and outer conductors of radii a and b separated by a material
with permittivity ε , permeability µ , and conductivity σ . The

two metal conductors are made of a material with conductiv-

ity σc and permeability µc.

Resistance R
′

When a voltage source is connected across the terminals

connected to the two conductors at the sending end of the line,
currents flow through the conductors, primarily along the outer

surface of the inner conductor and the inner surface of the outer

conductor. The line resistance R
′ accounts for the combined

resistance per unit length of the inner and outer conductors.

The expression for R
′ is derived in Chapter 7 and is given by

Eq. (7.96) as

R
′ =

Rs

2π

(
1

a
+

1

b

)
(coax line) (Ω/m), (2.5)

where Rs, which represents the surface resistance of the

conductors, is given by Eq. (7.92a) as

Rs =

√
π f µc

σc

(Ω). (2.6)

The surface resistance depends not only on the material
properties of the conductors (σc and µc), but also on the

frequency f of the wave traveling on the line.

(µc, σc)

b

a

(ε, µ, σ)

Conductors

Insulating material

Figure 2-7 Cross section of a coaxial line with inner conductor

of radius a and outer conductor of radius b. The conductors

have magnetic permeability µc and conductivity σc, and the

spacing material between the conductors has permittivity ε ,

permeability µ , and conductivity σ .

◮ For a perfect conductor with σc = ∞ or a high-
conductivity material such that ( f µc/σc) ≪ 1, Rs

approaches zero, and so does R
′. ◭
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Inductance L
′

Next, let us examine the line inductance L
′, which accounts

for the joint inductance of both conductors. Application of

Ampère’s law in Chapter 5 to the definition of inductance leads
to the following expression [Eq. (5.99)] for the inductance per

unit length of a coaxial line:

L
′ =

µ

2π
ln

(
b

a

)
(coax line) (H/m). (2.7)

Conductance G
′

The line conductance G
′ accounts for current flow between the

outer and inner conductors, made possible by the conductiv-

ity σ of the insulator. It is precisely because the current flow
is from one conductor to the other that G

′ appears as a shunt

element in the lumped-element model. For the coaxial line, the

conductance per unit length is given by Eq. (4.86) as

G
′ =

2πσ

ln(b/a)
(coax line) (S/m). (2.8)

◮ If the material separating the inner and outer conductors

is a perfect dielectric with σ = 0, then G
′ = 0. ◭

Capacitance C
′

The last line parameter on our list is the line capacitance C
′.

When equal and opposite charges are placed on any two non-

contacting conductors, a voltage difference develops between

them. Capacitance is defined as the ratio of the charge to the
voltage difference. For the coaxial line, the capacitance per

unit length is given by Eq. (4.127) as

C
′ =

2πε

ln(b/a)
(coax line) (F/m). (2.9)

All TEM transmission lines share the following useful

relations:

L
′
C

′ = µε (all TEM lines), (2.10)

and

G
′

C ′ =
σ

ε
(all TEM lines). (2.11)

If the insulating medium between the conductors is air, the

transmission line is called an air line (e.g., coaxial air line or

two-wire air line). For an air line, ε = ε0 = 8.854×10−12 F/m,
µ = µ0 = 4π ×10−7 H/m, σ = 0, and G

′ = 0.

Concept Question 2-1: What is a transmission line?
When should transmission-line effects be considered, and

when may they be ignored?

Concept Question 2-2: What is the difference between

dispersive and nondispersive transmission lines? What is
the practical significance of dispersion?

Concept Question 2-3: What constitutes a TEM trans-

mission line?

Concept Question 2-4: What purpose does the
lumped-element circuit model serve? How are the line

parameters R
′, L

′, G
′, and C

′ related to the physical

and electromagnetic constitutive properties of the
transmission line?

Exercise 2-1: Use Table 2-1 to evaluate the line param-
eters of a two-wire air line with wires of radius 1 mm,

separated by a distance of 2 cm. The wires may be treated

as perfect conductors with σc = ∞.

Answer: R
′ = 0, L

′ = 1.20 (µH/m), G
′ = 0,

C
′ = 9.29 (pF/m). (See EM .)

Exercise 2-2: Calculate the transmission line parameters
at 1 MHz for a coaxial air line with inner and outer

conductor diameters of 0.6 cm and 1.2 cm, respectively.

The conductors are made of copper (see Appendix B for
µc and σc of copper).

Answer: R
′ = 2.07× 10−2 (Ω/m), L

′ = 0.14 (µH/m),
G
′ = 0, C

′ = 80.3 (pF/m). (See EM .)

2-3 Transmission-Line Equations

A transmission line usually connects a source on one end to

a load on the other. Before considering the complete circuit,
however, we will develop general equations that describe the

voltage across and current carried by the transmission line as a

function of time t and spatial position z. Using the lumped-
element model of Fig. 2-6(c), we begin by considering a

differential length ∆z as shown in Fig. 2-8. The quantities

υ(z, t) and i(z, t) denote the instantaneous voltage and current
at the left end of the differential section (node N), and similarly

υ(z+ ∆z, t) and i(z+ ∆z, t) denote the same quantities at node
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R' ∆z L' ∆z

∆z

i(z + ∆z, t)i(z, t)
Node

N
+

−

+

−

G' ∆z C' ∆z

Node

N + 1

υ(z, t) υ(z + ∆z, t)

Figure 2-8 Equivalent circuit of a two-conductor transmission

line of differential length ∆z.

(N + 1), located at the right end of the section. Application of

Kirchhoff’s voltage law accounts for the voltage drop across
the series resistance R

′∆z and inductance L
′∆z:

υ(z, t)−R
′∆z i(z, t)−L

′ ∆z
∂ i(z, t)

∂ t
−υ(z+∆z, t) = 0. (2.12)

Upon dividing all terms by ∆z and rearranging them, we obtain

−
[

υ(z+ ∆z, t)−υ(z, t)

∆z

]
= R

′
i(z, t)+ L

′ ∂ i(z, t)

∂ t
. (2.13)

In the limit as ∆z → 0, Eq. (2.13) becomes a differential

equation:

−∂υ(z, t)

∂ z
= R

′
i(z, t)+ L

′ ∂ i(z, t)

∂ t
. (2.14)

Similarly, Kirchhoff’s current law accounts for current drawn

from the upper line at node (N +1) by the parallel conductance

G
′ ∆z and capacitance C

′ ∆z:

i(z, t)−G
′ ∆z υ(z+ ∆z, t)

−C
′ ∆z

∂υ(z+ ∆z, t)

∂ t
− i(z+ ∆z, t) = 0. (2.15)

Upon dividing all terms by ∆z and taking the limit ∆z → 0,
Eq. (2.15) becomes a second-order differential equation:

−∂ i(z, t)

∂ z
= G

′ υ(z, t)+C
′ ∂υ(z, t)

∂ t
. (2.16)

The first-order differential equations (2.14) and (2.16) are the
time-domain forms of the transmission-line equations, known

as the telegrapher’s equations.

Except for the last section of this chapter, our primary
interest is in sinusoidal steady-state conditions. To that end, we

make use of the phasor representation with a cosine reference,

as outlined in Section 1-7. Thus, we define

υ(z, t) = Re[Ṽ (z)e
jωt ], (2.17a)

i(z, t) = Re[Ĩ(z)e
jωt ], (2.17b)

where Ṽ (z) and Ĩ(z) are the phasor counterparts of υ(z, t) and
i(z, t), respectively, each of which may be real or complex.

Upon substituting Eqs. (2.17a) and (2.17b) into Eqs. (2.14) and

(2.16), and utilizing the property given by Eq. (1.62) that ∂/∂ t

in the time domain is equivalent to multiplication by jω in the

phasor domain, we obtain the following pair of equations:

−dṼ (z)

dz
= (R′ + jωL

′) Ĩ(z),

−dĨ(z)

dz
= (G′ + jωC

′) Ṽ (z).

(telegrapher’s equations in phasor form)

(2.18a)

(2.18b)

2-4 Wave Propagation on a Transmission

Line

The two first-order coupled equations (2.18a) and (2.18b) can
be combined to give two second-order uncoupled wave equa-

tions: one for Ṽ (z) and another for Ĩ(z). The wave equation for

Ṽ (z) is derived by first differentiating both sides of Eq. (2.18a)

with respect to z, resulting in

−d
2
Ṽ (z)

dz2
= (R′ + jωL

′)
dĨ(z)

dz
. (2.19)

Then, upon substituting Eq. (2.18b) for dĨ(z)/dz, Eq. (2.19)

becomes

d
2
Ṽ (z)

dz2
− (R′+ jωL

′)(G′ + jωC
′)Ṽ (z) = 0, (2.20)

or

d
2
Ṽ (z)

dz2
− γ2

Ṽ (z) = 0,

(wave equation for Ṽ (z))

(2.21)

where

γ =
√

(R′ + jωL′)(G′ + jωC ′) .

(propagation constant)

(2.22)
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Application of the same steps to Eqs. (2.18a) and (2.18b) in
reverse order leads to

d
2
Ĩ(z)

dz2
− γ2

Ĩ(z) = 0.

(wave equation for Ĩ(z))

(2.23)

The second-order differential equations (2.21) and (2.23) are

called wave equations for Ṽ (z) and Ĩ(z), respectively, and γ is
called the complex propagation constant of the transmission

line. As such, γ consists of a real part α , called the attenuation
constant of the line with units of Np/m, and an imaginary
part β , called the phase constant of the line with units of

rad/m. Thus,

γ = α + jβ (2.24)

with

α = Re(γ)

= Re

(√
(R′ + jωL′)(G′ + jωC ′)

)
(Np/m),

(attenuation constant)

β = Im(γ)

= Im

(√
(R′ + jωL′)(G′ + jωC ′)

)
(rad/m).

(phase constant)

(2.25a)

(2.25b)

2-4.1 Phasor-Domain Solution

In Eqs. (2.25a) and (2.25b), we choose the square-root solu-
tions that give positive values for α and β . For passive trans-

mission lines, α is either zero or positive. Most transmission
lines, and all those considered in this chapter, are of the passive

type. The gain region of a laser is an example of an active

transmission line with a negative α .
The wave equations (2.21) and (2.23) have traveling wave

solutions of the form:

Ṽ (z) = V
+
0 e

−γz +V
−
0 e

γz (V), (2.26a)

Ĩ(z) = I
+
0 e

−γz + I
−
0 e

γz (A). (2.26b)

As shown later, the e
−γz term represents a wave propagating

in the +z direction, while the e
γz term represents a wave

propagating in the −z direction (Fig. 2-9). Verification that

these are indeed valid solutions is easily accomplished by
substituting the expressions given by Eqs. (2.26a) and (2.26b),

as well as their second derivatives, into Eqs. (2.21) and (2.23).

Vg

+

−

Zg
(V0

+, I0
+)e−γz

ZL

z

Incident wave

(V0
−, I0

−)eγz Reflected wave

Figure 2-9 In general, a transmission line can support two

traveling waves: an incident wave (with voltage and current

amplitudes (V +
0 , I

+
0 )) traveling along the +z direction (towards

the load) and a reflected wave (with (V−
0 , I

−
0 )) traveling along

the −z direction (towards the source).

In their present form, the solutions given by Eqs. (2.26a)

and (2.26b) contain four unknowns: the wave amplitudes
(V+

0 , I
+
0 ) of the +z propagating wave and (V−

0 , I
−
0 ) of the

−z propagating wave. We can easily relate the current wave

amplitudes, I
+
0 and I

−
0 , to the voltage wave amplitudes, V

+
0

and V
−
0 , by using Eq. (2.26a) in Eq. (2.18a) and then solving

for the current Ĩ(z). The process leads to

Ĩ(z) =
γ

R′ + jωL′ [V
+
0 e

−γz −V
−
0 e

γz]. (2.27)

Comparison of each term with the corresponding term in
Eq. (2.26b) leads us to conclude that

V
+
0

I
+
0

= Z0 =
−V

−
0

I
−
0

, (2.28)

where

Z0 =
R
′ + jωL

′

γ
=

√
R′ + jωL′

G′ + jωC ′ (Ω), (2.29)

is called the characteristic impedance of the line.

◮ It should be noted that Z0 is equal to the ratio of the

voltage amplitude to the current amplitude for each of
the traveling waves individually (with an additional minus

sign in the case of the −z propagating wave), but it is

not equal to the ratio of the total voltage Ṽ (z) to the total

current Ĩ(z) unless one of the two waves is absent. ◭

It seems reasonable that the voltage-to-current ratios of the
two waves V

+
0 /I

+
0 and V

−
0 /I

−
0 are both related to the same

quantity, namely Z0, but it is not immediately obvious as
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Module 2.1 Two-Wire Line The input data specifies the geometric and electric parameters of a two-wire transmission
line. The output includes the calculated values for the line parameters, characteristic impedance Z0, and attenuation and phase

constants, as well as plots of Z0 as a function of d and D.

to why one of the ratios is the negative of the other. The

explanation, which is available in more detail in Chapter 7,

is based on a directional rule that specifies the relationships
between the directions of the electric and magnetic fields of a

TEM wave and its direction of propagation. On a transmission

line, the voltage is related to the electric field E and the
current is related to the magnetic field H. To satisfy the

directional rule, reversing the direction of propagation requires

reversal of the direction (or polarity) of I relative to V . Hence,

V
−
0 /I

−
0 = −V

+
0 /I

+
0 .

In terms of Z0, Eq. (2.27) can be cast in the form

Ĩ(z) =
V

+
0

Z0

e
−γz − V

−
0

Z0

e
γz. (2.30)
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Module 2.2 Coaxial Line Except for changing the geometric parameters to those of a coaxial transmission line, this
module offers the same output information as Module 2.1.

According to Eq. (2.29), the characteristic impedance Z0 is

determined by the angular frequency ω of the wave traveling

along the line and the four line parameters (R′, L
′, G

′, and C
′).

These, in turn, are determined by the line geometry and

its constitutive parameters. Consequently, the combination of

Eqs. (2.26a) and (2.30) now contains only two unknowns,
namely V

+
0 and V

−
0 , as opposed to four.

2-4.2 Time-Domain Solution for υ(z, t)

In later sections, we apply boundary conditions at the source
and load ends of the transmission line to obtain expressions for

the remaining wave amplitudes V
+
0 and V

−
0 . In general, each is

a complex quantity characterized by a magnitude and a phase
angle:

V
+
0 = |V+

0 |e jφ+
, (2.31a)
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V
−
0 = |V−

0 |e jφ−
. (2.31b)

After substituting these definitions in Eq. (2.26a) and using

Eq. (2.24) to decompose γ into its real and imaginary parts, we

can convert back to the time domain to obtain an expression
for υ(z, t), the instantaneous voltage on the line:

υ(z, t) = Re(Ṽ (z)e jωt)

= Re
[(

V
+
0 e

−γz +V
−
0 e

γz
)

e
jωt
]

= Re[|V+
0 |e jφ+

e
jωt

e
−(α+ jβ )z + |V−

0 |e jφ−
e

jωt
e
(α+ jβ )z].

The final expression for υ(z, t) is then given by

υ(z, t) = |V+
0 |e−αz cos(ωt −β z+ φ+)

+ |V−
0 |eαz cos(ωt + β z+ φ−). (2.32)

From our review of waves in Section 1-4, we recognize the
first term in Eq. (2.32) as a wave traveling in the +z direction

(the coefficients of t and z have opposite signs) and the second

term as a wave traveling in the −z direction (the coefficients of
t and z are both positive). Both waves propagate with a phase

velocity up given by Eq. (1.30):

up = f λ =
ω

β
. (2.33)

Because the wave is guided by the transmission line, λ often

is called the guide wavelength. The factor e
−αz accounts for

the attenuation of the +z propagating wave, and the factor e
αz

accounts for the attenuation of the −z propagating wave.

◮ The presence of two waves on the line propagating in

opposite directions produces a standing wave. ◭

To gain a physical understanding of what that means, we later

provide a thorough treatment of standing waves in Section

2-6.2.

2-4.3 Time-Domain Solution for i(z, t)

In the phasor domain, the expression for Ĩ(z) given by

Eq. (2.30) is similar to that for Ṽ (z), except that the current

amplitudes are divided by the characteristic impedance of the
transmission line, Z0, and the current wave traveling in the −z

direction has a minus sign (second term in Eq. (2.30)). Since

Z0 is, in general, a complex quantity (see Eq. (2.29)), we need
to express it as

Z0 = |Z0|e jφz . (2.34)

To obtain an expression for i(z, t), we insert the expressions
given by Eqs. (2.31) and (2.34) into Eq. (2.30), multiply both

terms by e
jωt , and then take the real part:

i(z, t) = Re(Ĩ(z) e
jωt) = Re

[ |V+
0 |

|Z0|
e

jφ+
e
− jφze

jωt
e
−(α+ jβ z)

− |V−
0 |

|Z0|
e

jφ−
e
− jφze

jωt
e
(α+ jβ z)

]
,

which yields

i(z, t) =
|V+

0 |
|Z0|

e
−αz cos(ωt −β z+ φ+−φz)

− |V−
0 |

|Z0|
e

αz cos(ωt + β z+ φ−−φz). (2.35)

Comparison of the expression for i(z, t) with that given by
Eq. (2.32) for υ(z, t) reveals that:

(a) The amplitudes of the current waves are reduced by |Z0|
when compared with the amplitudes of the voltage waves.

(b) The amplitude of the second term in Eq. (2.35)—
corresponding to the current wave traveling in the neg-

ative z direction—has a minus sign.

(c) The reference phase angle in the expression for i(z, t) has

an extra component, namely −φz, when compared with

the reference phase angle of υ(z, t).

Example 2-1: Air Line

An air line is a transmission line in which air separates the

two conductors, which renders G
′ = 0 because σ = 0. In

addition, assume that the conductors are made of a material
with high conductivity so that R

′ ≈ 0. For an air line with

a characteristic impedance of 50 Ω and a phase constant of

20 rad/m at 700 MHz, find the line inductance L
′ and the line

capacitance C
′.

Solution: The following quantities are given:

Z0 = 50 Ω,

β = 20 rad/m,

f = 700 MHz = 7×108 Hz.

With R
′ = G

′ = 0, Eqs. (2.25b) and (2.29) reduce to

β = Im

[√
( jωL′)( jωC ′)

]
= Im

(
jω

√
L′C ′

)
= ω

√
L′C ′ ,
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Z0 =

√
jωL′

jωC ′ =

√
L′

C ′ .

The ratio of β to Z0 is β/Z0 = ωC
′, or

C
′ =

β

ωZ0

=
20

2π ×7×108×50
= 9.09×10−11 (F/m)

= 90.9 (pF/m).

From Z0 =
√

L′/C ′, it follows that

L
′ = Z

2
0C

′ = (50)2 ×90.9×10−12 = 2.27×10−7 (H/m)

= 227 (nH/m).

Exercise 2-3: Verify that Eq. (2.26a) indeed provides a
solution to the wave equation (2.21).

Answer: (See EM .)

Exercise 2-4: A two-wire air line has the following line
parameters: R

′ = 0.404 (mΩ/m), L
′ = 2.0 (µH/m), G

′ = 0,

and C
′ = 5.56 (pF/m). For operation at 5 kHz, determine

(a) the attenuation constant α , (b) the phase constant β ,
(c) the phase velocity up, and (d) the characteristic impe-

dance Z0. (See EM .)

Answer: (a) α = 3.37 × 10−7 (Np/m), (b)
β = 1.05 × 10−4 (rad/m), (c) up = 3.0 × 108 (m/s),

(d) Z0 = (600− j1.9) Ω = 600 −0.18◦ Ω.

2-5 The Lossless Microstrip Line

Because its geometry is well suited for fabrication on printed

circuit boards, the microstrip line is the most common inter-
connect configuration used in RF and microwave circuits. It

consists of a narrow, very thin strip of copper (or another

good conductor) printed on a dielectric substrate overlaying
a ground plane (Fig. 2-10(a)). The presence of charges of

opposite polarity on its two conducting surfaces gives rise to

electric field lines between them (Fig. 2-10(b)). Also, the flow
of current through the conductors (when part of a closed cir-

cuit) generates magnetic field loops around them, as illustrated
in Fig. 2-10(b) for the narrow strip. Even though the patterns

of E and B are not everywhere perfectly orthogonal, they

are approximately so in the region between the conductors,
which is where the E and B fields are concentrated the most.

Accordingly, the microstrip line is considered a quasi-TEM
transmission line, which allows us to describe its voltages
and currents in terms of the one-dimensional TEM model of

Section 2-4, namely Eqs. (2.26) through (2.33).

(a) Longitudinal view

(b) Cross-sectional view with E and B field lines

(c) Microwave circuit

Dielectric
insulator 
(ε, μ, σ)

Conducting
strip (μc , σc)

Conducting ground plane (μc , σc)

w

h

E

B

Figure 2-10 Microstrip line: (a) longitudinal view, (b)

cross-sectional view, and (c) circuit example. (Courtesy of

Prof. Gabriel Rebeiz, U. California at San Diego.)

The microstrip line has two geometric parameters, the
width of the elevated strip, w, and the thickness (height) of
the dielectric layer, h. We will ignore the thickness of the

conducting strip because it has a negligible influence on the
propagation properties of the microstrip line so long as the strip

thickness is much smaller than the width w, which is almost
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always the case in practice. Also, we assume the substrate
material to be a perfect dielectric with σ = 0 and the metal strip

and ground plane to be perfect conductors with σc ≈ ∞. These

two assumptions simplify the analysis considerably without
incurring significant error. Finally, we set µ = µ0, which is

always true for the dielectric materials used in the fabrication

of microstrip lines. These simplifications reduce the number
of geometric and material parameters to three, namely w, h,

and ε .

Electric field lines always start on the conductor carrying
positive charges and end on the conductor carrying negative

charges. For the coaxial, two-wire, and parallel-plate lines
shown in the upper part of Fig. 2-4, the field lines are confined

to the region between the conductors. A characteristic attribute

of such transmission lines is that the phase velocity of a wave
traveling along any one of them is given by

up =
c√
εr

, (2.36a)

where c is the velocity of light in free space and εr is the
relative permittivity of the dielectric medium between the

conductors.

2-5.1 Effective Permittivity

In the microstrip line, even though most of the electric field

lines connecting the strip to the ground plane do pass directly
through the dielectric substrate, a few go through both the air

region above the strip and the dielectric layer (Fig. 2-10(b)).

This nonuniform mixture can be accounted for by defining an
effective relative permittivity εeff such that the phase velocity

is given by an expression that resembles Eq. (2.36a), namely

up =
c√
εeff

. (2.36b)

Methods for calculating the propagation properties of the
microstrip line are quite complicated and beyond the scope

of this text. However, it is possible to use curve-fit approxi-

mations to rigorous solutions to arrive at the following set of
expressions:∗

εeff =
εr + 1

2
+

(
εr −1

2

)(
1 +

10

s

)−xy

, (2.37a)

where s is the width-to-thickness ratio,

s =
w

h
, (2.37b)

∗D. H. Schrader, Microstrip Circuit Analysis, Prentice Hall, 1995,
pp. 31–32.

and x and y are intermediate variables given by

x = 0.56

[
εr −0.9

εr + 3

]0.05

, (2.38a)

y = 1 + 0.02 ln

(
s

4 + 3.7×10−4
s

2

s4 + 0.43

)

+ 0.05 ln(1 + 1.7×10−4
s

3). (2.38b)

2-5.2 Characteristic Impedance

The characteristic impedance of the microstrip line is given by

Z0 =
60√
εeff

ln

{
6 +(2π−6)e−t

s
+

√
1 +

4

s2

}
, (2.39)

with

t =

(
30.67

s

)0.75

. (2.40)

Figure 2-11 displays plots of Z0 as a function of s for various
types of dielectric materials.

The corresponding line and propagation parameters are

given by

R
′ = 0 (because σc = ∞), (2.41a)

G
′ = 0 (because σ = 0), (2.41b)

C
′ =

√
εeff

Z0c
, (2.41c)

L
′ = Z

2
0C

′, (2.41d)

Z0 (Ω)

εr = 2.5

εr = 6

εr = 10

s

s = w/h
w = strip width
h = substrate thickness

Microstrip

2 4 6 8 10
0

50

100

150

Figure 2-11 Plots of Z0 as a function of s for various types of

dielectric materials.



2-5 THE LOSSLESS MICROSTRIP LINE 77

Module 2.3 Lossless Microstrip Line The output panel lists the values of the transmission line parameters and displays
the variation of Z0 and εeff with h and w.

α = 0 (because R
′ = G

′ = 0), (2.41e)

β =
ω

c

√
εeff . (2.41f)

2-5.3 Design Process

The preceding expressions allow us to compute the values of
Z0 and the other propagation parameters when given values

for εr, h, and w. This is exactly what is needed in order to

analyze a circuit containing a microstrip transmission line. To

perform the reverse process, namely to design a microstrip line
by selecting values for its w and h such that their ratio yields

the required value of Z0 (to satisfy design specifications),

we need to express s in terms of Z0. The expression for Z0

given by Eq. (2.39) is rather complicated, so inverting it to

obtain an expression for s in terms of Z0 is rather difficult.

An alternative option is to generate a family of curves similar
to those displayed in Fig. 2-11 and to use them to estimate
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s for a specified value of Z0. A logical extension of the
graphical approach is to generate curve-fit expressions that

provide high-accuracy estimates of s. The error associated with

the following formulas is less than 2%:

(a) For Z0 ≤ (44−2εr) Ω,

s =
w

h
=

2

π

{
(q−1)− ln(2q−1)

+
εr −1

2εr

[
ln(q−1)+ 0.29− 0.52

εr

]}
(2.42)

with

q =
60π2

Z0
√

εr

,

and

(b) for Z0 ≥ (44−2εr) Ω,

s =
w

h
=

8e
p

e2p −2
, (2.43a)

with

p =

√
εr + 1

2

Z0

60
+

(
εr −1

εr + 1

)(
0.23 +

0.12

εr

)
. (2.43b)

The above expressions presume that εr, the relative permit-

tivity of the dielectric substrate, has already been specified. For

typical substrate materials including Duroid, Teflon, silicon,
and sapphire, εr ranges between 2 and 15.

Example 2-2: Microstrip Line

A 50 Ω microstrip line uses a 0.5-mm thick sapphire substrate
with εr = 9. What is the width of its copper strip?

Solution: Since Z0 = 50 > 44 − 18 = 32, we should use

Eq. (2.43):

p =

√
εr + 1

2
× Z0

60
+

(
εr −1

εr + 1

)(
0.23 +

0.12

εr

)

=

√
9 + 1

2
× 50

60
+

(
9−1

9 + 1

)(
0.23 +

0.12

9

)
= 2.06,

s =
w

h
=

8e
p

e2p −2
=

8e
2.06

e4.12 −2
= 1.056.

Hence,

w = sh = 1.056×0.5 mm = 0.53 mm.

To check our calculations, we use s = 1.056 to calculate Z0 to

verify that the value we obtained is indeed equal or close to
50 Ω. With εr = 9, Eqs. (2.37a) to (2.40) yield

x = 0.55, y = 0.99,

t = 12.51, εeff = 6.11,

Z0 = 49.93 Ω.

The calculated value of Z0 is, for all practical purposes, equal

to the value specified in the problem statement.

Exercise 2-5: A microstrip transmission line uses a strip

of width w and height h = 1 mm over a substrate of

relative permittivity εr = 4. What should w be so that the
characteristic impedance of the line is Z0 = 50 Ω?

Answer: w = 2.05 mm. (See EM .)

2-6 The Lossless Transmission Line:

General Considerations

According to the preceding section, a transmission line is fully

characterized by two fundamental parameters: its propagation
constant γ and its characteristic impedance Z0, both of which

are specified by the angular frequency ω and the line parame-
ters R

′, L
′, G

′, and C
′.

◮ In many practical situations, the transmission line can

be designed to exhibit low ohmic losses by selecting

conductors with very high conductivities and dielectric
materials (separating the conductors) with negligible con-

ductivities. As a result, R
′ and G

′ assume very small values
such that R

′ ≪ ωL
′ and G

′ ≪ ωC
′. ◭

These conditions allow us to set R
′ = G

′ ≈ 0 in Eq. (2.22),

which yields

γ = α + jβ = jω
√

L′C ′ , (2.44)

which in turn implies that

α = 0 (lossless line),

β = ω
√

L′C ′ (lossless line).

(2.45a)

(2.45b)
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For the characteristic impedance, application of the lossless
line conditions to Eq. (2.29) leads to

Z0 =

√
L′

C ′ (lossless line), (2.46)

which now is a real number. Using the lossless line expression

for β [Eq. (2.45b)], we obtain the following expressions for

the guide wavelength λ and the phase velocity up:

λ =
2π

β
=

2π

ω
√

L′C ′ , (2.47)

up =
ω

β
=

1√
L′C ′ . (2.48)

Upon using Eq. (2.10), Eqs. (2.45b) and (2.48) may be rewrit-

ten as

β = ω
√

µε (rad/m),

up =
1√
µε

(m/s),

(2.49)

(2.50)

where µ and ε are, respectively, the magnetic permeability

and electrical permittivity of the insulating material separating

the conductors. Materials used for this purpose are usually
characterized by a permeability µ0 = 4π × 10−7 H/m (the

permeability of free space). Also, the permittivity ε is often

specified in terms of the relative permittivity εr defined as

εr = ε/ε0, (2.51)

where ε0 = 8.854 × 10−12 F/m ≈ (1/36π) × 10−9 F/m is
the permittivity of free space (vacuum). Hence, Eq. (2.50)

becomes

up =
1√

µ0εrε0

=
1√

µ0ε0

· 1√
εr

=
c√
εr

, (2.52)

where c = 1/
√

µ0ε0 = 3× 108 m/s is the velocity of light in

free space. If the insulating material between the conductors
is air, then εr = 1 and up = c. In view of Eq. (2.51) and

the relationship between λ and up given by Eq. (2.33), the

wavelength is given by

λ =
up

f
=

c

f

1√
εr

=
λ0√

εr

, (2.53)

where λ0 = c/ f is the wavelength in air corresponding to a

frequency f . Note that, because both up and λ depend on εr, the

choice of the type of insulating material used in a transmission
line is dictated not only by its mechanical properties but by its

electrical properties as well.

According to Eq. (2.52), if εr of the insulating material is
independent of f (which usually is the case for commonly used

TEM lines), the same independence applies to up.

◮ If sinusoidal waves of different frequencies travel on a

transmission line with the same phase velocity, the line is

called nondispersive. ◭

This is an important feature to consider when digital data are
transmitted in the form of pulses. A rectangular pulse or a

series of pulses is composed of many Fourier components with

different frequencies. If the phase velocity is the same for all
frequency components (or at least for the dominant ones), then

the pulse’s shape does not change as it travels down the line.

In contrast, the shape of a pulse propagating in a dispersive
medium becomes progressively distorted, and the pulse length

increases (stretches out) as a function of the distance traveled

in the medium (Fig. 2-3), thereby imposing a limitation on
the maximum data rate (which is related to the length of the

individual pulses and the spacing between adjacent pulses)

that can be transmitted through the medium without loss of
information.

Table 2-2 provides a list of the expressions for γ , Z0, and

up for the general case of a lossy line and for several types of
lossless lines. The expressions for the lossless lines are based

on the equations for L
′ and C

′ given in Table 2-1.

Exercise 2-6: For a lossless transmission line,
λ = 20.7 cm at 1 GHz. Find εr of the insulating

material.

Answer: εr = 2.1. (See EM .)

Exercise 2-7: A lossless transmission line uses a dielectric

insulating material with εr = 4. If its line capacitance is
C

′ = 10 (pF/m), find (a) the phase velocity up, (b) the line

inductance L
′, and (c) the characteristic impedance Z0.

Answer: (a) up = 1.5×108 (m/s), (b) L
′ = 4.45 (µH/m),

(c) Z0 = 667.1 Ω. (See EM .)

2-6.1 Voltage Reflection Coefficient

With γ = jβ for the lossless line, Eqs. (2.26a) and (2.30) for

the total voltage and current become

Ṽ (z) = V
+
0 e

− jβ z +V
−
0 e

jβ z, (2.54a)
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Table 2-2 Characteristic parameters of transmission lines.

Propagation Phase Characteristic

Constant Velocity Impedance

γ = α + jβ up Z0

General case γ =
√

(R′ + jωL′)(G′ + jωC ′) up = ω/β Z0 =

√
(R′ + jωL′)
(G′ + jωC ′)

Lossless α = 0, β = ω
√

εr/c up = c/
√

εr Z0 =
√

L′/C ′
(R′ = G

′ = 0)

Lossless coaxial α = 0, β = ω
√

εr/c up = c/
√

εr Z0 = (60/
√

εr) ln(b/a)

Lossless α = 0, β = ω
√

εr/c up = c/
√

εr Z0 = (120/
√

εr)

two-wire · ln
[
(D/d)+

√
(D/d)2 −1

]

Z0 ≈ (120/
√

εr) ln(2D/d),
if D ≫ d

Lossless α = 0, β = ω
√

εr/c up = c/
√

εr Z0 = (120π/
√

εr)(h/w)
parallel-plate

Notes: (1) µ = µ0, ε = εrε0, c = 1/
√

µ0ε0, and
√

µ0/ε0 ≈ (120π) Ω, where εr is the relative permittivity

of insulating material. (2) For coaxial line, a and b are radii of inner and outer conductors. (3) For two-wire

line, d = wire diameter and D = separation between wire centers. (4) For parallel-plate line, w = width of

plate and h = separation between the plates.

Ĩ(z) =
V

+
0

Z0

e
− jβ z− V

−
0

Z0

e
jβ z. (2.54b)

These expressions contain two unknowns, V
+
0 and V

−
0 . Ac-

cording to Section 1-7.2, an exponential factor of the form

e
− jβ z is associated with a wave traveling in the positive z

direction, from the source (sending end) to the load (receiving
end). Accordingly, we refer to it as the incident wave with

V
+
0 as its voltage amplitude. Similarly, the term containing

V
−
0 e

jβ z represents a reflected wave with voltage amplitude V
−
0

traveling along the negative z direction from the load to the
source.

To determine V
+
0 and V

−
0 , we need to consider the lossless

transmission line in the context of the complete circuit, includ-
ing a generator circuit at its input terminals and a load at its

output terminals, as shown in Fig. 2-12. The line of length l is
terminated in an arbitrary load impedance ZL.

◮ For mathematical convenience, the reference of the
spatial coordinate z is chosen such that z = 0 corresponds

to the location of the load, not the generator. ◭

At the sending end, at z = −l, the line is connected to a

sinusoidal voltage source with phasor voltage Ṽg and internal
impedance Zg. Since z points from the generator to the load,

positive values of z correspond to locations beyond the load;

therefore, they are irrelevant to our circuit. In future sections,
we will find it more convenient to work with a spatial dimen-

sion that also starts at the load but whose direction is opposite

of z. We shall call it the distance from the load d and define it
as d = −z, as shown in Fig. 2-12.

The phasor voltage across the load, ṼL, and the phasor
current through it, ĨL, are related by the load impedance ZL

as

ZL =
ṼL

ĨL

. (2.55)

The voltage ṼL is the total voltage on the line Ṽ (z) given by

Eq. (2.54a), and ĨL is the total current Ĩ(z) given by Eq. (2.54b).

Both are evaluated at z = 0:

ṼL = Ṽ (z=0) = V
+
0 +V

−
0 , (2.56a)
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Vg
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Z0 ZL
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+
Transmission line

Generator Load

z = −l z = 0
z

d = l
d

d = 0

−

− −

Figure 2-12 Transmission line of length l connected on one

end to a generator circuit and on the other end to a load ZL. The

load is located at z = 0, and the generator terminals are at z =−l.

Coordinate d is defined as d = −z.

ĨL = Ĩ(z=0) =
V

+
0

Z0

− V
−
0

Z0

. (2.56b)

Using these expressions in Eq. (2.55), we obtain

ZL =

(
V

+
0 +V

−
0

V
+
0 −V

−
0

)
Z0. (2.57)

Solving for V
−
0 gives

V
−
0 =

(
ZL −Z0

ZL + Z0

)
V

+
0 . (2.58)

◮ The ratio of the amplitudes of the reflected and incident

voltage waves at the load is known as the voltage reflec-
tion coefficient Γ. ◭

From Eq. (2.58), it follows that

Γ =
V
−
0

V
+
0

=
ZL −Z0

ZL + Z0

=
ZL/Z0 −1

ZL/Z0 + 1

=
zL −1

zL + 1
(dimensionless), (2.59)

where

zL =
ZL

Z0

(2.60)

is the normalized load impedance. In many transmission line
problems, we can streamline the necessary computation by

normalizing all impedances in the circuit to the characteristic

impedance Z0. Normalized impedances are denoted by lower-

case letters.

In view of Eq. (2.28), the ratio of the current amplitudes is

I
−
0

I
+
0

= −V
−
0

V
+
0

= −Γ. (2.61)

◮ We note that whereas the ratio of the voltage amplitudes

is equal to Γ, the ratio of the current amplitudes is equal

to −Γ. ◭

The reflection coefficient Γ is governed by a single parameter,

the normalized load impedance zL. As indicated by Eq. (2.46),
Z0 of a lossless line is a real number. However, ZL is in general

a complex quantity, as in the case of a series RL circuit, for

example, for which ZL = R + jωL. Hence, in general Γ also is
complex and given by

Γ = |Γ|e jθr , (2.62)

where |Γ| is the magnitude of Γ and θr is its phase angle. Note
that |Γ| ≤ 1.

◮ A load is said to be matched to a transmission line if

ZL = Z0 because then there will be no reflection by the
load (Γ = 0 and V

−
0 = 0). ◭

On the other hand, when the load is an open circuit (ZL = ∞),
Γ = 1 and V

−
0 = V

+
0 , and when it is a short circuit (ZL = 0),

Γ = −1 and V
−
0 = −V

+
0 (Table 2-3).

Example 2-3: Reflection Coefficient
of a Series RC Load

A 100 Ω transmission line is connected to a load consisting
of a 50 Ω resistor in series with a 10 pF capacitor. Find the

reflection coefficient at the load for a 100 MHz signal.

Solution: The following quantities are given (Fig. 2-13):

RL = 50 Ω, CL = 10 pF = 10−11 F,

Z0 = 100 Ω, f = 100 MHz = 108 Hz.
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Table 2-3 Magnitude and phase of the reflection coefficient for various types of loads. The normalized load impedance

zL = ZL/Z0 = (R+ jX)/Z0 = r + jx, where r = R/Z0 and x = X/Z0 are the real and imaginary parts of zL, respectively.

Reflection Coefficient Γ = |Γ|e jθr

Load |Γ| θr

Z0 ZL = (r + jx)Z0

[
(r−1)2 +x

2

(r +1)2 +x2

]1/2

tan−1

(
x

r−1

)
− tan−1

(
x

r +1

)

Z0 Z0 0 (no reflection) irrelevant

Z0 (short) 1 ±180◦ (phase opposition)

Z0 (open) 1 0 (in-phase)

Z0 jX = jωL 1 ±180◦−2tan−1
x

Z0 jX =
− j

ωC
1 ±180◦−2tan−1

x

CL

RL 50 Ω
Z0 = 100 Ω

10 pF

A

A'

Transmission line

Figure 2-13 RC load (Example 2-3).

The normalized load impedance is

zL =
ZL

Z0

=
RL − j/(ωCL)

Z0

=
1

100

(
50− j

1

2π ×108×10−11

)

= (0.5− j1.59) Ω.

From Eq. (2.59), the voltage reflection coefficient is

Γ =
zL −1

zL + 1

=
0.5− j1.59−1

0.5− j1.59 + 1

=
−0.5− j1.59

1.5− j1.59

=
−1.67e

j72.6◦

2.19e− j46.7◦

= −0.76e
j119.3◦.

This result may be converted into the form of Eq. (2.62) by
replacing the minus sign with e

− j180◦. Thus,

Γ = 0.76e
j119.3◦

e
− j180◦

= 0.76e
− j60.7◦

= 0.76 −60.7◦ ,

or

|Γ| = 0.76, θr = −60.7◦.
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Example 2-4: |Γ| for Purely Reactive Load

Show that |Γ| = 1 for a lossless line connected to a purely
reactive load.

Solution: The load impedance of a purely reactive load is
ZL = jXL. From Eq. (2.59), the reflection coefficient is

Γ =
ZL −Z0

ZL + Z0

=
jXL −Z0

jXL + Z0

=
−(Z0 − jXL)

(Z0 + jXL)
=

−
√

Z2
0 + X2

L e
− jθ

√
Z2

0 + X2
L e jθ

= −e
− j2θ = 1e

j(π−2θ),

where θ = tan−1
XL/Z0. Hence, for Γ = |Γ|e jθr ,

|Γ| = 1

and

θr = π −2θ = π −2tan−1

(
XL

Z0

)
.

Exercise 2-8: A 50 Ω lossless transmission line is ter-

minated in a load with impedance ZL = (30− j200) Ω.
Calculate the voltage reflection coefficient at the load.

Answer: Γ = 0.93 −27.5◦ . (See EM .)

Exercise 2-9: A 150 Ω lossless line is terminated in a

capacitor with impedance ZL = − j30 Ω. Calculate Γ.

Answer: Γ = 1 −157.4◦ . (See EM .)

Exercise 2-10: Given that the reflection coefficient at the

load is Γ = 0.6 − j0.3, determine the normalized load

impedance zL.

Answer: zL = 2.2− j2.4. (See EM .)

2-6.2 Standing Waves

Using the relation V
−
0 = ΓV

+
0 in Eqs. (2.54a) and (2.54b)

yields

Ṽ (z) = V
+
0 (e− jβ z + Γe

jβ z), (2.63a)

Ĩ(z) =
V

+
0

Z0
(e− jβ z−Γe

jβ z). (2.63b)

These expressions now contain only one (yet to be determined)
unknown, V

+
0 . Before we proceed to solve for V

+
0 , however,

let us examine the physical meaning underlying these expres-

sions. We begin by deriving an expression for |Ṽ (z)|, which

is the magnitude of Ṽ (z). Upon using Eq. (2.62) in Eq. (2.63a)

and applying the relation |Ṽ (z)|= [Ṽ (z)Ṽ
∗(z)]1/2, where Ṽ

∗(z)
is the complex conjugate of Ṽ (z), we have

|Ṽ (z)| =
{[

V
+
0 (e− jβ z + |Γ|e jθre

jβ z)
]

·
[
(V+

0 )∗(e jβ z + |Γ|e− jθre
− jβ z)

]}1/2

= |V+
0 |
[
1 + |Γ|2 + |Γ|(e j(2β z+θr) + e

− j(2β z+θr))
]1/2

= |V+
0 |
[
1 + |Γ|2 + 2|Γ|cos(2β z+ θr)

]1/2
, (2.64)

where we have used the identity

e
jx + e

− jx = 2cosx (2.65)

for any real quantity x. To express the magnitude of Ṽ as a

function of d instead of z, we replace z with −d on the right-

hand side of Eq. (2.64):

|Ṽ (d)| = |V+
0 |
[
1 + |Γ|2 + 2|Γ|cos(2β d−θr)

]1/2
. (2.66)

By applying the same steps to Eq. (2.63b), a similar expression

can be derived for |Ĩ(d)|, which is the magnitude of the current
Ĩ(d):

|Ĩ(d)| = |V+
0 |

Z0

[1 + |Γ|2−2|Γ|cos(2β d−θr)]
1/2. (2.67)

The variations of |Ṽ (d)| and |Ĩ(d)| as a function of d, which
is the position on the line relative to the load (at d = 0), are

illustrated in Fig. 2-14 for a line with |V +
0 | = 1 V, |Γ| = 0.3,

θr = 30◦, and Z0 = 50 Ω. The sinusoidal patterns are called
standing waves and are caused by the interference of the

two traveling waves. The maximum value of the standing-

wave pattern of |Ṽ (d)| corresponds to the position on the

line at which the incident and reflected waves are in-phase
[2β d−θr = 2nπ in Eq. (2.66)]. Therefore, they add construc-
tively to give a value equal to (1 + |Γ|)|V+

0 | = 1.3 V. The

minimum value of |Ṽ (d)| occurs when the two waves interfere
destructively, which occurs when the incident and reflected

waves are in phase-opposition [2β d−θr = (2n+1)π]. In this

case, |Ṽ (d)| = (1−|Γ|)|V+
0 | = 0.7 V.

◮ Whereas the repetition period is λ for the incident

and reflected waves considered individually, the repetition
period of the standing-wave pattern is λ/2. ◭
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Figure 2-14 Standing-wave pattern for (a) |Ṽ (d)| and (b) |Ĩ(d)|
for a lossless transmission line of characteristic impedance

Z0 = 50 Ω, terminated in a load with a reflection coefficient

Γ = 0.3e
j30◦ . The magnitude of the incident wave |V+

0 | = 1 V.

The standing-wave ratio is S = |Ṽ |max/|Ṽ |min = 1.3/0.7 = 1.86.

The standing-wave pattern describes the spatial variation of the

magnitude of Ṽ (d) as a function of d. If one were to observe

the variation of the instantaneous voltage as a function of time

at location d = dmax in Fig. 2-14, that variation would be
as cosωt and would have an amplitude equal to 1.3 V [i.e.,

υ(t) would oscillate between −1.3 V and +1.3 V]. Similarly,
the instantaneous voltage υ(d, t) at any location d will be

sinusoidal with amplitude equal to |Ṽ (d)| at that d.

◮ Interactive Module 2.4a provides a highly recom-
mended simulation tool for gaining better understanding

of the standing-wave patterns for Ṽ (d) and Ĩ(d) and the
dynamic behavior of υ(d, t) and i(d, t). ◭

aAt em8e.eecs.umich.edu

Close inspection of the voltage and current standing-wave

patterns shown in Fig. 2-14 reveals that the two patterns are

0

|V(d)|
~
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~

|V(d)|

d

d

d

~

0

0

|V0
+|

(a) ZL = Z0

(b) ZL = 0  (short circuit)

(c) ZL =      (open circuit)
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Matched line
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Open-circuited line
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4
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4

λ
2

Figure 2-15 Voltage standing-wave patterns for (a) a matched

load, (b) a short-circuited line, and (c) an open-circuited line.

in phase opposition (when one is at a maximum, the other is

at a minimum, and vice versa). This is a consequence of the
fact that the third term in Eq. (2.66) is preceded by a plus sign,

whereas the third term in Eq. (2.67) is preceded by a minus

sign.
The standing-wave patterns shown in Fig. 2-14 are for a line

with Γ = 0.3e
j30◦. The peak-to-peak variation of the pattern

(|Ṽ |min = (1−|Γ|)|V+
0 | to |Ṽ |max = (1 + |Γ|)|V+

0 |) depends

on |Γ|. For the special case of a matched line with ZL = Z0, we

have |Γ| = 0 and |Ṽ (d)| = |V+
0 | for all values of d, as shown in

Fig. 2-15(a).

◮ With no reflected wave present, there is no interference

and no standing waves. ◭

http://em8e.eecs.umich.edu
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The other end of the |Γ| scale, at |Γ| = 1, corresponds to
when the load is a short circuit (Γ = −1) or an open circuit

(Γ = 1). The standing-wave patterns for those two cases are

shown in Figs. 2-15(b) and (c); both exhibit maxima of 2|V+
0 |

and minima equal to zero, but the two patterns are spatially

shifted relative to each other by a distance of λ/4. A purely

reactive load (capacitor or inductor) also satisfies the condition
|Γ| = 1, but θr is generally neither zero nor 180◦ (Table 2-3).

Exercise 2.9 examines the standing-wave pattern for a lossless

line terminated in an inductor.
Now let us examine the maximum and minimum values of

the voltage magnitude. From Eq. (2.66), |Ṽ (d)| is a maximum
when the argument of the cosine function is equal to zero or

a multiple of 2π . Let us denote dmax as the distance from the

load at which |Ṽ (d)| is a maximum. It then follows that

|Ṽ (d)| = |Ṽ |max = |V+
0 |[1 + |Γ|], (2.68)

when

2β dmax−θr = 2nπ , (2.69)

with n = 0 or a positive integer. Solving Eq. (2.69) for dmax,
we have

dmax =
θr + 2nπ

2β
=

θrλ

4π
+

nλ

2
,

{
n = 1,2, . . . if θr < 0,
n = 0,1,2, . . . if θr ≥ 0,

(2.70)

where we have used β = 2π/λ . The phase angle of the

voltage reflection coefficient, θr, is bounded between −π
and π radians. If θr ≥ 0, the first voltage maximum
occurs at dmax = θrλ/4π , corresponding to n = 0, but if

θr < 0, the first physically meaningful maximum occurs at
dmax = (θrλ/4π) + λ/2, corresponding to n = 1. Negative

values of dmax correspond to locations past the end of the line;

therefore, they have no physical significance.

Similarly, the minima of |Ṽ (d)| occur at distances dmin

where the argument of the cosine function in Eq. (2.66) is
equal to (2n + 1)π , which gives the result

|Ṽ |min = |V+
0 |[1−|Γ|], (2.71)

when (2β dmin −θr) = (2n + 1)π ,

with −π ≤ θr ≤ π . The first minimum corresponds to n = 0.

The spacing between a maximum dmax and the adjacent
minimum dmin is λ/4. Hence, the first minimum occurs at

dmin =

{
dmax + λ/4, if dmax < λ/4,
dmax−λ/4, if dmax ≥ λ/4.

(2.72)

◮ The locations on the line corresponding to voltage
maxima correspond to current minima, and vice versa. ◭

The ratio of |Ṽ |max to |Ṽ |min is called the voltage standing-
wave ratio S, which from Eqs. (2.68) and (2.71) is given by

S =
|Ṽ |max

|Ṽ |min

=
1 + |Γ|
1−|Γ| (dimensionless). (2.73)

This quantity is often referred to by its acronym, VSWR or
the shorter acronym SWR, and it provides a measure of the

mismatch between the load and the transmission line:

◮ For a matched load with Γ = 0, we get S = 1, and for a

line with |Γ| = 1, S = ∞. ◭

Concept Question 2-5: The attenuation constant α rep-

resents ohmic losses. In view of the model given in

Fig. 2-6(c), what should R
′ and G

′ be in order to have
no losses? Verify your expectation through the expression

for α given by Eq. (2.25a).

Concept Question 2-6: How is the wavelength λ of the

wave traveling on the transmission line related to the free-

space wavelength λ0?

Concept Question 2-7: When is a load matched to a
transmission line? Why is it important?

Concept Question 2-8: What is a standing-wave pat-

tern? Why is its period λ/2 and not λ ?

Concept Question 2-9: What is the separation between
the location of a voltage maximum and the adjacent

current maximum on the line?
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Module 2.4 Transmission Line Simulator Upon specifying the requisite input data—including the load impedance
at d = 0 and the generator voltage and impedance at d = l, this module provides a wealth of output information about the

voltage and current waveforms along the transmission line. You can view plots of the standing-wave patterns for voltage and

current, the time and spatial variations of the instantaneous voltage υ(d, t) and current i(d, t), and other related quantities.

Exercise 2-11: Use Module 2.4 to generate the volt-

age and current standing-wave patterns for a 50 Ω
line of length 1.5λ terminated in an inductance with
ZL = j140 Ω.

Answer: See Module 2.4 display.

Example 2-5: Standing-Wave Ratio

A 50 Ω transmission line is terminated in a load with
ZL = (100 + j50) Ω. Find the voltage reflection coefficient

and the voltage standing-wave ratio.

Solution: From Eq. (2.59), Γ is given by

Γ =
zL −1

zL + 1
=

(2 + j1)−1

(2 + j1)+ 1
=

1 + j1

3 + j1
.

Converting the numerator and denominator to polar form

yields

Γ =
1.414e

j45◦

3.162e j18.4◦ = 0.45e
j26.6◦.

Using the definition for S given by Eq. (2.73), we have

S =
1 + |Γ|
1−|Γ| =

1 + 0.45

1−0.45
= 2.6.
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Figure 2-16 Slotted coaxial line (Example 2-6).

Example 2-6: Measuring ZL

A slotted-line probe is an instrument used to measure the un-
known impedance of a load, ZL. A coaxial slotted line contains

a narrow longitudinal slit in the outer conductor. A small probe

inserted in the slit can be used to sample the magnitude of the

electric field and, hence, the magnitude |Ṽ (d)| of the voltage

on the line (Fig. 2-16). By moving the probe along the length

of the slotted line, it is possible to measure |Ṽ |max and |Ṽ |min

and the distances from the load at which they occur. Use of

Eq. (2.73), namely S = |Ṽ |max/|Ṽ |min, provides the voltage

standing-wave ratio S. Measurements with a Z = 50 Ω slotted

line terminated in an unknown load impedance determined that
S = 3. The distance between successive voltage minima was

found to be 30 cm, and the first voltage minimum was located
at 12 cm from the load. Determine the load impedance ZL.

Solution: The following quantities are given:

Z0 = 50 Ω, S = 3, dmin = 12 cm.

Since the distance between successive voltage minima is λ/2,

λ = 2×0.3 = 0.6 m,

and

β =
2π

λ
=

2π

0.6
=

10π

3
(rad/m).

From Eq. (2.73), solving for |Γ| in terms of S gives

|Γ| = S−1

S + 1
=

3−1

3 + 1
= 0.5.

Next, we use the condition given by Eq. (2.71) to find θr:

2β dmin −θr = π , for n = 0 (first minimum),

which gives

θr = 2β dmin−π = 2× 10π

3
×0.12−π =−0.2π (rad) =−36◦.

Hence,

Γ = |Γ|e jθr = 0.5e
− j36◦ = 0.405− j0.294.

Solving Eq. (2.59) for ZL, we have

ZL = Z0

[
1 + Γ

1−Γ

]
= 50

[
1 + 0.405− j0.294

1−0.405 + j0.294

]
= (85− j67) Ω.

Exercise 2-12: If Γ = 0.5 −60◦ and λ = 24 cm, find the

locations of the voltage maximum and minimum nearest

to the load.

Answer: dmax = 10 cm, dmin = 4 cm. (See EM .)

Exercise 2-13: A 140 Ω lossless line is terminated in a

load impedance ZL = (280 + j182) Ω. If λ = 72 cm, find
(a) the reflection coefficient Γ, (b) the voltage standing-

wave ratio S, (c) the locations of voltage maxima, and (d)

the locations of voltage minima.

Answer: (a) Γ = 0.5 29◦ , (b) S = 3.0, (c) dmax =
2.9 cm + nλ/2, (d) dmin = 20.9 cm + nλ/2, where
n = 0,1,2, . . . . (See EM .)

2-7 Wave Impedance of the Lossless

Line

The standing-wave patterns indicate that on a mismatched
line the voltage and current magnitudes are oscillatory with

position along the line and in phase opposition with each other.

Hence, the voltage to current ratio, called the wave impedance
Z(d), must vary with position also. Using Eqs. (2.63a) and

(2.63b) with z = −d,

Z(d) =
Ṽ (d)

Ĩ(d)
=

V
+
0 [e jβ d + Γe

− jβ d]

V
+
0 [e jβ d −Γe− jβ d]

Z0

= Z0

[
1 + Γe

− j2β d

1−Γe− j2β d

]
= Z0

[
1 + Γd

1−Γd

]
(Ω),

(2.74)

where we define

Γd = Γe
− j2β d = |Γ|e jθre

− j2β d = |Γ|e j(θr−2β d) (2.75)

as the phase-shifted voltage reflection coefficient, meaning
that Γd has the same magnitude as Γ, but its phase is shifted by

2β d relative to that of Γ.
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(a) Actual circuit
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Figure 2-17 The segment to the right of terminals BB
′ can be

replaced with a discrete impedance equal to the wave impedance

Z(d).

◮ Z(d) is the ratio of the total voltage (incident- and
reflected-wave voltages) to the total current at any

point d on the line, in contrast with the characteris-

tic impedance of the line Z0, which relates the volt-
age and current of each of the two waves individually

(Z0 = V
+
0 /I

+
0 = −V

−
0 /I

−
0 ). ◭

In the circuit of Fig. 2-17(a) at terminals BB
′ at an arbitrary

location d on the line, Z(d) is the wave impedance of the line
when “looking” to the right, i.e., towards the load. Application

of the equivalence principle allows us to replace the segment

to the right of terminals BB
′ with a lumped impedance of

value Z(d), as depicted in Fig. 2-17(b). From the standpoint

of the input circuit to the left of terminals BB
′, the two circuit

configurations are electrically identical.
Of particular interest in many transmission-line problems is

the input impedance at the source end of the line where d = l,

which is given by

Zin = Z(d = l) = Z0

[
1 + Γl

1−Γl

]
(2.76)

with

Γl = Γe
− j2β l = |Γ|e j(θr−2β l). (2.77)

By replacing Γ with Eq. (2.59) and using the relations

e
jβ l = cosβ l + j sinβ l, (2.78a)

Vg

Ii
Zg

Zin

A

A′

A

A′

Z0 ZL

~

Ii
~

IL
~

Vi
~~

+

+

+

VL
~

+
Transmission line

Generator Load

z = −l

d = l
z = 0
d = 0

Vg

Zg

ZinVi
~~

+

−

− −

−

−

Figure 2-18 At the generator end, the terminated transmission

line can be replaced with the input impedance of the line Zin.

e
− jβ l = cosβ l− j sinβ l, (2.78b)

Eq. (2.76) can be written in terms of the normalized load

impedance zL as

Zin = Z0

(
zL cosβ l + j sinβ l

cosβ l + jzL sinβ l

)

= Z0

(
zL + j tanβ l

1 + jzL tanβ l

)
. (2.79)

From the standpoint of the generator circuit, the transmission
line can be replaced with an impedance Zin, as shown in

Fig. 2-18. The phasor voltage across Zin is given by

Ṽi = ĨiZin =
ṼgZin

Zg + Zin

. (2.80)

Simultaneously, from the standpoint of the transmission line,

the voltage across it at the input of the line is given by

Eq. (2.63a) with z = −l:

Ṽi = Ṽ (−l) = V
+
0 [e jβ l + Γe

− jβ l]. (2.81)
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Equating Eq. (2.80) to Eq. (2.81) and then solving for V
+
0

leads to

V
+
0 =

(
ṼgZin

Zg + Zin

)(
1

e jβ l + Γe− jβ l

)
. (2.82)

This completes the solution of the transmission-line wave

equations given by Eqs. (2.21) and (2.23) for the special case

of a lossless transmission line. We started out with the general
solutions given by Eq. (2.26), which included four unknown

amplitudes, V
+
0 ,V−

0 , I+
0 , and I

−
0 . We then determined that

Z0 = V
+
0 /I

+
0 = −V

−
0 /I

−
0 , thereby reducing the unknowns to

the two voltage amplitudes only. Upon applying the boundary

condition at the load, we were able to relate V
−
0 to V

+
0

through Γ, and finally, by applying the boundary condition at

the source, we obtained an expression for V
+
0 .

Example 2-7: Complete Solution for
υ(d, t) and i(d, t)

A 1.05 GHz generator circuit with series impedance Zg = 10 Ω
and voltage source given by

υg(t) = 10sin(ωt + 30◦) (V)

is connected to a load ZL = (100 + j50) Ω through a 50-Ω,

67-cm long lossless transmission line. The phase velocity of

the line is 0.7c, where c is the velocity of light in a vacuum.
Find υ(d, t) and i(d, t) on the line.

Solution: From the relationship up = λ f , we find the wave-

length

λ =
up

f
=

0.7×3×108

1.05×109
= 0.2 m,

and

β l =
2π

λ
l =

2π

0.2
×0.67 = 6.7π = 0.7π = 126◦,

where we have subtracted multiples of 2π . The voltage reflec-
tion coefficient at the load is

Γ =
ZL −Z0

ZL + Z0

=
(100 + j50)−50

(100 + j50)+ 50
= 0.45e

j26.6◦.

With reference to Fig. 2-18, the input impedance of the line
given by Eq. (2.76) is

Zin = Z0

(
1 + Γl

1−Γl

)

= Z0

(
1 + Γe

− j2β l

1−Γe− j2β l

)

= 50

(
1 + 0.45e

j26.6◦
e
− j252◦

1−0.45e j26.6◦e− j252◦

)
= (21.9 + j17.4) Ω.

Rewriting the expression for the generator voltage with the
cosine reference, we have

υg(t) = 10sin(ωt + 30◦)

= 10cos(90◦−ωt −30◦)

= 10cos(ωt −60◦)

= Re[10e
− j60◦

e
jωt ] = Re[Ṽge

jωt ] (V).

Hence, the phasor voltage Ṽg is given by

Ṽg = 10e
− j60◦ = 10 −60◦ (V).

Application of Eq. (2.82) gives

V
+
0 =

(
ṼgZin

Zg + Zin

)(
1

e jβ l + Γe− jβ l

)

=

[
10e

− j60◦(21.9 + j17.4)

10 + 21.9 + j17.4

]

· (e j126◦ + 0.45e
j26.6◦

e
− j126◦)−1

= 10.2e
j159◦ (V).

Using Eq. (2.63a) with z =−d, the phasor voltage on the line is

Ṽ (d) = V
+
0 (e jβ d + Γe

− jβ d)

= 10.2e
j159◦(e jβ d + 0.45e

j26.6◦
e
− jβ d),

and the corresponding instantaneous voltage υ(d, t) is

υ(d, t) = Re[Ṽ (d) e
jωt ]

= 10.2cos(ωt + β d + 159◦)

+ 4.55cos(ωt −β d + 185.6◦) (V).

Similarly, Eq. (2.63b) leads to

Ĩ(d) = 0.20e
j159◦(e jβ d −0.45e

j26.6◦
e
− jβ d),

i(d, t) = 0.20cos(ωt + β d + 159◦)

+ 0.091cos(ωt −β d + 185.6◦) (A).
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Module 2.5 Wave and Input Impedance The wave impedance, Z(d) = Ṽ (d)/Ĩ(d), exhibits a cyclical pattern as a

function of position along the line. This module displays plots of the real and imaginary parts of Z(d), specifies the locations

of the voltage maximum and minimum nearest to the load, and provides other related information.

2-8 Special Cases of the Lossless Line

We often encounter situations involving lossless transmission
lines with particular terminations or lines whose lengths lead

to particularly useful line properties. We now consider some of

these special cases.

2-8.1 Short-Circuited Line

The transmission line shown in Fig. 2-19(a) is terminated in
a short circuit, ZL = 0. Consequently, the voltage reflection

coefficient defined by Eq. (2.59) is Γ = −1, and the voltage
standing-wave ratio given by Eq. (2.73) is S = ∞. With z = −d

and Γ = −1 in Eqs. (2.63a) and (2.63b), and Γ = −1 in

Eq. (2.74), the voltage, current, and wave impedance on a
short-circuited lossless transmission line are given by
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Figure 2-19 Transmission line terminated in a short circuit: (a)

schematic representation, (b) normalized voltage on the line, (c)

normalized current, and (d) normalized input impedance.

Ṽsc(d) = V
+
0 [e jβ d − e

− jβ d] = 2 jV
+
0 sinβ d, (2.83a)

Ĩsc(d) =
V

+
0

Z0

[e jβ d + e
− jβ d] =

2V
+
0

Z0

cosβ d, (2.83b)

Zsc(d) =
Ṽsc(d)

Ĩsc(d)
= jZ0 tanβ d. (2.83c)

The voltage Ṽsc(d) is zero at the load (d = 0), as it should
be for a short circuit, and its amplitude varies as sinβ d. In

contrast, the current Ĩsc(d) is a maximum at the load, and it

varies as cosβ d. Both quantities are displayed in Fig. 2-19 as
a function of d.

Denoting Z
sc
in as the input impedance of a short-circuited

line of length l,

Z
sc
in =

Ṽsc(l)

Ĩsc(l)
= jZ0 tanβ l. (2.84)

A plot of Z
sc
in / jZ0 versus l is shown in Fig. 2-19(d). For the

short-circuited line, if its length is less than λ/4, its impedance

is equivalent to that of an inductor, and if it is between λ/4 and
λ/2, it is equivalent to that of a capacitor.

In general, the input impedance Zin of a line terminated in

an arbitrary load has a real part, called the input resistance Rin,
and an imaginary part, called the input reactance Xin:

Zin = Rin + jXin. (2.85)

In the case of the short-circuited lossless line, the input impe-

dance is purely reactive (Rin = 0). If tanβ l ≥ 0, the line appears

inductive to the source, acting like an equivalent inductor Leq

whose impedance equals Z
sc
in . Thus,

jωLeq = jZ0 tanβ l, if tanβ l ≥ 0, (2.86)

or

Leq =
Z0 tanβ l

ω
(H). (2.87)

The minimum line length l that would result in an input impe-

dance Z
sc
in equivalent to that of an inductor with inductance

Leq is

l =
1

β
tan−1

(
ωLeq

Z0

)
(m). (2.88)

Similarly, if tanβ l ≤ 0, the input impedance is capacitive,

in which case the line acts like an equivalent capacitor with

capacitance Ceq such that

1

jωCeq

= jZ0 tanβ l, if tanβ l ≤ 0, (2.89)

or

Ceq = − 1

Z0ω tanβ l
(F). (2.90)

Since l is a positive number, the shortest length l for which

tanβ l ≤ 0 corresponds to the range π/2 ≤ β l ≤ π . Hence, the
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minimum line length l that would result in an input impedance
Z

sc
in equivalent to that of a capacitor of capacitance Ceq is

l =
1

β

[
π − tan−1

(
1

ωCeqZ0

)]
(m). (2.91)

◮ These results imply that, through proper choice of

the length of a short-circuited line, we can make them
into equivalent capacitors and inductors of any desired

reactance. ◭

Such a practice is indeed common in the design of microwave
circuits and high-speed integrated circuits, because making an

actual capacitor or inductor often is much more difficult than
fabricating a microstrip transmission line with a shorted end

on a circuit board.

Example 2-8: Equivalent Reactive Elements

Choose the length of a shorted 50 Ω lossless transmission

line (Fig. 2-20) such that its input impedance at 2.25 GHz is

identical to that of a capacitor with capacitance Ceq = 4 pF.
The wave velocity on the line is 0.75c.

Solution: We are given

up = 0.75c = 0.75×3×108 = 2.25×108 m/s,

Z0 = 50 Ω,

f = 2.25 GHz = 2.25×109 Hz,

Ceq = 4 pF = 4×10−12 F.

Z0

Zin
sc

Zin
sc Short

circuit

l

Zc = 
1

jωCeq

Figure 2-20 Shorted line as an equivalent capacitor

(Example 2-8).

The phase constant is

β =
2π

λ
=

2π f

up

=
2π ×2.25×109

2.25×108
= 62.8 (rad/m).

From Eq. (2.89), it follows that

tanβ l = − 1

Z0ωCeq

= − 1

50×2π×2.25×109×4×10−12
= −0.354.

The tangent function is negative when its argument is in

the second or fourth quadrants. The solution for the second

quadrant is

β l1 = 2.8 rad or l1 =
2.8

β
=

2.8

62.8
= 4.46 cm,

and the solution for the fourth quadrant is

β l2 = 5.94 rad or l2 =
5.94

62.8
= 9.46 cm.

We also could have obtained the value of l1 by applying

Eq. (2.91). The length l2 is greater than l1 by exactly λ/2.
In fact, any length l = 4.46 cm + nλ/2, where n is a positive

integer, also is a solution.

2-8.2 Open-Circuited Line

With ZL = ∞, as illustrated in Fig. 2-21(a), we have Γ = 1
and S = ∞, and the voltage, current, and input impedance are

given by

Ṽoc(d) = V
+
0 [e jβ d + e

− jβ d] = 2V
+
0 cosβ d, (2.92a)

Ĩoc(d) =
V

+
0

Z0

[e jβ d − e
− jβ d] =

2 jV
+
0

Z0

sin β d, (2.92b)

Z
oc
in =

Ṽoc(l)

Ĩoc(l)
= − jZ0 cotβ l. (2.93)

Plots of these quantities are displayed in Fig. 2-21 as a function
of d for the voltage and current and as a function of l for the

input impedance.

2-8.3 Application of Short-Circuit/Open-Circuit
Technique

A network analyzer is a radio-frequency (RF) instrument

capable of measuring the impedance of any load connected
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Figure 2-21 Transmission line terminated in an open circuit:

(a) schematic representation, (b) normalized voltage on the line,

(c) normalized current, and (d) normalized input impedance.

to its input terminal. When used to measure (1) Z
sc
in , which is

the input impedance of a lossless line terminated in a short
circuit, and (2) Z

oc
in , which is the input impedance of the line

when terminated in an open circuit, the combination of the

two measurements can be used to determine the characteristic
impedance of the line Z0 and its phase constant β . Indeed,

the product of the expressions given by Eqs. (2.84) and (2.93)

gives

Z0 = +
√

Zsc
in Zoc

in , (2.94)

and the ratio of the same expressions leads to

tanβ l =

√
−Z

sc
in

Zoc
in

. (2.95)

Because of the π phase ambiguity associated with the tangent

function, the length l should be less than or equal to λ/2 to

provide an unambiguous result.

Example 2-9: Measuring Z0 and β

Find Z0 and β of a 57-cm long lossless transmission line
whose input impedance was measured as Z

sc
in = j40.42 Ω when

terminated in a short circuit and as Z
oc
in = − j121.24 Ω when

terminated in an open circuit. From other measurements, we

know that the line is between 3 and 3.25 wavelengths long.

Solution: From Eqs. (2.94) and (2.95),

Z0 = +
√

Zsc
in Zoc

in =
√

( j40.42)(− j121.24) = 70 Ω,

tanβ l =

√
−Zsc

in

Zoc
in

=

√
1

3
.

Since l is between 3λ and 3.25λ , β l = (2π l/λ ) is between
6π radians and (13π/2) radians. This places β l in the first

quadrant (0 to π/2) radians. Hence, the only acceptable

solution for tanβ ℓ =
√

1/3 is β l = π/6 radians. This value,

however, does not include the 2π multiples associated with the
integer λ multiples of l. Hence, the true value of β l is

β l = 6π +
π

6
= 19.4 (rad),

in which case

β =
19.4

0.57
= 34 (rad/m).

2-8.4 Lines of Length l = nλ/2

If l = nλ/2, where n is an integer,

tanβ l = tan [(2π/λ )(nλ/2)] = tannπ = 0.
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Consequently, Eq. (2.79) reduces to

Zin = ZL, for l = nλ/2, (2.96)

which means that a half-wavelength line (or any integer multi-

ple of λ/2) does not modify the load impedance.

2-8.5 Quarter-Wavelength Transformer

Another case of interest is when the length of the line is a

quarter-wavelength (or λ/4 + nλ/2, where n = 0 or a positive
integer), corresponding to β l = (2π/λ )(λ/4) = π/2. From

Eq. (2.79), the input impedance becomes

Zin =
Z

2
0

ZL

, for l = λ/4 + nλ/2. (2.97)

The utility of such a quarter-wave transformer is illustrated by

Example 2-10.

Example 2-10: λ/4 Transformer

A 50 Ω lossless transmission line is to be matched to a resistive
load impedance with ZL = 100 Ω via a quarter-wave section

as shown in Fig. 2-22, thereby eliminating reflections along

the feedline. Find the required characteristic impedance of the
quarter-wave transformer.

Solution: To eliminate reflections at terminal AA
′, the input

impedance Zin looking into the quarter-wave line should be
equal to Z01, which is the characteristic impedance of the

feedline. Thus, Zin = 50 Ω. From Eq. (2.97),

Zin =
Z

2
02

ZL

,

Z01 = 50 Ω ZL = 100 ΩZin Z02

A

A'
λ/4

λ/4 transformer
Feedline

Figure 2-22 Configuration for Example 2-10.

or

Z02 =
√

Zin ZL =
√

50×100 = 70.7 Ω.

Whereas this eliminates reflections on the feedline, it does not

eliminate them on the λ/4 line. However, since the lines are

lossless, all of the power incident on AA
′ will end up getting

transferred into the load ZL.

◮ In this example, ZL is purely resistive. To apply the

λ/4 transformer technique to match a transmission line
to a load with a complex impedance, a more elaborate

procedure is required (Section 2-11). ◭

2-8.6 Matched Transmission Line: ZL = Z0

For a matched lossless transmission line with ZL = Z0, (1) the
input impedance Zin = Z0 for all locations d on the line,

(2) Γ = 0, and (3) all of the incident power is delivered to

the load, regardless of the line length l. A summary of the
properties of standing waves is given in Table 2-4.

Concept Question 2-10: What is the difference
between the characteristic impedance Z0 and the input

impedance Zin? When are they the same?

Concept Question 2-11: What is a quarter-wave trans-
former? How can it be used?

Concept Question 2-12: A lossless transmission line
of length l is terminated in a short circuit. If l < λ/4, is

the input impedance inductive or capacitive?

Concept Question 2-13: What is the input impedance
of an infinitely long line?

Concept Question 2-14: If the input impedance of a

lossless line is inductive when terminated in a short

circuit, will it be inductive or capacitive when the line is
terminated in an open circuit?

Exercise 2-14: A 50 Ω lossless transmission line uses

an insulating material with εr = 2.25. When terminated

in an open circuit, how long should the line be for its
input impedance to be equivalent to a 10 pF capacitor at

50 MHz?

Answer: l = 9.92 cm. (See EM .)
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Table 2-4 Properties of standing waves on a lossless transmission line.

Voltage maximum |Ṽ |max = |V +
0 |[1+ |Γ|]

Voltage minimum |Ṽ |min = |V+
0 |[1−|Γ|]

Positions of voltage maxima (also

positions of current minima)

dmax =
θrλ

4π
+

nλ

2
, n = 0,1,2, . . .

Position of first maximum (also position of

first current minimum)

dmax =





θrλ

4π
, if 0 ≤ θr ≤ π

θrλ

4π
+

λ

2
, if −π ≤ θr ≤ 0

Positions of voltage minima (also positions

of current maxima)

dmin =
θrλ

4π
+

(2n+1)λ

4
, n = 0,1,2, . . .

Position of first minimum (also position of

first current maximum)

dmin =
λ

4

(
1+

θr

π

)

Input impedance Zin = Z0

(
zL + j tanβ l

1+ jzL tanβ l

)
= Z0

(
1+Γl

1−Γl

)

Positions at which Zin is real at voltage maxima and minima

Zin at voltage maxima Zin = Z0

(
1+ |Γ|
1−|Γ|

)

Zin at voltage minima Zin = Z0

(
1−|Γ|
1+ |Γ|

)

Zin of short-circuited line Z
sc
in = jZ0 tanβ l

Zin of open-circuited line Z
oc
in = − jZ0 cotβ l

Zin of line of length l = nλ/2 Zin = ZL, n = 0,1,2, . . .

Zin of line of length l = λ/4+nλ/2 Zin = Z
2
0/ZL, n = 0,1,2, . . .

Zin of matched line Zin = Z0

|V+
0 | = amplitude of incident wave; Γ = |Γ|e jθr with −π < θr < π; θr in radians; Γl = Γe

− j2β l .

Exercise 2-15: A 300 Ω feedline is to be connected to a

3-m long, 150 Ω line terminated in a 150 Ω resistor. Both
lines are lossless and use air as the insulating material,

and the operating frequency is 50 MHz. Determine (a) the

input impedance of the 3-m long line, (b) the voltage
standing-wave ratio on the feedline, and (c) the charac-

teristic impedance of a quarter-wave transformer were it

to be used between the two lines in order to achieve S = 1
on the feedline. (See EM .)

Answer: (a) Zin = 150 Ω, (b) S = 2, (c) Z0 = 212.1 Ω.

Exercise 2-16: Through multiple trials, it was determined
that a load with unknown impedance ZL can be per-

fectly matched to a feedline with Zin = 50 Ω by using a

λ/4 transformer section with characteristic impedance of
60 Ω. What is ZL?

Answer: ZL = 72 Ω.
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Technology Brief 3: Microwave Ovens

Percy Spencer , while working for Raytheon in the 1940s
on the design and construction of magnetrons for radar,
observed that a chocolate bar that had unintentionally
been exposed to microwaves had melted in his pocket.
The process of cooking by microwave was patented in
1946 and by the 1970s, microwave ovens had become
standard household items.

Microwave Absorption

A microwave is an electromagnetic wave whose fre-
quency lies in the 300 MHz–300 GHz range (see
Fig. 1-16). When a material containing water is exposed
to microwaves, the water molecule reacts by rotating
itself in order to align its own electric dipole along the
direction of the oscillating electric field of the microwave.
The rapid vibration motion creates heat in the material,
resulting in the conversion of microwave energy into
thermal energy. The absorption coefficient of water, α( f ),
exhibits a microwave spectrum that depends on the tem-
perature of the water and the concentration of dissolved

salts and sugars present in it. If the frequency f is chosen
such that α( f ) is high, the water-containing material
absorbs much of the microwave energy passing through
it and converts it to heat. However, this also means that
most of the energy is absorbed by a thin surface layer
of the material with not much energy remaining to heat
deeper layers. The penetration depth δp of a material,
defined as δp = 1/2α, is a measure of how deep the
power carried by an EM wave can penetrate into the
material. Approximately 95% of the microwave energy
incident upon a material is absorbed by the surface
layer of thickness 3δp. Figure TF3-1 displays calculated
spectra of δp for pure water and two materials with
different water contents.

◮ The frequency most commonly used in microwave
ovens is 2.45 GHz. The magnitude of δs at 2.45 GHz
varies beween ∼2 cm for pure water and 8 cm for a
material with a water content of only 20%. ◭

This is a practical range for cooking food in a microwave
oven; at much lower frequencies, the food is not a good
absorber of energy (in addition to the fact that the design

Food with 50% water

Food with 20% water

Chocolate bar
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Figure TF3-1 Penetration depth as a function of frequency (1–5 GHz) for pure water and two foods with different water contents.
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of the magnetron and the oven cavity become problem-
atic), and at much higher frequencies, the microwave
energy cooks the food very unevenly (mostly the surface
layer). Whereas microwaves are readily absorbed by
water, fats, and sugars, they can penetrate through
most ceramics, glass, or plastics without loss of energy,
thereby imparting little or no heat to those materials.

Oven Operation

To generate high-power microwaves (∼700 watts), the
microwave oven uses a magnetron tube (Fig. TF3-2),
which requires the application of a voltage on the order
of 4000 volts. The typical household voltage of 115 volts
is increased to the required voltage level through a high-
voltage transformer . The microwave energy generated
by the magnetron is transferred into a cooking chamber
designed to contain the microwaves within it through the
use of metal surfaces and safety Interlock switches.

◮ Microwaves are reflected by metal surfaces, so
they can bounce around the interior of the chamber,
be absorbed by the food, but not escape to the
outside. ◭

If the oven door is made of a glass panel, a metal
screen or a layer of conductive mesh is attached to it
to ensure the necessary shielding; microwaves cannot
pass through the metal screen if the mesh width is much
smaller than the wavelength of the microwave (λ ≈ 12 cm
at 2.5 GHz). In the chamber, the microwave energy
establishes a standing-wave pattern, which leads to an
uneven distribution. This is mitigated by using a rotating
metal stirrer that disperses the microwave energy to
different parts of the chamber.

115 V

Metal screen
Magnetron

Interlock switch

Stirrer

4,000 V

High-voltage transformer

Figure TF3-2 Microwave oven cavity.
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2-9 Power Flow on a Lossless

Transmission Line

Our discussion thus far has focused on the voltage and current

attributes of waves propagating on a transmission line. Now

we examine the flow of power carried by the incident and
reflected waves. We begin by reintroducing Eqs. (2.63a) and

(2.63b) with z = −d:

Ṽ (d) = V
+
0 (e jβ d + Γe

− jβ d), (2.98a)

Ĩ(d) =
V

+
0

Z0

(e jβ d −Γe
− jβ d). (2.98b)

In these expressions, the first terms represent the incident-wave

voltage and current, and the terms involving Γ represent the

reflected-wave voltage and current. The time-domain expres-
sions for the voltage and current at location d from the load

are obtained by transforming Eq. (2.98) to the time domain:

υ(d, t) = Re[Ṽ e
jωt ]

= Re[|V+
0 |e jφ+

(e jβ d + |Γ|e jθre
− jβ d)e jωt ]

= |V+
0 |[cos(ωt + β d + φ+)

+ |Γ|cos(ωt −β d + φ+ + θr)], (2.99a)

i(d, t) =
|V+

0 |
Z0

[cos(ωt + β d + φ+)

−|Γ|cos(ωt −β d + φ+ + θr)], (2.99b)

where we used the relations V
+
0 = |V+

0 |e jφ+
and Γ = |Γ|e jθr

that were introduced earlier as Eqs. (2.31a) and (2.62), respec-
tively.

2-9.1 Instantaneous Power

The instantaneous power carried by the transmission line is

equal to the product of υ(d, t) and i(d, t):

P(d, t) = υ(d, t) i(d, t)

= |V+
0 |[cos(ωt + β d + φ+)

+ |Γ|cos(ωt −β d + φ+ + θr)]

× |V+
0 |

Z0

[cos(ωt + β d + φ+)

−|Γ|cos(ωt −β d + φ+ + θr)]

=
|V+

0 |2
Z0

[cos2(ωt + β d + φ+)

−|Γ|2 cos2(ωt −β d + φ+ + θr)] (W).

(2.100)

Per our earlier discussion in connection with Eq. (1.31),
if the signs preceding ωt and β d in the argument of the

cosine term are both positive or both negative, then the cosine

term represents a wave traveling in the negative d direction.
Since d points from the load to the generator, the first term

in Eq. (2.100) represents the instantaneous incident power
traveling towards the load. This is the power that would be
delivered to the load in the absence of wave reflection (when

Γ = 0). Because β d is preceded by a minus sign in the

argument of the cosine of the second term in Eq. (2.100), that
term represents the instantaneous reflected power traveling in

the +d direction—away from the load. Accordingly, we label
these two power components

P
i(d, t) =

|V+
0 |2
Z0

cos2(ωt + β d + φ+) (W), (2.101a)

P
r(d, t) = −|Γ|2 |V

+
0 |2
Z0

cos2(ωt −β d + φ+ + θr) (W).

(2.101b)

Using the trigonometric identity

cos2
x = 1

2
(1 + cos2x),

the expressions in Eq. (2.101) can be rewritten as

P
i(d, t) =

|V+
0 |2

2Z0

[1 + cos(2ωt + 2β d + 2φ+)], (2.102a)

P
r(d, t) = −|Γ|2 |V

+
0 |2

2Z0

[1 + cos(2ωt −2β d + 2φ+ + 2θr)].

(2.102b)

We note that in each case, the instantaneous power consists of

a dc term (not varying in time) and an ac term that oscillates at
an angular frequency of 2ω .

◮ The power oscillates at twice the rate of the voltage or

current. ◭

2-9.2 Time-Average Power

From a practical standpoint, we usually are more interested
in the time-average power flowing along the transmission

line, Pav(d), than in the instantaneous power P(d, t). To com-

pute Pav(d), we can use a time-domain approach or a compu-
tationally simpler phasor-domain approach. For completeness,

we consider both.
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Time-Domain Approach

The time-average power is equal to the instantaneous power
averaged over one time period T = 1/ f = 2π/ω. For the

incident wave, its time-average power is

P
i
av(d) =

1

T

∫
T

0
P

i(d, t)dt =
ω

2π

∫ 2π/ω

0
P

i(d, t) dt. (2.103)

Upon inserting Eq. (2.102a) into Eq. (2.103) and performing

the integration, we obtain

P
i
av =

|V+
0 |2

2Z0

(W), (2.104)

which is identical with the dc term of P
i(d, t) given by

Eq. (2.102a). A similar treatment for the reflected wave gives

P
r
av = −|Γ|2 |V

+
0 |2

2Z0

= −|Γ|2P
i
av. (2.105)

◮ The average reflected power is equal to the average

incident power, diminished by a multiplicative factor
of |Γ|2. ◭

Note that the expressions for P
i
av and P

r
av are independent

of d, which means that the time-average powers carried by
the incident and reflected waves do not change as they travel

along the transmission line. This is as expected, because the

transmission line is lossless.
The net average power flowing towards (and then absorbed

by) the load shown in Fig. 2-23 is

Pav = P
i
av + P

r
av =

|V+
0 |2

2Z0

[1−|Γ|2] (W). (2.106)

Phasor-Domain Approach

For any propagating wave with voltage and current phasors Ṽ

and Ĩ, a useful formula for computing the time-average power

is

Pav = 1
2
Re

[
Ṽ · Ĩ∗

]
, (2.107)

Vg

Zg

ZL~

Transmission line

+ Pav
i

d = l d = 0

Pav = |Γ|2 Pav
r i

−

Figure 2-23 The time-average power reflected by a load

connected to a lossless transmission line is equal to the incident

power multiplied by |Γ|2.

where Ĩ
∗ is the complex conjugate of Ĩ. Application of this

formula to Eqs. (2.98a) and (2.98b) gives

Pav =
1

2
Re

[
V

+
0 (e jβ d + Γe

− jβ d)
V

+
0

∗

Z0

(e− jβ d −Γ∗
e

jβ d)

]

=
1

2
Re

[ |V+
0 |2
Z0

(1−|Γ|2 + Γe
− j2β d −Γ∗

e
j2β d)

]

=
|V+

0 |2
2Z0

{
[1−|Γ|2]+Re [|Γ|e− j(2β d−θr) −|Γ|e j(2β d−θr)]

}

=
|V+

0 |2
2Z0

{
[1−|Γ|2]+ |Γ|[cos(2β d−θr)− cos(2β d−θr)]

}

=
|V+

0 |2
2Z0

[1−|Γ|2], (2.108)

which is identical to Eq. (2.106).

Exercise 2-17: For a 50 Ω lossless transmission line

terminated in a load impedance ZL = (100 + j50) Ω,

determine the fraction of the average incident power
reflected by the load.

Answer: 20%. (See EM .)

Exercise 2-18: For the line of Exercise 2-17, what is the

magnitude of the average reflected power if |V+
0 | = 1 V?

Answer: P
r
av = 2 (mW). (See EM .)

Concept Question 2-15: According to Eq. (2.102b),

the instantaneous value of the reflected power depends on
the phase of the reflection coefficient θr, but the average

reflected power given by Eq. (2.105) does not. Explain.
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Concept Question 2-16: What is the average power
delivered by a lossless transmission line to a reactive load?

Concept Question 2-17: What fraction of the incident

power is delivered to a matched load?

Concept Question 2-18: Verify that

1

T

∫
T

0
cos2

(
2πt

T
+ β d + φ

)
dt =

1

2
,

regardless of the values of d and φ , so long as neither is a

function of t.

2-10 The Smith Chart

The Smith chart, developed by P. H. Smith in 1939, is a widely

used graphical tool for analyzing and designing transmission-
line circuits. Even though it was originally intended to facil-

itate calculations involving complex impedances, the Smith

chart has become an important avenue for comparing and
characterizing the performance of microwave circuits. As the

material in this and the next section demonstrates, use of the

Smith chart not only avoids tedious manipulations of complex
numbers, but it also allows an engineer to design impedance-

matching circuits with relative ease.

2-10.1 Parametric Equations

The reflection coefficient Γ is, in general, a complex quantity
composed of a magnitude |Γ| and a phase angle θr or, equiva-

lently, a real part Γr and an imaginary part Γi,

Γ = |Γ|e jθr = Γr + jΓi , (2.109)

where

Γr = |Γ|cosθr, (2.110a)

Γi = |Γ|sin θr. (2.110b)

The Smith chart lies in the complex Γ plane. In Fig. 2-24,

point A represents a reflection coefficient ΓA = 0.3 + j0.4 or,

equivalently,

|ΓA| = [(0.3)2 +(0.4)2]1/2 = 0.5

and

θrA
= tan−1(0.4/0.3) = 53◦.

Similarly, point B represents ΓB = −0.5− j0.2, or |ΓB| = 0.54
and θrB

= 202◦ or, equivalently,

θrB
= (360◦−202◦) = −158◦.

◮ When both Γr and Γi are negative, θr is in the

third quadrant in the Γr–Γi plane. Thus, when using

θr = tan−1(Γi/Γr) to compute θr, it may be necessary to
add or subtract 180◦ to obtain the correct value of θr. ◭

The unit circle shown in Fig. 2-24 corresponds to |Γ| = 1.

Because |Γ| ≤ 1 for a transmission line terminated with a

passive load, only that part of the Γr–Γi plane that lies within
the unit circle is useful to us; hence, future drawings will be

limited to the domain contained within the unit circle.

Impedances on a Smith chart are represented by their values
normalized to the line’s characteristic impedance, Z0. From

Γ =
ZL/Z0 −1

ZL/Z0 + 1

=
zL −1

zL + 1
, (2.111)

the inverse relation is

zL =
1 + Γ

1−Γ
. (2.112)

The normalized load impedance zL is, in general, a complex

quantity composed of a normalized load resistance rL and a
normalized load reactance xL:

zL = rL + jxL. (2.113)

Using Eqs. (2.109) and (2.113) in Eq. (2.112), we have

rL + jxL =
(1 + Γr)+ jΓi

(1−Γr)− jΓi

, (2.114)

which can be manipulated to obtain explicit expressions for

each of rL and xL in terms of Γr and Γi. This is accomplished by

multiplying the numerator and denominator of the right-hand
side of Eq. (2.114) by the complex conjugate of the denomina-

tor and then separating the result into real and imaginary parts.

These steps lead to

rL =
1−Γ2

r −Γ2
i

(1−Γr)2 + Γ2
i

, (2.115a)

xL =
2Γi

(1−Γr)2 + Γ2
i

. (2.115b)
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Figure 2-24 The complex Γ plane. Point A is at ΓA = 0.3+ j0.4 = 0.5e
j53◦ , and point B is at ΓB = −0.5− j0.2 = 0.54e

j202◦ . The unit

circle corresponds to |Γ| = 1. At point C, Γ = 1, corresponding to an open-circuit load, and at point D, Γ = −1, corresponding to a short

circuit.

Equation (2.115a) implies that there exist many combinations

of values for Γr and Γi that yield the same value for the

normalized load resistance rL. For example, (Γr,Γi)= (0.33,0)
gives rL = 2, as does (Γr,Γi) = (0.5,0.29), as well as an

infinite number of other combinations. In fact, if we were to
plot in the Γr–Γi plane all possible combinations of Γr and Γi

corresponding to rL = 2, we would obtain the circle labeled

rL = 2 in Fig. 2-25. Similar circles can be obtained for other
values of rL. After some algebraic manipulations, Eq. (2.115a)

can be rearranged into the parametric equation for the circle

in the Γr–Γi plane corresponding to a given value of rL:

(
Γr −

rL

1 + rL

)2

+ Γ2
i =

(
1

1 + rL

)2

. (2.116)

The standard equation for a circle in the x–y plane with center

at (x0,y0) and radius a is

(x− x0)
2 +(y− y0)

2 = a
2. (2.117)

Comparison of Eq. (2.116) with Eq. (2.117) shows that the
rL circle is centered at Γr = rL/(1 + rL) and Γi = 0, and its

radius is 1/(1 + rL). It therefore follows that all rL-circles

pass through the point (Γr,Γi) = (1,0). The largest circle
shown in Fig. 2-25 is for rL = 0, which also is the unit circle

corresponding to |Γ| = 1. This is to be expected, because when

rL = 0, |Γ| = 1 regardless of the magnitude of xL.
A similar manipulation of the expression for xL given by

Eq. (2.115b) leads to

(Γr −1)2 +

(
Γi −

1

xL

)2

=

(
1

xL

)2

, (2.118)
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Γi

Γr

xL = 2

rL = 5

zL = rL + jxL

rL = ∞

xL = 1
xL = 0.5

xL = 0

rL = 0

rL = 0.5

rL = 1

rL = 2

xL = −0.5

xL = −2

xL = −1

Figure 2-25 Families of rL and xL circles within the domain |Γ| ≤ 1. The rL circles are concentric with the outermost circle corresponding

to rL = 0 and the innermost circle (of zero radius) corresponding to rL = ∞. The parts of the xL circles contained in the Smith chart are in

the upper half of the chart if xL is positive and in the lower half of the chart if xL is negative.

which is the equation of a circle of radius (1/xL) centered

at (Γr,Γi) = (1,1/xL). The xL circles in the Γr–Γi plane

are quite different from those for constant rL. To start with,
the normalized reactance xL may assume both positive and

negative values, whereas the normalized resistance cannot be
negative (negative resistances cannot be realized in passive

circuits). Hence, Eq. (2.118) represents two families of circles:

one for positive values of xL and another for negative ones.
Furthermore, as shown in Fig. 2-25, only part of a given circle

falls within the bounds of the |Γ| = 1 unit circle.

The families of circles of the two parametric equations given
by Eqs. (2.116) and (2.118) plotted for selected values of rL

and xL constitute the Smith chart shown in Fig. 2-26. The

Smith chart provides a graphical evaluation of Eqs. (2.115a

and b) and their inverses.

◮ Each point in the Smith chart conveys the values of two

interrelated quantities, namel zL and Γ. The intersection
of the rL and xL circles at that point defines zL = rL + jxL.

Simultaneously, the location of the point defines |Γ|
and θr. ◭

For example, point P in Fig. 2-26 represents a normalized
load impedance zL = 2− j1, which corresponds to a voltage

reflection coefficient Γ = 0.45exp(− j26.6◦). The magnitude
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R

P

O
0

0

Inner scale:

θr in degrees

Middle  scale:

wavelengths 

toward load

Outermost scale:

wavelengths toward

generator

0.25λ

0.25λ

−26.6o
|Г| = 0.45

zL = 2 − j1

P

Figure 2-26 Point P represents a normalized load impedance zL = 2− j1. The reflection coefficient has a magnitude |Γ|= OP/OR = 0.45

and an angle θr = −26.6◦. Point R is an arbitrary point on the rL = 0 circle (which also is the |Γ| = 1 circle).

|Γ| = 0.45 is obtained by dividing the length of the line
between the center of the Smith chart and point P (designated

OP in Fig. 2-26), by OR, which is the length of the line

between the center of the Smith chart and the edge of the unit
circle (the radius of the unit circle corresponds to |Γ|= 1). The

perimeter of the Smith chart contains three concentric scales.

The innermost scale is labeled angle of reflection coefficient
in degrees. This is the scale for θr. As indicated in Fig. 2-26,

θr = −26.6◦ (−0.46 rad) for point P. The meanings and uses
of the other two scales are discussed next.

Exercise 2-19: Use the Smith chart to find the values of Γ
corresponding to the following normalized load impe-

dances: (a) zL = 2+ j0, (b) zL = 1− j1, (c) zL = 0.5− j2,

(d) zL = − j3, (e) zL = 0 (short circuit), (f) zL = ∞ (open
circuit), and (g) zL = 1 (matched load).

Answer: (a) Γ = 0.33, (b) Γ = 0.45 −63.4◦ ,
(c) Γ = 0.83 −50.9◦ , (d) Γ = 1 −36.9◦ , (e) Γ = −1,

(f) Γ = 1, (g) Γ = 0. (See EM .)
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Load

Input
0.287λ (location at A)

d = 0.1λ

0.387λ

(location at B)

SWR circle

A

B

d = 0.100λ

zL = 2 − j1z(d)

B A

|Г| = 0.45

Figure 2-27 Point A represents a normalized load zL = 2− j1 at 0.287λ on the WTG scale. Point B represents the line input at d = 0.1λ
from the load. At B, z(d) = 0.6− j0.66.

2-10.2 SWR Circle

Consider point A in the Smith chart of Fig. 2-27. At point A,

the normalized load impedance is zL = 2− j1. The magnitude
of the corresponding reflection coefficient is

|Γ| =
∣∣∣∣
zL −1

zL + 1

∣∣∣∣=
∣∣∣∣
2− j1−1

2− j1 + 1

∣∣∣∣=
∣∣∣∣
1− j1

3− j1

∣∣∣∣=
√

2√
10

= 0.45.

Let us construct a circle centered at (Γr,Γi) = (0,0) and
passing through point A. Every point on this circle has the same

value for |Γ|, namely 0.45. This constant-|Γ| circle is also a

constant-SWR circle. This follows from the relation between

the voltage standing-wave ratio (SWR) and |Γ|, namely

S =
1 + |Γ|
1−|Γ| . (2.119)

◮ A constant value of |Γ| corresponds to a constant value

of S, and vice versa. ◭

The utility of the SWR circle will become evident shortly.
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2-10.3 Wave Impedance

From Eq. (2.74), the normalized wave impedance looking

toward the load at a distance d from the load is

z(d) =
Z(d)

Z0

=
1 + Γd

1−Γd

, (2.120)

where

Γd = Γe
− j2β d = |Γ|e j(θr−2β d) (2.121)

is the phase-shifted voltage reflection coefficient. The form of

Eq. (2.120) is identical with that for zL given by Eq. (2.112):

zL =
1 + Γ

1−Γ
. (2.122)

This similarity in form suggests that, if Γ is transformed into

Γd , zL gets transformed into z(d). On the Smith chart, the
transformation from Γ to Γd is achieved by maintaining |Γ|
constant and decreasing its phase θr by 2β d, which corre-

sponds to a clockwise rotation (on the Smith chart) over an
angle of 2β d radians. A complete rotation around the Smith

chart corresponds to a phase change of 2π in Γ. The length d

corresponding to this phase change satisfies

2β d = 2
2π

λ
d = 2π , (2.123)

from which it follows that d = λ/2.

◮ The outermost scale around the perimeter of the

Smith chart (Fig. 2-26), called the wavelengths toward
generator (WTG) scale, has been constructed to denote

movement on the transmission line toward the generator,
in units of the wavelength λ . That is, d is measured in

wavelengths, and one complete rotation corresponds to

d = λ/2. ◭

In some transmission-line problems, it may be necessary to
move from some point on the transmission line toward a point

closer to the load, in which case the phase of Γ must be

increased, which corresponds to rotation in the counterclock-
wise direction. For convenience, the Smith chart contains a

third scale around its perimeter (in between the θr scale and
the WTG scale) for accommodating such an operation. It is

called the wavelengths toward load (WTL) scale.

Exercise 2-20: Use the Smith chart to find the normalized

input impedance of a lossless line of length l terminated in
a normalized load impedance zL for each of the following

combinations: (a) l = 0.25λ , zL = 1 + j0; (b) l = 0.5λ ,

zL = 1 + j1; (c) l = 0.3λ , zL = 1− j1; (d) l = 1.2λ , zL =
0.5− j0.5; (e) l = 0.1λ , zL = 0 (short circuit); (f) l = 0.4λ ,

zL = j3; and (g) l = 0.2λ , zL = ∞ (open circuit).

Illustration:
Using the Smith Chart to Find Z(d)

To illustrate how the Smith chart is used to find Z(d),
consider a 50 Ω lossless transmission line terminated in

a load impedance ZL = (100− j50) Ω. Our objective is to

find Z(d) at a distance d = 0.1λ from the load.

1. The normalized load impedance is

zL =
ZL

Z0

=
100− j50

50
= 2− j1 (point A in Fig. 2-27).

2. Point A is located at 0.287λ on the WTG scale.

3. Using a compass, we construct the SWR circle with its

center at the center of the Smith chart and radius passing
through A.

4. As was stated earlier, to transform zL to z(d), we need to

maintain |Γ| constant, which means staying on the SWR
circle, while decreasing the phase of Γ by 2β d radians.

This is equivalent to moving a distance d = 0.1λ toward

the generator on the WTG scale. Since point A is located
at 0.287λ on the WTG scale, z(d) is found by moving to

location 0.287λ + 0.1λ = 0.387λ on the WTG scale. A
radial line through this new position on the WTG scale

intersects the SWR circle at point B.

5. Point B represents z(d), whose value is

z(d) = 0.6− j0.66.

To obtain Z(d), we unnormalize z(d) by multiplying it by

Z0 = 50 Ω:

Z(d) = (0.6− j0.66)×50 = (30− j33) Ω.

This result can be verified analytically using Eq. (2.120).

The points between points A and B on the SWR circle
represent different locations along the transmission line.

If a line is of length l, its input impedance is Zin = Z0 z(l)
with z(l) determined by rotating a distance l from the load

along the WTG scale.

Answer: (a) zin = 1 + j0, (b) zin = 1 + j1,

(c) zin = 0.76 + j0.84, (d) zin = 0.59 + j0.66,

(e) zin = 0+ j0.73, (f) zin = 0+ j0.72, (g) zin = 0− j0.32.
(See EM .)
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2-10.4 SWR, Voltage Maxima, and Minima

Consider a load with zL = 2 + j1. Figure 2-28 shows a Smith

chart with a SWR circle drawn through point A, represent-

ing zL. The SWR circle intersects the real (Γr) axis at two
points, labeled Pmax and Pmin. At both points, Γi = 0 and

Γ = Γr. Also, on the real axis, the imaginary part of the load

impedance xL = 0. From the definition of Γ,

Γ =
zL −1

zL + 1
, (2.124)

It follows that points Pmax and Pmin correspond to

Γ = Γr =
r0 −1

r0 + 1
(for Γi = 0), (2.125)

where r0 is the value of rL where the SWR circle intersects
the Γr axis. Point Pmin corresponds to r0 < 1, and Pmax corre-

sponds to r0 > 1. Rewriting Eq. (2.119) for |Γ| in terms of S,

we have

|Γ| = S−1

S + 1
. (2.126)

For point Pmax, |Γ| = Γr; hence

Γr =
S−1

S + 1
. (2.127)

The similarity in form of Eqs. (2.125) and (2.127) suggests

that S equals the value of the normalized resistance r0. By

definition, S ≥ 1, and at point Pmax, r0 > 1, which further
satisfies the similarity condition. In Fig. 2-28, r0 = 2.6 at Pmax;

hence S = 2.6.

◮ S is numerically equal to the value of r0 at Pmax, which

is the point at which the SWR circle intersects the real Γ
axis to the right of the chart’s center. ◭

Points Pmin and Pmax also represent locations on the line

where the magnitude of the voltage |Ṽ | is a minimum and

a maximum, respectively. This is easily demonstrated by

considering Eq. (2.121) for Γd . At point Pmax, the total phase
of Γd , that is, (θr − 2β d), equals zero or −2nπ (with n being

a positive integer), which is the condition corresponding to

|Ṽ |max, as indicated by Eq. (2.69). Similarly, at Pmin the total

phase of Γd equals −(2n + 1)π , which is the condition for

|Ṽ |min. Thus, for the transmission line represented by the SWR
circle shown in Fig. 2-28, the distance between the load and

the nearest voltage maximum is dmax = 0.037λ , which is

obtained by moving clockwise from the load at point A to
point Pmax, and the distance to the nearest voltage minimum is

dmin = 0.287λ , corresponding to the clockwise rotation from

A to Pmin. Since the location of |Ṽ |max corresponds to that of

|Ĩ|min and the location of |Ṽ |min corresponds to that of |Ĩ|max,

the Smith chart provides a convenient way to determine the
distances from the load to all maxima and minima on the line

(recall that the standing-wave pattern has a repetition period of
λ/2).

2-10.5 Impedance to Admittance Transformations

In solving certain types of transmission line problems, it is
often more convenient to work with admittances than with

impedances. Any impedance Z is in general a complex quan-

tity consisting of a resistance R and a reactance X :

Z = R + jX (Ω). (2.128)

The admittance Y is the reciprocal of Z:

Y =
1

Z
=

1

R + jX
=

R− jX

R2 + X2
(S). (2.129)

The real part of Y is called the conductance G, and the
imaginary part of Y is called the susceptance B. That is,

Y = G+ jB (S). (2.130)

Comparison of Eq. (2.130) with Eq. (2.129) reveals that

G =
R

R2 + X2
(S), (2.131a)

B =
−X

R2 + X2
(S). (2.131b)

A normalized impedance z is defined as the ratio of Z to the
characteristic impedance of the line, Z0. The same concept

applies to the definition of the normalized admittance y; that

is,

y =
Y

Y0

=
G

Y0

+ j
B

Y0

= g + jb (dimensionless), (2.132)

where Y0 = 1/Z0 is the characteristic admittance of the line
and

g =
G

Y0
= GZ0 (dimensionless), (2.133a)

b =
B

Y0

= BZ0 (dimensionless). (2.133b)

The lowercase quantities g and b represent the normalized
conductance and normalized susceptance of y, respectively.

Of course, the normalized admittance y is the reciprocal of the
normalized impedance z,

y =
Y

Y0

=
Z0

Z
=

1

z
. (2.134)
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0.213λ

0.25λ

Distance to voltage
maximum from load

Distance to voltage
minimum from load

dmax = 0.037λ

r0 = 2.6

dmin = 0.287λ

λ/4

0

SWR

A

Pmin Pmax

zL = 2 + j1

dmax

Pmax APmin

dmin

Figure 2-28 Point A represents a normalized load with zL = 2+ j1. The standing-wave ratio is S = 2.6 (at Pmax), the distance between the

load and the first voltage maximum is dmax = (0.25−0.213)λ = 0.037λ , and the distance between the load and the first voltage minimum

is dmin = (0.037+0.25)λ = 0.287λ .

Accordingly, using Eq. (2.122), the normalized load admit-

tance yL is given by

yL =
1

zL

=
1−Γ

1 + Γ
(dimensionless). (2.135)

Now let us consider the normalized wave impedance z(d) at

a distance d = λ/4 from the load. Using Eq. (2.120) with

2β d = 4πd/λ = 4πλ/4λ = π gives

z(d = λ/4) =
1 + Γe

− jπ

1−Γe− jπ
=

1−Γ

1 + Γ
= yL. (2.136)

◮ Rotation by λ/4 on the SWR circle transforms z into y,
and vice versa. ◭

In Fig. 2-29, the points representing zL and yL are diametrically

opposite to each other on the SWR circle. In fact, such a
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Load impedance zL

Load admittance yL

B

A

Figure 2-29 Point A represents a normalized load zL = 0.6+ j1.4. Its corresponding normalized admittance is yL = 0.25− j0.6, and it is

at point B.

transformation on the Smith chart can be used to determine

any normalized admittance from its corresponding normalized
impedance, and vice versa.

The Smith chart can be used with normalized impedances

or with normalized admittances. As an impedance chart, the
Smith chart consists of rL and xL circles: the resistance and

reactance of a normalized load impedance zL, respectively.

◮ When used as an admittance chart, the rL circles

become gL circles and the xL circles become bL circles,
where gL and bL are the conductance and susceptance of

the normalized load admittance yL, respectively. ◭

Example 2-11: Smith Chart Calculations

A 50 Ω lossless transmission line of length 3.3λ is terminated

by a load impedance ZL = (25 + j50) Ω. Use the Smith chart
to find (a) the voltage reflection coefficient, (b) the voltage

standing-wave ratio, (c) the distances of the first voltage
maximum and first voltage minimum from the load, (d) the

input impedance of the line, and (e) the input admittance of

the line.

Solution: (a) The normalized load impedance is

zL =
ZL

Z0

=
25 + j50

50
= 0.5 + j1,
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S = 4.26

A

BC

D

E

O

O′

l = 0.3λ

0.25λ

0.435λ

0.135λ

Location 
of |V|max

~

Location 
of |V|min

zin

yin

zL

~

zL = 0.5 + j1zin

D A

dmax

dmax = 0.25λ − 0.135λ = 0.115λ

dmin = dmax + 0.25λ = 0.365λ
dmin

3.3λ

|Г| = 0.62

θr = 83o

Figure 2-30 Solution for Example 2-11. Point A represents a normalized load zL = 0.5+ j1 at 0.135λ on the WTG scale. At A, θr = 83◦

and |Γ| = OA/OO′ = 0.62. At B, the standing-wave ratio is S = 4.26. The distance from A to B gives dmax = 0.115λ and from A to C

gives dmin = 0.365λ . Point D represents the normalized input impedance zin = 0.28− j0.40, and point E represents the normalized input

admittance yin = 1.15+ j1.7.

which is marked as point A on the Smith chart in Fig. 2-30. A

radial line is drawn from the center of the chart at point O

through point A to the outer perimeter of the chart. The

line crosses the scale labeled “angle of reflection coefficient

in degrees” at θr = 83◦. Next, measurements are made to

determine lengths OA and OO′, of the lines between O and A

and between points O and O
′, respectively, where O

′ is an
arbitrary point on the rL = 0 circle. The length OO′ is equal

to the radius of the |Γ| = 1 circle. The magnitude of Γ is then



110 CHAPTER 2 TRANSMISSION LINES

obtained from |Γ| = OA/OO′ = 0.62. Hence,

Γ = 0.62 83◦ . (2.137)

(b) The SWR circle passing through point A crosses the Γr

axis at points B and C. The value of rL at point B is 4.26, from

which it follows that

S = 4.26.

(c) The first voltage maximum is at point B on the SWR

circle, which is at location 0.25λ on the WTG scale. The load,
represented by point A, is at 0.135λ on the WTG scale. Hence,

the distance between the load and the first voltage maximum

is

dmax = (0.25−0.135)λ = 0.115λ .

The first voltage minimum is at point C. Moving on the WTG
scale between points A and C gives

dmin = (0.5−0.135)λ = 0.365λ ,

which is 0.25λ past dmax.

(d) The line is 3.3λ long; subtracting multiples of 0.5λ leaves

0.3λ . From the load at 0.135λ on the WTG scale, the input

of the line is at (0.135 + 0.3)λ = 0.435λ . This is labeled as
point D on the SWR circle, and the normalized impedance is

zin = 0.28− j0.40,

which yields

Zin = zinZ0 = (0.28− j0.40)50 = (14− j20) Ω.

(e) The normalized input admittance yin is found by moving

0.25λ on the Smith chart to the image point of zin across the
circle, labeled point E on the SWR circle. The coordinates of

point E give

yin = 1.15 + j1.7,

and the corresponding input admittance is

Yin = yinY0 =
yin

Z0

=
1.15 + j1.7

50
= (0.023 + j0.034) S.

Example 2-12: Determining ZL Using
the Smith Chart

This problem is similar to Example 2-6, except that now we

demonstrate its solution using the Smith chart.
Given that the voltage standing-wave ratio S = 3 on a 50 Ω

line, that the first voltage minimum occurs at 5 cm from

the load, and that the distance between successive minima is
20 cm, find the load impedance.

Solution: The distance between successive minima equals

λ/2. Hence, λ = 40 cm. In wavelength units, the first voltage
minimum is at

dmin =
5

40
= 0.125λ .

Point A on the Smith chart in Fig. 2-31 corresponds to S = 3.
Using a compass, the constant S circle is drawn through

point A. Point B corresponds to locations of voltage minima.

Upon moving 0.125λ from point B toward the load on the
WTL scale (counterclockwise), we arrive at point C, which

represents the location of the load. The normalized load

impedance at point C is

zL = 0.6− j0.8.

Multiplying by Z0 = 50 Ω, we obtain

ZL = 50(0.6− j0.8) = (30− j40) Ω.

Concept Question 2-19: The outer perimeter of the
Smith chart represents what value of |Γ|? Which point on

the Smith chart represents a matched load?

Concept Question 2-20: What is an SWR circle? What
quantities are constant for all points on an SWR circle?

Concept Question 2-21: What line length corresponds

to one complete rotation around the Smith chart? Why?

Concept Question 2-22: Which points on the SWR cir-

cle correspond to locations of voltage maxima and minima
on the line and why?

Concept Question 2-23: Given a normalized impe-

dance zL, how do you use the Smith chart to find the
corresponding normalized admittance yL = 1/zL?

2-11 Impedance Matching

A transmission line usually connects a generator circuit at

one end to a load at the other. The load may be an antenna,
a computer terminal, or any circuit with an equivalent input

impedance ZL.
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S = 3.0

A

Voltage min

Load

B

0.125λ

C

zL = ?

dmin

0.125λ
CB

Figure 2-31 Solution for Example 2-12. Point A denotes that S = 3, point B represents the location of the voltage minimum, and point C

represents the load at 0.125λ on the WTL scale from point B. At C, zL = 0.6− j0.8.

◮ The transmission line is said to be matched to the
load when its characteristic impedance Z0 = ZL, in which

case waves traveling on the line towards the load are not

reflected back to the source. ◭

Since the primary use of a transmission line is to transfer power

or transmit coded signals (such as digital data), a matched load
ensures that all of the power delivered to the transmission line

by the source is transferred to the load (and no echoes are

relayed back to the source).
The simplest solution to matching a load to a transmission

line is to design the load circuit such that its impedance

ZL = Z0. Unfortunately, this may not be possible in practice

because the load circuit may have to satisfy other require-

ments. An alternative solution is to place an impedance-
matching network between the load and the transmission line

as illustrated in Fig. 2-32.

◮ The purpose of the matching network is to eliminate

reflections at terminals MM
′ for waves incident from

the source. Even though multiple reflections may occur
between AA

′ and MM
′, only a forward traveling wave

exists on the feedline. ◭
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Module 2.6 Interactive Smith Chart Locate the load on the Smith chart; display the corresponding reflection coefficient
and SWR circle; “move” to a new location at a distance d from the load; read the wave impedance Z(d) and phase-shifted

reflection coefficient Γd ; perform impedance to admittance transformations and vice versa; and use all of these tools to solve

transmission-line problems via the Smith chart.

Zg

ZLVg
~

Feedline

Generator Load

Matching
network

ZinZ0

M

M'

A

A'
−

+

Figure 2-32 The function of a matching network is to trans-

form the load impedance ZL such that the input impedance Zin

looking into the network is equal to Z0 of the feedline.

Within the matching network, reflections can occur at both

terminals (AA
′ and MM

′), creating a standing-wave pattern,
but the net result (of all of the multiple reflections within the

matching network) is that the wave incident from the source
experiences no reflection when it reaches terminals MM

′. This

is achieved by designing the matching network to exhibit an

impedance equal to Z0 at MM
′ when looking into the network

from the transmission line side. If the network is lossless, then

all of the power going into it will end up in the load.
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(b) If ZL = complex: in-series λ/4 transformer inserted
at d = dmax or d = dmin

(c) In-parallel insertion of capacitor at distance d1

(a) If ZL is real: in-series λ/4 transformer inserted at AA'

ZinZ0 Z02 ZL

M
A

M'
A'

Feedline
λ/4 transformer

(d) In-parallel insertion of inductor at distance d2

(e) In-parallel insertion of a short-circuited stub

y(d2)

Z0 Z0 ZLZin L

M A

M' A'd2

Feedline

ys(l1)

ZLZ0 Z0

Z0

l1

M A

M' A'

Feedline d1

ZLZinZ01 Z01

Z(d)

Z02

M

B

A

M'
B'

A'

Feedline λ/4 d

y(d1)

ZLZinZ0 Z0C

M A

M' A'd1

Feedline

Figure 2-33 Five examples of in-series and in-parallel matching networks.

◮ Matching networks may consist of lumped elements,
such as capacitors and inductors (but not resistors

because resistors incur ohmic losses), or of sections of

transmission lines with appropriate lengths and termina-
tions. ◭

The matching network, which is intended to match a load

impedance ZL = RL + jXL to a lossless transmission line with
characteristic impedance Z0, may be inserted either in series

(between the load and the feedline) as in Fig. 2-33(a) and (b)

or in parallel (Fig. 2-33(c) to (e)). In either case, the network

has to transform the real part of the load impedance from RL (at

the load) to Z0 at MM
′ in Fig. 2-32 and transform the reactive

part from XL (at the load) to zero at MM
′. To achieve these two

transformations, the matching network must have at least two

degrees of freedom (that is, two adjustable parameters).
If XL = 0, the problem reduces to a single transforma-

tion, in which case matching can be realized by inserting

a quarter-wavelength transformer (Section 2-8.5) next to the
load (Fig. 2-33(a)).

◮ For the general case where XL 6= 0, a λ/4 transformer

can be designed to provide the desired matching, but it
has to be inserted at a distance dmax or dmin from the load

(Fig. 2-33(b)), where dmax and dmin are the distances to

voltage maxima and minima, respectively. ◭

The design procedure is outlined in Module 2.7. The

in-parallel insertion networks shown in Fig. 2-33(c)–(e) are the

subject of Examples 2-13 and 2-14.

2-11.1 Lumped-Element Matching

In the arrangement shown in Fig. 2-34, the matching network

consists of a single lumped element, either a capacitor or an
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(b) Equivalent circuit

YsYd

M

M'

Feedline

Yin

(a) Transmission-line circuit

YLYinY0 Y0

Yd

M

M'

Shunt element Load

Feedline

Ys

d

Figure 2-34 Inserting a reactive element with admittance Ys at MM
′ modifies Yd to Yin.

inductor, connected in parallel with the line at a distance d

from the load. Parallel connections call for working in the
admittance domain. Hence, the load is denoted by an ad-

mittance YL, and the line has a characteristic admittance Y0.

The shunt element has an admittance Ys. At MM
′, Yd is the

admittance due to the transmission-line segment to the right

of MM
′. The input admittance Yin (referenced at a point just to

the left of MM
′) is equal to the sum of Yd and Ys:

Yin = Yd +Ys. (2.138)

In general, Yd is complex, and Ys is purely imaginary because
it represents a reactive element (capacitor or inductor). Hence,

Eq. (2.138) can be written as

Yin = (Gd + jBd)+ jBs = Gd + j(Bd + Bs). (2.139)

When all quantities are normalized to Y0, Eq. (2.139) becomes

yin = gd + j(bd + bs). (2.140)

To achieve a matched condition at MM
′, it is necessary that

yin = 1 + j0, which translates into two specific conditions,
namely

gd = 1 (real-part condition),

bs = −bd (imaginary-part condition).

(2.141a)

(2.141b)

The real-part condition is realized through the choice of d,
which is the distance from the load to the shunt element, and

the imaginary-part condition is realized through the choice of

lumped element (capacitor or inductor) and its value. These
two choices are the two degrees of freedom needed in order to

match the load to the feedline.

Example 2-13: Lumped Element

A load impedance ZL = 25− j50 Ω is connected to a 50 Ω
transmission line. Insert a shunt element to eliminate reflec-
tions towards the sending end of the line. Specify the insert

location d (in wavelengths), the type of element, and its value
given that f = 100 MHz.

Solution: The normalized load impedance is

zL =
ZL

Z0

=
25− j50

50
= 0.5− j1,

which is represented by point A on the Smith chart of Fig. 2-35.

Next, we draw the constant S circle through point A. As alluded

to earlier, to perform the matching task, it is easier to work
with admittances than with impedances. The normalized load

admittance yL is represented by point B, which is obtained by

rotating point A over 0.25λ or equivalently by drawing a line
from point A through the chart center to the image of point A

on the S circle. The value of yL at B is

yL = 0.4 + j0.8,

and it is located at position 0.115λ on the WTG scale. In the
admittance domain, the rL circles become gL circles, and the

xL circles become bL circles. To achieve matching, we need to
move from the load toward the generator a distance d such that

the normalized input admittance yd of the line terminated in the

load (Fig. 2-34) has a real part of 1. This condition is satisfied
by either of the two matching points C and D on the Smith

charts of Figs. 2-35 and 2-36, respectively, corresponding to

intersections of the S circle with the gL = 1 circle. Points C

and D represent two possible solutions for the distance d in

Fig. 2-34(a).
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A

C

gL = 1 circle

First intersection of
gL = 1 circle with SWR circle.
At C, yd1

 = 1 + j1.58.

d1

Load zL

Load yL
0.063λ

0.115λ

B

First solution

Feedline

50 nH

d1 = 0.063λ

Y0

Yd1

YL = (0.4 + j0.8)Y0

Figure 2-35 Solution for point C of Example 2-13. Point A is the normalized load with zL = 0.5− j1; point B is yL = 0.4+ j0.8. Point C

is the intersection of the SWR circle with the gL = 1 circle. The distance from B to C is d1 = 0.063λ .

Solution for Point C (Fig. 2-35): At C,

yd1
= 1 + j1.58,

which is located at 0.178λ on the WTG scale. The distance

between points B and C is

d1 = (0.178−0.115)λ = 0.063λ .

Looking from the generator toward the parallel combination

of the line connected to the load and the shunt element, the
normalized input admittance at terminals MM

′ is

yin1
= ys1

+ yd1
,

(continued on p. 117)
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d2 = 0.207λ

Second intersection of
gL = 1 circle with SWR circle.
At D, yd2

 = 1 − j1.58.
Load zL

Load yL

D

B

A

Second solution

50 pF

d2 = 0.207λ

Feedline

Y0

Yd2

YL = (0.4 + j0.8)Y0

Figure 2-36 Solution for point D of Example 2-13. Point D is the second point of intersection of the SWR circle and the gL = 1 circle.

The distance B to D gives d2 = 0.207λ .
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where ys1
is the normalized input admittance of the shunt

element. To match the feed line to the parallel combination, we

need yin1
= 1+ j0. Hence, we need ys1

to cancel the imaginary

part of yd1
; that is,

ys1
= − j1.58.

The corresponding impedance of the lumped element is

Zs1
=

1

Ys1

=
1

ys1
Y0

=
Z0

jbs1

=
Z0

− j1.58
=

jZ0

1.58
= j31.62 Ω.

Since the value of Zs1
is positive, the element to be inserted

should be an inductor and its value should be

L =
31.62

ω
=

31.62

2π ×108
= 50 nH.

The results of this solution have been incorporated into the

circuit of Fig. 2-35.

Solution for Point D (Fig. 2-36): At point D,

yd2
= 1− j1.58,

and the distance between points B and D is

d2 = (0.322−0.115)λ = 0.207λ .

The needed normalized admittance of the reactive element is

ys2
= + j1.58.

Hence,

Zs2
= − j31.62 Ω,

which is the impedance of a capacitor with

C =
1

31.62ω
= 50 pF.

Figure 2-36 displays the circuit solution for d2 and C.

2-11.2 Single-Stub Matching

The single-stub matching network shown in Fig. 2-37(a)

consists of two transmission line sections: one of length d

connecting the load to the feedline at MM
′ and another of

length l connected in parallel with the other two lines at MM
′.

This second line is called a stub, and it is usually terminated in

either a short or open circuit; hence, its input impedance and
admittance are purely reactive. The stub shown in Fig. 2-37(a)

has a short-circuit termination.

◮ The required two degrees of freedom are provided by
the length l of the stub and the distance d from the load to

the stub position. ◭

YLYinY0 Y0

Y0

Ys

Yd

M

M'

d

Shorted
stub(a) Transmission line circuit

(b) Equivalent circuit

l

Feedline

Load

YsYdYin

M

M'

Feedline

Figure 2-37 Shorted-stub matching network.

Because at MM
′ the stub is added in parallel to the line (which

is why it is called a shunt stub), it is easier to work with
admittances than with impedances. The matching procedure

consists of two steps. In the first step, the distance d is

selected to transform the load admittance, YL = 1/ZL, into an
admittance of the form Yd = Y0 + jB when looking toward

the load at MM
′. Then in the second step, the length l of the

stub line is selected so that its input admittance Ys at MM
′ is

equal to − jB. The parallel sum of the two admittances at MM
′

yields Y0, which is the characteristic admittance of the line.

The procedure is illustrated by Example 2-14.

Example 2-14: Single-Stub Matching

Repeat Example 2-13, but use a shorted stub (instead

of a lumped element) to match the load impedance
ZL = (25− j50) Ω to the 50 Ω transmission line.

Solution: In Example 2-13, we demonstrated that the load

can be matched to the line via either of two solutions:

1. d1 = 0.063λ , and ys1
= jbs1

= − j1.58,
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2. d2 = 0.207λ , and ys2
= jbs2

= j1.58.

The locations of the insertion points at distances d1 and d2

remain the same, but now our task is to select corresponding

lengths l1 and l2 of shorted stubs that present the required

admittances at their inputs.
To determine l1, we use the Smith chart in Fig. 2-38. The

normalized admittance of a short circuit is − j∞, which is

represented by point E on the Smith chart with position 0.25λ
on the WTG scale. A normalized input admittance of − j1.58

is located at point F with position 0.34λ on the WTG scale.
Hence,

l1 = (0.34−0.25)λ = 0.09λ .

Similarly, ys2
= j1.58 is represented by point G with posi-

tion 0.16λ on the WTG scale of the Smith chart in Fig. 2-39.
Rotating from point E to point G involves a rotation of 0.25λ
plus an additional rotation of 0.16λ or

l2 = (0.25 + 0.16)λ = 0.41λ .

Example 2-15: λ/4 Transformer for Complex
Load

Design a quarter-wavelength transformer to match a load with

ZL = (100 + j100) Ω to a 50 Ω line.

Solution: The required transmission-line circuit is shown in

Fig. 2-40(a) on p. 121. We need to insert a λ/4 transformer to
eliminate reflections at MM

′. To that end, we need to specify

the insertion distance d and the characteristic impedance Z02

of the λ/4 section so that Zin = Z01
.

A λ/4 section with characteristic impedance Z02
transfers

an impedance Za at one end of the section to impedance Zb at

the other end such that

ZaZb = Z
2
02

. (2.142)

In the present case (Fig. 2-40(a)), Za = Z(d), the in-

put impedance at BB
′ looking towards the load, and

Zb = Zin = Z01
= 50 Ω. Since the λ/4 transformer is a lossless

line, its impedance Z02
is purely real. Consequently, to satisfy

Eq. (2.142), it is necessary that Z(d) be purely real as well,
which is the key to how we select the distance d. Given this

rationale, we proceed as follows.

1. The normalized load impedance is

zL =
ZL

Z01

=
100 + j100

50
= 2 + j2,

which is shown as point A in the Smith chart of Fig. 2-40(b).

2. Move on the SWR circle until z(d) becomes purely real,

which occurs at points B and C.

(a) Point B:

d1 = (0.25−0.209)λ

= 0.041λ ,

z(d1) = 4.27,

Z(d1) = 4.27×50 = 213.5 Ω,

Z02
=
√

Z(d1) Z01

=
√

213.5×50

= 103.3 Ω.

(b) Point C:

d2 = d1 +
λ

4

= (0.041 + 0.25)λ = 0.291λ ,

z(d2) = 0.23,

Z(d2) = 0.23×50 = 11.5 Ω,

Z02
=
√

Z(d2) Z01

=
√

11.5×50

= 24.2 Ω.

Concept Question 2-24: To match an arbitrary load
impedance to a lossless transmission line through a match-

ing network, what is the required minimum number of

degrees of freedom that the network should provide?

Concept Question 2-25: In the case of the single-stub

matching network, what are the two degrees of freedom?

Concept Question 2-26: When a transmission line is

matched to a load through a single-stub matching net-
work, no waves are reflected toward the generator. What

happens to the waves reflected by the load and by
the shorted stub when they arrive at terminals MM

′ in

Fig. 2-37?
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E

A

F

C

ys1
 = −j1.58

gL = 1 circle

First intersection of
gL = 1 circle with SWR circle.
At C, yd1

 = 1 + j1.58.

Admittance of
short-circuit stub
(Example 2-14)

d1

l1 = 0.09λ

Load zL

Load yL
0.063λ

0.115λ

B

YL = (0.4 + j0.8)Y0

d1Feedline

l1

Figure 2-38 Solution for point C of Example 2-14. Point A is the normalized load with zL = 0.5− j1; point B is yL = 0.4+ j0.8. Point C

is the intersection of the SWR circle with the gL = 1 circle. The distance from B to C is d1 = 0.063λ . The length of the shorted stub (E to F)

is l1 = 0.09λ .
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d2 = 0.207λ

l2 = 0.410λ

G

E

ys2
 = j1.58

Second intersection of
gL = 1 circle with SWR circle.
At D, yd2

 = 1 − j1.58.

Admittance of
short circuit stub
(Example 2-14)

Load zL

Load yL

D

B

A

YL = (0.4 + j0.8)Y0

d2Feedline

l2

Figure 2-39 Solution for point D of Example 2-14. Point D is the second point of intersection of the SWR circle and the gL = 1 circle.

The distance B to D gives d2 = 0.207λ , and the distance E to G gives l2 = 0.410λ .
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ZLZinZ01 Z01

Z(d)

Z02

M

B

A

M'
B'

A'

Feedline λ/4 d

(a) Quarter-wave transformer

(b) Smith chart solution

A

C

zL = 2 + j2

d2

d1

B

0.209λSWR circle

Figure 2-40 Solution for Example 2-15: (a) quarter-wave transformer and (b) Smith chart solution.
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Module 2.7 Quarter-Wavelength Transformer This module allows you to go through a multi-step procedure to design
a quarter-wavelength transmission line that, when inserted at the appropriate location on the original line, presents a matched

load to the feedline.
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Module 2.8 Discrete Element Matching For each of two possible solutions, the module guides the user through a
procedure to match the feedline to the load by inserting a capacitor or an inductor at an appropriate location along the line.
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Module 2.9 Single-Stub Tuning Instead of inserting a lumped element to match the feedline to the load, this module
determines the length of a shorted stub that can accomplish the same goal.

2-12 Transients on Transmission Lines

Thus far, our treatment of wave propagation on transmis-

sion lines has focused on the analysis of single-frequency,
time-harmonic signals under steady-state conditions. The

impedance-matching and Smith chart techniques we devel-
oped, while useful for a wide range of applications, are

inappropriate for dealing with digital or wideband signals that

exist in digital chips, circuits, and computer networks. For such
signals, we need to examine the transient transmission line

response instead.

◮ The transient response of a voltage pulse on a trans-

mission line is a time record of its back-and-forth travel

between the sending and receiving ends of the line, taking
into account all the multiple reflections (echoes) at both

ends. ◭

Let us start by considering the case of a single rectangular
pulse of amplitude V0 and duration τ , as shown in Fig. 2-41(a).

The amplitude of the pulse is zero prior to t = 0, V0 over

the interval 0 ≤ t ≤ τ , and zero afterwards. The pulse can
be described mathematically as the sum of two unit step

functions:

V (t) = V1(t)+V2(t) = V0 u(t)−V0 u(t − τ), (2.143)
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V(t)

V0

τ
t

(a) Pulse of duration τ (b) V(t) = V1(t) + V2(t)

V(t)

V1(t) = V0 u(t)

V2(t) = −V0 u(t − τ)

V0

τ t

Figure 2-41 A rectangular pulse V (t) of duration τ can be represented as the sum of two step functions of opposite polarities displaced

by τ relative to each other.

where the unit step function u(x) is

u(x) =

{
1 for x > 0,

0 for x < 0.
(2.144)

The first component, V1(t) = V0 u(t), represents a dc volt-

age of amplitude V0 that is switched on at t = 0 and

then retains that value indefinitely. The second component,
V2(t) =−V0 u(t−τ), represents a dc voltage of amplitude −V0

that is switched on at t = τ and remains that way indefinitely.
As can be seen from Fig. 2-41(b), the sum V1(t) + V2(t) is

equal to V0 for 0 < t < τ and equal to zero for t < 0 and

t > τ . This representation of a pulse in terms of two step
functions allows us to analyze the transient behavior of the

pulse on a transmission line as the superposition of two dc

signals. Hence, if we can develop basic tools for describing
the transient behavior of a single step function, we can apply

the same tools for each of the two components of the pulse and

then add the results to obtain the response to V (t).

2-12.1 Transient Response to a Step Function

The circuit shown in Fig. 2-42(a) consists of a generator,

composed of a dc voltage source Vg and a series resistance Rg,
connected to a lossless transmission line of length l and

characteristic impedance Z0. The line is terminated in a purely

resistive load RL at z = l.

◮ Note that in previous sections z = 0 was defined as the

location of the load; now it is more convenient to define it
as the location of the source. ◭

The switch between the generator circuit and the transmis-

sion line is closed at t = 0. The instant the switch is closed,

Vg

I1
+Rg

Z0

(a) Transmission-line circuit

(b) Equivalent circuit at t = 0+

V1
+

t = 0

z = 0 z = l

Vg

Rg

Z0 RL

z

Transmission line

−

+

−

+

−

+

Figure 2-42 At t = 0+, immediately after closing the switch

in the circuit in part (a), the circuit can be represented by the

equivalent circuit in part (b). This is because from that instant

and until a reflection is received back from the load the generator

circuit “sees” only an impedance Z0.

the transmission line appears to the generator circuit as a load

with impedance Z0. This is because, in the absence of a signal
on the line, the input impedance of the line is unaffected by

the load impedance RL. The circuit representing the initial
condition is shown in Fig. 2-42(b). The initial current I

+
1

and corresponding initial voltage V
+
1 at the sending end of the
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Figure 2-43 Voltage and current distributions on a lossless transmission line at t = T/2, t = 3T/2, and t = 5T/2 due to a unit step voltage

applied to a circuit with Rg = 4Z0 and RL = 2Z0. The corresponding reflection coefficients are ΓL = 1/3 and Γg = 3/5.

transmission line are given by

I
+
1 =

Vg

Rg + Z0

, (2.145a)

V
+
1 = I

+
1 Z0 =

VgZ0

Rg + Z0

. (2.145b)

The combination of V
+
1 and I

+
1 constitutes a wave that travels

along the line with velocity up = 1/
√

µε immediately after
the switch is closed. The plus-sign superscript denotes the fact

that the wave is traveling in the +z direction. The transient
response of the wave is shown in Fig. 2-43 at each of three

instances in time for a circuit with Rg = 4Z0 and RL = 2Z0. The

first response is at time t1 = T/2, where T = l/up is the time it
takes the wave to travel the full length of the line. By time t1,

the wave has traveled halfway down the line; consequently,

the voltage on the first half of the line is equal to V
+
1 , while the

voltage on the second half is still zero (Fig. 2-43(a)). At t = T ,

the wave reaches the load at z = l, and because RL 6= Z0, the

mismatch generates a reflected wave with amplitude

V
−
1 = ΓLV

+
1 , (2.146)

where

ΓL =
RL −Z0

RL + Z0

(2.147)

is the reflection coefficient of the load. For the specific case

illustrated in Fig. 2-43, RL = 2Z0, which leads to ΓL = 1/3.
After this first reflection, the voltage on the line consists of

the sum of two waves: the initial wave V
+
1 and the reflected

wave V
−
1 . The voltage on the transmission line at t2 = 3T/2 is

shown in Fig. 2-43(b); V (z,3T/2) equals V
+
1 on the first half

of the line (0 ≤ z < l/2) and (V+
1 +V

−
1 ) on the second half

(l/2 ≤ z ≤ l).

At t = 2T , the reflected wave V
−
1 arrives at the sending

end of the line. If Rg 6= Z0, the mismatch at the sending end

generates a reflection at z = 0 in the form of a wave with
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voltage amplitude V
+
2 given by

V
+
2 = ΓgV

−
1 = ΓgΓLV

+
1 , (2.148)

where

Γg =
Rg −Z0

Rg + Z0

(2.149)

is the reflection coefficient of the generator resistance Rg. For

Rg = 4Z0, we have Γg = 0.6. As time progresses after t = 2T ,

the wave V
+
2 travels down the line toward the load and adds

to the previously established voltage on the line. Hence, at

t = 5T/2, the total voltage on the first half of the line is

V (z,5T/2) = V
+
1 +V

−
1 +V

+
2 = (1 + ΓL + ΓLΓg)V

+
1

(0 ≤ z < l/2), (2.150)

while on the second half of the line the voltage is only

V (z,5T/2) = V
+
1 +V

−
1 = (1 + ΓL)V

+
1 (l/2 ≤ z ≤ l).

(2.151)

The voltage distribution is shown in Fig. 2-43(c).
So far, we have examined the transient response of the

voltage wave V (z, t). The associated transient response of
the current I(z, t) is shown in Figs. 2-43(d)–(f). The current

behaves similarly to the voltage V (z, t), except for one impor-

tant difference. Whereas at either end of the line the reflected
voltage is related to the incident voltage by the reflection

coefficient at that end, the reflected current is related to the

incident current by the negative of the reflection coefficient.
This property of wave reflection is expressed by Eq. (2.61).

Accordingly,

I
−
1 = −ΓLI

+
1 , (2.152a)

I
+
2 = −ΓgI

−
1 = ΓgΓLI

+
1 , (2.152b)

and so on.

◮ The multiple-reflection process continues indefinitely,

and the ultimate value that V (z, t) reaches as t approaches

+∞ is the same at all locations on the transmission line. ◭

The final value of V is given by

V∞ = V
+
1 +V

−
1 +V

+
2 +V

−
2 +V

+
3 +V

−
3 +· · ·

= V
+
1 [1+ΓL+ΓLΓg+Γ2

LΓg+Γ2
LΓ2

g+Γ3
LΓ2

g+· · · ]

= V
+
1 [(1+ΓL)(1+ΓLΓg+Γ2

LΓ2
g+· · · )]

= V
+
1 (1+ΓL)[1 + x + x

2 + · · · ], (2.153)

where x = ΓLΓg. The series inside the square bracket is the
geometric series of the function

1

1− x
= 1 + x + x

2 + · · · for |x| < 1. (2.154)

Hence, Eq. (2.153) can be rewritten in the compact form

V∞ = V
+
1

1 + ΓL

1−ΓLΓg

. (2.155)

Upon replacing V
+
1 , ΓL, and Γg with Eqs. (2.145b), (2.147),

and (2.149) and simplifying the resulting expression, we obtain

V∞ =
VgRL

Rg + RL

. (2.156)

The voltage V∞ is called the steady-state voltage on the line,
and its expression is exactly what we should expect on the

basis of dc analysis of the circuit in Fig. 2-43(a), where we

treat the transmission line as simply a connecting wire between
the generator circuit and the load. The corresponding steady-
state current is

I∞ =
V∞

RL

=
Vg

Rg + RL

. (2.157)

2-12.2 Bounce Diagrams

Keeping track of the voltage and current waves as they bounce

back and forth on the line is a rather tedious process. The

bounce diagram is a graphical presentation that allows us
to accomplish the same goal but with relative ease. The

horizontal axes in Figs. 2-44(a) and (b) represent the position

along the transmission line, while the vertical axes denote
time. Figures 2-44(a) and (b) pertain to V (z, t) and I(z, t),
respectively. The bounce diagram in Fig. 2-44(a) consists

of a zigzag line indicating the progress of the voltage wave
on the line. The incident wave V

+
1 starts at z = t = 0 and

travels in the +z direction until it reaches the load at z = l

at time t = T . At the very top of the bounce diagram, the
reflection coefficients are indicated by Γ = Γg at the generator

end and by Γ = ΓL at the load end. At the end of the first
straight-line segment of the zigzag line, a second line is drawn

to represent the reflected voltage wave V
−
1 = ΓLV

+
1 . The

amplitude of each new straight-line segment equals the product
of the amplitude of the preceding straight-line segment and

the reflection coefficient at that end of the line. The bounce

diagram for the current I(z, t) in Fig. 2-44(b) adheres to the
same principle except for the reversal of the signs of ΓL and Γg

at the top of the bounce diagram.
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Figure 2-44 Bounce diagrams for (a) voltage and (b) current. In (c), the voltage variation with time at z = l/4 for a circuit with Γg = 3/5

and ΓL = 1/3 is deduced from the vertical dashed line at l/4 in (a).

Using the bounce diagram, the total voltage (or current) at
any point z1 and time t1 can be determined by first drawing

a vertical line through point z1, and then adding the voltages

(or currents) of all the zigzag segments intersected by that
line between t = 0 and t = t1. To find the voltage at z = l/4

and T = 4T , for example, we draw a dashed vertical line in

Fig. 2-44(a) through z = l/4, and we extend it from t = 0 to

t = 4T . The dashed line intersects four line segments. The total
voltage at z = l/4 and t = 4T therefore is

V (l/4,4T ) = V
+
1 + ΓLV

+
1 + ΓgΓLV

+
1 + ΓgΓ2

LV
+
1

= V
+
1 (1 + ΓL + ΓgΓL + ΓgΓ2

L).

The time variation of V (z, t) at a specific location z can be

obtained by plotting the values of V (z, t) along the (dashed)
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vertical line passing through z. Figure 2-44(c) shows the
variation of V as a function of time at z = l/4 for a circuit

with Γg = 3/5 and ΓL = 1/3.

Example 2-16: Pulse Propagation

The transmission-line circuit of Fig. 2-45(a) is excited by a

rectangular pulse of duration τ = 1 ns that starts at t = 0.

Establish the waveform of the voltage response at the load
given that the pulse amplitude is 5 V, the phase velocity is c,

and the length of the line is 0.6 m.

Solution: The one-way propagation time is

T =
l

c
=

0.6

3×108
= 2 ns.

The reflection coefficients at the load and the sending end are

ΓL =
RL −Z0

RL + Z0
=

150−50

150 + 50
= 0.5,

Γg =
Rg −Z0

Rg + Z0

=
12.5−50

12.5 + 50
= −0.6.

By Eq. (2.143), the pulse is treated as the sum of two step

functions: one that starts at t = 0 with an amplitude V10 = 5 V

and a second one that starts at t = 1 ns with an amplitude
V20 = −5 V. Except for the time delay of 1 ns and the sign

reversal of all voltage values, the two step functions generate
identical bounce diagrams, as shown in Fig. 2-45(b). For the

first step function, the initial voltage is given by

V
+
1 =

V01Z0

Rg + Z0

=
5×50

12.5 + 50
= 4 V.

Using the information displayed in the bounce diagram, it

is straightforward to generate the voltage response shown in

Fig. 2-45(c). Note that at t = 2 ns, the voltage at the load
consists of both V

+
1 = 4 V, and its reflection V

−
1 = ΓLV

+
1 = 2 V.

Thus, the total voltage at the load at t = 2 ns is 6 V. A

similar process occurs at 3 ns due to the negative step function,
which generates −6 V. Consequently, the sum of the two step-

function contributions adds up to zero and stays that way until

t = 6 ns.

Example 2-17: Time-Domain Reflectometer

A time-domain reflectometer (TDR) is an instrument used to
locate faults on a transmission line. Consider, for example, a

(formerly matched) long underground or undersea cable that

0
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Figure 2-45 Example 2-16.

gets damaged at some distance d from the sending end of

the line. The damage may alter the electrical properties or the
shape of the cable, causing it to exhibit at the fault location

an effective resistance RLf. A TDR sends a step voltage down
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(a) Observed voltage at the sending end

(b) The fault at z = d is represented by a
fault resistance Rf

Drop in level caused 
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Figure 2-46 Time-domain reflectometer of Example 2-17.

the line, and by observing the voltage at the sending end as a
function of time, it is possible to determine the location of the

fault and its severity.

If the voltage waveform shown in Fig. 2-46(a) is seen on
an oscilloscope connected to the input of a 75 Ω matched

transmission line, determine (a) the generator voltage, (b) the

location of the fault, and (c) the fault shunt resistance. The
line’s insulating material is Teflon with εr = 2.1.

Solution: (a) Since the line is properly matched, Rg =
RL = Z0. In Fig. 2-46(b), the fault located a distance d from
the sending end is represented by a shunt resistance Rf. For a

matched line, Eq. (2.145b) gives

V
+
1 =

VgZ0

Rg + Z0

=
VgZ0

2Z0

=
Vg

2
.

According to Fig. 2-46(a), V
+
1 = 6 V. Hence,

Vg = 2V
+
1 = 12 V.

(b) The propagation velocity on the line is

up =
c√
εr

=
3×108

√
2.1

= 2.07×108 m/s.

For a fault at a distance d, the round-trip time delay of the
echo is

∆t =
2d

up

.

From Fig. 2-46(a), ∆t = 12 µs. Hence,

d =
∆t

2
up =

12×10−6

2
×2.07×108 = 1,242 m.

(c) The drop in level of V (0, t) shown in Fig. 2-46(a) repre-

sents V
−
1 . Thus,

V
−
1 = ΓfV

+
1 = −3 V,

or

Γf =
−3

6
= −0.5,

where Γf is the reflection coefficient due to the effective fault

resistance RLf that appears at z = d.

From Eq. (2.59),

Γf =
RLf −Z0

RLf + Z0

,

which leads to RLf = 25 Ω. This fault load is composed of the

parallel combination of the fault shunt resistance Rf and the
characteristic impedance Z0 of the line to the right of the fault:

1

RLf

=
1

Rf

+
1

Z0

,

so the shunt resistance must be 37.5 Ω.

Example 2-18: Pulse Transmission

When excited by a pulse source of amplitude 1 V and dura-
tion 5 µs, a transmission line—with unknown characteristic

impedance Z0 and unknown load resistance RL—exhibits the

voltage response shown in Fig. 2-47(b) when observed at the
middle of the line. The line relative permittivity is εr = 2.25.

Determine (a) the length of the line, (b) Z0, and (c) RL.

Solution: (a) The phase velocity is

up =
c√
εr

=
3×108

√
2.25

= 2×108 m/s.

It takes 10 µs for the initial part of the pulse to reach the middle
of the line, so it would take it T = 20 µs to reach the end of

the line. Hence,

l = upT = 2×108×20×10−6 = 4000 m.
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(a) Transmission line

(b) Observed voltage at midpoint of the line
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Figure 2-47 Circuit and voltage response of Example 2-18.

(b) From Eq. (2.145b),

V
+
1 =

VgZ0

Rg + Z0

.

In the present case, Vg = 1 V, Rg = 100 Ω, and the waveform in
Fig. 2-47(b) indicates that V

+
1 = 0.5 V. Solving for Z0 leads to

Z0 = 100 Ω.

(c) The pulse that appears between 30 µs and 35 µs is due
to reflection by the load and its amplitude V

−
1 = 0.3 V. Hence,

ΓL =
V
−
1

V
+
1

=
0.3

0.5
= 0.6.

Also,

ΓL =
RL −Z0

RL + Z0

.

Using ΓL = 0.6 and Z0 = 100 Ω leads to

RL = 400 Ω.

Concept Question 2-27: What is transient analysis

used for?

Concept Question 2-28: The transient analysis pre-
sented in this section was for a step voltage. How does

one use it for analyzing the response to a pulse?

Concept Question 2-29: What is the difference
between the bounce diagram for voltage and the bounce

diagram for current?

Concept Question 2-30: What is a TDR and what is it

used for?

Concept Question 2-31: What do V∞ and I∞ represent?
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Module 2.10 Transient Response For a lossless line terminated in a resistive load, the module simulates the dynamic
response—at any location on the line—to either a step or pulse waveform sent by the generator.
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Technology Brief 4:
EM Cancer Zappers

From laser eye surgery to 3-D X-ray imaging, EM
sources and sensors have been used as medical di-
agnostic and treatment tools for many decades. Future
advances in information processing and other relevant
technologies will undoubtedly lead to the greater perfor-
mance and utility of EM devices, as well as to the intro-
duction of entirely new types of devices. This Technology
Brief introduces two recent EM technologies that are still
in their infancy but are quickly developing into serious
techniques for the surgical treatment of cancer tumors.

Microwave Ablation

In medicine, ablation is defined as the “surgical removal
of body tissue,” usually through the direct application of
chemical or thermal therapies.

◮ Microwave ablation applies the same heat-
conversion process used in a microwave oven (see
TB3), but instead of using microwave energy to
cook food, it is used instead to destroy cancerous
tumors by exposing them to a focused beam of
microwaves. ◭

The technique can be used percutaneously (through
the skin), laparoscopically (via an incision), or intraop-
eratively (open surgical access). Guided by an imaging
system, such as a CT scanner or an ultrasound imager,
the surgeon can localize the tumor and then insert a thin
coaxial transmission line (∼1.5 mm in diameter) directly
through the body to position the tip of the transmission
line (a probe-like antenna) inside the tumor (Fig. TF4-1).
The transmission line is connected to a generator capa-
ble of delivering 60 W of power at 915 MHz (Fig. TF4-2).
The rise in temperature of the tumor is related to the
amount of microwave energy it receives, which is equal
to the product of the generator’s power level and the
duration of the ablation treatment. Microwave ablation is
a promising new technique for the treatment of liver, lung,
and adrenal tumors.

High-Power Nanosecond Pulses

Bioelectrics is an emerging field focused on the study
of how electric fields behave in biological systems. Of
particular recent interest is the desire to understand

Ultrasound transducer

Ablation catheter

(transmission line)
Liver

Ultrasound image

Figure TF4-1 Microwave ablation for liver cancer treatment.

Figure TF4-2 Photograph of the setup for a percutaneous

microwave ablation procedure in which three single microwave

applicators are connected to three microwave generators. (Cour-

tesy of RadioGraphics, October 2005, pp. 569–583.)

how living cells might respond to the application of
extremely short pulses (on the order of nanoseconds
(10−9 s) and even as short as picoseconds (10−12 s)) with
exceptionally high voltage and current amplitudes.
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1  With the switch open, the

device is charged up by its

connection to the high-voltage

source.  Closing the switch sets

up transient waves.

2  The voltage waves

re!ect o" the ends of the

transmission line.  The wave near

the switch inverts (red)—its polarity

changes—when it re!ects, because that end is

shorted.  When the inverted and noninverted waves crash

into each other at the load, a pulse of voltage results.

3  When the

trailing edges

of the waves 

#nally meet, the 

pulse ends.

Figure TF4-3 High-voltage nanosecond pulse delivered to tumor cells via a transmission line. The cells to be shocked by the pulse sit in

a break in one of the transmission-line conductors. (Courtesy of IEEE Spectrum, August 2006.)

◮ The motivation is to treat cancerous cells by
zapping them with high-power pulses. The pulse
power is delivered to the cell via a transmission line,
as illustrated by the example in Fig. TF4-3. ◭

Note that the pulse is about 200 ns long, and its voltage
and current amplitudes are approximately 3,000 V and
60 A, respectively. Thus, the peak power level is about
180,000 W! However, the total energy carried by the
pulse is only (1.8 × 105) × (2 × 10−7) = 0.0036 joules.
Despite the low energy content, the very high voltage
appears to be very effective in destroying malignant
tumors (in mice, so far), with no regrowth.
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Chapter 2 Summary

Concepts

• A transmission line is a two-port network connecting a
generator to a load. EM waves traveling on the line may

experience ohmic power losses, dispersive effects, and

reflections at the generator and load ends of the line.
These transmission-line effects may be ignored if the

line length is much shorter than λ .

• TEM transmission lines consist of two conductors that
can support the propagation of transverse electromag-

netic waves characterized by electric and magnetic

fields that are transverse to the direction of propagation.
TEM lines may be represented by a lumped-element

model consisting of four line parameters (R′, L
′, G

′,
and C

′) whose values are specified by the specific line
geometry, the constitutive parameters of the conductors

and of the insulating material between them, and the

angular frequency ω .
• Wave propagation on a transmission line, which is

represented by the phasor voltage Ṽ (z) and associated

current Ĩ(z), is governed by the propagation constant
of the line, γ = α + jβ , and its characteristic impe-

dance Z0. Both γ and Z0 are specified by ω and the four

line parameters.
• If R

′ = G
′ = 0, the line becomes lossless (α = 0). A

lossless line is generally nondispersive, meaning that

the phase velocity of a wave is independent of the
frequency.

• In general, a line supports two waves, an incident wave

supplied by the generator and another wave reflected

by the load. The sum of the two waves generates a
standing-wave pattern with a period of λ/2. The volt-

age standing-wave ratio S, which is equal to the ratio

of the maximum to minimum voltage magnitude on the
line, varies between 1 for a matched load (ZL = Z0) to ∞
for a line terminated in an open circuit, a short circuit,

or a purely reactive load.
• The input impedance of a line terminated in a short cir-

cuit or open circuit is purely reactive. This property can

be used to design equivalent inductors and capacitors.
• The fraction of the incident power delivered to the load

by a lossless line is equal to (1−|Γ|2).
• The Smith chart is a useful graphical tool for ana-

lyzing transmission-line problems and for designing

impedance-matching networks.

• Matching networks are placed between the load and
the feed transmission line for the purpose of elimi-

nating reflections toward the generator. A matching
network may consist of lumped elements in the form

of capacitors and/or inductors, or it may consist of

sections of transmission lines with appropriate lengths
and terminations.

• Transient analysis of pulses on transmission lines can

be performed using a bounce-diagram graphical tech-
nique that tracks reflections at both the load and gener-

ator ends of the transmission line.
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Mathematical and Physical Models

TEM Transmission Lines

L
′
C

′ = µε

G
′

C ′ =
σ

ε

α = Re(γ) = Re

(√
(R′ + jωL′)(G′ + jωC ′)

)
(Np/m)

β = Im(γ) = Im

(√
(R′ + jωL′)(G′ + jωC ′)

)
(rad/m)

Z0 =
R
′ + jωL

′

γ
=

√
R′ + jωL′

G′ + jωC ′ (Ω)

Γ =
zL −1

zL + 1

Step Function Transient Response

V
+
1 =

VgZ0

Rg + Z0

V∞ =
VgRL

Rg + RL

Γg =
Rg −Z0

Rg + Z0

ΓL =
RL −Z0

RL + Z0

Lossless Line

α = 0

β = ω
√

L′C ′

Z0 =

√
L′

C ′

up =
1√
µε

(m/s)

λ =
up

f
=

c

f

1√
εr

=
λ0√

εr

dmax =
θrλ

4π
+

nλ

2

dmin =
θrλ

4π
+

(2n + 1)λ

4

S =
1 + |Γ|
1−|Γ|

Pav =
|V+

0 |2
2Z0

[1−|Γ|2]
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Important Terms Provide definitions or explain the meaning of the following terms:

admittance Y

air line
attenuation constant α
bounce diagram

characteristic impedance Z0

coaxial line

complex propagation constant γ
conductance G

current maxima and minima

dispersive transmission line
distortionless line

effective relative permittivity εeff

guide wavelength λ
higher-order transmission lines

impedance matching

in-phase
input impedance Zin

load impedance ZL

lossless line
lumped-element model

matched transmission line

matching network
microstrip line

normalized impedance

normalized load reactance xL

normalized load resistance rL

open-circuited line
optical fiber

parallel-plate line

perfect conductor
perfect dielectric

phase constant β
phase opposition
phase-shifted reflection

coefficient Γd

quarter-wave transformer
short-circuited line

single-stub matching

slotted line
Smith chart

standing wave

standing-wave pattern
surface resistance Rs

susceptance B

SWR circle
telegrapher’s equations

TEM transmission lines
time-average power Pav

transient response

transmission-line parameters
two-wire line

unit circle

voltage maxima and minima
voltage reflection coefficient Γ
voltage standing-wave ratio

(VSWR or SWR) S

wave equations

wave impedance Z(d)
waveguide
WTG and WTL

PROBLEMS

Sections 2-1 to 2-4: Transmission-Line Model

2.1 A two-wire copper transmission line is embedded in a

dielectric material with εr = 2.6 and σ = 2× 10−6 S/m. Its

wires are separated by 3 cm and their radii are 1 mm each.

(a) Calculate the line parameters R
′, L

′, G
′, and C

′ at 2 GHz.

(b) Compare your results with those based on CD Module

2.1. Include a printout of the screen display.

2.2 A transmission line of length l connects a load to a

sinusoidal voltage source with an oscillation frequency f .

Assuming the velocity of wave propagation on the line is c, for
which of the following situations is it reasonable to ignore the

presence of the transmission line in the solution of the circuit?

∗
(a) l = 30 cm, f = 20 kHz,

(b) l = 50 km, f = 60 Hz,
∗

(c) l = 30 cm, f = 600 MHz,

(d) l = 2 mm, f = 100 GHz.

2.3 Show that the transmission line model shown in Fig. P2.3

yields the same telegrapher’s equations given by Eqs. (2.14)
and (2.16).

∗
Answer(s) available in Appendix E.

∆z

R' ∆z

G' ∆z C' ∆z

2
L' ∆z

2
R' ∆z

2
L' ∆z

2i(z, t) i(z + ∆z, t)

υ(z + ∆z, t)υ(z, t)

−

+

−

+

Figure P2.3 Transmission line model.

∗
2.4 A 1 GHz parallel-plate transmission line consists of 2.4

cm wide copper strips separated by a 0.3 cm thick layer
of polystyrene. Appendix B gives µc = µ0 = 4π × 10−7

(H/m) and σc = 5.8× 107 (S/m) for copper, and εr = 2.6 for

polystyrene. Use Table 2-1 to determine the line parameters
of the transmission line. Assume µ = µ0 and σ ≈ 0 for

polystyrene.
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2.5 For a parallel-plate transmission line, the line parameters
are given by:

R
′ = 2 (Ω/m),

L
′ = 335 (nH/m),

G
′ = 0,

C
′ = 344 (pF/m).

Find α , β , up, and Z0 at 1 GHz.

2.6 A coaxial line with inner and outer conductor diameters
of 0.5 cm and 1 cm, respectively, is filled with an insulating

material with εr = 4.5 and σ = 10−3 S/m. The conductors are
made of copper.

(a) Calculate the line parameters at 1 GHz.

(b) Compare your results with those based on CD Module

2.2. Include a printout of the screen display.

∗
2.7 Find α , β , up, and Z0 for the coaxial line of Problem

2.6. Verify your results by applying CD Module 2.2. Include a

printout of the screen display.

2.8 Find α , β , up, and Z0 for the two-wire line of Problem
2.1. Compare results with those based on CD Module 2.1.

Include a printout of the screen display.

2.9 A lossless microstrip line uses a 1 mm wide conducting

strip over a 1 cm thick substrate with εr = 2.5. Determine
the line parameters, εeff, Z0, and β at 10 GHz. Compare your

results with those obtained by using CD Module 2.3. Include a

printout of the screen display.

∗
2.10 Use CD Module 2.3 to design a 100 Ω microstrip

transmission line. The substrate thickness is 1.8 mm and its
εr = 2.3. Select the strip width w, and determine the guide

wavelength λ at f = 5 GHz. Include a printout of the screen

display.

2.11 A 50-Ω microstrip line uses a 0.6-mm alumina substrate
with εr = 9. Use CD Module 2.3 to determine the required strip

width w. Include a printout of the screen display.

2.12 Generate a plot of Z0 as a function of strip width w,

over the range from 0.05 mm to 5 mm, for a microstrip line
fabricated on a 0.7-mm–thick substrate with εr = 9.8.

Sections 2-6 and 2-7: Lossless Line and Wave Impedance

2.13 In addition to not dissipating power, a lossless line

has two important features: (1) it is dispertionless (µp is

independent of frequency) and (2) its characteristic impedance
Z0 is purely real. Sometimes, it is not possible to design a

transmission line such that R
′ ≪ ωL

′ and G
′ ≪ ωC

′, but it is

possible to choose the dimensions of the line and its material
properties so as to satisfy the condition

R
′
C

′ = L
′
G
′ (distortionless line).

Such a line is called a distortionless line because despite the

fact that it is not lossless, it does nonetheless possess the
previously mentioned features of the loss line. Show that for

a distortionless line,

α = R
′
√

C ′

L′ =
√

R′G′ , β = ω
√

L′C ′ , Z0 =

√
L′

C ′ .

∗
2.14 For a distortionless line [see Problem 2.13] with Z0 =
50 Ω, α = 10 (mNp/m), up = 2.5× 108 (m/s), find the line

parameters and λ at 100 MHz.

2.15 Find α and Z0 of a distortionless line whose R
′ = 8 Ω/m

and G
′ = 2×10−4 S/m.

∗
2.16 A transmission line operating at 125 MHz has
Z0 = 40 Ω, α = 0.01 (Np/m), and β = 0.75 rad/m. Find the

line parameters R
′, L

′, G
′, and C

′.

∗
2.17 Polyethylene with εr = 2.25 is used as the insulating

material in a lossless coaxial line with characteristic impe-

dance of 50 Ω. The radius of the inner conductor is 1.2 mm.

(a) What is the radius of the outer conductor?

(b) What is the phase velocity of the line?

2.18 Using a slotted line, the voltage on a lossless transmis-
sion line was found to have a maximum magnitude of 1.5 V

and a minimum magnitude of 0.5 V. Find the magnitude of the
load’s reflection coefficient.

2.19 A 50-Ω lossless transmission line is terminated in a load
with impedance ZL = (30− j50) Ω. The wavelength is 8 cm.

Find:

(a) the reflection coefficient at the load,

(b) the standing-wave ratio on the line,

(c) the position of the voltage maximum nearest the load,

(d) the position of the current maximum nearest the load.

(e) Verify quantities in parts (a)–(d) using CD Module 2.4.
Include a printout of the screen display.

2.20 A 300-Ω lossless air transmission line is connected to a

complex load composed of a resistor in series with an inductor,

as shown in Fig. P2.20. At 5 MHz, determine: (a) Γ, (b) S,
(c) location of voltage maximum nearest to the load, and (d)

location of current maximum nearest to the load.
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L = 0.02 mH

Z0 = 300 Ω

R = 600 Ω

Figure P2.20 Circuit for Problem 2.20.

2.21 Using a slotted line, the following results were ob-
tained: distance of first minimum from the load = 4 cm;

distance of second minimum from the load = 14 cm; voltage

standing-wave ratio = 1.5. If the line is lossless and Z0 = 50 Ω,
find the load impedance.

∗
2.22 On a 150 Ω lossless transmission line, the following
observations were noted: distance of first voltage minimum

from the load = 3 cm; distance of first voltage maximum from
the load = 9 cm; S = 2. Find ZL.

∗
2.23 A load with impedance ZL = (50 − j50) Ω is to be

connected to a lossless transmission line with characteristic
impedance Z0, with Z0 chosen such that the standing-wave

ratio is the smallest possible. What should Z0 be?

2.24 A 50 Ω lossless line terminated in a purely resistive load

has a voltage standing-wave ratio of 2. Find all possible values
of ZL.

2.25 Apply CD Module 2.4 to generate plots of the voltage

standing-wave pattern for a 50 Ω line terminated in a load

impedance ZL = (100 − j50) Ω. Set Vg = 1 V, Zg = 50 Ω,
εr = 2.25, l = 40 cm, and f = 1 GHz. Also determine S, dmax,

and dmin.

2.26 A 50 Ω lossless transmission line is connected to a
load composed of a 75 Ω resistor in series with a capacitor

of unknown capacitance (Fig. P2.26). If at 10 MHz the

voltage standing wave ratio on the line was measured to be 3,
determine the capacitance C.

Section 2-8: Wave and Input Impedance

2.27 Show that the input impedance of a quarter-

wavelength–long lossless line terminated in a short circuit
appears as an open circuit.

2.28 A lossless transmission line of electrical length

l = 0.35λ is terminated in a load impedance as shown in

RL = 75 Ω

Z0 = 50 Ω

C = ?

Figure P2.26 Circuit for Problem 2.26.

Fig. P2.28. Find Γ, S, and Zin. Verify your results using CD
Modules 2.4 or 2.5. Include a printout of the screen’s output

display.

Zin Z0 = 100 Ω ZL = (60 + j30) Ω

l = 0.35λ

Figure P2.28 Circuit for Problem 2.28.

∗
2.29 At an operating frequency of 300 MHz, a lossless 50 Ω
air-spaced transmission line 2.5 m in length is terminated with

an impedance ZL = (40 + j20) Ω. Find the input impedance.

2.30 Show that at the position where the magnitude of the

voltage on the line is a maximum, the input impedance is
purely real.

2.31 A 6 m section of 150 Ω lossless line is driven by a
source with

vg(t) = 5cos(8π ×107
t −30◦) (V)

and Zg = 150 Ω. If the line, which has a relative permittivity
εr = 2.25, is terminated in a load ZL = (150− j50) Ω, deter-

mine:

(a) λ on the line.
∗

(b) The reflection coefficient at the load.

(c) The input impedance.

(d) The input voltage Ṽi.

(e) The time-domain input voltage vi(t).

(f) Quantities in (a) to (d) using CD Modules 2.4 or 2.5.
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2.32 A voltage generator with

υg(t) = 5cos(2π ×109
t) V

and internal impedance Zg = 50 Ω is connected to a 50 Ω
lossless air-spaced transmission line. The line length is
5 cm and the line is terminated in a load with impedance

ZL = (100− j100) Ω. Determine:

∗
(a) Γ at the load.

(b) Zin at the input to the transmission line.

(c) The input voltage Ṽi and input current Ĩi.

(d) The quantities in (a)–(c) using CD Modules 2.4 or 2.5.

2.33 Two half-wave dipole antennas, each with an impe-

dance of 75 Ω, are connected in parallel through a pair of
transmission lines, and the combination is connected to a feed

transmission line, as shown in Fig. P2.33.

 75 Ω
(Antenna)

 75 Ω
(Antenna)

0.3λ
0.2λ

0.2λ

Zin1Zin
Zin2

Figure P2.33 Circuit for Problem 2.33.

All lines are 50 Ω and lossless.
∗

(a) Calculate Zin1
, the input impedance of the antenna-

terminated line, at the parallel juncture.

(b) Combine Zin1
and Zin2

in parallel to obtain Z
′
L, the effec-

tive load impedance of the feedline.

(c) Calculate Zin of the feedline.

2.34 A 50-Ω lossless line is terminated in a load impedance

ZL = (30− j20) Ω.

(a) Calculate Γ and S.

(b) It has been proposed that by placing an appropriately

selected resistor across the line at a distance dmax from
the load (as shown in Fig. P2.34(b)), where dmax is the

distance from the load of a voltage maximum, then it is

possible to render Zi = Z0, thereby eliminating reflection
back to the end. Show that the proposed approach is valid

and find the value of the shunt resistance.

(a)

(b)

Z0 = 50 Ω ZL = (30 − j20) Ω

Z0 = 50 Ω ZL = (30 − j20) Ω

Zi

dmax

R

Figure P2.34 Circuit for Problem 2.34.

∗
2.35 For the lossless transmission line circuit shown in

Fig. P2.35, determine the equivalent series lumped-element

circuit at 400 MHz at the input to the line. The line has a
characteristic impedance of 50 Ω and the insulating layer has

εr = 2.25.

Z0 = 50 Ω 75 ΩZin

1.2 m

Figure P2.35 Circuit for Problem 2.35.

Section 2-8: Special Cases

∗
2.36 A lossless transmission line is terminated in a short
circuit. How long (in wavelengths) should the line be for it

to appear as an open circuit at its input terminals?
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2.37 At an operating frequency of 300 MHz, it is desired to
use a section of a lossless 50 Ω transmission line terminated

in a short circuit to construct an equivalent load with reactance

X = 40 Ω. If the phase velocity of the line is 0.75c, what is
the shortest possible line length that would exhibit the desired

reactance at its input? Verify your results using CD Module

2.5.

2.38 The input impedance of a 36 cm long lossless transmis-

sion line of unknown characteristic impedance was measured
at 1 MHz. With the line terminated in a short circuit, the

measurement yielded an input impedance equivalent to an

inductor with inductance of 0.064 µH, and when the line was
open-circuited, the measurement yielded an input impedance

equivalent to a capacitor with capacitance of 40 pF. Find Z0 of

the line, the phase velocity, and the relative permittivity of the
insulating material.

∗
2.39 A 75 Ω resistive load is preceded by a λ/4 section

of a 50 Ω lossless line, which itself is preceded by another
λ/4 section of a 100-Ω line. What is the input impedance?

Compare your result with that obtained through two successive

applications of CD Module 2.5.

2.40 A 100-MHz FM broadcast station uses a 300-Ω trans-

mission line between the transmitter and a tower-mounted
half-wave dipole antenna. The antenna impedance is 73 Ω. You

are asked to design a quarter-wave transformer to match the

antenna to the line.

(a) Determine the electrical length and characteristic impe-
dance of the quarter-wave section.

(b) If the quarter-wave section is a two-wire line with

D = 2.5 cm, and the wires are embedded in polystyrene

with εr = 2.6, determine the physical length of the
quarter-wave section and the radius of the two wire

conductors.

2.41 A 50 Ω lossless line of length l = 0.375λ connects a 300

MHz generator with Ṽg = 300 V and Zg = 50 Ω to a load ZL.

Determine the time-domain current through the load for:

(a) ZL = (50− j50) Ω
∗

(b) ZL = 50 Ω

(c) ZL = 0 (short circuit)

For (a), verify your results by deducing the information you

need from the output products generated by CD Module 2.4.

Section 2-9: Power Flow on Lossless Line

2.42 A generator with Ṽg = 300 V and Zg = 50 Ω is con-

nected to a load ZL = 75 Ω through a 50-Ω lossless line of

length l = 0.15λ .

∗
(a) Compute Zin, the input impedance of the line at the

generator end.

(b) Compute Ĩi and Ṽi.

(c) Compute the time-average power delivered to the line,

Pin = 1
2
Re[ṼiĨ

∗
i ].

(d) Compute ṼL, ĨL, and the time-average power delivered to

the load, PL = 1
2
Re[ṼLĨ

∗
L]. How does Pin compare to PL?

Explain.

(e) Compute the time-average power delivered by the gener-

ator, Pg, and the time-average power dissipated in Zg. Is
conservation of power satisfied?

2.43 If the two-antenna configuration shown in Fig. P2.43

(next page) is connected to a generator with Ṽg = 250 V and

Zg = 50 Ω, how much average power is delivered to each

antenna?

∗
2.44 For the circuit shown in Fig. P2.44, calculate the

average incident power, the average reflected power, and the

average power transmitted into the infinite 100-Ω line. The
λ/2 line is lossless and the infinitely long line is slightly lossy.

(Hint: The input impedance of an infinitely long line is equal

to its characteristic impedance so long as α 6= 0.)

Z0 = 50 Ω Z1 = 100 Ω

λ/250 Ω

2 V

Pav
i

Pav
r

Pav
t

8

−

+

Figure P2.44 Circuit for Problem 2.44.

2.45 The circuit shown in Fig. P2.45 consists of a

100-Ω lossless transmission line terminated in a load with
ZL = (50 + j100) Ω. If the peak value of the load voltage was

measured to be |ṼL| = 12 V, determine:

∗
(a) the time-average power dissipated in the load,

(b) the time-average power incident on the line,

(c) the time-average power reflected by the load.
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Zin

Generator

 50 Ω λ/2

A

B D

C

 250 V Line 1

λ/2

Line 2

λ/2

Line 3

ZL1
 = 75 Ω

(Antenna 1)

ZL2
 = 75 Ω

(Antenna 2)

−

+

Figure P2.43 Antenna configuration for Problem 2.43.

Z0 = 100 Ω

Rg

Vg
~ ZL = (50 + j100) Ω

−

+

Figure P2.45 Circuit for Problem 2.45.

2.46 An antenna with a load impedance

ZL = (75 + j25) Ω

is connected to a transmitter through a 50-Ω lossless trans-

mission line. If under matched conditions (50-Ω load) the
transmitter can deliver 20 W to the load, how much power can

it deliver to the antenna? Assume that Zg = Z0.

Section 2-10: Smith Chart

2.47 Use the Smith chart to find the normalized load impe-
dance corresponding to a reflection coefficient of

(a) Γ = 0.5

(b) Γ = 0.5∠60◦

(c) Γ = −1

(d) Γ = 0.3∠−30◦

(e) Γ = 0

(f) Γ = j

2.48 Use the Smith chart to find the reflection coefficient

corresponding to a load impedance of

(a) ZL = 3Z0

∗
(b) ZL = (2− j2)Z0

(c) ZL = − j2Z0

(d) ZL = 0 (short circuit)

2.49 Repeat Problem 2.48 using CD Module 2.6.

∗
2.50 Use the Smith chart to determine the input impedance

Zin of the two-line configuration shown in Fig. P2.50.

2.51 Repeat Problem 2.50 using CD Module 2.6.

2.52 A lossless 50 Ω transmission line is terminated in a

load with ZL = (50 + j25) Ω. Use the Smith chart to find the

following:

(a) The reflection coefficient Γ.
∗

(b) The standing-wave ratio.

(c) The input impedance at 0.35λ from the load.

(d) The input admittance at 0.35λ from the load.

(e) The shortest line length for which the input impedance is

purely resistive.

(f) The position of the first voltage maximum from the load.

∗
2.53 On a lossless transmission line terminated in a load
ZL = 100 Ω, the standing-wave ratio was measured to be 2.5.

Use the Smith chart to find the two possible values of Z0.
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Z01 = 100 Ω

l1 = 3λ/8 l2 = 5λ/8

Z02 = 50 ΩZin

BC A

ZL = (75 − j50) Ω

Figure P2.50 Circuit for Problem 2.50.

2.54 Repeat Problem 2.53 using CD Module 2.6.

∗
2.55 A lossless 50-Ω transmission line is terminated in a

short circuit. Use the Smith chart to determine:

(a) The input impedance at a distance 2.3λ from the load.

(b) The distance from the load at which the input admittance

is Yin = − j0.04 S.

2.56 Repeat Problem 2.55 using CD Module 2.6.

∗
2.57 Use the Smith chart to find yL if zL = 1.5− j0.7.

2.58 A lossless 100-Ω transmission line 3λ/8 in length is

terminated in an unknown impedance. If the input impedance
is Zin = − j2.5 Ω,

(a) Use the Smith chart to find ZL.

(b) Verify your results using CD Module 2.6.

2.59 A 75-Ω lossless line is 0.6λ long. If S = 1.8 and θr =
−60◦, use the Smith chart to find |Γ|, ZL, and Zin.

2.60 Repeat Problem 2.59 using CD Module 2.6.

∗
2.61 Using a slotted line on a 50-Ω air-spaced lossless

line, the following measurements were obtained: S = 1.6 and

|Ṽ |max occurred only at 10 cm and 24 cm from the load. Use

the Smith chart to find ZL.

2.62 At an operating frequency of 10 GHz, a 50 Ω lossless
coaxial line with insulating material having a relative permit-

tivity εr = 2.25 is terminated in an antenna with an impedance

ZL = 150 Ω. Use the Smith chart to find Zin. The line length is
30 cm.

Section 2-11: Impedance Matching

∗
2.63 A 50-Ω lossless line 0.6λ long is terminated in a load

with ZL = (50+ j25) Ω. At 0.3λ from the load, a resistor with
resistance R = 30 Ω is connected as shown in Fig. P2.63. Use

the Smith chart to find Zin.

Zin ZL

ZL = (50 + j25) Ω

Z0 = 50 Ω Z0 = 50 Ω30 Ω

0.3λ 0.3λ

Figure P2.63 Circuit for Problem 2.63.

2.64 Use CD Module 2.7 to design a quarter-wavelength
transformer to match a load with ZL = (50 + j10) Ω to a 100

Ω line.

2.65 Use CD Module 2.7 to design a quarter-wavelength

transformer to match a load with ZL = (100− j200) Ω to a 50
Ω line.

2.66 A 200-Ω transmission line is to be matched to a

computer terminal with ZL = (50 − j25) Ω by inserting an

appropriate reactance in parallel with the line. If f = 800 MHz
and εr = 4, determine the location nearest to the load at which

inserting:

(a) A capacitor can achieve the required matching, and the
value of the capacitor.

(b) An inductor can achieve the required matching, and the

value of the inductor.

2.67 Repeat Problem 2.66 using CD Module 2.8.

2.68 A 50-Ω lossless line is to be matched to an antenna with

ZL = (75− j20) Ω using a shorted stub. Use the Smith chart
to determine the stub length and distance between the antenna

and stub.
∗

2.69 Repeat Problem 2.68 for a load with

ZL = (100 + j50) Ω.
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2.70 Repeat Problem 2.68 using CD Module 2.9.

2.71 Repeat Problem 2.69 using CD Module 2.9.

2.72 Determine Zin of the feed line shown in Fig. P2.72. All

lines are lossless with Z0 = 50 Ω.

Z1 = (50 + j50) Ω

Z2 = (50 − j50) Ω

Zin

0.7λ

0.3λ
0.3λ

Z1

Z2

Figure P2.72 Circuit of Problem 2.72.

∗
2.73 Repeat Problem 2.72 for the case where all three trans-
mission lines are 3λ/4 in length.

2.74 A 25 Ω antenna is connected to a 75 Ω lossless

transmission line. Reflections back toward the generator can

be eliminated by placing a shunt impedance Z at a distance l

from the load (Fig. P2.74). Determine the values of Z and l.

Z0 = 75 Ω

l = ?

Z = ? ZL = 25 Ω

B A

Figure P2.74 Circuit for Problem 2.74.

Section 2-12: Transients on Transmission Lines

2.75 In response to a step voltage, the voltage waveform

shown in Fig. P2.75 was observed at the sending end of a

lossless transmission line with Rg = 50 Ω, Z0 = 50 Ω, and
εr = 4. Determine the following:

(a) The generator voltage.

(b) The length of the line.

(c) The load impedance.

6 μs0

V(0, t)

t

5 V

3 V

Figure P2.75 Voltage waveform for Problems 2.75 and 2.79.

2.76 Generate a bounce diagram for the voltage V (z, t) for a 1

m long lossless line characterized by Z0 = 50 Ω and up = 2c/3
(where c is the velocity of light) if the line is fed by a step

voltage applied at t = 0 by a generator circuit with Vg = 60 V

and Rg = 100 Ω. The line is terminated in a load RL = 25 Ω.
Use the bounce diagram to plot V (t) at a point midway along

the length of the line from t = 0 to t = 25 ns.

2.77 Repeat Problem 2.76 for the current I(z, t) on the line.

∗
2.78 In response to a step voltage, the voltage waveform
shown in Fig. P2.78 was observed at the sending end of a

shorted line with Z0 = 50 Ω and εr = 2.25. Determine Vg, Rg,
and the line length.

7 μs 14 μs0

V(0, t)

t

12 V

0.75 V
3 V

Figure P2.78 Voltage waveform of Problem 2.78.

2.79 Suppose the voltage waveform shown in Fig. P2.75

was observed at the sending end of a 50-Ω transmission line

in response to a step voltage introduced by a generator with
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Vg = 15 V and an unknown series resistance Rg. The line is

1 km in length, its velocity of propagation is 2×108 m/s, and

it is terminated in a load RL = 100 Ω.

(a) Determine Rg.

(b) Explain why the drop in level of V (0, t) at t = 6 µs cannot
be due to reflection from the load.

(c) Determine the shunt resistance Rf and location of the fault
responsible for the observed waveform.

∗
2.80 In response to a step voltage, the voltage waveform
shown in Fig. P2.80 was observed at the midpoint of a

lossless transmission line with Z0 = 50 Ω and up = 1×108

m/s. Determine:

(a) the length of the line,

(b) ZL,

(c) Rg, and

(d) Vg.

t (μs)

V(l/2, t)

−3 V

12 V

0
3 9

15 21

Figure P2.80 Circuit for Problem 2.80.

2.81 A generator circuit with Vg = 200 V and Rg = 25 Ω was
used to excite a 75 Ω lossless line with a rectangular pulse of

duration τ = 0.4 µs. The line is 200 m long, its up = 2× 108

m/s, and it is terminated in a load RL = 125 Ω.

(a) Synthesize the voltage pulse exciting the line as the sum

of two step functions, Vg1
(t) and Vg2

(t).

(b) For each voltage step function, generate a bounce diagram

for the voltage on the line.

(c) Use the bounce diagrams to plot the total voltage at the
sending end of the line.

2.82 For the circuit of Problem 2.81, generate a bounce
diagram for the current and plot its time history at the middle

of the line.
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Upon learning the material presented in this chapter, you

should be able to:

1. Use vector algebra in Cartesian, cylindrical, and spherical

coordinate systems.

2. Transform vectors between the three primary coordinate

systems.

3. Calculate the gradient of a scalar function and the diver-

gence and curl of a vector function in any of the three

primary coordinate systems.

4. Apply the divergence theorem and Stokes’s theorem.
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Overview

In our examination of wave propagation on a transmission
line in Chapter 2, the primary quantities we worked with were

voltage, current, impedance, and power. Each of these is a

scalar quantity, meaning that it can be completely specified by
its magnitude if it is a positive real number or by its magnitude

and phase angle if it is a negative or a complex number (a

negative number has a positive magnitude and a phase angle
of π (rad)). This chapter is concerned with vectors. A vector
has a magnitude and a direction. The speed of an object is a

scalar, whereas its velocity is a vector.
Starting in the next chapter and throughout the succeeding

chapters in this book, the primary electromagnetic quanti-

ties we deal with are the electric and magnetic fields, E

and H. These, and many other related quantities, are vec-

tors. Vector analysis provides the mathematical tools nec-

essary for expressing and manipulating vector quantities in
an efficient and convenient manner. To specify a vector in

three-dimensional space, it is necessary to specify its compo-
nents along each of the three directions.

◮ Several types of coordinate systems are used in the
study of vector quantities, the most common being the

Cartesian (or rectangular), cylindrical, and spherical sys-
tems. A particular coordinate system is usually chosen to

best suit the geometry of the problem under considera-

tion. ◭

Vector algebra governs the laws of addition, subtraction,

and “multiplication” of vectors. The rules of vector algebra and
vector representation in each of the aforementioned orthogonal

coordinate systems (including vector transformation between

them) are two of the three major topics treated in this chapter.
The third topic is vector calculus, which encompasses the

laws of differentiation and integration of vectors, the use of

special vector operators (gradient, divergence, and curl), and
the application of certain theorems that are particularly useful

in the study of electromagnetics, most notably the divergence

and Stokes’s theorems.

3-1 Basic Laws of Vector Algebra

A vector is a mathematical object that resembles an arrow.

Vector A in Fig. 3-1 has magnitude (or length) A = |A| and

unit vector â:

A = â|A| = âA. (3.1)

a

A = aA
A

1

ˆ

ˆ

Figure 3-1 Vector A = âA has magnitude A = |A| and points

in the direction of unit vector â = A/A.

(a)  Base vectors

(b)  Components of A

z

Az

Az

Ay

Ax
Ar

A

x

y

z

x

y

z

y

x

1

1

1
2

3

2

3

2 3
ˆ

ˆ
ˆ

Figure 3-2 Cartesian coordinate system: (a) base vectors x̂, ŷ,

and ẑ and (b) components of vector A.

The unit vector â has a magnitude of one (|â| = 1) and points

from A’s tail or anchor to its head or tip. From Eq. (3.1),

â =
A

|A| =
A

A
. (3.2)

In the Cartesian (or rectangular) coordinate system shown

in Fig. 3-2(a), the x, y, and z coordinate axes extend along

3-1 BASIC LAWS OF VECTOR ALGEBRA 147
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directions of the three mutually perpendicular unit vectors x̂,
ŷ, and ẑ, which are also called base vectors. The vector A in

Fig. 3-2(b) may be decomposed as

A = x̂Ax + ŷAy + ẑAz, (3.3)

where Ax, Ay, and Az are A’s scalar components along the

x-, y-, and z axes, respectively. The component Az is equal to
the perpendicular projection of A onto the z axis, and similar

definitions apply to Ax and Ay. Application of the Pythagorean

theorem—first to the right triangle in the x–y plane to express
the hypotenuse Ar in terms of Ax and Ay and then again to the

vertical right triangle with sides Ar and Az and hypotenuse A—

yields the following expression for the magnitude of A:

A = |A| = +

√
A2

x + A2
y + A2

z . (3.4)

Since A is a nonnegative scalar, only the positive root applies.

From Eq. (3.2), the unit vector â is

â =
A

A
=

x̂Ax + ŷAy + ẑAz

+

√
A2

x + A2
y + A2

z

. (3.5)

Occasionally, we use the shorthand notation A = (Ax,Ay,Az) to

denote a vector with components Ax, Ay, and Az in a Cartesian
coordinate system.

3-1.1 Equality of Two Vectors

Two vectors A and B are equal if they have equal magnitudes

and identical unit vectors. Thus, if

A = âA = x̂Ax + ŷAy + ẑAz, (3.6a)

B = b̂B = x̂Bx + ŷBy + ẑBz, (3.6b)

then A = B if and only if A = B and â = b̂, which requires that

Ax = Bx, Ay = By, and Az = Bz.

◮ Equality of two vectors does not necessarily imply that
they are identical; in Cartesian coordinates, two displaced

parallel vectors of equal magnitude and pointing in the
same direction are equal, but they are identical only if they

lie on top of one another. ◭

3-1.2 Vector Addition and Subtraction

The sum of two vectors A and B is a vector

C = x̂Cx + ŷCy + ẑCz,

A

B

C

(a)  Parallelogram rule

A

B

C

(b)  Head-to-tail rule

Figure 3-3 Vector addition by (a) the parallelogram rule and

(b) the head-to-tail rule.

given by

C = A+ B = (x̂Ax + ŷAy + ẑAz)+ (x̂Bx + ŷBy + ẑBz)

= x̂(Ax + Bx)+ ŷ(Ay + By)+ ẑ(Az + Bz)

= x̂Cx + ŷCy + ẑCz, (3.7)

with Cx = Ax + Bx, etc.

◮ Vector addition is commutative:

C = A+ B = B+ A. (3.8)

Graphically, vector addition can be accomplished by either the
parallelogram or the head-to-tail rule (Fig. 3-3). Vector C is

the diagonal of the parallelogram with sides A and B. With the

head-to-tail rule, we may either add A to B or B to A. When
A is added to B, it is repositioned so that its tail starts at the

tip of B while keeping its length and direction unchanged. The
sum vector C starts at the tail of B and ends at the tip of A.

Subtraction of vector B from vector A is equivalent to the

addition of A to negative B. Thus,

D = A−B = A+(−B)

= x̂(Ax −Bx)+ ŷ(Ay −By)+ ẑ(Az −Bz). (3.9)

Graphically, the same rules used for vector addition are also
applicable to vector subtraction; the only difference is that the

arrowhead of (−B) is drawn on the opposite end of the line

segment representing the vector B (i.e., the tail and head are
interchanged).

3-1.3 Position and Distance Vectors

The position vector of a point P in space is the vector from the
origin to P. Assuming points P1 and P2 are at (x1,y1,z1) and

(x2,y2,z2) in Fig. 3-4, their position vectors are

R1 =
−→
OP1 = x̂x1 + ŷy1 + ẑz1, (3.10a)
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z2

y2

z1

y1

x1

x2

x

y

R1 R2

R12

z

P1 = (x1, y1, z1)

P2 = (x2, y2, z2)

O

Figure 3-4 Distance vector R12 =
−−→
P1P2 = R2 −R1, where R1

and R2 are the position vectors of points P1 and P2, respectively.

R2 =
−→
OP2 = x̂x2 + ŷy2 + ẑz2, (3.10b)

where point O is the origin.

The distance vector from P1 to P2 is defined as

R12 =
−−→
P1P2 = R2 −R1

= x̂(x2 − x1)+ ŷ(y2 − y1)+ ẑ(z2 − z1), (3.11)

and the distance d between P1 and P2 equals the magnitude

of R12:

d = |R12| = [(x2 − x1)
2 +(y2 − y1)

2 +(z2 − z1)
2]1/2. (3.12)

Note that the first and second subscripts of R12 denote the

locations of its tail and head, respectively (Fig. 3-4).

3-1.4 Vector Multiplication

There exist three types of products in vector calculus: the

simple product, the scalar (or dot) product, and the vector (or
cross) product.

Simple Product

The multiplication of a vector by a scalar is called a simple
product. The product of the vector A = âA by a scalar k results

in a vector B with magnitude B = kA and direction the same
as A. That is, b̂ = â. In Cartesian coordinates,

B = kA = âkA = x̂(kAx)+ ŷ(kAy)+ ẑ(kAz)

= x̂Bx + ŷBy + ẑBz. (3.13)

(a) (b)

B

θBA

θAB

AθAB

θBA

A

B

Figure 3-5 The angle θAB is the angle between A and B,

measured from A to B between vector tails. The dot product

is positive if 0 ≤ θAB < 90◦, as in (a), and it is negative if

90◦ < θAB ≤ 180◦, as in (b).

Scalar or Dot Product

The scalar (or dot) product of two co-anchored vectors A

and B, denoted A ·B and pronounced “A dot B,” is defined

geometrically as the product of the magnitude of A and the

scalar component of B along A, or vice versa. Thus,

A ·B = ABcosθAB, (3.14)

where θAB is the angle between A and B (Fig. 3-5) measured
from the tail of A to the tail of B. Angle θAB is assumed to be

in the range 0 ≤ θAB ≤ 180◦. The scalar product of A and B

yields a scalar whose magnitude is less than or equal to the
products of their magnitudes (equality holds when θAB = 0)

and whose sign is positive if 0 < θAB < 90◦ and negative if

90◦ < θAB < 180◦. When θAB = 90◦, A and B are orthogonal,
and their dot product is zero. The quantity AcosθAB is the

scalar component of A along B. Similarly, BcosθBA is the

scalar component of B along A.

The dot product obeys both the commutative and

distributive properties of multiplication:

A ·B = B ·A, (3.15a)

(commutative property)

A ·(B+ C) = A ·B+ A ·C. (3.15b)

(distributive property)

The commutative property follows from Eq. (3.14) and the fact
that θAB = θBA. The distributive property expresses the fact that

the scalar component of the sum of two vectors along a third

one equals the sum of their respective scalar components.
The dot product of a vector with itself gives

A ·A = |A|2 = A
2, (3.16)
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which implies that

A = |A| = +
√

A ·A . (3.17)

Also, θAB can be determined from

θAB = cos−1

[
A ·B

+
√

A ·A +
√

B ·B
]

. (3.18)

Since the base vectors x̂, ŷ, and ẑ are each orthogonal to the

other two, it follows that

x̂ · x̂ = ŷ · ŷ = ẑ · ẑ = 1,

x̂ · ŷ = ŷ · ẑ = ẑ · x̂ = 0.

(3.19a)

(3.19b)

If A = (Ax,Ay,Az) and B = (Bx,By,Bz), then

A ·B = (x̂Ax + ŷAy + ẑAz) ·(x̂Bx + ŷBy + ẑBz). (3.20)

Use of Eqs. (3.19a) and (3.19b) in Eq. (3.20) leads to

A ·B = AxBx + AyBy + AzBz. (3.21)

Vector or Cross Product

The vector (or cross) product of two vectors A and B, denoted

A×××B and pronounced “A cross B,” yields a vector defined as

A×××B = n̂ ABsinθAB, (3.22)

where n̂ is a unit vector normal to the plane containing A

and B (Fig. 3-6(a)). The magnitude of the cross product,

AB|sinθAB|, equals the area of the parallelogram defined by the
two vectors. The direction of n̂ is governed by the right-hand
rule (Fig. 3-6(b)): n̂ points in the direction of the right thumb

when the fingers rotate from A to B through the angle θAB.
Note that, since n̂ is perpendicular to the plane containing A

and B, A×××B is perpendicular to both vectors A and B.

The cross product is anticommutative and distribu-

tive:

A×××B = −B×××A (anticommutative). (3.23a)

The anticommutative property follows from the application of
the right-hand rule to determine n̂. The distributive property

follows from the fact that the area of the parallelogram formed

(a)  Cross product

(b)  Right-hand rule

z

y

x

n B

A

θAB

A × B = n AB sin θABˆ

ˆ

B

A

A × B

Figure 3-6 Cross product A××× B points in the direction n̂,

which is perpendicular to the plane containing A and B and

defined by the right-hand rule.

by A and (B+C) equals the sum of those formed by (A and B)
and (A and C):

A××× (B+ C) = A×××B+ A×××C,

(distributive)

(3.23b)

The cross product of a vector with itself vanishes. That is,

A×××A = 0. (3.24)

From the definition of the cross product given by Eq. (3.22),

it is easy to verify that the base vectors x̂, ŷ, and ẑ of
the Cartesian coordinate system obey the right-hand cyclic

relations:

x̂××× ŷ = ẑ, ŷ××× ẑ = x̂, ẑ××× x̂ = ŷ. (3.25)

Note the cyclic order (xyzxyz . . .). Also,

x̂××× x̂ = ŷ××× ŷ = ẑ××× ẑ = 0. (3.26)
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If A = (Ax,Ay,Az) and B = (Bx,By,Bz), then use of Eqs. (3.25)
and (3.26) leads to

A×××B = (x̂Ax + ŷAy + ẑAz)××× (x̂Bx + ŷBy + ẑBz)

= x̂(AyBz −AzBy)+ ŷ(AzBx −AxBz)

+ ẑ(AxBy −AyBx). (3.27)

The cyclical form of the result given by Eq. (3.27) allows us to
express the cross product in the form of a determinant:

A×××B =

∣∣∣∣∣∣

x̂ ŷ ẑ

Ax Ay Az

Bx By Bz

∣∣∣∣∣∣
. (3.28)

Example 3-1: Vectors and Angles

In Cartesian coordinates, vector A points from the origin to

point P1 = (2,3,3), and vector B is directed from P1 to point
P2 = (1,−2,2). Find:

(a) vector A, its magnitude A, and unit vector â,

(b) the angle between A and the y axis,
(c) vector B,

(d) the angle θAB between A and B, and
(e) perpendicular distance from the origin to vector B.

Solution: (a) Vector A is given by the position vector of

P1 = (2,3,3) (Fig. 3-7). Thus,

A = x̂2 + ŷ3 + ẑ3,

β

θAB

A
P3

BP2 = (1, –2, 2)

P1 = (2, 3, 3)

–2

1

1

2

3

3

2

z

y

x

O

Figure 3-7 Geometry of Example 3-1.

A = |A| =
√

22 + 32 + 32 =
√

22 ,

â =
A

A
= (x̂2 + ŷ3 + ẑ3)/

√
22.

(b) The angle β between A and the y axis is obtained from

A · ŷ = |A||ŷ|cosβ = Acosβ ,

or

β = cos−1

(
A · ŷ

A

)
= cos−1

(
3√
22

)
= 50.2◦.

(c)

B = x̂(1−2)+ ŷ(−2−3)+ ẑ(2−3) = −x̂− ŷ5− ẑ.

(d)

θAB = cos−1

[
A ·B
|A||B|

]
= cos−1

[
(−2−15−3)√

22
√

27

]
= 145.1◦.

(e) The perpendicular distance between the origin and vector B

is the distance |−→OP3 | shown in Fig. 3-7. From right triangle
OP1P3,

|−→OP3 | = |A|sin(180◦−θAB)

=
√

22 sin(180◦−145.1◦) = 2.68.

Example 3-2: Cross Product

Given vectors A = x̂2 − ŷ + ẑ3 and B = ŷ2 − ẑ3, compute

(a) A×××B, (b) ŷ×××B, and (c) (ŷ×××B) ·A.

Solution: (a) Application of Eq. (3.28) gives

A×××B =

∣∣∣∣∣∣

x̂ ŷ ẑ

2 −1 3
0 2 −3

∣∣∣∣∣∣

= x̂((−1)× (−3)−3×2)− ŷ(2× (−3)−3×0)

+ ẑ(2×2− (−1×0))

= −x̂3 + ŷ6 + ẑ4.

(b) ŷ×××B = ŷ××× (ŷ2− ẑ3) = −x̂3.

(c) (ŷ×××B) ·A = −x̂3 ·(x̂2− ŷ+ ẑ3) = −6.

Exercise 3-1: Find the distance vector between

P1 = (1,2,3) and P2 = (−1,−2,3) in Cartesian coor-

dinates.

Answer:
−−→
P1P2 = −x̂2− ŷ4. (See EM .)
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Exercise 3-2: Find the angle θAB between vectors A and B

of Example 3-1 from the cross product between them.

Answer: θAB = 145.1◦. (See EM .)

Exercise 3-3: Find the angle between vector B of Exam-

ple 3-1 and the z axis.

Answer: 101.1◦. (See EM .)

Exercise 3-4: Vectors A and B lie in the y–z plane and
both have the same magnitude of 2 (Fig. E3.4). Determine

(a) A ·B and (b) A×××B.

y

z

x

2

2

A

B

30◦

Figure E3.4

Answer: (a) A ·B = −2; (b) A×××B = x̂3.46. (See EM .)

Exercise 3-5: If A ·B = A ·C, does it follow that B = C?

Answer: No. (See EM .)

3-1.5 Scalar and Vector Triple Products

When three vectors are multiplied, not all combinations of dot

and cross products are meaningful. For example, the product

A××× (B ·C)

does not make sense because B ·C is a scalar, and the cross

product of the vector A with a scalar is not defined under the
rules of vector algebra. Other than the product of the form

A(B ·C), the only two meaningful products of three vectors

are the scalar triple product and the vector triple product.

Scalar Triple Product

The dot product of a vector with the cross product of two other

vectors is called a scalar triple product, so named because the

result is a scalar. A scalar triple product obeys the cyclic order:

A ·(B×××C) = B ·(C×××A) = C ·(A×××B). (3.29)

The equalities hold as long as the cyclic order (ABCABC . . .) is
preserved. The scalar triple product of vectors A = (Ax,Ay,Az),
B = (Bx,By,Bz), and C = (Cx,Cy,Cz) can be expressed in the

form of a 3×3 determinant:

A ·(B×××C) =

∣∣∣∣∣∣

Ax Ay Az

Bx By Bz

Cx Cy Cz

∣∣∣∣∣∣
. (3.30)

The validity of Eqs. (3.29) and (3.30) can be verified by

expanding A, B, and C in component form and carrying out
the multiplications.

Vector Triple Product

The vector triple product involves the cross product of a vector
with the cross product of two others, such as

A××× (B×××C). (3.31)

Since each cross product yields a vector, the result of a vector

triple product is also a vector. The vector triple product does
not obey the associative law. That is,

A××× (B×××C) 6= (A×××B)×××C, (3.32)

which means that it is important to specify which cross multi-

plication is to be performed first. By expanding the vectors A,
B, and C in component form, it can be shown that

A××× (B×××C) = B(A ·C)−C(A ·B), (3.33)

which is known as the “bac-cab” rule.

Example 3-3: Vector Triple Product

Given A = x̂− ŷ + ẑ2, B = ŷ + ẑ, and C = −x̂2 + ẑ3, find

(A×××B)×××C and compare it with A××× (B×××C).

Solution:

A×××B =

∣∣∣∣∣∣

x̂ ŷ ẑ

1 −1 2

0 1 1

∣∣∣∣∣∣
= −x̂3− ŷ+ ẑ
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and

(A×××B)×××C =

∣∣∣∣∣∣

x̂ ŷ ẑ

−3 −1 1

−2 0 3

∣∣∣∣∣∣
= −x̂3 + ŷ7− ẑ2.

A similar procedure gives A××× (B××× C) = x̂2 + ŷ4 + ẑ. The
fact that the results of two vector triple products are different

demonstrates the inequality stated in Eq. (3.32).

Concept Question 3-1: When are two vectors equal

and when are they identical?

Concept Question 3-2: When is the position vector of a
point identical to the distance vector between two points?

Concept Question 3-3: If A ·B = 0, what is θAB?

Concept Question 3-4: If A×××B = 0, what is θAB?

Concept Question 3-5: Is A(B ·C) a vector triple prod-

uct?

Concept Question 3-6: If A ·B = A ·C, does it follow
that B = C?

3-2 Orthogonal Coordinate Systems

A three-dimensional coordinate system allows us to uniquely

specify locations of points in space and the magnitudes and

directions of vectors. Coordinate systems may be orthogonal
or nonorthogonal.

◮ An orthogonal coordinate system is one in which
coordinates are measured along locally mutually perpen-

dicular axes. ◭

Nonorthogonal systems are very specialized and seldom used

in solving practical problems. Many orthogonal coordinate
systems have been devised, but the most commonly used are

• the Cartesian (also called rectangular),

• the cylindrical, and

• the spherical coordinate system.

Why do we need more than one coordinate system? Whereas
a point in space has the same location and an object has the

same shape regardless of which coordinate system is used

to describe them, the solution of a practical problem can be
greatly facilitated by the choice of a coordinate system that

best fits the geometry under consideration. The following sub-

sections examine the properties of each of the aforementioned
orthogonal systems, and Section 3-3 describes how a point or

vector may be transformed from one system to another.

3-2.1 Cartesian Coordinates

The Cartesian coordinate system was introduced in Section 3-1
to illustrate the laws of vector algebra. Instead of repeating

these laws for the Cartesian system, we summarize them in

Table 3-1. Differential calculus involves the use of differen-
tial lengths, areas, and volumes. In Cartesian coordinates, a

differential length vector (Fig. 3-8) is expressed as

dl = x̂ dlx + ŷ dly + ẑ dlz = x̂ dx + ŷ dy + ẑ dz, (3.34)

where dlx = dx is a differential length along x̂, and similar

interpretations apply to dly = dy and dlz = dz.
A differential area vector ds is a vector with magnitude ds

equal to the product of two differential lengths (such as dly

and dlz) and direction specified by a unit vector along the third

dsz = z dx dy

dsy = y dx dz

dsx = x dy dz

dx

dz

dy

dv = dx dy dz
dz

dy

dx

dl

z

y

x

ˆ

ˆ

ˆ

Figure 3-8 Differential length, area, and volume in Cartesian

coordinates.
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Table 3-1 Summary of vector relations.

Cartesian Cylindrical Spherical

Coordinates Coordinates Coordinates

Coordinate variables x,y,z r,φ ,z R,θ ,φ

Vector representation A = x̂Ax + ŷAy + ẑAz r̂Ar + φ̂φφAφ + ẑAz R̂AR + θ̂θθAθ + φ̂φφAφ

Magnitude of A |A| = +

√
A2

x +A2
y +A2

z
+

√
A2

r +A2
φ +A2

z
+

√
A2

R
+A2

θ +A2
φ

Position vector
−→
OP1 = x̂x1 + ŷy1 + ẑz1, r̂r1 + ẑz1, R̂R1,

for P(x1,y1,z1) for P(r1,φ1,z1) for P(R1,θ1,φ1)

Base vector properties x̂· x̂ = ŷ· ŷ = ẑ· ẑ = 1 r̂· r̂ = φ̂φφ·φ̂φφ = ẑ · ẑ = 1 R̂· R̂ = θ̂θθ·θ̂θθ = φ̂φφ ·φ̂φφ = 1

x̂· ŷ = ŷ· ẑ = ẑ· x̂ = 0 r̂·φ̂φφ = φ̂φφ· ẑ = ẑ · r̂ = 0 R̂·θ̂θθ = θ̂θθ·φ̂φφ = φ̂φφ ·R̂ = 0

x̂××× ŷ = ẑ r̂××× φ̂φφ = ẑ R̂××× θ̂θθ = φ̂φφ

ŷ××× ẑ = x̂ φ̂φφ××× ẑ = r̂ θ̂θθ××× φ̂φφ = R̂

ẑ××× x̂ = ŷ ẑ××× r̂ = φ̂φφ φ̂φφ××× R̂ = θ̂θθ

Dot product A·B = AxBx +AyBy +AzBz ArBr +Aφ Bφ +AzBz ARBR +Aθ Bθ +Aφ Bφ

Cross product A×××B =

∣∣∣∣∣∣

x̂ ŷ ẑ

Ax Ay Az

Bx By Bz

∣∣∣∣∣∣

∣∣∣∣∣∣

r̂ φ̂φφ ẑ

Ar Aφ Az

Br Bφ Bz

∣∣∣∣∣∣

∣∣∣∣∣∣

R̂ θ̂θθ φ̂φφ
AR Aθ Aφ

BR Bθ Bφ

∣∣∣∣∣∣

Differential length dl = x̂ dx+ ŷ dy+ ẑ dz r̂ dr + φ̂φφr dφ + ẑ dz R̂ dR+ θ̂θθR dθ + φ̂φφRsinθ dφ

Differential surface areas dsx = x̂ dy dz

dsy = ŷ dx dz

dsz = ẑ dx dy

dsr = r̂r dφ dz

dsφ = φ̂φφ dr dz

dsz = ẑr dr dφ

dsR = R̂R
2 sinθ dθ dφ

dsθ = θ̂θθRsinθ dR dφ

dsφ = φ̂φφR dR dθ

Differential volume dυ = dx dy dz r dr dφ dz R
2 sinθ dR dθ dφ

direction (such as x̂). Thus, for a differential area vector in the

y–z plane,

dsx = x̂ dly dlz = x̂ dy dz (y–z plane), (3.35a)

with the subscript on ds denoting its direction. Similarly,

dsy = ŷ dx dz (x–z plane), (3.35b)

dsz = ẑ dx dy (x–y plane). (3.35c)

A differential volume equals the product of all three differen-

tial lengths:

dυ = dx dy dz. (3.36)

3-2.2 Cylindrical Coordinates

The cylindrical coordinate system is useful for solving
problems involving structures with cylindrical symmetry, such

as calculating the capacitance per unit length of a coaxial

transmission line. In the cylindrical coordinate system, the
location of a point in space is defined by three variables: r,

φ , and z (Fig. 3-9). The coordinate r is the radial distance in

the x–y the azimuth angle measured from the positive x axis,

and z is as previously defined in the Cartesian coordinate
system. Their ranges are 0 ≤ r < ∞, 0 ≤ φ < 2π , and

−∞ < z < ∞. Point P(r1,φ1,z1) in Fig. 3-9 is located at the

intersection of three surfaces. These are the cylindrical surface
defined by r = r1, the vertical half-plane defined by φ = φ1

(which extends outwardly from the z axis), and the horizontal

plane defined by z = z1.

◮ The mutually perpendicular base vectors are r̂, φ̂φφ, and ẑ

with r̂ pointing away from the origin along r, φ̂φφ pointing

in a direction tangential to the cylindrical surface, and ẑ

pointing along the vertical. Unlike the Cartesian system,
where base vectors x̂, ŷ, and ẑ are independent of the

location of P, both r̂ and φ̂φφ are functions of φ in the

cylindrical system. ◭



3-2 ORTHOGONAL COORDINATE SYSTEMS 155

x

φ1

φ

z

r

R1

z

yO

φ = φ1 plane

r = r1 cylinder

ˆ

ˆ
ˆr1

R1

P = (r1, φ1, z1)

z = z1 plane

z1

Figure 3-9 Point P(r1,φ1,z1) in cylindrical coordinates; r1 is the radial distance from the origin in the x–y plane, φ1 is the angle in the

x–y plane measured from the x axis toward the y axis, and z1 is the vertical distance from the x–y plane.

The base unit vectors obey the following right-hand cyclic

relations:

r̂××× φ̂φφ = ẑ, φ̂φφ××× ẑ = r̂, ẑ××× r̂ = φ̂φφ, (3.37)

and like all unit vectors, r̂ · r̂ = φ̂φφ ·φ̂φφ = ẑ · ẑ = 1, and

r̂××× r̂ = φ̂φφ××× φ̂φφ = ẑ××× ẑ = 0.

In cylindrical coordinates, a vector is expressed as

A = â|A| = r̂Ar + φ̂φφAφ + ẑAz, (3.38)

where Ar, Aφ , and Az are the components of A along the r̂, φ̂φφ,

and ẑ directions. The magnitude of A is obtained by applying

Eq. (3.17), which gives

|A| = +
√

A ·A = +

√
A2

r + A2
φ + A2

z . (3.39)

The position vector
−→
OP shown in Fig. 3-9 has components

along r and z only. Thus,

R1 =
−→
OP = r̂r1 + ẑz1. (3.40)

The dependence of R1 on φ1 is implicit through the depen-

dence of r̂ on φ1. Hence, when using Eq. (3.40) to denote the

position vector of point P(r1,φ1,z1), it is necessary to specify

that r̂ is at φ1.

Figure 3-10 shows a differential volume element in cylin-

drical coordinates. The differential lengths along r̂, φ̂φφ, and ẑ

are

dlr = dr, dlφ = r dφ , dlz = dz. (3.41)

Note that the differential length along φ̂φφ is r dφ , not just dφ .

The differential length dl in cylindrical coordinates is given by

dl = r̂ dlr + φ̂φφ dlφ + ẑ dlz = r̂ dr + φ̂φφr dφ + ẑ dz. (3.42)

As was stated previously for the Cartesian coordinate system,

the product of any pair of differential lengths is equal to the
magnitude of a vector differential surface area with a surface

normal pointing along the direction of the third coordinate.

Thus,

dsr = r̂ dlφ dlz = r̂r dφ dz (φ–z cylindrical surface),

(3.43a)

dsφ = φ̂φφ dlr dlz = φ̂φφ dr dz (r–z plane), (3.43b)

dsz = ẑ dlr dlφ = ẑr dr dφ (r–φ plane). (3.43c)



156 CHAPTER 3 VECTOR ANALYSIS

dv = r dr dφ dz

dr
r dφ dsφ = ϕ dr dz

dsr = r r dφ dz

dz

dz

φ
r

dr r dφ

z

y

x

O

dsz = z r dr dφˆ

ˆ

ˆ

Figure 3-10 Differential areas and volume in cylindrical

coordinates.

The differential volume is the product of the three differential
lengths,

dυ = dlr dlφ dlz = r dr dφ dz. (3.44)

These properties of the cylindrical coordinate system are
summarized in Table 3-1.

Example 3-4: Distance Vector in
Cylindrical Coordinates

Find an expression for the unit vector of vector A shown in
Fig. 3-11 in cylindrical coordinates.

Solution: In triangle OP1P2,

−→
OP2 =

−→
OP1 +A.

Hence,

A =
−→
OP2 −−→

OP1 = r̂r0 − ẑh,

and

â =
A

|A| =
r̂r0 − ẑh√

r2
0 + h2

.

We note that the expression for A is independent of φ0. This
implies that all vectors from point P1 to any point on the circle

defined by r = r0 in the x–y plane are equal in the cylindrical

φ0 r0
P2 = (r0, φ0, 0)

P1 = (0, 0, h)

O

a

A

x

y

z

h

ˆ

Figure 3-11 Geometry of Example 3-4.

coordinate system, which is not true. The ambiguity can be

resolved by specifying that A passes through a point whose
φ = φ0.

Example 3-5: Cylindrical Area

Find the area of a cylindrical surface described by r = 5,
30◦ ≤ φ ≤ 60◦, and 0 ≤ z ≤ 3 (Fig. 3-12).

60°
30°

z = 3
r = 5

x

y

z

Figure 3-12 Cylindrical surface of Example 3-5.
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Module 3.1 Points and Vectors Examine the relationships between Cartesian coordinates (x,y) and cylindrical

coordinates (r,φ) for points and vectors.

Solution: The prescribed surface is shown in Fig. 3-12. Use
of Eq. (3.43a) for a surface element with constant r gives

S = r

∫ 60◦

φ=30◦
dφ

∫ 3

z=0
dz = 5φ

∣∣∣
π/3

π/6
z

∣∣∣
3

0
=

5π

2
.

Note that φ had to be converted to radians before evaluating

the integration limits.

Exercise 3-6: A circular cylinder of radius r = 5 cm is
concentric with the z axis and extends between z = −3 cm

and z = 3 cm. Use Eq. (3.44) to find the cylinder’s volume.

Answer: 471.2 cm3. (See EM .)

3-2.3 Spherical Coordinates

In the spherical coordinate system, the location of a point
in space is uniquely specified by the variables R, θ , and φ
(Fig. 3-13). The range coordinate R, which measures the

distance from the origin to the point, describes a sphere of
radius R centered at the origin. The zenith angle θ is measured

from the positive z axis and it describes a conical surface with

its apex at the origin, and the azimuth angle φ is the same
as in cylindrical coordinates. The ranges of R, θ , and φ are

0 ≤ R < ∞, 0 ≤ θ ≤ π , and 0 ≤ φ < 2π . The base vectors R̂,

θ̂θθ, and φ̂φφ obey the right-hand cyclic relations:

R̂××× θ̂θθ = φ̂φφ, θ̂θθ××× φ̂φφ = R̂, φ̂φφ××× R̂ = θ̂θθ. (3.45)

A vector with components AR, Aθ , and Aφ is written as

A = â|A| = R̂AR + θ̂θθAθ + φ̂φφAφ , (3.46)

and its magnitude is

|A| = +
√

A ·A = +

√
A2

R
+ A2

θ + A2
φ . (3.47)

The position vector of point P(R1,θ1,φ1) is simply

R1 =
−→
OP = R̂R1, (3.48)
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θ1

R1

φ1

R

θ

y

z

x

θ = θ1 
conical
surface

P = (R1, θ1, φ1)

φ

φ̂

ˆ

ˆ

ˆ

Figure 3-13 Point P(R1,θ1,φ1) in spherical coordinates.

dθ

R dθ

dφ

R

dR

y

z

x

R sin θ dφ

dν = R2 sin θ dR dθ dφ

θ

φ

Figure 3-14 Differential volume in spherical coordinates.

while keeping in mind that R̂ is implicitly dependent on θ1

and φ1.

As shown in Fig. 3-14, the differential lengths along R̂, θ̂θθ,

and φ̂φφ are

dlR = dR, dlθ = R dθ , dlφ = Rsinθ dφ . (3.49)

Hence, the expressions for the vector differential length dl, the

vector differential surface ds, and the differential volume dυ
are

dl = R̂ dlR + θ̂θθ dlθ + φ̂φφ dlφ

= R̂ dR + θ̂θθR dθ + φ̂φφRsinθ dφ , (3.50a)

dsR = R̂ dlθ dlφ = R̂R
2 sinθ dθ dφ (3.50b)

(θ–φ spherical surface),

dsθ = θ̂θθ dlR dlφ = θ̂θθRsinθ dR dφ (3.50c)

(R–φ conical surface),

dsφ = φ̂φφ dlR dlθ = φ̂φφR dR dθ (R–θ plane), (3.50d)

dυ = dlR dlθ dlφ = R
2 sinθ dR dθ dφ . (3.50e)

These relations are summarized in Table 3-1.

Example 3-6: Surface Area in Spherical
Coordinates

The spherical strip shown in Fig. 3-15 is a section of a sphere
of radius 3 cm. Find the area of the strip.

z

y

x

3 cm

60 o30 o

Figure 3-15 Spherical strip of Example 3-6.
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Solution: Use of Eq. (3.50b) for the area of an elemental
spherical area with constant radius R gives

S = R
2
∫ 60◦

θ=30◦
sinθ dθ

∫ 2π

φ=0
dφ

= 9(−cosθ )
∣∣∣
60◦

30◦
φ
∣∣∣
2π

0
(cm2)

= 18π(cos30◦− cos60◦) = 20.7 cm2.

Example 3-7: Charge in a Sphere

A sphere of radius 2 cm contains a volume charge density ρv

given by

ρv = 4cos2 θ (C/m3).

Find the total charge Q contained in the sphere.

Solution:

Q =
∫

υ
ρv dυ

=
∫ 2π

φ=0

∫ π

θ=0

∫ 2×10−2

R=0
(4cos2 θ )R2 sinθ dR dθ dφ

= 4

∫ 2π

0

∫ π

0

(
R

3

3

)∣∣∣∣
2×10−2

0

sin θ cos2 θ dθ dφ

=
32

3
×10−6

∫ 2π

0

(
−cos3 θ

3

)∣∣∣∣
π

0

dφ

=
64

9
×10−6

∫ 2π

0
dφ

=
128π

9
×10−6 = 44.68 (µC).

Note that the limits on R were converted to meters prior to

evaluating the integral on R.

3-3 Transformations between Coordinate

Systems

The position of a given point in space of course does not

depend on the choice of coordinate system. That is, its location
is the same irrespective of which specific coordinate system is

used to represent it. The same is true for vectors. Nevertheless,

certain coordinate systems may be more useful than others in
solving a given problem, so it is essential that we have the tools

to “translate” the problem from one system to another. In this

section, we shall establish the relations between the variables
(x,y,z) of the Cartesian system, (r,φ ,z) of the cylindrical sys-

tem, and (R,θ ,φ) of the spherical system. These relations will

then be used to transform expressions for vectors expressed in
any one of the three systems into expressions applicable in the

other two.

3-3.1 Cartesian to Cylindrical Transformations

z

x

y

φ r

P(x, y, z)

z

y = r sin φ

x = r cos φ
123 1

2
3

Figure 3-16 Interrelationships between Cartesian coordinates

(x,y,z) and cylindrical coordinates (r,φ ,z).

Point P in Fig. 3-16 has Cartesian coordinates (x,y,z) and
cylindrical coordinates (r,φ ,z). Both systems share the coor-

dinate z, and the relations between the other two pairs of

coordinates can be obtained from the geometry in Fig. 3-16.
They are

r = +
√

x2 + y2, φ = tan−1
(

y

x

)
, (3.51)

and the inverse relations are

x = r cosφ , y = r sinφ . (3.52)

Next, with the help of Fig. 3-17, which shows the directions of

the unit vectors x̂, ŷ, r̂, and φ̂φφ in the x–y plane, we obtain the
relations:

r̂ · x̂ = cosφ , r̂ · ŷ = sinφ , (3.53a)

φ̂φφ · x̂ = −sinφ , φ̂φφ · ŷ = cosφ . (3.53b)

To express r̂ in terms of x̂ and ŷ, we write r̂ as

r̂ = x̂a + ŷb, (3.54)

where a and b are unknown transformation coefficients. The

dot product r̂ · x̂ gives

r̂ · x̂ = x̂ · x̂a + ŷ· x̂b = a. (3.55)
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r

r

x

y

ϕ

ϕ

ϕ̂

ˆ
ˆ

y

x

ˆ

ˆ
−ϕ

Figure 3-17 Interrelationships between base vectors (x̂, ŷ) and

(r̂,φ̂φφ).

Comparison of Eq. (3.55) with Eq. (3.53a) yields a = cosφ .
Similarly, application of the dot product r̂ · ŷ to Eq. (3.54) gives

b = sinφ . Hence,

r̂ = x̂cosφ + ŷsin φ . (3.56a)

Repetition of the procedure for φ̂φφ leads to

φ̂φφ = −x̂sinφ + ŷcosφ . (3.56b)

The third base vector ẑ is the same in both coordinate systems.
By solving Eqs. (3.56a) and (3.56b) simultaneously for x̂

and ŷ, we obtain the following inverse relations:

x̂ = r̂cosφ − φ̂φφsinφ ,

ŷ = r̂sinφ + φ̂φφcosφ .

(3.57a)

(3.57b)

The relations given by Eqs. (3.56a) to (3.57b) are not only

useful for transforming the base vectors (x̂, ŷ) into (r̂,φ̂φφ), and

vice versa, they also can be used to transform the components
of a vector expressed in either coordinate system into its

corresponding components expressed in the other system. For

example, a vector A = x̂Ax + ŷAy + ẑAz in Cartesian coordi-

nates can be described by A = r̂Ar + φ̂φφAφ + ẑAz in cylindrical

coordinates by applying Eqs. (3.56a) and (3.56b). That is,

Ar = Ax cosφ + Ay sinφ ,

Aφ = −Ax sin φ + Ay cosφ ,

(3.58a)

(3.58b)

and, conversely,

Ax = Ar cosφ −Aφ sinφ ,

Ay = Ar sinφ + Aφ cosφ .

(3.59a)

(3.59b)

The transformation relations given in this and the following
two subsections are summarized in Table 3-2.

Example 3-8: Cartesian to Cylindrical
Transformations

Given point P1 = (3,−4,3) and vector A = x̂2 − ŷ3 + ẑ4

defined in Cartesian coordinates, express P1 and A in cylin-
drical coordinates and evaluate A at P1.

Solution: For point P1, x = 3, y = −4, and z = 3. Using

Eq. (3.51), we have

r = +
√

x2 + y2 = 5, φ = tan−1 y

x
= −53.1◦ = 306.9◦,

and z remains unchanged. Hence, P1 = P1(5,306.9◦,3) in

cylindrical coordinates.

The cylindrical components of vector A = r̂Ar + φ̂φφAφ + ẑAz

can be determined by applying Eqs. (3.58a) and (3.58b):

Ar = Ax cosφ + Ay sinφ = 2cosφ −3sinφ ,

Aφ = −Ax sinφ + Ay cosφ = −2sinφ −3cosφ ,

Az = 4.

Hence,

A = r̂(2cosφ −3sinφ)− φ̂φφ(2sinφ + 3cosφ)+ ẑ4.

At point P, φ = 306.9◦, which gives

A = r̂ 3.60− φ̂φφ 0.20 + ẑ 4.

3-3.2 Cartesian to Spherical Transformations

From Fig. 3-18, we obtain the following relations between

the Cartesian coordinates (x,y,z) and the spherical coordinates
(R,θ ,φ):

R = +
√

x2 + y2 + z2 , (3.60a)

θ = tan−1

[
+
√

x2 + y2

z

]
, (3.60b)

φ = tan−1
(

y

x

)
. (3.60c)
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Table 3-2 Coordinate transformation relations.

Transformation Coordinate Variables Unit Vectors Vector Components

Cartesian to r = +
√

x2 +y2 r̂ = x̂cosφ + ŷsinφ Ar = Ax cosφ +Ay sinφ

cylindrical φ = tan−1(y/x) φ̂φφ = −x̂sinφ + ŷcosφ Aφ = −Ax sinφ +Ay cosφ
z = z ẑ = ẑ Az = Az

Cylindrical to x = r cosφ x̂ = r̂cosφ − φ̂φφsinφ Ax = Ar cosφ −Aφ sinφ

Cartesian y = r sinφ ŷ = r̂sinφ + φ̂φφcosφ Ay = Ar sinφ +Aφ cosφ
z = z ẑ = ẑ Az = Az

Cartesian to R = +
√

x2 +y2 + z2 R̂ = x̂sinθ cosφ AR = Ax sinθ cosφ
spherical + ŷsinθ sinφ + ẑcosθ +Ay sinθ sinφ +Az cosθ

θ = tan−1[ +
√

x2 +y2/z] θ̂θθ = x̂cosθ cosφ Aθ = Ax cosθ cosφ
+ ŷcosθ sinφ − ẑ sinθ +Ay cosθ sinφ −Az sinθ

φ = tan−1(y/x) φ̂φφ = −x̂sinφ + ŷcosφ Aφ = −Ax sinφ +Ay cosφ

Spherical to x = Rsinθ cosφ x̂ = R̂sinθ cosφ Ax = AR sinθ cosφ

Cartesian + θ̂θθcosθ cosφ − φ̂φφsinφ +Aθ cosθ cosφ −Aφ sinφ

y = Rsinθ sinφ ŷ = R̂sinθ sinφ Ay = AR sinθ sinφ

+ θ̂θθcosθ sinφ + φ̂φφcosφ +Aθ cosθ sinφ +Aφ cosφ

z = Rcosθ ẑ = R̂cosθ − θ̂θθ sinθ Az = AR cosθ −Aθ sinθ

Cylindrical to R =
+
√

r2 + z2 R̂ = r̂ sinθ + ẑcosθ AR = Ar sinθ +Az cosθ

spherical θ = tan−1(r/z) θ̂θθ = r̂cosθ − ẑ sinθ Aθ = Ar cosθ −Az sinθ

φ = φ φ̂φφ = φ̂φφ Aφ = Aφ

Spherical to r = Rsinθ r̂ = R̂ sinθ + θ̂θθcosθ Ar = AR sinθ +Aθ cosθ

cylindrical φ = φ φ̂φφ = φ̂φφ Aφ = Aφ

z = Rcosθ ẑ = R̂cosθ − θ̂θθ sinθ Az = AR cosθ −Aθ sinθ

z

x

y = r sin φ 

x = r cos φ

z = R cos θ 

y

R

r

z
R

(π/2 – θ)

r

φ

φ̂

ˆ

r̂

θ

θ
ˆ

ˆ

Figure 3-18 Interrelationships between (x,y,z) and (R,θ ,φ).

The converse relations are

x = Rsinθ cosφ , (3.61a)

y = Rsinθ sin φ , (3.61b)

z = Rcosθ . (3.61c)

The unit vector R̂ lies in the r̂–ẑ plane. Hence, it can be

expressed as a linear combination of r̂ and ẑ as

R̂ = r̂a + ẑb, (3.62)

where a and b are transformation coefficients. Since r̂ and ẑ

are mutually perpendicular,

R̂ · r̂ = a, (3.63a)

R̂ · ẑ = b. (3.63b)

From Fig. 3-18, the angle between R̂ and r̂ is the complement
of θ and that between R̂ and ẑ is θ . Hence, a = R̂ · r̂ = sinθ
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and b = R̂ · ẑ = cosθ . Upon inserting these expressions for a

and b in Eq. (3.62) and replacing r̂ with Eq. (3.56a), we have

R̂ = x̂sinθ cosφ + ŷsinθ sinφ + ẑcosθ . (3.64a)

A similar procedure can be followed to obtain the expression

for θ̂θθ:

θ̂θθ = x̂cosθ cosφ + ŷcosθ sinφ − ẑsinθ . (3.64b)

Finally φ̂φφ is given by Eq. (3.56b) as

φ̂φφ = −x̂sinφ + ŷcosφ . (3.64c)

Equations (3.64a) through (3.64c) can be solved simultane-

ously to give the expressions for (x̂, ŷ, ẑ) in terms of (R̂,θ̂θθ,φ̂φφ):

x̂ = R̂sinθ cosφ + θ̂θθcosθ cosφ − φ̂φφsinφ ,

ŷ = R̂sinθ sinφ + θ̂θθcosθ sinφ + φ̂φφcosφ ,

ẑ = R̂cosθ − θ̂θθsinθ .

(3.65a)

(3.65b)

(3.65c)

Equations (3.64a) to (3.65c) also can be used to transform
Cartesian components (Ax,Ay,Az) of vector A into their spher-

ical counterparts (AR,Aθ ,Aφ ), and vice versa, by replacing

(x̂, ŷ, ẑ, R̂,θ̂θθ,φ̂φφ) with (Ax,Ay,Az,AR,Aθ ,Aφ ).

Example 3-9: Cartesian to Spherical
Transformation

Express vector A = x̂(x + y) + ŷ(y − x) + ẑz in spherical

coordinates.

Solution: Using the transformation relation for AR given in

Table 3-2, we have

AR = Ax sinθ cosφ + Ay sinθ sinφ + Az cosθ

= (x + y)sinθ cosφ +(y− x)sinθ sinφ + zcosθ .

Using the expressions for x, y, and z given by Eq. (3.61c), we

have

AR = (Rsinθ cosφ + Rsinθ sinφ)sin θ cosφ

+(Rsinθ sinφ−Rsinθ cosφ)sin θ sinφ + Rcos2 θ

= Rsin2 θ (cos2 φ + sin2 φ)+ Rcos2 θ

= Rsin2 θ + Rcos2 θ = R.

Similarly,

Aθ = (x + y)cosθ cosφ +(y− x)cosθ sinφ − zsinθ ,

Aφ = −(x + y)sinφ +(y− x)cosφ ,

and following the procedure used with AR, we obtain

Aθ = 0, Aφ = −Rsinθ .

Hence,

A = R̂AR + θ̂θθAθ + φ̂φφAφ = R̂R− φ̂φφRsinθ .

3-3.3 Cylindrical to Spherical Transformations

Transformations between cylindrical and spherical coordinates

can be realized by combining the transformation relations

of the preceding two subsections. The results are given in
Table 3-2.

3-3.4 Distance between Two Points

In Cartesian coordinates, the distance d between two points
P1 = (x1,y1,z1) and P2 = (x2,y2,z2) is given by Eq. (3.12) as

d = |R12| = [(x2 − x1)
2 +(y2 − y1)

2 +(z2 − z1)
2]1/2.

(3.66)

Upon using Eq. (3.52) to convert the Cartesian coordinates of
P1 and P2 into their cylindrical equivalents, we have

d =
[
(r2 cosφ2 − r1 cosφ1)

2

+(r2 sinφ2 − r1 sinφ1)
2 +(z2 − z1)

2
]1/2

=
[
r

2
2+r

2
1 −2r1r2 cos(φ2−φ1)+(z2−z1)

2
]1/2

.

(cylindrical)

(3.67)

A similar transformation using Eqs. (3.61a) through (3.61c)

leads to an expression for d in terms of the spherical coordi-

nates of P1 and P2:

d =
{

R
2
2 + R

2
1 −2R1R2[cosθ2 cosθ1

+ sinθ1 sin θ2 cos(φ2 −φ1)]
}1/2

.

(spherical)

(3.68)
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Example 3-10: Vector Component

At a given point in space, vectors A and B are given in

cylindrical coordinates by

A = r̂2 + φ̂φφ3− ẑ,

B = r̂+ ẑ.

Determine (a) the scalar component of B, or projection, in the
direction of A, (b) the vector component of B in the direction

of A, and (c) the vector component of B perpendicular to A.

Solution: (a) Let us denote the scalar component of B in the

direction of A as C, as shown in Fig. 3-19. Thus,

C = B · â = B · A

|A| = (r̂ + ẑ) · (r̂2 + φ̂φφ3− ẑ)√
4 + 9 + 1

=
2−1√

14
= 0.267.

(b) The vector component of B in the direction of A is given

by the product of the scalar component C and the unit vector â:

C = âC =
A

|A| C =
(r̂2 + φ̂φφ3− ẑ)√

14
×0.267

= r̂0.143 + φ̂φφ0.214− ẑ0.071.

(c) The vector component of B perpendicular to A is equal

to B minus C:

D = B−C = (r̂ + ẑ)− (r̂0.143 + φ̂φφ0.214− ẑ0.071)

= r̂0.857− φ̂φφ0.214 + ẑ0.929.

B

C

D

A

Figure 3-19 Vectors A, B, C, and D of Example 3-10.

Concept Question 3-7: Why do we use more than one

coordinate system?

Concept Question 3-8: Why is it that the base vectors
(x̂, ŷ, ẑ) are independent of the location of a point, but r̂

and φ̂φφ are not?

Concept Question 3-9: What are the cyclic relations

for the base vectors in (a) Cartesian coordinates, (b) cylin-
drical coordinates, and (c) spherical coordinates?

Concept Question 3-10: How is the position vector of

a point in cylindrical coordinates related to its position
vector in spherical coordinates?

Exercise 3-7: Point P = (2
√

3,π/3,−2) is given in cylin-

drical coordinates. Express P in spherical coordinates.

Answer: P = (4,2π/3,π/3). (See EM .)

Exercise 3-8: Transform vector

A = x̂(x + y)+ ŷ(y− x)+ ẑz

from Cartesian to cylindrical coordinates.

Answer: A = r̂r− φ̂φφr + ẑz. (See EM .)

3-4 Gradient of a Scalar Field

When dealing with a scalar physical quantity whose magnitude
depends on a single variable, such as the temperature T as

a function of height z, the rate of change of T with height

can be described by the derivative dT/dz. However, if T is
also a function of x and y, its spatial rate of change becomes

more difficult to describe because we now have to deal with

three separate variables. The differential change in T along x,
y, and z can be described in terms of the partial derivatives

of T with respect to the three coordinate variables, but it is

not immediately obvious as to how we should combine the
three partial derivatives so as to describe the spatial rate of

change of T along a specified direction. Furthermore, many
of the quantities we deal with in electromagnetics are vectors;

therefore, both their magnitudes and directions may vary with

spatial position. To this end, we introduce three fundamental
operators to describe the differential spatial variations of

scalars and vectors: the gradient, divergence, and curl oper-

ators. The gradient operator applies to scalar fields and is the
subject of the present section. The other two operators, which

apply to vector fields, are discussed in succeeding sections.
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dl

P1 = (x, y, z)

P2 = (x + dx, y + dy, z + dz)

dx

dy

dz

z

y

x

Figure 3-20 Differential distance vector dl between points P1

and P2.

Suppose that T1 = T (x,y,z) is the temperature at point

P1 = (x,y,z) in some region of space, and

T2 = T (x + dx, y + dy, z+ dz)

is the temperature at a nearby point P2 =(x+dx, y+dy, z+dz)
(Fig. 3-20). The differential distances dx, dy, and dz are the

components of the differential distance vector dl. That is,

dl = x̂ dx + ŷ dy + ẑ dz. (3.69)

From differential calculus, the temperature difference between
points P1 and P2, dT = T2 −T1, is

dT =
∂T

∂x
dx +

∂T

∂y
dy +

∂T

∂ z
dz. (3.70)

Because dx = x̂ ·dl, dy = ŷ ·dl, and dz = ẑ ·dl, Eq. (3.70) can
be rewritten as

dT = x̂
∂T

∂x
·dl+ ŷ

∂T

∂y
·dl+ ẑ

∂T

∂ z
·dl

=

[
x̂

∂T

∂x
+ ŷ

∂T

∂y
+ ẑ

∂T

∂ z

]
·dl. (3.71)

The vector inside the square brackets in Eq. (3.71) relates the

change in temperature dT to a vector change in direction dl.
This vector is called the gradient of T (or grad T for short)

and denoted ∇T :

∇T = grad T = x̂
∂T

∂x
+ ŷ

∂T

∂y
+ ẑ

∂T

∂ z
. (3.72)

Equation (3.71) then can be expressed as

dT = ∇T ·dl. (3.73)

The symbol ∇ is called the del or gradient operator and is

defined as

∇ = x̂
∂

∂x
+ ŷ

∂

∂y
+ ẑ

∂

∂ z
(Cartesian). (3.74)

◮ Whereas the gradient operator itself has no physical

meaning, it attains a physical meaning once it operates on
a scalar quantity, and the result of the operation is a vector

with magnitude equal to the maximum rate of change of
the physical quantity per unit distance and pointing in the

direction of maximum increase. ◭

With dl = âldl, where âl is the unit vector of dl, the directional
derivative of T along âl is

dT

dl
= ∇T · âl . (3.75)

We can find the difference (T2 −T1), where T1 = T (x1,y1,z1)
and T2 = T (x2,y2,z2) are the values of T at points

P1 = (x1,y1,z1) and P2 = (x2,y2,z2)

not necessarily infinitesimally close to one another, by inte-
grating both sides of Eq. (3.73). Thus,

T2 −T1 =

∫
P2

P1

∇T ·dl. (3.76)

Example 3-11: Directional Derivative

Find the directional derivative of T = x
2 + y

2
z along direction

x̂2 + ŷ3− ẑ2 and evaluate it at (1,−1,2).

Solution: First, we find the gradient of T :

∇T =

(
x̂

∂

∂x
+ ŷ

∂

∂y
+ ẑ

∂

∂ z

)
(x2 + y

2
z) = x̂2x + ŷ2yz+ ẑy

2.

We denote l as the given direction,

l = x̂2 + ŷ3− ẑ2.
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Its unit vector is

âl =
l

|l| =
x̂2 + ŷ3− ẑ2√

22 + 32 + 22
=

x̂2 + ŷ3− ẑ2√
17

.

Application of Eq. (3.75) gives

dT

dl
= ∇T · âl = (x̂2x + ŷ2yz+ ẑy

2) ·
(

x̂2 + ŷ3− ẑ2√
17

)

=
4x + 6yz−2y

2

√
17

.

At (1,−1,2),

dT

dl

∣∣∣∣
(1,−1,2)

=
4−12−2√

17
=

−10√
17

.

3-4.1 Gradient Operator in Cylindrical and
Spherical Coordinates

Even though Eq. (3.73) was derived using Cartesian coordi-

nates, it should have counterparts in other coordinate systems.

To convert Eq. (3.72) into cylindrical coordinates (r,φ ,z), we
start by restating the coordinate relations

r =
√

x2 + y2 , tanφ =
y

x
. (3.77)

From differential calculus,

∂T

∂x
=

∂T

∂ r

∂ r

∂x
+

∂T

∂φ

∂φ

∂x
+

∂T

∂ z

∂ z

∂x
. (3.78)

Since z is orthogonal to x and ∂ z/∂x = 0, the last term in

Eq. (3.78) vanishes. From the coordinate relations given by

Eq. (3.77), it follows that

∂ r

∂x
=

x√
x2 + y2

= cosφ , (3.79a)

∂φ

∂x
= −1

r
sinφ . (3.79b)

Hence,
∂T

∂x
= cosφ

∂T

∂ r
− sinφ

r

∂T

∂φ
. (3.80)

This expression can be used to replace the coefficient of x̂ in

Eq. (3.72), and a similar procedure can be followed to obtain

an expression for ∂T/∂y in terms of r and φ . If, in addition, we

use the relations x̂ = r̂cosφ − φ̂φφsinφ and ŷ = r̂sinφ + φ̂φφcosφ
[from Eqs. (3.57a) and (3.57b)], then Eq. (3.72) becomes

∇T = r̂
∂T

∂ r
+ φ̂φφ

1

r

∂T

∂φ
+ ẑ

∂T

∂ z
. (3.81)

Hence, the gradient operator in cylindrical coordinates can be
expressed as

∇ = r̂
∂

∂ r
+ φ̂φφ

1

r

∂

∂φ
+ ẑ

∂

∂ z
, (cylindrical)

(3.82)

A similar procedure leads to the expression for the gradient in
spherical coordinates:

∇ = R̂
∂

∂R
+ θ̂θθ

1

R

∂

∂θ
+ φ̂φφ

1

Rsinθ

∂

∂φ
.

(spherical)

(3.83)

3-4.2 Properties of the Gradient Operator

For any two scalar functions U and V , the following relations

apply:

(1) ∇(U +V) = ∇U + ∇V , (3.84a)

(2) ∇(UV ) = U ∇V +V ∇U , (3.84b)

(3) ∇V
n = nV

n−1 ∇V , for any n. (3.84c)

Example 3-12: Calculating the Gradient

Find the gradient of each of the following scalar functions and

then evaluate it at the given point.

(a) V1 = 24V0 cos(πy/3)sin(2πz/3) at (3,2,1) in Cartesian

coordinates,
(b) V2 = V0e

−2r sin3φ at (1,π/2,3) in cylindrical coordi-

nates,
(c) V3 =V0 (a/R)cos2θ at (2a,0,π) in spherical coordinates.

Solution: (a) Using Eq. (3.72) for ∇,

∇V1 = x̂
∂V1

∂x
+ ŷ

∂V1

∂y
+ ẑ

∂V1

∂ z

= −ŷ8πV0 sin
πy

3
sin

2πz

3
+ ẑ16πV0 cos

πy

3
cos

2πz

3

= 8πV0

[
−ŷsin

πy

3
sin

2πz

3
+ ẑ2cos

πy

3
cos

2πz

3

]
.

At (3,2,1),

∇V1 = 8πV0

[
−ŷsin2 2π

3
+ ẑ2cos2 2π

3

]
= πV0 [−ŷ6 + ẑ4] .
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Module 3.2 Gradient Select a scalar function f (x,y,z), evaluate its gradient, and display both in an appropriate 2-D plane.

(b) The function V2 is expressed in terms of cylindrical

variables. Hence, we need to use Eq. (3.82) for ∇:

∇V2 =

(
r̂

∂

∂ r
+ φ̂φφ

1

r

∂

∂φ
+ ẑ

∂

∂ z

)
V0e

−2r sin3φ

= −r̂2V0e
−2r sin3φ + φ̂φφ(3V0e

−2r cos3φ)/r

=

[
−r̂2sin3φ + φ̂φφ

3cos3φ

r

]
V0e

−2r.

At (1,π/2,3), r = 1 and φ = π/2. Hence,

∇V2 =

[
−r̂2sin

3π

2
+ φ̂φφ3cos

3π

2

]
V0e

−2 = r̂2V0e
−2 = r̂0.27V0.

(c) As V3 is expressed in spherical coordinates, we apply
Eq. (3.83) to V3:

∇V3 =

(
R̂

∂

∂R
+ θ̂θθ

1

R

∂

∂θ
+ φ̂φφ

1

Rsinθ

∂

∂φ

)
V0

(
a

R

)
cos2θ

= −R̂
V0a

R2
cos2θ − θ̂θθ

2V0a

R2
sin2θ

= −[R̂cos2θ + θ̂θθ2sin2θ ]
V0a

R2
.

At (2a,0,π), R = 2a and θ = 0, which yields

∇V3 = −R̂
V0

4a
.

Exercise 3-9: Given V = x
2
y + xy

2 + xz
2, (a) find the

gradient of V , and (b) evaluate it at (1,−1,2).

Answer: (a) ∇V = x̂(2xy + y
2 + z

2) + ŷ(x2 + 2xy)
+ ẑ2xz, (b) ∇V

∣∣
(1,−1,2)

= x̂3− ŷ+ ẑ4. (See EM .)

Exercise 3-10: Find the directional derivative of

V = rz
2 cos2φ along the direction of A = r̂2 − ẑ and

evaluate it at (1,π/2,2).

Answer: (dV/dl)
∣∣
(1,π/2,2)

= −4/
√

5 . (See EM .)
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Technology Brief 5:
Global Positioning System

The Global Positioning System (GPS), initially devel-
oped in the 1980s by the U.S. Department of Defense
as a navigation tool for military use, has evolved into
a system with numerous civilian applications, including
vehicle tracking, aircraft navigation, map displays in au-
tomobiles and hand-held cell phones (Fig. TF5-1), and
topographic mapping. The overall GPS comprises three
segments. The space segment consists of 24 satellites
(Fig. TF5-2), each circling Earth every 12 hours at an
orbital altitude of about 12,000 miles and transmitting
continuous coded time signals. All satellite transmitters
broadcast coded messages at two specific frequencies:
1.57542 GHz and 1.22760 GHz. The user segment
consists of hand-held or vehicle-mounted receivers that
determine their own locations by receiving and process-
ing multiple satellite signals. The third segment is a
network of five ground stations distributed around the
world that monitor the satellites and provide them with
updates on their precise orbital information.

◮ GPS provides a location inaccuracy of about
30 m both horizontally and vertically, but it can be
improved to within 1 m by differential GPS. (See
final section.) ◭

Principle of Operation

The triangulation technique allows the determination
of the location (x0,y0,z0) of any object in 3-D space
from knowledge of the distances d1, d2, and d3 between
that object and three other independent points in space
of known locations (x1,y1,z1) to (x3,y3,z3). In GPS, the
distances are established by measuring the times it
takes the signals to travel from the satellites to the GPS
receivers, and then multiplying them by the speed of
light c = 3× 108 m/s. Time synchronization is achieved
by using atomic clocks. The satellites use very precise
clocks, accurate to 3 nanoseconds (3 × 10−9 s), but
receivers use less accurate, inexpensive, ordinary quartz
clocks. Consequently, the receiver clock may have an
unknown time offset error t0 relative to the satellite
clocks. To correct for the time error of a GPS receiver,
a signal from a fourth satellite is needed.

Figure TF5-1 iPhone map feature.

Figure TF5-2 GPS nominal satellite constellation. Four

satellites in each plane with 20,200 km altitudes and a 55◦

inclination.
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SAT 4
(x4, y4, z4)

SAT 3
(x3, y3, z3)

SAT 2
(x2, y2, z2)

SAT 1
(x1, y1, z1)

d1

d2
d3

d4

Time delay

Receiver Code

Satellite Code

(x0, y0, z0)

Figure TF5-3 Automobile GPS receiver at location

(x0,y0,z0).

The GPS receiver of the automobile in Fig. TF5-3 is at
distances d1 to d4 from the GPS satellites. Each satellite
sends a message identifying its orbital coordinates
(x1,y1,z1) for satellite 1, and so on for the other satellites,
together with a binary-coded sequence common to all
satellites. The GPS receiver generates the same binary
sequence (Fig. TF5-3), and by comparing its code with
the one received from satellite 1, it determines the time
t1 corresponding to travel time over the distance d1. A

similar process applies to satellites 2 to 4, leading to four
equations:

d
2
1 = (x1 − x0)

2 +(y1 − y0)
2 +(z1 − z0)

2 = c
2 [(t1 + t0)]

2
,

d
2
2 = (x2 − x0)

2 +(y2 − y0)
2 +(z2 − z0)

2 = c
2 [(t2 + t0)]

2
,

d
2
3 = (x3 − x0)

2 +(y3 − y0)
2 +(z3 − z0)

2 = c
2 [(t3 + t0)]

2
,

d
2
4 = (x4 − x0)

2 +(y4 − y0)
2 +(z4 − z0)

2 = c
2 [(t4 + t0)]

2
.

The four satellites report their coordinates (x1,y1,z1) to
(x4,y4,z4) to the GPS receiver, and the time delays t1 to
t4 are measured directly by the receiver. The unknowns
are (x0,y0,z0), the coordinates of the GPS receiver, and
the time offset of its clock t0. Simultaneous solution of the
four equations provides the desired location information.

Differential GPS

The 30 m GPS position inaccuracy is attributed to several
factors, including time-delay errors (due to the differ-
ence between the speed of light and the actual signal
speed in the troposphere) that depend on the receiver’s
location on Earth, delays due to signal reflections by tall
buildings, and satellites’ locations misreporting errors.

◮ Differential GPS, or DGPS, uses a stationary
reference receiver at a location with known coordi-
nates. ◭

By calculating the difference between its location on the
basis of the GPS estimate and its true location, the
reference receiver establishes coordinate correction
factors and transmits them to all DGPS receivers in the
area. Application of the correction information usually
reduces the location inaccuracy down to about 1 m.
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Exercise 3-11: The power density radiated by a star
(Fig. E3.11(a)) decreases radially as S(R) = S0/R

2, where

R is the radial distance from the star and S0 is a constant.

Recalling that the gradient of a scalar function denotes the
maximum rate of change of that function per unit distance

and the direction of the gradient is along the direction of

maximum increase, generate an arrow representation of
∇S.

Figure E3.11

S

(a)

(b)

S
∆

Answer: ∇S = −R̂2S0/R
3 (Fig. E3.11(b)). (See EM .)

Exercise 3-12: The graph in Fig. E3.12(a) depicts a gen-

tle change in atmospheric temperature from T1 over the
sea to T2 over land. The temperature profile is described

by the function

T (x) = T1 +
T2 −T1

e−x + 1
,

where x is measured in kilometers and x = 0 is the sea–
land boundary. (a) In which direction does ∇T point and

(b) at what value of x is it a maximum?

Figure E3.12

(a)

T1

T

x

T2

Sea Land

(b)

x
Sea Land

T

∆

Answer: (a) +x̂; (b) at x = 0.

T (x) = T1 +
T2 −T1

e−x + 1
,

∇T = x̂
∂T

∂x
= x̂

e
−x(T2 −T1)

(e−x + 1)2
.

(See EM .)

3-5 Divergence of a Vector Field

From our brief introduction of Coulomb’s law in Chapter 1, we

know that an isolated, positive point charge q induces an elec-
tric field E in the space around it with the direction of E being

outward away from the charge. Also, the strength (magnitude)

of E is proportional to q and decreases with distance R from
the charge as 1/R

2. In a graphical presentation, a vector field is

usually represented by field lines, as shown in Fig. 3-21. The

arrowhead denotes the direction of the field at the point where
the field line is drawn, and the length of the line provides a

qualitative depiction of the field’s magnitude.
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Imaginary
spherical
surface

+q

n̂

E

Figure 3-21 Flux lines of the electric field E due to a positive

charge q.

At a surface boundary, flux density is defined as the amount

of outward flux crossing a unit surface ds:

Flux density of E =
E ·ds

|ds| =
E · n̂ ds

ds
= E · n̂, (3.85)

where n̂ is the normal to ds. The total flux outwardly crossing a

closed surface S, such as the enclosed surface of the imaginary
sphere outlined in Fig. 3-21, is

Total flux =
∫

S

E ·ds. (3.86)

Let us now consider the case of a differential rectangular
parallelepiped, such as a cube, whose edges align with the

Cartesian axes shown in Fig. 3-22. The edges are of lengths
∆x along x, ∆y along y, and ∆z along z. A vector field E(x,y,z)
exists in the region of space containing the parallelepiped, and

we wish to determine the flux of E through its total surface S.
Since S includes six faces, we need to sum up the fluxes

through all of them, and by definition, the flux through any

face is the outward flux from the volume ∆υ through that face.
Let E be defined as

E = x̂Ex + ŷEy + ẑEz. (3.87)

The area of the face marked 1 in Fig. 3-22 is ∆y ∆z, and its unit
vector n̂1 = −x̂. Hence, the outward flux F1 through face 1 is

F1 =
∫

Face 1
E · n̂1 ds

=

∫

Face 1
(x̂Ex + ŷEy + ẑEz) ·(−x̂) dy dz

≈−Ex(1) ∆y ∆z, (3.88)

ˆ

(x, y + Δy, z)

(x + Δx, y, z)

(x, y, z + Δz)

Δy

Δz

Δx

y

x

z

E

E

E

n3

n̂2n̂1

n̂4

Face 3

Face 1 Face 2

Face 4

(x, y, z)

Figure 3-22 Flux lines of a vector field E passing

through a differential rectangular parallelepiped of volume

∆υ = ∆x ∆y ∆z.

where Ex(1) is the value of Ex at the center of face 1.

Approximating Ex over face 1 by its value at the center is

justified by the assumption that the differential volume under
consideration is very small.

Similarly, the flux out of face 2 (with n̂2 = x̂) is

F2 = Ex(2) ∆y ∆z, (3.89)

where Ex(2) is the value of Ex at the center of face 2. Over a

differential separation ∆x between the centers of faces 1 and 2,
Ex(2) is related to Ex(1) by

Ex(2) = Ex(1)+
∂Ex

∂x
∆x, (3.90)

where we have ignored higher-order terms involving (∆x)2 and

higher powers because their contributions are negligibly small
when ∆x is very small. Substituting Eq. (3.90) into Eq. (3.89)

gives

F2 =

[
Ex(1)+

∂Ex

∂x
∆x

]
∆y ∆z. (3.91)

The sum of the fluxes out of faces 1 and 2 is obtained by adding
Eqs. (3.88) and (3.91),

F1 + F2 =
∂Ex

∂x
∆x ∆y ∆z. (3.92a)
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Repeating the same procedure to each of the other face pairs
leads to

F3 + F4 =
∂Ey

∂y
∆x ∆y ∆z, (3.92b)

F5 + F6 =
∂Ez

∂ z
∆x ∆y ∆z. (3.92c)

The sum of fluxes F1 through F6 gives the total flux through

surface S of the parallelepiped:

∫

S

E ·ds =

(
∂Ex

∂x
+

∂Ey

∂y
+

∂Ez

∂ z

)
∆x ∆y ∆z = (div E) ∆υ ,

(3.93)

where ∆υ = ∆x ∆y ∆z and div E is a scalar function called the

divergence of E, specified in Cartesian coordinates as

div E =
∂Ex

∂x
+

∂Ey

∂y
+

∂Ez

∂ z
. (3.94)

◮ By shrinking the volume ∆υ to zero, we define the

divergence of E at a point as the net outward flux per unit

volume over a closed incremental surface. ◭

Thus, from Eq. (3.93), we have

div E , lim
∆υ→0

∫

S

E ·ds

∆υ
, (3.95)

where S encloses the elemental volume ∆υ . Instead of denot-
ing the divergence of E by div E, it is common practice to

denote it as ∇ ·E. That is,

∇ ·E = div E =
∂Ex

∂x
+

∂Ey

∂y
+

∂Ez

∂ z
(3.96)

for a vector E in Cartesian coordinates.

◮ From the definition of the divergence of E given by

Eq. (3.95), field E has positive divergence if the net flux
out of surface S is positive, which may be “viewed” as

if volume ∆υ contains a source of field lines. If the

divergence is negative, ∆υ may be viewed as containing
a sink of field lines because the net flux is into ∆υ . For

a uniform field E, the same amount of flux enters ∆υ as

leaves it; hence, its divergence is zero and the field is said
to be divergenceless. ◭

The divergence is a differential operator, it always operates on
vectors, and the result of its operation is a scalar. This is in

contrast with the gradient operator, which always operates on

scalars and results in a vector. Expressions for the divergence
of a vector in cylindrical and spherical coordinates are pro-

vided in Appendix C.

The divergence operator is distributive. That is, for any pair
of vectors E1 and E2,

∇ ·(E1 + E2) = ∇ ·E1 + ∇ ·E2. (3.97)

If ∇ ·E = 0, the vector field E is called divergenceless.
The result given by Eq. (3.93) for a differential volume ∆υ

can be extended to relate the volume integral of ∇ ·E over any

volume υ to the flux of E through the closed surface S that
bounds υ . That is,

∫

υ
∇ ·E dυ =

∫

S

E ·ds.

(divergence theorem)

(3.98)

This relationship, known as the divergence theorem, is used

extensively in electromagnetics.

Example 3-13: Calculating the Divergence

Determine the divergence of each of the following vector fields
and then evaluate them at the indicated points:

(a) E = x̂3x
2 + ŷ2z+ ẑx

2
z at (2,−2,0);

(b) E = R̂(a3 cosθ/R
2)− θ̂θθ(a3 sinθ/R

2) at (a/2,0,π).

Solution: (a)

∇ ·E =
∂Ex

∂x
+

∂Ey

∂y
+

∂Ez

∂ z

=
∂

∂x
(3x

2)+
∂

∂y
(2z)+

∂

∂ z
(x2

z)

= 6x + 0 + x
2 = x

2 + 6x.

At (2,−2,0), ∇ ·E
∣∣∣
(2,−2,0)

= 16.



172 CHAPTER 3 VECTOR ANALYSIS

Module 3.3 Divergence Select a vector function f(x,y,z), evaluate its divergence, and display both in an appropriate 2-D

plane.

(b) From the expression given in Appendix C for the diver-
gence of a vector in spherical coordinates, it follows that

∇ ·E =
1

R2

∂

∂R
(R2

ER)+
1

Rsinθ

∂

∂θ
(Eθ sinθ )

+
1

Rsinθ

∂Eφ

∂φ

=
1

R2

∂

∂R
(a3 cosθ )+

1

Rsinθ

∂

∂θ

(
−a

3 sin2 θ

R2

)

= 0− 2a
3 cosθ

R3
= −2a

3 cosθ

R3
.

At R = a/2 and θ = 0, ∇ ·E
∣∣∣
(a/2,0,π)

= −16.

Exercise 3-13: Given A = e
−2y(x̂sin2x + ŷcos2x), find

∇ ·A.

Answer: ∇ ·A = 0. (See EM .)

Exercise 3-14: Given A = r̂r cosφ + φ̂φφr sinφ + ẑ3z, find

∇ ·A at (2,0,3).

Answer: ∇ ·A = 6. (See EM .)

Exercise 3-15: If E = R̂AR in spherical coordinates,

calculate the flux of E through a spherical surface of
radius a, centered at the origin.

Answer:

∫

S

E ·ds = 4πAa
3. (See EM .)

Exercise 3-16: Verify the divergence theorem by calculat-

ing the volume integral of the divergence of the field E of
Exercise 3.15 over the volume bounded by the surface of

radius a.
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Exercise 3-17: The arrow representation in Fig. E3.17

represents the vector field A = x̂x− ŷy. At a given point

in space, A has a positive divergence ∇ · A if the net
flux flowing outward through the surface of an imaginary

infinitesimal volume centered at that point is positive,

∇ · A is negative if the net flux is into the volume, and
∇ ·A = 0 if the same amount of flux enters into the volume

as leaves it. Determine ∇ ·A everywhere in the x–y plane.

Figure E3.17

Answer: ∇ ·A = 0 everywhere. (See EM .)

3-6 Curl of a Vector Field

So far we have defined and discussed two of the three fun-

damental operators used in vector analysis: the gradient of
a scalar and the divergence of a vector. Now we introduce

the curl operator. The curl of a vector field B describes its

rotational property, or circulation. The circulation of B is
defined as the line integral of B around a closed contour C;

Circulation =

∫

C

B ·dl. (3.99)

To gain a physical understanding of this definition, we consider
two examples. The first is for a uniform field B = x̂B0, whose

field lines are as depicted in Fig. 3-23(a). For the rectangular

contour abcd shown in the figure, we have

Circulation =

∫
b

a

x̂B0 · x̂ dx +

∫
c

b

x̂B0 · ŷ dy

+

∫
d

c

x̂B0 · x̂ dx +

∫
a

d

x̂B0 · ŷ dy

= B0 ∆x−B0 ∆x = 0, (3.100)

where ∆x = b− a = c− d and, because x̂ · ŷ = 0, the second
and fourth integrals are zero. According to Eq. (3.100), the

circulation of a uniform field is zero.

(a) Uniform field

(b) Azimuthal field

B

a d

y

x

b c

Δx Δx

Contour C

r

B

Current I

z

Contour C

y

x

φ

φ̂

Figure 3-23 Circulation is zero for the uniform field in (a), but

it is not zero for the azimuthal field in (b).

Next, we consider the magnetic flux density B induced by
an infinite wire carrying a dc current I. If the current is in

free space and it is oriented along the z direction, then from
Eq. (1.13),

B = φ̂φφ
µ0I

2πr
, (3.101)

where µ0 is the permeability of free space and r is the radial

distance from the current in the x–y plane. The direction of B

is along the azimuth unit vector φ̂φφ. The field lines of B are

concentric circles around the current, as shown in Fig. 3-23(b).
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For a circular contour C of radius r centered at the origin in the

x–y plane, the differential length vector dl = φ̂φφr dφ , and the
circulation of B is

Circulation =

∫

C

B ·dl =

∫ 2π

0
φ̂φφ

µ0I

2πr
·φ̂φφr dφ = µ0I. (3.102)

In this case, the circulation is not zero. However, had the

contour C been in the x–z or y–z planes, dl would not have

had a φ̂φφ component, and the integral would have yielded a
zero circulation. Clearly, the circulation of B depends on the

choice of contour and the direction in which it is traversed. To

describe the circulation of a tornado, for example, we would
like to choose our contour such that the circulation of the

wind field is maximum, and we would like the circulation

to have both a magnitude and a direction with the direction
being toward the tornado’s vortex. The curl operator embodies

these properties. The curl of a vector field B, denoted curl B or
∇×××B, is defined as

∇×××B = curl B = lim
∆s→0

1

∆s

[
n̂

∫

C

B ·dl

]

max

. (3.103)

◮ Curl B is the circulation of B per unit area, with the

area ∆s of the contour C being oriented such that the

circulation is maximum. ◭

The direction of curl B is n̂, the unit normal of ∆s, defined

according to the right-hand rule with the four fingers of the
right hand following the contour direction dl and the thumb

pointing along n̂ (Fig. 3-24). When we use the notation ∇×××B

to denote curl B, it should not be interpreted as the cross
product of ∇ and B.

For a vector B specified in Cartesian coordinates as

B = x̂Bx + ŷBy + ẑBz, (3.104)

it can be shown, through a rather lengthy derivation, that
Eq. (3.103) leads to

∇×××B = x̂

(
∂Bz

∂y
− ∂By

∂ z

)
+ ŷ

(
∂Bx

∂ z
− ∂Bz

∂x

)

+ ẑ

(
∂By

∂x
− ∂Bx

∂y

)

=

∣∣∣∣∣∣∣

x̂ ŷ ẑ
∂

∂x

∂

∂y

∂

∂ z

Bx By Bz

∣∣∣∣∣∣∣
. (3.105)

Expressions for ∇×××B are given in Appendix C for the three

orthogonal coordinate systems considered in this chapter.

S

contour C

ds

n

ds = n ds

d l

ˆ
ˆ

Figure 3-24 The direction of the unit vector n̂ is along the

thumb when the other four fingers of the right hand follow dl.

3-6.1 Vector Identities Involving the Curl

For any two vectors A and B and scalar V ,

(1) ∇××× (A+ B) = ∇×××A+ ∇×××B, (3.106a)

(2) ∇ ·(∇×××A) = 0, (3.106b)

(3) ∇××× (∇V ) = 0. (3.106c)

3-6.2 Stokes’s Theorem

◮ Stokes’s theorem converts the surface integral of the

curl of a vector over an open surface S into a line
integral of the vector along the contour C bounding the

surface S. ◭

For the geometry shown in Fig. 3-24, Stokes’s theorem states

∫

S

(∇×××B) ·ds =

∫

C

B ·dl.

(Stokes’s theorem)

(3.107)

Its validity follows from the definition of ∇××× B given by

Eq. (3.103). If ∇×××B = 0, the field B is said to be conservative
or irrotational because its circulation, represented by the right-
hand side of Eq. (3.107), is zero, irrespective of the contour

chosen.
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Technology Brief 6:
X-Ray Computed Tomography

◮ The word tomography is derived from the Greek
words tome, meaning section or slice, and graphia,
meaning writing. ◭

Computed tomography, also known as CT scan or
CAT scan (for computed axial tomography), refers to
a technique capable of generating 3-D images of the
X-ray attenuation (absorption) properties of an object.
This is in contrast to the traditional, X-ray technique that
produces only a 2-D profile of the object (Fig. TF6-1).
CT was invented in 1972 by British electrical engineer
Godfrey Hounsfeld and independently by Allan Cor-
mack , a South African-born American physicist. The two
inventors shared the 1979 Nobel Prize in Physiology or

Figure TF6-1 2-D X-ray image.

Medicine. Among diagnostic imaging techniques, CT has
the decided advantage in having the sensitivity to image
body parts on a wide range of densities—from soft tissue
to blood vessels and bones.

Principle of Operation

In the system shown in Fig. TF6-2, the X-ray source and
detector array are contained inside a circular structure
through which the patient is moved along a conveyor belt.
A CAT scan technician can monitor the reconstructed
images to ensure that they do not contain artifacts such
as streaks or blurry sections caused by movement on the
part of the patient during the measurement process.

A CT scanner uses an X-ray source with a narrow
slit that generates a fan-beam that is wide enough to
encompass the extent of the body but only a few mil-
limeters in thickness (Fig. TF6-3(a)). Instead of recording
the attenuated X-ray beam on film, it is captured by an
array of some 700 detectors. The X-ray source and
the detector array are mounted on a circular frame that
rotates in steps of a fraction of a degree over a full 360◦

circle around the patient, each time recording an X-ray
attenuation profile from a different angular perspective.
Typically, 1,000 such profiles are recorded per each thin
traverse slice of anatomy. In today’s technology, this
process is completed in less than 1 second. To image
an entire part of the body, such as the chest or head, the
process is repeated over multiple slices (layers), which
typically takes about 10 seconds to complete.

Figure TF6-2 CT scanner.
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Detector

Voxel

X-ray source

(a)  CT scanner

X-ray
source Fan beam

of X-rays

Detector 
array

Computer 
and monitor

(b)  Detector measures integrated attenuation
along anatomical path

(c)  CT image of a normal brain

Figure TF6-3 Basic elements of a CT scanner.

Image Reconstruction

For each anatomical slice, the CT scanner generates
on the order of 7 ××× 105 measurements (1,000 angular
orientations ××× 700 detector channels). Each measure-
ment represents the integrated path attenuation for the
narrow beam between the X-ray source and the detector
(Fig. TF6-3(b)), and each volume element (voxel) con-
tributes to 1,000 such measurement beams.

◮ Commercial CT machines use a technique called
filtered back-projection to “reconstruct” an image
of the attenuation rate of each voxel in the anatom-
ical slice and, by extension, for each voxel in the
entire body organ. This is accomplished through
the application of a sophisticated matrix inversion
process. ◭

A sample CT image of the brain is shown in
Fig. TF6-3(c).
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Example 3-14: Verification of Stokes’s
Theorem

For vector field B = ẑcosφ/r, verify Stokes’s theorem

for a segment of a cylindrical surface defined by r = 2,
π/3 ≤ φ ≤ π/2, and 0 ≤ z ≤ 3 (Fig. 3-25).

π/3

2

r = 2
z = 3

0

z

y

x
a

b

c

d

n = r

π/2

ˆ ˆ

Figure 3-25 Geometry of Example 3-14.

Solution: Stokes’s theorem states that

∫

S

(∇×××B) ·ds =

∫

C

B ·dl.

Left-hand side: With B having only a component Bz = cosφ/r,

use of the expression for ∇×××B in cylindrical coordinates in

Appendix C gives

∇×××B = r̂

(
1

r

∂Bz

∂φ
− ∂Bφ

∂ z

)
+ φ̂φφ

(
∂Br

∂ z
− ∂Bz

∂ r

)

+ ẑ
1

r

(
∂

∂ r
(rBφ )− ∂Br

∂φ

)

= r̂
1

r

∂

∂φ

(
cosφ

r

)
− φ̂φφ

∂

∂ r

(
cosφ

r

)

= −r̂
sin φ

r2
+ φ̂φφ

cosφ

r2
.

The integral of ∇×××B over the specified surface S is

∫

S

(∇×××B) ·ds =
∫ 3

z=0

∫ π/2

φ=π/3

(
−r̂

sinφ

r2
+ φ̂φφ

cosφ

r2

)
· r̂r dφ dz

=
∫ 3

0

∫ π/2

π/3
− sinφ

r
dφ dz = − 3

2r
= −3

4
.

Right-hand side: The surface S is bounded by contour

C = abcd shown in Fig. 3-25. The direction of C is chosen
so that it is compatible with the surface normal r̂ by the right-

hand rule. Hence,

∫

C

B ·dl =

∫
b

a

Bab ·dl+

∫
c

b

Bbc ·dl

+
∫

d

c

Bcd ·dl+
∫

a

d

Bda ·dl,

where Bab, Bbc, Bcd , and Bda are the field B along seg-
ments ab, bc, cd, and da, respectively. Over segment ab,

the dot product of Bab = ẑ(cosφ)/2 and dl = φ̂φφr dφ is

zero, and the same is true for segment cd. Over segment bc,
φ = π/2; hence, Bbc = ẑ(cosπ/2)/2 = 0. For the last segment,

Bda = ẑ(cosπ/3)/2 = ẑ/4 and dl = ẑ dz. Hence,

∫

C

B ·dl =

∫
a

d

(
ẑ

1

4

)
· ẑ dz =

∫ 0

3

1

4
dz = −3

4
,

which is the same as the result obtained by evaluating the

left-hand side of Stokes’s equation.

Exercise 3-18: Find ∇ ××× A at (2,0,3) in cylindrical

coordinates for the vector field

A = r̂10e
−2r cosφ + ẑ10sinφ .

Answer: (See EM .)

∇×××A =

(
r̂

10cosφ

r
+

ẑ10e
−2r

r
sinφ

)∣∣∣∣
(2,0,3)

= r̂5.

Exercise 3-19: Find ∇ ××× A at (3,π/6,0) in spherical

coordinates for the vector field A = θ̂θθ12sinθ .

Answer: (See EM .)

∇×××A = φ̂φφ
12sinθ

R

∣∣∣∣
(3,π/6,0)

= φ̂φφ2.
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Module 3.4 Curl Select a vector f(x,y), evaluate its curl, and display both in the x–y plane.

3-7 Laplacian Operator

In later chapters, we sometimes deal with problems involving

multiple combinations of operations on scalars and vectors. A

frequently encountered combination is the divergence of the
gradient of a scalar. For a scalar functionV defined in Cartesian

coordinates, its gradient is

∇V = x̂
∂V

∂x
+ ŷ

∂V

∂y
+ ẑ

∂V

∂ z
= x̂Ax + ŷAy + ẑAz = A,

(3.108)

where we defined a vector A with components Ax = ∂V/∂x,

Ay = ∂V/∂y, and Az = ∂V/∂ z. The divergence of ∇V is

∇ ·(∇V ) = ∇ ·A =
∂Ax

∂x
+

∂Ay

∂y
+

∂Az

∂ z

=
∂ 2

V

∂x2
+

∂ 2
V

∂y2
+

∂ 2
V

∂ z2
. (3.109)

For convenience, ∇ ·(∇V ) is called the Laplacian of V and is

denoted by ∇2
V (the symbol ∇2 is pronounced “del square”).

That is,

∇2
V = ∇ ·(∇V ) =

∂ 2
V

∂x2
+

∂ 2
V

∂y2
+

∂ 2
V

∂ z2
. (3.110)

As we can see from Eq. (3.110), the Laplacian of a scalar

function is a scalar. Expressions for ∇2
V in cylindrical and

spherical coordinates are given in Appendix C.
The Laplacian of a scalar can be used to define the Laplacian

of a vector. For a vector E specified in Cartesian coordinates
as

E = x̂Ex + ŷEy + ẑEz, (3.111)

the Laplacian of E is

∇2E =

(
∂ 2

∂x2
+

∂ 2

∂y2
+

∂ 2

∂ z2

)
E = x̂∇2

Ex + ŷ∇2
Ey + ẑ∇2

Ez.

(3.112)

Thus, in Cartesian coordinates the Laplacian of a vector is
a vector whose components are equal to the Laplacians of

the vector components. Through direct substitution, it can be
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shown that

∇2E = ∇(∇ ·E)−∇××× (∇×××E). (3.113)

Concept Question 3-11: What do the magnitude and

direction of the gradient of a scalar quantity represent?

Concept Question 3-12: Prove the validity of
Eq. (3.84c) in Cartesian coordinates.

Concept Question 3-13: What is the physical meaning

of the divergence of a vector field?

Concept Question 3-14: If a vector field is solenoidal
at a given point in space, does it necessarily follow that

the vector field is zero at that point? Explain.

Concept Question 3-15: What is the meaning of the

transformation provided by the divergence theorem?

Concept Question 3-16: How is the curl of a vector
field at a point related to the circulation of the vector field?

Concept Question 3-17: What is the meaning of the

transformation provided by Stokes’s theorem?

Concept Question 3-18: When is a vector field “con-
servative”?

Chapter 3 Summary

Concepts

• Vector algebra governs the laws of addition, subtrac-
tion, and multiplication of vectors, and vector calculus

encompasses the laws of differentiation and integration

of vectors.
• In a right-handed orthogonal coordinate system, the

three base vectors are mutually perpendicular to each
other at any point in space, and the cyclic relations

governing the cross products of the base vectors obey

the right-hand rule.
• The dot product of two vectors produces a scalar,

whereas the cross product of two vectors produces

another vector.
• A vector expressed in a given coordinate system can be

expressed in another coordinate system through the use

of transformation relations linking the two coordinate
systems.

• The fundamental differential functions in vector calcu-

lus are the gradient, the divergence, and the curl.
• The gradient of a scalar function is a vector whose

magnitude is equal to the maximum rate of increasing

change of the scalar function per unit distance, and its
direction is along the direction of maximum increase.

• The divergence of a vector field is a measure of the net

outward flux per unit volume through a closed surface
surrounding the unit volume.

• The divergence theorem transforms the volume integral
of the divergence of a vector field into a surface integral

of the field’s flux through a closed surface surrounding

the volume.
• The curl of a vector field is a measure of the circulation

of the vector field per unit area ∆s, with the orientation

of ∆s chosen such that the circulation is maximum.
• Stokes’s theorem transforms the surface integral of the

curl of a vector field into a line integral of the field over

a contour that bounds the surface.
• The Laplacian of a scalar function is defined as the

divergence of the gradient of that function.
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Mathematical and Physical Models

Distance Between Two Points

d = [(x2 − x1)
2 +(y2 − y1)

2 +(z2 − z1)
2]1/2

d =
[
r

2
2+r

2
1 −2r1r2 cos(φ2−φ1)+(z2−z1)

2
]1/2

d =
{

R
2
2 + R

2
1 −2R1R2[cosθ2 cosθ1

+ sinθ1 sinθ2 cos(φ2 −φ1)]
}1/2

Coordinate Systems Table 3-1

Coordinate Transformations Table 3-2

Vector Products

A ·B = ABcosθAB

A×××B = n̂ ABsinθAB

A ·(B×××C) = B ·(C×××A) = C ·(A×××B)

A××× (B×××C) = B(A ·C)−C(A ·B)

Divergence Theorem
∫

υ
∇ ·E dυ =

∫

S

E ·ds

Vector Operators

∇T = x̂
∂T

∂x
+ ŷ

∂T

∂y
+ ẑ

∂T

∂ z

∇ ·E =
∂Ex

∂x
+

∂Ey

∂y
+

∂Ez

∂ z

∇×××B = x̂

(
∂Bz

∂y
− ∂By

∂ z

)
+ ŷ

(
∂Bx

∂ z
− ∂Bz

∂x

)

+ ẑ

(
∂By

∂x
− ∂Bx

∂y

)

∇2
V =

∂ 2
V

∂x2
+

∂ 2
V

∂y2
+

∂ 2
V

∂ z2

(see Appendix C for cylindrical

and spherical coordinates)

Stokes’s Theorem
∫

S

(∇×××B) ·ds =
∫

C

B ·dl

Important Terms Provide definitions or explain the meaning of the following terms:

azimuth angle
base vectors

Cartesian coordinate system

circulation of a vector
conservative field

cross product

curl operator
cylindrical coordinate system

differential area vector

differential length vector
differential volume

directional derivative

distance vector

divergence operator
divergence theorem

divergenceless

dot product
field lines

flux density

flux lines
gradient operator

irrotational field

Laplacian operator
magnitude

orthogonal coordinate system

position vector

radial distance r

range R

right-hand rule

scalar product
scalar quantity

simple product

solenoidal field
spherical coordinate system

Stokes’s theorem

vector product
vector quantity

unit vector

zenith angle

PROBLEMS

Section 3-1: Vector Algebra

3.1 Given vectors A = x̂2− ŷ3+ ẑ, B = x̂2− ŷ+ ẑ3, and C =
x̂2 + ŷ1− ẑ1, show that C is perpendicular to both A and B.

∗
3.2 Vector A starts at point (1,−1,3) and ends at point

(2,−1,0). Find a unit vector in the direction of A.

∗
3.3 In Cartesian coordinates, the three corners of a triangle

are P1 = (0,4,4), P2 = (4,−4,4), and P3 = (2,2,−4). Find the

area of the triangle.

∗
Answer(s) available in Appendix E.
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3.4 Given A = x̂2− ŷ3 + ẑ1 and B = x̂Bx + ŷ2 + ẑBz:

(a) find Bx and Bz if A is parallel to B;

(b) find a relation between Bx and Bz if A is perpendicular
to B.

3.5 Given vectors A = x̂ + ŷ2− ẑ3, B = x̂2− ŷ4, and C =
ŷ2− ẑ4, find the following:
∗

(a) A and â

(b) The component of B along C

(c) θAC

(d) A×××C
∗

(e) A ·(B×××C)

(f) A××× (B×××C)

(g) x̂×××B
∗

(h) (A××× ŷ) · ẑ
3.6 Given A = x̂(x + 2y)− ŷ(y + 3z)+ ẑ(3x− y), determine

a unit vector parallel to A at point P = (1,−1,2).

3.7 Given vectors A = x̂2 − ŷ + ẑ3 and B = x̂3 − ẑ2, find

a vector C whose magnitude is 9 and whose direction is
perpendicular to both A and B.

3.8 By expansion in Cartesian coordinates, prove:

(a) the relation for the scalar triple product given by (3.29),

and

(b) the relation for the vector triple product given by (3.33).

∗
3.9 Find an expression for the unit vector directed toward the

origin from an arbitrary point on the line described by x = 1
and z = −2.

∗
3.10 Find a unit vector parallel to either direction of the line

described by

2x + z = 6.

3.11 Find an expression for the unit vector directed toward

the point P located on the z-axis at a height h above the x–y

plane from an arbitrary point Q = (x,y,−5) in the plane z =
−5.

∗
3.12 A given line is described by

x + 2y = 4.

Vector A starts at the origin and ends at point P on the line such

that A is orthogonal to the line. Find an expression for A.

3.13 Two lines in the x–y plane are described by the expres-

sions
Line 1 x + 2y = −6,

Line 2 3x + 4y = 8.

Use vector algebra to find the smaller angle between the lines
at their intersection point.

3.14 Show that, given two vectors A and B,

(a) the vector C defined as the vector component of B in the

direction of A is given by

C = â(B · â) =
A(B ·A)

|A|2 ,

where â is the unit vector of A, and

(b) the vector D defined as the vector component of B

perpendicular to A is given by

D = B− A(B ·A)

|A|2 .

∗
3.15 A certain plane is described by

2x + 3y + 4z = 16.

Find the unit vector normal to the surface in the direction away
from the origin.

3.16 Given B = x̂(z−3y)+ ŷ(2x−3z)− ẑ(x+ y), find a unit

vector parallel to B at point P = (1,0,−1).

∗
3.17 Find a vector G whose magnitude is 4 and whose

direction is perpendicular to both vectors E and F, where
E = x̂+ ŷ2− ẑ2 and F = ŷ3− ẑ6.

3.18 A given line is described by the equation:

y = x−1.

Vector A starts at point P1 = (0,2) and ends at point P2 on the

line such that A is orthogonal to the line. Find an expression

for A.

3.19 Vector field E is given by

E = R̂ 5Rcosθ − θ̂θθ
12

R
sinθ cosφ + φ̂φφ3sinφ .

Determine the component of E tangential to the spherical

surface R = 3 at point P = (3,30◦,60◦).

3.20 When sketching or demonstrating the spatial variation
of a vector field, we often use arrows, as in Fig. P3.20, wherein

the length of the arrow is made to be proportional to the

strength of the field and the direction of the arrow is the same
as that of the field’s. The sketch shown in Fig. P3.20, which

represents the vector field E = r̂r, consists of arrows point-

ing radially away from the origin and their lengths increase
linearly in proportion to their distance away from the origin.

Using this arrow representation, sketch each of the following

vector fields:
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(a) E1 = −x̂y,

(b) E2 = ŷx,

(c) E3 = x̂x + ŷy,

(d) E4 = x̂x + ŷ2y,

(e) E5 = φ̂φφr,

(f) E6 = r̂sinφ .

x

y

EE

EE

Figure P3.20 Arrow representation for vector field E = r̂r

(Problem 3.20).

3.21 Use arrows to sketch each of the following vector fields:

(a) E1 = x̂x− ŷy,

(b) E2 = −φ̂φφ,

(c) E3 = ŷ 1
x
,

(d) E4 = r̂cosφ .

Sections 3-2 and 3-3: Coordinate Systems

3.22 Convert the coordinates of the following points from
cylindrical to Cartesian coordinates:

(a) P1 = (2,π/4,−4),

(b) P2 = (3,0,−4),

(c) P3 = (4,π ,4).

3.23 Convert the coordinates of the following points from

Cartesian to cylindrical and spherical coordinates:

∗
(a) P1 = (1,2,0)

(b) P2 = (0,0,2)

(c) P3 = (1,1,3)
∗

(d) P4 = (−2,2,−2)

3.24 Convert the coordinates of the following points from
spherical to cylindrical coordinates:

∗
(a) P1 = (5,0,0)

(b) P2 = (5,0,π)

(c) P3 = (3,π/2,0)

3.25 Use the appropriate expression for the differential sur-

face area ds to determine the area of each of the following
surfaces:

(a) r = 3; 0 ≤ φ ≤ π/3; −2 ≤ z ≤ 2

(b) 2 ≤ r ≤ 5; π/2 ≤ φ ≤ π ; z = 0

∗
(c) 2 ≤ r ≤ 5; φ = π/4; −2 ≤ z ≤ 2

(d) R = 2; 0 ≤ θ ≤ π/3; 0 ≤ φ ≤ π

(e) 0 ≤ R ≤ 5; θ = π/3; 0 ≤ φ ≤ 2π

Also sketch the outlines of each of the surfaces.

3.26 A section of a sphere is described by 0 ≤ R ≤ 2, 0 ≤
θ ≤ 90◦, and 30◦ ≤ φ ≤ 90◦. Find:

(a) the surface area of the spherical section,

(b) the enclosed volume.
Also sketch the outline of the section.

3.27 Find the volumes described by

∗
(a) 2 ≤ r ≤ 5; π/2 ≤ φ ≤ π ; 0 ≤ z ≤ 2

(b) 0 ≤ R ≤ 5; 0 ≤ θ ≤ π/3; 0 ≤ φ ≤ 2π

Also sketch the outline of each volume.

3.28 A vector field is given in cylindrical coordinates by

E = r̂r cosφ + φ̂φφr sinφ + ẑz
3.

Point P = (2,π ,3) is located on the surface of the cylinder

described by r = 2. At point P, find:

(a) the vector component of E perpendicular to the cylinder,

(b) the vector component of E tangential to the cylinder.

3.29 At a given point in space, vectors A and B are given in

spherical coordinates by

A = R̂4 + θ̂θθ2− φ̂φφ,

B = −R̂2 + φ̂φφ3.

Find:
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(a) the scalar component, or projection, of B in the direction
of A,

(b) the vector component of B in the direction of A,

(c) the vector component of B perpendicular to A.

∗
3.30 Given vectors

A = r̂(cosφ + 3z)− φ̂φφ(2r + 4sinφ)+ ẑ(r−2z),

B = −r̂sin φ + ẑcosφ ,

find

(a) θAB at (2,π/2,0),

(b) a unit vector perpendicular to both A and B at (2,π/3,1).

3.31 Determine the distance between the following pairs of
points:
∗

(a) P1 = (1,1,2) and P2 = (0,2,3)

(b) P3 = (2,π/3,1) and P4 = (4,π/2,3)

(c) P5 = (3,π ,π/2) and P6 = (4,π/2,π)

3.32 Find the distance between the following pairs of points:

(a) P1 = (1,2,3) and P2 = (−2,−3,−2) in Cartesian coordi-

nates,

(b) P3 = (1,π/4,3) and P4 = (3,π/4,4) in cylindrical coor-

dinates,

(c) P5 = (4,π/2,0) and P6 = (3,π ,0) in spherical coordi-
nates.

3.33 Transform the vector

A = R̂sin2 θ cosφ + θ̂θθcos2 φ −3φ̂φφsinφ

into cylindrical coordinates and then evaluate it at P =
(2,π/2,π/2).

3.34 Transform the following vectors into cylindrical coor-
dinates and then evaluate them at the indicated points:

(a) A = x̂(x + y) at P1 = (1,2,3)

(b) B = x̂(y− x)+ ŷ(x− y) at P2 = (1,0,2)
∗

(c) C = x̂y
2/(x2 + y

2)− ŷx
2/(x2 + y

2)+ ẑ4 at

P3 = (1,−1,2)

(d) D = R̂ sinθ + θ̂θθcosθ + φ̂φφcos2 φ at

P4 = (2,π/2,π/4)
∗

(e) E = R̂cosφ + θ̂θθsin φ + φ̂φφsin2 θ at P5 = (3,π/2,π)

3.35 Transform the following vectors into spherical coordi-
nates and then evaluate them at the indicated points:

(a) A = x̂y
2 + ŷxz+ ẑ4 at P1 = (1,−1,2)

(b) B = ŷ(x2 + y
2 + z

2)− ẑ(x2 + y
2) at P2 = (−1,0,2)

∗
(c) C = r̂cosφ − φ̂φφsin φ + ẑcosφ sin φ at

P3 = (2,π/4,2)

(d) D = x̂y
2/(x2 + y

2)− ŷx
2/(x2 + y

2)+ ẑ4 at

P4 = (1,−1,2)

Sections 3-4 and 3-7: Gradient, Divergence, and Curl

Operators

3.36 Find the gradient of the following scalar functions:

(a) T = 3/(x2 + z
2)

(b) V = xy
2
z

4

(c) U = zcosφ/(1 + r
2)

(d) W = e
−R sinθ

∗
(e) S = 4x

2
e
−z + y

3

(f) N = r
2 cos2 φ

(g) M = Rcosθ sinφ

3.37 For each of the following scalar fields, obtain an an-
alytical solution for ∇T and generate a corresponding arrow

representation.

(a) T = 10 + x, for −10 ≤ x ≤ 10
∗

(b) T = x
2, for −10 ≤ x ≤ 10

(b) T = 100 + xy, for −10 ≤ x ≤ 10

(c) T = x
2
y

2, for −10 ≤ x,y ≤ 10

(e) T = 20 + x + y, for −10 ≤ x,y ≤ 10

(f) T = 1 + sin(πx/3), for −10 ≤ x ≤ 10

∗
(g) T = 1 + cos(πx/3), for −10 ≤ x ≤ 10

(h) T = 15 + r cosφ , for

{
0 ≤ r ≤ 10
0 ≤ φ ≤ 2π .

(i) T = 15 + r cos2 φ , for

{
0 ≤ r ≤ 10

0 ≤ φ ≤ 2π .

∗
3.38 The gradient of a scalar function T is given by

∇T = ẑe
−4z.

If T = 10 at z = 0, find T (z).

∗
3.39 For the scalar function V = xy

2 − z
2, determine its di-

rectional derivative along the direction of vector A = (x̂− ŷz)
and then evaluate it at P = (1,−1,2).

3.40 Follow a procedure similar to that leading to Eq. (3.82)
to derive the expression given by Eq. (3.83) for ∇ in spherical

coordinates.

3.41 Evaluate the line integral of E = x̂x − ŷy along the

segment P1 to P2 of the circular path shown in Fig. P3.41.



184 CHAPTER 3 VECTOR ANALYSIS

x

y

P1 = (0, 3)

P2 = (−3, 0)

Figure P3.41 Problem 3.41.

∗
3.42 For the scalar function U = 1

R
sin2 θ , determine its

directional derivative along the range direction R̂ and then
evaluate it at P = (5,π/4,π/2).

3.43 For the scalar function T = 1
2
e
−r/5 cosφ , determine its

directional derivative along the radial direction r̂ and then
evaluate it at P = (2,π/4,4).

3.44 Each of the following vector fields is displayed in
Fig. P3.44 in the form of a vector representation. Determine

∇ · A analytically and then compare the result with your

expectations on the basis of the displayed pattern.

(a) A = −x̂cosxsin y + ŷsinxcosy, for −π ≤ x,y ≤ π

Figure P3.44(a)

(b) A = −x̂sin2y + ŷcos2x, for −π ≤ x,y ≤ π

Figure P3.44(b)

(c) A = −x̂xy + ŷy
2, for −10 ≤ x,y ≤ 10

Figure P3.44(c)

(d) A = −x̂cosx + ŷsiny, for −π ≤ x,y ≤ π

Figure P3.44(d)
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(e) A = x̂x, for −10 ≤ x ≤ 10

Figure P3.44(e)

(f) A = x̂xy
2, for −10 ≤ x,y ≤ 10

Figure P3.44(f)

(g) A = x̂xy
2 + ŷx

2
y, for −10 ≤ x,y ≤ 10

Figure P3.44(g)

(h) A = x̂sin
(

πx

10

)
+ ŷsin

(πy

10

)
, for −10 ≤ x,y ≤ 10

Figure P3.44(h)

(i) A = r̂r + φ̂φφ r cosφ , for

{
0 ≤ r ≤ 10

0 ≤ φ ≤ 2π .

Figure P3.44(i)
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(j) A = r̂r
2 + φ̂φφr

2 sinφ , for

{
0 ≤ r ≤ 10

0 ≤ φ ≤ 2π .

Figure P3.44(j)

3.45 For the vector field E = x̂xz − ŷyz
2 − ẑxy, verify the

divergence theorem by computing:

(a) the total outward flux flowing through the surface of a

cube centered at the origin and with sides equal to 2 units
each and parallel to the Cartesian axes, and

(b) the integral of ∇ ·E over the cube’s volume.

∗
3.46 Vector field E is characterized by the following proper-
ties: (a) E points along R̂, (b) the magnitude of E is a function

of only the distance from the origin, (c) E vanishes at the

origin, and (d) ∇ ·E = 6, everywhere. Find an expression for E

that satisfies these properties.

3.47 For the vector field E = r̂10e
−r − ẑ3z, verify the diver-

gence theorem for the cylindrical region enclosed by r = 2,

z = 0, and z = 4.

∗
3.48 A vector field D = r̂r

3 exists in the region between two

concentric cylindrical surfaces defined by r = 1 and r = 2, with

both cylinders extending between z = 0 and z = 5. Verify the
divergence theorem by evaluating the following:

(a)

∫

S

D ·ds,

(b)

∫

V

∇ ·D dV .

3.49 For the vector field D = R̂3R
2, evaluate both sides of

the divergence theorem for the region enclosed between the
spherical shells defined by R = 1 and R = 2.

3.50 For the vector field E = x̂xy− ŷ(x2 + 2y
2), calculate

(a)

∫

C

E ·dl around the triangular contour shown in Fig.

P3.50(a), and

(b)

∫

S

(∇×××E) ·ds over the area of the triangle.

3.51 Repeat Problem 3.50 for the contour shown in Fig.

P3.50(b).

3.52 Verify Stokes’s theorem for the vector field B =

(r̂r cosφ + φ̂φφsin φ) by evaluating:

(a)

∫

C

B ·dl over the semicircular contour shown in

Fig. P3.52(a), and

(b)

∫

S

(∇×××B) ·ds over the surface of the semicircle.

(a)

2

–2 20
x

y

(b)

x

1

0

2

1 2

y

Figure P3.52 Contour paths for (a) Problem 3.52 and (b)

Problem 3.53.

3.53 Repeat Problem 3.52 for the contour shown in
Fig. P3.52(b).

3.54 Verify Stokes’s Theorem for the vector field A =

R̂ cosθ + φ̂φφsinθ by evaluating it on the hemisphere of unit

radius.

3.55 Verify Stokes’s theorem for the vector field B =
(r̂ cosφ + φ̂φφsinφ) by evaluating:

(a)

∫

C

B · dℓℓℓ over the path comprising a quarter section of a

circle, as shown in Fig. P3.55, and

(b)

∫

S

(∇×××B) ·ds over the surface of the quarter section.

x

y

(0, 3)

L1

L3(−3, 0)

Figure P3.55 Problem 3.55.
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3.56 Determine if each of the following vector fields is
solenoidal, conservative, or both:
∗

(a) A = x̂x
2 − ŷ2xy

(b) B = x̂x
2 − ŷy

2 + ẑ2z

(c) C = r̂(sin φ)/r
2 + φ̂φφ(cosφ)/r

2

∗
(d) D = R̂/R

(e) E = r̂
(
3− r

1+r

)
+ ẑz

(f) F = (x̂y + ŷx)/(x2 + y
2)

(g) G = x̂(x2 + z
2)− ŷ(y2 + x

2)− ẑ(y2 + z
2)

∗
(h) H = R̂(Re

−R)

3.57 Find the Laplacian of the following scalar functions:

(a) V1 = 10r
3 sin2φ

(b) V2 = (2/R
2)cosθ sin φ

3.58 Find the Laplacian of the following scalar functions:

(a) V = 4xy
2
z

3

(b) V = xy + yz+ zx

∗
(c) V = 3/(x2 + y

2)

(d) V = 5e
−r cosφ

(e) V = 10e
−R sinθ
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Objectives

Upon learning the material presented in this chapter, you

should be able to:

1. Evaluate the electric field and electric potential due to any

distribution of electric charges.

2. Apply Gauss’s law.

3. Calculate the resistance R of any shaped object given the

electric field at every point in its volume.

4. Describe the operational principles of resistive and capac-

itive sensors.

5. Calculate the capacitance of two-conductor configura-

tions.

188

Electrostatics
Chapter 4



4-1 Maxwell’s Equations

The modern theory of electromagnetism is based on a set of
four fundamental relations known as Maxwell’s equations:

∇ ·D = ρv,

∇×××E = −∂B

∂ t
,

∇ ·B = 0,

∇×××H = J +
∂D

∂ t
.

(4.1a)

(4.1b)

(4.1c)

(4.1d)

Here E and D are the electric field intensity and flux density
interrelated by D = εE where ε is the electrical permittivity;

H and B are magnetic field intensity and flux density inter-
related by B = µH where µ is the magnetic permeability;

ρv is the electric charge density per unit volume; and J is

the current density per unit area. The fields and fluxes E,
D, B, H were introduced in Section 1-3, and ρv and J will

be discussed in Section 4-2. Maxwell’s equations hold in

any material, including free space (vacuum). In general, all
of the above quantities may depend on spatial location and

time t. In the interest of readability, we will not, however,

explicitly reference these dependencies (as in E(x,y,z, t))
except when the context calls for it. By formulating these

equations, published in a classic treatise in 1873, James Clerk
Maxwell established the first unified theory of electricity and

magnetism. His equations are deduced from experimental

observations reported by Coulomb, Gauss, Ampère, Faraday,
and others; they not only encapsulate the connection between

the electric field and electric charge and between the magnetic

field and electric current but also capture the bilateral coupling
between electric and magnetic fields and fluxes. Together with

some auxiliary relations, Maxwell’s equations comprise the

fundamental tenets of electromagnetic theory.

◮ Under static conditions, none of the quantities appear-
ing in Maxwell’s equations are functions of time (i.e.,

∂/∂ t = 0). This happens when all charges are perma-

nently fixed in space. If they move, they do so at a steady

rate so that ρv and J are constant in time. ◭

Under these circumstances, the time derivatives of B and D in
Eqs. (4.1b) and (4.1d) vanish, and Maxwell’s equations reduce

to the following pairs.

Electrostatics

∇ ·D = ρv,

∇×××E = 0.

(4.2a)

(4.2b)

Magnetostatics

∇ ·B = 0,

∇×××H = J.

(4.3a)

(4.3b)

Maxwell’s four equations separate into two uncoupled pairs

with the first pair involving only the electric field and flux E

and D and the second pair involving only the magnetic field
and flux H and B.

◮ Electric and magnetic fields become decoupled under

static conditions. ◭

This allows us to study electricity and magnetism as two
distinct and separate phenomena as long as the spatial distri-

butions of charge and current flow remain constant in time.
We refer to the study of electric and magnetic phenomena

under static conditions as electrostatics and magnetostatics,

respectively. Electrostatics is the subject of the present chapter,
and we learn about magnetostatics in Chapter 5. The experi-

ence gained through studying electrostatic and magnetostatic

phenomena will prove invaluable in tackling the more involved
material in subsequent chapters that deal with time-varying

fields, charge densities, and currents.

We study electrostatics not only as a prelude to the study
of time-varying fields but also because it is an important field

in its own right. Many electronic devices and systems are

based on the principles of electrostatics. They include x-ray
machines, oscilloscopes, ink-jet electrostatic printers, liq-

uid crystal displays, copy machines, micro-electromechanical

switches and accelerometers, and many solid-state–based con-
trol devices. Electrostatic principles also guide the design of

medical diagnostic sensors, such as the electrocardiogram,
which records the heart’s pumping pattern, and the electroen-

cephalogram, which records brain activity, as well as the

development of numerous industrial applications.

4-2 Charge and Current Distributions

In electromagnetics, we encounter various forms of electric

charge distributions. When put in motion, these charge distri-

butions constitute current distributions. Charges and currents
may be distributed over a volume of space, across a surface, or

along a line.

4-2 CHARGE AND CURRENT DISTRIBUTIONS 189
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4-2.1 Charge Densities

At the atomic scale, the charge distribution in a material

is discrete, meaning that charge exists only where electrons
and nuclei are and nowhere else. In electromagnetics, we

usually are interested in studying phenomena at a much larger

scale, typically three or more orders of magnitude greater than
the spacing between adjacent atoms. At such a macroscopic

scale, we can disregard the discontinuous nature of the charge
distribution and treat the net charge contained in an elemental

volume ∆υ as if it were uniformly distributed within. Accord-

ingly, we define the volume charge density ρv as

ρv = lim
∆υ→0

∆q

∆υ
=

dq

dυ
(C/m3), (4.4)

where ∆q is the charge contained in ∆υ . In general, ρv de-

pends on spatial location (x,y,z) and t; thus, ρv = ρv(x,y,z, t).
Physically, ρv represents the average charge per unit volume
for a volume ∆υ centered at (x,y,z) with ∆υ being large

enough to contain a large number of atoms, yet it is small

enough to be regarded as a point at the macroscopic scale
under consideration. The variation of ρv with spatial location is

called its spatial distribution (or simply its distribution). The
total charge contained in volume υ is

Q =

∫

υ
ρv dυ (C). (4.5)

In some cases, particularly when dealing with conductors,

electric charge may be distributed across the surface of a

material, where the quantity of interest is the surface charge
density ρs, which is defined as

ρs = lim
∆s→0

∆q

∆s
=

dq

ds
(C/m2), (4.6)

where ∆q is the charge present across an elemental surface
area ∆s. Similarly, if the charge is, for all practical purposes,

confined to a line, which need not be straight, we characterize

its distribution in terms of the line charge density ρℓ, defined
as

ρℓ = lim
∆l→0

∆q

∆l
=

dq

dl
(C/m). (4.7)

Example 4-1: Line Charge Distribution

Calculate the total charge Q contained in a cylindrical tube

oriented along the z axis, as shown in Fig. 4-1(a). The line
charge density is ρℓ = 2z, where z is the distance in meters

from the bottom end of the tube. The tube length is 10 cm.

(a)  Line charge distribution

(b)  Surface charge distribution

Surface charge ρs

z

x

y

3 cm

r
ϕ

z

x

y

Line charge ρl
10 cm

Figure 4-1 Charge distributions for Examples 4-1 and 4-2.

Solution: The total charge Q is

Q =
∫ 0.1

0
ρℓ dz =

∫ 0.1

0
2z dz = z

2
∣∣0.1

0
= 10−2 C.

Example 4-2: Surface Charge Distribution

The circular disk of electric charge shown in Fig. 4-1(b)

is characterized by an azimuthally symmetric surface charge

density that increases linearly with r from zero at the center to
6 C/m2 at r = 3 cm. Find the total charge present on the disk

surface.

Solution: Since ρs is symmetrical with respect to the azimuth
angle φ , it depends only on r and is given by

ρs =
6r

3×10−2
= 2×102

r (C/m2),

where r is in meters. In polar coordinates, an elemental area

is ds = r dr dφ , and for the disk shown in Fig. 4-1(b), the
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limits of integration are from 0 to 2π (rad) for φ and from 0 to
3×10−2 m for r. Hence,

Q =

∫

S

ρs ds =

∫ 2π

φ=0

∫ 3×10−2

r=0
(2×102

r)r dr dφ

= 2π ×2×102 r
3

3

∣∣∣∣
3×10−2

0

= 11.31 (mC).

Exercise 4-1: A square plate residing in the x–y plane

is situated in the space defined by −3 m ≤ x ≤ 3 m and
−3 m ≤ y ≤ 3 m. Find the total charge on the plate if the

surface charge density is ρs = 4y
2 (µC/m2).

Answer: Q = 0.432 (mC). (See EM .)

Exercise 4-2: A thick spherical shell centered at the origin
extends between R = 2 cm and R = 3 cm. If the volume

charge density is ρv = 3R× 10−4 (C/m3), find the total
charge contained in the shell.

Answer: Q = 0.61 (nC). (See EM .)

4-2.2 Current Density

Consider a tube with volume charge density ρv (Fig. 4-2(a)).
The charges in the tube move with velocity u along the tube

axis. Over a period ∆t, the charges move a distance ∆l = u ∆t.
The amount of charge that crosses the tube’s cross-sectional

surface ∆s
′ in time ∆t is therefore

∆q
′ = ρv ∆υ = ρv ∆l ∆s

′ = ρvu ∆s
′ ∆t. (4.8)

Now consider the more general case where the charges are
flowing through a surface ∆s with normal n̂ not necessarily

parallel to u (Fig. 4-2(b)). In this case, the amount of charge ∆q

flowing through ∆s is

∆q = ρvu ·∆s ∆t, (4.9)

where ∆s = n̂ ∆s and the corresponding total current flowing

in the tube is

∆I =
∆q

∆t
= ρvu ·∆s = J ·∆s. (4.10)

Here

J = ρvu (A/m2) (4.11)

is defined as the current density in ampere per square meter.

Generalizing to an arbitrary surface S, the total current flowing

Volume charge ρv

u

∆l

∆q' = ρvu ∆s' ∆t

∆s'

∆sρv

u ∆q = ρvu • ∆s ∆t 
      = ρvu ∆s ∆t cos θ

∆s = n ∆s

(a)

(b)

θ 

ˆ

Figure 4-2 Charges with velocity u moving through a cross

section ∆s
′ in (a) and ∆s in (b).

through it is

I =
∫

S

J ·ds (A). (4.12)

◮ When a current is due to the actual movement of elec-

trically charged matter, it is called a convection current,
and J is called a convection current density. ◭

A wind-driven charged cloud, for example, gives rise to a con-

vection current. In some cases, the charged matter constituting

the convection current consists solely of charged particles,
such as the electron beam of a scanning electron microscope

or the ion beam of a plasma propulsion system.

When a current is due to the movement of charged particles
relative to their host material, J is called a conduction current
density. In a metal wire, for example, there are equal amounts
of positive charges (in atomic nuclei) and negative charges (in

the electron shells of the atoms). None of the positive charges

and few of the negative charges can move; only those electrons
in the outermost electron shells of the atoms can be pushed

from one atom to the next if a voltage is applied across the

ends of the wire.

◮ This movement of electrons from atom to atom con-

stitutes a conduction current. The electrons that emerge
from the wire are not necessarily the same electrons that

entered the wire at the other end. ◭
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Conduction current, which is discussed in more detail in
Section 4-6, obeys Ohm’s law, whereas convection current

does not.

Concept Question 4-1: What happens to Maxwell’s
equations under static conditions?

Concept Question 4-2: How is the current density J

related to the volume charge density ρv?

Concept Question 4-3: What is the difference between

convection and conduction currents?

4-3 Coulomb’s Law

One of the primary goals of this chapter is to develop dexterity

in applying the expressions for the electric field intensity E

and associated electric flux density D induced by a specified
distribution of charge. Our discussion will be limited to elec-

trostatic fields induced by stationary charge densities.
We begin by reviewing the expression for the electric

field introduced in Section 1-3.2 on the basis of the results

of Coulomb’s experiments on the electrical force between
charged bodies. Coulomb’s law, which was first introduced for

electrical charges in air and later generalized to material media,

implies that:

(1) An isolated charge q induces an electric field E at every

point in space, and at any specific point P, E is given by

E = R̂
q

4πεR2
(V/m), (4.13)

where R̂ is a unit vector pointing from q to P (Fig. 4-3),

R is the distance between them, and ε is the electrical

permittivity of the medium containing the observation
point P.

(2) In the presence of an electric field E at a given point in

space that may be due to a single charge or a distribution

of charges, the force acting on a test charge q
′ when

placed at P is

F = q
′E (N). (4.14)

With F measured in newtons (N) and q
′ in coulombs (C), the

unit of E is (N/C), which will be shown later in Section 4-5 to

be the same as volt per meter (V/m).
For a material with electrical permittivity ε , the electric field

quantities D and E are related by

D = εE (4.15)

R

P E

R

+q

ˆ

Figure 4-3 Electric field lines due to a charge q.

with

ε = εrε0, (4.16)

where

ε0 = 8.85×10−12 ≈ (1/36π)×10−9 (F/m)

is the electrical permittivity of free space and εr = ε/ε0 is

called the relative permittivity (or dielectric constant) of the
material. For most materials and under a wide range of con-

ditions, ε is independent of both the magnitude and direction
of E [as implied by Eq. (4.15)].

◮ If ε is independent of the magnitude of E, then the

material is said to be linear because D and E are related

linearly, and if it is independent of the direction of E, the
material is said to be isotropic. ◭

Materials usually do not exhibit nonlinear permittivity behav-

ior except when the amplitude of E is very high (at levels
approaching dielectric breakdown conditions discussed later in

Section 4-7), and anisotropy is present only in certain materials
with peculiar crystalline structures. Hence, except for unique

materials under very special circumstances, the quantities D

and E are effectively redundant; for a material with known ε ,
knowledge of either D or E is sufficient to specify the other in

that material.

4-3.1 Electric Field Due to Multiple Point
Charges

The expression given by Eq. (4.13) for the field E due to

a single point charge can be extended to multiple charges.
We begin by considering two point charges, q1 and q2, with

position vectors R1 and R2 (measured from the origin in
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z

y

x

q1

q2

PR – R1

R – R2

R1

E2

E1

E

R2

R

Figure 4-4 The electric field E at P due to two charges is equal

to the vector sum of E1 and E2.

Fig. 4-4). The electric field E is to be evaluated at a point P

with position vector R. At P, the electric field E1 due to q1

alone is given by Eq. (4.13) with R, which is the distance

between q1 and P, replaced with |R−R1| and the unit vector R̂

replaced with (R−R1)/|R−R1|. Thus,

E1 =
q1(R−R1)

4πε|R−R1|3
(V/m). (4.17a)

Similarly, the electric field at P due to q2 alone is

E2 =
q2(R−R2)

4πε|R−R2|3
(V/m). (4.17b)

◮ The electric field obeys the principle of linear superpo-

sition. ◭

Hence, the total electric field E at P due to q1 and q2 together
is determined as

E = E1 + E2

=
1

4πε

[
q1(R−R1)

|R−R1|3
+

q2(R−R2)

|R−R2|3
]

. (4.18)

Generalizing the preceding result to the case of N point

charges, the electric field E at point P with position vector R

due to charges q1,q2, . . . ,qN located at points with position

vectors R1,R2, . . . ,RN equals the vector sum of the electric

fields induced by all the individual charges. Thus,

E =
1

4πε

N

∑
i=1

qi(R−Ri)

|R−Ri|3
(V/m). (4.19)

Example 4-3: Electric Field Due to Two
Point Charges

Two point charges with

q1 = 2×10−5 C

and
q2 = −4×10−5 C

are located in free space at points with Cartesian coordinates
(1,3,−1) and (−3,1,−2), respectively. Find (a) the electric

field E at (3,1,−2) and (b) the force on a 8× 10−5 C charge

located at that point. All distances are in meters.

Solution: (a) From Eq. (4.18), the electric field E with ε = ε0

(free space) is

E =
1

4πε0

[
q1

(R−R1)

|R−R1|3
+ q2

(R−R2)

|R−R2|3
]

(V/m).

The vectors R1, R2, and R are

R1 = x̂+ ŷ3− ẑ,

R2 = −x̂3 + ŷ− ẑ2,

R = x̂3 + ŷ− ẑ2.

Hence,

E =
1

4πε0

[
2(x̂2− ŷ2− ẑ)

27
− 4(x̂6)

216

]
×10−5

=
x̂− ŷ4− ẑ2

108πε0

×10−5 (V/m).

(b) The force on q3 is

F = q3E = 8×10−5× x̂− ŷ4− ẑ2

108πε0

×10−5

=
x̂2− ŷ8− ẑ4

27πε0

×10−10 (N).

Exercise 4-3: Four charges of 10 µC each are located in

free space at points with Cartesian coordinates (−3,0,0),
(3,0,0), (0,−3,0), and (0,3,0). Find the force on a 20 µC
charge located at (0,0,4). All distances are in meters.

Answer: F = ẑ0.23 N. (See EM .)

Exercise 4-4: Two identical charges are located on the

x axis at x = 3 and x = 7. At what point in space is the net

electric field zero?

Answer: At point (5,0,0). (See EM .)
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Exercise 4-5: In a hydrogen atom, the electron and proton
are separated by an average distance of 5.3× 10−11 m.

Find the magnitude of the electrical force Fe between

the two particles, and compare it with the gravitational
force Fg between them.

Answer: Fe = 8.2× 10−8 N, and Fg = 3.6× 10−47 N.

(See EM .)

4-3.2 Electric Field Due to a Charge Distribution

We now extend the results obtained for the field due to discrete

point charges to continuous charge distributions. Consider a

volume υ ′ that contains a distribution of electric charge with
volume charge density ρv, which may vary spatially within υ ′

(Fig. 4-5). The differential electric field at a point P due to

a differential amount of charge dq = ρv dυ ′ contained in a
differential volume dυ ′ is

dE = R̂
′ dq

4πεR′2 = R̂
′ ρv dυ ′

4πεR′2 , (4.20)

where R′ is the vector from the differential volume dυ ′ to
point P. Applying the principle of linear superposition, the

total electric field E is obtained by integrating the fields due

to all differential charges in υ ′. Thus,

E =

∫

υ ′
dE =

1

4πε

∫

υ ′
R̂
′ ρv dυ ′

R′2 .

(volume distribution)

(4.21a)

It is important to note that, in general, both R
′ and R̂

′
vary as a

function of position over the integration volume υ ′.

P

R'

dE

ρv dυ' υ'

Figure 4-5 Electric field due to a volume charge distribution.

If the charge is distributed across a surface S
′ with surface

charge density ρs, then dq = ρs ds
′, and if it is distributed

along a line l
′ with a line charge density ρℓ, then dq = ρℓ dl

′.
Accordingly, the electric fields due to surface and line charge
distributions are

E =
1

4πε

∫

S′
R̂
′ ρs ds

′

R′2 ,

(surface distribution)

(4.21b)

E =
1

4πε

∫

l′
R̂
′ ρℓ dl

′

R′2 .

(line distribution)

(4.21c)

Example 4-4: Electric Field of a Ring of Charge

A ring of charge of radius b is characterized by a uniform line

charge density of positive polarity ρℓ. The ring resides in free
space and is positioned in the x–y plane, as shown in Fig. 4-6.

Determine the electric field intensity E at a point P = (0,0,h)
along the axis of the ring at a distance h from its center.

Solution: We start by considering the electric field generated

by a differential ring segment with cylindrical coordinates
(b,φ ,0) in Fig. 4-6(a). The segment has length dl = b dφ and

contains charge dq = ρℓ dl = ρℓb dφ . The distance vector R′
1

from segment 1 to point P = (0,0,h) is

R′
1 = −r̂b + ẑh,

from which it follows that

R
′
1 = |R′

1| =
√

b2 + h2 , R̂
′
1 =

R′
1

|R′
1|

=
−r̂b + ẑh√

b2 + h2
.

The electric field at P = (0,0,h) due to the charge in segment 1

therefore is

dE1 =
1

4πε0

R̂
′
1

ρℓ dl

R′
1

2
=

ρℓb

4πε0

(−r̂b + ẑh)

(b2 + h2)3/2
dφ .

The field dE1 has component dE1r along −r̂ and com-

ponent dE1z along ẑ. From symmetry considerations, the

field dE2 generated by differential segment 2 in Fig. 4-6(b),
which is located diametrically opposite to segment 1, is identi-

cal to dE1 except that the r̂ component of dE2 is opposite that
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+
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+

+
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2
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φ + π 

φ

z

Figure 4-6 Ring of charge with line density ρℓ. (a) The

field dE1 due to infinitesimal segment 1 and (b) the fields dE1

and dE2 due to segments at diametrically opposite locations

(Example 4-4).

of dE1. Hence, the r̂ components in the sum cancel and the ẑ

contributions add. The sum of the two contributions is

dE = dE1 + dE2 = ẑ
ρℓbh

2πε0

dφ

(b2 + h2)3/2
. (4.22)

Since for every ring segment in the semicircle defined over the

azimuthal range 0 ≤ φ ≤ π (the right-hand half of the circular
ring) there is a corresponding segment located diametrically

opposite at (φ + π), we can obtain the total field generated by
the ring by integrating Eq. (4.22) over a semicircle as

E = ẑ
ρℓbh

2πε0(b2 + h2)3/2

∫ π

0
dφ

= ẑ
ρℓbh

2ε0(b2 + h2)3/2
= ẑ

h

4πε0(b2 + h2)3/2
Q, (4.23)

where Q = 2πbρℓ is the total charge on the ring.

Example 4-5: Electric Field of a Circular
Disk of Charge

Find the electric field at point P with Cartesian coordinates

(0,0,h) due to a circular disk of radius a and uniform charge

density ρs residing in the x–y plane (Fig. 4-7). Also, evaluate E

due to an infinite sheet of charge density ρs by letting a → ∞.

z

P = (0, 0, h)

h

y

x

a

a

r

dr

dq = 2πρsr drρs

E

Figure 4-7 Circular disk of charge with surface charge

density ρs. The electric field at P = (0,0,h) points along the

z direction (Example 4-5).

Solution: Building on the expression obtained in Exam-
ple 4-4 for the on-axis electric field due to a circular ring of

charge, we can determine the field due to the circular disk

by treating the disk as a set of concentric rings. A ring of
radius r and width dr has an area ds = 2πr dr and contains

charge dq = ρs ds = 2πρsr dr. Upon using this expression in
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Eq. (4.23) and also replacing b with r, we obtain the following
expression for the field due to the ring:

dE = ẑ
h

4πε0(r2 + h2)3/2
(2πρsr dr).

The total field at P is obtained by integrating the expression

over the limits r = 0 to r = a:

E = ẑ
ρsh

2ε0

∫
a

0

r dr

(r2 + h2)3/2
= ±ẑ

ρs

2ε0

[
1− |h|√

a2 + h2

]
,

(4.24)

with the plus sign for h > 0 (P above the disk) and the minus

sign when h < 0 (P below the disk).
For an infinite sheet of charge with a = ∞,

E = ±ẑ
ρs

2ε0

.

(infinite sheet of charge)

(4.25)

We note that for an infinite sheet of charge E is the same at all

points above the x–y plane, and a similar statement applies for

points below the x–y plane.

Concept Question 4-4: When characterizing the elec-
trical permittivity of a material, what do the terms linear

and isotropic mean?

Concept Question 4-5: If the electric field is zero at

a given point in space, does this imply the absence of
electric charges?

Concept Question 4-6: State the principle of linear

superposition as it applies to the electric field due to a

distribution of electric charge.

Exercise 4-6: An infinite sheet with uniform surface
charge density ρs is located at z = 0 (x–y plane), and

another infinite sheet with density −ρs is located at

z = 2 m with both in free space. Determine E everywhere.

Answer: E = 0 for z < 0; E = ẑρs/ε0 for 0 < z < 2 m;

and E = 0 for z > 2 m. (See EM .)

4-4 Gauss’s Law

In this section, we use Maxwell’s equations to confirm the

expressions for the electric field implied by Coulomb’s law,

and propose alternative techniques for evaluating electric fields
induced by electric charge. To that end, we restate Eq. (4.1a):

∇ ·D = ρv,

(differential form of Gauss’s law)

(4.26)

which is referred to as the differential form of Gauss’s law.

The adjective “differential” refers to the fact that the diver-

gence operation involves spatial derivatives. As we see shortly,
Eq. (4.26) can be converted to an integral form. When solving

electromagnetic problems, we often go back and forth between

equations in differential and integral form, depending on which
of the two happens to be the more applicable or convenient

to use. To convert Eq. (4.26) into integral form, we multiply

both sides by dυ and evaluate their integrals over an arbitrary
volume υ : ∫

υ
∇ ·D dυ =

∫

υ
ρv dυ = Q. (4.27)

Here, Q is the total charge enclosed in υ . The divergence

theorem, given by Eq. (3.98), states that the volume integral of
the divergence of any vector over a volume υ equals the total

outward flux of that vector through the surface S enclosing υ .

Thus, for the vector D,
∫

υ
∇ ·D dυ =

∫

S

D ·ds. (4.28)

Comparison of Eq. (4.27) with Eq. (4.28) leads to

∫

S

D ·ds = Q.

(integral form of Gauss’s law)

(4.29)

◮ The integral form of Gauss’s law is illustrated dia-
grammatically in Fig. 4-8; for each differential surface

element ds, D ·ds is the electric field flux flowing outward

of υ through ds, and the total flux through surface S

equals the enclosed charge Q. The surface S is called a

Gaussian surface. ◭

The integral form of Gauss’s law can be applied to deter-

mine D due to a single isolated point charge q by enclosing
the latter with a closed, spherical, Gaussian surface S of

arbitrary radius R centered at q (Fig. 4-9). From symmetry

considerations and assuming that q is positive, the direction
of D must be radially outward along the unit vector R̂, and DR,

which is the magnitude of D, must be the same at all points

on S. Thus, at any point on S,

D = R̂DR, (4.30)
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Q D • ds

Gaussian surface S
enclosing volume υ

Total charge
in υ

υ

Figure 4-8 The integral form of Gauss’s law states that the

outward flux of D through a surface is proportional to the

enclosed charge Q.

Gaussian surface

q

R

D

ds

R̂

Figure 4-9 Electric field D due to point charge q.

and ds = R̂ ds. Applying Gauss’s law gives

∫

S

D ·ds =

∫

S

R̂DR · R̂ ds =

∫

S

DR ds = DR(4πR
2) = q.

(4.31)

Solving for DR and then inserting the result in Eq. (4.30) gives
the expression for the electric field E induced by an isolated

point charge in a medium with permittivity ε:

E =
D

ε
= R̂

q

4πεR2
(V/m). (4.32)

This is identical with Eq. (4.13) obtained from Coulomb’s law;

after all, Maxwell’s equations incorporate Coulomb’s law. For
this simple case of an isolated point charge, it does not matter

whether Coulomb’s law or Gauss’s law is used to obtain the

expression for E. However, it does matter which approach we
follow when we deal with multiple point charges or continuous

charge distributions. Even though Coulomb’s law can be used

to find E for any specified distribution of charge, Gauss’s law
is easier to apply than Coulomb’s law, but its utility is limited

to symmetrical charge distributions.

◮ Gauss’s law, as given by Eq. (4.29), provides a con-

venient method for determining the flux density D when

the charge distribution possesses symmetry properties that
allow us to infer the variations of the magnitude and

direction of D as a function of spatial location. This

facilitates the integration of D over a cleverly chosen
Gaussian surface. ◭

Because at every point on the surface the direction of ds is

along its outward normal, only the normal component of D

at the surface contributes to the integral in Eq. (4.29). To
successfully apply Gauss’s law, the surface S should be chosen

from symmetry considerations so that, across each subsurface

of S, D is constant in magnitude and its direction is either
normal or purely tangential to the subsurface. These aspects

are illustrated in Example 4-6.

Example 4-6: Electric Field of an Infinite
Line Charge

Use Gauss’s law to obtain an expression for E due to an
infinitely long line with uniform charge density ρℓ that resides

along the z axis in free space.

Solution: Since the charge density along the line is uniform,
infinite in extent, and residing along the z axis, symmetry

considerations dictate that D is in the radial r̂ direction and

cannot depend on φ or z. Thus, D = r̂Dr. Therefore, we
construct a finite cylindrical Gaussian surface of radius r

and height h, which is concentric around the line of charge
(Fig. 4-10). The total charge contained within the cylinder is

Q = ρℓh. Since D is along r̂, the top and bottom surfaces of

the cylinder do not contribute to the surface integral on the
left-hand side of Eq. (4.29); that is, only the curved surface

contributes to the integral. Hence,
∫

h

z=0

∫ 2π

φ=0
r̂Dr · r̂r dφ dz = ρℓh

or

2πhDrr = ρℓh,

which yields

E =
D

ε0

= r̂
Dr

ε0

= r̂
ρℓ

2πε0r
.

(infinite line charge)

(4.33)
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z

r

D

Gaussian surface

uniform line
charge ρl

h ds

Figure 4-10 Gaussian surface around an infinitely long line of

charge (Example 4-6).

Note that Eq. (4.33) is applicable for any infinite line of charge,
regardless of its location and direction, as long as r̂ is properly

defined as the radial distance vector from the line charge to the

observation point (i.e., r̂ is perpendicular to the line of charge).

Example 4-7: Two Infinite Lines of Charge

Figure 4-11 depicts the presence of two infinite lines of charge

in free space: one residing in the x–y plane parallel to the x̂ axis
and carrying charge density ρℓ1

= 1 (nC/m), and a second one

residing in the y–z plane parallel to the y axis and carrying a

charge density ρℓ2
= −2 (nC/m). Determine the electric field

at the origin.

Solution: The electric field E is the sum of two electric field

components:

E = E1 + E2,

where E1 and E2 are the electric fields due to line charges
1 and 2, respectively. According to Eq. (4.33), the direction

of the electric field r̂ is perpendicular to the direction of the
line charge and points away from the line of charge (if ρℓ is

positive). Hence, for the first line of charge, ρℓ1
= 1 (nC/m),

r̂1 = −ŷ, r1 = 2, and

E1 =
r̂1ρℓ1

2πε0r1

=
−ŷ 10−9

2π × 1
36π ×10−9×2

= −ŷ 9 V/m.

Similarly, for the second line of charge, ρℓ2
= −2 (nC/m),

r̂2 = −ẑ, r2 = 6, and

E2 =
r̂2ρℓ2

2πε0r2

=
−ẑ(−2)×10−9

2π × 1
36π ×10−9×6

= ẑ 6 V/m.

E1 = −y9

E

z

x

y
2 m

ρℓ1
 = 1 (nC/m)

ρℓ2
 = −2 (nC/m)6 m

ˆ

E2 = z6ˆ

r1ˆ

r2ˆ

Figure 4-11 Two infinite lines of charge (Example 4-7).

Hence,

E = E1 + E2 = (−ŷ 9 + ẑ 6) V/m.

Concept Question 4-7: Explain Gauss’s law. Under
what circumstances is it useful?

Concept Question 4-8: How should one choose a
Gaussian surface?

Exercise 4-7: Two infinite lines, each carrying a uniform

charge density ρℓ, reside in free space parallel to the z axis

at x = 1 and x = −1. Determine E at an arbitrary point
along the y axis.

Answer: E = ŷρℓy/
[
πε0(y

2 + 1)
]
. (See EM .)

Exercise 4-8: A thin spherical shell of radius a carries
a uniform surface charge density ρs. Use Gauss’s law to

determine E everywhere in free space.

Answer: E =

{
0 for R < a;

R̂ρsa
2/(εR

2) for R > a.
(See EM .)



4-5 ELECTRIC SCALAR POTENTIAL 199

Exercise 4-9: A spherical volume of radius a contains a
uniform volume charge density ρv. Use Gauss’s law to

determine D for (a) R ≤ a and (b) R ≥ a.

Answer: (a) D = R̂ρvR/3,

(b) D = R̂ρva
3/(3R

2). (See EM .)

4-5 Electric Scalar Potential

The operation of an electric circuit usually is described in
terms of the currents flowing through its branches and the

voltages at its nodes. The voltage difference V between two

points in a circuit represents the amount of work, or potential

energy, required to move a unit charge from one to the other.

◮ The term “voltage” is short for “voltage potential” and

synonymous with electric potential. ◭

Even though when analyzing a circuit we may not consider the

electric fields present in the circuit, it is in fact the existence of

these fields that gives rise to voltage differences across circuit
elements such as resistors or capacitors. The relationship

between the electric field E and the electric potential V is the
subject of this section.

4-5.1 Electric Potential as a Function of Electric
Field

We begin by considering the simple case of a positive charge q

in a uniform electric field E = −ŷE in the −y direction

(Fig. 4-12). The presence of the field E exerts a force Fe = qE

on the charge in the −y direction. To move the charge along the

positive y direction (against the force Fe), we need to provide

q

y

dy

x

E EE

Fext

Fe

E

Figure 4-12 Work done in moving a charge q a distance dy

against the electric field E is dW = qE dy.

an external force Fext to counteract Fe, which requires the
expenditure of energy. To move q without acceleration (at

constant speed), the net force acting on the charge must be

zero, which means that Fext + Fe = 0, or

Fext = −Fe = −qE. (4.34)

The work done (or energy expended) in moving any object a
vector differential distance dl while exerting a force Fext is

dW = Fext ·dl = −qE ·dl (J). (4.35)

Work (or energy) is measured in joules (J). If the charge is

moved a distance dy along ŷ, then

dW = −q(−ŷE) · ŷ dy = qE dy. (4.36)

The differential electric potential energy dW per unit charge
is called the differential electric potential (or differential

voltage) dV . That is,

dV =
dW

q
= −E ·dl (J/C or V). (4.37)

The unit of V is the volt (V) with 1 V = 1 J/C, and since V

is measured in volts, the electric field is expressed in volts per

meter (V/m).
The potential difference corresponding to moving a point

charge from point P1 to point P2 (Fig. 4-13) is obtained by

integrating Eq. (4.37) along any path between them. That is,

∫
P2

P1

dV = −
∫

P2

P1

E ·dl, (4.38)

or

V21 = V2 −V1 = −
∫

P2

P1

E ·dl, (4.39)

P1 C3

C2

C1
P2

path 1

path 2

path 3

E
E

Figure 4-13 In electrostatics, the potential difference between

P2 and P1 is the same irrespective of the path used for calculating

the line integral of the electric field between them.
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where V1 and V2 are the electric potentials at points P1 and P2,
respectively. The result of the line integral on the right-hand

side of Eq. (4.39) is independent of the specific integration

path that connects points P1 and P2. This follows immediately
from the law of conservation of energy. To illustrate with an

example, consider a particle in Earth’s gravitational field. If

the particle is raised from a height h1 above Earth’s surface
to height h2, the particle gains potential energy in an amount

proportional to (h2 − h1). If instead we were to first raise the

particle from height h1 to a height h3 greater than h2, thereby
giving it potential energy proportional to (h3 − h1), and then

let it drop back to height h2 by expending an energy amount
proportional to (h3−h2), its net gain in potential energy would

again be proportional to (h2 −h1).
The same principle applies to the electric potential energy W

and to the potential difference (V2−V1). The voltage difference

between two nodes in an electric circuit has the same value

regardless of which path in the circuit we follow between the
nodes. Moreover, Kirchhoff’s voltage law states that the net

voltage drop around a closed loop is zero. If we go from

P1 to P2 by path 1 in Fig. 4-13 and then return from P2 to
P1 by path 2, the right-hand side of Eq. (4.39) becomes a

closed contour, and the left-hand side vanishes. In fact, the line

integral of the electrostatic field E around any closed contour

C is zero:

∫

C

E ·dl = 0. (electrostatics) (4.40)

◮ A vector field whose line integral along any closed path
is zero is called a conservative or an irrotational field.

Hence, the electrostatic field E is conservative. ◭

As we will see later in Chapter 6, if E is a time-varying
function, it is no longer conservative, and its line integral along

a closed path is not necessarily zero.

The conservative property of the electrostatic field can
be deduced from Maxwell’s second equation, Eq. (4.1b). If

∂/∂ t = 0, then

∇×××E = 0. (4.41)

If we take the surface integral of ∇×××E over an open surface S

and then apply Stokes’s theorem expressed by Eq. (3.107) to

convert the surface integral into a line integral, we obtain

∫

S

(∇×××E) ·ds =

∫

C

E ·dl = 0, (4.42)

where C is a closed contour surrounding S. Thus, Eq. (4.41) is

the differential-form equivalent of Eq. (4.40).

We now define what we mean by the electric potential V at
a point in space. Before we do so, however, let us revisit our

electric-circuit analogue. Just as a node in a circuit cannot be

assigned an absolute voltage, a point in space cannot have an
absolute electric potential. The voltage of a node in a circuit is

measured relative to that of a conveniently chosen reference

point to which we have assigned a voltage of zero, which
we call ground. The same principle applies to the electric

potential V . Usually (but not always), the reference point is

chosen to be at infinity. That is, in Eq. (4.39) we assume that
V1 = 0 when P1 is at infinity. Therefore, the electric potential V

at any point P is

V = −
∫

P

∞
E ·dl (V). (4.43)

Example 4-8: Computing V from E along
Two Paths

A vector field is said to be conservative if its line integral

between two points is the same—irrespective of the path taken

between them. In a given region of space, the field E is given
by

E = x̂ x
2 + ŷ y

2 + ẑ z
2. (4.44)

(a) Confirm that E is conservative by demonstrating that

∇×E = 0. (b) Compute the potential difference V21 between

points 1 and 2 in Fig. 4-14 following the direct path
between them. (c) Compute V21 by following the path ABCD

between points 1 and 2.

Solution: (a) The given electric field has components
Ex = x

2, Ey = y
2, and Ez = z

2. Applying the curl operator to

E gives

∇×E =

∣∣∣∣∣∣∣∣

x̂ ŷ ẑ
∂

∂x

∂

∂y

∂

∂ z

x
2

y
2

z
2

∣∣∣∣∣∣∣∣

= x̂

(
∂ z

2

∂y
− ∂y

2

∂ z

)
− ŷ

(
∂ z

2

∂x
− ∂x

2

∂ z

)
+ ẑ

(
∂y

2

∂x
− ∂x

2

∂y

)

= x̂(0−0)− ŷ(0−0)+ ẑ(0−0) = 0.

(b) Voltage V21 is given by

V21 = −
∫

P2

P1

E ·dl.
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y

P2(3,2,0)

P1(1,−2,0)

x
1 3

−2

1

−1

2

2

Path 12
Path ABCD

A

B C

D

Figure 4-14 Computing V21 along two paths (Example 4-8).

The straight-line path resides in the x–y plane, so it is described
by the linear form y = ax + b. At point 1, x1 = 1 and y1 = −2.

Hence,

−2 = a + b.

Similarly, at point 2, x2 = 3 and y2 = 2, so

2 = 3a + b.

The two equations lead to a = 2, b = −4, and

y = 2x−4. (4.45)

Since path P1–P2 is entirely in the x–y plane, we can set z = 0
in the expression for E. Also, we can use the relation given by

Eq. (4.45) to reduce E to a single variable:

E = x̂ x
2 + ŷ y

2 + ẑ z
2
∣∣
z=0 and y=2x−4

= x̂ x
2 + ŷ(2x−4)2.

(4.46)
In general,

dl = x̂ dx + ŷ dy + ẑ dz.

In the x–y plane, dz = 0, and along the straight-line path given
by y = 2x−4,

dy = 2 dx. (4.47)

Hence,

dl = x̂ dx + ŷ 2 dx. (4.48)

The potential difference is then

V21 = −
∫

P2

P1

E ·dl

= −
∫

x=3

x=1
[x̂ x

2 + ŷ(2x−4)2] · [x̂ dx + ŷ 2 dx]

= −
∫ 3

x=1
[x2 + 2(2x−4)2] dx

= −
∫ 3

x=1
(9x

2 −32x + 32) dx = −14 (V). (4.49)

(c) Path ABCD in Fig. 4-14 consists of three segments.

A to B:

E = x̂ x
2 + ŷ y

2 + ẑ z
2
∣∣
x=1, z=0

= x̂ 1 + ŷ y
2, (4.50a)

and

dl = ŷ dy. (4.50b)

B to C:

E = x̂ x
2 + ŷ y

2 + ẑ z
2
∣∣
y=0, z=0

= x̂ x
2, (4.51a)

and

dl = x̂ dx. (4.51b)

C to D:

E = x̂ x
2 + ŷ y

2 + ẑ z
2
∣∣
x=3, z=0

= x̂ 9 + ŷ y
2, (4.52a)

and

dl = ŷ dy. (4.52b)

Hence,

V21 = −
∫

P2

P1

E ·dl

= −
[∫

B@x=1, y=0

A@x=1, y=−2
(x̂ 1 + ŷ y

2) · ŷ dy

+

∫
C@x=3, y=0

B@x=1, y=0
x̂ x

2 · x̂ dx

+

∫
D@x=3, y=2

C@x=3, y=0
(x̂ 9 + ŷ y

2) · ŷ dy

]

= −
[

y
3

3

∣∣∣∣
0

−2

+
x

3

3

∣∣∣∣
3

1

+
y

3

3

∣∣∣∣
2

0

]

= −
[
+

8

3
+

27

3
− 1

3
+

8

3

]
= −14 (V), (4.53)

which is identical with the result given by Eq. (4.49) for
the line integral along the straight-line path between points 1

and 2.
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Technology Brief 7: Resistive Sensors

An electrical sensor is a device capable of responding
to an applied stimulus by generating an electrical signal
whose voltage, current, or some other attribute is related
to the intensity of the stimulus.

◮ The family of possible stimuli encompasses a wide
array of physical, chemical, and biological quantities,
including temperature, pressure, position, distance,
motion, velocity, acceleration, concentration (of a
gas or liquid), blood flow, etc. ◭

The sensing process relies on measuring resistance,
capacitance, inductance, induced electromotive force
(emf), oscillation frequency or time delay, among oth-
ers. Sensors are integral to the operation of just about
every instrument that uses electronic systems, from
automobiles and airplanes to computers and cell phones
(Fig. TF7-1). This Technology Brief covers resistive
sensors. Capacitive, inductive, and emf sensors are
covered separately (here and in later chapters).

Piezoresistivity

According to Eq. (4.70), the resistance of a cylindrical
resistor or wire conductor is given by R = l/σA, where l

is the cylinder’s length, A is its cross-sectional area, and
σ is the conductivity of its material. Stretching the wire
by an applied external force causes l to increase and
A to decrease. Consequently, R increases (Fig. TF7-2).
Conversely, compressing the wire causes R to decrease.
The Greek word piezein means to press, from which
the term piezoresistivity is derived. This should not be
confused with piezoelectricity, which is an emf effect.
(See EMF Sensors in Technology Brief 12.)

The relationship between the resistance R of a
piezoresistor and the applied force F can be modeled
by the approximate linear equation

R = R0

(
1 +

αF

A0

)
,

where R0 is the unstressed resistance (@ F = 0), A0 is the
unstressed cross-sectional area of the resistor, and α is
the piezoresistive coefficient of the resistor material.
The force F is positive if it is causing the resistor to
stretch and negative if it is compressing it.

DTR CDIAAC RCUPTSLWRECTESPABCTPMABS ZV

System Abbrev.     Sensors

Distronic  DTR   3

Electronic controlled transmission ECT   9

Roof control unit RCU   7

Antilock braking system ABS   4

Central locking system ZV   3

Dyn. beam levelling  LWR   6

Common-rail diesel injection CDI 11

Automatic air condition AAC 13

Active body control  ABC 12

Tire pressure monitoring TPM 11

Electron. stability program ESP 14

Parktronic system PTS 12

About 30 electric/electronic systems and

more than 100

sensors

Figure TF7-1 Most cars use on the order of 100 sensors.

Compression

Stretching

Force (N)

FFF F

R (Ω)

F = 0

Figure TF7-2 Piezoresistance varies with applied force.
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F = 0

Flat

Film

Stretched

z

Figure TF7-3 Piezoresistor films.

An elastic resistive sensor is well suited for measuring
the deformation z of a surface (Fig. TF7-3), which can be
related to the pressure applied to the surface; and if z is
recorded as a function of time, it is possible to derive
the velocity and acceleration of the surface’s motion.
To realize high longitudinal piezoresistive sensitivity (the
ratio of the normalized change in resistance, ∆R/R0, to
the corresponding change in length, ∆l/l0, caused by
the applied force), the piezoresistor is often designed
as a serpentine-shaped wire (Fig. TF7-4(a)) bonded on
a flexible plastic substrate and glued onto the surface
whose deformation is to be monitored. Copper and nickel
alloys are commonly used for making the sensor wires,
although in some applications silicon is used instead
(Fig. TF7-4(b)) because it has a very high piezoresistive
sensitivity.

Metal wire

Ohmic
contacts

(b) Silicon piezoresistor

Silicon
piezoresistor

(a) Serpentine wire

Figure TF7-4 Metal and silicon piezoresistors.

◮ By connecting the piezoresistor to a Wheatstone
bridge circuit (Fig. TF7-5) where the other three
resistors are all identical in value and equal to R0

(the resistance of the piezoresistor when no external
force is present), the voltage output becomes directly
proportional to the normalized resistance change:
∆R/R0. ◭

R0R0

R0 R0 + ∆R

V0 V1 Vout V2

V0

+

−

Flexible
resistor

Vout =
V0

4

(
∆R

R0

)

Figure TF7-5 Wheatstone bridge circuit with piezoresistor.
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4-5.2 Electric Potential Due to Point Charges

The electric field due to a point charge q located at the origin

is given by Eq. (4.32) as

E = R̂
q

4πεR2
(V/m). (4.54)

The field is radially directed and decays quadratically with the

distance R from the observer to the charge.
As was stated earlier, the choice of integration path between

the end points in Eq. (4.43) is arbitrary. Hence, we can

conveniently choose the path to be along the radial direction R̂,
in which case dl = R̂ dR and

V = −
∫

R

∞

(
R̂

q

4πεR2

)
· R̂ dR =

q

4πεR
(V). (4.55)

If the charge q is at a location other than the origin, say at

position vector R1, then V at observation position vector R

becomes

V =
q

4πε|R−R1|
(V), (4.56)

where |R−R1| is the distance between the observation point

and the location of the charge q. The principle of superposition

applied previously to the electric field E also applies to
the electric potential V . Hence, for N discrete point charges

q1,q2, . . . ,qN residing at position vectors R1,R2, . . . ,RN , the

electric potential is

V =
1

4πε

N

∑
i=1

qi

|R−Ri|
(V). (4.57)

4-5.3 Electric Potential Due to Continuous
Distributions

To obtain expressions for the electric potential V due to

continuous charge distributions over a volume υ ′, across a
surface S

′, or along a line l
′, we (1) replace qi in Eq. (4.57)

with ρv dυ ′, ρs ds
′, and ρℓ dl

′, respectively; (2) convert the

summation into an integration; and (3) define R
′ = |R−Ri| as

the distance between the integration point and the observation

point. These steps lead to the following expressions:

V =
1

4πε

∫

υ ′

ρv

R′ dυ ′ (volume distribution),

V =
1

4πε

∫

S′

ρs

R′ ds
′ (surface distribution),

V =
1

4πε

∫

l′

ρℓ

R′ dl
′ (line distribution).

(4.58a)

(4.58b)

(4.58c)

4-5.4 Electric Field as a Function of Electric
Potential

In Section 4-5.1, we expressed V in terms of a line inte-
gral over E. Now we explore the inverse relationship by

reexamining Eq. (4.37):

dV = −E ·dl. (4.59)

For a scalar function V , Eq. (3.73) gives

dV = ∇V ·dl, (4.60)

where ∇V is the gradient of V . Comparison of Eq. (4.59) with

Eq. (4.60) leads to

E = −∇V . (4.61)

◮ This differential relationship between V and E allows

us to determine E for any charge distribution by first

calculating V and then taking the negative gradient of V

to find E. ◭

The expressions for V , given by Eqs. (4.57) to (4.58c), involve

scalar sums and scalar integrals, and as such are usually
much easier to evaluate than the vector sums and integrals

in the expressions for E derived in Section 4-3 on the basis

of Coulomb’s law. Thus, even though the electric potential
approach for finding E is a two-step process, it is conceptually

and computationally simpler to apply than the direct method

based on Coulomb’s law.

Example 4-9: Electric Field of an Electric Dipole

An electric dipole consists of two point charges of equal
magnitude but opposite polarity separated by a distance d

(Fig. 4-15(a)). Determine V and E at any point P given that

P is at a distance R ≫ d from the dipole center and the dipole
resides in free space.

Solution: To simplify the derivation, we align the dipole

along the z axis and center it at the origin (Fig. 4-15(a)). For the
two charges shown in Fig. 4-15(a), application of Eq. (4.57)

gives

V =
1

4πε0

(
q

R1

+
−q

R2

)
=

q

4πε0

(
R2 −R1

R1R2

)
.

Since d ≪ R, the lines labeled R1 and R2 in Fig. 4-15(a)

are approximately parallel to each other, in which case the

following approximations apply:

R2 −R1 ≈ d cosθ , R1R2 ≈ R
2.
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(a) Electric dipole

(b) Electric-field pattern

+q

–q

R1

R2

R

d y

x

z

θ 

d cos θ 

P = (R, θ, φ)

E

Figure 4-15 Electric dipole with dipole moment p = qd

(Example 4-9).

Hence,

V =
qd cosθ

4πε0R2
. (4.62)

To generalize this result to an arbitrarily oriented dipole, note

that the numerator of Eq. (4.62) can be expressed as the dot

product of qd (where d is the distance vector from −q to +q)
and the unit vector R̂ pointing from the center of the dipole

toward the observation point P. That is,

qd cosθ = qd· R̂ = p · R̂, (4.63)

where p = qd is called the dipole moment. Using Eq. (4.63) in
Eq. (4.62) then gives

V =
p · R̂

4πε0R2
(electric dipole). (4.64)

In spherical coordinates, Eq. (4.61) is given by

E = −∇V = −
(

R̂
∂V

∂R
+ θ̂θθ

1

R

∂V

∂θ
+ φ̂φφ

1

Rsinθ

∂V

∂φ

)
, (4.65)

where we have used the expression for ∇V in spherical
coordinates given in Appendix C. Upon taking the derivatives

of the expression for V given by Eq. (4.62) with respect to R

and θ and then substituting the results in Eq. (4.65), we obtain

E =
qd

4πε0R3
(R̂ 2cosθ + θ̂θθsinθ ) (V/m). (4.66)

We stress that the expressions for V and E given by Eqs. (4.64)

and (4.66) apply only when R ≫ d. To compute V and E

at points in the vicinity of the two dipole charges, it is

necessary to perform all calculations without resorting to the

far-distance approximations that led to Eq. (4.62). Such an
exact calculation for E leads to the field pattern shown in

Fig. 4-15(b).

4-5.5 Poisson’s Equation

With D = εE, the differential form of Gauss’s law given by

Eq. (4.26) may be cast as

∇ ·E =
ρv

ε
. (4.67)

Inserting Eq. (4.61) in Eq. (4.67) gives

∇ · (∇V ) = −ρv

ε
. (4.68)

Given Eq. (3.110) for the Laplacian of a scalar function V ,

∇2
V = ∇ · (∇V) =

∂ 2
V

∂x2
+

∂ 2
V

∂y2
+

∂ 2
V

∂ z2
, (4.69)

Eq. (4.68) can be cast in the abbreviated form

∇2
V = −ρv

ε
(Poisson’s equation). (4.70)

This is known as Poisson’s equation. For a volume υ ′ con-

taining a volume charge density distribution ρv, the solution

for V derived previously and expressed by Eq. (4.58a) as

V =
1

4πε

∫

υ ′

ρv

R′ dυ ′ (4.71)

satisfies Eq. (4.70). If the medium under consideration con-
tains no charges, Eq. (4.70) reduces to

∇2
V = 0 (Laplace’s equation), (4.72)
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and it is then referred to as Laplace’s equation. Poisson’s and
Laplace’s equations are useful for determining the electrostatic

potential V in regions with boundaries on which V is known,

such as the region between the plates of a capacitor with a
specified voltage difference across it.

Concept Question 4-9: What is a conservative field?

Concept Question 4-10: Why is the electric potential

at a point in space always defined relative to the potential

at some reference point?

Concept Question 4-11: Explain why Eq. (4.40) is a
mathematical statement of Kirchhoff’s voltage law.

Concept Question 4-12: Why is it usually easier to

compute V for a given charge distribution and then find
E using E =−∇V than to compute E directly by applying

Coulomb’s law?

Concept Question 4-13: What is an electric dipole?

Exercise 4-10: Determine the electric potential at the

origin due to four 20 µC charges residing in free space
at the corners of a 2 m× 2 m square centered about the

origin in the x–y plane.

Answer: V =
√

2×10−5/(πε0) (V). (See EM .)

Exercise 4-11: A spherical shell of radius a has a uniform

surface charge density ρs. Determine (a) the electric
potential and (b) the electric field with both at the center

of the shell.

Answer: (a) V = ρsa/ε (V), (b) E = 0. (See EM .)

4-6 Conductors

The electromagnetic constitutive parameters of a material
medium are its electrical permittivity ε , magnetic permeabil-

ity µ , and conductivity σ . A material is said to be homoge-
neous if its constitutive parameters do not vary from point to
point, and isotropic if they are independent of direction. Most

materials are isotropic, but some crystals are not. Throughout

this book, all materials are assumed to be homogeneous
and isotropic. This section is concerned with σ , Section 4-7

examines ε , and discussion of µ is deferred to Chapter 5.

◮ The conductivity of a material is a measure of how

easily electrons can travel through the material under the
influence of an externally applied electric field. ◭

Materials are classified as conductors (metals) or dielectrics
(insulators) according to the magnitudes of their conductiv-

ities. A conductor has a large number of loosely attached

electrons in the outermost shells of its atoms. In the absence
of an external electric field, these free electrons move in

random directions and with varying speeds. Their random
motion produces zero average current through the conductor.

Upon applying an external electric field, however, the electrons

migrate from one atom to the next in the direction opposite
that of the external field. Their movement gives rise to a

conduction current density

J = σE (A/m2) (Ohm’s law), (4.73)

where σ is the material’s conductivity with units of siemen per

meter (S/m).
In yet other materials, called dielectrics, the electrons are

tightly bound to the atoms—so much so that it is very difficult

to detach them under the influence of an electric field. Con-
sequently, no significant conduction current can flow through

them.

◮ A perfect dielectric is a material with σ = 0. In

contrast, a perfect conductor is a material with σ = ∞.
Some materials, called superconductors, exhibit such a

behavior. ◭

The conductivity σ of most metals is in the range from 106

to 107 S/m when compared with 10−10 to 10−17 S/m for good

insulators (Table 4-1 on p. 210). A class of materials called
semiconductors allow for conduction currents even though

their conductivities are much smaller than those of metals.

The conductivity of pure germanium, for example, is 2.2 S/m.
Tabulated values of σ at room temperature (20 ◦C) are given

in Appendix B for some common materials, and a subset is

reproduced in Table 4-1.

◮ The conductivity of a material depends on several fac-

tors, including temperature and the presence of impurities.

In general, σ of metals increases with decreasing temper-
ature. Most superconductors operate in the neighborhood

of absolute zero. ◭
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Technology Brief 8:
Supercapacitors as Batteries

As recent additions to the language of electronics, the
names supercapacitor , ultracapacitor , and nanoca-
pacitor suggest that they represent devices that are
somehow different from or superior to traditional capac-
itors. Are these just fancy names attached to traditional
capacitors by manufacturers, or are we talking about a
really different type of capacitor?

◮ The three aforementioned names refer to vari-
ations on an energy storage device (Fig. TF8-1)
known by the technical name electrochemical
double-layer capacitor (EDLC), in which energy
storage is realized by a hybrid process that incorpo-
rates features from both the traditional electrostatic
capacitor and the electrochemical voltaic battery. ◭

For the purposes of this Technology Brief, we refer
to this relatively new device as a supercapacitor. The
battery is far superior to the traditional capacitor with
regard to energy storage, but a capacitor can be charged
and discharged much more rapidly than a battery. As a
hybrid technology, the supercapacitor offers features that
are intermediate between those of the battery and the
traditional capacitor. The supercapacitor is now used to
support a wide range of applications, from motor startups
in large engines (trucks, locomotives, submarines, etc.)
to flash lights in digital cameras, and its use is rapidly

Figure TF8-1 Examples of supercapacitors. (Courtesy of

Vladimir Zhupanenko/Shutterstock.)

extending into consumer electronics (cell phones, MP3
players, laptop computers) and electric cars (Fig. TF8-2).

Capacitor Energy Storage Limitations

Energy density W
′ is often measured in watts-hours

per kg (Wh/kg), with 1 Wh = 3.6× 103 joules. Thus, the
energy capacity of a device is normalized to its mass.
For batteries, W

′ extends between about 30 Wh/kg for a
lead-acid battery to as high as 150 Wh/kg for a lithium-
ion battery. In contrast, W

′ rarely exceeds 0.02 Wh/kg
for a traditional capacitor. Let us examine what limits
the value of W

′ for the capacitor by considering a small
parallel-plate capacitor with plate area A and separation
between plates d. For simplicity, we assign the capacitor
a voltage rating of 1 V (maximum anticipated voltage
across the capacitor). Our goal is to maximize the energy
density W

′. For a parallel-plate capacitor C = εA/d, where
ε is the permittivity of the insulating material. Using
Eq. (4.121) leads to

W
′ =

W

m
=

1

2m
CV

2 =
εAV

2

2md
(J/kg),

where m is the mass of the conducting plates and the
insulating material contained in the capacitor. To keep
the analysis simple, we assume that the plates can be
made so thin as to ignore their masses relative to the
mass of the insulating material. If the material’s density

Figure TF8-2 Examples of systems that use supercapacitors.
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is ρ (kg/m3), then m = ρAd and

W
′ =

εV
2

2ρd2
(J/kg).

To maximize W
′, we need to select d to be the smallest

possible, but we also have to be aware of the constraint
associated with dielectric breakdown. To avoid sparking
between the capacitor’s two plates, the electric field
strength should not exceed Eds, which is the dielectric
strength of the insulating material. Among the various
types of materials commonly used in capacitors, mica
has one of the highest values of Eds, nearly 2×108 V/m.
Breakdown voltage Vbr is related to Eds by Vbr = Edsd,
so given that the capacitor is to have a voltage rating
of 1 V, let us choose Vbr to be 2 V, thereby allowing
a 50% safety margin. With Vbr = 2 V and Eds = 2× 108

V/m, it follows that d should not be smaller than 10−8 m,
or 10 nm. For mica, ε ≈ 6ε0 and ρ = 3 × 103 kg/m3.
Ignoring for the moment the practical issues associated
with building a capacitor with a spacing of only 10 nm
between conductors, the expression for energy density
leads to W

′ ≈ 90 J/kg. Converting W
′ to Wh/kg (by

dividing by 3.6×103 J/Wh) gives

W
′(max) = 2.5×10−2 (Wh/kg),

for a traditional capacitor at a voltage rating of 1 V.

◮ The energy storage capacity of a traditional ca-
pacitor is about four orders of magnitude smaller
than the energy density capability of a lithium-ion
battery. ◭

Energy Storage Comparison

The table in the upper part of Fig. TF8-3 displays typical
values or ranges of values for each of five attributes com-
monly used to characterize the performance of energy
storage devices. In addition to the energy density W

′,
they include the power density P

′, the charge and
discharge rates, and the number of charge/discharge
cycles that the device can withstand before deteriorating
in performance. For most energy storage devices, the
discharge rate usually is shorter than the charge rate, but
for the purpose of the present discussion, we treat them
as equal. As a first-order approximation, the discharge
rate is related to P

′ and W
′ by

T =
W

′

P′ .

◮ Supercapacitors are capable of storing 100 to
1000 times more energy than a traditional capacitor
but 10 times less than a battery (Fig. TF8-3). On
the other hand, supercapacitors can discharge their
stored energy in a matter of seconds when com-
pared with hours for a battery. ◭

Moreover, the supercapacitor’s cycle life is on the or-
der of 1 million when compared with only 1000 for a
rechargeable battery. Because of these features, the
supercapacitor has greatly expanded the scope and use
of capacitors in electronic circuits and systems.

Future Developments

The upper right-hand corner of the plot in Fig. TF8-3 rep-
resents the ideal energy storage device with W

′ ≈ 100–
1000 Wh/kg and P

′ ≈ 103–104 W/kg. The corresponding
discharge rate is T ≈ 10–100 ms. Current research
aims to extend the capabilities of batteries and super-
capacitors in the direction of this prized domain of the
energy-power space.
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Energy Storage Devices

Feature Traditional Capacitor Supercapacitor Battery

Energy density W
′ (Wh/kg) ∼ 10−2 1 to 10 5 to 150

Power density P
′ (W/kg) 1,000 to 10,000 1,000 to 5,000 10 to 500

Charge and discharge rate T 10−3 sec ∼ 1 sec to 1 min ∼ 1 to 5 hrs

Cycle life Nc ∞ ∼ 106 ∼ 103

1000

Fuel cells

Batteries

Future

developments

Supercapacitors

E
ne

rg
y 

de
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y 

W
′ 
(W

h
/k

g
)

Power density P′ (W/kg)

100

10

10 100 10,0001000

1

0.1

0.01

Traditional

capacitors

Figure TF8-3 Comparison of energy storage devices.
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Table 4-1 Conductivity of some common materials at 20 ◦C.

Material Conductivity, σ (S/m)

Conductors

Silver 6.2×107

Copper 5.8×107

Gold 4.1×107

Aluminum 3.5×107

Iron 107

Mercury 106

Carbon 3×104

Semiconductors

Pure germanium 2.2

Pure silicon 4.4×10−4

Insulators

Glass 10−12

Paraffin 10−15

Mica 10−15

Fused quartz 10−17

Concept Question 4-14: What are the electromagnetic
constitutive parameters of a material?

Concept Question 4-15: What classifies a material as

a conductor, a semiconductor, or a dielectric? What is a

superconductor?

Concept Question 4-16: What is the conductivity of a

perfect dielectric?

4-6.1 Drift Velocity

The drift velocity ue of electrons in a conducting material is

related to the externally applied electric field E through

ue = −µeE (m/s), (4.74a)

where µe is a material property call the electron mobility with

units of (m2/V·s). In a semiconductor, current flow is due to
the movement of both electrons and holes, and since holes are

positive-charge carriers, the hole drift velocity uh is in the same

direction as E,

uh = µhE (m/s), (4.74b)

where µh is the hole mobility. The mobility accounts for the

effective mass of a charged particle and the average distance

over which the applied electric field can accelerate it before
it is stopped by colliding with an atom and then starts accel-

erating all over again. From Eq. (4.11), the current density in

a medium containing a volume density ρv of charges moving
with velocity u is J = ρvu. In the most general case, the current

density consists of a component Je due to electrons and a

component Jh due to holes. Thus, the total conduction current
density is

J = Je + Jh = ρveue + ρvhuh (A/m2), (4.75)

where ρve = −Nee and ρvh = Nhe with Ne and Nh being the

number of free electrons and the number of free holes per unit
volume and e = 1.6×10−19 C is the absolute charge of a single

hole or electron. Use of Eqs. (4.74a) and (4.74b) gives

J = (−ρveµe + ρvhµh)E = σE, (4.76)

where the quantity inside the parentheses is defined as the
conductivity of the material, σ . Thus,

σ = −ρveµe + ρvhµh = (Neµe + Nhµh)e (S/m),

(semiconductor)

(4.77a)

and its unit is siemens per meter (S/m). For a good conductor,
Nhµh ≪ Neµe, and Eq. (4.77a) reduces to

σ = −ρveµe = Neµee (S/m).

(good conductor)

(4.77b)

◮ In view of Eq. (4.76), in a perfect dielectric with σ = 0,

J = 0 regardless of E. Similarly, in a perfect conductor
with σ = ∞, E = J/σ = 0 regardless of J. ◭

That is,

Perfect dielectric: J = 0,

Perfect conductor: E = 0.

Because σ is on the order of 106 S/m for most metals, such as

silver, copper, gold, and aluminum (Table 4-1), it is common

practice to treat them as perfect conductors and to set E = 0
inside them.

A perfect conductor is an equipotential medium, meaning

that the electric potential is the same at every point in the
conductor. This property follows from the fact that V21, which

is the voltage difference between two points in the conductor,
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Module 4.1 Fields Due to Charges For any group of point charges, this module calculates and displays the electric field
E and potential V across a 2-D grid. The user can specify the locations, magnitudes and polarities of the charges.

equals the line integral of E between them, as indicated by

Eq. (4.39). Since E = 0 everywhere in the perfect conductor,
the voltage difference V21 = 0. The fact that the conductor is

an equipotential medium, however, does not necessarily imply

that the potential difference between the conductor and some
other conductor is zero. Each conductor is an equipotential

medium, but the presence of different distributions of charges
on their two surfaces can generate a potential difference

between them.

Example 4-10: Conduction Current in a
Copper Wire

A 2-mm diameter copper wire with conductivity of

5.8×107 S/m and electron mobility of 0.0032 (m2/V·s)
is subjected to an electric field of 20 (mV/m). Find (a) the

volume charge density of the free electrons, (b) the current

density, (c) the current flowing in the wire, (d) the electron

drift velocity, and (e) the volume density of the free electrons.

Solution: (a)

ρve = − σ

µe

= −5.8×107

0.0032
= −1.81×1010 (C/m3).

(b)

J = σE = 5.8×107×20×10−3 = 1.16×106 (A/m2).

(c)

I = JA

= J

(
πd

2

4

)
= 1.16×106

(
π ×4×10−6

4

)
= 3.64 A.

(d)

ue = −µeE = −0.0032×20×10−3 = −6.4×10−5 m/s.
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The minus sign indicates that ue is in the opposite direction
of E.

(e)

Ne = −ρve

e
=

1.81×1010

1.6×10−19
= 1.13×1029 electrons/m3.

Exercise 4-12: Determine the density of free electrons in
aluminum given that its conductivity is 3.5× 107 (S/m)

and its electron mobility is 0.0015 (m2/V · s).
Answer: Ne = 1.46×1029 electrons/m3. (See EM .)

Exercise 4-13: The current flowing through a 100-m long

conducting wire of uniform cross section has a density of
3× 105 (A/m2). Find the voltage drop along the length

of the wire if the wire material has a conductivity of

2×107 (S/m).

Answer: V = 1.5 V. (See EM .)

4-6.2 Resistance

To demonstrate the utility of the point form of Ohm’s law,

we apply it to derive an expression for the resistance R of a
conductor of length l and uniform cross section A, as shown

in Fig. 4-16. The conductor axis is along the x direction and

extends between points x1 and x2, with l = x2−x1. A voltage V

applied across the conductor terminals establishes an electric

field E = x̂Ex; the direction of E is from the point with

higher potential (point 1 in Fig. 4-16) to the point with lower

x1 x2l

1 2I I

A

J E

+ –

V

y

x

Figure 4-16 Linear resistor of cross section A and length l

connected to a dc voltage source V .

potential (point 2). The relation between V and Ex is obtained
by applying Eq. (4.39):

V = V1 −V2 = −
∫

x1

x2

E ·dl = −
∫

x1

x2

x̂Ex · x̂ dl = Exl (V).

(4.78)

Using Eq. (4.73), the current flowing through the cross
section A at x2 is

I =

∫

A

J ·ds =

∫

A

σE ·ds = σExA (A). (4.79)

From R = V/I, the ratio of Eq. (4.78) to Eq. (4.79) gives

R =
l

σA
(Ω). (4.80)

We now generalize our result for R to any resistor of
arbitrary shape by noting that the voltage V across the resistor

is equal to the line integral of E over a path l between two

specified points and the current I is equal to the flux of J

through the surface S of the resistor. Thus,

R =
V

I
=

−
∫

l

E ·dl
∫

S

J ·ds

=
−

∫

l

E ·dl
∫

S

σE ·ds

. (4.81)

The reciprocal of R is called the conductance G, and the unit
of G is (Ω−1) or siemens (S). For the linear resistor,

G =
1

R
=

σA

l
(S). (4.82)

Example 4-11: Conductance of Coaxial Cable

The radii of the inner and outer conductors of a coaxial cable

of length l are a and b, respectively (Fig. 4-17). The insulation

material has conductivity σ . Obtain an expression for G
′,

which is the conductance per unit length of the insulation layer.

Solution: Let I be the total current flowing radially (along r̂)
from the inner conductor to the outer conductor through the

insulation material. At any radial distance r from the axis of
the center conductor, the area through which the current flows

is A = 2πrl. Hence,

J = r̂
I

A
= r̂

I

2πrl
, (4.83)

and from J = σE,

E = r̂
I

2πσrl
. (4.84)
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+
Vab

l

E

r

a

b
σ

Figure 4-17 Coaxial cable of Example 4-11.

In a resistor, the current flows from higher electric potential

to lower potential. Hence, if J is in the r̂ direction, the inner

conductor must be at a potential higher than that at the outer
conductor. Accordingly, the voltage difference between the

conductors is

Vab = −
∫

a

b

E ·dl = −
∫

a

b

I

2πσ l

r̂ · r̂ dr

r
=

I

2πσ l
ln

(
b

a

)
.

(4.85)

The conductance per unit length is then

G
′ =

G

l
=

1

Rl
=

I

Vabl
=

2πσ

ln(b/a)
(S/m). (4.86)

4-6.3 Joule’s Law

We now consider the power dissipated in a conducting medium

in the presence of an electrostatic field E. The medium

contains free electrons and holes with volume charge densi-
ties ρve and ρvh, respectively. The electron and hole charge

contained in an elemental volume ∆υ is qe = ρve ∆υ and

qh = ρvh ∆υ , respectively. The electric forces acting on qe

and qh are Fe = qeE = ρveE ∆υ and Fh = qhE = ρvhE ∆υ .

The work (energy) expended by the electric field in moving qe

a differential distance ∆le and moving qh a distance ∆lh is

∆W = Fe ·∆le + Fh ·∆lh. (4.87)

Power P is measured in watts (W) and is defined as the time

rate of change of energy. The power corresponding to ∆W is

∆P =
∆W

∆t
= Fe · ∆le

∆t
+ Fh · ∆lh

∆t

= Fe ·ue + Fh ·uh

= (ρveE ·ue + ρvhE ·uh) ∆υ = E ·J ∆υ , (4.88)

where ue = ∆le/∆t and uh = ∆lh/∆t are the electron and

hole drift velocities, respectively. Equation (4.75) was used

in the last step of the derivation leading to Eq. (4.88). For a
volume υ , the total dissipated power is

P =

∫

υ
E ·J dυ (W) (Joule’s law), (4.89)

and in view of Eq. (4.73),

P =
∫

υ
σ |E|2 dυ (W). (4.90)

Equation (4.89) is a mathematical statement of Joule’s law.

For the resistor example considered earlier, |E| = Ex and its
volume is υ = lA. Separating the volume integral in Eq. (4.90)

into a product of a surface integral over A and a line integral

over l, we have

P =

∫

υ
σ |E|2 dυ =

∫

A

σEx ds

∫

l

Ex dl

= (σExA)(Exl) = IV (W), (4.91)

where use was made of Eq. (4.78) for the voltage V and

Eq. (4.79) for the current I. With V = IR, we obtain the familiar

expression
P = I

2
R (W). (4.92)

Concept Question 4-17: What is the fundamental dif-

ference between an insulator, a semiconductor, and a
conductor?

Concept Question 4-18: Show that the power dissi-

pated in the coaxial cable of Fig. 4-17 is

P =
I

2 ln(b/a)

2πσ l
.

Exercise 4-14: A 50-m long copper wire has a circular

cross section with radius r = 2 cm. Given that the con-

ductivity of copper is 5.8× 107 S/m, determine (a) the
resistance R of the wire and (b) the power dissipated in

the wire if the voltage across its length is 1.5 mV.

Answer: (a) R = 6.9×10−4 Ω, (b) P = 3.3 mW. (See EM .)

Exercise 4-15: Repeat part (b) of Exercise 4-14 by apply-

ing Eq. (4.90). (See EM .)

4-7 Dielectrics

The fundamental difference between a conductor and a di-

electric is that electrons in the outermost atomic shells of
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(a) External Eext = 0

(b) External Eext ≠ 0 (c)  Electric dipole
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Atom
Nucleus

Electron

– –
–

–
––

–
– –

Nucleus
E E

Center of electron cloud

d

q

–q

Figure 4-18 In the absence of an external electric field E, the

center of the electron cloud is co-located with the center of the

nucleus, but when a field is applied, the two centers are separated

by a distance d.

a conductor are only weakly tied to atoms and hence can

freely migrate through the material, whereas in a dielectric
they are strongly bound to the atom. In the absence of an

electric field, the electrons in nonpolar molecules form a
symmetrical cloud around the nucleus, with the center of the

cloud coinciding with the nucleus (Fig. 4-18(a)). The electric

field generated by the positively charged nucleus attracts and
holds the electron cloud around it, and the mutual repulsion of

the electron clouds of adjacent atoms shapes its form. When

a conductor is subjected to an externally applied electric field,
the most loosely bound electrons in each atom can jump from

one atom to the next, thereby setting up an electric current.

In a dielectric, however, an externally applied electric field E

cannot effect mass migration of charges since none are able to

move freely. Instead, E will polarize the atoms or molecules

in the material by moving the center of the electron cloud
away from the nucleus (Fig. 4-18(b)). The polarized atom or

molecule may be represented by an electric dipole consisting
of charges +q in the nucleus and −q at the center of the

electron cloud (Fig. 4-18(c)). Each such dipole sets up a small

electric field pointing from the positively charged nucleus
to the center of the equally but negatively charged electron

cloud. This induced electric field, called a polarization field,

generally is weaker than and opposite in direction to E.
Consequently, the net electric field present in the dielectric

material is smaller than E. At the microscopic level, each
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Figure 4-19 A dielectric medium polarized by an external

electric field E.

dipole exhibits a dipole moment similar to that described in
Example 4-9. Within a block of dielectric material subject to

a uniform external field, the dipoles align themselves linearly,
as shown in Fig. 4-19. Along the upper and lower edges of the

material, the dipole arrangement exhibits positive and negative

surface charge densities, respectively.
It is important to stress that this description applies to

only nonpolar molecules that do not have permanent dipole

moments. Nonpolar molecules become polarized only when
an external electric field is applied; when the field is removed,

the molecules return to their original unpolarized state.

In polar materials such as water, the molecules possess built-
in permanent dipole moments that are randomly oriented in

the absence of an applied electric field, and owing to their

random orientations, the dipoles of polar materials produce
no net macroscopic dipole moment (at the macroscopic scale,

each point in the material represents a small volume containing
thousands of molecules). Under the influence of an applied

field, the permanent dipoles tend to align themselves along the

direction of the electric field in a manner similar to that shown
in Fig. 4-19 for nonpolar materials.

4-7.1 Polarization Field

In free space D = ε0E, the presence of microscopic dipoles in

a dielectric material alters that relationship to

D = ε0E+ P, (4.93)
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where P, called the electric polarization field, accounts for
the polarization properties of the material. The polarization

field is produced by the electric field E and depends on the

material properties. A dielectric medium is said to be linear
if the magnitude of the induced polarization field P is directly

proportional to the magnitude of E, and isotropic if P and E are

in the same direction. Some crystals allow more polarization
to take place along certain directions, such as the crystal

axes, than along others. In such anisotropic dielectrics, E

and P may have different directions. A medium is said to be
homogeneous if its constitutive parameters (ε , µ , and σ ) are

constant throughout the medium. Our present treatment will be
limited to media that are linear, isotropic, and homogeneous.

For such media, P is directly proportional to E and is expressed

as
P = ε0χeE, (4.94)

where χe is called the electric susceptibility of the material.

Inserting Eq. (4.94) into Eq. (4.93), we have

D = ε0E+ ε0χeE = ε0(1 + χe)E = εE, (4.95)

which defines the permittivity ε of the material as

ε = ε0(1 + χe). (4.96)

It is often convenient to characterize the permittivity of a
material relative to that of free space, ε0; this is accommodated

by the relative permittivity εr = ε/ε0. Values of εr are listed in
Table 4-2 for a few common materials, and a longer list is

given in Appendix B. In free space εr = 1, and for most con-

ductors, εr ≈ 1. The dielectric constant of air is approximately
1.0006 at sea level and decreases toward unity with increasing

altitude. Except in some special circumstances, such as when

calculating electromagnetic wave refraction (bending) through
the atmosphere over long distances, air can be treated as if it

were free space.

4-7.2 Dielectric Breakdown

The preceding dielectric–polarization model presumes that the

magnitude of E does not exceed a certain critical value, which
is known as the dielectric strength Eds of the material. Beyond

this, electrons will detach from the molecules and accelerate

through the material in the form of a conduction current. When
this happens, sparking can occur, and the dielectric material

can sustain permanent damage due to electron collisions with
the molecular structure. This abrupt change in behavior is

called dielectric breakdown.

◮ The dielectric strength Eds is the largest magnitude of E

that the material can sustain without breakdown. ◭

Dielectric breakdown can occur in gases, liquids, and solids.
The dielectric strength Eds depends on the material composi-

tion, as well as other factors such as temperature and humidity.

For air, Eds is roughly 3 (MV/m); for glass, 25 to 40 (MV/m);
and for mica, 200 (MV/m) (see Table 4-2).

A charged thundercloud at electric potential V relative to the

ground induces an electric field E = V/d in the air beneath it,
where d is the height of the cloud base above the ground. If

V is sufficiently large so that E exceeds the dielectric strength

of air, ionization occurs and a lightning discharge follows. The
breakdown voltageVbr of a parallel-plate capacitor is discussed

in Example 4-12.

Example 4-12: Dielectric Breakdown

In a parallel-plate capacitor with a separation d between the

conducting plates, the electric field E in the dielectric material

Table 4-2 Relative permittivity (dielectric constant) and dielectric strength of common materials.

Material Relative Permittivity, εr Dielectric Strength, Eds (MV/m)

Air (at sea level) 1.0006 3

Petroleum oil 2.1 12

Polystyrene 2.6 20

Glass 4.5–10 25–40

Quartz 3.8–5 30

Bakelite 5 20

Mica 5.4–6 200

Note: ε = εrε0 and ε0 = 8.854×10−12 F/m.
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separating the two plates is related to the voltage V between
the two plates by

E =
V

d
.

The breakdown voltage Vbr corresponds to the value of V at

which E = Eds, where Eds is the dielectric strength of the
material contained between the plates. That is,

Vbr = Edsd.

If V exceeds Vbr, the electric charges will “spark” their way
between the two plates.

A thin capacitor filled with quartz operates at 60 V. If

d = 0.01 mm, what is the breakdown voltage, and how does
it compare with the operating voltage?

Solution: From Table 4-2, Eds = 30× 106 V/m for quartz.

Hence, the breakdown voltage is

Vbr = Edsd = 30×106×10−5 = 300 V,

which is much higher than the operating voltage of 60 V.

Therefore, the capacitor should experience no issues with

dielectric breakdown.

Concept Question 4-19: What is a polar material? A

nonpolar material?

Concept Question 4-20: Do D and E always point in

the same direction? If not, when do they not?

Concept Question 4-21: What happens when dielectric
breakdown occurs?

4-8 Electric Boundary Conditions

◮ A vector field is said to be spatially continuous if it
does not exhibit abrupt changes in either magnitude or

direction as a function of position. ◭

Even though the electric field may be continuous in adjoin-

ing dissimilar media, it may well be discontinuous at the
boundary between them. Boundary conditions specify how the

components of fields tangential and normal to an interface
between two media relate across the interface Here we derive

a general set of boundary conditions for E, D, and J that is

applicable at the interface between any two dissimilar media—
be they two dielectrics or a conductor and a dielectric. Of

course, any of the dielectrics may be free space. Even though

these boundary conditions are derived assuming electrostatic
conditions, they remain valid for time-varying electric fields

as well. Figure 4-20 shows an interface between medium 1

with permittivity ε1 and medium 2 with permittivity ε2. In
the general case, the interface may contain a surface charge

density ρs (unrelated to the dielectric polarization charge

density).
To derive the boundary conditions for the tangential com-

ponents of E and D, we consider the closed rectangular loop
abcda shown in Fig. 4-20 and apply the conservative property

of the electric field expressed by Eq. (4.40), which states that

the line integral of the electrostatic field around a closed path
is always zero. By letting ∆h → 0, the contributions to the line

integral by segments bc and da vanish. Hence,

∫

C

E ·dl =

∫
b

a

E1 · ℓ̂ℓℓ1 dl +

∫
d

c

E2 · ℓ̂ℓℓ2 dl = 0, (4.97)
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Figure 4-20 Interface between two dielectric media.
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where ℓ̂ℓℓ1 and ℓ̂ℓℓ2 are unit vectors along segments ab and cd and
E1 and E2 are the electric fields in media 1 and 2. Next, we

decompose E1 and E2 into components tangential and normal

to the boundary (Fig. 4-20),

E1 = E1t + E1n, (4.98a)

E2 = E2t + E2n. (4.98b)

Noting that ℓ̂ℓℓ1 = −ℓ̂ℓℓ2, it follows that

(E1 −E2) · ℓ̂ℓℓ1 = 0. (4.99)

In other words, the component of E1 along ℓ̂ℓℓ1 equals that of E2

along ℓ̂ℓℓ1, for all ℓ̂ℓℓ1 tangential to the boundary. Hence,

E1t = E2t (V/m). (4.100)

◮ Thus, the tangential component of the electric field

is continuous across the boundary between any two

media. ◭

Upon decomposing D1 and D2 into tangential and normal

components (in the manner of Eq. (4.98)) and noting that

D1t = ε1E1t and D2t = ε2E2t, the boundary condition on the
tangential component of the electric flux density is

D1t

ε1

=
D2t

ε2

. (4.101)

Next, we apply Gauss’s law, as expressed by Eq. (4.29),
to determine boundary conditions on the normal components

of E and D. According to Gauss’s law, the total outward flux
of D through the three surfaces of the small cylinder shown in

Fig. 4-20 must equal the total charge enclosed in the cylinder.

By letting the cylinder’s height ∆h → 0, the contribution to the
total flux through the side surface goes to zero. Also, even if

each of the two media happens to contain free charge densities,

the only charge remaining in the collapsed cylinder is that
distributed on the boundary. Thus, Q = ρs ∆s, and

∫

S

D ·ds =

∫

top

D1 · n̂2 ds+

∫

bottom

D2 · n̂1 ds

= ρs ∆s, (4.102)

where n̂1 and n̂2 are the outward normal unit vectors of
the bottom and top surfaces, respectively. It is important to

remember that the normal unit vector at the surface of any

medium is always defined to be in the outward direction away
from that medium. Since n̂1 = −n̂2, Eq. (4.102) simplifies to

n̂2 ·(D1 −D2) = ρs (C/m2). (4.103)

If D1n and D2n denote as the normal components of D1 and D2

along n̂2, we have

D1n −D2n = ρs (C/m2). (4.104)

◮ The normal component of D changes abruptly at a

charged boundary between two different media in an

amount equal to the surface charge density. If no charge
exists at the boundary, then Dn is continuous across the

boundary. ◭

The corresponding boundary condition for E is

n̂2 ·(ε1E1 − ε2E2) = ρs, (4.105a)

or equivalently

ε1E1n − ε2E2n = ρs. (4.105b)

In summary, (1) the conservative property of E,

∇×××E = 0

∫

C

E ·dl = 0, (4.106)

led to the result that E has a continuous tangential component

across a boundary, and (2) the divergence property of D,

∇ ·D = ρv

∫

S

D ·ds = Q, (4.107)

led to the result that the normal component of D changes by ρs

across the boundary. A summary of the conditions that apply
at the boundary between different types of media is given in

Table 4-3.
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Table 4-3 Boundary conditions for the electric fields.

Field Component Any Two Media
Medium 1

Dielectric ε1

Medium 2

Conductor

Tangential E E1t = E2t E1t = E2t = 0

Tangential D D1t/ε1 = D2t/ε2 D1t = D2t = 0

Normal E ε1E1n − ε2E2n = ρs E1n = ρs/ε1 E2n = 0

Normal D D1n −D2n = ρs D1n = ρs D2n = 0

Notes: (1) ρs is the surface charge density at the boundary; (2) normal components of

E1, D1, E2, and D2 are along n̂2, which is the outward normal unit vector of medium 2.

Example 4-13: Application of Boundary
Conditions

The x–y plane is a charge-free boundary separating two dielec-
tric media with permittivities ε1 and ε2, as shown in Fig. 4-21.

If the electric field in medium 1 is

E1x + ŷE1y + ẑE1z,

and E1 = x̂, find (a) the electric field E2 in medium 2 and

(b) the angles θ1 and θ2.

E1z

E1t

E2t

E2z

E1

E2 θ2

ε1

ε2

θ1

z

x–y plane

Figure 4-21 Application of boundary conditions at the inter-

face between two dielectric media (Example 4-13).

Solution: (a) Let E2 = x̂E2x + ŷE2y + ẑE2z. Our task is to

find the components of E2 in terms of the given components

of E1. The normal to the boundary is ẑ. Hence, the x and y

components of the fields are tangential to the boundary and
the z components are normal to the boundary. At a charge-

free interface, the tangential components of E and the normal
components of D are continuous. Consequently,

E2x = E1x, E2y = E1y,

and

D2z = D1z or ε2E2z = ε1E1z.

Hence,

E2 = x̂E1x + ŷE1y + ẑ
ε1

ε2

E1z. (4.108)

(b) The tangential components of E1 and E2 are

E1t =
√

E2
1x

+ E2
1y

and E2t =
√

E2
2x

+ E2
2y

.

The angles θ1 and θ2 are then given by

tanθ1 =
E1t

E1z

=

√
E2

1x
+ E2

1y

E1z

,

tanθ2 =
E2t

E2z

=

√
E2

2x
+ E2

2y

E2z

=

√
E2

1x
+ E2

1y

(ε1/ε2)E1z

,

and the two angles are related by

tanθ2

tanθ1

=
ε2

ε1

. (4.109)
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Technology Brief 9:
Capacitive Sensors

To sense is to respond to a stimulus. (See Technology
Brief 7 on resistive sensors.) A capacitor can function
as a sensor if the stimulus changes the capacitor’s
geometry—usually the spacing between its conductive
elements—or the effective dielectric properties of the
insulating material situated between them. Capacitive
sensors are used in a multitude of applications. A few
examples follow.

Fluid Gauge

The two metal electrodes in (Fig. TF9-1(a)), usually rods
or plates, form a capacitor whose capacitance is directly
proportional to the permittivity of the material between
them. If the fluid section is of height hf and the height
of the empty space above it is (h− hf), then the overall
capacitance is equivalent to two capacitors in parallel, or

C = Cf +Ca = εfw
hf

d
+ εaw

(h−hf)

d
,

where w is the electrode plate width, d is the spacing
between electrodes, and εf and εa are the permittivities of
the fluid and air, respectively. Rearranging the expression
as a linear equation yields

C = khf +C0,

where the constant coefficient is k = (εf − εa)w/d and
C0 = εawh/d is the capacitance of the tank when totally
empty. Using the linear equation, the fluid height can
be determined by measuring C with a bridge circuit
(Fig. TF9-1(b)).

◮ The output voltage Vout assumes a functional
form that depends on the source voltage υg, the
capacitance C0 of the empty tank, and the unknown
fluid height hf. ◭

Humidity Sensor

Thin-film metal electrodes shaped in an interdigitized
pattern (to enhance the ratio A/d) are fabricated on a sili-
con substrate (Fig. TF9-2). The spacing between digits is
typically on the order of 0.2 µm. The effective permittivity
of the material separating the electrodes varies with the
relative humidity of the surrounding environment. Hence,
the capacitor becomes a humidity sensor.

Air

To capacitive bridge circuit

C

Fluid

Tank

d

h − hf

hf

w

υg

Vout

C0 (empty tank)

C

(b)  Bridge circuit with 150 kHz ac source

R

R

(a)  Fluid tank

Figure TF9-1 Fluid gauge and associated bridge circuit with

C0 being the capacitance that an empty tank would have and C

the capacitance of the tank under test.

Pressure Sensor

A flexible metal diaphragm separates an oil-filled cham-
ber with reference pressure P0 from a second chamber
exposed to the gas or fluid whose pressure P is to be
measured by the sensor (Fig. TF9-3(a)). The membrane
is sandwiched—but electrically isolated—between two
conductive parallel surfaces, forming two capacitors in
series Fig. TF9-3(b). When P > P0, the membrane bends
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Silicon substrate Electrodes

Figure TF9-2 Interdigital capacitor used as a humidity sensor.

in the direction of the lower plate. Consequently, d1

increases and d2 decreases, and in turn, C1 decreases
and C2 increases (Fig. TF9-3(c)). The converse happens
when P < P0. With the use of a capacitance bridge
circuit, such as the one in Fig. TF9-1(b), the sensor
can be calibrated to measure the pressure P with good
precision.

Noncontact Sensors

Precision positioning is a critical ingredient in semi-
conductor device fabrication, as well as in the operation
and control of many mechanical systems. Noncontact
capacitive sensors are used to sense the position of
silicon wafers during the deposition, etching, and cutting
processes, without coming in direct contact with the
wafers.

◮ Noncontact sensors are also used to sense and
control robot arms in equipment manufacturing and
to position hard disc drives, photocopier rollers, print-
ing presses, and other similar systems. ◭

The concentric plate capacitor in Fig. TF9-4 consists of
two metal plates sharing the same plane but electrically
isolated from each other by an insulating material. When
connected to a voltage source, charges of opposite
polarity form on the two plates, resulting in the creation
of electric field lines between them. The same principle
applies to the adjacent plate’s capacitor in Fig. TF9-5. In
both cases, the capacitance is determined by the shapes
and sizes of the conductive elements and by the effective
permittivity of the dielectric medium containing the elec-
tric field lines between them. Often, the capacitor surface
is covered by a thin film of nonconductive material, the

(a)  Pressure sensor

(b)  C1 = C2

(c)  C1 < C2

Fluid

Conducting
plate

Flexible
metallic
membrane

Oil

Conducting
plate

1

2

3

C1d1

C2

P

P0 d2

Plate

Membrane

Plate

1

2
C1

C2

d1

d2
3

1

2

3
C1 = C2P = P0

To bridge circuit

Plate

Membrane

Plate

1

2
Pd1

3

P > P0 C1 < C2

1

2

3

To bridge circuit

C1

C2d2

Figure TF9-3 Pressure sensor responds to deflection of

metallic membrane.
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Conductive plates
Electric field lines

Insulator

C

Figure TF9-4 Concentric-plate capacitor.

External object

(a) Adjacent-plates
capacitor

(b) Perturbation
field

C0 C ≠ C0

Figure TF9-5 (a) Adjacent-plates capacitor; (b) perturbation

field.

purpose of which is to keep the plate surfaces clean and
dust free.

◮ The introduction of an external object into the
proximity of the capacitor (Fig. TF9-5(b)) changes
the effective permittivity of the medium, perturbs the
electric field lines, and modifies the charge distribu-
tion on the plates. ◭

This, in turn, changes the value of the capacitance as it
would be measured by a capacitance meter or bridge
circuit . Hence, the capacitor becomes a proximity
sensor, and its sensitivity depends, in part, on how
different the permittivity of the external object is from that
of the unperturbed medium and on whether it is or is not
made of a conductive material.

Fingerprint Imager

An interesting extension of noncontact capacitive sen-
sors is the development of a fingerprint imager consisting
of a two-dimensional array of capacitive sensor cells
constructed to record an electrical representation of a
fingerprint (Fig. TF9-6). Each sensor cell is composed of
an adjacent-plates capacitor connected to a capacitance
measurement circuit (Fig. TF9-7). The entire surface of
the imager is covered by a thin layer of nonconductive
oxide. When the finger is placed on the oxide surface,
it perturbs the field lines of the individual sensor cells to
varying degrees, depending on the distance between the
ridges and valleys of the finger’s surface from the sensor
cells.

◮ Given that the dimensions of an individual sensor
are on the order of 65 µm on the side, the imager
is capable of recording a fingerprint image at a
resolution corresponding to 400 dots per inch or
better. ◭
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Figure TF9-6 Elements of a fingerprint matching system. (Courtesy of IEEE Spectrum.)

Figure TF9-7 Fingerprint representation.
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Exercise 4-16: Find E1 in Fig. 4-21 if

E2 = x̂2− ŷ3 + ẑ3 (V/m),

ε1 = 2ε0,

ε2 = 8ε0,

and the boundary is charge-free.

Answer: E1 = x̂2− ŷ3 + ẑ12 (V/m). (See EM .)

Exercise 4-17: Repeat Exercise 4.16 for a boundary with

surface charge density ρs = 3.54×10−11 (C/m2).

Answer: E1 = x̂2− ŷ3 + ẑ14 (V/m). (See EM .)

4-8.1 Dielectric-Conductor Boundary

Consider the case when medium 1 is a dielectric and medium 2
is a perfect conductor. In a perfect conductor, because electric

fields and fluxes vanish, it follows that E2 = D2 = 0, which

implies that components of E2 and D2 tangential and normal
to the interface are zero. Consequently, from Eq. (4.100) and

Eq. (4.104), the fields in the dielectric medium at the boundary

with the conductor satisfy

E1t = D1t = 0, (4.110a)

D1n = ε1E1n = ρs. (4.110b)

These two boundary conditions can be combined into

D1 = ε1E1 = n̂ρs,

(at conductor surface)

(4.111)

where n̂ is a unit vector directed normally outward from the
conducting surface.

◮ The electric field lines point directly away from the

conductor surface when ρs is positive and directly toward

the conductor surface when ρs is negative. ◭

Figure 4-22 shows an infinitely long conducting slab placed

in a uniform electric field E1. The media above and below the

slab have permittivity ε1. Because E1 points away from the
upper surface, it induces a positive charge density ρs = ε1|E1|
on the upper slab surface. On the bottom surface, E1 points
toward the surface; therefore, the induced charge density is

−ρs. The presence of these surface charges induces an electric

field Ei in the conductor, resulting in a total field E = E1 +Ei.
To satisfy the condition that E must be everywhere zero in the

conductor, Ei must equal −E1.

If we place a metallic sphere in an electrostatic field
(Fig. 4-23), positive and negative charges accumulate on the

upper and lower hemispheres, respectively. The presence of

the sphere causes the field lines to bend to satisfy the condition
expressed by Eq. (4.111); that is, E is always normal to a
conductor boundary.

E1 E1 E1

E1 E1 E1Ei Ei Ei

+ + + + +

– – – – – – – – – – –– – – – –

+ + + + + + + ++ + +

ρs = ε1E1

−ρs

Conducting slab

ε1

ε1

Figure 4-22 When a conducting slab is placed in an external electric field E1, charges that accumulate on the conductor surfaces induce

an internal electric field Ei = −E1. Consequently, the total field inside the conductor is zero.
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Module 4.2 Charges in Adjacent Dielectrics In two adjoining half-planes with selectable permittivities, the user can
place point charges anywhere in space and select their magnitudes and polarities. The module then displays E, V , and the

equipotential contours of V .

–

E0

metal
sphere

+ + +
+

+
+

+
+

+
+

– –
––

–
–

–
–

–

Figure 4-23 Metal sphere placed in an external electric

field E0.

4-8.2 Conductor–Conductor Boundary

We now examine the general case of the boundary between

two media—neither of which is a perfect dielectric or a perfect
conductor (Fig. 4-24). Medium 1 has permittivity ε1 and

conductivity σ1, medium 2 has ε2 and σ2, and the interface

between them holds a surface charge density ρs. For the
electric fields, Eqs. (4.100) and (4.105b) give

E1t = E2t, ε1E1n − ε2E2n = ρs. (4.112)

Since we are dealing with conducting media, the electric fields

give rise to current densities J1 = σ1E1 and J2 = σ2E2. Hence,

J1t

σ1

=
J2t

σ2

, ε1

J1n

σ1

− ε2

J2n

σ2

= ρs. (4.113)

The tangential current components J1t and J2t represent cur-

rents flowing in the two media in a direction parallel to the
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Medium 1
ε1, σ1

Medium 2
ε2, σ2

J1n

J2n

J1t

J2t

J1

J2

n̂

Figure 4-24 Boundary between two conducting media.

boundary; hence, there is no transfer of charge between them.

This is not the case for the normal components. If J1n 6= J2n,

then a different amount of charge arrives at the boundary than
leaves it. Hence, ρs cannot remain constant in time, which

violates the condition of electrostatics requiring all fields

and charges to remain constant. Consequently, the normal

component of J has to be continuous across the boundary

between two different media under electrostatic conditions.

Upon setting J1n = J2n in Eq. (4.113), we have

J1n

(
ε1

σ1

− ε2

σ2

)
= ρs (electrostatics). (4.114)

Concept Question 4-22: What are the boundary con-

ditions for the electric field at a conductor–dielectric

boundary?

Concept Question 4-23:

Under electrostatic conditions, we require J1n = J2n

at the boundary between two conductors. Why?

4-9 Capacitance

When separated by an insulating (dielectric) medium, any two
conducting bodies, regardless of their shapes and sizes, form

a capacitor. If a dc voltage source is connected across them

(Fig. 4-25) the surfaces of the conductors connected to the
positive and negative source terminals accumulate charges +Q

and −Q, respectively.

–
– – –

–

–
––––

–

E

Surface S

V
+

–

ρs

+ + + +
+

+

++++

+ +Q

Conductor 1

−Q
Conductor 2

Figure 4-25 A dc voltage source connected to a capacitor

composed of two conducting bodies.

◮ When a conductor has excess charge, it distributes the

charge on its surface in such a manner as to maintain
a zero electric field everywhere within the conductor,

thereby ensuring that the electric potential is the same at

every point in the conductor. ◭

The capacitance of a two-conductor configuration is defined

as

C =
Q

V
(C/V or F), (4.115)

where V is the potential (voltage) difference between the
conductors. Capacitance is measured in farads (F), which is

equivalent to coulombs per volt (C/V).
The presence of free charges on the conductors’ surfaces

gives rise to an electric field E (Fig. 4-25) with field lines

originating on the positive charges and terminating on the
negative ones. Since the tangential component of E always

vanishes at a conductor’s surface, E is always perpendicular

to the conducting surfaces. The normal component of E at any
point on the surface of either conductor is given by

En = n̂ ·E =
ρs

ε
,

(at conductor surface)

(4.116)

where ρs is the surface charge density at that point, n̂ is

the outward normal unit vector at the same location, and ε
is the permittivity of the dielectric medium separating the
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Module 4.3 Charges above a Conducting Plane When electric charges are placed in a dielectric medium adjoining
a conducting plane, some of the conductor’s electric charges move to its surface boundary, thereby satisfying the boundary

conditions outlined in Table 4-3. This module displays E and V everywhere and ρs along the dielectric–conductor boundary.

conductors. The charge Q is equal to the integral of ρs over

surface S (Fig. 4-25):

Q =

∫

S

ρs ds =

∫

S

εn̂ ·E ds =

∫

S

εE ·ds, (4.117)

where use was made of Eq. (4.116). The voltage V is related

to E by Eq. (4.39):

V = V12 = −
∫

P1

P2

E ·dl, (4.118)

where points P1 and P2 are any two arbitrary points on

conductors 1 and 2, respectively. Substituting Eqs. (4.117) and

(4.118) into Eq. (4.115) gives

C =

∫

S

εE ·ds

−
∫

l

E ·dl

(F), (4.119)

where l is the integration path from conductor 2 to conductor 1.

To avoid making sign errors when applying Eq. (4.119), it is
important to remember that surface S is the +Q surface and

P1 is on S. [Alternatively, if you compute C and it comes out

negative, just change its sign.] Because E appears in both the
numerator and denominator of Eq. (4.119), the value of C

obtained for any specific capacitor configuration is always

independent of E’s magnitude. In fact, C depends only on the
capacitor geometry (sizes, shapes and relative positions of the

two conductors) and the permittivity of the insulating material.
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Module 4.4 Charges near a Conducting Sphere This module is similar to Module 4.3, except that now the conducting
body is a sphere of selectable size.

If the material between the conductors is not a perfect

dielectric (i.e., if it has a small conductivity σ ), then current
can flow through the material between the conductors, and the

material exhibits a resistance R. The general expression for R

for a resistor of arbitrary shape is given by Eq. (4.81):

R =
−

∫

l

E ·dl
∫

S

σE ·ds

(Ω). (4.120)

For a medium with uniform σ and ε , the product of
Eqs. (4.119) and (4.120) gives

RC =
ε

σ
. (4.121)

This simple relation allows us to find R if C is known, and vice

versa.

Example 4-14: Capacitance of Parallel-Plate
Capacitor

Obtain an expression for the capacitance C of a parallel-plate

capacitor comprised of two parallel plates each of surface
area A and separated by a distance d. The capacitor is filled

with a dielectric material with permittivity ε .

Solution: In Fig. 4-26, we place the lower plate of the capac-

itor in the x–y plane and the upper plate in the plane z = d.
Because of the applied voltage difference V , charges +Q and

−Q accumulate on the top and bottom capacitor plates. If the

plate dimensions are much larger than the separation d, then
these charges distribute themselves quasi-uniformly across

the plates, giving rise to a quasi-uniform field between them

pointing in the −ẑ direction. In addition, a fringing field will
exist near the capacitor edges, but its effects may be ignored

because the bulk of the electric field exists between the plates.
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Figure 4-26 A dc voltage source connected to a parallel-plate capacitor (Example 4-14).

The charge density on the upper plate is ρs = Q/A. Hence, in

the dielectric medium

E = −ẑE ,

and from Eq. (4.116), the magnitude of E at the conductor–

dielectric boundary is E = ρs/ε = Q/εA. From Eq. (4.118),

the voltage difference is

V = −
∫

d

0
E ·dl = −

∫
d

0
(−ẑE) · ẑ dz = Ed, (4.122)

and the capacitance is

C =
Q

V
=

Q

Ed
=

εA

d
, (4.123)

where use was made of the relation E = Q/εA.

Example 4-15: Capacitance per Unit Length
of Coaxial Line

Obtain an expression for the capacitance of the coaxial line

shown in Fig. 4-27.

Solution: For a given voltage V across the capacitor, charges

+Q and −Q accumulate on the surfaces of the outer and inner
conductors, respectively. We assume that these charges are

uniformly distributed along the length and circumference of

the conductors with surface charge density ρ ′
s = Q/2πbl on

the outer conductor and ρ ′′
s = −Q/2πal on the inner one.

Ignoring fringing fields near the ends of the coaxial line, we
can construct a cylindrical Gaussian surface in the dielectric in

between the conductors with the radius r such that a < r < b.

Symmetry implies that the E-field is identical at all points on
this surface, which is directed radially inward. From Gauss’s

law, it follows that the field magnitude equals the absolute

+ + + + + + + + + + + +

+ + + + + + + + + + + +

– – – – – – – – – – –

+

– –

– – – – – – – – – – – –

+

–

V
+

– b

a

ρl
–ρl

l

E E E

E E E
Dielectric material ε

Outer conductor

Inner conductor

Figure 4-27 Coaxial capacitor filled with insulating material of permittivity ε (Example 4-15).
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value of the total charge enclosed, divided by the surface area.
That is,

E = −r̂
Q

2πεrl
. (4.124)

The potential difference V between the outer and inner con-

ductors is

V = −
∫

b

a

E ·dl = −
∫

b

a

(
−r̂

Q

2πεrl

)
· (r̂ dr)

=
Q

2πεl
ln

(
b

a

)
. (4.125)

The capacitance C is then given by

C =
Q

V
=

2πεl

ln(b/a)
, (4.126)

and the capacitance per unit length of the coaxial line is

C
′ =

C

l
=

2πε

ln(b/a)
(F/m). (4.127)

Concept Question 4-24: How is the capacitance of a

two-conductor structure related to the resistance of the
insulating material between the conductors?

Concept Question 4-25: What are fringing fields and

when may they be ignored?

4-10 Electrostatic Potential Energy

A source connected to a capacitor expends energy in charging

up the capacitor. If the capacitor plates are made of a good
conductor with effectively zero resistance, and if the dielectric

separating the two plates has negligible conductivity, then no
real current can flow through the dielectric, and no ohmic

losses occur anywhere in the capacitor. Where then does the

energy expended in charging up the capacitor go? The energy
ends up getting stored in the dielectric medium in the form of

electrostatic potential energy. The amount of stored energy We

is related to Q, C, and V .
Suppose we were to charge up a capacitor by ramping up

the voltage across it from υ = 0 to υ = V . During the process,

charge +q accumulates on one conductor and −q on the other.
In effect, a charge q has been transferred from one of the

conductors to the other. The voltage υ across the capacitor is

related to q by

υ =
q

C
. (4.128)

From the definition of υ , the amount of work dWe required
to transfer an additional incremental charge dq from one

conductor to the other is

dWe = υ dq =
q

C
dq. (4.129)

If we transfer a total charge Q between the conductors of an

initially uncharged capacitor, then the total amount of work
performed is

We =

∫
Q

0

q

C
dq =

1

2

Q
2

C
(J). (4.130)

Using C = Q/V , where V is the final voltage, We also can be
expressed as

We = 1
2
CV

2 (J). (4.131)

The capacitance of the parallel-plate capacitor discussed in
Example 4-14 is given by Eq. (4.123) as C = εA/d, where A is

the surface area of each of its plates and d is the separation

between them. Also, the voltage V across the capacitor is
related to the magnitude of the electric field E in the dielectric

by V = Ed. Using these two expressions in Eq. (4.131) gives

We = 1
2

εA

d
(Ed)2 = 1

2
εE

2(Ad) = 1
2

εE
2υ , (4.132)

where υ = Ad is the volume of the capacitor. This expression
affirms the assertion made at the beginning of this section,

namely that the energy expended in charging up the capacitor

is being stored in the electric field present in the dielectric
material in between the two conductors.

The electrostatic energy density we is defined as the electro-

static potential energy We per unit volume:

we =
We

υ
=

1

2
εE

2 (J/m3). (4.133)

Even though this expression was derived for a parallel-plate

capacitor, it is equally valid for any dielectric medium contain-

ing an electric field E, including a vacuum. Furthermore, for
any volume υ , the total electrostatic potential energy stored in

it is

We =
1

2

∫

υ
εE

2
dυ (J). (4.134)

Returning to the parallel-plate capacitor, the oppositely
charged plates are attracted to each other by an electrical
force Fe. In terms of the coordinate system of Fig. 4-28, the
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Figure 4-28 A dc voltage source connected to a parallel-plate capacitor.

electrical force acting on the upper plate is along −ẑ (due to

attraction by the lower plate). Hence, it is given by

Fe = −ẑ Fe (force on upper plate). (4.135)

Our plan is to compute Fe from energy considerations. We

start by converting the spacing d into a variable z and using
C = εA/z in Eq. (4.131):

We = 1
2

CV
2 = 1

2

εAV
2

z
. (4.136)

If V is maintained at a constant level, We decreases when

increasing the separation z between the plates. If an external,

upward-directed force F = −Fe is applied to counter the
electrostatic force Fe and used to move the upper plate upwards

by a distance dz, the expended mechanical work is

dW = F · ẑ dz. (4.137)

The work dW is equal to the loss in electrostatic energy stored

in the capacitor. That is,

dW = −dWe. (4.138)

Also, Fe = −F, which leads to

dWe = Fe · ẑ dz = −ẑ Fe · ẑ dz = −Fe dz. (4.139)

From Eq. (4.136),

dWe = − 1
2

ε
AV

2

z2
dz. (4.140)

Equating Eqs. (4.139) and (4.140) and replacing z with d leads

to

Fe = 1
2

ε
AV

2

d2
, (4.141a)

and

Fe = −ẑ 1
2

εA
V

2

d2
(N).

(parallel-plate capacitor)

(4.141b)

This is the electrostatic force exerted on the upper plate. The
force on the lower plate is identical in magnitude and opposite

in direction.

The relationship given by Eq. (4.139) pertains to a capacitor
with dl = ẑ dz. We can generalize the result for dl along any

direction as

Fe = −∇We. (4.142)

Example 4-16: Force on Sliding Dielectric

The two plates of the parallel-plate capacitor shown in

Fig. 4-29 are each of length ℓ and width w, and the separation

between them is d. The capacitor contains a dielectric block of
dimensions ℓ×w× d and permittivity ε . The block can slide

in and out of the capacitor cavity along its length dimension.

Compute the force Fe acting on the dielectric block when it
is partially outside of the cavity and the voltage across the

capacitor is V .

Solution: From Eq. (4.122), the electric field inside the

capacitor cavity is

E =
V

d
.

This is true in both the section containing the dielectric block

and the section filled with air. The total electrostatic energy of
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Figure 4-29 Parallel-plate capacitor with slidable dielectric block.

the capacitor consists of two components: one for the volume

containing the dielectric block of permittivity ε and volume

υ1 = xwd, and another for the volume containing air with ε0

and volume υ2 = (ℓ− x)wd. Hence,

We = 1
2

εE
2υ1 + 1

2
ε0E

2υ2

= 1
2

ε

(
V

d

)2

xwd + 1
2

ε0

(
V

d

)2

(ℓ− x)wd

= 1
2

V
2

d
w[εx + ε0(ℓ− x)]. (4.143)

Since ε > ε0, the electrostatic energy is maximum when x = ℓ
(dielectric block fully inside the cavity). Sliding the dielec-
tric block out of the capacitor requires exerting an external

mechanical force F to oppose the electrostatic force Fe, whose

tendency is to oppose reduction in We. Thus, the direction of
Fe is to pull the block back into the capacitor.

The magnitude of Fe can be obtained from

Fe =
dWe

dx

=
d

dx

[
1

2

V
2

d
w[εx + ε0(ℓ− x)]

]

=
1

2

V
2

d
w(ε − ε0). (4.144)

Concept Question 4-26: To bring a charge q from

infinity to a given point in space, a certain amount of
work W is expended. Where does the energy correspond-

ing to W go?

Concept Question 4-27: When a voltage source is con-

nected across a capacitor, what is the direction of the

electrical force acting on its two conducting surfaces?

Exercise 4-18: The radii of the inner and outer conductors
of a coaxial cable are 2 cm and 5 cm, respectively, and

the insulating material between them has a relative per-

mittivity of 4. The charge density on the outer conductor
is ρℓ = 10−4 (C/m). Use the expression for E derived in

Example 4-15 to calculate the total energy stored in a

20 cm length of the cable.

Answer: We = 4.1 J. (See EM .)

4-11 Image Method

Consider a point charge Q at a distance d above a horizontally

infinite, perfectly conducting plate (Fig. 4-30(a)). We want to
determine V and E at any point in the space above the plate,

as well as the surface charge distribution on the plate. Three

different methods for finding E have been introduced in this
chapter The first method, based on Coulomb’s law, requires

knowledge of the magnitudes and locations of all the charges.

In the present case, the charge Q induces an unknown and
nonuniform distribution of charge on the plate. Hence, we

cannot utilize Coulomb’s method. The second method, based
on Gauss’s law, is equally difficult to use because it is not

clear how to construct a Gaussian surface across which E is

only tangential or only normal. The third method is based
on evaluating the electric field using E = −∇V after solving

Poisson’s or Laplace’s equation for V subject to the available

boundary conditions, but it is mathematically involved.
Alternatively, the problem at hand can be solved using

image theory.
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(a)  Charge Q above grounded plane (b)  Equivalent configuration

Electric field
lines

V = 0d

d

Q

−Q

ε

ε

+

–

V = 0 d

z

Q

σ = ∞

ε
+

n̂

Figure 4-30 By image theory, a charge Q above a grounded, perfectly conducting plane is equivalent to Q and its image −Q with the

grounded plane removed.

◮ Any given charge configuration above an infinite,
perfectly conducting plane is electrically equivalent to the

combination of the given charge configuration and its im-

age configuration with the conducting plane removed. ◭

The image-method equivalent of the charge Q above a

conducting plane is shown in the right-hand section of
Fig. 4-30. It consists of the charge Q itself and an image

charge −Q at a distance 2d from Q with nothing else between

them. The electric field due to the two isolated charges can now
be easily found at any point (x,y,z) by applying Coulomb’s

method, as demonstrated by Example 4-17. By symmetry, the

combination of the two charges always produces a potential
V = 0 at every point in the plane previously occupied by the

conducting surface. If the charge resides in the presence of
more than one grounded plane, it is necessary to establish its

images relative to each of the planes and then to establish

images of each of those images against the remaining planes.

The process is continued until the condition V = 0 is satisfied

everywhere on all grounded planes. The image method applies

not only to point charges but also to distributions of charge,
such as the line and volume distributions depicted in Fig. 4-31.

Once E has been determined, the charge induced on the plate

can be found from

ρs = (n̂ ·E)ε0, (4.145)

where n̂ is the normal unit vector to the plate (Fig. 4-30(a)).

Example 4-17: Image Method for Charge
above Conducting Plane

Use image theory to determine E at an arbitrary point

P = (x,y,z) in the region z > 0 due to a charge Q in free space

at a distance d above a grounded conducting plate residing in
the z = 0 plane.

(a)  Charge distributions above grounded plane (b)  Equivalent distributions

V = 0

ρl ρv

σ = ∞

ε

ρl

–ρl

ρv

–ρv

ε

ε

V = 0

Figure 4-31 Charge distributions above a conducting plane and their image-method equivalents.
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Solution: In Fig. 4-32, charge Q is at (0,0,d), and its
image −Q is at (0,0,−d). From Eq. (4.19), the electric field at

point P(x,y,z) due to the two charges is given by the following

equation.

Q = (0, 0, d)

P = (x, y, z)

–Q = (0, 0, –d)

R1

R2

z = 0  plane

z

+

–

Figure 4-32 Application of the image method for finding E at

point P (Example 4-17).

E =
1

4πε0

(
QR1

R3
1

+
−QR2

R3
2

)

=
Q

4πε0

[
x̂x + ŷy + ẑ(z−d)

[x2 + y2 +(z−d)2]3/2
− x̂x + ŷy + ẑ(z+ d)

[x2 + y2 +(z+ d)2]3/2

]

for z ≥ 0.

Concept Question 4-28: What is the fundamental
premise of the image method?

Concept Question 4-29: Given a charge distribution,

what are the various approaches described in this chapter

for computing the electric field E at a given point in space?

Exercise 4-19: Use the result of Example 4-17 to find the
surface charge density ρs on the surface of the conducting

plane.

Answer: ρs = −Qd/[2π(x2 + y
2 + d

2)3/2]. (See EM .)

Chapter 4 Summary

Concepts

• Maxwell’s equations are the fundamental tenets of
electromagnetic theory.

• Under static conditions, Maxwell’s equations separate

into two uncoupled pairs with one pair pertaining to
electrostatics and the other to magnetostatics.

• Coulomb’s law provides an explicit expression for the

electric field due to a specified charge distribution.
• Gauss’s law states that the total electric field flux

through a closed surface is equal to the net charge

enclosed by the surface.
• The electrostatic field E at a point is related to the

electric potential V at that point by E = −∇V with V

often being referenced to zero at infinity.
• Because most metals have conductivities on the order

of 106 (S/m), they are treated in practice as perfect
conductors. By the same token, insulators with conduc-

tivities smaller than 10−10 (S/m) often are treated as
perfect dielectrics.

• Boundary conditions at the interface between two mate-

rials specify the relations between the normal and
tangential components of D, E, and J in one of the

materials to the corresponding components in the other.

• The capacitance of a two-conductor body and resis-
tance of the medium between them can be computed

from knowledge of the electric field in that medium.

• The electrostatic energy density stored in a dielectric
medium is we = 1

2
εE

2 (J/m3).

• When a charge configuration exists above an infinite,

perfectly conducting plane, the induced field E is the
same as that due to the configuration itself and its image

with the conducting plane removed.
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Mathematical and Physical Models

Maxwell’s Equations for Electrostatics

Name Differential Form Integral Form

Gauss’s law ∇ ·D = ρv

∫

S

D ·ds = Q

Kirchhoff’s law ∇×××E = 0

∫

C

E ·dl = 0

Electric Field

Current density J = ρvu

Poisson’s equation ∇2
V = −ρv

ε

Laplace’s equation ∇2
V = 0

Resistance R =
−

∫

l

E ·dl
∫

S

σE ·ds

Boundary conditions Table 4-3

Capacitance C =

∫

S

εE ·ds

−
∫

l

E ·dl

RC relation RC =
ε

σ

Energy density we = 1
2
εE

2

Point charge E = R̂
q

4πεR2

Many point charges E =
1

4πε

N

∑
i=1

qi(R−Ri)

|R−Ri|3

Volume distribution E =
1

4πε

∫

υ ′
R̂
′ ρv dυ ′

R′2

Surface distribution E =
1

4πε

∫

S′
R̂
′ ρs ds

′

R′2

Line distribution E =
1

4πε

∫

l′
R̂
′ ρℓ dl

′

R′2

Infinite sheet of charge E = ẑ
ρs

2ε0

Infinite line of charge E =
D

ε0

= r̂
Dr

ε0

= r̂
ρℓ

2πε0r

Dipole E =
qd

4πε0R3
(R̂2cosθ + θ̂θθsin θ )

Relation to V E = −∇V
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Important Terms Provide definitions or explain the meaning of the following terms:

boundary conditions

capacitance C

charge density

conductance G

conduction current
conductivity σ
conductor
conservative field

constitutive parameters

convection current
Coulomb’s law

current density J

dielectric breakdown voltage Vbr

dielectric material

dielectric strength Eds

dipole moment p

electric dipole

electric field intensity E

electric flux density D

electric potential V

electric susceptibility χe

electron drift velocity ue

electron mobility µe

electrostatic energy density we

electrostatic potential energy We

electrostatics

equipotential
Gaussian surface

Gauss’s law

hole drift velocity uh

hole mobility µh

homogeneous material

image method
isotropic material

Joule’s law

Kirchhoff’s voltage law
Laplace’s equation

linear material

Ohm’s law
perfect conductor

perfect dielectric
permittivity ε
Poisson’s equation

polarization vector P

relative permittivity εr

semiconductor

static condition
superconductor

volume, surface, and line

charge densities

PROBLEMS

Sections 4-2: Charge and Current Distributions

4.1 Find the total charge contained in a cylindrical volume

defined by r ≤ 2 m and 0 ≤ z ≤ 3 m if ρv = 30rz (mC/m3).

∗
4.2 A cube 2 m on a side is located in the first octant in
a Cartesian coordinate system, with one of its corners at the

origin. Find the total charge contained in the cube if the charge

density is given by ρv = xy
2
e
−2z (mC/m3).

∗
4.3 Find the total charge contained in a round-top cone
defined by R ≤ 2 m and 0 ≤ θ ≤ π/4, given that

ρv = 30R
2 cos2 θ (mC/m3).

4.4 If the line charge density is given by ρl = 12y
2 (mC/m),

find the total charge distributed on the y axis from y = −5 to
y = 5.

4.5 Find the total charge on a circular disk defined by r ≤ a

and z = 0 if:

(a) ρs = ρs0 cosφ (C/m2)

(b) ρs = ρs0 sin2 φ (C/m2)

(c) ρs = ρs0e
−r (C/m2)

(d) ρs = ρs0e
−r sin2 φ (C/m2)

where ρs0 is a constant.

4.6 If J = ŷ6xz (A/m2), find the current I flowing through a

square with corners at (0,0,0), (2,0,0), (2,0,2), and (0,0,2).

∗
Answer(s) available in Appendix E.

∗
4.7 If J = R̂5/R (A/m2), find I through the surface R = 5 m.

4.8 A circular beam of charge of radius a consists of elec-

trons moving with a constant speed u along the +z direction.
The beam’s axis is coincident with the z axis and the electron

charge density is given by

ρv = −cr
2 (c/m3)

where c is a constant and r is the radial distance from the axis
of the beam.
∗

(a) Determine the charge density per unit length.

(b) Determine the current crossing the z-plane.

4.9 An electron beam shaped like a circular cylinder of
radius r0 carries a charge density given by

ρv =

( −ρ0

1 + r2

)
(C/m3)

where ρ0 is a positive constant and the beam’s axis is coinci-

dent with the z-axis.

(a) Determine the total charge contained in length L of the

beam.

(b) If the electrons are moving in the +z-direction with

uniform speed u, determine the magnitude and direction

of the current crossing the z-plane.

4.10 A line of charge of uniform density ρℓ occupies a

semicircle of radius b as shown in Fig. P4.10. Use the material
presented in Example 4-4 to determine the electric field at the

origin.



236 CHAPTER 4 ELECTROSTATICS

x

y

b

z

ρl

Figure P4.10 Problem 4.10.

Section 4-3: Coulomb’s Law

∗
4.11 A square with sides of 2 m has a charge of 40 µC at

each of its four corners. Determine the electric field at a point
5 m above the center of the square.

∗
4.12 Charge q1 = 6 µC is located at (1 cm,1 cm,0) and

charge q2 is located at (0,0,4 cm). What should q2 be so that

E at (0, 2 cm, 0) has no y component?

4.13 Three point charges, each with q = 3 nC, are located at

the corners of a triangle in the x–y plane, with one corner at

the origin, another at (2 cm,0,0), and the third at (0,2 cm,0).
Find the force acting on the charge located at the origin.

4.14 A line of charge with uniform density ρℓ = 8 (µC/m)
exists in air along the z-axis between z = 0 and z = 5 cm. Find

E at (0,10 cm,0).

4.15 Electric charge is distributed along an arc located in the
x–y plane and defined by r = 2 cm and 0 ≤ φ ≤ π/4. If ρℓ =
5 (µC/m), find E at (0,0,z) and then evaluate it at:
∗

(a) the origin,

(b) z = 5 cm, and

(c) z = −5 cm.

4.16 A line of charge with uniform density ρl extends
between z = −L/2 and z = L/2 along the z-axis. Apply

Coulomb’s law to obtain an expression for the electric field

at any point P(r,φ ,0) on the x–y plane. Show that your result
reduces to the expression given by (4.33) as the length L is

extended to infinity.

∗
4.17 Repeat Example 4-5 for the circular disk of charge of

radius a, but in the present case, assume the surface charge
density to vary with r as

ρs = ρs0r
2 (C/m2)

where ρs0 is a constant.

4.18 Multiple charges at different locations are said to be in

equilibrium if the force acting on any one of them is identical

in magnitude and direction to the force acting on any of the
others. Suppose we have two negative charges, one located

at the origin and carrying charge −9e, and the other located

on the positive x-axis at a distance d from the first one and
carrying charge −36e. Determine the location, polarity and

magnitude of a third charge whose placement would bring the

entire system into equilibrium.

4.19 Three infinite lines of charge, all parallel to the z-axis,

are located at the three corners of the kite-shaped arrangement
shown in Fig. P4.19. If the two right triangles are symmetrical

and of equal corresponding sides, show that the electric field is

zero at the origin.

y

x

−2ρl

ρl ρl

Figure P4.19 Kite-shaped arrangment of line charges for

Problem 4.19.

∗
4.20 Three infinite lines of charge, ρl1

= 3 (nC/m), ρl2
= −3

(nC/m), and ρl3
= 3 (nC/m), are all parallel to the z-axis. If they

pass through the respective points (0,−b), (0,0), and (0,b) in

the x–y plane, find the electric field at (a,0,0). Evaluate your

result for a = 2 cm and b = 1 cm.

4.21 Given the electric flux density

D = x̂2(x + y)+ ŷ(3x−2y) (C/m2)

determine

(a) ρv by applying Eq. (4.26).

(b) The total charge Q enclosed in a cube 2 m on a side,

located in the first octant with three of its sides coincident

with the x-, y-, and z-axes and one of its corners at the
origin.

(c) The total charge Q in the cube, obtained by applying

Eq. (4.29).



PROBLEMS 237

4.22 A horizontal strip lying in the x–y plane is of width d

in the y-direction and infinitely long in the x-direction. If the

strip is in air and has a uniform charge distribution ρs, use

Coulomb’s law to obtain an explicit expression for the electric
field at a point P located at a distance h above the centerline

of the strip. Extend your result to the special case where d is

infinite and compare it with Eq. (4.25).

∗
4.23 Repeat Problem 4.21 for D = x̂xy

3
z

3 (C/m2).

4.24 Charge Q1 is uniformly distributed over a thin spherical

shell of radius a, and charge Q2 is uniformly distributed over a
second spherical shell of radius b, with b > a. Apply Gauss’s

law to find E in the regions R < a, a < R < b, and R > b.

∗
4.25 The electric flux density inside a dielectric sphere of

radius a centered at the origin is given by

D = R̂ρ0R (C/m2)

where ρ0 is a constant. Find the total charge inside the sphere.

∗
4.26 An infinitely long cylindrical shell extending between

r = 1 m and r = 2 m contains a uniform charge density ρv0.

Apply Gauss’s law to find D in all regions.

4.27 In a certain region of space, the charge density is given

in cylindrical coordinates by the function:

ρv = 50re
−r (C/m3)

Apply Gauss’s law to find D.

4.28 If the charge density increases linearly with distance
from the origin such that ρv = 0 at the origin and ρv = 40 C/m3

at R = 2 m, find the corresponding variation of D.

4.29 A spherical shell with outer radius b surrounds a charge-

free cavity of radius a < b (Fig. P4.29). If the shell contains a
charge density given by

ρv = −ρv0

R2
, a ≤ R ≤ b,

where ρv0 is a positive constant, determine D in all regions.

Section 4-5: Electric Potential

∗
4.30 A square in the x–y plane in free space has a point
charge of +Q at corner (a/2,a/2), the same at corner

(a/2,−a/2), and a point charge of −Q at each of the other

two corners.

(a) Find the electric potential at any point P along the x-axis.

(b) Evaluate V at x = a/2.

b

r3

r1
a

ρv

r2

Figure P4.29 Problem 4.29.

4.31 The circular disk of radius a shown in Fig. 4-7 has

uniform charge density ρs across its surface.

(a) Obtain an expression for the electric potential V at a point
P = (0,0,z) on the z-axis.

(b) Use your result to find E and then evaluate it for z = h.

Compare your final expression with (4.24), which was
obtained on the basis of Coulomb’s law.

4.32 Show that the electric potential difference V12 between

two points in air at radial distances r1 and r2 from an
infinite line of charge with density ρℓ along the z axis is

V12 = (ρℓ/2πε0) ln(r2/r1).

4.33 A circular ring of charge of radius a lies in the x–y plane
and is centered at the origin. Assume also that the ring is in air

and carries a uniform density ρℓ.

(a) Show that the electrical potential at (0,0,z) is given by

V = ρℓa/[2ε0(a
2 + z

2)1/2].

∗
(b) Find the corresponding electric field E.

∗
4.34 Find the electric potential V at a location a distance b

from the origin in the x–y plane due to a line charge with charge
density ρℓ and of length l. The line charge is coincident with

the z-axis and extends from z = −l/2 to z = l/2.

4.35 For the electric dipole shown in Fig. 4-13, d = 1 cm and
|E|= 8 (mV/m) at R = 1 m and θ = 0◦. Find E at R = 2 m and

θ = 90◦.
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4.36 For each of the distributions of the electric potential V

shown in Fig. P4.36, sketch the corresponding distribution of

E (in all cases, the vertical axis is in volts and the horizontal

axis is in meters).

3

3 6 9 12 15

30

−30

4

− 4

5 8 11 13 16

V

V

x

(a)

(b)

x

3 6 9 12 15

4

− 4

V

(c)

x

Figure P4.36 Electric potential distributions of Problem 4.36.

∗
4.37 As shown in Fig. P4.37, two infinite lines of charge,
both parallel to the z-axis, lie in the x–z plane, one with

density ρℓ and located at x = a and the other with density −ρℓ

and located at x = −a. Obtain an expression for the electric
potential V (x,y) at a point P = (x,y) relative to the potential at

the origin.

x

y

(−a, 0)

−ρl ρl

(a, 0)

P = (x, y)

r'r''

Figure P4.37 Problem 4.37.

4.38 Given the electric field

E = R̂
18

R2
(V/m)

find the electric potential of point A with respect to point B

where A is at +2 m and B at −4 m, both on the z-axis.

4.39 The x–y plane contains a uniform sheet of charge with

ρs1
= 0.2 (nC/m2). A second sheet with ρs2

= −0.2 (nC/m2)

occupies the plane z = 6 m. Find VAB, VBC, and VAC for
A(0,0,6 m), B(0,0,0), and C(0,−2 m,2 m).

∗
4.40 An infinitely long line of charge with uniform density

ρl = 18 (nC/m) lies in the x–y plane parallel to the y-axis

at x = 2 m. Find the potential VAB at point A(3 m,0,4 m)
in Cartesian coordinates with respect to point B(0,0,0) by

applying the result of Problem 4.32.

Section 4-6: Conductors

4.41 A cylindrical bar of silicon has a radius of 4 mm and

a length of 8 cm. If a voltage of 5 V is applied between the
ends of the bar and µe = 0.13 (m2/V·s), µh = 0.05 (m2/V·s),

Ne = 1.5×1016 electrons/m3, and Nh = Ne, find the following:

(a) the conductivity of silicon,

(b) the current I flowing in the bar,
∗

(c) the drift velocities ue and uh,

(d) the resistance of the bar, and

(e) the power dissipated in the bar.

4.42 Repeat Problem 4.41 for a bar of germanium with µe =
0.4 (m2/V·s), µh = 0.2 (m2/V·s), and Ne = Nh = 4.8×1019

electrons or holes/m3.

4.43 A coaxial resistor of length l consists of two concen-

tric cylinders. The inner cylinder has radius a and is made
of a material with conductivity σ1, and the outer cylinder,

extending between r = a and r = b, is made of a material with

conductivity σ2. If the two ends of the resistor are capped with
conducting plates, show that the resistance between the two

ends is R = l/[π(σ1a
2 + σ2(b

2 −a
2))].
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4.44 A 100 m long conductor of uniform cross-section has
a voltage drop of 4 V between its ends. If the density of the

current flowing through it is 1.4 × 106 (A/m2), identify the

material of the conductor.

∗
4.45 Apply the result of Problem 4.44 to find the resistance

of a 20-cm-long hollow cylinder (Fig. P4.45) made of carbon
with σ = 3×104 (S/m).

3 cm

2 cm

Carbon

Figure P4.45 Cross-section of hollow cylinder of

Problem 4.45.

4.46 A cylinder-shaped carbon resistor is 8 cm in length and
its circular cross section has a diameter d = 1 mm.

(a) Determine the resistance R.

(b) To reduce its resistance by 40%, the carbon resistor is

coated with a layer of copper of thickness t. Use the result

of Problem 4.43 to determine t.

4.47 A 4× 10−3-mm-thick square sheet of aluminum has 5

cm × 5 cm faces. Find the following:

(a) The resistance between opposite edges on a square face.

(b) The resistance between the two square faces. (See Appen-
dix B for the electrical constants of materials.)

Section 4-8: Boundary Conditions

∗
4.48 With reference to Fig. 4-19, find E1 if

E2 = x̂3− ŷ2 + ẑ2 (V/m),

ε1 = 2ε0, ε2 = 18ε0, and the boundary has a surface charge
density ρs = 3.54×10−11 (C/m2). What angle does E2 make

with the z-axis?

4.49 An infinitely long conducting cylinder of radius a has

a surface charge density ρs. The cylinder is surrounded by a

dielectric medium with εr = 4 and contains no free charges.
The tangential component of the electric field in the region

r ≥ a is given by Et = −φ̂φφcosφ/r
2. Since a static conductor

cannot have any tangential field, this must be cancelled by
an externally applied electric field. Find the surface charge

density on the conductor.

∗
4.50 If E = R̂300 (V/m) at the surface of a 5-cm conducting

sphere centered at the origin, what is the total charge Q on the

sphere’s surface?

4.51 Figure P4.51 shows three planar dielectric slabs of

equal thickness but with different dielectric constants. If E0

in air makes an angle of 45◦ with respect to the z-axis, find the
angle of E in each of the other layers.

ε0 (air)

ε1 = 3ε0

ε2 = 5ε0

ε3 = 7ε0

ε0 (air)

45°

z

E0

Figure P4.51 Dielectric slabs in Problem 4.51.

Sections 4-9 and 4-10: Capacitance and Electrical Energy

4.52 Dielectric breakdown occurs in a material whenever

the magnitude of the field E exceeds the dielectric strength
anywhere in that material. In the coaxial capacitor of Exam-

ple 4-15,

∗
(a) At what value of r is |E| maximum?

(b) What is the breakdown voltage if a = 1 cm, b = 2 cm,
and the dielectric material is mica with εr = 6?

4.53 Determine the force of attraction in a parallel-plate

capacitor with A = 5 cm2, d = 2 cm, and εr = 4 if the voltage
across it is 50 V.

4.54 An electron with charge Qe =−1.6×10−19 C and mass

me = 9.1 × 10−31 kg is injected at a point adjacent to the
negatively charged plate in the region between the plates of

an air-filled parallel-plate capacitor with separation of 1 cm

and rectangular plates each 10 cm2 in area (Fig. P4.54). If the
voltage across the capacitor is 10 V, find the following:

(a) The force acting on the electron.

(b) The acceleration of the electron.

(c) The time it takes the electron to reach the positively

charged plate, assuming that it starts from rest.
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Qe

1 cm

V0 = 10 V

+–

Figure P4.54 Electron between charged plates of

Problem 4.54.

4.55 Figure P4.55(a) depicts a capacitor consisting of two

parallel, conducting plates separated by a distance d. The space
between the plates contains two adjacent dielectrics, one with

permittivity ε1 and surface area A1 and another with ε2 and A2.

The objective of this problem is to show that the capacitance C

of the configuration shown in Fig. P4.55(a) is equivalent to

two capacitances in parallel, as illustrated in Fig. P4.55(b),
with

C = C1 +C2 (4.146)

where

C1 =
ε1A1

d
(4.147)

C2 =
ε2A2

d
(4.148)

To this end, proceed as follows:

(a) Find the electric fields E1 and E2 in the two dielectric

layers.

(b) Calculate the energy stored in each section and use the
result to calculate C1 and C2.

(c) Use the total energy stored in the capacitor to obtain an

expression for C. Show that (4.146) is indeed a valid
result.

∗
4.56 In a dielectric medium with εr = 4, the electric field is

given by

E = x̂(x2 + 2z)+ ŷx
2 − ẑ(y + z) (V/m)

Calculate the electrostatic energy stored in the region −1 m ≤
x ≤ 1 m, 0 ≤ y ≤ 2 m, and 0 ≤ z ≤ 3 m.

(a)

(b)

ε1

A1 A2

ε2d

+

−
V

C1 C2
V

+

−

Figure P4.55 (a) Capacitor with parallel dielectric section,

and (b) equivalent circuit.

4.57 Use the result of Problem 4.56 to determine the capaci-

tance for each of the following configurations:∗
(a) Conducting plates are on top and bottom faces of the

rectangular structure in Fig. P4.57(a).

(b) Conducting plates are on front and back faces of the

structure in Fig. P4.57(a).

(c) Conducting plates are on top and bottom faces of the

cylindrical structure in Fig. P4.57(b).

4.58 The capacitor shown in Fig. P4.58 consists of two

parallel dielectric layers. Use energy considerations to show
that the equivalent capacitance of the overall capacitor, C,

is equal to the series combination of the capacitances of the

individual layers, C1 and C2, namely

C =
C1C2

C1 +C2

(4.149)

where

C1 = ε1

A

d1

, C2 = ε2

A

d2

(a) Let V1 and V2 be the electric potentials across the upper

and lower dielectrics, respectively. What are the cor-

responding electric fields E1 and E2? By applying the
appropriate boundary condition at the interface between

the two dielectrics, obtain explicit expressions for E1 and
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(a)

(b)

ε1 = 8ε0; ε2 = 4ε0; ε3 = 2ε0

3 cm

5 cm

1 cm

2 cm

εr = 2 εr = 4

r1 = 2 mm

r2 = 4 mm

r3 = 8 mm

ε3

2 cm

ε2 ε1

Figure P4.57 Dielectric sections for Problems 4.57 and 4.59.

E2 in terms of ε1, ε2, V , and the indicated dimensions of
the capacitor.

(b) Calculate the energy stored in each of the dielectric layers
and then use the sum to obtain an expression for C.

(c) Show that C is given by Eq. (4.149).

4.59 Use the expressions given in Problem 4.58 to determine

the capacitance for the configurations in Fig. P4.57(a) when

(a)

(b)

V
+

−

C1

C2

+

−

d1

d2 V

A

ε1

ε2

Figure P4.58 (a) Capacitor with parallel dielectric layers, and

(b) equivalent circuit (Problem 4.58).

the conducting plates are placed on the right and left faces of

the structure.

4.60 A coaxial capacitor consists of two concentric, con-

ducting, cylindrical surfaces, one of radius a and another

of radius b, as shown in Fig. P4.60. The insulating layer
separating the two conducting surfaces is divided equally into

two semi-cylindrical sections, one filled with dielectric ε1 and

the other filled with dielectric ε2.

(a) Develop an expression for C in terms of the length l and

the given quantities.

∗
(b) Evaluate C for a = 2 mm, b = 6 mm, εr1

= 2, εr2
= 4,

and l = 4 cm.

4.61 Conducting wires above a conducting plane carry cur-

rents I1 and I2 in the directions shown in Fig. P4.62. Keeping

in mind that the direction of a current is defined in terms of the
movement of positive charges, what are the directions of the

image currents corresponding to I1 and I2?
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b

E

− +
V

l

aε2
ε1

Figure P4.60 Problem 4.60.

I1

I2

(a) (b)

Figure P4.61 Currents above a conducting plane

(Problem 4.61).

Section 4-12: Image Method

4.62 With reference to Fig. P4.62, charge Q is located at a

distance d above a grounded half-plane located in the x–y plane

and at a distance d from another grounded half-plane in the x–z

plane. Use the image method to

(a) Establish the magnitudes, polarities, and locations of the

images of charge Q with respect to each of the two ground

planes (as if each is infinite in extent).

(b) Find the electric potential and electric field at an arbitrary
point P = (0,y,z).

d

d

z

y

P = (0, y, z)

Q = (0, d, d)

Figure P4.62 Charge Q next to two perpendicular,

grounded, conducting half-planes.

∗
4.63 Use the image method to find the capacitance per unit
length of an infinitely long conducting cylinder of radius a

situated at a distance d from a parallel conducting plane, as

shown in Fig. P4.63.

V = 0

a

d

Figure P4.63 Conducting cylinder above a conducting plane

(Problem 4.63).
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Objectives

Upon learning the material presented in this chapter, you

should be able to:

1. Calculate the magnetic force on a current-carrying wire

placed in a magnetic field and the torque exerted on a

current loop.

2. Apply the Biot–Savart law to calculate the magnetic field

due to current distribution.

3. Apply Ampère’s law to configurations with appropriate

symmetry.

4. Explain magnetic hysteresis in ferromagnetic materials.

5. Calculate the inductance of a solenoid, a coaxial trans-

mission line, or other configurations.

6. Relate the magnetic energy stored in a region to the

magnetic field distribution in that region.
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Magnetostatics
Chapter 5



Overview

This chapter on magnetostatics parallels the preceding one
on electrostatics. Stationary charges produce static electric

fields, and steady (i.e., non–time-varying) currents produce

static magnetic fields. When ∂/∂ t = 0, the magnetic fields in
a medium with magnetic permeability µ are governed by the

second pair of Maxwell’s equations (Eqs. (4.3a,b)):

∇ ·B = 0,

∇×××H = J,

(5.1a)

(5.1b)

where J is the current density. The magnetic flux density B

and the magnetic field intensity H are related by

B = µH. (5.2)

When examining electric fields in a dielectric medium in

Chapter 4, we noted that the relation D = εE is valid only when
the medium is linear and isotropic. These properties, which

hold true for most materials, allow us to treat the permittivity ε
as a constant, scalar quantity that is independent of both the
magnitude and the direction of E. A similar statement applies

to the relation given by Eq. (5.2). With the exception of

ferromagnetic materials, for which the relationship between
B and H is nonlinear, most materials are characterized by

constant permeabilities.

◮ Furthermore, µ = µ0 for most dielectrics and metals
(excluding ferromagnetic materials). ◭

The objectives of this chapter are to develop an understanding

of the relationship between steady currents and the magnetic
flux B and field H due to various types of current distributions

and in various types of media and to introduce a number of

related quantities, such as the magnetic vector potential A,
the magnetic energy density wm, and the inductance of a con-

ducting structure, L. The parallelism that exists between these

magnetostatic quantities and their electrostatic counterparts is
elucidated in Table 5-1.

5-1 Magnetic Forces and Torques

The electric field E at a point in space has been defined as

the electric force Fe per unit charge acting on a charged test

particle placed at that point. We now define the magnetic
flux density B at a point in space in terms of the magnetic
force Fm that acts on a charged test particle moving with

(a)

(b)

θ

+q

u
B

Fm = quB sin θ

−

+

F

F

B

u

u

Figure 5-1 The direction of the magnetic force exerted on a

charged particle moving in a magnetic field is (a) perpendicular

to both B and u and (b) depends on the charge polarity (positive

or negative).

velocity u through that point. Experiments revealed that a

particle of charge q moving with velocity u in a magnetic field
experiences a magnetic force Fm given by

Fm = qu×××B (N). (5.3)

Accordingly, the strength of B is measured in newtons/

(C·m/s), which is also called the tesla (T). For a positively
charged particle, the direction of Fm is that of the cross product

u×××B, which is perpendicular to the plane containing u and B

and governed by the right-hand rule. If q is negative, the
direction of Fm is reversed (Fig. 5-1). The magnitude of Fm

is given by
Fm = quBsinθ , (5.4)

where θ is the angle between u and B.

◮ We note that Fm is maximum when u is perpendicular

to B (θ = 90◦) and zero when u is parallel to B (θ = 0 or
180◦). ◭

244 CHAPTER 5 MAGNETOSTATICS



5-1 MAGNETIC FORCES AND TORQUES 245

Table 5-1 Attributes of electrostatics and magnetostatics.

Attribute Electrostatics Magnetostatics

Sources Stationary charges ρv Steady currents J

Fields and Fluxes E and D H and B

Constitutive parameter(s) ε and σ µ

Governing equations

• Differential form

• Integral form

∇·D = ρv

∇×××E = 0∫

S

D·ds = Q

∫

C

E·dl = 0

∇·B = 0

∇×××H = J∫

S

B·ds = 0

∫

C

H ·dl = I

Potential Scalar V , with Vector A, with

E = −∇V B = ∇×××A

Energy density we = 1
2 εE

2
wm = 1

2 µH
2

Force on charge q Fe = qE Fm = qu×××B

Circuit element(s) C and R L

If a charged particle resides in the presence of both an

electric field E and a magnetic field B, then the total electro-
magnetic force acting on it is

F = Fe + Fm = qE+ qu×××B = q(E+ u×××B). (5.5)

The force expressed by Eq. (5.5) also is known as the Lorentz
force. Electric and magnetic forces exhibit a number of impor-

tant differences:

1. Whereas the electric force is always in the direction of the

electric field, the magnetic force is always perpendicular
to the magnetic field.

2. Whereas the electric force acts on a charged particle

whether or not it is moving, the magnetic force acts on

it only when it is in motion.

3. Whereas the electric force expends energy in displacing a

charged particle, the magnetic force does no work when
a particle is displaced.

This last statement requires further elaboration. Because the

magnetic force Fm is always perpendicular to u, Fm ·u = 0.

Hence, the work performed when a particle is displaced by a

differential distance dl = u dt is

dW = Fm ·dl = (Fm ·u) dt = 0. (5.6)

◮ Since no work is done, a magnetic field cannot change
the kinetic energy of a charged particle; the magnetic field

can change the direction of motion of a charged particle,

but not its speed. ◭

Exercise 5-1: An electron moving in the positive

x direction perpendicular to a magnetic field is deflected
in the negative z direction. What is the direction of the

magnetic field?

Answer: Positive y direction. (See EM .)

Exercise 5-2: A proton moving with a speed of

2×106 m/s through a magnetic field with magnetic flux

density of 2.5 T experiences a magnetic force of magni-
tude 4×10−13 N. What is the angle between the magnetic

field and the proton’s velocity?
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Answer: θ = 30◦ or 150◦. (See EM .)

Exercise 5-3: A charged particle with velocity u is mov-
ing in a medium with uniform fields E = x̂E and B = ŷB.

What should u be so that the particle experiences no net

force?

Answer: u = ẑE/B. (u may also have an arbitrary

y component uy.) (See EM .)

5-1.1 Magnetic Force on a Current-Carrying
Conductor

A current flowing through a conducting wire consists of

charged particles drifting through the material of the wire.
Consequently, when a current-carrying wire is placed in a

magnetic field, it experiences a force equal to the sum of the

magnetic forces acting on the charged particles moving within
it. Consider, for example, the arrangement shown in Fig. 5-2

in which a vertical wire oriented along the z direction is placed

in a magnetic field B (produced by a magnet) oriented along
the −x̂ direction (into the page). With no current flowing in

the wire, Fm = 0 and the wire maintains its vertical orientation
(Fig. 5-2(a)), but when a current is introduced in the wire, the

wire deflects to the left (−ŷ direction) if the current direction

is upward (+ẑ direction) and to the right (+ŷ direction) if the
current direction is downward (−ẑ direction). The directions

of these deflections are in accordance with the cross product

given by Eq. (5.3).
To quantify the relationship between Fm and the current I

flowing in a wire, let us consider a small segment of the

wire of cross-sectional area A and differential length dl with
the direction of dl denoting the direction of the current.

Without loss of generality, we assume that the charge carriers

constituting the current I are exclusively electrons, which is
always a valid assumption for a good conductor. If the wire

contains a free-electron charge density ρve = −Nee, where
Ne is the number of moving electrons per unit volume, then

the total amount of moving charge contained in an elemental

volume of the wire is

dQ = ρveA dl = −NeeA dl, (5.7)

and the corresponding magnetic force acting on dQ in the

presence of a magnetic field B is

dFm = dQ ue×××B = −NeeA dl ue×××B, (5.8a)

where ue is the drift velocity of the electrons. Since the
direction of a current is defined as the direction of flow of

positive charges, the electron drift velocity ue is parallel to dl,

z

y
x

I

B

B

B

I = 0

(a)

I

(b)

(c)

Figure 5-2 When a slightly flexible vertical wire is placed in a

magnetic field directed into the page (as denoted by the crosses),

it is (a) not deflected when the current through it is zero, (b)

deflected to the left when I is upward, and (c) deflected to the

right when I is downward.

but opposite in direction. Thus, dl ue = −dl ue and Eq. (5.8a)
becomes

dFm = NeeAue dl×××B. (5.8b)

From Eqs. (4.11) and (4.12), the current I flowing through a

cross-sectional area A due to electrons with density ρve =−Nee

and moving with velocity −ue is

I = ρve(−ue)A = (−Nee)(−ue)A = NeeAue.

Hence, Eq. (5.8b) may be written in the compact form

dFm = I dl×××B (N). (5.9)

For a closed circuit of contour C carrying a current I, the total
magnetic force is

Fm = I

∫

C

dl×××B (N). (5.10)
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Module 5.1 Electron Motion in Static Fields This module demonstrates the Lorentz force on an electron moving under
the influence of an electric field alone, a magnetic field alone, or both acting simultaneously.

If the closed wire shown in Fig. 5-3(a) resides in a uniform

external magnetic field B, then B can be taken outside the
integral in Eq. (5.10), in which case

Fm = I

( ∫

C

dl

)
×××B = 0. (5.11)

◮ This result, which is a consequence of the fact that the

vector sum of the infinitesimal vectors dl over a closed
path equals zero, states that the total magnetic force on

any closed current loop in a uniform magnetic field is

zero. ◭

This does not mean that the force at every point along the wire
is zero, but rather that the vector sum of all forces exerted on

all parts of the closed wire adds up to zero.

In the study of magnetostatics, all currents flow through

closed paths. To understand why, consider the curved wire in
Fig. 5-3(b) carrying a current I from point a to point b. In doing

so, negative charges accumulate at a, and positive ones at b.

The time-varying nature of these charges violates the static
assumptions underlying Eqs. (5.1a,b).

If we are interested in the magnetic force exerted on a wire
segment l (Fig. 5-3(b)) residing in a uniform magnetic field

(while realizing that it is part of a closed current loop), we can

integrate Eq. (5.9) to obtain

Fm = I

(∫

ℓ
dl

)
×××B = Iℓℓℓ×××B, (5.12)

where ℓℓℓ is the vector directed from a to b (Fig. 5-3(b)). The
integral of dl from a to b has the same value irrespective of the

path taken between a and b. For a closed loop, points a and b
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(a)

(b)

dl

B

C

I

dl

a

b

I

B

Vector ll

Figure 5-3 In a uniform magnetic field, (a) the net force

on a closed current loop is zero because the integral of the

displacement vector dl over a closed contour is zero and (b) the

force on a line segment is proportional to the vector between the

end point (Fm = Iℓℓℓ×B).

become the same point, in which case ℓℓℓ = 0 and Fm = 0.

Example 5-1: Force on a Semicircular
Conductor

The semicircular conductor shown in Fig. 5-4 lies in the

dφ

dl

I

B

r

y

x

φ

φ

Figure 5-4 Semicircular conductor in a uniform field (Exam-

ple 5-1).

x–y plane and carries a current I. The closed circuit is exposed

to a uniform magnetic field B = ŷB0. Determine (a) the

magnetic force F1 on the straight section of the wire and (b)
the force F2 on the curved section.

Solution: (a) To evaluate F1, consider that the straight section

of the circuit is of length 2r and its current flows along the +x

direction. Application of Eq. (5.12) with ℓℓℓ = x̂2r gives

F1 = x̂(2Ir)××× ŷB0 = ẑ2IrB0 (N).

The ẑ direction in Fig. 5-4 is out of the page.

(b) To evaluate F2, consider a segment of differential length dl

on the curved part of the circle. The direction of dl is chosen

to coincide with the direction of the current. Since dl and B

are both in the x–y plane, their cross product dl××× B points
in the negative z direction, and the magnitude of dl××× B is

proportional to sin φ , where φ is the angle between dl and B.

Moreover, the magnitude of dl is dl = r dφ . Hence,

F2 = I

∫ π

φ=0
dl×××B

= −ẑI

∫ π

φ=0
rB0 sinφ dφ = −ẑ2IrB0 (N).

The −ẑ direction of the force acting on the curved part of the

conductor is into the page. We note that F2 = −F1, implying

that no net force acts on the closed loop, although opposing
forces act on its two sections.

Concept Question 5-1: What are the major differences

between the electric force Fe and the magnetic force Fm?
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Concept Question 5-2: The ends of a 10-cm long wire
carrying a constant current I are anchored at two points

on the x axis, namely x = 0 and x = 6 cm. If the wire lies

in the x–y plane in a magnetic field B = ŷB0, which of
the following arrangements produces a greater magnetic

force on the wire: (a) wire is V-shaped with corners at

(0,0), (3,4), and (6,0) or (b) wire is an open rectangle
with corners at (0,0), (0,2), (6,2), and (6,0)?

Exercise 5-4: A horizontal wire with a mass per unit

length of 0.2 kg/m carries a current of 4 A in the
+x direction. If the wire is placed in a uniform magnetic

flux density B, what should the direction and minimum

magnitude of B be in order to magnetically lift the wire
vertically upward? (Hint: The acceleration due to gravity

is g = −ẑ9.8 m/s2.)

Answer: B = ŷ0.49 T. (See EM .)

5-1.2 Magnetic Torque on a Current-Carrying
Loop

When a force is applied on a rigid body that can pivot about a
fixed axis, the body will, in general, react by rotating about that

axis. The angular acceleration depends on the cross product of

the applied force vector F and the distance vector d, which
is measured from a point on the rotation axis (such that d

is perpendicular to the axis) to the point of application of F

(Fig. 5-5). The length of d is called the moment arm, and the

cross product

T = d×××F (N·m) (5.13)

θ

F

T

d

z

x

y

Pivot axis

Figure 5-5 The force F acting on a circular disk that can pivot

along the z axis generates a torque T = d×F that causes the disk

to rotate.

is called the torque. The unit for T is the same as that for work
or energy, even though torque does not represent either. The

force F applied on the disk shown in Fig. 5-5 lies in the x–y

plane and makes an angle θ with d. Hence,

T = ẑrF sinθ , (5.14)

where |d| = r, which is the radius of the disk, and F = |F|.
From Eq. (5.14), we observe that a torque along the positive
z direction corresponds to a tendency for the cylinder to

rotate counterclockwise and, conversely, a torque along the

−z direction corresponds to clockwise rotation.

◮ These directions are governed by the following right-
hand rule: When the thumb of the right hand points along

the direction of the torque, the four fingers indicate the
direction that the torque tries to rotate the body. ◭

We now consider the magnetic torque exerted on a conduct-
ing loop under the influence of magnetic forces. We begin with

the simple case where the magnetic field B is in the plane of

the loop, and then we extend the analysis to the more general
case where B makes an angle θ with the surface normal of the

loop.

Magnetic Field in the Plane of the Loop

The rectangular conducting loop shown in Fig. 5-6(a) is

constructed from rigid wire and carries a current I. The loop

lies in the x–y plane and is allowed to pivot about the axis
shown. Under the influence of an externally generated uniform

magnetic field B = x̂B0, arms 1 and 3 of the loop are subjected

to forces F1 and F3 given by

F1 = I(−ŷb)××× (x̂B0) = ẑIbB0, (5.15a)

and

F3 = I(ŷb)××× (x̂B0) = −ẑIbB0. (5.15b)

These results are based on the application of Eq. (5.12). We
note that the magnetic forces acting on arms 1 and 3 are in

opposite directions, and no magnetic force is exerted on either

arm 2 or 4 because B is parallel to the direction of the current
flowing in those arms.

A bottom view of the loop, depicted in Fig. 5-6(b), reveals

that forces F1 and F3 produce a torque about the origin O,
causing the loop to rotate in a clockwise direction. The mo-

ment arm is a/2 for both forces, but d1 and d3 are in opposite

directions, resulting in a total magnetic torque of

T = d1×××F1 + d3×××F3

=
(
−x̂

a

2

)
××× (ẑIbB0)+

(
x̂

a

2

)
××× (−ẑIbB0)

= ŷIabB0 = ŷIAB0, (5.16)
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(a)

(b)

I

y

xbO

a

Pivot axis

B

B

2

4

31

Loop arm 3Loop arm 1

z

x
y

a/2

O

z

−z

d1

F1

B F3

d3

Figure 5-6 Rectangular loop pivoted along the y axis: (a) front

view and (b) bottom view. The combination of forces F1 and F3

on the loop generates a torque that tends to rotate the loop in a

clockwise direction as shown in (b).

where A = ab is the area of the loop. The right-hand rule tells

us that the sense of rotation is clockwise. The result given by
Eq. (5.16) is valid only when the magnetic field B is parallel to

the plane of the loop. As soon as the loop starts to rotate, the
torque T decreases, and at the end of one quarter of a complete

rotation, the torque becomes zero, as discussed next.

Magnetic Field Perpendicular to the Axis of a Rectangular

Loop

For the situation represented by Fig. 5-7, where B = x̂B0, the

field is still perpendicular to the loop’s axis of rotation, but

because its direction may be at any angle θ with respect to
the loop’s surface normal n̂, we may now have nonzero forces

on all four arms of the rectangular loop. However, forces F2

(a)

(b)

x

y

z

F4
F3

B

B

I

F2
F1

n

a
b

3

Pivot axis

21

4

ˆ

θ

m (magnetic
      moment)

Arm 1

Arm 3

O
B

F1

F3

n

a/2

(a/2) sin θ

θ θ

ˆ

Figure 5-7 Rectangular loop in a uniform magnetic field with

flux density B whose direction is perpendicular to the rotation

axis of the loop but makes an angle θ with the loop’s surface

normal n̂.

and F4 are equal in magnitude and opposite in direction and

are along the rotation axis; hence, the net torque contributed

by their combination is zero. The directions of the currents in
arms 1 and 3 are always perpendicular to B regardless of the

magnitude of θ . Hence, F1 and F3 have the same expressions

given previously by Eqs. (5.15a,b), and for 0 ≤ θ ≤ π/2, their
moment arms are of magnitude (a/2)sinθ , as illustrated in

Fig. 5-7(b). Consequently, the magnitude of the net torque
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Module 5.2 Magnetic Fields Due to Line Sources You can place z-directed linear currents anywhere in the display
plane (x–y plane), select their magnitudes and directions, and then observe the spatial pattern of the induced magnetic flux

B(x,y).

exerted by the magnetic field about the axis of rotation is the
same as that given by Eq. (5.16), but modified by sinθ :

T = IAB0 sinθ . (5.17)

According to Eq. (5.17), the torque is maximum when the

magnetic field is parallel to the plane of the loop (θ = 90◦)

and zero when the field is perpendicular to the plane of the loop
(θ = 0). If the loop consists of N turns with each contributing

a torque given by Eq. (5.17), then the total torque is

T = NIAB0 sinθ . (5.18)

The quantity NIA is called the magnetic moment m of the loop.
Now, consider the vector

m = n̂NIA = n̂m (A·m2), (5.19)

where n̂ is the surface normal of the loop and governed by the
following right-hand rule: When the four fingers of the right

hand advance in the direction of the current I, the direction of

the thumb specifies the direction of n̂. In terms of m, the torque
vector T can be written as

T = m×××B (N·m). (5.20)

Even though the derivation leading to Eq. (5.20) was obtained
for B perpendicular to the axis of rotation of a rectangular loop,

the expression is valid for any orientation of B and for a loop

of any shape.

Concept Question 5-3: How is the direction of the

magnetic moment of a loop defined?
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Concept Question 5-4: If one of two wires of equal
length is formed into a closed square loop and the other

into a closed circular loop, and if both wires are carrying

equal currents and both loops have their planes parallel
to a uniform magnetic field, which loop would experience

the greater torque?

Exercise 5-5: A square coil of 100 turns and 0.5-m long

sides is in a region with a uniform magnetic flux density
of 0.2 T. If the maximum magnetic torque exerted on the

coil is 4× 10−2 (N·m), what is the current flowing in the

coil?

Answer: I = 8 mA. (See EM .)

5-2 The Biot–Savart Law

In the preceding section, we elected to use the magnetic flux

density B to denote the presence of a magnetic field in a given
region of space. We now work with the magnetic field intensity

H instead. We do this in part to remind the reader that for most

materials the flux and field are linearly related by B = µH;
therefore, knowledge of one implies knowledge of the other

(assuming that µ is known).

Through his experiments on the deflection of compass
needles by current-carrying wires, Hans Oersted established

that currents induce magnetic fields that form closed loops

around the wires (see Section 1-3.3). Building upon Oersted’s
results, Jean Biot and Félix Savart arrived at an expression

that relates the magnetic field H at any point in space to the
current I that generates H. The Biot–Savart law states that the

differential magnetic field dH generated by a steady current I

flowing through a differential length vector dl is

dH =
I

4π

dl××× R̂

R2
(A/m), (5.21)

where R = R̂R is the distance vector between dl and the

observation point P, as shown in Fig. 5-8. The SI unit for H

is ampere·m/m2 = (A/m). It is important to remember that
Eq. (5.21) assumes that dl is along the direction of the current I

and the unit vector R̂ points from the current element to the
observation point.

According to Eq. (5.21), dH varies as R
−2, which is similar

to the distance dependence of the electric field induced by an
electric charge. However, unlike the electric field vector E,

whose direction is along the distance vector R joining the

charge to the observation point, the magnetic field H is
orthogonal to the plane containing the direction of the current

element dl and the distance vector R. At point P in Fig. 5-8,

dH

P

P'

R

R

dl

I

(dH into the page)

dH

(dH out of the page)

θ

ˆ

Figure 5-8 Magnetic field dH generated by a current element

I dl. The direction of the field induced at point P is opposite to

that induced at point P
′.

the direction of dH is out of the page, whereas at point P
′ the

direction of dH is into the page.

To determine the total magnetic field H due to a conductor

of finite size, we need to sum up the contributions due to all the
current elements making up the conductor. Hence, the Biot–

Savart law becomes

H =
I

4π

∫

l

dl××× R̂

R2
(A/m), (5.22)

where l is the line path along which I exists.

5-2.1 Magnetic Field Due to Surface and Volume
Current Distributions

The Biot–Savart law also may be expressed in terms of
distributed current sources (Fig. 5-9) such as the volume
current density J, measured in (A/m2), or the surface current
density Js, measured in (A/m). The surface current density Js

applies to currents that flow on the surface of a conductor in

the form of a sheet of effectively zero thickness. When current

sources are specified in terms of Js over a surface S or in terms
of J over a volume υ , we can use the equivalence given by

I dl Js ds J dυ (5.23)
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(a)  Volume current density J in A/m2

(b)  Surface current density Js in A/m

J

S

Js

l

Figure 5-9 (a) The total current crossing the cross section S of

the cylinder is I =
∫

S
J · ds. (b) The total current flowing across

the surface of the conductor is I =
∫

l
Js dl.

to express the Biot–Savart law as

H =
1

4π

∫

S

Js××× R̂

R2
ds,

(surface current)

H =
1

4π

∫

υ

J××× R̂

R2
dυ .

(volume current)

(5.24a)

(5.24b)

Example 5-2: Magnetic Field of a Linear
Conductor

A free-standing linear conductor of length l carries a current I

along the z axis as shown in Fig. 5-10. Determine the magnetic

flux density B at a point P located at a distance r in the
x–y plane. The wire is, of course, part of a closed-loop circuit,

but our current interest is only in the conducting wire.

(a)

(b)

z

I

P

θ1

θ2

r

R2

R1

l

I

P

dl

dl dθ

r

z

R

R

dH into 
the page

l

θ

ˆ

Figure 5-10 Linear conductor of length l carrying a current I.

(a) The field dH at point P due to incremental current element

dl. (b) Limiting angles θ1 and θ2, each measured between

vector I dl and the vector connecting the end of the conductor

associated with that angle to point P (Example 5-2).

Solution: From Fig. 5-10, the direction of I is along +ẑ.
Hence, the differential length vector is dl = ẑ dz, and

dl××× R̂ = dz (ẑ ××× R̂) = φ̂φφ sinθ̂θθ dz, where φ̂φφ is the azimuth

direction and θ is the angle between dl and R̂. Application

of Eq. (5.22) gives

H =
I

4π

∫
z=l/2

z=−l/2

dl××× R̂

R2
= φ̂φφ

I

4π

∫
l/2

−l/2

sinθ

R2
dz. (5.25)

Both R and θ are dependent on the integration variable z, but

the radial distance r is not. For convenience, we convert the
integration variable from z to θ by using the transformations

R = r cscθ ,

z = −r cotθ ,

dz = r csc2 θ dθ .

(5.26a)

(5.26b)

(5.26c)
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Upon inserting Eqs. (5.26a) and (5.26c) into Eq. (5.25), we
have

H = φ̂φφ
I

4π

∫ θ2

θ1

sinθ r csc2 θ dθ

r2 csc2 θ

= φ̂φφ
I

4πr

∫ θ2

θ1

sinθ dθ = φ̂φφ
I

4πr
(cosθ1 − cosθ2), (5.27)

where θ1 and θ2 are the limiting angles at z = −l/2 and

z = l/2, respectively. From the right triangle in Fig. 5-10(b), it
follows that

cosθ1 =
l/2√

r2 +(l/2)2
,

cosθ2 = −cosθ1 =
−l/2√

r2 +(l/2)2
.

(5.28a)

(5.28b)

Hence,

B = µ0H = φ̂φφ
µ0Il

2πr
√

4r2 + l2
(T). (5.29)

For an infinitely long wire with l ≫ r, Eq. (5.29) reduces to

B = φ̂φφ
µ0I

2πr
. (infinitely long wire) (5.30)

◮ This is a very important and useful expression to keep
in mind. It states that in the neighborhood of a linear

conductor carrying a current I, the induced magnetic field

forms concentric circles around the wire (Fig. 5-11), and
its intensity is directly proportional to I and inversely

proportional to the distance r. ◭

Example 5-3: Magnetic Field of a Circular Loop

A circular loop of radius a carries a steady current I. Determine

the magnetic field H at a point on the axis of the loop.

Solution: Let us place the loop in the x–y plane (Fig. 5-12).

Our task is to obtain an expression for H at point P(0,0,z).
We start by noting that any element dl on the circular loop

is perpendicular to the distance vector R and that all elements

around the loop are at the same distance R from P with

R =
√

a2 + z2 . From Eq. (5.21), the magnitude of dH due to
current element dl is

dH =
I

4πR2
|dl××× R̂| = I dl

4π(a2 + z2)
, (5.31)

I

Magnetic field

I

B

B

B

Figure 5-11 Magnetic field surrounding a long, linear current-

carrying conductor.

φ
θ

θ

a

φ + π

P = (0, 0, z)

R

dHr

dH'r

dHz

dH'z

dH

dH'
z

dl'

dl
Ix

y

Figure 5-12 Circular loop carrying a current I (Example 5-3).

and the direction of dH is perpendicular to the plane containing

R and dl. dH is in the r–z plane (Fig. 5-12); therefore, it has
components dHr and dHz. If we consider element dl′ located

diametrically opposite to dl, we observe that the z components

of the magnetic fields due to dl and dl′ add because they are
in the same direction, but their r components cancel because

they are in opposite directions. Hence, the non-vanishing
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Module 5.3 Magnetic Field of a Current Loop Examine how the field along the loop axis changes with loop parameters.

component of the magnetic field is along z only. That is,

dH = ẑ dHz = ẑ dH cosθ

= ẑ
I cosθ

4π(a2 + z2)
dl. (5.32)

For a fixed point P(0,0,z) on the axis of the loop, all quantities

in Eq. (5.32) are constant, except for dl. Hence, integrating
Eq. (5.32) over a circle of radius a gives

H = ẑ
I cosθ

4π(a2 + z2)

∫
dl

= ẑ
I cosθ

4π(a2 + z2)
(2πa). (5.33)

Upon using the relation cosθ = a/(a2 + z
2)1/2, we obtain

H = ẑ
Ia

2

2(a2 + z2)3/2
(A/m). (5.34)

At the center of the loop (z = 0), Eq. (5.34) reduces to

H = ẑ
I

2a
(at z = 0), (5.35)

and at points very far away from the loop such that z
2 ≫ a

2,
Eq. (5.34) simplifies to

H = ẑ
Ia

2

2|z|3 (at |z| ≫ a). (5.36)

5-2.2 Magnetic Field of a Magnetic Dipole

In view of the definition given by Eq. (5.19) for the magnetic
moment m of a current loop, a single-turn loop situated in

the x–y plane (Fig. 5-12) has magnetic moment m = ẑm with

m = Iπa
2. Consequently, Eq. (5.36) may be expressed as

H = ẑ
m

2π |z|3 (at |z| ≫ a). (5.37)

This expression applies to a point P far away from the loop

and on its axis. Had we solved for H at any distant point
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P = (R,θ ,φ) in a spherical coordinate system with R the
distance between the center of the loop and point P, we would

have obtained the expression

H =
m

4πR3
(R̂ 2cosθ + θ̂θθsinθ ) (for R ≫ a). (5.38)

◮ A current loop with dimensions much smaller than the

distance between the loop and the observation point is
called a magnetic dipole. This is because the pattern of

its magnetic field lines is similar to that of a permanent

magnet as well as to the pattern of the electric field lines
of the electric dipole (Fig. 5-13). ◭

Concept Question 5-5: Two infinitely long parallel

wires carry currents of equal magnitude. What is the
resultant magnetic field due to the two wires at a point

midway between the wires—compared with the magnetic

field due to one of them alone—if the currents are (a) in
the same direction and (b) in opposite directions?

Concept Question 5-6: Devise a right-hand rule for the

direction of the magnetic field due to a linear current-
carrying conductor.

Concept Question 5-7: What is a magnetic dipole?

Describe its magnetic field distribution.

Exercise 5-6: A semi-infinite linear conductor extends
between z = 0 and z = ∞ along the z axis. If the current I

in the conductor flows along the positive z direction, find

H at a point in the x–y plane at a radial distance r from the
conductor.

Answer: H = φ̂φφ
I

4πr
(A/m). (See EM .)

Exercise 5-7: A wire carrying a current of 4 A is formed
into a circular loop. If the magnetic field at the center of

the loop is 20 A/m, what is the radius of the loop if the

loop has (a) only one turn and (b) 10 turns?

Answer: (a) a = 10 cm, (b) a = 1 m. (See EM .)

Exercise 5-8: A wire is formed into a square loop and

placed in the x–y plane with its center at the origin and
each of its sides parallel to either the x or y axes. Each

side is 40 cm in length, and the wire carries a current of
5 A whose direction is clockwise when the loop is viewed

from above. Calculate the magnetic field at the center of

the loop.

Answer: H = −ẑ
4I√
2π l

= −ẑ11.25 A/m. (See EM .)

(a)  Electric dipole (b)  Magnetic dipole (c)  Bar magnet

+

−

E

S

N

H
H

I

Figure 5-13 Patterns of (a) the electric field of an electric dipole, (b) the magnetic field of a magnetic dipole, and (c) the magnetic field

of a bar magnet. Far away from the sources, the field patterns are similar in all three cases.
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Module 5.4 Magnetic Force between Two Parallel Conductors Observe the direction and magnitude of the force
exerted on parallel current-carrying wires.

5-2.3 Magnetic Force Between Two Parallel
Conductors

In Section 5-1.1, we examined the magnetic force Fm that
acts on a current-carrying conductor when placed in an exter-

nal magnetic field. The current in the conductor, however,

also generates its own magnetic field. Hence, if two current-
carrying conductors are placed in each other’s vicinity, each

will exert a magnetic force on the other. Let us consider
two very long (or effectively infinitely long), straight, free-

standing, parallel wires separated by a distance d and carrying

currents I1 and I2 in the z direction (Fig. 5-14) at y = −d/2 and
y = d/2, respectively. We denote by B1 the magnetic field due

to current I1, defined at the location of the wire carrying current

I2 and, conversely, by B2 the field due to I2 at the location of the
wire carrying current I1. From Eq. (5.30), with I = I1, r = d,

and φ̂φφ = −x̂ at the location of I2, the field B1 is

B1 = −x̂
µ0I1

2πd
. (5.39)

The force F2 exerted on a length l of wire I2 due to its presence

in field B1 may be obtained by applying Eq. (5.12):

F2 = I2lẑ×××B1 = I2lẑ××× (−x̂)
µ0I1

2πd
= −ŷ

µ0I1I2l

2πd
, (5.40)

and the corresponding force per unit length is

F′
2 =

F2

l
= −ŷ

µ0I1I2

2πd
. (5.41)

A similar analysis performed for the force per unit length
exerted on the wire carrying I1 leads to

F′
1 = ŷ

µ0I1I2

2πd
. (5.42)

◮ Thus, two parallel wires carrying currents in the same

direction attract each other with equal force. If the currents
are in opposite directions, the wires would repel one

another with equal force. ◭
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d/2
d

x

y

z

d/2

F'1 F'2

B1

I1 I2

l

Figure 5-14 Magnetic forces on parallel current-carrying

conductors.

Exercise 5-9: Suppose that the conductor carrying I2 in

Fig. 5-14 is rotated so that it is parallel to the x axis. What

would F2 be in that case?

Answer: F2 = 0. (See EM .)

5-3 Maxwell’s Magnetostatic Equations

Thus far, we have introduced the Biot–Savart law for finding

the magnetic flux density B and field H due to any distribution

of electric currents in free space, and we examined how
magnetic fields can exert magnetic forces on moving charged

particles and current-carrying conductors. We now examine

two additional important properties of magnetostatic fields.

5-3.1 Gauss’s Law for Magnetism

In Chapter 4, we learned that the net outward flux of the elec-

tric flux density D through a closed surface equals the enclosed

net charge Q. We referred to this property as Gauss’s law (for
electricity) and expressed it mathematically in differential and

integral forms as

∇ ·D = ρv

∫

S

D ·ds = Q. (5.43)

Conversion from differential to integral form was accom-

plished by applying the divergence theorem to a volume υ

that is enclosed by a surface S and contains a total charge
Q =

∫
υ ρv dυ (Section 4-4).

The magnetostatic counterpart of Eq. (5.43), often called

Gauss’s law for magnetism, is

∇ ·B = 0

∫

S

B ·ds = 0. (5.44)

The differential form is one of Maxwell’s four equations, and
the integral form is obtained with the help of the divergence

theorem. Note that the right-hand side of Gauss’s law for mag-

netism is zero, reflecting the fact that the magnetic equivalence
of an electric point charge does not exist in nature.

◮ The hypothetical magnetic analogue to an electric
point charge is called a magnetic monopole. Magnetic

monopoles, however, always occur in pairs (that is, as

dipoles). ◭

No matter how many times a permanent magnet is subdivided,

each new piece will always have a north and a south pole, even
if the process were to be continued down to the atomic level.

Consequently, there is no magnetic equivalence to an electric

charge q or charge density ρv.
Formally, the name “Gauss’s law” refers to the electric case,

even when no specific reference to electricity is indicated. The

property described by Eq. (5.44) has been called “the law of

nonexistence of isolated monopoles,” “the law of conservation

of magnetic flux,” and “Gauss’s law for magnetism,” among

others. We prefer the last of the three cited names because

it reminds us of the parallelism, as well as the differences,

between the electric and magnetic laws of nature.
The difference between Gauss’s law for electricity and its

magnetic counterpart can be elucidated in terms of field lines.

Electric field lines originate from positive electric charges and
terminate on negative ones. Hence, for the electric field lines

of the electric dipole shown in Fig. 5-15(a), the electric flux

through a closed surface surrounding one of the charges is
nonzero. In contrast, magnetic field lines always form contin-

uous closed loops. As we saw in Section 5-2, the magnetic
field lines due to currents do not begin or end at any point; this

is true for the linear conductor of Fig. 5-11 and the circular

loop of Fig. 5-12, as well as for any current distribution. It is
also true for a bar magnet (Fig. 5-15(b)). Because the magnetic

field lines form closed loops, the net magnetic flux through any

closed surface surrounding the south pole of the magnet (or
through any other closed surface) is always zero, regardless of

its shape.
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(b)  Bar magnet

+

−

E

S

N

H

(a)  Electric dipole

Closed imaginary 
surface

Figure 5-15 Whereas (a) the net electric flux through a closed

surface surrounding a charge is not zero, and (b) the net magnetic

flux through a closed surface surrounding one of the poles of a

magnet is zero.

5-3.2 Ampère’s Law

In Chapter 4 we learned that the electrostatic field is conser-

vative, meaning that its line integral along a closed contour
always vanishes. This property of the electrostatic field was

expressed in differential and integral forms as

∇×××E = 0

∫

C

E ·dℓℓℓ = 0. (5.45)

Conversion of the differential to integral form was accom-

plished by applying Stokes’s theorem to a surface S with

contour C.
The magnetostatic counterpart of Eq. (5.45), known as

Ampère’s law, is

∇×××H = J

∫

C

H ·dℓℓℓ = I, (5.46)

where I is the total current passing through S. The differential

form again is one of Maxwell’s equations, and the integral
form is obtained by integrating both sides of Eq. (5.46) over

an open surface S,

∫

S

(∇×××H) ·ds =

∫

S

J ·ds, (5.47)

and then invoking Stokes’s theorem with I =
∫

J ·ds.

I

C

H

H

I

C

H

H

I

H

C

H

(a) (b)

(c)

Figure 5-16 Ampère’s law states that the line integral of H

around a closed contour C is equal to the current traversing the

surface bounded by the contour. This is true for contours (a) and

(b), but the line integral of H is zero for the contour in (c)

because the current I (denoted by the symbol ⊙) is not enclosed

by the contour C.

◮ The sign convention for the direction of the contour

path C in Ampère’s law is taken so that I and H satisfy
the right-hand rule defined earlier in connection with the

Biot–Savart law. That is, if the direction of I is aligned

with the direction of the thumb of the right hand, then the
direction of the contour C should be chosen along that of

the other four fingers. ◭

In words, Ampère’s circuital law states that the line integral

of H around a closed path is equal to the current traversing

the surface bounded by that path. To apply Ampère’s law, the

current must flow through a closed path. By way of illustration,

for both configurations shown in Figs. 5-16(a) and (b), the
line integral of H is equal to the current I, even though the

paths have very different shapes and the magnitude of H is not
uniform along the path of the configuration in part (b). By the

same token, because path (c) in Fig. 5-16 does not enclose the

current I, the line integral of H along it vanishes, even though
H is not zero along the path.

When we examined Gauss’s law in Section 4-4, we discov-

ered that in practice its usefulness for calculating the electric
flux density D is limited to charge distributions that possess a

certain degree of symmetry and that the calculation procedure
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is subject to the proper choice of a Gaussian surface enclosing
the charges. A similar restriction applies to Ampère’s law: its

usefulness is limited to symmetric current distributions that

allow the choice of convenient Ampèrian contours around
them, as illustrated by Examples 5-4 to 5-6.

Example 5-4: Magnetic Field of a Long Wire

A long (practically infinite) straight wire of radius a carries
a steady current I that is uniformly distributed over its cross

section. Determine the magnetic field H a distance r from the
wire axis for (a) r ≤ a (inside the wire) and (b) r ≥ a (outside

the wire).

Solution: (a) We choose I to be along the +z direction

(Fig. 5-17(a)). To determine H1 = H at a distance r = r1 ≤ a,
we choose the Ampèrian contour C1 to be a circular path of

radius r = r1 (Fig. 5-17(b)). In this case, Ampère’s law takes

the form ∫

C1

H1 ·dl1 = I1, (5.48)

where I1 is the fraction of the total current I flowing
through C1. From symmetry, H1 must be constant in magni-

tude and parallel to the contour at any point along the path.

Furthermore, to satisfy the right-hand rule and given that I is
along the z direction, H1 must be in the +φ direction. Hence,

H1 = φ̂φφH1, dl1 = φ̂φφr1 dφ , and the left-hand side of Eq. (5.48)
becomes

∫

C1

H1 ·dl1 =

∫ 2π

0
H1(φ̂φφ ·φ̂φφ)r1 dφ = 2πr1H1.

The current I1 flowing through the area enclosed by C1 is equal
to the total current I multiplied by the ratio of the area enclosed

by C1 to the total cross-sectional area of the wire:

I1 =

(
πr

2
1

πa2

)
I =

(
r1

a

)2

I.

Equating both sides of Eq. (5.48) and then solving for H1

yields

H1 = φ̂φφH1 = φ̂φφ
r1

2πa2
I (for r1 ≤ a). (5.49a)

(b) For r = r2 ≥ a, we choose path C2, which encloses all the

current I. Hence, H2 = φ̂φφH2, dℓℓℓ2 = φ̂φφr2 dφ , and
∫

C2

H2 ·dl2 = 2πr2H2 = I,

which yields

H2 = φ̂φφH2 = φ̂φφ
I

2πr2

(for r2 ≥ a). (5.49b)

(b)  Wire cross section

(a)  Cylindrical wire

(c)

a

H(a) = I
2πa

H(r)

r

H1 H2

C2

I

z

a

C1

r2

r1

Contour C2

for r2 ≥ a

Contour C1

for r1 ≤ a

C2

a

x

y

C1
φ1

r1

r2

φ̂

Figure 5-17 Infinitely long wire of radius a carrying a uniform

current I along the +z direction: (a) general configuration

showing contours C1 and C2; (b) cross-sectional view; and (c)

a plot of H versus r (Example 5-4).

Ignoring the subscript 2, we observe that Eq. (5.49b) provides

the same expression for B = µ0H as Eq. (5.30), which was
derived on the basis of the Biot–Savart law.

The variation of the magnitude of H as a function of r is
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plotted in Fig. 5-17(c); H increases linearly between r = 0 and
r = a (inside the conductor), and then decreases as 1/r for

r > a (outside the conductor).

Exercise 5-10: A current I flows in the inner conductor

of a long coaxial cable and returns through the outer
conductor. What is the magnetic field in the region outside

the coaxial cable and why?

Answer: H = 0 outside the coaxial cable because the net
current enclosed by an Ampèrian contour enclosing the

cable is zero.

Exercise 5-11: The metal niobium becomes a supercon-
ductor with zero electrical resistance when it is cooled to

below 9 K, but its superconductive behavior ceases when

the magnetic flux density at its surface exceeds 0.12 T.
Determine the maximum current that a 0.1-mm diameter

niobium wire can carry and remain superconductive.

Answer: I = 30 A. (See EM .)

Example 5-5: Magnetic Field inside a
Toroidal Coil

A toroidal coil (also called a torus or toroid) is a doughnut-
shaped structure (called the core) wrapped in closely spaced

turns of wire (Fig. 5-18). For clarity, we show the turns in the

figure as spaced far apart, but in practice, they are wound in
a closely spaced arrangement to form approximately circular

loops. The toroid is used to magnetically couple multiple

circuits and to measure the magnetic properties of materials, as
illustrated later in Fig. 5-31. For a toroid with N turns carrying

a current I, determine the magnetic field H in each of the

following three regions: r < a, a < r < b, and r > b with all in
the azimuthal symmetry plane of the toroid.

Solution: From symmetry, it is clear that H is uniform in

the azimuthal direction. If we construct a circular Ampèrian
contour with center at the origin and radius r < a, there will

be no current flowing through the surface of the contour.
Therefore,

H = 0 for r < a.

Similarly, for an Ampèrian contour with radius r > b, the net

current flowing through its surface is zero because an equal
number of current coils cross the surface in both directions;

hence,

H = 0 for r > b (region exterior to the toroidal coil).

rI

I

b
a

Ampèrian contour

H

C

φ̂

Figure 5-18 Toroidal coil with inner radius a and outer

radius b. The wire loops usually are much more closely spaced

than shown in the figure (Example 5-5).

For the region inside the core, we construct a path of radius r

(Fig. 5-18). For each loop, we know from Example 5-3 that
the field H at the center of the loop points along the axis

of the loop, which in this case is the φ direction, and in
view of the direction of the current I shown in Fig. 5-18, the

right-hand rule tells us that H must be in the −φ direction.

Hence, H = −φ̂φφH. The total current crossing the surface
of the contour with radius r is NI and its direction is into

the page. According to the right-hand rule associated with

Ampère’s law, the current is positive if it crosses the surface
of the contour in the direction of the four fingers of the right

hand when the thumb is pointing along the direction of the

contour C. Hence, the current through the surface spanned by
the contour is −NI. Application of Ampère’s law then gives

∫

C

H ·dl =

∫ 2π

0
(−φ̂φφH) ·φ̂φφr dφ

= −2πrH

= −NI.

Hence, H = NI/(2πr) and

H = −φ̂φφH = −φ̂φφ
NI

2πr
(for a < r < b). (5.50)
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◮ The magnetic field induced by a current-carrying coil
wound around a toroid is confined entirely to the toroid

volume:

H =






0 for r < a,

−φ̂φφ NI

2πr
for a < r < b,

0 for r > b.

Example 5-6: Magnetic Field of an Infinite
Current Sheet

The x–y plane contains an infinite current sheet with surface
current density Js = x̂Js (Fig. 5-19). Find the magnetic field H

everywhere in space.

Solution: From symmetry considerations and the right-hand

rule, for z > 0 and z < 0 H must be in the directions shown in

the figure. That is,

H =

{
−ŷH for z > 0,

ŷH for z < 0.

To evaluate the line integral in Ampère’s law, we choose a

rectangular Ampèrian path around the sheet with dimensions

l and w (Fig. 5-19). Recalling that Js represents current per
unit length along the y direction, the total current crossing

the surface of the rectangular loop is I = Jsl. Hence, applying

Ampère’s law over the loop in a counterclockwise direction,
while noting that H is perpendicular to the paths of length w,

we have ∫

C

H ·dl = 2Hl = Jsl,

y

z

l

w

H

H

Js (out of the page)

Ampèrian
contour

Figure 5-19 A thin current sheet in the x–y plane carrying a

surface current density Js = x̂Js (Example 5-6).

from which we obtain the result

H =





−ŷ
Js

2
for z > 0,

ŷ
Js

2
for z < 0.

(5.51)

Concept Question 5-8: What are the fundamental dif-

ferences between electric and magnetic fields?

Concept Question 5-9: If the line integral of H over a

closed contour is zero, does it follow that H = 0 at every
point on the contour? If not, what then does it imply?

Concept Question 5-10: Compare the utility of apply-

ing the Biot–Savart law versus applying Ampère’s law
for computing the magnetic field due to current-carrying

conductors.

Concept Question 5-11: What is a toroid? What is the

magnetic field outside the toroid?

5-4 Vector Magnetic Potential

In our treatment of electrostatic fields in Chapter 4, we defined
the electrostatic potential V as the line integral of the electric

field E and found that V and E are related by E = −∇V .

This relationship proved useful not only in relating electric
field distributions in circuit elements (such as resistors and

capacitors) to the voltages across them but also to determine

E for a given charge distribution by first computing V using
Eq. (4.48). We now explore a similar approach in connection

with the magnetic flux density B.
According to Eq. (5.44), ∇ ·B = 0. We wish to define B in

terms of a magnetic potential with the constraint that such a

definition guarantees that the divergence of B is always zero.
This can be realized by taking advantage of the vector identity

given by Eq. (3.106b), which states that, for any vector A,

∇ ·(∇×××A) = 0. (5.52)

Hence, by introducing the vector magnetic potential A such

that

B = ∇×××A (Wb/m2), (5.53)

we are guaranteed that ∇ ·B = 0. The SI unit for B is the
tesla (T). An equivalent unit is webers per square meter

(Wb/m2). Consequently, the SI unit for A is (Wb/m).
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Technology Brief 10: Electromagnets

William Sturgeon developed the first practical electro-
magnet in the 1820s. Today, the principle of the electro-
magnet is used in motors, relay switches in read/write
heads for hard disks and tape drives, loud speakers,
magnetic levitation, and many other applications.

Basic Principle

Electromagnets can be constructed in various shapes,
including the linear solenoid and horseshoe geome-
tries depicted in Fig. TF10-1. In both cases, when an
electric current flows through the insulated wire coiled
around the central core, it induces a magnetic field with
lines resembling those generated by a bar magnet. The
strength of the magnetic field is proportional to the cur-
rent, the number of turns, and the magnetic permeability
of the core material. By using a ferromagnetic core,
the field strength can be increased by several orders of
magnitude, depending on the purity of the iron material.
When subjected to a magnetic field, ferromagnetic mate-
rials, such as iron or nickel, get magnetized and act like
magnets themselves.

Magnetic Relays

A magnetic relay is a switch or circuit breaker that can
be activated into the “ON” and “OFF” positions magneti-
cally. One example is the low-power reed relay used in
telephone equipment, which consists of two flat nickel–
iron blades separated by a small gap (Fig. TF10-2). The
blades are shaped in such a way that, in the absence of
an external force, they remain apart and unconnected
(OFF position). Electrical contact between the blades

NS

Glass envelope

Electronic circuit

Figure TF10-2 Micro-reed relay (size exaggerated for illus-

tration purposes).

(a) Solenoid (b) Horseshoe electromagnet

Iron core

B

Insulated wire

Switch
N

S

NS

Iron core

Magnetic field

B

B

Figure TF10-1 Solenoid and horseshoe magnets.
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(ON position) is realized by applying a magnetic field
along their length. The field, induced by a current flowing
in the wire coiled around the glass envelope, causes
the two blades to assume opposite magnetic polarities,
thereby forcing them to attract together and close out the
gap.

The Doorbell

In a doorbell circuit (Fig. TF10-3), the doorbell button
is a switch; pushing and holding it down serves to
connect the circuit to the household ac source through
an appropriate step-down transformer . The current
from the source flows through the electromagnet, via a
contact arm with only one end anchored in place (and
the other moveable), and onward to the switch. The
magnetic field generated by the current flowing in the
windings of the electromagnet pulls the unanchored end
of the contact arm (which has an iron bar on it) closer
in—in the direction of the electromagnet—thereby losing
connection with the metal contact and severing current
flow in the circuit. With no magnetic field to pull on the
contact arm, it snaps back into its earlier position, re-
establishing the current in the circuit. This back-and-forth
cycle is repeated many times per second, so long as the
doorbell button continues to be pushed down, and with
every cycle, the clapper arm attached to the contact arm
hits the metal bell and generates a ringing sound.

The Loudspeaker

By using a combination of a stationary, permanent mag-
net and a moveable electromagnet, the electromagnet/
speaker-cone of the loudspeaker (Fig. TF10-4) can be
made to move back and forth in response to the electrical

Permanent
magnet

Cone Audio
signal

Electrical
signal

Figure TF10-4 The basic structure of a speaker.

Transformer
Button

Bell

Clapper
Contact arm

Magnetic field

ac source
Metal contact

Electromagnet

Figure TF10-3 Basic elements of a doorbell.
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(a) (b) (c)

SNSNS N

NSNSN S

NS

SN

Figure TF10-5 (a) A maglev train, (b) electrodynamic suspension of an SCMaglev train, and (c) electrodynamic maglev propulsion via

propulsion coils.

signal exciting the electromagnet. The vibrating move-
ment of the cone generates sound waves with the same
distribution of frequencies as contained in the spectrum
of the electrical signal.

Magnetic Levitation

◮ Magnetically levitated trains (Fig. TF10-5(a)),
called maglevs for short, can achieve speeds as
high as 500 km/hr, primarily because there is no
friction between the train and the track. ◭

The train basically floats at a height of 1 or more
centimeters above the track, which is made possible by
magnetic levitation (Fig. TF10-5(b)). The train carries
superconducting electromagnets that induce currents in
coils built into the guide rails alongside the train. The
magnetic interaction between the train’s superconducting
electromagnets and the guide-rail coils serves not only to
levitate the train but also to propel it along the track.
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5-4.1 Vector Poisson’s Equation

With B = µH, the differential form of Ampère’s law given by

Eq. (5.46) can be written as

∇×××B = µJ. (5.54)

If we substitute Eq. (5.53) into Eq. (5.54), we obtain

∇××× (∇×××A) = µJ. (5.55)

For any vector A, the Laplacian of A obeys the vector identity

given by Eq. (3.113), that is,

∇2A = ∇(∇ ·A)−∇××× (∇×××A), (5.56)

where, by definition, ∇2A in Cartesian coordinates is

∇2A =

(
∂ 2

∂x2
+

∂ 2

∂y2
+

∂ 2

∂ z2

)
A

= x̂∇2
Ax + ŷ∇2

Ay + ẑ∇2
Az. (5.57)

Combining Eq. (5.55) with Eq. (5.56) gives

∇(∇ ·A)−∇2A = µJ. (5.58)

This equation contains a term involving ∇ ·A. It turns out

that we have a fair amount of latitude in specifying a value

or a mathematical form for ∇ ·A without conflicting with the
requirement represented by Eq. (5.53). The simplest among

these allowed restrictions on A is

∇ ·A = 0. (5.59)

Using this choice in Eq. (5.58) leads to the vector Poisson’s
equation

∇2A = −µJ. (5.60)

Using the definition for ∇2A given by Eq. (5.57), the vector

Poisson’s equation can be decomposed into three scalar Pois-

son’s equations:

∇2
Ax = −µJx,

∇2
Ay = −µJy,

∇2
Az = −µJz.

(5.61a)

(5.61b)

(5.61c)

In electrostatics, Poisson’s equation for the scalar potential V

is given by Eq. (4.70) as

∇2
V = −ρv

ε
, (5.62)

and its solution for a volume charge distribution ρv occupying
a volume υ ′ was given by Eq. (4.71) as

V =
1

4πε

∫

υ ′

ρv

R′ dυ ′. (5.63)

Poisson’s equations for Ax, Ay, and Az are mathematically

identical in form to Eq. (5.62). Hence, for a current density J

with x component Jx distributed over a volume υ ′, the solution

for Eq. (5.61a) is

Ax =
µ

4π

∫

υ ′

Jx

R′ dυ ′ (Wb/m). (5.64)

Similar solutions can be written for Ay in terms of Jy and for

Az in terms of Jz. The three solutions can be combined into a

vector equation:

A =
µ

4π

∫

υ ′

J

R′ dυ ′ (Wb/m). (5.65)

In view of Eq. (5.23), if the current distribution is specified

over a surface S
′, then J dυ ′ should be replaced with Js ds

′ and

υ ′ should be replaced with S
′; similarly, for a line distribution,

J dυ ′ should be replaced with I dl′, and the integration should

be performed over the associated path l
′.

◮ The vector magnetic potential provides a third approach

for computing the magnetic field due to current-carrying

conductors in addition to the methods suggested by the
Biot–Savart and Ampère laws. ◭

For a specified current distribution, Eq. (5.65) can be used to

find A, and then Eq. (5.53) can be used to find B. Except for

simple current distributions with symmetrical geometries that
lend themselves to the application of Ampère’s law, in practice

we often use the approaches provided by the Biot–Savart law

and the vector magnetic potential, and among these two, the
latter often is more convenient to apply because it is easier to

perform the integration in Eq. (5.65) than that in Eq. (5.22).

5-4.2 Magnetic Flux

The magnetic flux Φ linking a surface S is defined as the total

magnetic flux density passing through it, or

Φ =

∫

S

B ·ds (Wb). (5.66)

If we insert Eq. (5.53) into Eq. (5.66) and then invoke Stokes’s

theorem, we obtain

Φ =

∫

S

(∇×A) ·ds =

∫

C

A ·dl (Wb), (5.67)
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where C is the contour bounding the surface S. Thus, Φ can
be determined by either Eq. (5.66) or Eq. (5.67), whichever is

easier to integrate for the specific problem under consideration.

5-5 Magnetic Properties of Materials

Because of the similarity between the pattern of the magnetic

field lines generated by a current loop and those exhibited

by a permanent magnet, the loop can be regarded as a mag-
netic dipole with north and south poles (Section 5-2.2 and

Fig. 5-13). The magnetic moment m of a loop of area A has
magnitude m = IA and a direction normal to the plane of the

loop (in accordance with the right-hand rule). Magnetization in

a material is due to atomic scale current loops associated with
(1) orbital motions of the electrons and protons around and

inside the nucleus and (2) electron spin. The magnetic moment

due to proton motion typically is three orders of magnitude
smaller than that of the electrons; therefore, the total orbital

and spin magnetic moment of an atom is dominated by the

sum of the magnetic moments of its electrons.

◮ The magnetic behavior of a material is governed by the

interaction of the magnetic dipole moments of its atoms
with an external magnetic field. The nature of the behavior

depends on the crystalline structure of the material and is

used as a basis for classifying materials as diamagnetic,
paramagnetic, or ferromagnetic. ◭

The atoms of a diamagnetic material have no permanent mag-

netic moments. In contrast, both paramagnetic and ferromag-

netic materials have atoms with permanent magnetic dipole
moments, albeit with very different organizational structures.

5-5.1 Electron Orbital and Spin Magnetic
Moments

This section presents a semiclassical, intuitive model of the

atom, which provides quantitative insight into the origin of

electron magnetic moments. An electron with charge of −e

moving at constant speed u in a circular orbit of radius r

(Fig. 5-20(a)) completes one revolution in time T = 2πr/u.
This circular motion of the electron constitutes a tiny loop with

current I given by

I = − e

T
= − eu

2πr
. (5.68)

The magnitude of the associated orbital magnetic moment mo

is

mo = IA =
(
− eu

2πr

)
(πr

2) = −eur

2
= −

(
e

2me

)
Le, (5.69)

r

e
e

mo

ms

(a) Orbiting electron (b) Spinning electron

Figure 5-20 An electron generates (a) an orbital magnetic

moment mo as it rotates around the nucleus and (b) a spin

magnetic moment ms as it spins about its own axis.

where Le = meur is the angular momentum of the electron and
me is its mass. According to quantum physics, the orbital an-

gular momentum is quantized; specifically, Le is always some
integer multiple of h̄ = h/2π , where h is Planck’s constant.

That is, Le = 0, h̄,2h̄, . . . . Consequently, the smallest nonzero

magnitude of the orbital magnetic moment of an electron is

mo = − eh̄

2me

. (5.70)

Despite the fact that all materials contain electrons that exhibit

magnetic dipole moments, most are effectively nonmagnetic.

This is because, in the absence of an external magnetic field,
the atoms of most materials are oriented randomly, as a result

of which they exhibit a zero or very small net magnetic

moment.
In addition to the magnetic moment due to its orbital motion,

an electron has an intrinsic spin magnetic moment ms due

to its spinning motion about its own axis (Fig. 5-20(b)). The
magnitude of ms predicted by quantum theory is

ms = − eℏ

2me

, (5.71)

which is equal to the minimum orbital magnetic moment mo.

The electrons of an atom with an even number of electrons
usually exist in pairs with the members of a pair having

opposite spin directions, thereby canceling each others’ spin
magnetic moments. If the number of electrons is odd, the atom

has a net nonzero spin magnetic moment due to its unpaired

electron.

5-5.2 Magnetic Permeability

In Chapter 4, we learned that the relationship D = ε0E,
between the electric flux and field in free space, is modified to

D = ε0E+P in a dielectric material. Likewise, the relationship
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B = µ0H in free space is modified to

B = µ0H + µ0M = µ0(H+ M), (5.72)

where the magnetization vector M is defined as the vector sum

of the magnetic dipole moments of the atoms contained in a
unit volume of the material. Scale factors aside, the roles and

interpretations of B, H, and M in Eq. (5.72) mirror those of D,

E, and P in Eq. (4.93). Moreover, just as in most dielectrics P

and E are linearly related, in most magnetic materials

M = χmH, (5.73)

where χm is a dimensionless quantity called the magnetic
susceptibility of the material. For diamagnetic and param-

agnetic materials, χm is a (temperature-dependent) constant,
resulting in a linear relationship between M and H at a given

temperature. This is not the case for ferromagnetic substances;

the relationship between M and H not only is nonlinear, but
also depends on the “history” of the material, as explained in

the next section.

Keeping this fact in mind, we can combine Eqs. (5.72) and
(5.73) to get

B = µ0(H+ χmH) = µ0(1 + χm)H, (5.74)

or

B = µH, (5.75)

where µ , the magnetic permeability of the material, relates
to χm as

µ = µ0(1 + χm) (H/m). (5.76)

Often it is convenient to define the magnetic properties of a

material in terms of the relative permeability µr:

µr =
µ

µ0

= 1 + χm. (5.77)

A material usually is classified as diamagnetic, paramagnetic,
or ferromagnetic on the basis of the value of its χm (Table 5-2).

Diamagnetic materials have negative susceptibilities, whereas

paramagnetic materials have positive ones. However, the abso-
lute magnitude of χm is on the order of 10−5 for both classes

of materials, which for most applications allows us to ignore
χm relative to 1 in Eq. (5.77).

◮ Thus, µr ≈ 1 or µ ≈ µ0 for diamagnetic and para-
magnetic substances, which include dielectric materials

and most metals. In contrast, |µr| ≫ 1 for ferromagnetic
materials; |µr| of purified iron, for example, is on the order

of 2×105. ◭

Ferromagnetic materials are discussed next.

Exercise 5-12: The magnetic vector M is the vector sum
of the magnetic moments of all the atoms contained in

a unit volume (1 m3). If a certain type of iron with

8.5×1028 atoms/m3 contributes one electron per atom
to align its spin magnetic moment along the direction of

the applied field, find (a) the spin magnetic moment of

a single electron given that me = 9.1 × 10−31 (kg) and
h̄ = 1.06×10−34 (J·s) and (b) the magnitude of M.

Answer: (a) ms = 9.3×10−24 (A·m2), (b) M = 7.9×105

(A/m). (See EM .)

5-5.3 Magnetic Hysteresis of Ferromagnetic
Materials

Ferromagnetic materials, which include iron, nickel, and
cobalt, exhibit unique magnetic properties due to the fact that

their magnetic moments tend to readily align along the direc-

tion of an external magnetic field. Moreover, such materials
remain partially magnetized even after the external field is

removed. Because of these peculiar properties, ferromagnetic

materials are used in the fabrication of permanent magnets.
A key to understanding the properties of ferromagnetic

materials is the notion of magnetized domains, that are mi-

croscopic regions (on the order of 10−10 m3) within which
the magnetic moments of all atoms (typically on the order

of 1019 atoms) are permanently aligned with each other. This
alignment, which occurs in all ferromagnetic materials, is

due to strong coupling forces between the magnetic dipole

moments constituting an individual domain. In the absence of
an external magnetic field, the domains take on random orien-

tations relative to each other (Fig. 5-21(a)), resulting in zero

net magnetization. The domain walls forming the boundaries
between adjacent domains consist of thin transition regions.

When an unmagnetized sample of a ferromagnetic material

is placed in an external magnetic field, the domains partially
align with the external field, as illustrated in Fig. 5-21(b). A

quantitative understanding of how the domains form and how

they behave under the influence of an external magnetic field
requires a heavy dose of quantum mechanics and is outside

the scope of the present treatment. Hence, we confine our
discussion to a qualitative description of the magnetization

process and its implications.

The magnetization behavior of a ferromagnetic material is
described in terms of its B–H magnetization curve, where B

and H refer to the amplitudes of the B flux and H field in the

material. Suppose that we start with an unmagnetized sample
of iron, denoted by point O in Fig. 5-22. When we increase H

continuously, for example, by increasing the current passing
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Table 5-2 Properties of magnetic materials.

Diamagnetism Paramagnetism Ferromagnetism

Permanent magnetic No Yes, but weak Yes, and strong

dipole moment

Primary magnetization Electron orbital Electron spin Magnetized

mechanism magnetic moment magnetic moment domains

Direction of induced Opposite Same Hysteresis

magnetic field [see Fig. 5-22]

(relative to external field)

Common substances Bismuth, copper, diamond, Aluminum, calcium, Iron,

gold, lead, mercury, silver, chromium, magnesium, nickel,

silicon niobium, platinum, cobalt

tungsten

Typical value of χm ≈−10−5 ≈ 10−5 |χm| ≫ 1 and hysteretic

Typical value of µr ≈ 1 ≈ 1 |µr| ≫ 1 and hysteretic

(a) Unmagnetized domains

(b) Magnetized domains

Figure 5-21 Comparison of (a) unmagnetized and (b) magne-

tized domains in a ferromagnetic material.

through a wire wound around the sample, B increases also
along the B–H curve from point O to point A1, at which

nearly all the domains have become aligned with H. Point A1

A2

A1

A3
HO

B

A4

Br

Figure 5-22 Typical hysteresis curve for a ferromagnetic

material.

represents a saturation condition. If we then decrease H from

its value at point A1 back to zero (by reducing the current
through the wire), the magnetization curve follows the path

from A1 to A2. At point A2, the external field H is zero (owing
to the fact that the current through the wire is zero), but the

flux density B in the material is not. The magnitude of B at A2

is called the residual flux density Br. The iron material is now
magnetized and ready to be used as a permanent magnet owing

to the fact that a large fraction of its magnetized domains have

remained aligned. Reversing the direction of H and increasing
its intensity causes B to decrease from Br at point A2 to zero

at point A3, and if the intensity of H is increased further
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while maintaining its direction, the magnetization moves to
the saturation condition at point A4. Finally, as H is made

to return to zero and is then increased again in the positive

direction, the curve follows the path from A4 to A1. This
process is called magnetic hysteresis. Hysteresis means “lag

behind.” The existence of a hysteresis loop implies that the

magnetization process in ferromagnetic materials depends not
only on the magnetic field H but also on the magnetic history

of the material. The shape and extent of the hysteresis loop

depend on the properties of the ferromagnetic material and
the peak-to-peak range over which H is made to vary. Hard
ferromagnetic materials are characterized by wide hysteresis
loops (Fig. 5-23(a)). They cannot be easily demagnetized by

an external magnetic field because they have a large residual

magnetization Br. Hard ferromagnetic materials are used in the
fabrication of permanent magnets for motors and generators.

Soft ferromagnetic materials have narrow hysteresis loops

(Fig. 5-23(b)); hence, they can be more easily magnetized and
demagnetized. To demagnetize any ferromagnetic material,

the material is subjected to several hysteresis cycles while

gradually decreasing the peak-to-peak range of the applied
field.

H

B

H

B

(a) Hard material (b) Soft material

Figure 5-23 Comparison of hysteresis curves for (a) a hard

ferromagnetic material and (b) a soft ferromagnetic material.

Concept Question 5-12: What are the three types of

magnetic materials, and what are typical values of their
relative permeabilities?

Concept Question 5-13: What causes magnetic hys-

teresis in ferromagnetic materials?

Concept Question 5-14: What does a magnetization
curve describe? What is the difference between the mag-

netization curves of hard and soft ferromagnetic mate-

rials?

5-6 Magnetic Boundary Conditions

In Chapter 4, we derived a set of boundary conditions that

describes how, at the boundary between two dissimilar con-

tiguous media, the electric flux and field D and E in the first
medium relate to those in the second medium. We now derive

a similar set of boundary conditions for the magnetic flux
and field B and H. By applying Gauss’s law to a pill box

that straddles the boundary, we determined that the difference

between the normal components of the electric flux densities
in two media equals the surface charge density ρs. That is,

∫

S

D ·ds = Q D1n −D2n = ρs. (5.78)

By analogy, application of Gauss’s law for magnetism, as

expressed by Eq. (5.44), leads to the conclusion that

∫

S

B ·ds = 0 B1n = B2n. (5.79)

◮ Thus, the normal component of B is continuous across
the boundary between two adjacent media. ◭

Because B1 = µ1H1 and B2 = µ2H2 for linear, isotropic
media, the boundary condition for H corresponding to

Eq. (5.79) is

µ1H1n = µ2H2n. (5.80)

Comparison of Eqs. (5.78) and (5.79) reveals a striking

difference between the behavior of the magnetic and electric

fluxes across a boundary: Whereas the normal component of B

is continuous across the boundary, the normal component of D

is not (unless ρs = 0). The reverse applies to the tangential
components of the electric and magnetic fields E and H:

Whereas the tangential component of E is continuous across

the boundary, the tangential component of H is not (unless

the surface current density Js = 0). To obtain the boundary

condition for the tangential component of H, we follow the

same basic procedure used in Chapter 4 to establish the
boundary condition for the tangential component of E. With

reference to Fig. 5-24, we apply Ampère’s law (Eq. (5.47)) to
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∆h
2
∆h
2

H1H1n

H1t

H2

H2n

H2t

}
}

a

dc

b

∆l

μ1

Medium 1

μ2

Medium 2

n2

Js

ˆ
n̂

l̂ll1

l̂ll2

Figure 5-24 Boundary between medium 1 with µ1 and medium 2 with µ2.

a closed rectangular path with sides of lengths ∆l and ∆h, and

then let ∆h → 0 to obtain

∫

C

H ·dl =

∫
b

a

H1 · ℓ̂ℓℓ1 dℓ+

∫
d

c

H2 · ℓ̂ℓℓ2 dℓ = I, (5.81)

where I is the net current crossing the surface of the loop in the
direction specified by the right-hand rule (I is in the direction

of the thumb when the fingers of the right hand extend in the

direction of the loop C). As we let ∆h of the loop approach
zero, the surface of the loop approaches a thin line of length ∆l.

The total current flowing through this thin line is I = Js ∆l,
where Js is the magnitude of the component of the surface

current density Js normal to the loop. That is, Js = Js · n̂, where

n̂ is the normal to the loop. In view of these considerations,
Eq. (5.81) becomes

(H1 −H2) · ℓ̂ℓℓ1 ∆l = Js · n̂ ∆l. (5.82)

The vector ℓ̂ℓℓ1 can be expressed as ℓ̂ℓℓ1 = n̂××× n̂2, where n̂ and
n̂2 are the normals to the loop and to the surface of medium 2

(Fig. 5-24), respectively. Using this relation in Eq. (5.82) and
then applying the vector identity A ·(B×××C)= B ·(C×××A) leads

to

n̂ ·[n̂2××× (H1 −H2)] = Js · n̂. (5.83)

Since Eq. (5.83) is valid for any n̂, it follows that

n̂2××× (H1 −H2) = Js. (5.84)

This equation implies that the tangential components of H

parallel to Js are continuous across the interface, whereas those

orthogonal to Js are discontinuous in the amount of Js.
Surface currents can exist only on the surfaces of per-

fect conductors and superconductors. Hence, at the interface

between media with finite conductivities, Js = 0 and

H1t = H2t. (5.85)

Example 5-7: Tilted-Plane Boundary

In Fig. 5-25 the plane defined by y + 2x = 2 separates
medium 1 of permeability µ1 from medium 2 of permeability

µ2. If no surface current exists on the boundary and

B1 = x̂2 + ŷ3 (T),

find B2 and then evaluate the result for µ2 = 2µ1.

y

x
(1, 0)

(0, 2)

μ2

n2y

n2x

Medium 2

Plane y + 2x = 2

μ1

Medium 1

θ

n2

θ

ˆ

Figure 5-25 Magnetic media separated by the plane y+2x = 2

(Example 5-7).
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Solution: To apply the boundary conditions at the plane
between the two media, we first need to obtain an expression

for the unit vector normal to the boundary. To apply the

boundary condition given by Eq. (5.84), we need an expression
for n̂2, which isthe unit vector pointing away from medium 2

(Fig. 5-25).

From the geometry of the small triangle in Fig. 5-25,

θ = tan−1

(
1

2

)

= 26.57◦.

Hence,

n̂2 = x̂cosθ + ŷsinθ

= x̂0.89 + ŷ0.45.

Magnetic field B1 has a normal component B1n along n̂2 and a

tangential component B1t:

B1 = B1n + B1t

with

B1n = B1nn̂2

and

B1n = n̂2 ·B1

= (x̂cosθ + ŷsinθ ) ·(x̂2 + ŷ3)

= 2cosθ + 3sinθ .

The tangential component of B1 is

B1t = B1 −B1n

= B1 −B1nn̂2

= (x̂2 + ŷ3)− (2cosθ + 3sinθ )(x̂cosθ + ŷsinθ )

= x̂(2−2cos2 θ −3sinθ cosθ )

+ ŷ(3−2cosθ sinθ −3sin2 θ ).

Boundary conditions require that

B1n = B2n

and

B1t

µ1

=
B2t

µ2

,

which leads to

B2 = B2n + B2t = B1n +
µ2

µ1

B1t

= B1nn̂2 +
µ2

µ1

B1t

= (2cosθ + 3sinθ )(x̂cosθ + ŷsin θ )

+
µ2

µ1

[x̂(2−2cos2 θ −3sinθ cosθ )

+ ŷ(3−2cosθ sinθ −3sin2 θ )]

= x̂

[
2cos2 θ + 3sinθ cosθ

+
µ2

µ1
(2−2cos2 θ −3sinθ cosθ )

]

+ ŷ

[
2cosθ sinθ + 3sin2 θ

+
µ2

µ1

(3−2cosθ sinθ −3sin2 θ )

]
.

For θ = 26.57◦ and µ2 = 2µ1,

B2 = x̂1.2 + ŷ4.6 (T).

Exercise 5-13: With reference to Fig. 5-24, determine the

angle between H1 and n̂2 = ẑ if H2 = (x̂3 + ẑ2) (A/m),
µr1

= 2, µr2
= 8, and Js = 0.

Answer: θ = 20.6◦. (See EM .)

5-7 Inductance

An inductor is the magnetic analogue of an electric capacitor.

Just as a capacitor can store energy in the electric field in
the medium between its conducting surfaces, an inductor can

store energy in the magnetic field near its current-carrying con-

ductors. A typical inductor consists of multiple turns of wire
helically coiled around a cylindrical core (Fig. 5-26(a)). Such

a structure is called a solenoid. Its core may be air filled or may

contain a magnetic material with magnetic permeability µ . If
the wire carries a current I and the turns are closely spaced,

the solenoid will produce a relatively uniform magnetic field

within its interior with magnetic field lines resembling those
of the permanent magnet (Fig. 5-26(b)).

5-7.1 Magnetic Field in a Solenoid

As a prelude to our discussion of inductance, we derive an

expression for the magnetic flux density B in the interior
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(a) Loosely wound
solenoid

(b) Tightly wound
solenoid

N

S

B

N
B

S

Figure 5-26 Magnetic field lines of (a) a loosely wound

solenoid and (b) a tightly wound solenoid.

region of a tightly wound solenoid. The solenoid is of length l

and radius a and comprises N turns carrying current I. The

number of turns per unit length is n = N/l, and the fact that
the turns are tightly wound implies that the pitch of a single

turn is small compared with the solenoid’s radius. Even though

the turns are slightly helical in shape, we can treat them as
circular loops (Fig. 5-27(a)). Let us start by considering the

magnetic flux density B at point P on the axis of the solenoid.

In Example 5-3, we derived the following expression for the
magnetic field H along the axis of a circular loop of radius a,

which is a distance z away from its center:

H = ẑ
I
′
a

2

2(a2 + z2)3/2
, (5.86)

where I
′ is the current carried by the loop. If we treat an

incremental length dz of the solenoid as an equivalent loop
composed of n dz turns carrying a current I

′ = In dz, then the

induced field at point P is

dB = µ dH

= ẑ
µnIa

2

2(a2 + z2)3/2
dz. (5.87)

The total field B at P is obtained by integrating the contribu-
tions from the entire length of the solenoid. This is facilitated

(a) Cross section

(b) Solenoid inductance

θ

dθ

θ2

θ1

dz

z

l

z

xP

I (out) I (in)

a

B

N

S

Cross section

l L = μ       S
N 2

l

Figure 5-27 (a) Solenoid cross section showing geometry for

calculating H at a point P on the solenoid axis and (b) solenoid

inductance.

by expressing the variable z in terms of the angle θ , as seen

from P to a point on the solenoid rim. That is,

z = a tanθ ,

a
2 + z

2 = a
2 + a

2 tan2 θ = a
2 sec2 θ ,

dz = asec2 θ dθ .

(5.88a)

(5.88b)

(5.88c)
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Upon substituting the last two expressions in Eq. (5.87) and
integrating from θ1 to θ2, we have

B = ẑ
µnIa

2

2

∫ θ2

θ1

asec2 θ dθ

a3 sec3 θ
= ẑ

µnI

2
(sin θ2 − sinθ1).

(5.89)
If the solenoid length l is much larger than its radius a, then

for points P away from the solenoid’s ends θ1 ≈−90◦ and

θ2 ≈ 90◦, in which case Eq. (5.89) reduces to

B ≈ ẑµnI =
ẑµNI

l

(long solenoid with l/a ≫ 1).

(5.90)

Even though Eq. (5.90) was derived for the field B at the

midpoint of the solenoid, it is approximately valid everywhere
in the solenoid’s interior, except near the ends.

We now return to a discussion of inductance, which includes

the notion of self-inductance, representing the magnetic flux
linkage of a coil or circuit with itself, and mutual inductance,

which involves the magnetic flux linkage in a circuit due to the

magnetic field generated by a current in another one. Usually,
when the term inductance is used, the intended reference is to

self-inductance.

Exercise 5-14: Use Eq. (5.89) to obtain an expression for

B at a point on the axis of a very long solenoid but situated
at its end points. How does B at the end points compare

with B at the midpoint of the solenoid?

Answer: B = ẑ(µNI/2l) at the end points, which is half

as large as B at the midpoint. (See EM .)

5-7.2 Self-Inductance of a Solenoid

From Eq. (5.66), the magnetic flux Φ linking a surface S is

Φ =
∫

S

B ·ds (Wb). (5.91)

In a solenoid characterized by an approximately uniform mag-
netic field throughout its cross-section and given by Eq. (5.90),

the flux linking a single loop is

Φ =

∫

S

ẑ

(
µ

N

l
I

)
· ẑ ds = µ

N

l
IS, (5.92)

where S is the cross-sectional area of the loop (Fig. 5-27(b)).
Magnetic flux linkage Λ is defined as the total magnetic flux

linking a given circuit or conducting structure. If the structure

consists of a single conductor with multiple loops, as in the
case of the solenoid, Λ equals the flux linking all loops of the

structure. For a solenoid with N turns,

Λ = NΦ = µ
N

2

l
IS (Wb). (5.93)

The self-inductance of any conducting structure is defined

as the ratio of the magnetic flux linkage Λ to the current I

flowing through the structure:

L =
Λ

I
(H). (5.94)

The SI unit for inductance is the henry (H), which is equivalent

to webers per ampere (Wb/A).
For a solenoid, use of Eq. (5.93) gives

L = µ
N

2

l
S (solenoid). (5.95)

5-7.3 Self-Inductance of Other Conductors

The solenoid consists of a single inductor of cross section S.

If, on the other hand, the structure consists of two separate

conductors, as in the case of the parallel-wire and coaxial
transmission lines shown in Fig. 5-28, the flux linkage Λ
associated with a length l of either line refers to the flux Φ
through a closed surface between the two conductors, such as
the shaded areas in Fig. 5-28. In reality, there is also some

magnetic flux that passes through the conductors themselves,

but it may be ignored by assuming that currents flow only on
the surfaces of the conductors, in which case the magnetic field

inside the conductors vanishes. This assumption is justified
by the fact that our interest in calculating Λ is for the pur-

pose of determining the inductance of a given structure, and

inductance is of interest primarily in the ac case (i.e., time-
varying currents, voltages, and fields). As we will see later

in Section 7-5, the current flowing in a conductor under ac

conditions is concentrated within a very thin layer on the skin
of the conductor.

◮ For the parallel-wire transmission line, ac currents flow

on the outer surfaces of the wires, and for the coaxial

line, the current flows on the outer surface of the inner
conductor and on the inner surface of the outer one (the

current-carrying surfaces are those adjacent to the electric

and magnetic fields present in the region between the
conductors). ◭
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(a) Parallel-wire transmission line

(b) Coaxial transmission line

Radius a

z

x

y

I
S

I

d

l

l a
b

I
S

I

c

Figure 5-28 To compute the inductance per unit length of

a two-conductor transmission line, we need to determine the

magnetic flux through the area S between the conductors.

For a two-conductor configuration similar to those of
Fig. 5-28, the inductance is given by

L =
Λ

I
=

Φ

I
=

1

I

∫

S

B ·ds. (5.96)

Example 5-8: Inductance of a Coaxial
Transmission Line

Develop an expression for the inductance per unit length of
a coaxial transmission line with inner and outer conductors

of radii a and b (Fig. 5-29) and an insulating material of

permeability µ .

Solution: The current I in the inner conductor generates

a magnetic field B throughout the region between the two

a

r
μ l

b

I I

I

z

Outer
conductor

Inner
conductor

Outer
conductor

S

Figure 5-29 Cross-sectional view of coaxial transmission line

(Example 5-8). and denote H field out of and into the

page, respectively.

conductors. It is given by Eq. (5.30) as

B = φ̂φφ
µI

2πr
, (5.97)

where r is the radial distance from the axis of the coaxial line.

Consider a transmission-line segment of length l as shown in
Fig. 5-29. Because B is perpendicular to the planar surface S

between the conductors, the flux through S is

Φ = l

∫
b

a

B dr = l

∫
b

a

µI

2πr
dr =

µIl

2π
ln

(
b

a

)
. (5.98)

Using Eq. (5.96), the inductance per unit length of the coaxial

transmission line is

L
′ =

L

l
=

Φ

lI
=

µ

2π
ln

(
b

a

)
. (5.99)

5-7.4 Mutual Inductance

Magnetic coupling between two different conducting struc-
tures is described in terms of the mutual inductance between

them. For simplicity, consider the case of two multiturn closed

loops with surfaces S1 and S2. Current I1 flows through the first
loop (Fig. 5-30), and no current flows through the second one.

The magnetic field B1 generated by I1 results in a flux Φ12
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I1

B1

S1

S2

C1

C2

N1 turns

N2 turns

Figure 5-30 Magnetic field lines generated by current I1 in

loop 1 linking surface S2 of loop 2.

through loop 2 given by

Φ12 =
∫

S2

B1 ·ds, (5.100)

and if loop 2 consists of N2 turns all coupled by B1 in exactly

the same way, then the total magnetic flux linkage through

loop 2 is

Λ12 = N2Φ12 = N2

∫

S2

B1 ·ds. (5.101)

The mutual inductance associated with this magnetic coupling

is given by

L12 =
Λ12

I1

=
N2

I1

∫

S2

B1 ·ds (H). (5.102)

Mutual inductance is important in transformers (as discussed

in Chapter 6) wherein the windings of two or more circuits

share a common magnetic core, as illustrated by the toroidal
arrangement shown in Fig. 5-31.

Example 5-9: Mutual Inductance

The rectangular conducting loop shown in Fig. 5-32 is copla-

nar with the long, straight wire carrying current I. Determine
the mutual inductance between the wire and the loop.

Solution: According to Eq. (5.102), the mutual inductance is

given by

L12 =
N2

I1

∫

S2

B1 ·ds.

R

V1

I1

V2

+ −

Figure 5-31 Toroidal coil with two windings used as a

transformer.

y

x

z

5 cm

10 cm

40 cm

20 A

20 cm

30 cm

Figure 5-32 Mutual inductance between two conductors

(Example 5-9).

In the present case, I1 = I is the current carried by the first

conductor (straight wire), S2 is the cross-sectional area of the

second conductor (rectangular loop), and B1 is the magnetic
field due to the first conductor (wire). Also, N2 = 1 because

the loop has a single turn. In the right-hand side of the

y–z plane, the magnetic field due to current I is into the page
(−x̂ direction) and given by

B = −x̂
µ0I

2πy
,

where y is the distance away from the wire. The expression is

identical with that given by Eq. (5.97), after replacing φ̂φφ with
−x̂ and r with y. To compute the magnetic flux passing through

the loop (into the page), we need to define the differential area
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as ds = −x̂ dy dz. Hence,

L12 =
1

I

∫ 0.20

y=0.05

∫ 0.4

z=0.1

(
−x̂

µ0I

2πy

)
· (−x̂ dy dz)

=
µ0

2π

(∫ 0.20

0.05

dy

y

)(∫ 0.4

0.1
dz

)

=
0.3µ0

2π
(lny)|0.20

0.05 =
0.3µ0

2π
ln

(
0.2

0.05

)
= 83 nH.

Concept Question 5-15: What is the magnetic field

like in the interior of a long solenoid?

Concept Question 5-16: What is the difference
between self-inductance and mutual inductance?

Concept Question 5-17: How is the inductance of a

solenoid related to its number of turns N?

5-8 Magnetic Energy

When we introduced electrostatic energy in Section 4-10, we
did so by examining what happens to the energy expended

in charging up a capacitor from zero voltage to some final
voltage V . We introduce the concept of magnetic energy by

considering an inductor with inductance L connected to a

current source. Suppose that we were to increase the current i

flowing through the inductor from zero to a final value I. From

circuit theory, we know that the instantaneous voltage υ across

the inductor is given by υ = L di/dt. We will derive this
relationship from Maxwell’s equations in Chapter 6, thereby

justifying the use of the i–υ relationship for the inductor.

Power p equals the product of υ and i, and the time integral of
power is work, or energy. Hence, the total energy in joules (J)

expended in building up a current I in the inductor is

Wm =

∫
p dt =

∫
iv dt = L

∫
I

0
i di =

1

2
LI

2 (J). (5.103)

We call this the magnetic energy stored in the inductor.

To justify this association, consider the solenoid inductor.

Its inductance is given by Eq. (5.95) as L = µN
2
S/l, and the

magnitude of the magnetic flux density in its interior is given

by Eq. (5.90) as B = µNI/l, implying that I = Bl/(µN). Using

these expressions for L and I in Eq. (5.103), we obtain

Wm =
1

2
LI

2 =
1

2

(
µ

N
2

l
S

)(
Bl

µN

)2

=
1

2

B
2

µ
(lS) =

1

2
µH

2υ , (5.104)

where υ = lS is the volume of the interior of the solenoid
and H = B/µ . The expression for Wm suggests that the energy

expended in building up the current in the inductor is stored in

the magnetic field with magnetic energy density wm, defined
as the magnetic energy Wm per unit volume,

wm =
Wm

υ
=

1

2
µH

2 (J/m3). (5.105)

◮ Even though this expression was derived for a solenoid,

it remains valid for any medium with a magnetic

field H. ◭

Furthermore, for any volume υ containing a material with

permeability µ (including free space with permeability µ0),
the total magnetic energy stored in a magnetic field H is

Wm =
1

2

∫

υ
µH

2
dυ (J). (5.106)

Example 5-10: Magnetic Energy in a
Coaxial Cable

Derive an expression for the magnetic energy stored in a
coaxial cable of length l and inner and outer radii a and b.

The current flowing through the cable is I and its insulation

material has permeability µ .

Solution: From Eq. (5.97), the magnitude of the magnetic

field in the insulating material is

H =
B

µ
=

I

2πr
,

where r is the radial distance from the center of the inner

conductor (Fig. 5-29). The magnetic energy stored in the

coaxial cable therefore is

Wm =
1

2

∫

υ
µH

2
dυ =

µI
2

8π2

∫

υ

1

r2
dυ .

Since H is a function of r only, we choose dυ to be a

cylindrical shell of length l, radius r, and thickness dr along

the radial direction. Thus, dυ = 2πrl dr and

Wm =
µI

2

8π2

∫
b

a

1

r2
·2πrl dr =

µI
2
l

4π
ln

(
b

a

)
=

1

2
LI

2 (J)

with L given by Eq. (5.99).
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Technology Brief 11: Inductive Sensors

Magnetic coupling between different coils forms the
basis of several different types of inductive sensors.
Applications include the measurement of position and
displacement (with submillimeter resolution) in device
fabrication processes, proximity detection of conduc-
tive objects, and other related applications.

Linear Variable Differential Transformer (LVDT)

◮ An LVDT comprises a primary coil connected to
an ac source (typically a sine wave at a frequency
in the 1–10 kHz range) and a pair of secondary
coils, all sharing a common ferromagnetic core
(Fig. TF11-1). ◭

The magnetic core serves to couple the magnetic flux
generated by the primary coil into the two secondaries,
thereby inducing an output voltage across each of them.
The secondary coils are connected in opposition, so
when the core is positioned at the magnetic center of
the LVDT, the individual output signals of the secondaries
cancel each other out, producing a null output voltage.
The core is connected to the outside world via a non-
magnetic push rod. When the rod moves the core away
from the magnetic center, the magnetic fluxes induced

Vin

Primary coil

Push
rod

Secondary coils

Vout +
_

+_

Ferromagnetic core

Figure TF11-1 Linear variable differential transformer

(LVDT) circuit.
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A
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e 
ou

tp
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Figure TF11-2 Amplitude and phase responses as functions

of the distance by which the magnetic core is moved away from

the center position.

in the secondary coils are no longer equal, resulting in
a nonzero output voltage. The LVDT is called a “linear”
transformer because the amplitude of the output voltage
is a linear function of displacement over a wide operating
range (Fig. TF11-2).

The cutaway view of the LVDT model in Fig. TF11-3
depicts a configuration in which all three coils—with
the primary straddled by the secondaries—are wound
around a glass tube that contains the magnetic core
and attached rod. Sample applications are illustrated in
Fig. TF11-4.

Stainless steel housing

Rod

Secondary coils
Primary coil Electronics

module

Magnetic core

Figure TF11-3 Cutaway view of LVDT.
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Sagging beam

LVDT

LVDT

Float

Figure TF11-4 LVDT for measuring beam deflection and as

a fluid-level gauge.

Eddy-Current Proximity Sensor

The transformer principle can be applied to build a prox-
imity sensor in which the output voltage of the secondary
coil becomes a sensitive indicator of the presence of a
conductive object in its immediate vicinity (Fig. TF11-5).

◮ When an object is placed in front of the secondary
coil, the magnetic field of the coil induces eddy (cir-
cular) currents in the object that generate magnetic
fields of their own having a direction that opposes the
magnetic field of the secondary coil. ◭

The reduction in magnetic flux causes a drop in output
voltage with the magnitude of the change being depen-
dent on the conductive properties of the object and its
distance from the sensor.

Primary
coil

Sensing
coil

Eddy
currents

Conductive object

Vin

+
+

Vout

_

_

Figure TF11-5 Eddy-current proximity sensor.
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Chapter 5 Summary

Concepts

• The magnetic force acting on a charged particle q

moving with a velocity u in a region containing a

magnetic flux density B is Fm = qu×××B.

• The total electromagnetic force, known as the Lorentz
force, acting on a moving charge in the presence of both

electric and magnetic fields is F = q(E+ u×××B).
• Magnetic forces acting on current loops can generate

magnetic torques.

• The magnetic field intensity induced by a current ele-
ment is defined by the Biot–Savart law.

• Gauss’s law for magnetism states that the net magnetic

flux flowing out of any closed surface is zero.
• Ampère’s law states that the line integral of H over a

closed contour is equal to the net current crossing the

surface bounded by the contour.
• The vector magnetic potential A is related to B by

B = ∇×××A.

• Materials are classified as diamagnetic, paramagnetic,

or ferromagnetic, depending on their crystalline
structure and the behavior under the influence of an

external magnetic field.

• Diamagnetic and paramagnetic materials exhibit a
linear behavior between B and H with µ ≈ µ0 for both.

• Ferromagnetic materials exhibit a nonlinear hysteretic

behavior between B and H, and for some, µ may be as
large as 105µ0.

• At the boundary between two different media, the nor-
mal component of B is continuous, and the tangential

components of H are related by H2t −H1t = Js, where

Js is the surface current density flowing in a direction
orthogonal to H1t and H2t.

• The inductance of a circuit is defined as the ratio of

magnetic flux linking the circuit to the current flowing
through it.

• Magnetic energy density is given by wm = 1
2

µH
2.

Mathematical and Physical Models

Maxwell’s Magnetostatics Equations

Gauss’s Law for Magnetism

∇ ·B = 0

∫

S

B ·ds = 0

Ampère’s Law

∇×××H = J

∫

C

H ·dℓℓℓ = I

Lorentz Force on Charge q

F = q(E+ u×××B)

Magnetic Force on Wire

Fm = I

∫

C

dl×××B (N)

Magnetic Torque on Loop

T = m×××B (N·m)

m = n̂NIA (A·m2)

Biot–Savart Law

H =
I

4π

∫

l

dl××× R̂

R2
(A/m)

Magnetic Field

Infinitely Long Wire B = φ̂φφ
µ0I

2πr
(Wb/m2)

Circular Loop H = ẑ
Ia

2

2(a2 + z2)3/2
(A/m)

Solenoid B ≈ ẑ µnI =
ẑ µNI

l
(Wb/m2)

Vector Magnetic Potential

B = ∇×××A (Wb/m2)

Vector Poisson’s Equation

∇2A = −µJ

Inductance

L =
Λ

I
=

Φ

I
=

1

I

∫

S

B ·ds (H)

Magnetic Energy Density

wm =
1

2
µH

2 (J/m3)
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Important Terms Provide definitions or explain the meaning of the following terms:

Ampère’s law

Ampèrian contour
Biot–Savart law

current density (volume) J

diamagnetic
ferromagnetic

Gauss’s law for magnetism
hard and soft ferromagnetic

materials

inductance (self- and mutual)

Lorentz force F

magnetic dipole
magnetic energy Wm

magnetic energy

density wm

magnetic flux Φ
magnetic flux density B

magnetic flux linkage Λ
magnetic force Fm

magnetic hysteresis

magnetic moment m

magnetic potential A

magnetic susceptibility χm

magnetization curve

magnetization vector M

magnetized domains

moment arm d

orbital and spin magnetic

moments

paramagnetic

solenoid

surface current
density Js

toroid

toroidal coil
torque T

vector Poisson’s
equation

PROBLEMS

Section 5-1: Magnetic Forces and Torques

∗
5.1 An electron with a speed of 8 × 106 m/s is projected

along the positive x direction into a medium containing

a uniform magnetic flux density B = (x̂4 − ẑ6) T. Given
that e = 1.6 × 10−19 C and the mass of an electron is

me = 9.1× 10−31 kg, determine the initial acceleration vector

of the electron (at the moment it is projected into the medium).

5.2 The circuit shown in Fig. P5.2 uses two identical springs

to support a 10 cm long horizontal wire with a mass of 20 g.

In the absence of a magnetic field, the weight of the wire
causes the springs to stretch a distance of 0.2 cm each. When a

uniform magnetic field is turned on in the region containing
the horizontal wire, the springs are observed to stretch an

additional 0.5 cm each. What is the intensity of the magnetic

flux density B? The force equation for a spring is F = kd,
where k is the spring constant and d is the distance it has been

stretched.

5.3 When a particle with charge q and mass m is introduced
into a medium with a uniform field B such that the initial

velocity of the particle u is perpendicular to B (Fig. P5.3), the
magnetic force exerted on the particle causes it to move in a

circle of radius a. By equating Fm to the centripetal force on

the particle, determine a in terms of q, m, u, and B.

∗
5.4 The rectangular loop shown in Fig. P5.4 consists of 20
closely wrapped turns and is hinged along the z-axis. The plane

of the loop makes an angle of 30◦ with the y-axis, and the
current in the windings is 0.5 A. What is the magnitude of

the torque exerted on the loop in the presence of a uniform

field B = ŷ2.4 T? When viewed from above, is the expected
direction of rotation clockwise or counterclockwise?

∗
Answer(s) available in Appendix E.

4 Ω 12 V

B

10 cm

Springs

+ −

Figure P5.2 Configuration of Problem 5.2.

5.5 In a cylindrical coordinate system, a 2-m long straight

wire carrying a current of 5 A in the positive z direction is

located at r = 4 cm, φ = π/2, and −1 m ≤ z ≤ 1 m.

∗
(a) If B = r̂0.2cosφ (T), what is the magnetic force acting

on the wire?

(b) How much work is required to rotate the wire once about

the z axis in the negative φ direction (while maintaining
r = 4 cm)?

(c) At what angle φ is the force a maximum?

5.6 A 20-turn rectangular coil with sides l = 30 cm and w =
10 cm is placed in the y–z plane as shown in Fig. P5.6.

(a) If the coil, which carries a current I = 10 A, is in the

presence of a magnetic flux density

B = 2×10−2(x̂+ ŷ2) (T),
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Fm
Fm

B

Fm

+

+

++

q

a

q

q
q

u

u

u

P

Figure P5.3 Particle of charge q projected with velocity u

into a medium with a uniform field B perpendicular to u

(Problem 5.3).

30◦

0.4 m

0.2 m

y

x

z

I = 0.5 A

20 turns

Figure P5.4 Hinged rectangular loop of Problem 5.4.

determine the torque acting on the coil.

(b) At what angle φ is the torque zero?

(c) At what angle φ is the torque maximum? Determine its

value.

Section 5-2: The Biot–Savart Law

5.7 An infinitely long, thin conducting sheet defined over

the space 0 ≤ x ≤ w and −∞ ≤ y ≤ ∞ is carrying a current

with a uniform surface current density Js = ŷ5 (A/m). Obtain
an expression for the magnetic field at point P = (0,0,z) in

Cartesian coordinates.

z

y

x

l

w

I

n

20-turn coil

φ ˆ

Figure P5.6 Rectangular loop of Problem 5.6.

5.8 Use the approach outlined in Example 5-2 to develop an

expression for the magnetic field H at an arbitrary point P

due to the linear conductor defined by the geometry shown

in Fig. P5.8. If the conductor extends between z1 = 3 m and

z2 = 7 m and carries a current I = 15 A, find H at P = (2,φ ,0).

I

z

P = (r, φ, z)

P1(z1)

P2(z2)
θ2

θ1

r

Figure P5.8 Current-carrying linear conductor of Problem 5.8.
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∗
5.9 The loop shown in Fig. P5.9 consists of radial lines and

segments of circles whose centers are at point P. Determine

the magnetic field H at P in terms of a, b, θ , and I.

θ

b

a P

I

Figure P5.9 Configuration of Problem 5.9.

∗
5.10 An 8 cm × 12 cm rectangular loop of wire is situated

in the x–y plane with the center of the loop at the origin and its

long sides parallel to the x-axis. The loop has a current of 50 A
flowing clockwise (when viewed from above). Determine the

magnetic field at the center of the loop.

∗
5.11 An infinitely long wire carrying a 50 A current in the

positive x direction is placed along the x-axis in the vicinity of
a 20-turn circular loop located in the x–y plane (Fig. P5.11). If

the magnetic field at the center of the loop is zero, what is the

direction and magnitude of the current flowing in the loop?

1 m

d = 2 m

I1

x

Figure P5.11 Circular loop next to a linear current (Prob-

lem 5.11).

5.12 Two infinitely long, parallel wires are carrying 6-A

currents in opposite directions. Determine the magnetic flux
density at point P in Fig. P5.12.

5.13 Two parallel, circular loops carrying a current of 40 A

each are arranged as shown in Fig. P5.13. The first loop is

situated in the x–y plane with its center at the origin, and the
second loop’s center is at z = 2 m. If the two loops have the

same radius a = 3 m, determine the magnetic field at:

I2 = 6 AI1 = 6 A

0.5 m

2 m

P

Figure P5.12 Arrangement for Problem 5.12.

(a) z = 0

(b) z = 1 m

(c) z = 2 m

z = 2 m

0

z

y

x

a

a

I

I

Figure P5.13 Parallel circular loops of Problem 5.13.

∗
5.14 A long, East-West–oriented power cable carrying an
unknown current I is at a height of 4 m above the Earth’s

surface. If the magnetic flux density recorded by a magnetic-

field meter placed at the surface is 15 µT when the current is
flowing through the cable and 20 µT when the current is zero,

what is the magnitude of I?
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5.15 A circular loop of radius a carrying current I1 is located
in the x–y plane as shown in Fig. P5.15. In addition, an

infinitely long wire carrying current I2 in a direction parallel

with the z-axis is located at y = y0.

x

y

z

y0
a

n parallel to z

P = (0, 0, h)
I2

I1

ˆ ˆ

Figure P5.15 Problem 5.15.

(a) Determine H at P = (0,0,h).

(b) Evaluate H for a = 3 cm, y0 = 10 cm, h = 4 cm, I1 =
10 A, and I2 = 20 A.

∗
5.16 The long, straight conductor shown in Fig. P5.16 lies in

the plane of the rectangular loop at a distance d = 0.1 m. The

loop has dimensions a = 0.2 m and b = 0.5 m, and the currents
are I1 = 40 A and I2 = 30 A. Determine the net magnetic force

acting on the loop.

I2

I1

a = 0.2 md = 0.1 m

b = 0.5 m

Figure P5.16 Current loop next to a conducting wire (Prob-

lem 5.16).

5.17 In the arrangement shown in Fig. P5.17, each of the

two long, parallel conductors carries a current I, is supported

by 8-cm-long strings, and has a mass per unit length of 1.2
g/cm. Due to the repulsive force acting on the conductors, the

angle θ between the supporting strings is 10◦. Determine the

magnitude of I and the relative directions of the currents in the
two conductors.

F12

F21

θ = 10◦

z

x
y

Figure P5.17 Parallel conductors supported by strings (Prob-

lem 5.17).

5.18 An infinitely long, thin conducting sheet of width w

along the x-direction lies in the x–y plane and carries a current I

in the −y-direction. Determine the following:

∗
(a) The magnetic field at a point P midway between the edges

of the sheet and at a height h above it (Fig. P5.18).

(b) The force per unit length exerted on an infinitely long

wire passing through point P and parallel to the sheet if

the current through the wire is equal in magnitude but
opposite in direction to that carried by the sheet.

I

I
P

h

w

Figure P5.18 A linear current source above a current sheet

(Problem 5.18).
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5.19 Three long, parallel wires are arranged as shown in
Fig. P5.19. Determine the force per unit length acting on the

wire carrying I3.

I1 = 10 A

I2 = 10 A

I3 = 10 A

2 m

2 m

2 m

Figure P5.19 Three parallel wires of Problem 5.19.

∗
5.20 A square loop placed as shown in Fig. P5.20 has
2-m sides and carries a current I1 = 5 A. If a straight, long

conductor carrying a current I2 = 20 A is introduced and
placed just above the midpoints of two of the loop’s sides,

determine the net force acting on the loop.

z

x

y
a

a

1 3

4

2

I
1

I2

Figure P5.20 Long wire carrying current I2, just above a

square loop carrying I1 (Problem 5.20).

Section 5-3: Maxwell’s Magnetostatic Equations

5.21 A long cylindrical conductor whose axis is coincident

with the z axis has a radius a and carries a current characterized
by a current density J = ẑJ0/r, where J0 is a constant and

r is the radial distance from the cylinder’s axis. Obtain an

expression for the magnetic field H for

(a) 0 ≤ r ≤ a

(b) r > a

5.22 Repeat Problem 5.21 for a current density J = ẑJ0e
−r.

5.23 Current I flows along the positive z-direction in the

inner conductor of a long coaxial cable and returns through
the outer conductor. The inner conductor has radius a, and

the inner and outer radii of the outer conductor are b and c,

respectively.

(a) Determine the magnetic field in each of the following
regions: 0 ≤ r ≤ a, a ≤ r ≤ b, b ≤ r ≤ c, and r ≥ c.

(b) Plot the magnitude of H as a function of r over the range
from r = 0 to r = 10 cm, given that I = 10 A, a = 2 cm,

b = 4 cm, and c = 5 cm.

∗
5.24 In a certain conducting region, the magnetic field is
given in cylindrical coordinates by

H = φ̂φφ
1

r
[1− (1 + 3r)e−3r]

Find the current density J.

5.25 A cylindrical conductor whose axis is coincident with

the z-axis has an internal magnetic field given by

H = φ̂φφ
2

r
[1− (4r + 1)e−4r] (A/m) for r ≤ a

where a is the conductor’s radius. If a = 5 cm, what is the total

current flowing in the conductor?

Section 5-4: Vector Magnetic Potential

5.26 With reference to Fig. 5-10:
∗

(a) Derive an expression for the vector magnetic potential A

at a point P located at a distance r from the wire in the

x–y plane.

(b) Derive B from A. Show that your result is identical with
the expression given by Eq. (5.29), which was derived by

applying the Biot–Savart law.

5.27 A uniform current density given by

J = ẑJ0 (A/m2)
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gives rise to a vector magnetic potential

A = −ẑ
µ0J0

4
(x2 + y

2) (Wb/m).

(a) Apply the vector Poisson’s equation to confirm the above

statement.

(b) Use the expression for A to find H.

(c) Use the expression for J in conjunction with Ampère’s
law to find H. Compare your result with that obtained in

part (b).

5.28 In a given region of space, the vector magnetic potential

is given by A = x̂5cosπy + ẑ(2 + sinπx) (Wb/m).
∗

(a) Determine B.

(b) Use Eq. (5.66) to calculate the magnetic flux passing
through a square loop with 0.25-m long edges if the loop

is in the x–y plane, its center is at the origin, and its edges

are parallel to the x and y axes.

(c) Calculate Φ again using Eq. (5.67).

∗
5.29 A thin current element extending between z = −L/2

and z = L/2 carries a current I along +ẑ through a circular

cross-section of radius a.

(a) Find A at a point P located very far from the origin

(assume R is so much larger than L that point P may be

considered to be at approximately the same distance from
every point along the current element).

(b) Determine the corresponding H.

Section 5-5: Magnetic Properties of Materials

∗
5.30 Iron contains 8.5× 1028 atoms/m3. At saturation, the

alignment of the electrons’ spin magnetic moments in iron can

contribute 1.5 T to the total magnetic flux density B. If the spin
magnetic moment of a single electron is 9.27×10−24 (A·m2),

how many electrons per atom contribute to the saturated field?

5.31 In the model of the hydrogen atom proposed by Bohr

in 1913, the electron moves around the nucleus at a speed of
2× 106 m/s in a circular orbit of radius 5× 10−11 m. What

is the magnitude of the magnetic moment generated by the

electron’s motion?

Section 5-6: Magnetic Boundary Conditions

5.32 The x–y plane separates two magnetic media with

magnetic permeabilities µ1 and µ2 (Fig. P5.32). If there is

no surface current at the interface and the magnetic field in
medium 1 is

H1 = x̂H1x + ŷH1y + ẑH1z

find:

(a) H2

(b) θ1 and θ2

(c) Evaluate H2, θ1, and θ2 for H1x = 2 (A/m), H1y = 0, H1z =
4 (A/m), µ1 = µ0, and µ2 = 4µ0

θ1
μ1

μ2

H1

z

x–y plane

Figure P5.32 Adjacent magnetic media (Problem 5.32).

∗
5.33 Given that a current sheet with surface current density

Js = x̂4 (A/m) exists at y = 0, the interface between two

magnetic media, and H1 = ẑ11 (A/m) in medium 1 (y > 0),
determine H2 in medium 2 (y < 0).

5.34 In Fig. P5.34, the plane defined by x− y = 1 separates

medium 1 of permeability µ1 from medium 2 of permeabil-

ity µ2. If no surface current exists on the boundary and

B1 = x̂2 + ŷ3 (T)

find B2 and then evaluate your result for µ1 = 5µ2. Hint: Start

by deriving the equation for the unit vector normal to the given

plane.

∗
5.35 The plane boundary defined by z = 0 separates air from

a block of iron. If B1 = x̂4− ŷ6+ ẑ12 in air (z ≥ 0), find B2 in
iron (z ≤ 0), given that µ = 5000µ0 for iron.

5.36 Show that if no surface current densities exist at
the parallel interfaces shown in Fig. P5.36, the relationship

between θ4 and θ1 is independent of µ2.

Sections 5-7 and 5-8: Inductance and Magnetic Energy

∗
5.37 Obtain an expression for the self-inductance per unit

length for the parallel wire transmission line of Fig. 5-27(a)

in terms of a, d, and µ , where a is the radius of the wires,

d is the axis-to-axis distance between the wires, and µ is the

permeability of the medium in which they reside.

5.38 In terms of the dc current I, how much magnetic energy
is stored in the insulating medium of a 6 m long, air-filled

section of a coaxial transmission line, given that the radius of
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y

x
(1, 0)

(0, −1)

μ2

Medium 2

Plane x − y = 1

μ1

Medium 1

Figure P5.34 Magnetic media separated by the plane x−y = 1

(Problem 5.34).

μ1

μ2

μ3

B3

B2

B1

θ4

θ3θ2

θ1

Figure P5.36 Three magnetic media with parallel interfaces

(Problem 5.36).

the inner conductor is 5 cm and the inner radius of the outer

conductor is 10 cm?

5.39 A solenoid with a length of 20 cm and a radius of 5 cm

consists of 400 turns and carries a current of 12 A. If z = 0
represents the midpoint of the solenoid, generate a plot for

|H(z)| as a function of z along the axis of the solenoid for the

range −20 cm ≤ z ≤ 20 cm in 1-cm steps.

∗
5.40 The rectangular loop shown in Fig. P5.40 is coplanar

with the long, straight wire carrying the current I = 20 A.

Determine the magnetic flux through the loop.

5.41 Determine the mutual inductance between the circular

loop and the linear current shown in Fig. P5.41.

y

x

z

5 cm

10 cm

40 cm

20 A

20 cm

30 cm

Figure P5.40 Loop and wire arrangement for Problem 5.40.

a

d

I1

x

y

Figure P5.41 Linear conductor with current I1 next to a

circular loop of radius a at distance d (Problem 5.41).
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Objectives

Upon learning the material presented in this chapter, you

should be able to:

1. Apply Faraday’s law to compute the voltage induced by a

stationary coil placed in a time-varying magnetic field or

moving in a medium containing a magnetic field.

2. Describe the operation of the electromagnetic generator.

3. Calculate the displacement current associated with a

time-varying electric field.

4. Calculate the rate at which charge dissipates in a material

with known ε and σ .

288

Maxwell's Equations 
for Time-Varying Fields

Chapter 6
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Dynamic Fields

Electric charges induce electric fields and electric currents

induce magnetic fields. As long as the charge and current

distributions remain constant in time, so will the fields they
induce. If the charges and currents vary in time, the electric

and magnetic fields vary accordingly. Additionally, however,

the electric and magnetic fields become coupled and travel
through space in the form of electromagnetic waves. Examples

of such waves include light, x-rays, infrared, gamma rays, and

radio waves (see Fig. 1-16).
To study time-varying electromagnetic phenomena, we need

to consider the entire set of Maxwell’s equations simultane-
ously. These equations, first introduced in the opening section

of Chapter 4, are given in both differential and integral form in

Table 6-1. In the static case (∂/∂ t = 0), we use the first pair of
Maxwell’s equations to study electric phenomena (Chapter 4)

and the second pair to study magnetic phenomena (Chapter 5).

In the dynamic case (∂/∂ t 6= 0), the coupling that exists
between the electric and magnetic fields, as expressed by

the second and fourth equations in Table 6-1, prevents such

decomposition. The first equation represents Gauss’s law for
electricity, and it is equally valid for static and dynamic fields.

The same is true for the third equation, which is Gauss’s law

for magnetism. By contrast, the second and fourth equations—
Faraday’s and Ampère’s laws—are of a totally different nature.

Faraday’s law expresses the fact that a time-varying magnetic
field gives rise to an electric field. Conversely, Ampère’s law

states that a time-varying electric field must be accompanied

by a magnetic field.

Some statements in this and succeeding chapters contradict
conclusions reached in Chapter 4 and 5 as those pertained to

the special case of static charges and dc currents. The behavior

of dynamic fields reduces to that of static ones when ∂/∂ t is
set to zero.

We begin this chapter by examining Faraday’s and Ampère’s

laws and some of their practical applications. We then combine
Maxwell’s equations to obtain relations among the charge and

current sources, ρv and J; the scalar and vector potentials, V

and A; and the electromagnetic fields, E, D, H, and B. We do
so for the most general time-varying case and for the specific

case of sinusoidal-time variations.

6-1 Faraday’s Law

The close connection between electricity and magnetism was
established by Oersted, who demonstrated that a wire carrying

an electric current exerts a force on a compass needle and that

the needle always turns to point in the φ̂φφ direction when the cur-
rent is along the ẑ direction. The force acting on the compass

needle is due to the magnetic field produced by the current

in the wire. Following this discovery, Faraday hypothesized

that if a current produces a magnetic field, then the converse

should also be true: A magnetic field should produce a current

in a wire. To test his hypothesis, he conducted numerous
experiments in his laboratory in London over a period of

about 10 years—all aimed at making magnetic fields induce
currents in wires. Similar work was being carried out by Henry

in Albany, New York. Wires were placed next to permanent

magnets or current-carrying loops of all different sizes, but no

Table 6-1 Maxwell’s equations.

Reference Differential Form Integral Form

Gauss’s law ∇·D = ρv

∫

S

D·ds = Q (6.1)

Faraday’s law ∇×××E = −∂B

∂ t

∫

C

E·dl = −
∫

S

∂B

∂ t
·ds (6.2)∗

No magnetic charges ∇·B = 0

∫

S

B·ds = 0 (6.3)

(Gauss’s law for magnetism)

Ampère’s law ∇×××H = J+
∂D

∂ t

∫

C

H ·dl =
∫

S

(
J+

∂D

∂ t

)
·ds (6.4)

∗For a stationary surface S.
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Galvanometer

Loop Coil

Battery

B

I I

Figure 6-1 The galvanometer (predecessor of the ammeter)

shows a deflection whenever the magnetic flux passing through

the square loop changes with time.

currents were ever detected. Eventually, these experiments led

to the following discovery by both Faraday and Henry.

◮ Magnetic fields can produce an electric current in a

closed loop, but only if the magnetic flux linking the
surface area of the loop changes with time. The key to

the induction process is change. ◭

To elucidate the induction process, consider the arrangement

shown in Fig. 6-1. A conducting loop connected to a gal-

vanometer (a sensitive instrument used in the 1800s to detect
current flow) is placed next to a conducting coil connected to

a battery. The current in the coil produces a magnetic field B

whose lines pass through the loop. In Section 5-4, we defined

the magnetic flux Φ passing through a loop as the integral of

the normal component of the magnetic flux density over the
surface area of the loop, S, or

Φ =
∫

S

B ·ds (Wb). (6.5)

Under stationary conditions, the dc current in the coil produces
a constant magnetic field B, which in turn produces a constant

flux through the loop. When the flux is constant, no current

is detected by the galvanometer. However, when the battery
is disconnected, thereby interrupting the flow of current in

the coil, the magnetic field drops to zero, and the consequent

change in magnetic flux causes a momentary deflection of
the galvanometer needle. When the battery is reconnected, the

galvanometer again exhibits a momentary deflection, but in the

opposite direction. Thus, current is induced in the loop when
the magnetic flux changes, and the direction of the current

depends on whether the flux increases (when the battery is

being connected) or decreases (when the battery is being
disconnected). It was further discovered that current can also

flow in the loop while the battery is connected to the coil if

the loop turns or moves either closer to or away from the coil.
The physical movement of the loop changes the amount of flux

linking its surface S, even though the field B due to the coil has

not changed.
A galvanometer is a predecessor of the voltmeter and

ammeter. When a galvanometer detects the flow of current
through the coil, it means that a voltage has been induced

across the galvanometer terminals. This voltage is called the

electromotive force (emf ), Vemf, and the process is called
electromagnetic induction. The emf induced in a closed con-

ducting loop of N turns is given by

Vemf = −N
dΦ

dt
= −N

d

dt

∫

S

B ·ds (V). (6.6)

Even though the results leading to Eq. (6.6) were also discov-
ered independently by Henry, Eq. (6.6) is attributed to Faraday

and known as Faraday’s law. The significance of the negative

sign in Eq. (6.6) is explained in the next section.
We note that the derivative in Eq. (6.6) is a total time

derivative that operates on the magnetic field B, as well as

the differential surface area ds. Accordingly, an emf can
be generated in a closed conducting loop under any of the

following three conditions:

1. A time-varying magnetic field linking a stationary loop;
the induced emf is then called the transformer emf , V

tr
emf.

2. A moving loop with a time-varying area (relative to the
normal component of B) in a static field B; the induced

emf is then called the motional emf , V
m
emf.

3. A moving loop in a time-varying field B.

The total emf is given by

Vemf = V
tr
emf +V

m
emf (6.7)

with V
m
emf = 0 if the loop is stationary [case (1)] and V

tr
emf = 0

if B is static [case (2)]. For case (3), both terms are important.
Each of the three cases is examined separately in the following

sections.

6-2 Stationary Loop in a Time-Varying

Magnetic Field

The stationary, single-turn, conducting, circular loop with

contour C and surface area S shown in Fig. 6-2(a) is exposed
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(a)  Loop in a changing B field

(b)  Equivalent circuit

1
R

2
Bind

Changing B(t)

C

I

I

S

Vemf
tr

R

1

2

Ri

Vemf (t)
tr

Figure 6-2 (a) Stationary circular loop in a changing magnetic

field B(t) and (b) its equivalent circuit.

to a time-varying magnetic field B(t). As stated earlier, the

emf induced when S is stationary and the field is time varying
is called the transformer emf and is denoted V

tr
emf. Since the

loop is stationary, d/dt in Eq. (6.6) now operates on B(t) only.

Hence,

V
tr
emf = −N

∫

S

∂B

∂ t
·ds, (transformer emf) (6.8)

where the full derivative d/dt has been moved inside the

integral and changed into a partial derivative ∂/∂ t to signify

that it operates on B only. The transformer emf is the voltage
difference that would appear across the small opening between

terminals 1 and 2, even in the absence of the resistor R. That
is, V

tr
emf = V12, where V12 is the open-circuit voltage across the

open ends of the loop. Under dc conditions, V
tr

emf = 0. For

the loop shown in Fig. 6-2(a) and the associated definition
for V

tr
emf given by Eq. (6.8), the direction of ds, which is the

loop’s differential surface normal, can be chosen to be either

upward or downward. The two choices are associated with
opposite designations of the polarities of terminals 1 and 2 in

Fig. 6-2(a).

Right-Hand Rule for Vemf

The connection between the direction of ds and the polar-
ity of V

tr
emf is governed by the following right-hand rule:

If ds points along the thumb of the right hand, then the
direction of the contour C indicated by the four fingers

is such that it always passes across the opening from the

positive terminal of V
tr
emf to the negative terminal.

If the loop has an internal resistance Ri, the circuit in
Fig. 6-2(a) can be represented by the equivalent circuit shown

in Fig. 6-2(b), in which case the current I flowing through the

circuit is given by

I =
V

tr
emf

R + Ri

. (6.9)

For good conductors, Ri usually is very small, and it may be

ignored in comparison with practical values of R.

◮ The polarity of V
tr
emf and hence the direction of I is

governed by Lenz’s law, which states that the current in

the loop is always in a direction that opposes the change

of magnetic flux Φ(t) that produced I. ◭

The current I induces a magnetic field of its own, Bind, with a

corresponding flux Φind. The direction of Bind is governed by

the right-hand rule: If I is in a clockwise direction, then Bind

points downward through S; conversely, if I is in a counter-

clockwise direction, then Bind points upward through S. If the

original field B(t) is increasing, which means that dΦ/dt > 0,
then according to Lenz’s law I has to be in the direction shown

in Fig. 6-2(a) in order for Bind to be in opposition to B(t).
Consequently, terminal 2 would be at a higher potential than

terminal 1, and V
tr
emf would have a negative value. However, if

B(t) were to remain in the same direction but to decrease in
magnitude, then dΦ/dt would become negative, the current

would have to reverse direction, and its induced field Bind

would be in the same direction as B(t) in order to oppose the
change (decrease) of B(t). In that case, V

tr
emf would be positive.

◮ It is important to remember that Bind serves to oppose

the change in B(t) and not necessarily B(t) itself. ◭

Despite the presence of the small opening between terminals

1 and 2 of the loop in Fig. 6-2(a), we shall treat the loop as a

closed path with contour C. We do this in order to establish
the link between B and the electric field E associated with

the induced emf, V
tr
emf. Also, at any point along the loop, the
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field E is related to the current I flowing through the loop. For
contour C, V

tr
emf is related to E by

V
tr
emf =

∫

C

E ·dl. (6.10)

For N = 1 (a loop with one turn), equating Eqs. (6.8) and (6.10)

gives ∫

C

E ·dl = −
∫

S

∂B

∂ t
·ds, (6.11)

which is the integral form of Faraday’s law given in Table 6-1.

We should keep in mind that the direction of the contour C and
the direction of ds are related by the right-hand rule.

By applying Stokes’s theorem to the left-hand side of

Eq. (6.11), we have

∫

S

(∇×××E) ·ds = −
∫

S

∂B

∂ t
·ds, (6.12)

and in order for the two integrals to be equal for all possible

choices of S, their integrands must be equal, which gives

∇×××E = −∂B

∂ t
. (Faraday’s law) (6.13)

This differential form of Faraday’s law states that a time-
varying magnetic field induces an electric field E whose curl

is equal to the negative of the time derivative of B. Even

though the derivation leading to Faraday’s law started out
by considering the field associated with a physical circuit,

Eq. (6.13) applies at any point in space, whether or not a

physical circuit exists at that point.

Example 6-1: Inductor in a Changing
Magnetic Field

An inductor is formed by winding N turns of a thin conducting

wire into a circular loop of radius a. The inductor loop is in
the x–y plane with its center at the origin and connected to a

resistor R, as shown in Fig. 6-3. In the presence of a magnetic

field B = B0(ŷ2+ ẑ3)sinωt, where ω is the angular frequency,
find

(a) the magnetic flux linking a single turn of the inductor,

(b) the transformer emf given that N = 10, B0 = 0.2 T,

a = 10 cm, and ω = 103 rad/s,

(c) the polarity of V
tr
emf at t = 0, and

(d) the induced current in the circuit for R = 1 kΩ (assume

the wire resistance to be much smaller than R).

Vemf
tr

1R

2

I

z

y

a

B

B

N turns

Figure 6-3 Circular loop with N turns in the x–y plane. The

magnetic field is B = B0(ŷ2+ ẑ3)sinωt (Example 6-1).

Solution: (a) With ds defined upwards (along +ẑ direction),

the magnetic flux linking each turn of the inductor is

Φ =

∫

S

B ·ds =

∫

S

[B0(ŷ2 + ẑ3)sin ωt] · ẑ ds = 3πa
2
B0 sinωt.

(b) To find V
tr
emf, we can apply Eq. (6.8) or apply the general

expression given by Eq. (6.6) directly. The latter approach

gives

V
tr
emf = −N

dΦ

dt
= − d

dt
(3πNa

2
B0 sinωt)

= −3πNωa
2
B0 cosωt.

Having chosen the direction of ds to be upwards, the polarity

of V
tr
emf is governed by the right-hand rule requiring the direc-

tion of the contour C in Fig. 6-3 to pass across the gap from

the positive terminal of V
tr

emf to the negative terminal. That is,

V
tr
emf = V1 −V2 = −3πNωa

2
B0 cosωt.

For N = 10, a = 0.1 m, ω = 103 rad/s, and B0 = 0.2 T,

V
tr
emf = −188.5cos103

t (V).

(c) The flux passing through each loop in the upward direction

is Φ(t) = 3πa
2
B0 sin ωt. At t = 0, Φ(0) = 0, but

dΦ

dt

∣∣∣∣
t=0

= 3πa
2ωB0 cosωt0

∣∣
t=0

= 3πa
2ωB0 > 0.

Hence, even though the flux itself is zero at t = 0, its time

derivative is positive. Therefore, the flux is increasing at t = 0.

Lenz’s law requires the direction of the current I to be such
that the flux it induces, Φind, opposes the change in Φ. Since

Φ is defined to be upwards, and it is increasing at t = 0,
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Module 6.1 Circular Loop in Time-Varying Magnetic Field Faraday’s law of induction is demonstrated by simulating
the current induced in a loop in response to the change in magnetic flux flowing through it.

Φind should be downward through the loop in order to slow

down the increase in Φ. Hence, I should be in the direction

shown in Fig. 6-3.
Since I flows through a resistor from its positive voltage

terminal to its negative voltage terminal, it follows that V12

should be negative at t = 0, which it is:

V
tr
emf = V1 −V2 = −188.5 (V).

(d) The current I is given by

I =
V2 −V1

R
=

188.5

103
cos103

t = 0.19cos103
t (A).

Exercise 6-1: For the loop shown in Fig. 6-3, what is V
tr
emf

if B = ŷB0 cosωt?

Answer: V
tr
emf = 0 because B is orthogonal to the loop’s

surface normal ds. (See EM .)

Exercise 6-2: Suppose that the loop of Example 6-1 is

replaced with a 10-turn square loop centered at the origin

and having 20 cm sides oriented parallel to the x and
y axes. If B = ẑB0x

2 cos103
t and B0 = 100 T, find the

current in the circuit.

Answer: I = −133sin103
t (mA). (See EM .)

Example 6-2: Lenz’s Law

Determine voltages V1 and V2 across the 2 Ω and 4 Ω resistors

shown in Fig. 6-4. The loop is located in the x–y plane, its area
is 4 m2, the magnetic flux density is B = −ẑ0.3t (T), and the

internal resistance of the wire may be ignored.

Solution: The flux flowing through the loop is

Φ =

∫

S

B ·ds =

∫

S

(−ẑ0.3t) · ẑ ds =−0.3t×4 =−1.2t (Wb),
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I
y

x
V1V24 Ω

B

2 Ω

Area = 4 m2

Figure 6-4 Circuit for Example 6-2.

and the corresponding transformer emf is

V
tr
emf = −dΦ

dt
= 1.2 (V).

Since the magnetic flux through the loop is along the
−z direction (into the page) and increases in magnitude with

time t, Lenz’s law states that the induced current I should be in
a direction such that the magnetic flux density Bind it induces

counteracts the direction of change of Φ. Hence, I has to be

in the direction shown in the circuit because the corresponding
Bind is along the +z direction in the region inside the loop area.

This, in turn, means that V1 and V2 are positive voltages.

The total voltage of 1.2 V is distributed across two resistors
in series. Consequently,

I =
V

tr
emf

R1 + R2

=
1.2

2 + 4
= 0.2 A,

and

V1 = IR1 = 0.2×2 = 0.4 V,

V2 = IR2 = 0.2×4 = 0.8 V.

Concept Question 6-1: Explain Faraday’s law and the

function of Lenz’s law.

Concept Question 6-2: Under what circumstances is
the net voltage around a closed loop equal to zero?

Concept Question 6-3: Suppose the magnetic flux den-

sity linking the loop of Fig. 6-4 (Example 6-2) is given
by B = −ẑ0.3e

−t (T). What would the direction of the

current be, relative to that shown in Fig. 6-4, for t ≥ 0?

(a)
Magnetic core

(b)

V1(t)

V2(t)

N1

N2

ФI1

I2

RL

Ф

I2

I1

V1(t)
V2(t) RL

Ф

Ф

N1

N2

Figure 6-5 In a transformer, the directions of I1 and I2 are

such that the flux Φ generated by one of them is opposite to that

generated by the other. The direction of the secondary winding

in (b) is opposite to that in (a), and so are the direction of I2 and

the polarity of V2.

6-3 The Ideal Transformer

The transformer shown in Fig. 6-5(a) consists of two coils
wound around a common magnetic core. The primary coil has

N1 turns and is connected to an ac voltage source V1(t). The

secondary coil has N2 turns and is connected to a load resistor
RL. In an ideal transformer the core has infinite permeability

(µ = ∞), and the magnetic flux is confined within the core.

◮ The directions of the currents flowing in the two
coils, I1 and I2, are defined such that, when I1 and I2

are both positive, the flux generated by I2 is opposite

to that generated by I1. The transformer gets its name
from the fact that it transforms currents, voltages, and

impedances between its primary and secondary circuits,

and vice versa. ◭

On the primary side of the transformer, the voltage source
V1 generates current I1 in the primary coil, which establishes

a flux Φ in the magnetic core. The flux Φ and voltage V1 are
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related by Faraday’s law:

V1 = −N1
dΦ

dt
. (6.14)

A similar relation holds true on the secondary side:

V2 = −N2
dΦ

dt
. (6.15)

The combination of Eqs. (6.14) and (6.15) gives

V1

V2

=
N1

N2

. (6.16)

In an ideal lossless transformer, all the instantaneous power
supplied by the source connected to the primary coil is deliv-

ered to the load on the secondary side. Thus, no power is lost
in the core, and

P1 = P2. (6.17)

Since P1 = I1V1 and P2 = I2V2, and in view of Eq. (6.16), we

have

I1

I2

=
N2

N1

. (6.18)

Thus, whereas the ratio of the voltages given by Eq. (6.16) is
proportional to the corresponding turns ratio, the ratio of the

currents is equal to the inverse of the turns ratio. If N1/N2 =
0.1, V2 of the secondary circuit would be 10 times V1 of the
primary circuit, but I2 would be only I1/10.

The transformer shown in Fig. 6-5(b) is identical to that
in Fig. 6-5(a) except for the direction of the windings of the

secondary coil. Because of this change, the direction of I2 and

the polarity of V2 in Fig. 6-5(b) are the reverse of those in
Fig. 6-5(a).

The voltage and current in the secondary circuit in

Fig. 6-5(a) are related by V2 = I2RL. To the input circuit,
the transformer may be represented by an equivalent input

resistance Rin, as shown in Fig. 6-6, defined as

Rin =
V1

I1

. (6.19)

Use of Eqs. (6.16) and (6.18) gives

Rin =
V2

I2

(
N1

N2

)2

=

(
N1

N2

)2

RL. (6.20)

When the load is an impedance ZL and V1 is a sinusoidal
source, the phasor-domain equivalent of Eq. (6.20) is

Zin =

(
N1

N2

)2

ZL. (6.21)

V1(t)

I1(t)

Rin

Figure 6-6 Equivalent circuit for the primary side of the

transformer.

6-4 Moving Conductor in a Static

Magnetic Field

Consider a wire of length l moving across a static magnetic

field B = ẑB0 with constant velocity u, as shown in Fig. 6-7.
The conducting wire contains free electrons. From Eq. (5.3),

the magnetic force Fm acting on a particle with charge q

moving with velocity u in a magnetic field B is

Fm = q(u×××B). (6.22)

This magnetic force is equivalent to the electrical force that
would be exerted on the particle by the electric field Em

given by

Em =
Fm

q
= u×××B. (6.23)

The field Em generated by the motion of the charged particle

is called a motional electric field and is in the direction
perpendicular to the plane containing u and B. For the wire

shown in Fig. 6-7, Em is along −ŷ. The magnetic force acting

u

u
Em

1

2

l

Moving
wire

y

xz

Magnetic field line
(out of the page)

B B

Figure 6-7 Conducting wire moving with velocity u in a static

magnetic field.
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on the (negatively charged) electrons in the wire causes them
to drift in the direction of −Em; that is, toward the wire end

labeled 1 in Fig. 6-7. This, in turn, induces a voltage difference

between ends 1 and 2, with end 2 being at the higher potential.
The induced voltage is called a motional emf , V

m
emf, and is

defined as the line integral of Em between ends 2 and 1 of the

wire,

V
m
emf = V12 =

∫ 1

2
Em ·dl =

∫ 1

2
(u×××B) ·dl. (6.24)

For the conducting wire, u××× B = x̂u××× ẑB0 = −ŷuB0 and
dl = ŷ dl. Hence,

V
m
emf = V12 = −uB0l. (6.25)

In general, if any segment of a closed circuit with contour C

moves with a velocity u across a static magnetic field B, then

the induced motional emf is given by

V
m
emf =

∫

C

(u×××B) ·dl. (motional emf) (6.26)

◮ Only those segments of the circuit that cross magnetic
field lines contribute to V

m
emf. ◭

Example 6-3: Sliding Bar

The rectangular loop shown in Fig. 6-8 has a constant width l,

but its length x0 increases with time as a conducting bar slides

with uniform velocity u in a static magnetic field B = ẑB0x.

Note that B increases linearly with x. The bar starts from x = 0
at t = 0. Find the motional emf between terminals 1 and 2 and

the current I flowing through the resistor R. Assume that the

loop resistance Ri ≪ R.

Solution: This problem can be solved by using the motional
emf expression given by Eq. (6.26) or by applying the gen-

eral formula of Faraday’s law. We now show that the two

approaches yield the same result.

(a) Motional emf

The sliding bar, being the only part of the circuit that crosses
the lines of the field B, is the only part of contour 2341 that

contributes to V
m
emf. Hence, at x = x0, for example,

V
m

emf = V12 = V43 =

∫ 4

3
(u×××B) ·dl

=

∫ 4

3
(x̂u××× ẑB0x0) · ŷ dl = −uB0x0l.

The length of the loop is related to u by x0 = ut. Hence,

V
m
emf = −B0u

2
lt (V). (6.27)

(b) Total emf

Since B is static, V
tr
emf = 0 and Vemf = V

m
emf only. To verify

that the same result can be obtained by the general form of

Faraday’s law, we evaluate the flux Φ through the surface of

the loop. Thus,

Φ =

∫

S

B ·ds =

∫

S

(ẑB0x) · ẑ dx dy = B0l

∫
x0

0
x dx =

B0lx
2
0

2
.

(6.28)

y

I

R

xz

Magnetic field B

dl

u

u

Vemf
m

1

2

4

3x = 0

l

x0

Figure 6-8 Sliding bar with velocity u in a magnetic field that increases linearly with x; that is, B = ẑB0x (Example 6-3).
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Substituting x0 = ut in Eq. (6.28) and then evaluating the
negative of the derivative of the flux with respect to time gives

Vemf = −dΦ

dt
= − d

dt

(
B0lu

2
t
2

2

)
= −B0u

2
lt (V), (6.29)

which is identical with Eq. (6.27). Since V12 is negative, the

current I = B0u
2
lt/R flows in the direction shown in Fig. 6-8.

Example 6-4: Moving Loop

The rectangular loop shown in Fig. 6-9 is situated in the
x–y plane and moves away from the origin with velocity

u = ŷ5 (m/s) in a magnetic field given by

B(y) = ẑ0.2e
−0.1y (T).

If R = 5 Ω, find the current I at the instant that the loop sides

are at y1 = 2 m and y2 = 2.5 m. The loop resistance may be

ignored.

1

u

u

4

2 3

I

R
0.5 m

V12 V43

y1 = 2 m y2 = 2.5 m
l = 2 m

x

z

y

Figure 6-9 Moving loop of Example 6-4.

Solution: Since u×××B is along x̂, voltages are induced across
only the sides oriented along x̂, namely the sides linking point

1 to 2 and point 3 to 4. Had B been uniform, the induced

voltages would have been the same, and the net voltage across
the resistor would have been zero. In the present case, however,

B decreases exponentially with y, thereby assuming a different

value over side 1–2 than over side 3–4. Side 1–2 is at y1 = 2 m,
and the corresponding magnetic field is

B(y1) = ẑ0.2e
−0.1y1 = ẑ0.2e

−0.2 (T).

The induced voltage V12 is then given by

V12 =

∫ 1

2
[u×××B(y1)] ·dl

=

∫ −l/2

l/2
(ŷ5××× ẑ0.2e

−0.2) · x̂ dx

= −e
−0.2

l

= −2e
−0.2

= −1.637 (V).

Similarly,

V43 = −uB(y2) l

= −5×0.2e
−0.25×2

= −1.558 (V).

Consequently, the current is in the direction shown in the figure

and its magnitude is

I =
V43 −V12

R
=

0.079

5
= 15.8 (mA).

Example 6-5: Moving Rod Next to a Wire

The wire shown in Fig. 6-10 carries a current I = 10 A.

A 30-cm long metal rod moves with a constant velocity u = ẑ5
m/s. Find V12, where 1 and 2 are the two ends of the rod.

u

BB

BB

I = 10 A

10 cm

1 2

30 cm

z

r

BB

Wire

Metal rod

Figure 6-10 Moving rod of Example 6-5.
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Module 6.2 Rotating Wire Loop in Constant Magnetic Field The principle of the electromagnetic generator is
demonstrated by a rectangular loop rotating in the presence of a magnetic field.

Solution: The current I induces a magnetic field

B = φ̂φφ
µ0I

2πr
,

where r is the radial distance from the wire and the direction

of φ̂φφ is into the page on the rod side of the wire. The movement

of the rod in the presence of the field B induces a motional emf
given by

V12 =

∫ 10 cm

40 cm

(u×××B) ·dl

=

∫ 10 cm

40 cm

(
ẑ5×××φ̂φφ

µ0I

2πr

)
· r̂ dr

= −5µ0I

2π

∫ 10 cm

40 cm

dr

r

= −5×4π×10−7×10

2π
× ln

(
10

40

)

= 13.9 (µV).

Concept Question 6-4: Suppose that no friction is
involved in sliding the conducting bar of Fig. 6-8 and

that the horizontal arms of the circuit are very long.

Hence, if the bar is given an initial push, it should
continue moving at a constant velocity, and its movement

generates electrical energy in the form of an induced emf,

indefinitely. Is this a valid argument? If not, why not? Can
we generate electrical energy without having to supply an

equal amount of energy by other means?

Concept Question 6-5: Is the current flowing in the rod
of Fig. 6-10 a steady current? Examine the force on a

charge q at ends 1 and 2 and compare.

Exercise 6-3: For the moving loop of Fig. 6-9, find I when
the loop sides are at y1 = 4 m and y2 = 4.5 m. Also, reverse

the direction of motion such that u = −ŷ5 (m/s).

Answer: I = −13 (mA). (See EM .)
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Exercise 6-4: Suppose that we turn the loop of Fig. 6-9

so that its surface is parallel to the x–z plane. What would

I be in that case?

Answer: I = 0. (See EM .)

6-5 The Electromagnetic Generator

The electromagnetic generator is the converse of the electro-

magnetic motor. The principles of operation of both instru-

ments may be explained with the help of Fig. 6-11. A perma-
nent magnet is used to produce a static magnetic field B in the

slot between its two poles. When a current is passed through
the conducting loop, as depicted in Fig. 6-11(a), the current

flows in opposite directions in segments 1–2 and 3–4 of the

loop. The induced magnetic forces on the two segments are
also opposite, resulting in a torque that causes the loop to rotate

about its axis. Thus, in a motor, electrical energy supplied by a

voltage source is converted into mechanical energy in the form
of a rotating loop, which can be coupled to pulleys, gears, or

other movable objects.

If instead of passing a current through the loop to make it
turn the loop is made to rotate by an external force, the move-

ment of the loop in the magnetic field produces a motional emf,

V
m
emf, as shown in Fig. 6-11(b). Hence, the motor has become

a generator, and mechanical energy is getting converted into

electrical energy.

Let us examine the operation of the electromagnetic gen-
erator in more detail using the coordinate system shown in

Fig. 6-12. The magnetic field is

B = ẑB0, (6.30)

and the axis of rotation of the conducting loop is along the x

axis. Segments 1–2 and 3–4 of the loop are of length l each,

and both cross the magnetic flux lines as the loop rotates. The

other two segments are each of width w, and neither crosses
the B lines when the loop rotates. Hence, only segments 1–2

and 3–4 contribute to the generation of the motional emf, V
m
emf.

As the loop rotates with an angular velocity ω about its own
axis, segment 1–2 moves with velocity u given by

u = n̂ω
w

2
, (6.31)

where n̂, the surface normal to the loop, makes an angle α with

the z axis. Hence,

n̂××× ẑ = x̂sinα . (6.32)

Segment 3–4 moves with velocity −u. Application of

(b)  ac generator

(a)  ac motor

R

I

I
Vemf

m

N
Magnet

1

2

3

4

Axis of rotation
ω

V(t)

R
I

I

S
B

N
Magnet

1

2

3

4

Axis of rotation
ω

S
B

Figure 6-11 Principles of the ac motor and the ac generator.

In (a) the magnetic torque on the wires causes the loop to rotate

and in (b) the rotating loop generates an emf.

Eq. (6.26), consistent with our choice of n̂, gives

V
m
emf = V14 =

∫ 1

2
(u×××B) ·dl+

∫ 3

4
(u×××B) ·dl

=

∫
l/2

−l/2

[(
n̂ω

w

2

)
××× ẑB0

]
· x̂ dx

+

∫ −l/2

l/2

[(
−n̂ω

w

2

)
××× ẑB0

]
· x̂ dx. (6.33)

Using Eq. (6.32) in Eq. (6.33), we obtain the result

V
m
emf = wlωB0 sin α = AωB0 sinα , (6.34)
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dl

l w

y

z

x

n
1

4

3

2B

Vemf
m

Brushes

Slip
rings Loop surface

normal

ˆ
α

ω

Figure 6-12 A loop rotating in a magnetic field induces an

emf.

where A = wl is the surface area of the loop. The angle α is

related to ω by

α = ωt +C0, (6.35)

where C0 is a constant determined by initial conditions. For
example, if α = 0 at t = 0, then C0 = 0. In general,

V
m
emf = AωB0 sin(ωt +C0) (V). (6.36)

This same result can also be obtained by applying the
general form of Faraday’s law given by Eq. (6.6). The flux

linking the surface of the loop is

Φ =

∫

S

B ·ds =

∫

S

ẑB0 · n̂ ds = B0Acosα = B0Acos(ωt +C0),

(6.37)

and

Vemf = −dΦ

dt
= − d

dt
[B0Acos(ωt +C0)] = AωB0 sin(ωt +C0),

(6.38)

which is identical with the result given by Eq. (6.36).

◮ The voltage induced by the rotating loop is sinusoidal
in time with an angular frequency ω equal to that of the

rotating loop, and its amplitude is equal to the product

of the surface area of the loop, the magnitude of the
magnetic field generated by the magnet, and the angular

frequency ω . ◭

Concept Question 6-6: Contrast the operation of an ac
motor with that of an ac generator.

Concept Question 6-7: The rotating loop of Fig. 6-12

had a single turn. What would be the emf generated by a
loop with 10 turns?

Concept Question 6-8: The magnetic flux linking the

loop shown in Fig. 6-12 is maximum when α = 0 (loop in
x–y plane), yet according to Eq. (6.34), the induced emf

is zero when α = 0. Conversely, when α = 90◦, the flux

linking the loop is zero, but V
m
emf is at a maximum. Is this

consistent with your expectations? Why?

6-6 Moving Conductor in a

Time-Varying Magnetic Field

For the general case of a single-turn conducting loop moving
in a time-varying magnetic field, the induced emf is the sum

of a transformer component and a motional component. Thus,

the sum of Eqs. (6.8) and (6.26) gives

Vemf = V
tr
emf +V

m
emf

= −
∫

S

∂B

∂ t
·ds+

∫

C

(u×××B) ·dl. (6.39)

Vemf is also given by the general expression of Faraday’s law:

Vemf = −dΦ

dt
= − d

dt

∫

S

B ·ds (total emf). (6.40)

In fact, it can be shown mathematically that the right-hand side

of Eq. (6.39) is equivalent to the right-hand side of Eq. (6.40).
For a particular problem, the choice between using Eq. (6.39)

or Eq. (6.40) is usually made on the basis of which is the easier

to apply. In either case, for an N-turn loop, the right-hand sides
of Eqs. (6.39) and (6.40) should be multiplied by N.

Example 6-6: Electromagnetic Generator

Find the induced voltage when the rotating loop of the elec-
tromagnetic generator of Section 6-5 is in a magnetic field

B = ẑB0 cosωt. Assume that α = 0 at t = 0.

Solution: The flux Φ is given by Eq. (6.37) with B0 replaced

with B0 cosωt. Thus,

Φ = B0Acos2 ωt,
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and

Vemf = −dΦ

dt

= − d

dt
(B0Acos2 ωt)

= 2B0Aω cosωt sinωt = B0Aω sin2ωt.

6-7 Displacement Current

Ampère’s law in differential form is given by

∇×××H = J +
∂D

∂ t
(Ampère’s law). (6.41)

Integrating both sides of Eq. (6.41) over an arbitrary open
surface S with contour C, we have

∫

S

(∇×××H) ·ds =
∫

S

J ·ds+
∫

S

∂D

∂ t
·ds. (6.42)

The surface integral of J equals the conduction current Ic

flowing through S, and the surface integral of ∇×××H can be

converted into a line integral of H over the contour C bounding
C by invoking Stokes’s theorem. That is,

∫

S

J ·ds = Ic,

∫

S

(∇×××H) ·ds =
∫

C

H ·dl,

and

∫

C

H ·dl = Ic +

∫

S

∂D

∂ t
·ds.

(Ampère’s law)

(6.43)

The second term on the right-hand side of Eq. (6.43) of course
has the same unit (amperes) as the current Ic, and because

it is proportional to the time derivative of the electric flux

density D, which is also called the electric displacement, it is
called the displacement current Id. That is,

Id =

∫

S

Jd ·ds =

∫

S

∂D

∂ t
·ds, (6.44)

where Jd = ∂D/∂ t represents a displacement current density.

In view of Eq. (6.44),

∫

C

H ·dl = Ic + Id = I, (6.45)

where I is the total current. In electrostatics, ∂D/∂ t = 0; there-

fore, Id = 0 and I = Ic. The concept of displacement current

was first introduced in 1873 by James Clerk Maxwell when
he formulated the unified theory of electricity and magnetism

under time-varying conditions.

The parallel-plate capacitor is commonly used as an exam-
ple with which to illustrate the physical meaning of the

displacement current Id. The simple circuit shown in Fig. 6-13

consists of a capacitor and an ac source with voltage Vs(t)
given by

Vs(t) = V0 cosωt (V). (6.46)

According to Eq. (6.45), the total current flowing through
any surface consists, in general, of a conduction current Ic

and a displacement current Id. Let us find Ic and Id through
each of the following two imaginary surfaces: (1) the cross

section of the conducting wire, S1, and (2) the cross section

of the capacitor S2 (Fig. 6-13). We denote the conduction
and displacement currents in the wire as I1c and I1d and those

through the capacitor as I2c and I2d.

E
+ + + + + + +

– – – – – – –

I2d
Vs(t)

I1 = I1c

y

Imaginary
surface S2

Imaginary

surface S1

Figure 6-13 The displacement current I2d in the insulating material of the capacitor is equal to the conducting current I1c in the wire.
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In the perfectly conducting wire, D = E = 0; hence,
Eq. (6.44) gives I1d = 0. As for I1c, we know from circuit

theory that it is related to the voltage across the capacitor VC

by

I1c = C
dVC

dt

= C
d

dt
(V0 cosωt)

= −CV0ω sinωt, (6.47)

where we used the fact that VC = Vs(t). With I1d = 0, the total
current in the wire is simply I1 = I1c = −CV0ω sinωt.

In the perfect dielectric with permittivity ε between the

capacitor plates, σ = 0. Hence, I2c = 0 because no conduction
current exists there. To determine I2d, we need to apply

Eq. (6.44). From Example 4-14, the electric field E in the

dielectric spacing is related to the voltage Vc across its plates
by

E = ŷ
Vc

d
= ŷ

V0

d
cosωt, (6.48)

where d is the spacing between the plates and ŷ is the direction
from the higher-potential plate toward the lower-potential plate

at t = 0. The displacement current I2d is obtained by applying

Eq. (6.44) with ds = ŷ ds:

I2d =
∫

S

∂D

∂ t
·ds

=

∫

A

[
∂

∂ t

(
ŷ

εV0

d
cosωt

)]
·(ŷ ds)

= −εA

d
V0ω sinωt

= −CV0ω sinωt, (6.49)

where we used the relation C = εA/d for the capacitance of

the parallel-plate capacitor with plate area A. The expression

for I2d in the dielectric region between the conducting plates
is identical with that given by Eq. (6.47) for the conduction

current I1c in the wire. The fact that these two currents are
equal ensures the continuity of total current flow through the

circuit.

◮ Even though the displacement current does not trans-

port free charges, it nonetheless behaves like a real

current. ◭

In the capacitor example, we treated the wire as a perfect
conductor, and we assumed that the space between the ca-

pacitor plates was filled with a perfect dielectric. If the wire

has a finite conductivity σw, then D in the wire would not be
zero; therefore, the current I1 would consist of a conduction

current I1c as well as a displacement current I1d; that is,

I1 = I1c + I1d. By the same token, if the dielectric spacing
material has a nonzero conductivity σd, then free charges

would flow between the two plates, and I2c would not be zero.

In that case, the total current flowing through the capacitor
would be I2 = I2c + I2d. No matter the circumstances, the total

capacitor current remains equal to the total current in the wire.

That is, I1 = I2.

Example 6-7: Displacement Current
Density

The conduction current flowing through a wire with conduc-
tivity σ = 2×107 S/m and relative permittivity εr = 1 is given

by Ic = 2sinωt (mA). If ω = 109 rad/s, find the displacement

current.

Solution: The conduction current Ic = JA = σEA, where A is

the cross section of the wire. Hence,

E =
Ic

σA
=

2×10−3 sinωt

2×107A

=
1×10−10

A
sinωt (V/m).

Application of Eq. (6.44), with D = εE , leads to

Id = JdA

= εA
∂E

∂ t

= εA
∂

∂ t

(
1×10−10

A
sin ωt

)

= εω ×10−10 cosωt

= 0.885×10−12cosωt (A),

where we used ω = 109 rad/s and ε = ε0 = 8.85×10−12 F/m.

Note that Ic and Id are in phase quadrature (90◦ phase shift

between them). Also, Id is about nine orders of magnitude
smaller than Ic, which is why the displacement current usually

is ignored in good conductors.

Exercise 6-5: A poor conductor is characterized by a

conductivity σ = 100 (S/m) and permittivity ε = 4ε0.

At what angular frequency ω is the amplitude of the
conduction current density J equal to the amplitude of the

displacement current density Jd?

Answer: ω = 2.82×1012 (rad/s). (See EM .)
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Module 6.3 Displacement Current Observe the displacement current through a parallel-plate capacitor.

6-8 Boundary Conditions for

Electromagnetics

In Chapters 4 and 5, we applied the integral form of Maxwell’s
equations under static conditions to obtain boundary con-

ditions applicable to the tangential and normal components
of E, D, B, and H on interfaces between contiguous media

(Section 4-8 for E and D and in Section 5-6 for B and H). In the

dynamic case, Maxwell’s equations (Table 6-1) include two
new terms not accounted for in electrostatics and magnetostat-

ics, namely, ∂B/∂ t in Faraday’s law and ∂D/∂ t in Ampère’s

law.

◮ Nevertheless, the boundary conditions derived previ-

ously for electrostatic and magnetostatic fields remain
valid for time-varying fields as well. ◭

This is because, if we were to apply the procedures outlined in

the previously referenced sections for time-varying fields, we
would find that the combination of the aforementioned terms

vanish as the areas of the rectangular loops in Figs. 4-20 and

5-24 are made to approach zero.
The combined set of electromagnetic boundary conditions

is summarized in Table 6-2.

Concept Question 6-9: When conduction current flows

through a material, a certain number of charges enter the

material on one end and an equal number leave on the
other end. What’s the situation like for the displacement

current through a perfect dielectric?

Concept Question 6-10: Verify that the integral form
of Ampère’s law given by Eq. (6.43) leads to the boundary

condition that the tangential component of H is continu-

ous across the boundary between two dielectric media.
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Table 6-2 Boundary conditions for the electric and magnetic fields.

Field Components General Form
Medium 1

Dielectric

Medium 2

Dielectric

Medium 1

Dielectric

Medium 2

Conductor

Tangential E n̂2××× (E1 −E2) = 0 E1t = E2t E1t = E2t = 0

Normal D n̂2 ·(D1 −D2) = ρs D1n −D2n = ρs D1n = ρs D2n = 0

Tangential H n̂2××× (H1 −H2) = Js H1t = H2t H1t = Js H2t = 0

Normal B n̂2 · (B1 −B2) = 0 B1n = B2n B1n = B2n = 0

Notes: (1) ρs is the surface charge density at the boundary; (2) Js is the surface current density at the boundary; (3) normal

components of all fields are along n̂2, the outward unit vector of medium 2; (4) E1t = E2t implies that the tangential

components are equal in magnitude and parallel in direction; (5) direction of Js is orthogonal to (H1 −H2).

J

J

J

J

Charge density ρv

S encloses ν

ν

Figure 6-14 The total current flowing out of a volume υ is

equal to the flux of the current density J through the surface S,

which in turn is equal to the rate of decrease of the charge

enclosed in υ .

6-9 Charge–Current Continuity Relation

Under static conditions, the charge density ρv and the current

density J at a given point in a material are totally independent
of one another. This is no longer true in the time-varying

case. To show the connection between ρv and J, we start

by considering an arbitrary volume υ bounded by a closed
surface S (Fig. 6-14). The net positive charge contained in υ
is Q. Since, according to the law of conservation of electric
charge (Section 1-3.2), charge can neither be created nor

destroyed, the only way Q can increase is as a result of a net

inward flow of positive charge into the volume υ . By the same
token, for Q to decrease, there has to be a net outward flow

of charge from υ . The inward and outward flow of charge

constitute currents flowing across the surface S into and out
of υ , respectively. We define I as the net current flowing

across S out of υ . Accordingly, I is equal to the negative rate

of change of Q:

I = −dQ

dt
= − d

dt

∫

υ
ρv dυ , (6.50)

where ρv is the volume charge density in υ . According to
Eq. (4.12), the current I is also defined as the outward flux

of the current density J through the surface S. Hence,

∫

S

J ·ds = − d

dt

∫

υ
ρv dυ . (6.51)

By applying the divergence theorem given by Eq. (3.98), we

can convert the surface integral of J into a volume integral of
its divergence ∇ ·J, which then gives

∫

S

J ·ds =

∫

υ
∇ ·J dυ = − d

dt

∫

υ
ρv dυ . (6.52)

For a stationary volume υ , the time derivative operates on ρv

only. Hence, we can move it inside the integral and express it

as a partial derivative of ρv:

∫

υ
∇ ·J dυ = −

∫

υ

∂ρv

∂ t
dυ . (6.53)

In order for the volume integrals on both sides of Eq. (6.53) to
be equal for any volume υ , their integrands have to be equal

at every point within υ . Hence,

∇ ·J = −∂ρv

∂ t
, (6.54)

which is known as the charge–current continuity relation, or

simply the charge continuity equation.
If the volume charge density within an elemental vol-

ume ∆υ (such as a small cylinder) is not a function of time
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(i.e., ∂ρv/∂ t = 0), it means that the net current flowing out
of ∆υ is zero or, equivalently, that the current flowing into ∆υ
is equal to the current flowing out of it. In this case, Eq. (6.54)

implies
∇ ·J = 0, (6.55)

and its integral-form equivalent [from Eq. (6.51)] is

∫

S

J ·ds = 0. (Kirchhoff’s current law) (6.56)

Let us examine the meaning of Eq. (6.56) by considering a

junction (or node) connecting two or more branches in an elec-
tric circuit. No matter how small, the junction has a volume υ
enclosed by a surface S. The junction shown in Fig. 6-15

has been drawn as a cube, and its dimensions have been
artificially enlarged to facilitate the present discussion. The

junction has six faces (surfaces), which collectively constitute

the surface S associated with the closed-surface integration
given by Eq. (6.56). For each face, the integration represents

the current flowing out through that face. Thus, Eq. (6.56) can

be cast as

∑
i

Ii = 0, (Kirchhoff’s current law) (6.57)

where Ii is the current flowing outward through the ith face.

For the junction of Fig. 6-15, Eq. (6.57) translates into
(I1 + I2 + I3) = 0. In its general form, Eq. (6.57) is an expres-

sion of Kirchhoff’s current law, which states that in an electric

circuit the sum of all the currents flowing out of a junction is

zero.

I1 I2

I3

Figure 6-15 Kirchhoff’s current law states that the algebraic

sum of all the currents flowing out of a junction is zero.

6-10 Free-Charge Dissipation in a

Conductor

We stated earlier that current flow in a conductor is realized

by the movement of loosely attached electrons under the in-

fluence of an externally applied electric field. These electrons,
however, are not excess charges; their charge is balanced by

an equal amount of positive charge in the atoms’ nuclei. In

other words, the conductor material is electrically neutral, and
the net charge density in the conductor is zero (ρv = 0). What

happens then if an excess free charge q is introduced at some

interior point in a conductor? The excess charge gives rise to
an electric field, which forces the charges of the host material

nearest to the excess charge to rearrange their locations, which

in turn cause other charges to move, and so on. The process
continues until neutrality is reestablished in the conductor

material and a charge equal to q resides on the conductor’s
surface.

How fast does the excess charge dissipate? To answer this

question, let us introduce a volume charge density ρvo at the
interior of a conductor and then find out the rate at which it

decays down to zero. From Eq. (6.54), the continuity equation

is given by

∇ ·J = −∂ρv

∂ t
. (6.58)

In a conductor, the point form of Ohm’s law given by

Eq. (4.73) states that J = σE. Hence,

σ∇ ·E = −∂ρv

∂ t
. (6.59)

Next, we use Eq. (6.1), ∇ ·E = ρv/ε , to obtain the partial

differential equation

∂ρv

∂ t
+

σ

ε
ρv = 0. (6.60)

Given that ρv = ρvo at t = 0, the solution of Eq. (6.60) is

ρv(t) = ρvoe
−(σ/ε)t = ρvoe

−t/τr (C/m3), (6.61)

where τr = ε/σ is called the relaxation time constant. We
see from Eq. (6.61) that the initial excess charge ρvo decays

exponentially at a rate τr. At t = τr, the initial charge ρvo

will have decayed to 1/e ≈ 37% of its initial value, and at
t = 3τr, it will have decayed to e

−3 ≈ 5% of its initial value

at t = 0. For copper, with ε ≈ ε0 = 8.854×10−12 F/m and

σ = 5.8×107 S/m, τr = 1.53×10−19 s. Thus, the charge dis-
sipation process in a conductor is extremely fast. In contrast,

the decay rate is very slow in a good insulator. For a material

like mica with ε = 6ε0 and σ = 10−15 S/m, τr = 5.31×104 s,
or approximately 14.8 hours.

Concept Question 6-11: Explain how the charge conti-

nuity equation leads to Kirchhoff’s current law.

Concept Question 6-12: How long is the relaxation
time constant for charge dissipation in a perfect conduc-

tor? In a perfect dielectric?

6-10
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Technology Brief 12: EMF Sensors

An electromotive force (emf) sensor is a device that can
generate an induced voltage in response to an external
stimulus. Three types of emf sensors are profiled in this
technical brief: the piezoelectric transducer , the Fara-
day magnetic flux sensor , and the thermocouple.

Piezoelectric Transducers

◮ Piezoelectricity is the property exhibited by cer-
tain crystals, such as quartz, that become electrically
polarized when the crystal is subjected to mechani-
cal pressure, thereby inducing a voltage across it. ◭

The crystal consists of polar domains represented by
equivalent dipoles (Fig. TF12-1). Under the absence
of an external force, the polar domains are randomly
oriented throughout the material, but when compressive
or tensile (stretching) stress is applied to the crystal,
the polar domains align themselves along one of the
principal axes of the crystal, leading to a net polarization
(electric charge) at the crystal surfaces. Compression
and stretching generate voltages of opposite polarity.
The piezoelectric effect (piezein means to press or
squeeze in Greek) was discovered by the Curie broth-
ers, Pierre and Paul-Jacques, in 1880, and a year later,
Lippmann predicted the converse property: If subjected
to an electric field, the crystal would change in shape.

◮ The piezoelectric effect is a reversible (bi-
directional) electromechanical process; application
of force induces a voltage across the crystal, and
conversely, application of a voltage changes the
shape of the crystal. ◭

Piezoelectric crystals are used in microphones to con-
vert mechanical vibrations (of the crystal surface) caused
by acoustic waves into a corresponding electrical signal,
and the converse process is used in loudspeakers to
convert electrical signals into sound. In addition to having
stiffness values comparable to that of steel, some piezo-
electric materials exhibit very high sensitivity to the force
applied upon them, with excellent linearity over a wide
dynamic range. They can be used to measure surface
deformations as small as nanometers (10−9 m), mak-
ing them particularly attractive as positioning sensors
in scanning tunneling microscopes. As accelerom-
eters, they can measure acceleration levels as low as
10−4 g to as high as 100 g (where g is the acceleration
due to gravity). Piezoelectric crystals and ceramics are
used in cigarette lighters and gas grills as spark gen-
erators, in clocks and electronic circuitry as precision
oscillators, in medical ultrasound diagnostic equipment
as transducers (Fig. TF12-2), and in numerous other
applications.

Faraday Magnetic Flux Sensor

According to Faraday’s law [Eq. (6.6)], the emf voltage
induced across the terminals of a conducting loop is
directly proportional to the time rate of change of the

(a) No force (b) Compressed crystal

Vemf > 0

F

+
_

+
_

+
_

+
_

+
_

+
_

(c) Stretched crystal

F

Vemf < 0

+
_

+
_

+
_

+
_

+
_

+
_Vemf = 0

F = 0

Dipole

+

_

Figure TF12-1 Response of a piezoelectric crystal to an applied force.
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Wear plate

Case

Electrodes

Piezoelectric

element

Backing

material

Epoxy

potting

Ground wire

Signal wire
Coaxial cable connector

Figure TF12-2 The ultrasonic transducer uses piezoelectric

crystals.

Vemf

Conducting loop Magnet

x

l

u

+

_
N

S

Figure TF12-3 In a Faraday accelerometer, the induced emf

is directly proportional to the velocity of the loop (into and out

of the magnet’s cavity).

magnetic flux passing through the loop. For the configu-
ration in Fig. TF12-3,

Vemf = −uB0l,

where u = dx/dt is the velocity of the loop (into or out
of the magnet’s cavity) with the direction of u defined as
positive when the loop is moving inward into the cavity,
B0 is the magnetic field of the magnet, and l is the loop
width. With B0 and l being constant, the variation of
Vemf(t) with time t becomes a direct indicator of the time
variation of u(t). The time derivative of u(t) provides the
acceleration a(t).

VsR

I

+

_

T1

Cold reference junction

T2

Copper

Bismuth

Measurement
junction

Figure TF12-4 Principle of the thermocouple.

Thermocouple

In 1821, Thomas Seebeck discovered that when a
junction made of two different conducting materials, such
as bismuth and copper, is heated it generates a thermally
induced emf, which we now call the Seebeck potential
VS (Fig. TF12-4). When connected to a resistor, a current
given by I = VS/R flows through the resistor.

This feature was advanced by A. C. Becquerel in
1826 as a means to measure the unknown tempera-
ture T2 of a junction relative to a temperature T1 of a
(cold) reference junction. Today, such a generator of
thermoelectricity is called a thermocouple. Initially, an
ice bath was used to maintain T1 at 0◦C, but in today’s
temperature sensor designs, an artificial cold junction is
used instead. The artificial junction is an electric circuit
that generates a potential equal to that expected from a
reference junction at temperature T1.

6-10



308 CHAPTER 6 MAXWELL’S EQUATIONS FOR TIME-VARYING FIELDS

Exercise 6-6: Determine (a) the relaxation time constant
and (b) the time it takes for a charge density to decay

to 1% of its initial value in quartz given that εr = 5 and

σ = 10−17 S/m.

Answer: (a) τr = 51.2 days, (b) 236 days. (See EM .)

6-11 Electromagnetic Potentials

Our discussion of Faraday’s and Ampère’s laws revealed two

aspects of the link between time-varying electric and magnetic
fields. We now examine the implications of this interconnec-

tion on the electric scalar potential V and the vector magnetic

potential A.
In the static case, Faraday’s law reduces to

∇×××E = 0, (static case) (6.62)

which states that the electrostatic field E is conservative.
According to the rules of vector calculus, if a vector field E

is conservative, it can be expressed as the gradient of a scalar.

Hence, in Chapter 4, we defined E as

E = −∇V . (electrostatics) (6.63)

In the dynamic case, Faraday’s law is

∇×××E = −∂B

∂ t
. (6.64)

In view of the relation B = ∇×××A, Eq. (6.64) can be expressed

as

∇×××E = − ∂

∂ t
(∇×××A), (6.65)

which can be rewritten as

∇×××
(

E+
∂A

∂ t

)
= 0. (dynamic case) (6.66)

Let us for the moment define

E′ = E+
∂A

∂ t
. (6.67)

Using this definition, Eq. (6.66) becomes

∇×××E′ = 0. (6.68)

Following the same logic that led to Eq. (6.63) from Eq. (6.62),

we define

E′ = −∇V . (6.69)

Upon substituting Eq. (6.67) for E′ in Eq. (6.69) and then
solving for E, we have

E = −∇V − ∂A

∂ t
. (dynamic case) (6.70)

Equation (6.70) reduces to Eq. (6.63) in the static case.
When the scalar potential V and the vector potential A are

known, E can be obtained from Eq. (6.70), and B can be

obtained from

B = ∇×××A. (6.71)

Next we examine the relations between the potentials, V and A,
and their sources: the charge and current distributions ρv and J

in the time-varying case.

6-11.1 Retarded Potentials

Consider the situation depicted in Fig. 6-16. A charge dis-

tribution ρv exists over a volume υ ′ embedded in a perfect

dielectric with permittivity ε . Were this a static charge distri-
bution, then from Eq. (4.58a) the electric potential V (R) at an

observation point in space specified by the position vector R

would be

V (R) =
1

4πε

∫

υ ′

ρv(Ri)

R′ dυ ′, (6.72)

where Ri denotes the position vector of an elemental volume
∆υ ′ containing charge density ρv(Ri), and R

′ = |R−Ri| is the

distance between ∆υ ′ and the observation point. If the charge

Ri

Charge
distribution ρv

R'

R

V(R)

z

x

y

∆υ'

ν'

Figure 6-16 Electric potential V (R) due to a charge distribu-

tion ρv over a volume υ ′.
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distribution is time-varying, we may be tempted to rewrite
Eq. (6.72) for the dynamic case as

V (R, t) =
1

4πε

∫

υ ′

ρv(Ri, t)

R′ dυ ′, (6.73)

but such a form does not account for “reaction time.” If V1 is

the potential due to a certain distribution ρv1 and ρv1 were to
suddenly change to ρv2, it will take a finite amount of time

before V1 a distance R
′ away changes to V2. In other words,

V (R, t) cannot change instantaneously. The delay time is equal

to t
′ = R

′/up, where up is the velocity of propagation in the

medium between the charge distribution and the observation
point. Thus, V (R, t) at time t corresponds to ρv at an earlier

time, that is, (t − t
′). Hence, Eq. (6.73) should be rewritten as

V (R, t) =
1

4πε

∫

υ ′

ρv(Ri, t −R
′/up)

R′ dυ ′ (V), (6.74)

and V (R, t) is appropriately called the retarded scalar poten-
tial. If the propagation medium is vacuum, up is equal to the

velocity of light c.
Similarly, the retarded vector potential A(R, t) is related to

the distribution of current density J by

A(R, t) =
µ

4π

∫

υ ′

J(Ri, t −R
′/up)

R′ dυ ′ (Wb/m). (6.75)

This expression is obtained by extending the expression for the

magnetostatic vector potential A(R) given by Eq. (5.65) to the
time-varying case.

6-11.2 Time-Harmonic Potentials

The expressions given by Eqs. (6.74) and (6.75) for the
retarded scalar and vector potentials are valid under both static

and dynamic conditions and for any type of time dependence

of the source functions ρv and J. Because V and A depend
linearly on ρv and J, and as E and B depend linearly on V

and A, the relationships interconnecting all of these quantities
obey the rules of linear systems. When analyzing linear

systems, we can take advantage of sinusoidal-time functions

to determine the system’s response to a source with arbitrary
time dependence. As was noted in Section 1-7, if the time

dependence is described by a (nonsinusoidal) periodic time

function, it can always be expanded into a Fourier series of
sinusoidal components, and if the time function is nonperiodic,

it can be represented by a Fourier integral. In either case, if
the response of the linear system is known for all steady-state

sinusoidal excitations, the principle of superposition can be

used to determine its response to an excitation with arbitrary
time dependence. Thus, the sinusoidal response of the system

constitutes a fundamental building block that can be used

to determine the response due to a source described by an
arbitrary function of time. The term time-harmonic is often

used in this context as a synonym for “steady-state sinusoidal

time-dependent.”
In this subsection, we derive expressions for the scalar and

vector potentials due to time-harmonic sources. Suppose that
ρv(Ri, t) is a sinusoidal-time function with angular frequency

ω given by

ρv(Ri, t) = ρv(Ri)cos(ωt + φ). (6.76)

Phasor analysis, which was first introduced in Section 1-7

and then used extensively in Chapter 2 to study wave prop-
agation on transmission lines, is a useful tool for analyzing

time-harmonic scenarios. A time harmonic charge distribution

ρv(Ri, t) is related to its phasor ρ̃v(Ri) as

ρv(Ri, t) = Re
[
ρ̃v(Ri)e

jωt
]

, (6.77)

Comparison of Eqs. (6.76) and (6.77) shows that in the present

case ρ̃v(Ri) = ρv(Ri) e
jφ .

Next, we express the retarded charge density

ρv(Ri, t −R
′/up) in phasor form by replacing t with (t−R

′/up)
in Eq. (6.77):

ρv(Ri, t −R
′/up) = Re

[
ρ̃v(Ri)e

jω(t−R
′/up)

]

= Re

[
ρ̃v(Ri)e

− jωR
′/upe

jωt

]

= Re

[
ρ̃v(Ri)e

− jkR
′
e

jωt

]
, (6.78)

where

k =
ω

up

(6.79)

is called the wavenumber or phase constant of the propagation

medium. (In general, the phase constant is denoted by the
symbol “β ”, but for lossless dielectric media, it is commonly

denoted by the symbol “k” and called the wavenumber.)

Similarly, we define the phasor Ṽ (R) of the time function

V (R, t) according to

V (R, t) = Re

[
Ṽ (R)e

jωt

]
. (6.80)
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Using Eqs. (6.78) and (6.80) in Eq. (6.74) gives

Re

[
Ṽ (R)e

jωt

]
= Re

[
1

4πε

∫

υ ′

ρ̃v(Ri)e
− jkR

′

R′ e
jωt

dυ ′
]

.

(6.81)
By equating the quantities inside the square brackets on both

sides of Eq. (6.81) and canceling the common e
jωt factor, we

obtain the phasor-domain expression

Ṽ (R) =
1

4πε

∫

υ ′

ρ̃v(Ri)e
− jkR

′

R′ dυ ′ (V). (6.82)

For any given charge distribution, Eq. (6.82) can be used to

compute Ṽ (R). Then the resultant expression can be used in

Eq. (6.80) to find V (R, t). Similarly, the expression for A(R, t)
given by Eq. (6.75) can be transformed into

A(R, t) = Re

[
Ã(R)e

jωt

]
(6.83)

with

Ã(R) =
µ

4π

∫

υ ′

J̃(Ri)e
− jkR

′

R′ dυ ′, (6.84)

where J̃(Ri) is the phasor function corresponding to J(Ri, t).

The magnetic field phasor H̃ corresponding to Ã is given by

H̃ =
1

µ
∇××× Ã. (6.85)

Recall that differentiation in the time domain is equivalent

to multiplication by jω in the phasor domain, and in a
nonconducting medium (J = 0), so Ampère’s law given by

Eq. (6.41) becomes

∇××× H̃ = jωεẼ or Ẽ =
1

jωε
∇××× H̃. (6.86)

Hence, given a time-harmonic, current-density distribution

with phasor J̃, Eqs. (6.84) to (6.86) can be used successively

to determine both Ẽ and H̃. The phasor vectors Ẽ and H̃ also
are related by the phasor form of Faraday’s law:

∇××× Ẽ = − jωµH̃

or H̃ = − 1

jωµ
∇××× Ẽ. (6.87)

Example 6-8: Relating E to H

In a nonconducting medium with ε = 16ε0 and µ = µ0, the

electric field intensity of an electromagnetic wave is

E(z, t) = x̂10sin(1010
t − kz) (V/m). (6.88)

Determine the associated magnetic field intensity H and find

the value of k.

Solution: We begin by finding the phasor Ẽ(z) of E(z, t).
Since E(z, t) is given as a sine function and phasors are defined

in this book with reference to the cosine function, we rewrite

Eq. (6.88) as

E(z, t) = x̂10cos(1010
t − kz−π/2) (V/m)

= Re

[
Ẽ(z)e

jωt

]
, (6.89)

with ω = 1010 (rad/s) and

Ẽ(z) = x̂10e
− jkz

e
− jπ/2

= −x̂ j10e
− jkz. (6.90)

To find both H̃(z) and k, we will perform a “circle”: We will

use the given expression for Ẽ(z) in Faraday’s law to find H̃(z);

then we will use H̃(z) in Ampère’s law to find Ẽ(z), which

we will then compare with the original expression for Ẽ(z);
and the comparison will yield the value of k. Application of

Eq. (6.87) gives

H̃(z) = − 1

jωµ
∇××× Ẽ

= − 1

jωµ

∣∣∣∣∣∣

x̂ ŷ ẑ

∂/∂x ∂/∂y ∂/∂ z

− j10e
− jkz 0 0

∣∣∣∣∣∣

= − 1

jωµ

[
ŷ

∂

∂ z
(− j10e

− jkz)

]

= −ŷ j
10k

ωµ
e
− jkz. (6.91)
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So far, we have used Eq. (6.90) for Ẽ(z) to find H̃(z), but k

remains unknown. To find k, we use H̃(z) in Eq. (6.86) to find

Ẽ(z):

Ẽ(z) =
1

jωε
∇××× H̃

=
1

jωε

[
−x̂

∂

∂ z

(
− j

10k

ωµ
e
− jkz

)]

= −x̂ j
10k

2

ω2µε
e
− jkz. (6.92)

Equating Eqs. (6.90) and (6.92) leads to

k
2 = ω2µε ,

or

k = ω
√

µε

= 4ω
√

µ0ε0

=
4ω

c
=

4×1010

3×108
= 133 (rad/m). (6.93)

With k known, the instantaneous magnetic field intensity is
then given by

H(z, t) = Re

[
H̃(z) e

jωt

]

= Re

[
−ŷ j

10k

ωµ
e
− jkz

e
jωt

]

= ŷ0.11sin(1010
t −133z) (A/m). (6.94)

We note that k has the same expression as the phase constant

of a lossless transmission line [Eq. (2.49)].

Exercise 6-7: The magnetic field intensity of an elec-
tromagnetic wave propagating in a lossless medium with

ε = 9ε0 and µ = µ0 is

H(z, t) = x̂0.3cos(108
t − kz+ π/4) (A/m).

Find E(z, t) and k.

Answer: E(z, t) = −ŷ37.7cos(108
t − z + π/4) (V/m);

k = 1 (rad/m). (See EM .)

Chapter 6 Summary

Concepts

• Faraday’s law states that a voltage is induced across

the terminals of a loop if the magnetic flux linking its
surface changes with time.

• In an ideal transformer, the ratios of the primary to

secondary voltages, currents, and impedances are gov-
erned by the turns ratio.

• Displacement current accounts for the “apparent” flow

of charges through a dielectric. In reality, charges of
opposite polarity accumulate along the two ends of

a dielectric, giving the appearance of current flow

through it.
• Boundary conditions for the electromagnetic fields at

the interface between two different media are the same
for both static and dynamic conditions.

• The charge continuity equation is a mathematical state-

ment of the law of conservation of electric charge.
• Excess charges in the interior of a good conductor dis-

sipate very quickly; through a rearrangement process,

the excess charge is transferred to the surface of the
conductor.

• In the dynamic case, the electric field E is related to

both the scalar electric potential V and the magnetic
vector potential A.

• The retarded scalar and vector potentials at a given

observation point take into account the finite time
required for propagation between their sources, the

charge and current distributions, and the location of the
observation point.
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Mathematical and Physical Models

Faraday’s Law

Vemf = −dΦ

dt
= − d

dt

∫

S

B ·ds = V
tr

emf
+V

m

emf

Transformer

V
tr

emf = −N

∫

S

∂B

∂ t
·ds (N loops)

Motional

V
m

emf =

∫

C

(u×××B) ·dl

Charge–Current Continuity

∇ ·J = −∂ρv

∂ t

EM Potentials

E = −∇V − ∂A

∂ t
B = ∇×××A

Current Density

Conduction Jc = σ E

Displacement Jd =
∂D

∂ t

Conductor Charge Dissipation

ρv(t) = ρvoe
−(σ/ε)t = ρvoe

−t/τr

Important Terms Provide definitions or explain the meaning of the following terms:

charge continuity equation
charge dissipation

displacement current Id

electromagnetic induction
electromotive force Vemf

Faraday’s law
Kirchhoff’s current law

Lenz’s law

motional emf V
m
emf

relaxation time constant

retarded potential
transformer emf V

tr
emf

wavenumber k

PROBLEMS

Sections 6-1 to 6-6: Faraday’s Law and its Applications

∗
6.1 The switch in the bottom loop of Fig. P6.1 is closed at
t = 0 and then opened at a later time t1. What is the direction of

the current I in the top loop (clockwise or counterclockwise)

at each of these two times?

6.2 The loop in Fig. P6.2 is in the x–y plane and

B = ẑB0 sin ωt with B0 positive. What is the direction of I

(φ̂φφ or −φ̂φφ) at:

(a) t = 0

(b) ωt = π/4

(c) ωt = π/2

6.3 A stationary conducting loop with an internal resistance

of 0.5 Ω is placed in a time-varying magnetic field. When the
loop is closed, a current of 5 A flows through it. What will the

∗
Answer(s) available in Appendix E.

R2

R1
t = 0

t = t1

I

Figure P6.1 Loops of Problem 6.1.

current be if the loop is opened to create a small gap and a

4.5-Ω resistor is connected across its open ends?

6.4 A coil consists of 200 turns of wire wrapped around

a square frame of sides 0.25 m. The coil is centered at the
origin with each of its sides parallel to the x or y axis. Find the

induced emf across the open-circuited ends of the coil if the
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R Vemf

z

y

x

I

Figure P6.2 Loop of Problem 6.2.

magnetic field is given by
∗

(a) B = ẑ20e
−3t (T)

(b) B = ẑ20cosx cos103
t (T)

(c) B = ẑ20cosx sin2y cos103
t (T)

6.5 A rectangular conducting loop 5 cm×10 cm with a small
air gap in one of its sides is spinning at 7200 revolutions

per minute. If the field B is normal to the loop axis and its

magnitude is 3 × 10−6 T, what is the peak voltage induced
across the air gap?

6.6 The square loop shown in Fig. P6.6 is coplanar with a

long, straight wire carrying a current

I(t) = 5cos(2π ×104
t) (A).

(a) Determine the emf induced across a small gap created in

the loop.

(b) Determine the direction and magnitude of the current that

would flow through a 4-Ω resistor connected across the
gap. The loop has an internal resistance of 1 Ω.

∗
6.7 The rectangular conducting loop shown in Fig. P6.7

rotates at 3,000 revolutions per minute in a uniform magnetic

flux density given by

B = ŷ50 (mT).

Determine the current induced in the loop if its internal

resistance is 0.5 Ω.

6.8 The transformer shown in Fig. P6.8 consists of a long
wire coincident with the z-axis carrying a current I = I0 cosωt,

coupling magnetic energy to a toroidal coil situated in the x–y

plane and centered at the origin. The toroidal core uses iron

material with relative permeability µr, around which 100 turns

of a tightly wound coil serves to induce a voltage Vemf , as
shown in the figure.

y

x

z

5 cm

I(t)

10 cm

10 cm

Figure P6.6 Loop coplanar with long wire (Problem 6.6).

y

x

z

B

B

φ(t)

3 cm

2 cm

ω

Figure P6.7 Rotating loop in a magnetic field (Problem 6.7).

(a) Develop an expression for Vemf .

(b) Calculate Vemf for f = 60 Hz, µr = 4000, a = 5 cm,
b = 6 cm, c = 2 cm, and I0 = 50 A.

∗
6.9 A circular-loop TV antenna with 0.04 m2 area is in

the presence of a uniform-amplitude 300 MHz signal. When

oriented for maximum response, the loop develops an emf with
a peak value of 30 (mV). What is the peak magnitude of B of

the incident wave?
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a

b

x

y

z

I

Vemf

c

N

Iron core with μr

Figure P6.8 Problem 6.8.

∗
6.10 A 50-cm-long metal rod rotates about the z-axis at
90 revolutions per minute, with end 1 fixed at the origin

as shown in Fig. P6.10. Determine the induced emf V12 if

B = ẑ2×10−4 T.

1

2
x

y

z

B

ω

Figure P6.10 Rotating rod of Problem 6.10.

6.11 The loop shown in Fig. P6.11 moves away from a wire

carrying a current I1 = 10 A at a constant velocity u = ŷ7.5

(m/s). If R = 10 Ω and the direction of I2 is as defined in the
figure, find I2 as a function of y0, the distance between the wire

and the loop. Ignore the internal resistance of the loop.

u

u

I1 = 10 A

I220 cm

10 cm

R

z

R

y0

Figure P6.11 Moving loop of Problem 6.11.

∗
6.12 The electromagnetic generator shown in Fig. 6-12 is

connected to an electric bulb with a resistance of 50 Ω. If
the loop area is 0.1 m2 and it rotates at 3,600 revolutions

per minute in a uniform magnetic flux density B0 = 0.4 T,

determine the amplitude of the current generated in the light
bulb.

6.13 The circular, conducting, disk shown in Fig. P6.13 lies

in the x–y plane and rotates with uniform angular velocity ω
about the z-axis. The disk is of radius a and is present in a

uniform magnetic flux density B = ẑB0. Obtain an expression

for the emf induced at the rim relative to the center of the disk.

z

y

x

a

V

ω

Figure P6.13 Rotating circular disk in a magnetic field

(Problem 6.13).
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Section 6-7: Displacement Current

∗
6.14 A coaxial capacitor of length l = 6 cm uses an insulat-
ing dielectric material with εr = 9. The radii of the cylindrical

conductors are 0.5 cm and 1 cm. If the voltage applied across

the capacitor is

V (t) = 50sin(120πt) (V)

what is the displacement current?

6.15 The plates of a parallel-plate capacitor have areas of

10 cm2 each and are separated by 1 cm. The capacitor is filled
with a dielectric material with ε = 4ε0, and the voltage across it

is given by V (t) = 30cos2π ×106
t (V). Find the displacement

current.

6.16 The parallel-plate capacitor shown in Fig. P6.16 is filled

with a lossy dielectric material of relative permittivity εr and

conductivity σ . The separation between the plates is d and
each plate is of area A. The capacitor is connected to a time-

varying voltage source V (t).

V(t)

I

A

dε, σ

Figure P6.16 Parallel-plate capacitor containing a lossy

dielectric material (Problem 6.16).

(a) Obtain an expression for Ic, the conduction current flow-
ing between the plates inside the capacitor, in terms of the

given quantities.

(b) Obtain an expression for Id, the displacement current
flowing inside the capacitor.

(c) Based on your expressions for parts (a) and (b), give an

equivalent-circuit representation for the capacitor.

(d) Evaluate the values of the circuit elements for A = 4 cm2,
d = 0.5 cm, εr = 4, σ = 2.5 (S/m), and V (t) =
10cos(3π ×103

t) (V).

6.17 An electromagnetic wave propagating in seawater has
an electric field with a time variation given by E = ẑE0 cosωt.

If the permittivity of water is 81ε0 and its conductivity is

4 (S/m), find the ratio of the magnitudes of the conduction
current density to displacement current density at each of the

following frequencies:

(a) 1 kHz

∗
(b) 1 MHz

(c) 1 GHz

(d) 100 GHz

∗
6.18 In wet soil, characterized by σ = 10−2 (S/m), µr = 1,

and εr = 36, at what frequency is the conduction current den-

sity equal in magnitude to the displacement current density?

Sections 6-9 and 6-10: Continuity Equation and Charge
Dissipation

6.19 At t = 0, charge density ρv0 was introduced into the
interior of a material with a relative permittivity εr = 6. If at

t = 1 µs the charge density has dissipated down to 10−3ρv0,
what is the conductivity of the material?

∗
6.20 If the current density in a conducting medium is given

by

J(x,y,z;t) = (x̂z− ŷ4y
2 + ẑ2x)cosωt

determine the corresponding charge distribution ρv(x,y,z;t).

6.21 If we were to characterize how good a material is as an

insulator by its resistance to dissipating charge, which of the
following two materials is the better insulator?

Dry Soil: εr = 2.5, σ = 10−4 (S/m)

Fresh Water: εr = 80, σ = 10−3 (S/m)

6.22 In a certain medium, the direction of current density J

points in the radial direction in cylindrical coordinates and its

magnitude is independent of both φ and z. Determine J, given
that the charge density in the medium is

ρv = ρ0r cosωt (C/m3).
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Section 6-7: Electromagnetic Potentials

6.23 The electric field of an electromagnetic wave propagat-

ing in air is given by

E(z, t) = x̂4cos(6×108
t −2z)

+ ŷ3sin(6×108
t −2z) (V/m).

Find the associated magnetic field H(z, t).

∗
6.24 The magnetic field in a dielectric material with ε = 4ε0,
µ = µ0, and σ = 0 is given by

H(y, t) = x̂5cos(2π ×107
t + ky) (A/m).

Find k and the associated electric field E.

6.25 Given an electric field

E = x̂E0 sinaycos(ωt − kz),

where E0, a, ω , and k are constants, find H.

∗
6.26 The electric field radiated by a short dipole antenna is
given in spherical coordinates by

E(R,θ ;t) =

θ̂θθ
2×10−2

R
sinθ cos(6π ×108

t −2πR) (V/m).

Find H(R,θ ;t).

6.27 The magnetic field in a given dielectric medium is given
by

H = ŷ6cos2zsin(2×107
t −0.1x) (A/m),

where x and z are in meters. Determine:

(a) E,

(b) the displacement current density Jd, and

(c) the charge density ρv.

6.28 In free space, the magnetic field is given by

H = φ̂φφ
36

r
cos(6×109

t − kz) (mA/m).

∗
(a) Determine k.

(b) Determine E.

(c) Determine Jd.

6.29 A Hertzian dipole is a short conducting wire carrying

an approximately constant current over its length l. If such a
dipole is placed along the z-axis with its midpoint at the origin,

and if the current flowing through it is i(t) = I0 cosωt, find the

following:

(a) The retarded vector potential Ã(R,θ ,φ) at an observation

point Q(R,θ ,φ) in a spherical coordinate system.

(b) The magnetic field phasor H̃(R,θ ,φ).

Assume l to be sufficiently small so that the observation point
is approximately equidistant to all points on the dipole; that is,

assume R
′ ≃ R.
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Objectives

Upon learning the material presented in this chapter, you

should be able to:

1. Describe mathematically the electric and magnetic fields

of TEM waves.

2. Describe the polarization properties of an EM wave.

3. Relate the propagation parameters of a wave to the

constitutive parameters of the medium.

4. Characterize the flow of current in conductors and use it

to calculate the resistance of a coaxial cable.

5. Calculate the rate of power carried by an EM wave in both

lossless and lossy media.
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Unbounded EM Waves

It was established in Chapter 6 that a time-varying elec-

tric field produces a magnetic field and, conversely, a time-
varying magnetic field produces an electric field. This cyclic

pattern often results in electromagnetic (EM) waves propa-

gating through free space and in material media. When a
wave propagates through a homogeneous medium without

interacting with obstacles or material interfaces, it is said to be
unbounded. Light waves emitted by the sun and radio trans-

missions by antennas are good examples. Unbounded waves

may propagate in both lossless and lossy media. Waves propa-
gating in a lossless medium (e.g., air and perfect dielectrics)

are similar to those on a lossless transmission line in that

they do not attenuate. When propagating in a lossy medium
(material with nonzero conductivity, such as water), part of the

power carried by an EM wave gets converted into heat. A wave

produced by a localized source, such as an antenna, expands
outwardly in the form of a spherical wave, as depicted in

Fig. 7-1(a). Even though an antenna may radiate more energy

along some directions than along others, the spherical wave
travels at the same speed in all directions. To an observer

very far away from the source, however, the wavefront of the
spherical wave appears approximately planar, as if it were

part of a uniform plane wave with identical properties at all

points in the plane tangent to the wavefront (Fig. 7-1(b)).
Plane waves are easily described using a Cartesian coordinate

system, which is mathematically easier to work with than

the spherical coordinate system needed to describe spherical
waves.

When a wave propagates along a material structure, it is said

to be guided. The Earth’s surface and ionosphere constitute
parallel boundaries of a natural structure capable of guiding

short-wave radio transmissions in the HF band∗ (3 to 30 MHz);

indeed, the ionosphere is a good reflector at these frequen-
cies, thereby allowing the waves to zigzag between the two

boundaries (Fig. 7-2). When we discussed wave propagation

on a transmission line in Chapter 2, we dealt with voltages and
currents. For a transmission-line circuit such as that shown in

Fig. 7-3, the ac voltage source excites an incident wave that
travels down the coaxial line toward the load, and unless the

load is matched to the line, part (or all) of the incident wave

is reflected back toward the generator. At any point on the
line, the instantaneous total voltage v(z, t) is the sum of the

incident and reflected waves—both of which vary sinusoidally

with time. Associated with the voltage difference between the
inner and outer conductors of the coaxial line is a radial electric

field E(z, t) that exists in the dielectric material between the

conductors, and since v(z, t) varies sinusoidally with time, so
does E(z, t). Furthermore, the current flowing through the inner

∗See Fig. 1-17.

(a) Spherical wave

(b) Plane-wave approximation

Radiating
antenna

Spherical
wavefront

Uniform plane wave

Aperture

Observer

Figure 7-1 Waves radiated by an EM source, such as a light

bulb or an antenna, have spherical wavefronts, as in (a); to a

distant observer, however, the wavefront across the observer’s

aperture appears approximately planar, as in (b).

Transmitter

Earth's surface

Ionosphere

Figure 7-2 The atmospheric layer bounded by the ionosphere

at the top and the Earth’s surface at the bottom forms a guiding

structure for the propagation of radio waves in the HF band.
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Vg

Rg

RL

H H HH

E E

Figure 7-3 A guided electromagnetic wave traveling in a

coaxial transmission line consists of time-varying electric and

magnetic fields in the dielectric medium between the inner and

outer conductors.

conductor induces an azimuthal magnetic field H(z, t) in the

dielectric material surrounding it. These coupled fields, E(z, t)
and H(z, t), constitute an electromagnetic wave. Thus, we can

model wave propagation on a transmission line either in terms

of the voltages across the line and the currents in its conductors
or in terms of the electric and magnetic fields in the dielectric

medium between the conductors.
In this chapter, we focus our attention on wave propagation

in unbounded media. Unbounded waves have many practical

applications in science and engineering. We consider both
lossless and lossy media. Even though strictly speaking uni-

form plane waves cannot exist, we study them in this chapter

to develop a physical understanding of wave propagation in
lossless and lossy media. In Chapter 8, we examine how both

planar and spherical waves are reflected by and transmitted

through boundaries between dissimilar media. The proc esses
of radiation and reception of waves by antennas are treated in

Chapter 9.

7-1 Time-Harmonic Fields

Time-varying electric and magnetic fields (E, D, B, and H) and

their sources (the charge density ρv and current density J) gen-
erally depend on the spatial coordinates (x,y,z) and the time

variable t. However, if their time variation is sinusoidal with

angular frequency ω , then these quantities can be represented
by a phasor that depends on (x,y,z) only. The vector phasor

Ẽ(x,y,z) and the instantaneous field E(x,y,z;t) it describes are

related as

E(x,y,z;t) = Re

[
Ẽ(x,y,z) e

jωt

]
. (7.1)

Similar definitions apply to D, B, and H, as well as to ρv

and J. For a linear, isotropic, and homogeneous medium
with electrical permittivity ε , magnetic permeability µ , and

conductivity σ , Maxwell’s equations (6.1) to (6.4) assume the

following form in the phasor domain.

∇ · Ẽ = ρ̃v/ε ,

∇××× Ẽ = − jωµH̃,

∇ ·H̃ = 0,

∇××× H̃ = J̃+ jωεẼ.

(7.2a)

(7.2b)

(7.2c)

(7.2d)

To derive these equations, we used D = εE and B = µH as well

as the fact that, for time-harmonic quantities, differentiation in
the time domain corresponds to multiplication by jω in the

phasor domain. These equations are the starting point for the

subject matter treated in this chapter.

7-1.1 Complex Permittivity

In a medium with conductivity σ , the conduction current

density J̃ is related to Ẽ by J̃ = σ Ẽ. Assuming no other current

flows in the medium, Eq. (7.2d) may be written as

∇××× H̃ = J̃+ jωεẼ = (σ + jωε)Ẽ = jω
(

ε − j
σ

ω

)
Ẽ. (7.3)

By defining the complex permittivity εc as

εc = ε − j
σ

ω
, (7.4)

Eq. (7.3) can be rewritten as

∇××× H̃ = jωεcẼ. (7.5)

In a source-free medium, ρv = 0. Hence, Maxwell’s equations
become

∇ · Ẽ = 0,

∇××× Ẽ = − jωµH̃,

∇ ·H̃ = 0,

∇××× H̃ = jωεcẼ.

(7.6a)

(7.6b)

(7.6c)

(7.6d)

The complex permittivity εc given by Eq. (7.4) is often written

in terms of a real part ε ′ and an imaginary part ε ′′. Thus,

εc = ε − j
σ

ω
= ε ′− jε ′′, (7.7)

with

ε ′ = ε , (7.8a)

ε ′′ =
σ

ω
. (7.8b)
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For a lossless medium with σ = 0, it follows that ε ′′ = 0 and
εc = ε ′ = ε .

7-1.2 Wave Equations

Next, we derive wave equations for Ẽ and H̃ and then solve

them to obtain explicit expressions for Ẽ and H̃ as a function

of the spatial variables (x,y,z). To that end, we start by taking

the curl of both sides of Eq. (7.6b) to get

∇××× (∇××× Ẽ) = − jωµ(∇××× H̃). (7.9)

Upon substituting Eq. (7.6d) into Eq. (7.9), we obtain

∇××× (∇××× Ẽ) = − jωµ( jωεcẼ) = ω2µεcẼ. (7.10)

From Eq. (3.113), we know that the curl of the curl of Ẽ is

∇××× (∇××× Ẽ) = ∇(∇ · Ẽ)−∇2Ẽ, (7.11)

where ∇2Ẽ is the Laplacian of Ẽ, which in Cartesian coordi-

nates is given by

∇2Ẽ =

(
∂ 2

∂x2
+

∂ 2

∂y2
+

∂ 2

∂ z2

)
Ẽ. (7.12)

In view of Eq. (7.6a), the use of Eq. (7.11) in Eq. (7.10) gives

∇2Ẽ+ ω2µεcẼ = 0, (7.13)

which is known as the homogeneous wave equation for Ẽ. By

defining the propagation constant γ as

γ2 = −ω2µεc, (7.14)

Eq. (7.13) can be written as

∇2Ẽ− γ2Ẽ = 0. (wave equation for Ẽ) (7.15)

To derive Eq. (7.15), we took the curl of both sides of

Eq. (7.6b) and then we used Eq. (7.6d) to eliminate H̃ and

obtain an equation in Ẽ only. If we reverse the process, that

is, if we start by taking the curl of both sides of Eq. (7.6d) and

then use Eq. (7.6b) to eliminate Ẽ, we obtain a wave equation

for H̃:

∇2H̃− γ2H̃ = 0. (wave equation for H̃) (7.16)

Since the wave equations for Ẽ and H̃ are of the same form, so

are their solutions.

7-2 Plane-Wave Propagation in Lossless

Media

The properties of an electromagnetic wave, such as its phase

velocity up and wavelength λ , depend on the angular fre-

quency ω and the medium’s three constitutive parameters: ε ,
µ , and σ . If the medium is nonconducting (σ = 0), the wave

does not suffer any attenuation as it travels; hence, the medium
is said to be lossless. Because in a lossless medium εc = ε ,

Eq. (7.14) becomes

γ2 = −ω2µε . (7.17)

For lossless media, it is customary to define the wavenumber
k as

k = ω
√

µε . (7.18)

In view of Eq. (7.17), γ2 = −k
2 and Eq. (7.15) becomes

∇2Ẽ+ k
2Ẽ = 0. (7.19)

7-2.1 Uniform Plane Waves

For an electric field phasor defined in Cartesian coordinates as

Ẽ = x̂Ẽx + ŷẼy + ẑẼz, (7.20)

substitution of Eq. (7.12) into Eq. (7.19) gives

(
∂ 2

∂x2
+

∂ 2

∂y2
+

∂ 2

∂ z2

)
(x̂Ẽx + ŷẼy + ẑẼz)

+ k
2(x̂Ẽx + ŷẼy + ẑẼz) = 0. (7.21)

To satisfy Eq. (7.21), each vector component on the left-hand

side of the equation must vanish. Hence,

(
∂ 2

∂x2
+

∂ 2

∂y2
+

∂ 2

∂ z2
+ k

2

)
Ẽx = 0, (7.22)

and similar expressions apply to Ẽy and Ẽz.

◮ A uniform plane wave is characterized by electric and

magnetic fields that have uniform properties at all points

across an infinite plane. ◭

If this happens to be the x–y plane, then E and H do not vary

with x or y. Hence, ∂ Ẽx/∂x = 0 and ∂ Ẽx/∂y = 0, so Eq. (7.22)
reduces to

d
2
Ẽx

dz2
+ k

2
Ẽx = 0. (7.23)
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Similar expressions apply to Ẽy, H̃x, and H̃y. The remaining

components of Ẽ and H̃ are zero; that is, Ẽz = H̃z = 0. To show

that Ẽz = 0, let us consider the z component of Eq. (7.6d),

ẑ

(
∂ H̃y

∂x
− ∂ H̃x

∂y

)
= ẑ jωεẼz. (7.24)

Since ∂ H̃y/∂x = ∂ H̃x/∂y = 0, it follows that Ẽz = 0. A similar

examination involving Eq. (7.6b) reveals that H̃z = 0.

◮ This means that a plane wave has no electric-field or

magnetic-field components along its direction of propa-
gation. ◭

For the phasor quantity Ẽx, the general solution of the

ordinary differential equation given by Eq. (7.23) is

Ẽx(z) = Ẽ
+
x (z)+ Ẽ

−
x (z) = E

+
x0e

− jkz + E
−
x0e

jkz, (7.25)

where E
+
x0 and E

−
x0 are constants to be determined from bound-

ary conditions. The solution given by Eq. (7.25) is similar

in form to the solution for the phasor voltage Ṽ (z) given by

Eq. (2.54a) for the lossless transmission line. The first term
in Eq. (7.25), containing the negative exponential e

− jkz, repre-

sents a wave with amplitude E
+
x0 traveling in the +z direction.

Likewise, the second term (with e
jkz) represents a wave with

amplitude E
−
x0 traveling in the −z direction. Assume for the

time being that Ẽ only has a component along x (i.e., Ẽy = 0)

and that Ẽx is associated with a wave traveling in the +z

direction only (i.e., E
−
x0 = 0). Under these conditions,

Ẽ(z) = x̂Ẽ
+
x (z) = x̂E

+
x0e

− jkz. (7.26)

To find the magnetic field H̃ associated with this wave, we

apply Eq. (7.6b) with Ẽy = Ẽz = 0:

∇××× Ẽ =

∣∣∣∣∣∣∣∣

x̂ ŷ ẑ
∂

∂x

∂

∂y

∂

∂ z

Ẽ
+
x (z) 0 0

∣∣∣∣∣∣∣∣
= − jωµ(x̂H̃x + ŷH̃y + ẑH̃z).

(7.27)

For a uniform plane wave traveling in the +z direction,

∂E
+
x (z)/∂x = ∂E

+
x (z)/∂y = 0.

Hence, Eq. (7.27) gives

H̃x = 0, (7.28a)

H̃y =
1

− jωµ

∂ Ẽ
+
x (z)

∂ z
, (7.28b)

H̃z =
1

− jωµ

∂E
+
x (z)

∂y
= 0. (7.28c)

Use of Eq. (7.26) in Eq. (7.28b) gives

H̃y(z) =
k

ωµ
E

+
x0e

− jkz = H
+
y0e

− jkz, (7.29)

where H
+
y0 is the amplitude of H̃y(z) and is given by

H
+
y0 =

k

ωµ
E

+
x0. (7.30)

For a wave traveling from the source toward the load on a

transmission line, the amplitudes of its voltage and current
phasors, V

+
0 and I

+
0 , are related by the characteristic impe-

dance of the line, Z0. A similar connection exists between the

electric and magnetic fields of an electromagnetic wave. The
intrinsic impedance of a lossless medium is defined as

η =
ωµ

k
=

ωµ

ω
√

µε
=

√
µ

ε
(Ω), (7.31)

where we used the expression for k given by Eq. (7.18).

In view of Eq. (7.31), the electric and magnetic fields of a
+z-propagating plane wave with E field along x̂ are

Ẽ(z) = x̂Ẽ
+
x (z) = x̂E

+
x0e

− jkz, (7.32a)

H̃(z) = ŷ
Ẽ

+
x (z)

η
= ŷ

E
+
x0

η
e
− jkz. (7.32b)

◮ The electric and magnetic fields of a plane wave are

perpendicular to each other, and both are perpendicular
to the direction of wave travel (Fig. 7-4). These attributes

qualify the wave as transverse electromagnetic (TEM). ◭

Other examples of TEM waves include waves traveling on

coaxial transmission lines (E is along r̂, H is along φ̂φφ, and
the direction of travel is along ẑ) and spherical waves radiated

by antennas.

In the general case, E
+
x0 is a complex quantity with magni-

tude |E+
x0| and phase angle φ+. That is,

E
+
x0 = |E+

x0|e jφ+
. (7.33)

The instantaneous electric and magnetic fields therefore are

E(z, t) = Re

[
Ẽ(z) e

jωt

]
= x̂|E+

x0|cos(ωt − kz+ φ+) (V/m),

(7.34a)
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x

z

y

H

E

k̂

Figure 7-4 A transverse electromagnetic (TEM) wave propa-

gating in the direction k̂ = ẑ. For all TEM waves, k̂ is parallel to

E×××H.

and

H(z, t) = Re

[
H̃(z) e

jωt

]
= ŷ

|E+
x0|

η
cos(ωt−kz+φ+) (A/m).

(7.34b)
Because E(z, t) and H(z, t) exhibit the same functional depen-

dence on z and t, they are said to be in phase; when the

amplitude of one of them reaches a maximum, the amplitude

of the other does so too. The fact that Ẽ and H̃ are in phase is

characteristic of waves propagating in lossless media.
From the material on wave motion presented in Section 1-4,

we deduce that the phase velocity of the wave is

up =
ω

k
=

ω

ω
√

µε
=

1√
µε

(m/s), (7.35)

and its wavelength is

λ =
2π

k
=

up

f
(m). (7.36)

In a vacuum, ε = ε0 and µ = µ0, and the phase velocity up and
the intrinsic impedance η given by Eq. (7.31) are

up = c =
1√
µ0ε0

= 3×108 (m/s), (7.37)

η = η0 =

√
µ0

ε0

= 377 (Ω) ≈ 120π (Ω), (7.38)

where c is the velocity of light and η0 is called the intrinsic
impedance of free space.

Example 7-1: EM Plane Wave in Air

This example is analogous to the “Sound Wave in Water”
problem given by Example 1-1.

The electric field of a 1 MHz plane wave traveling in the
+z direction in air points along the x direction. If this field

reaches a peak value of 1.2π (mV/m) at t = 0 and z = 50 m,

obtain expressions for E(z, t) and H(z, t). Then plot them as a
function of z at t = 0.

Solution: At f = 1 MHz, the wavelength in air is

λ =
c

f
=

3×108

1×106
= 300 m,

and the corresponding wavenumber is k = (2π/300) (rad/m).

The general expression for an x-directed electric field traveling

in the +z direction is given by Eq. (7.34a) as

E(z, t) = x̂|E+
x0|cos(ωt − kz+ φ+)

= x̂1.2π cos

(
2π ×106

t − 2πz

300
+ φ+

)
(mV/m).

The field E(z, t) is maximum when the argument of the cosine

function equals zero or a multiple of 2π . At t = 0 and z = 50 m,
this condition yields

−2π ×50

300
+ φ+ = 0 or φ+ =

π

3
.

Hence,

E(z, t) = x̂1.2π cos

(
2π ×106

t − 2πz

300
+

π

3

)
(mV/m),

and from Eq. (7.34b), we have

H(z, t) = ŷ
E(z, t)

η0

= ŷ10cos

(
2π ×106

t − 2πz

300
+

π

3

)
(µA/m),

where we have used the approximation η0 ≈ 120π (Ω).
At t = 0,

E(z,0) = x̂1.2π cos

(
2πz

300
− π

3

)
(mV/m),

H(z,0) = ŷ10cos

(
2πz

300
− π

3

)
(µA/m).

Plots of E(z,0) and H(z,0) as a function of z are shown in

Fig. 7-5.
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Figure 7-5 Spatial variations of E and H at t = 0 for the plane

wave of Example 7-1.

7-2.2 General Relation between E and H

It can be shown that, for any uniform plane wave traveling in

an arbitrary direction denoted by the unit vector k̂, the electric

and magnetic field phasors Ẽ and H̃ are related as

H̃ =
1

η
k̂××× Ẽ,

Ẽ = −η k̂××× H̃.

(7.39a)

(7.39b)

◮ The following right-hand rule applies: When we rotate
the four fingers of the right hand from the direction of E

toward that of H, the thumb points in the direction of the

wave travel, k̂. ◭

The relations given by Eqs. (7.39a and b) are valid not only
for lossless media but for lossy ones as well. As we see later in

Section 7-4, the expression for η of a lossy medium is different

from that given by Eq. (7.31). As long as the expression used
for η is appropriate for the medium in which the wave is

traveling, the relations given by Eqs. (7.39a and b) always

hold.

Wave Propagating Along +z with E Along x̂

Let us apply Eq. (7.39a) to the wave given by Eq. (7.32a). The

direction of propagation k̂ = ẑ and Ẽ = x̂ Ẽ
+
x (z). Hence,

H̃ =
1

η
k̂××× Ẽ =

1

η
(ẑ××× x̂) Ẽ

+
x (z) = ŷ

Ẽ
+
x (z)

η
, (7.40)

which is the same as the result given by Eq. (7.32b).

Wave Propagating Along −z with E Along x̂

For a wave traveling in the −z direction with electric field

given by

Ẽ = x̂ Ẽ
−
x (z) = x̂E

−
x0e

jkz, (7.41)

application of Eq. (7.39a) gives

H̃ =
1

η
(−ẑ××× x̂) Ẽ

−
x (z) = −ŷ

Ẽ
−
x (z)

η
= −ŷ

E
−
x0

η
e

jkz. (7.42)

Hence, in this case, H̃ points in the negative y direction.

Wave Propagating Along +z with E Along x̂ and ŷ

In general, a uniform plane wave traveling in the +z direction

may have both x and y components, where Ẽ is given by

Ẽ = x̂ Ẽ
+
x (z)+ ŷ Ẽ

+
y (z), (7.43a)

and the associated magnetic field is

H̃ = x̂ H̃
+
x (z)+ ŷH̃

+
y (z). (7.43b)

Application of Eq. (7.39a) gives

H̃ =
1

η
ẑ××× Ẽ = −x̂

Ẽ
+
y (z)

η
+ ŷ

Ẽ
+
x (z)

η
. (7.44)

By equating Eq. (7.43b) to Eq. (7.44), we have

H̃
+
x (z) = −

Ẽ
+
y (z)

η
, H̃

+
y (z) =

Ẽ
+
x (z)

η
. (7.45)

These results are illustrated in Fig. 7-6. The wave may be
considered the sum of two waves: one with electric and

magnetic components (E+
x ,H+

y ) and another with components

(E+
y ,H+

x ). In general, a TEM wave may have an electric field

in any direction in the plane orthogonal to the direction of wave
travel, the associated magnetic field is also in the same plane,

and its direction is dictated by Eq. (7.39a).
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Module 7.1 Linking E to H Select the directions and magnitudes of E and H and observe the resultant wave vector.

H

E

y

z
x

Hy
+

Hx
+

Ex
+

Ey
+

Figure 7-6 The wave (E,H) is equivalent to the sum of two

waves: one with fields (E+
x ,H+

y ) and another with (E+
y ,H+

x )
with both traveling in the +z direction.

Concept Question 7-1: What is a uniform plane wave?
Describe its properties, both physically and mathemati-

cally. Under what conditions is it appropriate to treat a

spherical wave as a plane wave?

Concept Question 7-2: Since Ẽ and H̃ are governed by

wave equations of the same form [Eqs. (7.15) and (7.16)],

does it follow that Ẽ = H̃? Explain.

Concept Question 7-3: If a TEM wave is traveling in

the ŷ direction, can its electric field have components
along x̂, ŷ, and ẑ? Explain.

Exercise 7-1: A 10-MHz uniform plane wave is traveling

in a nonmagnetic medium with µ = µ0 and εr = 9. Find

(a) the phase velocity, (b) the wavenumber, (c) the wave-
length in the medium, and (d) the intrinsic impedance of

the medium.
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Answer: (a) up = 1× 108 m/s, (b) k = 0.2π rad/m, (c)

λ = 10 m, (d) η = 125.67 Ω. (See EM .)

Exercise 7-2: The electric field phasor of a uniform plane
wave traveling in a lossless medium with an intrinsic

impedance of 188.5 Ω is given by Ẽ = ẑ10e
− j4πy (mV/m).

Determine (a) the associated magnetic field phasor and (b)

the instantaneous expression for E(y, t) if the medium is
nonmagnetic (µ = µ0).

Answer: (a) H̃ = x̂53e
− j4πy (µA/m),

(b) E(y, t) = ẑ10cos(6π ×108
t −4πy) (mV/m). (See EM .)

Exercise 7-3: If the magnetic field phasor of a plane
wave traveling in a medium with intrinsic impedance

η = 100 Ω is given by H̃ = (ŷ10 + ẑ20)e− j4x (mA/m),
find the associated electric field phasor.

Answer: Ẽ = (−ẑ + ŷ2)e− j4x (V/m). (See EM .)

Exercise 7-4: Repeat Exercise 7-3 for a magnetic field

given by H̃ = ŷ(10e
− j3x−20e

j3x) (mA/m).

Answer: Ẽ = −ẑ(e− j3x + 2e
j3x) (V/m). (See EM .)

7-3 Wave Polarization

◮ The polarization of a uniform plane wave describes
the locus traced by the tip of the E vector (in the plane

orthogonal to the direction of propagation) at a given point

in space as a function of time. ◭

In the most general case, the locus of the tip of E is an ellipse,

and the wave is said to be elliptically polarized. Under certain

conditions, the ellipse may degenerate into a circle or a straight
line, in which case the polarization state is called circular or

linear, respectively.
It was shown in Section 7-2 that the z components of the

electric and magnetic fields of a z-propagating plane wave are

both zero. Hence, in the most general case, the electric field

phasor Ẽ(z) of a +z-propagating plane wave may consist of an

x component, x̂ Ẽx(z), and a y component, ŷ Ẽy(z), or

Ẽ(z) = x̂Ẽx(z)+ ŷẼy(z) (7.46)

with

Ẽx(z) = Ex0e
− jkz, (7.47a)

Ẽy(z) = Ey0e
− jkz, (7.47b)

where Ex0 and Ey0 are the amplitudes of Ẽx(z) and Ẽy(z), re-
spectively. For the sake of simplicity, the plus sign superscript

has been suppressed; the negative sign in e
− jkz is sufficient to

remind us that the wave is traveling in the positive z direction.
The two amplitudes Ex0 and Ey0 are, in general, complex

quantities with each characterized by a magnitude and a phase

angle. The phase of a wave is defined relative to a reference
state, such as z = 0 and t = 0 or any other combination of z

and t. As will become clear from the discussion that follows,
the polarization of the wave described by Eqs. (7.46) and

(7.47) depends on the phase of Ey0 relative to that of Ex0 but not

on the absolute phases of Ex0 and Ey0. Hence, for convenience,
we assign Ex0 a phase of zero and denote the phase of Ey0,

relative to that of Ex0, as δ . Thus, δ is the phase difference

between the y and x components of Ẽ. Accordingly, we define
Ex0 and Ey0 as

Ex0 = ax, (7.48a)

Ey0 = aye
jδ , (7.48b)

where ax = |Ex0| ≥ 0 and ay = |Ey0| ≥ 0 are the magnitudes

of Ex0 and Ey0, respectively. Thus, by definition, ax and ay

may not assume negative values. Using Eqs. (7.48a and b) in

Eqs. (7.47a and b), the total electric field phasor is

Ẽ(z) = (x̂ax + ŷaye
jδ )e− jkz, (7.49)

and the corresponding instantaneous field is

E(z, t) = Re

[
Ẽ(z) e

jωt

]

= x̂ax cos(ωt − kz)+ ŷay cos(ωt − kz+ δ ). (7.50)

When characterizing an electric field at a given point in space,

two of its attributes that are of particular interest are its
magnitude and direction. The magnitude of E(z, t) is

|E(z, t)| = [E2
x (z, t)+ E

2
y (z, t)]1/2

= [a2
x cos2(ωt − kz)+ a

2
y cos2(ωt − kz+ δ )]1/2.

(7.51)

The electric field E(z, t) has components along the x and y

directions. At a specific position z, the direction of E(z, t) is
characterized by its inclination angle ψ , defined with respect

to the x axis and given by

ψ(z, t) = tan−1

[
Ey(z, t)

Ex(z, t)

]
. (7.52)

In the general case, both the intensity of E(z, t) and its direction

are functions of z and t. Next, we examine some special cases.
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Module 7.2 Plane Wave Observe a plane wave propagating along the z direction; note the temporal and spatial variations
of E and H. Examine how the wave properties change as a function of the values selected for the wave parameters—frequency

and E field amplitude and phase—and the medium’s constitutive parameters (ε , µ ,σ).

7-3.1 Linear Polarization

◮ A wave is said to be linearly polarized if for a fixed z,

the tip of E(z, t) traces a straight line segment as a function
of time. This happens when Ex(z, t) and Ey(z, t) are in
phase (i.e., δ = 0) or out of phase (δ = π). ◭

Under these conditions, Eq. (7.50) simplifies to

E(0, t) = (x̂ax + ŷay)cos(ωt − kz), (in phase) (7.53a)

E(0, t) = (x̂ax − ŷay)cos(ωt − kz). (out of phase) (7.53b)

Let us examine the out-of-phase case. The field’s magnitude is

|E(z, t)| = [a2
x + a

2
y]

1/2|cos(ωt − kz)|, (7.54a)

and the inclination angle is

ψ = tan−1

(−ay

ax

)
. (out of phase) (7.54b)

We note that ψ is independent of both z and t. Figure 7-7

displays the line segment traced by the tip of E at z = 0 over
a half of a cycle. The trace would be the same at any other

value of z as well. At z = 0 and t = 0, |E(0,0)|= [a2
x +a

2
y]

1/2.

The length of the vector representing E(0, t) decreases to zero

at ωt = π/2. The vector then reverses direction and increases

in magnitude to [a2
x + a

2
y ]

1/2 in the second quadrant of the x–y

plane at ωt = π . Since ψ is independent of both z and t, E(z, t)
maintains a direction along the line making an angle ψ with

the x axis while oscillating back and forth across the origin.
If ay = 0, then ψ = 0◦ or 180◦, and the wave is x-polarized;

conversely, if ax = 0, then ψ = 90◦ or −90◦, and the wave is

y-polarized.

7-3.2 Circular Polarization

We now consider the special case when the magnitudes of the

x and y components of Ẽ(z) are equal, and the phase difference
δ = ±π/2. For reasons that become evident shortly, the wave

polarization is called left-hand circular when δ = π/2, and
right-hand circular when δ = −π/2.

Left-Hand Circular (LHC) Polarization

For ax = ay = a and δ = π/2, Eqs. (7.49) and (7.50) become

Ẽ(z) = (x̂a + ŷae
jπ/2)e− jkz = a(x̂+ jŷ)e− jkz, (7.55a)
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Figure 7-7 Linearly polarized wave traveling in the +z

direction (out of the page).

E(z, t) = Re

[
Ẽ(z) e

jωt

]

= x̂acos(ωt − kz)+ ŷacos(ωt − kz+ π/2)

= x̂acos(ωt − kz)− ŷasin(ωt − kz). (7.55b)

The corresponding field magnitude and inclination angle are

|E(z, t)| =
[
E

2
x (z, t)+ E

2
y (z, t)

]1/2

= [a2 cos2(ωt − kz)+ a
2 sin2(ωt − kz)]1/2 = a

(7.56a)

and

ψ(z, t) = tan−1

[
Ey(z, t)

Ex(z, t)

]

= tan−1

[−asin(ωt − kz)

acos(ωt − kz)

]
= −(ωt − kz). (7.56b)

We observe that the magnitude of E is independent of both z

and t, whereas ψ depends on both variables. These functional
dependencies are the converse of those for the linear polariza-

tion case.

At z = 0, Eq. (7.56b) gives ψ = −ωt; the negative sign
implies that the inclination angle decreases as time increases.

As illustrated in Fig. 7-8(a), the tip of E(t) traces a circle in

(a) LHC polarization

(b) RHC polarization

z

ψ

ω

a

y

z
xa

E

ψ ω

a

y z

z
xa

E

Figure 7-8 Circularly polarized plane waves propagating in

the +z direction (out of the page).

the x–y plane and rotates in a clockwise direction as a function

of time (when viewing the wave approaching). Such a wave is

called left-hand circularly polarized because when the thumb
of the left hand points along the direction of propagation (the

z direction in this case) the other four fingers point in the

direction of rotation of E.

Right-Hand Circular (RHC) Polarization

For ax = ay = a and δ = −π/2, we have

|E(z, t)| = a, ψ = (ωt − kz). (7.57)

The trace of E(0, t) as a function of t is shown in Fig. 7-8(b).

For RHC polarization, the fingers of the right hand point

in the direction of rotation of E when the thumb is along
the propagation direction. Figure 7-9 depicts a right-hand

circularly polarized wave radiated by a helical antenna.
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x

y

z
Right sense of rotation
in plane

Left screw sense 
in space

Transmitting
antenna

E

Figure 7-9 Right-hand circularly polarized wave radiated by a

helical antenna.

◮ Polarization handedness is defined in terms of the

rotation of E as a function of time in a fixed plane orthog-

onal to the direction of propagation, which is opposite the
direction of rotation of E as a function of distance at a

fixed point in time. ◭

Example 7-2: RHC-Polarized Wave

An RHC-polarized plane wave with electric field magnitude
of 3 (mV/m) is traveling in the +y direction in a dielectric

medium with ε = 4ε0, µ = µ0, and σ = 0. If the frequency is

100 MHz, obtain expressions for E(y, t) and H(y, t).

Solution: Since the wave is traveling in the +y direction, its

field must have components along the x and z directions. The

rotation of E(y, t) is depicted in Fig. 7-10, where ŷ is out of the
page. By comparison with the RHC-polarized wave shown in

Fig. 7-8(b), we assign the z component of Ẽ(y) a phase angle
of zero and the x component a phase shift of δ = −π/2. Both

components have magnitudes of a = 3 (mV/m). Hence,

Ẽ(y) = x̂Ẽx + ẑẼz = x̂ae
− jπ/2

e
− jky + ẑae

− jky

= (−x̂ j + ẑ)3e
− jky (mV/m),

ω

x

y
z

E

Figure 7-10 Right-hand circularly polarized wave of Example

7-2.

and application of Eq. (7.39a) gives

H̃(y) =
1

η
ŷ××× Ẽ(y) =

1

η
ŷ××× (−x̂ j + ẑ)3e

− jky

=
3

η
(ẑ j + x̂)e− jky (mA/m).

With ω = 2π f = 2π ×108 (rad/s), the wavenumber k is

k =
ω
√

εr

c
=

2π ×108
√

4

3×108
=

4

3
π (rad/m),

and the intrinsic impedance η is

η =
η0√

εr

≈ 120π√
4

= 60π (Ω).

The instantaneous fields E(y, t) and H(y, t) are

E(y, t) = Re

[
Ẽ(y) e

jωt

]

= Re

[
(−x̂ j + ẑ)3e

− jky
e

jωt

]

= 3[x̂sin(ωt − ky)+ ẑcos(ωt − ky)] (mV/m)

and

H(y, t) = Re

[
H̃(y) e

jωt

]

= Re

[
3

η
(ẑ j + x̂)e− jky

e
jωt

]

=
1

20π
[x̂cos(ωt − ky)− ẑsin(ωt − ky)] (mA/m).
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Technology Brief 13: RFID Systems

In 1973, two separate patents were issued in the United
States for Radio Frequency Identification (RFID) con-
cepts. The first, granted to Mario Cardullo, was for an
active RFID tag with rewritable memory. An active tag
has a power source (such as a battery) of its own,
whereas a passive RFID tag does not. The second
patent was granted to Charles Walton, who proposed
the use of a passive tag for keyless entry (unlocking a
door without a key). Shortly thereafter, a passive RFID
tag was developed for tracking cattle (Fig. TF13-1), and
the technology rapidly expanded into many commercial
enterprises—from tracking vehicles and consumer prod-
ucts to supply chain management and automobile anti-
theft systems.

RFID System Overview

In an RFID system, communication occurs between a
reader—which actually is a transceiver—and a tag
(Fig. TF13-2). When interrogated by the reader, a tag
responds with information about its identity, as well as
other relevant information depending on the specific
application.

◮ The tag is, in essence, a transponder com-
manded by the reader. ◭

The functionality and associated capabilities of the RFID
tag depend on two important attributes: (a) whether
the tag is of the active or passive type and (b) the
tag’s operating frequency. Usually the RFID tag remains
dormant (asleep) until activated by an electromagnetic
signal radiated by the reader’s antenna. The magnetic
field of the EM signal induces a current in the coil
contained in the tag’s circuit (Fig. TF13-3). For a passive
tag, the induced current has to be sufficient to generate
the power necessary to activate the chip as well as to
transmit the response to the reader.

Figure TF13-1 Passive RFID tags were developed in the

1970s for tracking cows.

◮ Passive RFID systems are limited to short read
ranges (between reader and tag) on the order of
30 cm to 3 m, depending on the system’s frequency
band (as noted in Table TT13-1). ◭

The obvious advantage of active RFID systems is that
they can operate over greater distances and do not
require reception of a signal from the reader’s antenna to
get activated. However, active tags are significantly more
expensive to fabricate than their passive cousins.

RFID Frequency Bands

Table TT13-1 provides a comparison among the four
frequency bands commonly used for RFID systems.
Generally speaking, the higher-frequency tags can op-
erate over longer read ranges and can carry higher data
rates, but they are more expensive to fabricate.
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Tag reader

The reader forwards the

data it received from the

RFID tag to a database

that can then match the

tag’s identifying serial

number to an authorized

account and debit that 

account.

Once activated by the signal from the

tag reader (which acts as both a 

transmitter and a receiver), the RFID

tag responds by transmitting the

identifying serial number programmed

into its electronic chip. 

Figure TF13-2 How an RFID system works is illustrated through this EZ-Pass example. The image of the UHF RFID tag is courtesy of

Cary Wolinsky/Cavan Images/Alamy Stock Photo.

RFID reader

Antenna

Tag

Chip

Antenna

Figure TF13-3 Simplified diagram for how the RFID reader communicates with the tag. At the two lower carrier frequencies commonly

used for RFID communication (125 kHz and 13.56 MHz), coil inductors act as magnetic antennas. In systems designed to operate at higher

frequencies (900 MHz and 2.54 GHz), dipole antennas are used instead.

Table TT13-1 Comparison of RFID frequency bands.

Band LF HF UHF Microwave

RFID frequency 125–134 kHz 13.56 MHz 865–956 MHz 2.45 GHz

Read range ≤ 0.5 m ≤ 1.5 m ≤ 5 m ≤ 10 m

Data rate 1 kbit/s 25 kbit/s 30 kbit/s 100 kbit/s

Typical • Animal ID • Smart cards • Supply chain • Vehicle toll collection

applications • Automobile key/antitheft • Article surveillance management • Railroad car monitoring

• Access control • Airline baggage tracking • Logistics

• Library book tracking
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Figure 7-11 Polarization ellipse in the x–y plane with the wave

traveling in the z direction (out of the page).

7-3.3 Elliptical Polarization

Plane waves that are not linearly or circularly polarized are

elliptically polarized. That is, the tip of E(z, t) traces an ellipse
in the plane perpendicular to the direction of propagation. The

shape of the ellipse and the field’s handedness (left-hand or
right-hand) are determined by the values of the ratio (ay/ax)
and the phase difference δ .

The polarization ellipse shown in Fig. 7-11 has its major
axis with length aξ along the ξ direction and its minor axis

with length aη along the η direction. The rotation angle γ is

defined as the angle between the major axis of the ellipse and
a reference direction, which is chosen here to be the x axis,

with γ being bounded within the range −π/2 ≤ γ ≤ π/2. The

shape of the ellipse and its handedness are characterized by the
ellipticity angle χ , which is defined as

tan χ = ±aη

aξ
= ± 1

R
, (7.58)

with the plus sign corresponding to left-handed rotation and
the minus sign corresponding to right-handed rotation. The

limits for χ are −π/4 ≤ χ ≤ π/4. The quantity R = aξ /aη

is called the axial ratio of the polarization ellipse, and it

varies between 1 for circular polarization and ∞ for linear

polarization. The polarization angles γ and χ are related to the
wave parameters ax, ay, and δ by∗

tan2γ = (tan2ψ0)cosδ (−π/2 ≤ γ ≤ π/2), (7.59a)

sin2χ = (sin 2ψ0)sin δ (−π/4 ≤ χ ≤ π/4), (7.59b)

∗From M. Born and E. Wolf, Principles of Optics, New York: Macmillan,
1965, p. 27.

where ψ0 is an auxiliary angle defined by

tanψ0 =
ay

ax

(
0 ≤ ψ0 ≤

π

2

)
. (7.60)

Sketches of the polarization ellipse are shown in Fig. 7-12 for
various combinations of the angles (γ , χ). The ellipse reduces

to a circle for χ = ±45◦ and to a line for χ = 0.

◮ Positive values of χ , corresponding to sinδ > 0, are

associated with left-handed rotation, and negative values
of χ , corresponding to sinδ < 0, are associated with right-

handed rotation. ◭

Since the magnitudes ax and ay are, by definition, nonneg-

ative numbers, the ratio ay/ax may vary between zero for an
x-polarized linear polarization and ∞ for a y-polarized linear

polarization. Consequently, the angle ψ0 is limited to the
range 0 ≤ ψ0 ≤ 90◦. Application of Eq. (7.59a) leads to two

possible solutions for the value of γ , both of which fall within

the defined range from −π/2 to π/2. The correct choice is
governed by the following rule:

γ > 0 if cosδ > 0,

γ < 0 if cosδ < 0.

◮ In summary, the sign of the rotation angle γ is the same

as the sign of cosδ , and the sign of the ellipticity angle χ
is the same as the sign of sinδ . ◭

Example 7-3: Polarization State

Determine the polarization state of a plane wave with electric
field

E(z, t) = x̂3cos(ωt − kz+ 30◦)

− ŷ4sin(ωt − kz+ 45◦) (mV/m).

Solution: We begin by converting the second term to a cosine

reference:

E = x̂3cos(ωt − kz+ 30◦)− ŷ4cos(ωt − kz+ 45◦−90◦)

= x̂3cos(ωt − kz+ 30◦)− ŷ4cos(ωt − kz−45◦).

The corresponding field phasor Ẽ(z) is

Ẽ(z) = x̂3e
− jkz

e
j30◦ − ŷ4e

− jkz
e
− j45◦

= x̂3e
− jkz

e
j30◦ + ŷ4e

− jkz
e
− j45◦

e
j180◦

= x̂3e
− jkz

e
j30◦ + ŷ4e

− jkz
e

j135◦ ,
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45◦

45◦

22.5◦

0◦

0◦

−22.5◦

−45◦

−45◦−90◦ 90◦

Left circular polarization

Left elliptical polarization

Linear polarization

Right elliptical polarization

Right circular polarization

χ
γ

Figure 7-12 Polarization states for various combinations of the polarization angles (γ , χ) for a wave traveling out of the page.

where we have replaced the negative sign of the second term

with e
j180◦ in order to have positive amplitudes for both

terms, thereby allowing us to use the definitions given earlier.

According to the expression for Ẽ(z), the phase angles of the x

and y components are δx = 30◦ and δy = 135◦, giving a phase

difference of δ = δy − δx = 135◦−30◦ = 105◦. The auxiliary

angle ψ0 is obtained from

ψ0 = tan−1

(
ay

ax

)
= tan−1

(
4

3

)
= 53.1◦.

From Eq. (7.59a),

tan2γ = (tan2ψ0)cosδ = tan106.2◦ cos105◦ = 0.89,

which gives two solutions for γ , namely γ = 20.8◦ and

γ = −69.2◦. Since cosδ < 0, the correct value of γ is −69.2◦.
From Eq. (7.59b),

sin2χ = (sin 2ψ0)sin δ

= sin 106.2◦ sin 105◦ = 0.93 or χ = 34.0◦.

The magnitude of χ indicates that the wave is elliptically
polarized, and its positive polarity specifies its rotation as left

handed.

Concept Question 7-4: An elliptically polarized wave

is characterized by amplitudes ax and ay and by the phase

difference δ . If ax and ay are both nonzero, what should
δ be in order for the polarization state to reduce to linear

polarization?

Concept Question 7-5: Which of the following two
descriptions defines an RHC-polarized wave: A wave

incident upon an observer is RHC-polarized if its electric

field appears to the observer to rotate in a counterclock-
wise direction (a) as a function of time in a fixed plane

perpendicular to the direction of wave travel or (b) as a

function of travel distance at a fixed time t?

Exercise 7-5: The electric field of a plane wave is given
by

E(z, t) = x̂3cos(ωt − kz)+ ŷ4cos(ωt − kz) (V/m).

Determine (a) the polarization state, (b) the modulus of E,
and (c) the auxiliary angle.

Answer: (a) Linear, (b) |E| = 5cos(ωt − kz) (V/m),
(c) ψ0 = 53.1◦. (See EM .)
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Module 7.3 Polarization I Upon specifying the amplitudes and phases of the x and y components of E, the user can
observe the trace of E in the x–y plane.

Exercise 7-6: If the electric field phasor of a TEM wave

is given by Ẽ = (ŷ− ẑ j)e− jkx, determine the polarization
state.

Answer: RHC polarization. (See EM .)

7-4 Plane-Wave Propagation in Lossy

Media

To examine wave propagation in a lossy (conducting) medium,

we return to the wave equation given by Eq. (7.15),

∇2Ẽ− γ2Ẽ = 0 (7.61)

with

γ2 = −ω2µεc = −ω2µ(ε ′− jε ′′), (7.62)

where ε ′ = ε and ε ′′ = σ/ω . Since γ is complex, we express

it as

γ = α + jβ , (7.63)

where α is the medium’s attenuation constant and β its phase
constant. By replacing γ with (α + jβ ) in Eq. (7.62), we

obtain

(α + jβ )2 = (α2−β 2)+ j2αβ =−ω2µε ′+ jω2µε ′′. (7.64)

The rules of complex algebra require the real and imaginary

parts on one side of an equation to equal, respectively, the real
and imaginary parts on the other side. Hence,

α2 −β 2 = −ω2µε ′, (7.65a)

2αβ = ω2µε ′′. (7.65b)
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Module 7.4 Polarization II Upon specifying the amplitudes and phases of the x and y components of E, the user can
observe the 3-D profile of the E vector over a specified length span.

Solving these two equations for α and β gives

α = ω





µε ′

2




√

1 +

(
ε ′′

ε ′

)2

−1









1/2

(Np/m),

β = ω





µε ′

2




√

1 +

(
ε ′′

ε ′

)2

+ 1









1/2

(rad/m).

(7.66a)

(7.66b)

For a uniform plane wave with electric field Ẽ = x̂ Ẽx(z)
traveling along the z direction, the wave equation given by
Eq. (7.61) reduces to

d
2

Ẽx(z)

dz2
− γ2

Ẽx(z) = 0. (7.67)

The general solution of the wave equation given by Eq. (7.67)

comprises two waves: one traveling in the +z direction and

another traveling in the −z direction. Assuming only the
former is present, the solution of the wave equation leads to

Ẽ(z) = x̂Ẽx(z) = x̂Ex0e
−γz = x̂Ex0e

−αz
e
− jβ z. (7.68)

The associated magnetic field H̃ can be determined by apply-

ing Eq. (7.2b): ∇ ××× Ẽ = − jωµH̃, or using Eq. (7.39a):

H̃ = (k̂××× Ẽ)/ηc, where ηc is the intrinsic impedance of the
lossy medium. Both approaches give

H̃(z) = ŷ H̃y(z) = ŷ
Ẽx(z)

ηc

= ŷ
Ex0

ηc

e
−αz

e
− jβ z, (7.69)

where

ηc =

√
µ

εc

=

√
µ

ε ′

(
1− j

ε ′′

ε ′

)−1/2

(Ω). (7.70)

We noted earlier that in a lossless medium, E(z, t) is in phase

with H(z, t). This property no longer holds true in a lossy

medium because ηc is complex. This fact is demonstrated later
in Example 7-4.

From Eq. (7.68), the magnitude of Ẽx(z) is given by

|Ẽx(z)| = |Ex0e
−αz

e
− jβ z| = |Ex0|e−αz, (7.71)

which decreases exponentially with z at a rate dictated by the

attenuation constant α . Since H̃y = Ẽx/ηc, the magnitude of H̃y

also decreases as e
−αz. As the field attenuates, part of the

energy carried by the electromagnetic wave is converted into
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e−αz

e−1

|Ex(z)|
~

δs
z

1
|Ex0|

Figure 7-13 Attenuation of the magnitude of Ẽx(z) with

distance z. The skin depth δs is the value of z at which

|Ẽx(z)|/|Ex0| = e
−1 or z = δs = 1/α .

heat due to conduction in the medium. As the wave travels

through a distance z = δs with

δs =
1

α
(m), (7.72)

the wave magnitude decreases by a factor of e
−1 ≈ 0.37

(Fig. 7-13). At depth z = 3δs, the field magnitude is less than

5% of its initial value, and at z = 5δs, it is less than 1%.

◮ This distance δs, called the skin depth of the medium,

characterizes how deep an electromagnetic wave can pen-

etrate into a conducting medium. ◭

In a perfect dielectric, σ = 0 and ε ′′ = 0. Use of Eq. (7.66a)
yields α = 0; therefore, δs = ∞. Thus, in free space, a plane

wave can propagate indefinitely with no loss in magnitude.

On the other extreme, in a perfect conductor, σ = ∞ and use
of Eq. (7.66a) leads to α = ∞. Hence δs = 0. If the outer

conductor of a coaxial cable is designed to be several skin

depths thick, it prevents energy inside the cable from leaking
outward and shields against penetration of electromagnetic

energy from external sources into the cable.
The expressions given by Eqs. (7.66a), (7.66b), and (7.70)

for α , β , and ηc are valid for any linear, isotropic, and

homogeneous medium. For a perfect dielectric (σ = 0), these
expressions reduce to those for the lossless case (Section 7-2),

wherein α = 0, β = k = ω
√

µε , and ηc = η . For a lossy

medium, the ratio ε ′′/ε ′ = σ/ωε , which appears in all these
expressions, plays an important role in classifying how lossy

the medium is. When ε ′′/ε ′ ≪ 1, the medium is considered

a low-loss dielectric, and when ε ′′/ε ′ ≫ 1, it is considered a
good conductor. In practice, the medium may be regarded as

a low-loss dielectric if ε ′′/ε ′ < 10−2, as a good conductor if

ε ′′/ε ′ > 102, and as a quasi-conductor if 10−2 ≤ ε ′′/ε ′ ≤ 102.
For low-loss dielectrics and good conductors, the expressions

given by Eq. (7.66) can be significantly simplified, as shown

next.

7-4.1 Low-Loss Dielectric

From Eq. (7.62), the general expression for γ is

γ = jω
√

µε ′
(

1− j
ε ′′

ε ′

)1/2

. (7.73)

For |x| ≪ 1, the function (1− x)1/2 can be approximated by

the first two terms of its binomial series; that is, (1− x)1/2 ≈
1− x/2. By applying this approximation to Eq. (7.73) for a

low-loss dielectric with x = jε ′′/ε ′ and ε ′′/ε ′ ≪ 1, we obtain

γ ≈ jω
√

µε ′
(

1− j
ε ′′

2ε ′

)
. (7.74)

The real and imaginary parts of Eq. (7.74) are

α ≈ ωε ′′

2

√
µ

ε ′
=

σ

2

√
µ

ε
(Np/m),

β ≈ ω
√

µε ′ = ω
√

µε (rad/m).

(low-loss medium)

(7.75a)

(7.75b)

We note that the expression for β is the same as that for the

wavenumber k of a lossless medium. Applying the binomial
approximation (1− x)−1/2 ≈ (1 + x/2) to Eq. (7.70) leads to

ηc ≈
√

µ

ε ′

(
1 + j

ε ′′

2ε ′

)
=

√
µ

ε

(
1 + j

σ

2ωε

)
. (7.76a)

In practice, because ε ′′/ε ′ = σ/ωε < 10−2, the second term in

Eq. (7.76a) often is ignored. Thus,

ηc ≈
√

µ

ε
, (7.76b)

which is the same as Eq. (7.31) for the lossless case.
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Technology Brief 14:
Liquid Crystal Display (LCD)

LCDs are used in digital clocks, cellular phones, desk-
top and laptop computers, some televisions, and other
electronic systems. They offer a decided advantage over
former display technologies, such as cathode ray tubes,
because they are much lighter and thinner and consume
a lot less power to operate. LCD technology relies
on special electrical and optical properties of a class
of materials known as liquid crystals, which were first
discovered in the 1880s by botanist Friedrich Reinitzer .

Physical Principle

◮ Liquid crystals are neither a pure solid nor a pure
liquid; rather, they are a hybrid of both. ◭

One particular variety of interest is the twisted nematic
liquid crystal whose rod-shaped molecules have a
natural tendency to assume a twisted spiral struc-
ture when the material is sandwiched between finely
grooved glass substrates with orthogonal orientations
(Fig. TF14-1). Note that the molecules in contact with
the grooved surfaces align themselves in parallel along
the grooves, from a y orientation at the entrance sub-
strate into an x orientation at the exit substrate. The
molecular spiral causes the crystal to behave like a wave
polarizer : unpolarized light incident upon the entrance
substrate follows the orientation of the spiral, emerging
through the exit substrate with its polarization (direction
of electric field) parallel to the groove’s direction, which
in Fig. TF14-1 is along the x direction. Thus, of the x and
y components of the incident light, only the y component
is allowed to pass through the y-polarized filter, but as a
consequence of the spiral action facilitated by the liquid
crystal’s molecules, the light that emerges from the LCD
structure is x-polarized.

LCD Structure

A single-pixel LCD structure is shown in Fig. TF14-2
for the OFF and ON states, with OFF corresponding to a
bright-looking pixel and ON to a dark-looking pixel.

x

x-polarized light

x

x-oriented
exit substrate

y-oriented
entrance substrate

Rod-shaped
molecules

y

Only y-polarized 
component can
pass through
polarizing filter

x-polarized
component of
incident light

y-oriented
polarizing filter

x-oriented
polarizing filter

Orthogonal
groove
orientations

Unpolarized light

Figure TF14-1 The rod-shaped molecules of a liquid crystal

sandwiched between grooved substrates with orthogonal orien-

tations causes the electric field of the light passing through it to

rotate by 90◦.

◮ The sandwiched liquid-crystal layer (typically on
the order of 5 microns in thickness or 1/20 of the
width of a human hair) is straddled by a pair of optical
filters with orthogonal polarizations. ◭

When no voltage is applied across the crystal layer
(Fig. TF14-2(a)), incoming unpolarized light gets polar-
ized as it passes through the entrance polarizer, rotates
by 90◦ as it follows the molecular spiral, and finally
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V

(a) ON state (switch open)

Polarizing filter

Molecule of
liquid crystal

V

Dark pixel

5 μm

(b) OFF state (switch closed)

+

_

Bright pixel

Liquid crystal+

_

Figure TF14-2 Single-pixel LCD.

emerges from the exit polarizer, giving the exited surface
a bright appearance. A useful feature of nematic liquid
crystals is that their spiral untwists (Fig. TF14-2(b))
under the influence of an electric field (induced by
a voltage difference across the layer). The degree of
untwisting depends on the strength of the electric field.
With no spiral to rotate the wave polarization as the
light travels through the crystal, the light polarization
becomes orthogonal to that of the exit polarizer, allowing
no light to pass through it. Hence, the pixel exhibits a
dark appearance.

◮ By extending the concept to a two-dimensional
array of pixels and devising a scheme to control
the voltage across each pixel individually (usually
by using a thin-film transistor), a complete image
can be displayed as illustrated in Fig. TF14-3. For
color displays (Fig. TF14-4), each pixel is made up
of three subpixels with complementary color filters
(red, green, and blue). ◭
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LCD display

Liquid crystal

Unpolarized light

Exit polarizer

Entrance polarizer

2-D pixel array

Molecular spiral

678

Figure TF14-3 2-D LCD array.

Figure TF14-4 LCD display.
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7-4.2 Good Conductor

When ε ′′/ε ′ > 100, Eqs. (7.66a), (7.66b), and (7.70) can be

approximated as

α ≈ ω

√
µε ′′

2
= ω

√
µσ

2ω
=
√

π f µσ (Np/m),

β ≈ α ≈
√

π f µσ (rad/m),

ηc ≈
√

j
µ

ε ′′
= (1 + j)

√
π f µ

σ
= (1 + j)

α

σ
(Ω).

(good conductors)

(7.77a)

(7.77b)

(7.77c)

In Eq. (7.77c), we used the relation given by Eq. (1.53):√
j = (1 + j)/

√
2. For a perfect conductor with σ = ∞, these

expressions yield α = β = ∞ and ηc = 0. A perfect conductor

is equivalent to a short circuit in a transmission line equivalent.

Expressions for the propagation parameters in various types
of media are summarized in Table 7-1.

Example 7-4: Plane Wave in Seawater

A uniform plane wave is traveling in seawater. Assume that

the x–y plane resides just below the sea surface and the wave
travels in the +z direction into the water. The constitutive

parameters of seawater are εr = 80, µr = 1, and σ = 4 S/m. If

the magnetic field at z = 0 is

H(0, t) = ŷ100cos(2π ×103
t + 15◦) (mA/m),

(a) obtain expressions for E(z, t) and H(z, t), and

(b) determine the depth at which the magnitude of E is 1% of
its value at z = 0.

Solution: (a) Since H is along ŷ and the propagation direction
is ẑ, E must be along x̂. Hence, the general expressions for the

phasor fields are

Ẽ(z) = x̂Ex0e
−αz

e
− jβ z, (7.78a)

H̃(z) = ŷ
Ex0

ηc

e
−αz

e
− jβ z. (7.78b)

To determine α , β , and ηc for seawater, we begin by evaluating
the ratio ε ′′/ε ′. From the argument of the cosine function

of H(0, t), we deduce that ω = 2π × 103 (rad/s). Therefore,

f = 1 kHz. Hence,

ε ′′

ε ′
=

σ

ωε
=

σ

ωεrε0

=
4

2π ×103×80× (10−9/36π)
= 9×105.

This qualifies seawater as a good conductor at 1 kHz and
allows us to use the good-conductor expressions given in

Table 7-1:

α =
√

π f µσ

=
√

π ×103×4π ×10−7×4

= 0.126 (Np/m), (7.79a)

β = α = 0.126 (rad/m), (7.79b)

ηc = (1 + j)
α

σ

= (
√

2 e
jπ/4)

0.126

4
= 0.044e

jπ/4 (Ω). (7.79c)

As no explicit information has been given about the electric
field amplitude Ex0, we should assume it to be complex;

that is, Ex0 = |Ex0|e jφ0 . The wave’s instantaneous electric and

magnetic fields are given by

E(z, t) = Re

[
x̂|Ex0|e jφ0e

−αz
e
− jβ z

e
jωt

]

= x̂|Ex0|e−0.126z cos(2π ×103
t −0.126z+ φ0) (V/m),

(7.80a)

H(z, t) = Re

[
ŷ

|Ex0|e jφ0

0.044e jπ/4
e
−αz

e
− jβ z

e
jωt

]

= ŷ22.5|Ex0|e−0.126z cos(2π ×103
t

−0.126z+ φ0−45◦) (A/m). (7.80b)

At z = 0,

H(0, t) = ŷ22.5|Ex0|cos(2π ×103
t + φ0 −45◦) (A/m).

(7.81)

By comparing Eq. (7.81) with the expression given in the
problem statement,

H(0, t) = ŷ100cos(2π ×103
t + 15◦) (mA/m),

we deduce that

22.5|Ex0| = 100×10−3

or

|Ex0| = 4.44 (mV/m)

and

φ0 −45◦ = 15◦ or φ0 = 60◦.
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Table 7-1 Expressions for α , β , ηc, up, and λ for various types of media.

Lossless Low-loss Good

Any Medium Medium Medium Conductor Units

(σ = 0) (ε ′′/ε ′ ≪ 1) (ε ′′/ε ′ ≫ 1)

α = ω



µε ′

2




√

1+

(
ε ′′

ε ′

)2

−1








1/2

0 ≈ σ

2

√
µ

ε
≈
√

π f µσ (Np/m)

β = ω



µε ′

2




√

1+

(
ε ′′

ε ′

)2

+1








1/2

ω
√

µε ≈ ω
√

µε ≈
√

π f µσ (rad/m)

ηc =

√
µ

ε ′

(
1− j

ε ′′

ε ′

)−1/2 √
µ

ε
≈
√

µ

ε
≈ (1+ j)

α

σ
(Ω)

up = ω/β 1/
√

µε ≈ 1/
√

µε ≈
√

4π f /µσ (m/s)

λ = 2π/β = up/ f up/ f ≈ up/ f ≈ up/ f (m)

Notes: ε ′ = ε; ε ′′ = σ/ω; in free space, ε = ε0, µ = µ0; in practice, a material is considered a low-loss medium

if ε ′′/ε ′ = σ/ωε < 0.01 and a good conducting medium if ε ′′/ε ′ > 100.

Hence, the final expressions for E(z, t) and H(z, t) are

E(z, t) = x̂4.44e
−0.126z cos(2π ×103

t −0.126z+ 60◦)

(mV/m), (7.82a)

H(z, t) = ŷ100e
−0.126z cos(2π ×103

t −0.126z+ 15◦)

(mA/m). (7.82b)

◮ Because E(z, t) and H(z, t) in a lossy medium no

longer have the same constant-phase angle, they no longer

oscillate in sync with one another as a function of z

and t. ◭

(b) The depth at which the amplitude of E has decreased to 1%

of its initial value at z = 0 is obtained from

0.01 = e
−0.126z

or

z =
ln(0.01)

−0.126
= 36.55 m ≈ 37 m.

Exercise 7-7: The constitutive parameters of copper
are µ = µ0 = 4π × 10−7 (H/m), ε = ε0 ≈ (1/36π)×
10−9 (F/m), and σ = 5.8 × 107 (S/m). Assuming that

these parameters are frequency independent, over what
frequency range of the electromagnetic spectrum (see

Fig. 1-16) is copper a good conductor?

Answer: f < 1.04× 1016 Hz, which includes the radio,

infrared, visible, and part of the ultraviolet regions of the

EM spectrum. (See EM .)

Exercise 7-8: Over what frequency range may dry soil

with εr = 3, µr = 1, and σ = 10−4 (S/m) be regarded as a

low-loss dielectric?

Answer: f > 60 MHz. (See EM .)

Exercise 7-9: For a wave traveling in a medium with a

skin depth δs, what is the amplitude of E at a distance
of 3δs compared with its initial value?

Answer: e
−3 ≈ 0.05 or 5%. (See EM .)
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Module 7.5 Wave Attenuation Observe the profile of a plane wave propagating in a lossy medium. Determine the skin
depth, the propagation parameters, and the intrinsic impedance of the medium.

7-5 Current Flow in a Good Conductor

When a dc voltage source is connected across the ends of
a conducting wire, the current flowing through the wire is

uniformly distributed over its cross section. That is, the current

density J is the same along the axis of the wire and along
its outer perimeter (Fig. 7-14(a)). This is not true in the

ac case. As we see shortly, a time-varying current density

is maximum along the perimeter of the wire and decreases
exponentially as a function of distance toward the axis of the

wire (Fig. 7-14(b)). In fact, at very high frequencies, most of

the current flows in a thin layer near the wire surface, and if the
wire material is a perfect conductor, the current flows entirely

on the surface of the wire.
Before analyzing a wire with circular cross section, let us

consider the simpler geometry of a semi-infinite conducting

solid, as shown in Fig. 7-15(a). The solid’s planar interface
with a perfect dielectric is the x–y plane. If at z = 0− (just

above the surface) an x-polarized electric field with Ẽ = x̂E0

exists in the dielectric, a similarly polarized field is induced in

the conducting medium and propagates as a plane wave along

the +z direction. As a consequence of the boundary condition
mandating continuity of the tangential component of E across

the boundary between any two contiguous media, the electric

field at z = 0+ (just below the boundary) is Ẽ(0) = x̂E0 also.

(a)  dc case

(b)  ac case

J

R V

I

J

I

R
V(t)

Figure 7-14 Current density J in a conducting wire is (a)

uniform across its cross section in the dc case, but (b) in the

ac case, J is highest along the wire’s perimeter.
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J0

E0

H0

Jx(z)
~

x

z

(b)  Equivalent J0 over skin depth δs

(a)  Exponentially decaying Jx(z)
~

J0

l

δs

z

w

∞

Figure 7-15 Exponential decay of current density J̃x(z) with

z in a solid conductor. The total current flowing through (a)

a section of width w extending between z = 0 and z = ∞ is

equivalent to (b) a constant current density J0 flowing through

a section of depth δs.

The EM fields at any depth z in the conductor are given by

Ẽ(z) = x̂E0e
−αz

e
− jβ z, (7.83a)

H̃(z) = ŷ
E0

ηc

e
−αz

e
− jβ z. (7.83b)

From J = σE, the current flows in the x direction, and its

density is

J̃(z) = x̂ J̃x(z), (7.84)

with

J̃x(z) = σE0e
−αz

e
− jβ z = J0e

−αz
e
− jβ z, (7.85)

where J0 = σE0 is the amplitude of the current density at
the surface. In terms of the skin depth δs = 1/α defined by

Eq. (7.72) and using the fact that in a good conductor α = β

as expressed by Eq. (7.77b), Eq. (7.85) can be written as

J̃x(z) = J0e
−(1+ j)z/δs (A/m2). (7.86)

The current flowing through a rectangular strip of width w

along the y direction and extending between zero and ∞ in the
z direction is

Ĩ = w

∫ ∞

0
J̃x(z) dz = w

∫ ∞

0
J0e

−(1+ j)z/δs dz =
J0wδs

(1 + j)
(A).

(7.87)
The numerator of Eq. (7.87) is reminiscent of a uniform current

density J0 flowing through a thin surface of width w and

depth δs. Because J̃x(z) decreases exponentially with depth z,

a conductor of finite thickness d can be considered electrically
equivalent to one of infinite depth as long as d exceeds a few

skin depths. Indeed, if d = 3δs [instead of ∞ in the integral of

Eq. (7.87)], the error incurred in using the result on the right-
hand side of Eq. (7.87) is less than 5%; if d = 5δs, the error is

less than 1%.

The voltage across a length l at the surface (Fig. 7-15(b)) is
given by

Ṽ = E0l =
J0

σ
l. (7.88)

Hence, the impedance of a slab of width w, length l, and depth

d = ∞ (or, in practice, d > 5δs) is

Z =
Ṽ

Ĩ
=

1 + j

σδs

l

w
(Ω). (7.89)

It is customary to represent Z as

Z = Zs

l

w
, (7.90)

where Zs is called the internal or surface impedance of the
conductor and is defined as the impedance Z for a length

l = 1 m and a width w = 1 m. Thus,

Zs =
1 + j

σδs

(Ω). (7.91)

Since the reactive part of Zs is positive, Zs can be defined as

Zs = Rs + jωLs

with

Rs =
1

σδs

=

√
π f µ

σ
(Ω), (7.92a)

Ls =
1

ωσδs

=
1

2

√
µ

π f σ
(H), (7.92b)
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where we used the relation δs = 1/α ≈ 1/
√

π f µσ given by
Eq. (7.77a). In terms of the surface resistance Rs, the ac
resistance of a slab of width w and length l is

R = Rs

l

w
=

l

σδsw
(Ω). (7.93)

The expression for the ac resistance R is equivalent to the dc
resistance of a plane conductor of length l and cross section

A = δsw.
The results obtained for the planar conductor can be

extended to the coaxial cable shown in Fig. 7-16(a). If the

conductors are made of copper with σ = 5.8×107 S/m, the
skin depth at 1 MHz is δs = 1/

√
π f µσ = 0.066 mm, and since

δs varies as 1/
√

f , it becomes smaller at higher frequencies.

As long as the inner conductor’s radius a is greater than 5δs,
or 0.33 mm at 1 MHz, its “depth” may be regarded as

infinite. A similar criterion applies to the thickness of the outer

conductor. To compute the resistance of the inner conductor,
note that the current is concentrated near its outer surface and

approximately equivalent to a uniform current flowing through

a thin layer of depth δs and circumference 2πa. In other words,
the inner conductor’s resistance is nearly the same as that of a

planar conductor of depth δs and width w = 2πa, as shown in
Fig. 7-16(b). The corresponding resistance per unit length is

obtained by setting w = 2πa and dividing by l in Eq. (7.93):

R
′
1 =

R

l
=

Rs

2πa
(Ω/m). (7.94)

δs

2πa

(a)  Coaxial cable

(b)  Equivalent inner conductor

Dielectric

Dielectric
2a 2b

Inner conductor

Outer conductor

Figure 7-16 The inner conductor of the coaxial cable in (a)

is represented in (b) by a planar conductor of width 2πa and

depth δs, as if its skin has been cut along its length on the bottom

side and then unfurled into a planar geometry.

Similarly, for the outer conductor, the current is concentrated
within a thin layer of depth δs on the inside surface of the

conductor adjacent to the insulating medium between the two

conductors, which is where the EM fields exist. The resistance
per unit length for the outer conductor with radius b is

R
′
2 =

Rs

2πb
(Ω/m), (7.95)

and the coaxial cable’s total ac resistance per unit length is

R
′ = R

′
1 + R

′
2 =

Rs

2π

(
1

a
+

1

b

)
(Ω/m). (7.96)

This expression was used in Chapter 2 for characterizing the
resistance per unit length of a coaxial transmission line.

Concept Question 7-6: How does β of a low-loss die-
lectric medium compare to that of a lossless medium?

Concept Question 7-7: In a good conductor, does the

phase of H lead or lag that of E and by how much?

Concept Question 7-8: Attenuation means that a wave
loses energy as it propagates in a lossy medium. What

happens to the lost energy?

Concept Question 7-9: Is a conducting medium disper-

sive or dispersionless? Explain.

Concept Question 7-10: Compare the flow of current
through a wire in the dc and ac cases. Compare the

corresponding dc and ac resistances of the wire.

7-6 Electromagnetic Power Density

This section deals with the flow of power carried by an
electromagnetic wave. For any wave with an electric field E

and magnetic field H, the Poynting vector S is defined as

S = E×××H (W/m2). (7.97)

The unit of S is (V/m) × (A/m) = (W/m2), and the direction
of S is along the wave’s direction of propagation. Thus, S

represents the power per unit area (or power density) carried

by the wave. If the wave is incident upon an aperture of area
A with outward surface unit vector n̂ as shown in Fig. 7-17,
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Module 7.6 Current in a Conductor Module displays exponential decay of current density in a conductor.

S

A

n

k
θ

ˆ

ˆ

Figure 7-17 EM power flow through an aperture.

then the total power that flows through or is intercepted by the
aperture is

P =

∫

A

S · n̂dA (W). (7.98)

For a uniform plane wave propagating in a direction k̂ that

makes an angle θ with n̂, P = SAcosθ , where S = |S|.
Except for the fact that the units of S are per unit area,

Eq. (7.97) is the vector analogue of the scalar expression for

the instantaneous power P(z, t) flowing through a transmission

line,

P(z, t) = v(z, t) i(z, t), (7.99)

where v(z, t) and i(z, t) are the instantaneous voltage and

current on the line.

Since both E and H are functions of time, so is the Poynting

vector S. In practice, however, the quantity of greater interest
is the average power density of the wave, Sav, which is the

time-average value of S:

Sav = 1
2

Re

[
Ẽ××× H̃

∗]
(W/m2). (7.100)

This expression may be regarded as the electromagnetic equiv-
alent of Eq. (2.107) for the time-average power carried by a

transmission line, namely

Pav(z) = 1
2

Re

[
Ṽ (z) Ĩ

∗(z)
]

, (7.101)

where Ṽ (z) and Ĩ(z) are the phasors corresponding to v(z, t)
and i(z, t), respectively.

7-6.1 Plane Wave in a Lossless Medium

Recall that the general expression for the electric field of a
uniform plane wave with arbitrary polarization traveling in the

+z direction is

Ẽ(z) = x̂ Ẽx(z)+ ŷ Ẽy(z) = (x̂Ex0 + ŷEy0)e
− jkz, (7.102)
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where, in the general case, Ex0 and Ey0 may be complex

quantities. The magnitude of Ẽ is

|Ẽ| = (Ẽ · Ẽ∗)1/2 = [|Ex0|2 + |Ey0|2]1/2. (7.103)

The phasor magnetic field associated with Ẽ is obtained by
applying Eq. (7.39a):

H̃(z) = (x̂ H̃x + ŷH̃y)e
− jkz

=
1

η
ẑ××× Ẽ =

1

η
(−x̂Ey0 + ŷEx0)e

− jkz. (7.104)

The wave can be considered as the sum of two waves: one com-

prising fields (Ẽx, H̃y) and another comprising fields (Ẽy, H̃x).
Use of Eqs. (7.102) and (7.104) in Eq. (7.100) leads to

Sav = ẑ
1

2η
(|Ex0|2 + |Ey0|2) = ẑ

|Ẽ|2
2η

(W/m2),

(lossless medium)

(7.105)

which states that power flows in the z direction with average

power density equal to the sum of the average power densities

of the (Ẽx, H̃y) and (Ẽy, H̃x) waves. Note that, because Sav

depends only on η and |Ẽ|, waves characterized by different
polarizations carry the same amount of average power as long

as their electric fields have the same magnitudes.

Example 7-5: Solar Power

If solar illumination is characterized by a power density of
1 kW/m2 on the Earth’s surface, find (a) the total power ra-

diated by the sun, (b) the total power intercepted by the Earth,

and (c) the electric field of the power density incident upon the
Earth’s surface, assuming that all the solar illumination is at

a single frequency. The radius of the Earth’s orbit around the

sun, Rs, is approximately 1.5× 108 km, and the Earth’s mean
radius Re is 6,380 km.

Solution: (a) Assuming that the sun radiates isotropically

(equally in all directions), the total power it radiates is Sav Asph,

where Asph is the area of a spherical shell of radius Rs

(Fig. 7-18(a)). Thus,

Psun = Sav(4πR
2
s ) = 1×103×4π × (1.5×1011)2

= 2.8×1026 W.

(b) With reference to Fig. 7-18(b), the power intercepted by
the Earth’s cross section Ae = πR

2
e is

Pint = Sav(πR
2
e)= 1×103×π×(6.38×106)2 = 1.28×1017 W.

Sun

S

S

S

S

S

S

Rs

Area of
spherical surface

Asph = 4πRs
2

Earth

(a)  Radiated solar power

(b)  Earth intercepted power

S

Sun

Ae = πRe
2

Earth

Figure 7-18 Solar radiation intercepted by (a) a spherical

surface of radius Rs and (b) the Earth’s surface (Example 7-5).

(c) The power density Sav is related to the magnitude of the

electric field |Ẽ| = E0 by

Sav =
E

2
0

2η0

,

where η0 = 377 (Ω) for air. Hence,

E0 =
√

2η0Sav =
√

2×377×103 = 870 (V/m).

7-6.2 Plane Wave in a Lossy Medium

The expressions given by Eqs. (7.68) and (7.69) characterize

the electric and magnetic fields of an x-polarized plane wave
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propagating along the z direction in a lossy medium with prop-
agation constant γ = α + jβ . By extending these expressions

to the more general case of a wave with components along both

x and y, we have

Ẽ(z) = x̂ Ẽx(z)+ ŷ Ẽy(z) = (x̂Ex0 + ŷEy0)e
−αz

e
− jβ z,

(7.106a)

H̃(z) =
1

ηc

(−x̂Ey0 + ŷEx0)e
−αz

e
− jβ z, (7.106b)

where ηc is the intrinsic impedance of the lossy medium.

Application of Eq. (7.100) gives

Sav(z) =
1

2
Re

[
Ẽ××× H̃

∗]

=
ẑ(|Ex0|2 + |Ey0|2)

2
e
−2αz

Re

(
1

η∗
c

)
. (7.107)

By expressing ηc in polar form as

ηc = |ηc|e jθη , (7.108)

Eq. (7.107) can be rewritten as

Sav(z) = ẑ
|Ẽ(0)|2
2|ηc|

e
−2αz cosθη (W/m2),

(lossy medium)

(7.109)

where |Ẽ(0)|2 = [|Ex0|2 + |Ey0|2]1/2 is the magnitude of Ẽ(z)
at z = 0.

◮ Whereas the fields Ẽ(z) and H̃(z) decay with z as e
−αz,

the power density Sav decreases as e
−2αz. ◭

When a wave propagates through a distance z = δs = 1/α ,

the magnitudes of its electric and magnetic fields decrease to
e
−1 ≈ 37% of their initial values, and its average power density

decreases to e
−2 ≈ 14% of its initial value.

7-6.3 Decibel Scale for Power Ratios

The unit for power P is watts (W). In many engineering
problems, the quantity of interest is the ratio of two power

levels, P1 and P2, such as the incident and reflected powers

on a transmission line, and often the ratio P1/P2 may vary
over several orders of magnitude. The decibel (dB) scale is

logarithmic, thereby providing a convenient representation of

Table 7-2 Power ratios in natural numbers and in decibels.

G G [dB]

10x 10x dB

4 6 dB

2 3 dB

1 0 dB

0.5 −3 dB

0.25 −6 dB

0.1 −10 dB

10−3 −30 dB

the power ratio, particularly when numerical values of P1/P2

are plotted against some variable of interest. If

G =
P1

P2

, (7.110)

then

G [dB] = 10logG

= 10log

(
P1

P2

)
(dB). (7.111)

Table 7-2 provides a comparison between values of G and

the corresponding values of G [dB]. Even though decibels

are defined for power ratios, they can sometimes be used to
represent other quantities. For example, if P1 = V

2
1 /R is the

power dissipated in a resistor R with voltage V1 across it at

time t1, and P2 = V
2
2 /R is the power dissipated in the same

resistor at time t2, then

G [dB] = 10log

(
P1

P2

)

= 10log

(
V

2
1 /R

V 2
2 /R

)

= 20log

(
V1

V2

)

= 20log(g)

= g [dB], (7.112)

where g = V1/V2 is the voltage ratio. Note that for voltage (or

current) ratios the scale factor is 20 rather than 10, which

results in G [dB] = g [dB].
The attenuation rate, representing the rate of decrease of

the magnitude of Sav(z) as a function of propagation distance,
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is defined as

A = 10log

[
Sav(z)

Sav(0)

]

= 10log(e−2αz)

= −20αz loge = −8.68αz = −α [dB/m] z (dB),
(7.113)

where

α [dB/m] = 8.68α (Np/m). (7.114)

Since Sav(z) is directly proportional to |E(z)|2,

A = 10log

[ |E(z)|2
|E(0)|2

]
= 20log

[ |E(z)|
|E(0)|

]
(dB). (7.115)

Example 7-6: Power Received by a
Submarine Antenna

A submarine at a depth of 200 m below the sea surface

uses a wire antenna to receive signal transmissions at 1 kHz.

Determine the power density incident upon the submarine
antenna due to the EM wave of Example 7-4.

Solution: From Example 7-4, |Ẽ(0)|= |Ex0|= 4.44 (mV/m),
α = 0.126 (Np/m), and ηc = 0.044 45◦ (Ω). Application of

Eq. (7.109) gives

Sav(z) = ẑ
|E0|2
2|ηc|

e
−2αz cosθη

= ẑ
(4.44×10−3)2

2×0.044
e
−0.252z cos45◦

= ẑ0.16e
−0.252z (mW/m2).

At z = 200 m, the incident power density is

Sav = ẑ(0.16×10−3
e
−0.252×200)

= 2.1×10−26 (W/m2).

Exercise 7-10: Convert the following values of the power

ratio G to decibels: (a) 2.3, (b) 4×103, and (c) 3×10−2.

Answer: (a) 3.6 dB, (b) 36 dB, (c) −15.2 dB. (See EM .)

Exercise 7-11: Find the voltage ratio g corresponding

to the following decibel values of the power ratio G:
(a) 23 dB, (b) −14 dB, and (c) −3.6 dB.

Answer: (a) 14.13, (b) 0.2, (c) 0.66. (See EM .)

Chapter 7 Summary

Concepts

• A spherical wave radiated by a source becomes approx-
imately a uniform plane wave at large distances from

the source.

• The electric and magnetic fields of a transverse electro-
magnetic (TEM) wave are orthogonal to each other, and

both are perpendicular to the direction of wave travel.

• The magnitudes of the electric and magnetic fields of a
TEM wave are related by the intrinsic impedance of the

medium.

• Wave polarization describes the shape of the locus of
the tip of the E vector at a given point in space as a

function of time. The polarization state, which may be
linear, circular, or elliptical, is governed by the ratio of

the magnitudes of and the difference in phase between
the two orthogonal components of the electric field

vector.

• Media are classified as lossless, low-loss, quasi-
conducting, or good conducting on the basis of the ratio

ε ′′/ε ′ = σ/ωε .

• Unlike the dc case, where the current flowing through
a wire is distributed uniformly across its cross section,

the ac case has most of the current is concentrated along

the outer perimeter of the wire.
• Power density carried by a plane EM wave traveling in

an unbounded medium is akin to the power carried by
the voltage/current wave on a transmission line.
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Mathematical and Physical Models

Complex Permittivity

εc = ε ′− jε ′′

ε ′ = ε

ε ′′ =
σ

ω

Lossless Medium

k = ω
√

µε

η =

√
µ

ε
(Ω)

up =
ω

k
=

1√
µε

(m/s)

λ =
2π

k
=

up

f
(m)

Wave Polarization

H̃ =
1

η
k̂××× Ẽ

Ẽ = −η k̂××× H̃

Maxwell’s Equations for Time-Harmonic Fields

∇ · Ẽ = 0

∇××× Ẽ = − jωµH̃

∇ ·H̃ = 0

∇××× H̃ = jωεcẼ

Lossy Medium

α = ω





µε ′

2




√

1 +

(
ε ′′

ε ′

)2

−1









1/2

(Np/m)

β = ω





µε ′

2




√

1 +

(
ε ′′

ε ′

)2

+ 1









1/2

(rad/m)

ηc =

√
µ

εc

=

√
µ

ε ′

(
1− j

ε ′′

ε ′

)−1/2

(Ω)

δs =
1

α
(m)

Power Density

Sav = 1
2

Re

[
Ẽ××× H̃

∗]
(W/m2)

Important Terms Provide definitions or explain the meaning of the following terms:

attenuation constant α
attenuation rate A

auxiliary angle ψ0

average power density Sav

axial ratio
circular polarization

complex permittivity εc

dc and ac resistances
elliptical polarization

ellipticity angle χ
good conductor
guided wave

homogeneous wave equation

in phase

inclination angle
internal or surface impedance

intrinsic impedance η
LHC and RHC polarizations
linear polarization

lossy medium

low-loss dielectric
out of phase

phase constant β
phase velocity
polarization state

Poynting vector S

propagation constant γ
quasi-conductor
rotation angle γ
skin depth δs

spherical wave
surface resistance Rs

TEM wave

unbounded
unbounded wave

uniform plane wave

wave polarization
wavefront

wavenumber k
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PROBLEMS

Section 7-2: Propagation in Lossless Media

7.1 Write general expressions for the electric and magnetic

fields of a 1 GHz sinusoidal plane wave traveling in the +y-

direction in a lossless nonmagnetic medium with relative
permittivity εr = 9. The electric field is polarized along the

x-direction, its peak value is 6 V/m, and its intensity is 4 V/m

at t = 0 and y = 2 cm.

7.2 The magnetic field of a wave propagating through a

certain nonmagnetic material is given by

H = ẑ30cos(108
t −0.5y) (mA/m)

Find the following:
∗

(a) the direction of wave propagation,

(b) the phase velocity,
∗

(c) the wavelength in the material,

(d) the relative permittivity of the material, and

(e) the electric field phasor.

7.3 The electric field phasor of a uniform plane wave is given

by Ẽ = ŷ10e
j0.2z (V/m). If the phase velocity of the wave is

1.5× 108 m/s and the relative permeability of the medium is
µr = 2.4, find the following:

∗
(a) the wavelength,

(b) the frequency f of the wave,

(c) the relative permittivity of the medium, and

(d) the magnetic field H(z, t).

7.4 The electric field of a plane wave propagating in a
nonmagnetic material is given by

E = [ŷ6sin(π ×107
t −0.2πx)

+ ẑ4cos(π ×107
t −0.2πx)] (V/m)

Determine

(a) The wavelength.

(b) εr.

(c) H.

∗
7.5 A wave radiated by a source in air is incident upon a
soil surface, whereupon a part of the wave is transmitted into

the soil medium. If the wavelength of the wave is 60 cm in

air and 15 cm in the soil medium, what is the soil’s relative
permittivity? Assume the soil to be a very low-loss medium.

∗
Answer(s) available in Appendix E.

7.6 The magnetic field of a plane wave propagating in a
nonmagnetic material is given by

H = x̂60cos(2π ×107
t + 0.1πy)

ẑ30cos(2π ×107
t + 0.1πy) (mA/m).

Determine:
∗

(a) the wavelength

(b) εr

(c) E

7.7 The electric field of a plane wave propagating in a
lossless, nonmagnetic, dielectric material with εr = 2.56 is

given by

E = ŷ5cos(6π ×109
t − kz) (V/m)

Determine:

(a) f , up, λ , k, and η .

(b) The magnetic field H.

7.8 A 60-MHz plane wave traveling in the −x-direction

in dry soil with relative permittivity εr = 4 has an electric

field polarized along the z-direction. Assuming dry soil to be
approximately lossless, and given that the magnetic field has

a peak value of 10 (mA/m) and that its value was measured

to be 7 (mA/m) at t = 0 and x = −0.75 m, develop complete
expressions for the wave’s electric and magnetic fields.

Section 7-3: Wave Polarization

7.9 An RHC-polarized wave with a modulus of 2 (V/m) is

traveling in free space in the negative z direction. Write the
expression for the wave’s electric field vector, given that the

wavelength is 3 cm.

7.10 For a wave characterized by the electric field

E(z, t) = x̂ax cos(ωt − kz)+ ŷay cos(ωt − kz+ δ )

identify the polarization state, determine the polarization

angles (γ , χ), and sketch the locus of E(0, t) for each of the

following cases:

(a) ax = 3 V/m, ay = 4 V/m, and δ = 0

(b) ax = 3 V/m, ay = 4 V/m, and δ = 180◦

(c) ax = 3 V/m, ay = 3 V/m, and δ = 45◦

(d) ax = 3 V/m, ay = 4 V/m, and δ = −135◦

7.11 The magnetic field of a uniform plane wave propagating

in a dielectric medium with εr = 36 is given by

H̃ = 60(ŷ+ jẑ)e− jπx/6 (mA/m).
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Specify the modulus and direction of the electric field intensity
at the x = 0 plane at t = 0 and 5 ns.

7.12 The electric field of a uniform plane wave propagating
in free space is given by

Ẽ = (x̂+ jŷ)20e
− jπz/6 (V/m)

Specify the modulus and direction of the electric field intensity
at the z = 0 plane at t = 0, 5, and 10 ns.

7.13 Compare the polarization states of each of the following

pairs of plane waves:

(a) Wave 1: E1 = x̂2cos(ωt − kz)+ ŷ2sin(ωt − kz).
Wave 2: E2 = x̂2cos(ωt + kz)+ ŷ2sin(ωt + kz).

(b) Wave 1: E1 = x̂2cos(ωt − kz)− ŷ2sin(ωt − kz).
Wave 2: E2 = x̂2cos(ωt + kz)− ŷ2sin(ωt + kz).

∗
7.14 The electric field of an elliptically polarized plane wave

is given by

E(z, t) = [−x̂10sin(ωt − kz−60◦)

+ ŷ30cos(ωt − kz)] (V/m)

Determine the following:

(a) The polarization angles (γ , χ).

(b) The direction of rotation.

7.15 A linearly polarized plane wave of the form

Ẽ = x̂axe
− jkz can be expressed as the sum of an RHC

polarized wave with magnitude aR, and an LHC polarized

wave with magnitude aL. Prove this statement by finding
expressions for aR and aL in terms of ax.

7.16 Plot the locus of E(0, t) for a plane wave with

E(z, t) = x̂sin(ωt + kz)+ ŷ2cos(ωt + kz)

Determine the polarization state from your plot.

Sections 7-4: Propagation in a Lossy Medium

7.17 For each of the following combinations of parameters,

determine if the material is a low-loss dielectric, a quasi-
conductor, or a good conductor, and then calculate α , β , λ ,

up, and ηc:

∗
(a) Glass with µr = 1, εr = 5, and σ = 10−12 S/m at 10 GHz.

(b) Animal tissue with µr = 1, εr = 12, and σ = 0.3 S/m at

100 MHz.

(c) Wood with µr = 1, εr = 3, and σ = 10−4 S/m at 1 kHz.

7.18 Dry soil is characterized by εr = 2.5, µr = 1, and
σ = 10−4 (S/m). At each of the following frequencies, deter-

mine if dry soil may be considered a good conductor, a quasi-

conductor, or a low-loss dielectric, and then calculate α , β , λ ,
µp, and ηc:

(a) 60 Hz

(b) 1 kHz

(c) 1 MHz

(d) 1 GHz

∗
7.19 In a medium characterized by εr = 9, µr = 1, and σ =
0.1 S/m, determine the phase angle by which the magnetic field

leads the electric field at 100 MHz.

7.20 Ignoring reflection at the air-water boundary, if the
amplitude of a 1 GHz incident wave in air is 20 V/m at the

water surface, at what depth will it be down to 1 µV/m? Water

has µr = 1 and at 1 GHz, εr = 80 and σ = 1 S/m.

∗
7.21 Ignoring reflection at the air–soil boundary, if the am-

plitude of a 3-GHz incident wave is 10 V/m at the surface of

a wet soil medium, at what depth will it be down to 1 mV/m?
Wet soil is characterized by µr = 1, εr = 9, and σ = 5×10−4

S/m.

7.22 Generate a plot for the skin depth δs versus frequency
for seawater for the range from 1 kHz to 10 GHz (use log-log

scales). The constitutive parameters of seawater are µr = 1,
εr = 80, and σ = 4 S/m.

∗
7.23 The skin depth of a certain nonmagnetic conducting
material is 2 µm at 2 GHz. Determine the phase velocity in

the material.

7.24 Based on wave attenuation and reflection measurements
conducted at 1 MHz, it was determined that the intrinsic

impedance of a certain medium is 28.1∠45◦ (Ω) and the skin

depth is 2 m. Determine the following:

(a) The conductivity of the material.

(b) The wavelength in the medium.

(c) The phase velocity.

∗
7.25 The electric field of a plane wave propagating in a
nonmagnetic medium is given by

E = ẑ25e
−30x cos(2π ×109

t −40x) (V/m)

Obtain the corresponding expression for H.
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7.26 At 2 GHz, the conductivity of meat is on the order of
1 (S/m). When a material is placed inside a microwave oven

and the field is activated, the presence of the electromagnetic

fields in the conducting material causes energy dissipation in
the material in the form of heat.

(a) Develop an expression for the time-average power per

mm3 dissipated in a material of conductivity σ if the peak

electric field in the material is E0.

(b) Evaluate the result for an electric field E0 = 4 × 104

(V/m).

7.27 The magnetic field of a plane wave propagating in a
nonmagnetic medium is given by

H = ŷ60e
−10z cos(2π ×108

t −12z) (mA/m).

Obtain the corresponding expression for E.

Section 7-5: Current Flow in Conductors

7.28 In a nonmagnetic, lossy, dielectric medium, a 300-MHz
plane wave is characterized by the magnetic field phasor

H̃ = (x̂− j4ẑ)e−2y
e
− j9y (A/m)

Obtain time-domain expressions for the electric and magnetic
field vectors.

∗
7.29 A rectangular copper block is 60 cm in height (along z).

In response to a wave incident upon the block from above,
a current is induced in the block in the positive x direction.

Determine the ratio of the ac resistance of the block to its dc

resistance at 1 kHz. The relevant properties of copper are given
in Appendix B.

7.30 Repeat Problem 7.29 at 10 MHz.

7.31 The inner and outer conductors of a coaxial cable have

radii of 0.5 cm and 1 cm, respectively. The conductors are
made of copper with εr = 1, µr = 1, and σ = 5.8× 107 S/m,

and the outer conductor is 0.5 mm thick. At 10 MHz:

(a) Are the conductors thick enough to be considered infi-

nitely thick as far as the flow of current through them is
concerned?

(b) Determine the surface resistance Rs.

(c) Determine the ac resistance per unit length of the cable.

7.32 Repeat Problem 7.31 at 1 GHz.

Section 7-6: EM Power Density

7.33 A wave traveling in a nonmagnetic medium with εr = 9

is characterized by an electric field given by

E = [ŷ3cos(π ×107
t + kx)

− ẑ2cos(π ×107
t + kx)] (V/m)

Determine the direction of wave travel and average power

density carried by the wave.

∗
7.34 The magnetic field of a plane wave traveling in air is

given by H = x̂50sin(2π ×107
t − ky) (mA/m). Determine the

average power density carried by the wave.

7.35 The electric-field phasor of a uniform plane wave trav-
eling downward in water is given by

Ẽ = x̂5e
−0.2z

e
− j0.2z (V/m)

where ẑ is the downward direction and z = 0 is the water

surface. If σ = 4 S/m,

(a) Obtain an expression for the average power density.

(b) Determine the attenuation rate.

∗
(c) Determine the depth at which the power density has been

reduced by 40 dB.

∗
7.36 A wave traveling in a lossless, nonmagnetic medium
has an electric field amplitude of 24.56 V/m and an average

power density of 2.4 W/m2. Determine the phase velocity of

the wave.

7.37 The amplitudes of an elliptically polarized plane wave

traveling in a lossless, nonmagnetic medium with εr = 4 are
Hy0 = 3 (mA/m) and Hz0 = 4 (mA/m). Determine the average

power flowing through an aperture in the y–z plane if its area

is 20 m2.

7.38 At microwave frequencies, the power density consid-

ered safe for human exposure is 1 (mW/cm2). A radar radiates

a wave with an electric field amplitude E that decays with
distance as E(R) = (3,000/R) (V/m), where R is the distance

in meters. What is the radius of the unsafe region?
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7.39 Consider the imaginary rectangular box shown in
Fig. P7.39.

a

b

c

x

y

z

Figure P7.39 Imaginary rectangular box of Problems 7.39 and

7.40.

(a) Determine the net power flux P(t) entering the box due to

a plane wave in air given by

E = x̂E0 cos(ωt − ky) (V/m).

∗
(b) Determine the net time-average power entering the box.

7.40 Repeat Problem 7.39 for a wave traveling in a lossy

medium in which

E = x̂100e
−20y cos(2π ×109

t −40y) (V/m)

H = −ẑ0.64e
−20y cos(2π ×109

t −40y−36.85◦)

(A/m)

The box has dimensions a = 1 cm, b = 2 cm, and c = 0.5 cm.

7.41 A team of scientists is designing a radar as a probe
for measuring the depth of the ice layer over the antarctic

land mass. In order to measure a detectable echo due to the

reflection by the ice-rock boundary, the thickness of the ice
sheet should not exceed three skin depths. If ε ′r = 3 and

ε ′′r = 10−2 for ice and if the maximum anticipated ice thickness

in the area under exploration is 1.2 km, what frequency range
is useable with the radar?

7.42 Given a wave with E = x̂E0 cos(ωt − kz),
∗

(a) Calculate the time-average electric energy density

(we)av =
1

T

∫
T

0
we dt =

1

2T

∫
T

0
εE

2
dt.

(b) Calculate the time-average magnetic energy density

(wm)av =
1

T

∫
T

0
wm dt =

1

2T

∫
T

0
µH

2
dt.

(c) Show that (we)av = (wm)av.
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Objectives

Upon learning the material presented in this chapter, you

should be able to:

1. Characterize the reflection and transmission behavior of

plane waves incident upon plane boundaries for both

normal and oblique incidence.

2. Calculate the transmission properties of optical fibers.

3. Characterize wave propagation in a rectangular wave-

guide.

4. Determine the behavior of resonant modes inside a rect-

angular cavity.
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EM Waves at Boundaries

Figure 8-1 depicts the propagation path traveled by a signal

transmitted by a shipboard antenna and received by an antenna
on a submerged submarine. Starting from the transmitter

(denoted Tx in Fig. 8-1), the signal travels along a transmission

line to the transmitting antenna. The relationship between
the transmitter (generator) output power, Pt, and the power

supplied to the antenna is governed by the transmission-line

equations of Chapter 2. If the transmission line is approx-
imately lossless and properly matched to the transmitting

antenna, then all of Pt is delivered to the antenna. If the antenna
itself is lossless too, it will convert all of the power Pt in the

guided wave provided by the transmission line into a spherical

wave radiated outward into space. The radiation process is the
subject of Chapter 9. From point 1, denoting the location of the

shipboard antenna, to point 2, denoting the point of incidence

of the wave onto the water’s surface, the signal’s behavior is
governed by the equations characterizing wave propagation in

lossless media, which was covered in Chapter 7. As the wave

impinges upon the air–water boundary, part of it is reflected
by the surface while another part gets transmitted across the

boundary into the water. The transmitted wave is refracted,

wherein its propagation direction moves closer toward the
vertical, compared with that of the direction of the incident

wave. Reflection and transmission processes are treated in
this chapter. Wave travel from point 3, representing a point

just below the water surface, to point 4, which denotes the

location of the submarine antenna, is subject to the laws of
wave propagation in lossy media, which also was treated in

Tx

Pt

1

Rx

Pr

2
3

4

Receiver
antenna

Transmitter
antenna

Air

Water

Figure 8-1 Signal path between a shipboard transmitter (Tx)

and a submarine receiver (Rx).

Chapter 7. Finally, some of the power carried by the wave
traveling in water towards the submarine is intercepted by the

receiving antenna. The received power, Pr, is then delivered to

the receiver via a transmission line. The receiving properties
of antennas are covered in Chapter 9. In summary, each wave-

related aspect of the transmission process depicted in Fig. 8-1

is treated in this book, starting with the transmitter and ending
with the receiver.

This chapter begins by examining the reflection and trans-

mission properties of plane waves incident upon planar bound-
aries and concludes with sections on waveguides and cavity

resonators. Applications discussed along the way include fiber
and laser optics.

8-1 Wave Reflection and Transmission at

Normal Incidence

We know from Chapter 2 that, when a guided wave encoun-

ters a junction between two transmission lines with different

characteristic impedances, the incident wave is partly reflected
back toward the source and partly transmitted across the

junction onto the other line. The same happens to a uniform

plane wave when it encounters a boundary between two
material half-spaces with different characteristic impedances.

In fact, the situation depicted in Fig. 8-2(b) has an exact

analogue in the transmission-line configuration of Fig. 8-2(a).
The boundary conditions governing the relationships between

the electric and magnetic fields in Fig. 8-2(b) map one-to-one
onto those we developed in Chapter 2 for the voltages and

currents on the transmission line.

For convenience, we divide our treatment of wave reflection
by and transmission through planar boundaries into two parts.

In this section, we confine our discussion to the normal-

incidence case depicted in Fig. 8-3(a), and in Sections 8-2
to 8-4, we examine the more general oblique-incidence case

depicted in Fig. 8-3(b). We will show the basis for the analogy

between the transmission-line and plane-wave configurations
so that we may use transmission-line equivalent models, tools

(e.g., Smith chart), and techniques (e.g., quarter-wavelength

matching) to expeditiously solve plane-wave problems.
Before proceeding, however, we should explain the notion

of rays and wavefronts and the relationship between them,
as both are used throughout this chapter to represent electro-

magnetic waves. A ray is a line representing the direction of

flow of electromagnetic energy carried by a wave; therefore,
it is parallel to the propagation unit vector k̂. A wavefront is

a surface across which the phase of a wave is constant; it is

perpendicular to the wavevector k̂. Hence, rays are perpendic-
ular to wavefronts. The ray representation of wave incidence,

reflection, and transmission shown in Fig. 8-3(b) is equivalent

354 CHAPTER 8 WAVE REFLECTION AND TRANSMISSION
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(b)  Boundary between different media

Incident plane wave

Transmitted plane wave

Reflected plane wave

Medium 1
η1

Medium 2
η2

z = 0

(a)  Boundary between transmission lines

Transmission line 1

Transmission line 2
Incident wave

Reflected wave

Transmitted
wave

Z01
Z02

 

z = 0

Figure 8-2 Discontinuity between two different transmission lines is analogous to that between two dissimilar media.

Incident wave
Transmitted wave

Transmitted
wave

Reflected
wave

Incident
wave

Reflected wave

Medium 1
η1

Medium 2
η2 Medium 1

η1

Medium 2
η2

(a)  Normal incidence (b)  Ray representation of 
oblique incidence

θr

θi

θt

Medium 1
η1

Medium 2
η2

(c)  Wavefront representation of
oblique incidence

θr

θt

θi

Figure 8-3 Ray representation of wave reflection and transmission at (a) normal incidence and (b) oblique incidence. (c) Wavefront

representation of oblique incidence.

to the wavefront representation depicted in Fig. 8-3(c). The

two representations are complementary; the ray representation
is easier to use in graphical illustrations, whereas the wavefront

representation provides greater physical insight into what hap-

pens to a wave when it encounters a discontinuous boundary.

8-1.1 Boundary between Lossless Media

A planar boundary located at z = 0 (Fig. 8-4(a)) separates
two lossless, homogeneous, dielectric media. Medium 1 has

permittivity ε1 and permeability µ1 and fills the half-space

z ≤ 0. Medium 2 has permittivity ε2 and permeability µ2 and

fills the half-space z ≥ 0. An x-polarized plane wave, with
electric and magnetic fields (Ei,Hi) propagates in medium 1

along direction k̂i = ẑ toward medium 2. Reflection and trans-

mission at the boundary at z = 0 result in a reflected wave, with

electric and magnetic fields (Er,Hr), traveling along direction

k̂r = −ẑ in medium 1, and a transmitted wave, with electric
and magnetic fields (Et,Ht), traveling along direction k̂t = ẑ

in medium 2. On the basis of the formulations developed in

Sections 7-2 and 7-3 for plane waves, the three waves are
described in phasor form by:

8-1
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H
r

E
r

kr

H
i

E
i

ki
H

t

E
t

kt

x

z
y

Medium 1 (ε1, μ1) Medium 2 (ε2, μ2)
z = 0

z = 0

(a)  Boundary between dielectric media

(b)  Transmission-line analogue

ˆ

ˆ
ˆ

Infinite line

Z01 Z02

Figure 8-4 The two dielectric media separated by the

x–y plane in (a) can be represented by the transmission-line

analogue in (b).

Incident Wave

Ẽi(z) = x̂E
i
0e

− jk1z, (8.1a)

H̃i(z) = ẑ××× Ẽi(z)

η1

= ŷ
E

i
0

η1

e
− jk1z. (8.1b)

Reflected Wave

Ẽr(z) = x̂E
r
0e

jk1z, (8.2a)

H̃r(z) = (−ẑ)××× Ẽr(z)

η1

= −ŷ
E

r
0

η1

e
jk1z. (8.2b)

Transmitted Wave

Ẽt(z) = x̂E
t
0e

− jk2z, (8.3a)

H̃t(z) = ẑ××× Ẽt(z)

η2
= ŷ

E
t
0

η2
e
− jk2z. (8.3b)

The quantities E
i
0, E

r
0, and E

t
0 are, respectively, the amplitudes

of the incident, reflected, and transmitted electric fields at
z = 0 (the boundary between the two media). The wavenumber

and intrinsic impedance of medium 1 are k1 = ω
√

µ1ε1 and

η1 =
√

µ1/ε1 , and those for medium 2 are k2 = ω
√

µ2ε2 and

η2 =
√

µ2/ε2 .

The amplitude E
i
0 is imposed by the source responsible for

generating the incident wave; therefore, it is assumed known.
Our goal is to relate E

r
0 and E

t
0 to E

i
0. We do so by applying

boundary conditions for the total electric and magnetic fields

at z = 0. According to Table 6-2, the tangential component of
the total electric field is always continuous across a boundary

between two contiguous media, and in the absence of current
sources at the boundary, the same is true for the total magnetic

field. In the present case, the electric and magnetic fields of the

incident, reflected, and transmitted waves are all tangential to
the boundary.

The total electric field Ẽ1(z) in medium 1 is the sum of the
electric fields of the incident and reflected waves, and a similar

statement applies to the magnetic field H̃1(z). Hence,

Medium 1

Ẽ1(z) = Ẽi(z)+ Ẽr(z) = x̂(E i
0e

− jk1z + E
r
0e

jk1z), (8.4a)

H̃1(z) = H̃i(z)+ H̃r(z) = ŷ
1

η1

(E i
0e

− jk1z −E
r
0e

jk1z). (8.4b)

With only the transmitted wave present in medium 2, the total

fields are

Medium 2

Ẽ2(z) = Ẽt(z) = x̂E
t
0e

− jk2z, (8.5a)

H̃2(z) = H̃t(z) = ŷ
E

t
0

η2

e
− jk2z. (8.5b)

At the boundary (z = 0), the tangential components of the
electric and magnetic fields are continuous. Hence,

Ẽ1(0) = Ẽ2(0) or E
i
0 + E

r
0 = E

t
0, (8.6a)

H̃1(0) = H̃2(0) or
E

i
0

η1

− E
r
0

η1

=
E

t
0

η2

. (8.6b)

Solving these equations for E
r
0 and E

t
0 in terms of E

i
0 gives

E
r
0 =

(
η2 −η1

η2 + η1

)
E

i
0 = ΓE

i
0, (8.7a)

E
t
0 =

(
2η2

η2 + η1

)
E

i
0 = τE

i
0, (8.7b)

where

Γ =
E

r
0

E i
0

=
η2 −η1

η2 + η1

(normal incidence),

τ =
E

t
0

E i
0

=
2η2

η2 + η1

(normal incidence).

(8.8a)

(8.8b)
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The quantities Γ and τ are called the reflection and transmis-
sion coefficients. For lossless dielectric media, η1 and η2 are

real; consequently, both Γ and τ are real also. As we see in

Section 8-1.4, the expressions given by Eqs. (8.8a) and (8.8b)
are equally applicable when the media are conductive, even

though in that case η1 and η2 may be complex. Hence, Γ and τ
may be complex as well. From Eqs. (8.8a) and (8.8b), it is
easily shown that Γ and τ are interrelated as

τ = 1 + Γ (normal incidence). (8.9)

For nonmagnetic media,

η1 =
η0√
εr1

, and η2 =
η0√
εr2

,

where η0 is the intrinsic impedance of free space. In this case,

Eq. (8.8a) may be expressed as

Γ =

√
εr1

−√
εr2√

εr1
+
√

εr2

(nonmagnetic media). (8.10)

8-1.2 Transmission-Line Analogue

The transmission-line configuration shown in Fig. 8-4(b)

consists of a lossless transmission line with characteristic

impedance Z01 connected at z = 0 to an infinitely long lossless

transmission line with characteristic impedance Z02. The input
impedance of an infinitely long line is equal to its characteristic

impedance. Hence, at z = 0, the voltage reflection coefficient

(looking toward the boundary from the vantage point of the
first line) is

Γ =
Z02 −Z01

Z02 + Z01

,

which is identical in form to Eq. (8.8a). The analogy between

plane waves and waves on transmission lines does not end

here. To demonstrate the analogy further, equations pertinent
to the two cases are summarized in Table 8-1. Comparison of

the two columns shows that there is a one-to-one correspon-

dence between the transmission-line quantities (Ṽ , Ĩ,β ,Z0) and

the plane-wave quantities (Ẽ , H̃,k,η).

◮ This correspondence allows us to use the techniques

developed in Chapter 2, including the Smith-chart method
for calculating impedance transformations, to solve plane-

wave propagation problems. ◭

The simultaneous presence of incident and reflected waves

in medium 1 (Fig. 8-4(a)) gives rise to a standing-wave pattern.

By analogy with the transmission-line case, the standing-wave
ratio in medium 1 is defined as

S =
|Ẽ1|max

|Ẽ1|min

=
1 + |Γ|
1−|Γ| . (8.15)

◮ If the two media have equal impedances (η1 = η2),

then Γ = 0 and S = 1, and if medium 2 is a perfect

conductor with η2 = 0 (which is equivalent to a short-
circuited transmission line), then Γ = −1 and S = ∞. ◭

The distance from the boundary to where the magnitude of the

electric field intensity in medium 1 is a maximum (denoted

lmax) is described by the same expression as that given by
Eq. (2.70) for the voltage maxima on a transmission line,

namely

−z = lmax =
θr + 2nπ

2k1

=
θrλ1

4π
+

nλ1

2
,

{
n = 1,2, . . . if θr < 0,

n = 0,1,2, . . . if θr ≥ 0,

(8.16)

where λ1 = 2π/k1 and θr is the phase angle of Γ (i.e.,
Γ = |Γ|e jθr , and θr is bounded in the range −π < θr ≤ π).

The expression for lmax is valid not only when the two media

are lossless dielectrics, but also when medium 1 is a low-loss
dielectric. Moreover, medium 2 may be either a dielectric or a

conductor. When both media are lossless dielectrics, θr = 0 if

η2 > η1, and θr = π if η2 < η1.
The spacing between adjacent maxima is λ1/2, and the

spacing between a maximum and the nearest minimum is
λ1/4. The electric-field minima occur at

lmin =

{
lmax + λ1/4, if lmax < λ1/4,

lmax −λ1/4, if lmax ≥ λ1/4.
(8.17)

8-1.3 Power Flow in Lossless Media

Medium 1 in Fig. 8-4(a) is host to the incident and reflected

waves, which together comprise the total electric and magnetic

fields Ẽ1(z) and H̃1(z) given by Eqs. (8.11a) and (8.12a) of

Table 8-1. Using Eq. (7.100), the net average power density

8-1
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Table 8-1 Analogy between plane-wave equations for normal incidence and transmission-line equations with both under lossless

conditions.

Plane Wave (Fig. 8-4(a)) Transmission Line (Fig. 8-4(b))

Ẽ1(z) = x̂E
i
0(e

− jk1z +Γe
jk1z) (8.11a) Ṽ1(z) = V

+
0 (e− jβ1z +Γe

jβ1z) (8.11b)

H̃1(z) = ŷ
E

i
0

η1
(e− jk1z −Γe

jk1z) (8.12a) Ĩ1(z) =
V

+
0

Z01
(e− jβ1z −Γe

jβ1z) (8.12b)

Ẽ2(z) = x̂τE
i
0e

− jk2z (8.13a) Ṽ2(z) = τV
+
0 e

− jβ2z (8.13b)

H̃2(z) = ŷτ
E

i
0

η2
e
− jk2z (8.14a) Ĩ2(z) = τ

V
+
0

Z02
e
− jβ2z (8.14b)

Γ = (η2 −η1)/(η2 +η1) Γ = (Z02 −Z01)/(Z02 +Z01)

τ = 1+Γ τ = 1+Γ

k1 = ω
√

µ1ε1 , k2 = ω
√

µ2ε2 β1 = ω
√

µ1ε1 , β2 = ω
√

µ2ε2

η1 =
√

µ1/ε1 , η2 =
√

µ2/ε2 Z01 and Z02 depend on

transmission-line parameters

flowing in medium 1 is

Sav1
(z) = 1

2
Re[Ẽ1(z)××× H̃

∗
1(z)]

= 1
2
Re

[
x̂E

i
0(e

− jk1z + Γe
jk1z)ŷ

E
i∗
0

η1

(e jk1z −Γ∗
e
− jk1z)

]

= ẑ
|E i

0|2
2η1

(1−|Γ|2), (8.18)

which is analogous to Eq. (2.106) for the lossless transmission-

line case. The first and second terms inside the bracket in
Eq. (8.18) represent the average power density of the incident

and reflected waves, respectively. Thus,

Sav1
= Si

av + Sr
av (8.19a)

with

Si
av = ẑ

|E i
0|2

2η1

, (8.19b)

Sr
av = −ẑ|Γ|2 |E i

0|2
2η1

= −|Γ|2Si
av. (8.19c)

Even though Γ is purely real when both media are lossless

dielectrics, we chose to treat it as complex, thereby providing

in Eq. (8.19c) an expression that is also valid when medium 2
is conducting.

The average power density of the transmitted wave in

medium 2 is

Sav2
(z) = 1

2
Re[Ẽ2(z)××× H̃

∗
2(z)]

= 1
2
Re

[
x̂τE

i
0e

− jk2z××× ŷτ∗
E

i∗
0

η2

e
jk2z

]
= ẑ|τ|2 |E i

0|2
2η2

.

(8.20)

Through the use of Eqs. (8.8a and b), it can be easily shown

that for lossless media

τ2

η2
=

1−Γ2

η1
, (lossless media) (8.21)

which leads to

Sav1
= Sav2

.

This result is expected from considerations of power conserva-

tion.

Example 8-1: Radar Radome Design

A 10 GHz aircraft radar uses a narrow-beam scanning antenna

mounted on a gimbal behind a dielectric radome, as shown in

Fig. 8-5. Even though the radome shape is far from planar, it is
approximately planar over the narrow extent of the radar beam.

If the radome material is a lossless dielectric with εr = 9 and
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Radar

Antenna Dielectric
radome

Antenna beam

d

Figure 8-5 Antenna beam “looking” through an aircraft

radome of thickness d (Example 8-1).

Incident wave Transmitted wave

Medium 1 (air)
η0

Line 1
Line 2

Z01 = η0 Z02 = ηrZin ZL = η0 

Medium 3 (air)
η0

Medium 2
ηr

Radome

z = −d z = 0

z = −d z = 0

(b)

(a)

Figure 8-6 (a) Planar section of the radome of Fig. 8-5 at an

expanded scale and (b) its transmission-line equivalent model

(Example 8-1).

µr = 1, choose its thickness d such that the radome appears
transparent to the radar beam. Structural integrity requires d to

be greater than 2.3 cm.

Solution: Figure 8-6(a) shows a small section of the radome

on an expanded scale. The incident wave can be approximated
as a plane wave propagating in medium 1 (air) with intrinsic

impedance η0. Medium 2 (the radome) is of thickness d and

intrinsic impedance ηr, and medium 3 (air) is semi-infinite
with intrinsic impedance η0. Figure 8-6(b) shows an equiv-

alent transmission-line model with z = 0 selected to coincide

with the outside surface of the radome, and the load impedance
ZL = η0 represents the input impedance of the semi-infinite air

medium to the right of the radome.

For the radome to “appear” transparent to the incident wave,
the reflection coefficient must be zero at z = −d, thereby

guaranteeing total transmission of the incident power into
medium 3. Since ZL = η0 in Fig. 8-6(b), no reflection takes

place at z =−d if Zin = η0, which can be realized by choosing

d = nλ2/2 [see Section 2-8.4], where λ2 is the wavelength
in medium 2 and n is a positive integer. At 10 GHz, the

wavelength in air is λ0 = c/ f = 3 cm, while in the radome

material it is

λ2 =
λ0√

εr

=
3 cm

3
= 1 cm.

Hence, by choosing d = 5λ2/2 = 2.5 cm, the radome is both
nonreflecting and structurally stable.

Example 8-2: Yellow Light Incident
upon a Glass Surface

A beam of yellow light with wavelength 0.6 µm is normally

incident in air upon a glass surface. Assume the glass is

sufficiently thick as to ignore its back surface. If the surface
is situated in the plane z = 0 and the relative permittivity of

glass is 2.25, determine:

(a) the locations of the electric field maxima in medium 1
(air),

(b) the standing-wave ratio, and

(c) the fraction of the incident power transmitted into the
glass medium.

Solution: (a) We begin by determining the values of η1, η2,

and Γ:

η1 =

√
µ1

ε1

=

√
µ0

ε0

≈ 120π (Ω),

η2 =

√
µ2

ε2

=

√
µ0

ε0

· 1√
εr

≈ 120π√
2.25

= 80π (Ω),

Γ =
η2 −η1

η2 + η1

=
80π −120π

80π + 120π
= −0.2.

8-1
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Hence, |Γ|= 0.2 and θr = π . From Eq. (8.16), the electric-field
magnitude is maximum at

lmax =
θrλ1

4π
+ n

λ1

2
=

λ1

4
+ n

λ1

2
(n = 0,1,2, . . .)

with λ1 = 0.6 µm.

(b)

S =
1 + |Γ|
1−|Γ| =

1 + 0.2

1−0.2
= 1.5.

(c) The fraction of the incident power transmitted into the

glass medium is equal to the ratio of the transmitted power

density given by Eq. (8.20) to the incident power density,
S

i
av = |E i

0|2/2η1:

Sav2

Si
av

= τ2 |E i
0|2

2η2

/[ |E i
0|2

2η1

]
= τ2 η1

η2

.

In view of Eq. (8.21),

Sav2

Si
av

= 1−|Γ|2 = 1− (0.2)2 = 0.96, or 96%.

8-1.4 Boundary between Lossy Media

In Section 8-1.1, we considered a plane wave in a lossless

medium incident normally on a planar boundary of another
lossless medium. We now generalize our expressions to lossy

media. In a medium with constitutive parameters (ε , µ ,σ),
the propagation constant γ = α + jβ and the intrinsic impe-
dance ηc are both complex. General expressions for α , β ,

and ηc are given by Eqs. (7.66a), (7.66b), and (7.70), respec-

tively, and approximate expressions are given in Table 7-2

for the special cases of low-loss media and good conductors.

If media 1 and 2 have constitutive parameters (ε1, µ1,σ1)
and (ε2, µ2,σ2) (Fig. 8-7), then expressions for the electric
and magnetic fields in media 1 and 2 can be obtained from

Eqs. (8.11) through (8.14) of Table 8-1 by replacing jk with γ
and η with ηc. Thus,

Medium 1

Ẽ1(z) = x̂E
i
0(e

−γ1z + Γe
γ1z), (8.22a)

H̃1(z) = ŷ
E

i
0

ηc1

(e−γ1z −Γe
γ1z), (8.22b)

Medium 2

Ẽ2(z) = x̂τE
i
0e

−γ2z, (8.23a)

H̃2(z) = ŷτ
E

i
0

ηc2

e
−γ2z. (8.23b)

H
r

E
r

kr

H
i

E
i

ki
H

t

E
t

kt

x

z
y

Medium 1 (ε1, μ1, σ1) Medium 2 (ε2, μ2, σ2)
z = 0

z = 0

(a)  Boundary between dielectric media

(b)  Transmission-line analogue

Infinite line

Z01 = ηc1
Z02 = ηc2

ˆ

ˆ
ˆ

ηc1
ηc2

Figure 8-7 Normal incidence at a planar boundary between

two lossy media.

Here, γ1 = α1 + jβ1, γ2 = α2 + jβ2, and

Γ =
ηc2

−ηc1

ηc2
+ ηc1

,

τ = 1 + Γ =
2ηc2

ηc2
+ ηc1

.

(8.24a)

(8.24b)

Because ηc1
and ηc2

are, in general, complex, Γ and τ may be
complex as well.

Example 8-3: Normal Incidence on a Metal
Surface

A 1 GHz x-polarized plane wave traveling in the +z direction

is incident from air upon a copper surface. The air-to-copper

interface is at z = 0, and copper has εr = 1, µr = 1, and
σ = 5.8× 107 S/m. If the amplitude of the electric field of

the incident wave is 12 (mV/m), obtain expressions for the
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instantaneous electric and magnetic fields in the air medium.
Assume the metal surface to be several skin depths deep.

Solution: In medium 1 (air), α = 0,

β = k1 =
ω

c
=

2π ×109

3×108
=

20π

3
(rad/m),

η1 = η0 = 377 (Ω), λ =
2π

k1

= 0.3 m.

At f = 1 GHz, copper is an excellent conductor because

ε ′′

ε ′
=

σ

ωεrε0

=
5.8×107

2π ×109× (10−9/36π)
= 1×109 ≫ 1.

Use of Eq. (7.77c) gives

ηc2
= (1 + j)

√
π f µ

σ
= (1 + j)

[
π ×109 ×4π ×10−7

5.8×107

]1/2

= 8.25(1 + j) (mΩ).

Since ηc2
is so small compared to η0 = 377 (Ω) for air, the

copper surface acts, in effect, like a short circuit. Hence,

Γ =
ηc2

−η0

ηc2
+ η0

≈−1.

Upon setting Γ = −1 in Eqs. (8.11) and (8.12) of Table 8-1,

we obtain

Ẽ1(z) = x̂E
i
0(e

− jk1z − e
jk1z) = −x̂ j2E

i
0 sink1z, (8.25a)

H̃1(z) = ŷ
E

i
0

η1

(e− jk1z + e
jk1z) = ŷ2

E
i
0

η1

cosk1z. (8.25b)

With E
i
0 = 12 (mV/m), the instantaneous fields associated with

these phasors are

E1(z, t) = Re[Ẽ1(z) e
jωt ]

= x̂2E
i
0 sink1zsin ωt

= x̂24sin(20πz/3)sin(2π ×109
t) (mV/m),

H1(z, t) = Re[H̃1(z) e
jωt ]

= ŷ2
E

i
0

η1

cosk1zcosωt

= ŷ64cos(20πz/3)cos(2π ×109
t) (µA/m).

0

64 (μA/m)

–64 (μA/m)

0

24 (mV/m)

C
onductor

C
onductor

–24 (mV/m)

ωt = 3π/2

ωt = π/2

ωt = π 

ωt = 0

ωt = 5π/4

ωt = π/4

ωt = 0

E1(z, t)

H1(z, t)

–z

–z

–λ
4

–3λ
4

–λ
2

–λ 

Figure 8-8 Wave patterns for fields E1(z, t) and H1(z, t) of

Example 8-3.

Plots of the magnitude of E1(z, t) and H1(z, t) are shown in

Fig. 8-8 as a function of negative z for various values of ωt.

The wave patterns exhibit a repetition period of λ/2, and E

and H are in phase quadrature (90◦ phase shift) in both space

and time. This behavior is identical with that for voltage and

current waves on a shorted transmission line.

Concept Question 8-1: What boundary conditions
were used in the derivations of the expressions for Γ
and τ?

Concept Question 8-2: In the radar radome design of

Example 8-1, all the incident energy in medium 1 ends up

getting transmitted into medium 3, and vice versa. Does
this imply that no reflections take place within medium 2?

Explain.

8-1
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Module 8.1 Incidence on Perfect Conductor Observe the standing-wave pattern created by the combination of a wave
incident normally onto the plane surface of a conductor and its reflection.

Concept Question 8-3: Explain on the basis of bound-
ary conditions why it is necessary that Γ = −1 at the

boundary between a dielectric and a perfect conductor.

Exercise 8-1: To eliminate reflections of normally inci-
dent plane waves, a dielectric slab of thickness d and

relative permittivity εr2
is to be inserted between two

semi-infinite media with relative permittivities εr1
= 1 and

εr3 = 16. Use the quarter-wave transformer technique to

select d and εr2 . Assume f = 3 GHz.

Answer: εr2
= 4 and d = (1.25 + 2.5n) (cm), with

n = 0,1,2, . . . . (See EM .)

Exercise 8-2: Express the normal-incidence reflection

coefficient at the boundary between two nonmagnetic,

conducting media in terms of their complex permittivities.

Answer: For incidence in medium 1 (ε1, µ0,σ1) onto

medium 2 (ε2, µ0,σ2),

Γ =

√
εc1

−√
εc2√

εc1
+
√

εc2

,

with εc1
= (ε1− jσ1/ω) and εc2

= (ε2− jσ2/ω). (See EM .)

Exercise 8-3: Obtain expressions for the average power

densities in media 1 and 2 for the fields described by

Eqs. (8.22a) through (8.23b), assuming medium 1 is
slightly lossy with ηc1

approximately real.

Answer: (See EM .)

Sav1
= ẑ

|E i
0|2

2ηc1

(
e
−2α1z −|Γ|2e

2α1z
)

,

Sav2
= ẑ|τ|2 |E i

0|2
2

e
−2α2z

Re

(
1

η∗
c2

)
.
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Technology Brief 15: Lasers

Lasers are used in CD and DVD players, bar-code
readers, eye surgery, and multitudes of other systems
and applications (Fig. TF15-1).

◮ A laser—acronym for Light Amplification by
Stimulated Emission of Radiation—is a source
of monochromatic (single wavelength), coherent
(uniform wavefront), narrow-beam light. ◭

This is in contrast with other sources of light (such
as the sun or a light bulb), which usually encompass
waves of many different wavelengths with random phase
(incoherent). A laser source generating microwaves is
called a maser . The first maser was built in 1953 by
Charles Townes, and the first laser was constructed in
1960 by Theodore Maiman.

Basic Principles

Despite its complex quantum-mechanical structure, an
atom can be conveniently modeled as a nucleus (con-
taining protons and neutrons) surrounded by a cloud
of electrons. Associated with the atom or molecule
of any given material is a specific set of quantized
(discrete) energy states (orbits) that the electrons can
occupy. Supply of energy (in the form of heat, expo-
sure to intense light, or other means) by an external
source can cause an electron to move from a lower
energy state to a higher energy (excited) state. Excit-
ing the atoms is called pumping because it leads to

increasing the population of electrons in higher states
(Fig. TF15-2(a)). Spontaneous emission of a photon
(light energy) occurs when the electron in the excited
state moves to a lower state (Fig. TF15-2(b)), and
stimulated emission (Fig. TF15-2(c)) happens when an
emitted photon “entices” an electron in an excited state of
another atom to move to a lower state, thereby emitting
a second photon of identical energy, wavelength, and
wavefront (phase).

Principle of Operation

◮ Highly amplified stimulated emission is called
lasing. ◭

The lasing medium can be solid, liquid, or gas. Laser
operation is illustrated in Fig. TF15-3 for a ruby crystal
surrounded by a flash tube (similar to a camera flash).
A perfectly reflecting mirror is placed on one end of
the crystal and a partially reflecting mirror on the other
end. Light from the flash tube excites the atoms; some
undergo spontaneous emission, generating photons that
cause others to undergo stimulated emission; photons
moving along the axis of the crystal bounce back and
forth between the mirrors, causing additional stimulated
emission (i.e., amplification), with only a fraction of the
photons exiting through the partially reflecting mirror.

◮ Because all of the stimulated photons are iden-
tical, the light wave generated by the laser is of a
single wavelength. ◭

Figure TF15-1 A few examples of laser applications.

8-1
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(a) Pumping electron to excited state (b) Spontaneous emission (c) Stimulated emission

Photon

Photon Original photon

Stimulated photonNucleus

Electron

Orbit of 

excited state
Orbit of 

ground state

Incident

energy or

photon

Figure TF15-2 Electron excitation and photon emission.

Amplifying medium

Laser light

Perfectly

re�ecting mirror

Partially

re�ecting mirror

Excitation energy

(e.g., �ash tube)

Figure TF15-3 Laser schematic.

Wavelength (Color) of Emitted Light

The atom of any given material has unique energy
states. The difference in energy between the excited
high energy state and the stable lower energy state

determines the wavelength of the emitted photons
(EM wave). Through proper choice of lasing material,
monochromatic waves can be generated with wave-
lengths in the ultraviolet, visible, infrared or microwave
bands.
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Figure 8-9 Wave reflection and refraction at a planar boundary

between different media.

8-2 Snell’s Laws

In the preceding sections, we examined reflection and trans-
mission of plane waves that are normally incident upon a

planar interface between two different media. We now con-

sider the oblique-incidence case depicted in Fig. 8-9, and for
simplicity, we assume all media to be lossless. The z = 0 plane

forms the boundary between media 1 and 2 with constitutive

parameters (ε1, µ1) and (ε2, µ2), respectively. The two lines

in Fig. 8-9 with direction k̂i represent rays drawn normal to
the wavefront of the incident wave, and those along directions

k̂r and k̂t are similarly associated with the reflected and

transmitted waves. The angles of incidence, reflection, and
transmission (or refraction), which are defined with respect

to the normal to the boundary (the z axis), are θi, θr, and θt,

respectively. These three angles are interrelated by Snell’s
laws, which we derive shortly by considering the propagation

of the wavefronts of the three waves. Rays of the incident

wave intersect the boundary at O and O
′. Here AiO represents

a constant-phase wavefront of the incident wave. Likewise,

ArO
′ and AtO

′ are constant-phase wavefronts of the reflected
and transmitted waves, respectively (Fig. 8-9). The incident

and reflected waves propagate in medium 1 with the same

phase velocity up1
= 1/

√
µ1ε1, while the transmitted wave in

medium 2 propagates with a velocity up2
= 1/

√
µ2ε2. The time

it takes for the incident wave to travel from Ai to O
′ is the same

as the time it takes for the reflected wave to travel from O to Ar,
and also the time it takes the transmitted wave to travel from O

to At. Since time equals distance divided by velocity, it follows

that
AiO

′

up1

=
OAr

up1

=
OAt

up2

. (8.26)

From the geometries of the three right triangles in Fig. 8-9, we

deduce that

AiO
′ = OO′ sinθi, (8.27a)

OAr = OO′ sinθr, (8.27b)

OAt = OO′ sinθt. (8.27c)

Use of these expressions in Eq. (8.26) leads to

θi = θr, (Snell’s law of reflection)

sinθt

sinθi

=
up2

up1

=

√
µ1ε1

µ2ε2

.

(Snell’s law of refraction)

(8.28a)

(8.28b)

◮ Snell’s law of reflection states that the angle of reflec-

tion equals the angle of incidence, and Snell’s law of
refraction provides a relation between sin θt and sinθi in
terms of the ratio of the phase velocities. ◭

The index of refraction of a medium, n, is defined as the
ratio of the phase velocity in free space (i.e., the speed of

light c) to the phase velocity in the medium. Thus,

n =
c

up

=

√
µε

µ0ε0

=
√

µrεr .

(index of refraction)

(8.29)

In view of Eq. (8.29), Eq. (8.28b) may be rewritten as

sinθt

sinθi

=
n1

n2

=

√
µr1εr1

µr2εr2

. (8.30)

For nonmagnetic materials, µr1 = µr2 = 1, in which case

sinθt

sinθi

=
n1

n2

=

√
εr1

εr2

=
η2

η1

(for µ1 = µ2). (8.31)

Usually, materials with higher densities have higher permittiv-
ities. Air, with µr = εr = 1, has an index of refraction n0 = 1.

Since for nonmagnetic materials n =
√

εr, a material is often
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(a) n1 < n2 (b) n1 > n2

(c) n1 > n2 and θi = θc 

θr θt

θi

n1 n2

θr θt

θi

n1 n2

θt > θi

Inward refraction Outward refraction

n1 n2

No transmission

θr

θi

θt = 90° 

Figure 8-10 Snell’s laws state that θr = θi and

sinθt = (n1/n2)sinθi. Refraction is (a) inward if n1 < n2

and (b) outward if n1 > n2; (c) the refraction angle is 90◦ if

n1 > n2 and θi is equal to or greater than the critical angle

θc = sin−1(n2/n1).

referred to as more dense than another material if it has a

greater index of refraction.

At normal incidence (θi = 0), Eq. (8.31) gives θt = 0, as
expected. At oblique incidence θt < θi when n2 > n1 and

θt > θi when n2 < n1.

◮ If a wave is incident on a more dense medium
(Fig. 8-10(a)), the transmitted wave refracts inwardly

(toward the z axis), and the opposite is true if a wave is
incident on a less dense medium (Fig. 8-10(b)). ◭

A case of particular interest is when θt = π/2, as shown in

Fig. 8-10(c); in this case, the refracted wave flows along the
surface and no energy is transmitted into medium 2. The value

of the angle of incidence θi corresponding to θt = π/2 is called

the critical angle θc and is obtained from Eq. (8.30) as

sinθc =
n2

n1

sinθt

∣∣∣
θt=π/2

=
n2

n1

=

√
εr2

εr1

(for µ1 = µ2).

(critical angle)

(8.32a)

(8.32b)

If θi exceeds θc, the incident wave is totally reflected, and
the refracted wave becomes a nonuniform surface wave that

travels along the boundary between the two media. This wave

behavior is called total internal reflection.

Example 8-4: Light Beam Passing through
a Slab

A dielectric slab with index of refraction n2 is surrounded by a

medium with index of refraction n1, as shown in Fig. 8-11. If
θi < θc, show that the emerging beam is parallel to the incident

beam.

n1

θ1

θ2 θ2n2

n3 = n1

θ3 = θ1

Figure 8-11 The exit angle θ3 is equal to the incidence

angle θ1 if the dielectric slab has parallel boundaries and is

surrounded by media with the same index of refraction on both

sides (Example 8-4).

Solution: At the slab’s upper surface, Snell’s law gives

sinθ2 =
n1

n2

sinθ1. (8.33)

Similarly, at the slab’s lower surface,

sinθ3 =
n2

n3

sinθ2 =
n2

n1

sin θ2. (8.34)

Substituting Eq. (8.33) into Eq. (8.34) gives

sinθ3 =

(
n2

n1

)(
n1

n2

)
sinθ1 = sinθ1.
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Hence, θ3 = θ1. The slab displaces the beam’s position, but the
beam’s direction remains unchanged.

Exercise 8-4: In the visible part of the electromagnetic

spectrum, the index of refraction of water is 1.33. What is

the critical angle for light waves generated by an upward-
looking underwater light source?

Answer: θc = 48.8◦. (See EM .)

Exercise 8-5: If the light source of Exercise 8-4 is situated
at a depth of 1 m below the water surface and if its beam

is isotropic (radiates in all directions), how large a circle
would it illuminate when observed from above?

Answer: Circle’s diameter = 2.28 m. (See EM .)

8-3 Fiber Optics

By successive total internal reflections, as illustrated in

Fig. 8-12(a), light can be guided through thin dielectric rods
made of glass or transparent plastic known as optical fibers.

Because the light is confined to traveling within the rod, the

only loss in power is due to reflections at the sending and
receiving ends of the fiber and absorption by the fiber material

(because it is not a perfect dielectric). Optical fibers are useful
for the transmission of wide-band signals as well as many

imaging applications.

An optical fiber usually consists of a cylindrical fiber
core with an index of refraction nf, surrounded by another

cylinder of lower index of refraction, nc, called the cladding
(Fig. 8-12(b)). The cladding layer serves to optically isolate
the fiber when a large number of fibers are packed in close

proximity, thereby avoiding leakage of light from one fiber

into another. To ensure total internal reflection, the incident
angle θ3 in the fiber core must be equal to or greater than the

critical angle θc for a wave in the fiber medium (with nf) inci-
dent upon the cladding medium (with nc). From Eq. (8.32a),

we have

sinθc =
nc

nf

. (8.35)

To meet the total reflection requirement θ3 ≥ θc, it is necessary

that sinθ3 ≥ nc/nf. The angle θ2 is the complement of angle θ3;

hence, cosθ2 = sinθ3. The necessary condition therefore may
be written as

cosθ2 ≥
nc

nf

. (8.36)

Moreover, θ2 is related to the incidence angle on the face of

the fiber, θi, by Snell’s law:

sinθ2 =
n0

nf

sinθi, (8.37)

where n0 is the index of refraction of the medium surrounding
the fiber (n0 = 1 for air and n0 = 1.33 if the fiber is in water)

or

cosθ2 =

[
1−
(

n0

nf

)2

sin2 θi

]1/2

. (8.38)

Using Eq. (8.38) on the left-hand side of Eq. (8.36) and then
solving for sinθi gives

sinθi ≤
1

n0

(n2
f −n

2
c)

1/2. (8.39)

8-3.1 Maximum Acceptance Cone

The acceptance angle θa is defined as the maximum value
of θi for which the condition of total internal reflection remains

satisfied:

sinθa =
1

n0

(n2
f −n

2
c)

1/2. (8.40)

(a) Optical fiber (b) Successive internal reflections

θ2

θi θ3

n0

n0

nc

nf

nc

Fiber core
Cladding

θi

Acceptance cone

Figure 8-12 Waves can be guided along optical fibers as long as the reflection angles exceed the critical angle for total internal reflection.
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T

CoreCladding

High-order mode Axial modeLow-order mode

τ
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τi

Figure 8-13 Distortion of rectangular pulses caused by modal dispersion in optical fibers.

The angle θa is equal to half the angle of the acceptance cone

of the fiber. Any ray of light incident upon the face of the
core fiber at an incidence angle within the acceptance cone

can propagate down the core. This means that there can be a

large number of ray paths, called modes, by which light energy
can travel in the core. Rays characterized by large angles θi

travel longer paths than rays that propagate along the axis of

the fiber, as illustrated by the three modes shown in Fig. 8-13.
Consequently, different modes have different transit times

between the two ends of the fiber. This property of optical
fibers is called modal dispersion and has the undesirable effect

of changing the shape of pulses used for the transmission of

digital data. When a rectangular pulse of light incident upon
the face of the fiber gets broken up into many modes and the

different modes do not arrive at the other end of the fiber at the

same time, the pulse gets distorted—both in shape and length.
In the example shown in Fig. 8-13, the narrow rectangular

pulses at the input side of the optical fiber are of width τi

separated by a time duration T . After propagating through the
fiber core, modal dispersion causes the pulses to look more

like spread-out sine waves with spread-out temporal width τ .

If the output pulses spread out so much that τ > T , the output
signals will smear out, making it impossible to decipher the

transmitted message from the output signal. Hence, to ensure
that the transmitted pulses remain distinguishable at the output

side of the fiber, it is necessary that τ be shorter than T . As a

safety margin, it is common practice to design the transmission
system such that T ≥ 2τ .

The spread-out width τ is equal to the time delay ∆t between

the arrival of the slowest ray and the arrival of the fastest ray.
The slowest ray is the one traveling the longest distance and

corresponds to the ray incident upon the input face of the fiber

at the acceptance angle θa. From the geometry in Fig. 8-12(b)

and Eq. (8.36), this ray corresponds to cosθ2 = nc/nf. For an

optical fiber of length l, the length of the path traveled by such

a ray is

lmax =
l

cosθ2

= l
nf

nc

, (8.41)

and its travel time in the fiber at velocity up = c/nf is

tmax =
lmax

up

=
ln

2
f

cnc

. (8.42)

The minimum time of travel is realized by the axial ray and is

given by

tmin =
l

up

=
l

c
nf. (8.43)

The total time delay is therefore

τ = ∆t = tmax − tmin =
lnf

c

(
nf −1

nc

)
(s). (8.44)

As we stated before, to retrieve the desired information from

the transmitted signals, it is advisable that T , which is the

interpulse period of the input train of pulses, be no shorter than
2τ . This in turn means that the maximum data rate (in bits per

second), or equivalently the number of pulses per second, that
can be transmitted through the fiber is limited to

fp =
1

T
=

1

2τ
=

cnc

2lnf(nf −nc)
(bits/s). (8.45)

Example 8-5: Transmission Data Rate
on Optical Fibers

A 1-km long optical fiber (in air) is made of a fiber core with

an index of refraction of 1.52 and a cladding with an index of

refraction of 1.49. Determine
(a) the acceptance angle θa and

(b) the maximum usable data rate of signals that can be

transmitted through the fiber.

Solution: (a) From Eq. (8.40),

sinθa =
1

n0

(n2
f −n

2
c)

1/2 = [(1.52)2 − (1.49)2]1/2 = 0.3,
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Module 8.2 Multimode Step-Index Optical Fiber Choose the indices on the fiber core and cladding and then observe
the zigzag pattern of the wave propagation inside the fiber.

which corresponds to θa = 17.5◦.

(b) From Eq. (8.45),

fp =
cnc

2lnf(nf −nc)
=

3×108×1.49

2×103×1.52(1.52−1.49)

= 4.9 (Mb/s).

8-3.2 Confined Acceptance Cone

The expression for the data rate given by Eq. (8.45) pertains to

the case where the light coupled to the fiber is confined to the
acceptance cone defined by the acceptance angle θa given by

Eq. (8.40). If the entrance cone is larger than the acceptance
cone, then some of the light will leak out of the fiber through

the cladding, which not only reduces the power carried by the

light but may also cause interference with signals carried by
neighboring fibers.

On the other hand, if the entrance cone can be made to

be smaller than the acceptance cone, the data rate can be
safely increased. Let us denote θi(max) as the maximum

angle of the entrance cone. Per Eq. (8.38), θ2(max) is related
to θi(max) by

cosθ2(max) =

[
1−
(

n0

nf

)2

sin2 θi(max)

]1/2

.

Repetition of the steps between Eqs. (8.41) and (8.45) leads to

fp =
c

2lnf

[
cosθ2(max)

1− cosθ2(max)

]
(θi(max) < θa).

Exercise 8-6: If the index of refraction of the cladding
material in Example 8-5 is increased to 1.50, what would

be the new maximum usable data rate?

Answer: 7.4 (Mb/s). (See EM .)

8-4 Wave Reflection and Transmission

at Oblique Incidence

In this section, we develop a rigorous theory of reflection

and refraction of plane waves obliquely incident upon planar
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boundaries between different media. Our treatment parallels
that in Section 8-1 for the normal-incidence case and goes

beyond that in Section 8-2 on Snell’s laws, which yielded

information on only the angles of reflection and refraction.
For normal incidence, the reflection and transmission coef-

ficients Γ and τ at a boundary between two media are inde-

pendent of the polarization of the incident wave, because both
the electric and magnetic fields of a normally incident plane

wave are tangential to the boundary regardless of the wave

polarization. This is not the case for obliquely incident waves
traveling at an angle θi 6= 0 with respect to the normal to the

interface.

◮ The plane of incidence is defined as the plane con-
taining the normal to the boundary and the direction of

propagation of the incident wave. ◭

A wave of arbitrary polarization may be described as the
superposition of two orthogonally polarized waves: one with

its electric field parallel to the plane of incidence (parallel
polarization) and the other with its electric field perpendic-
ular to the plane of incidence (perpendicular polarization).

These two polarization configurations are shown in Fig. 8-14,

where the plane of incidence is coincident with the x–z plane.
Polarization with E perpendicular to the plane of incidence is

also called transverse electric (TE) polarization because E is
perpendicular to the plane of incidence and with E parallel

to the plane of incidence is called transverse magnetic (TM)

polarization because in that case it is the magnetic field that is
perpendicular to the plane of incidence.

For the general case of a wave with an arbitrary polarization,

it is common practice to decompose the incident wave (Ei,Hi)
into a perpendicularly polarized component (Ei

⊥,Hi
⊥) and a

parallel polarized component (Ei
‖,Hi

‖). Then, after determin-

ing the reflected waves (Er
⊥,Hr

⊥) and (Er
‖,Hr

‖) due to the two

incident components, the reflected waves are added together

to give the total reflected wave (Er,Hr) corresponding to
the original incident wave. A similar process can be used to

determine the total transmitted wave (Et,Ht).

8-4.1 Perpendicular Polarization

Figure 8-15 shows a perpendicularly polarized incident plane
wave propagating along the xi direction in dielectric medium 1.

The electric field phasor Ẽi
⊥ points along the y direction, and

the associated magnetic field phasor H̃i
⊥ is along the yi axis.

The directions of Ẽi
⊥ and H̃i

⊥ are such that Ẽi
⊥××× H̃i

⊥ points

along the propagation direction x̂i. The electric and magnetic

H||

t

H||

i

E||
i

E||
r

E||
t

H
r

H
t

H
i

E
i

E
r

E
t

θr θt

θi

x

z
y

z = 0

Medium 1
(ε1, μ1)

Medium 2
(ε2, μ2)

(a) Perpendicular polarization

kr

ki

kt

ˆ

ˆ

ˆ

T

T

T

T

T

T

θr θt

θi

x

z
y

z = 0

Medium 1
(ε1, μ1)

Medium 2
(ε2, μ2)

(b) Parallel polarization

kr

ki

kt

ˆ

ˆ

ˆH||

r

Figure 8-14 The plane of incidence is the plane containing

the direction of wave travel, k̂i, and the surface normal to the

boundary. In the present case, the plane of incidence containing

k̂i and ẑ coincides with the plane of the paper. A wave is

(a) perpendicularly polarized when its electric field vector is

perpendicular to the plane of incidence and (b) parallel polarized

when its electric field vector lies in the plane of incidence.

fields of such a plane wave are given by

Ẽi
⊥ = ŷE

i
⊥0e

− jk1xi , (8.46a)

H̃i
⊥ = ŷi

E
i
⊥0

η1

e
− jk1xi , (8.46b)
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Figure 8-15 Perpendicularly polarized plane wave incident at an angle θi upon a planar boundary.

where E
i
⊥0 is the amplitude of the electric field phasor at xi = 0

and k1 = ω
√

µ1ε1 and η1 =
√

µ1/ε1 are the wavenumber

and intrinsic impedance of medium 1. From Fig. 8-15, the

distance xi and the unit vector ŷi may be expressed in terms
of the (x,y,z) global coordinate system as

xi = xsin θi + zcosθi, (8.47a)

ŷi = −x̂cosθi + ẑsinθi. (8.47b)

Substituting Eqs. (8.47a) and (8.47b) into Eqs. (8.46a) and
(8.46b) gives

Incident Wave

Ẽi
⊥ = ŷE

i
⊥0e

− jk1(xsinθi+zcosθi), (8.48a)

H̃i
⊥ = (−x̂cosθi + ẑsinθi)

E
i
⊥0

η1

e
− jk1(xsinθi+zcosθi). (8.48b)

With the aid of the directional relationships given in Fig. 8-15

for the reflected and transmitted waves, these fields are given

by the following:

Reflected Wave

Ẽr
⊥ = ŷE

r
⊥0e

− jk1xr = ŷE
r
⊥0e

− jk1(xsinθr−zcosθr), (8.49a)

H̃r
⊥ = ŷr

E
r
⊥0

η1

e
− jk1xr

= (x̂cosθr + ẑsinθr)
E

r
⊥0

η1

e
− jk1(xsinθr−zcosθr), (8.49b)

Transmitted Wave

Ẽt
⊥ = ŷE

t
⊥0e

− jk2xt = ŷE
t
⊥0e

− jk2(xsinθt+zcosθt), (8.49c)

H̃t
⊥ = ŷt

E
t
⊥0

η2

e
− jk2xt

= (−x̂cosθt + ẑsinθt)
E

t
⊥0

η2

e
− jk2(xsinθt+zcosθt), (8.49d)

where θr and θt are the reflection and transmission angles
shown in Fig. 8-15 and k2 and η2 are the wavenumber and

intrinsic impedance of medium 2. Our goal is to describe the

reflected and transmitted fields in terms of the parameters
that characterize the incident wave, namely the incidence

angle θi and the amplitude E
i
⊥0. The four expressions given

by Eqs. (8.49a) through (8.49d) contain four unknowns: E
r
⊥0,

E
t
⊥0, θr, and θt. Even though angles θr and θt are related to θi

by Snell’s laws (Eqs. (8.28a) and (8.28b)), here we choose to



372 CHAPTER 8 WAVE REFLECTION AND TRANSMISSION

treat them as unknown for the time being because we intend
to show that Snell’s laws also can be derived by applying

field boundary conditions at z = 0. The total electric field in

medium 1 is the sum of the incident and reflected electric
fields: Ẽ1

⊥ = Ẽi
⊥ + Ẽr

⊥; a similar statement holds true for the

total magnetic field in medium 1: H̃1
⊥ = H̃i

⊥ + H̃r
⊥. Boundary

conditions state that the tangential components of Ẽ and H̃

each must be continuous across the boundary between the two
media. Field components tangential to the boundary extend

along x̂ and ŷ. Since the electric fields in media 1 and 2 have ŷ

components only, the boundary condition for Ẽ is

(Ẽ i
⊥y

+ Ẽ
r
⊥y

)
∣∣∣
z=0

= Ẽ
t
⊥y

∣∣∣
z=0

. (8.50)

Upon using Eqs. (8.48a), (8.49a), and (8.49c) in Eq. (8.50) and

then setting z = 0, we have

E
i
⊥0e

− jk1xsinθi + E
r
⊥0e

− jk1xsinθr = E
t
⊥0e

− jk2xsinθt . (8.51)

Since the magnetic fields in media 1 and 2 have no ŷ compo-

nents, the boundary condition for H̃ is

(H̃ i
⊥x

+ H̃
r
⊥x

)
∣∣∣
z=0

= H̃
t
⊥x

∣∣∣
z=0

, (8.52)

or

− E
i
⊥0

η1

cosθi e
− jk1xsinθi +

E
r
⊥0

η1

cosθr e
− jk1xsinθr

= −E
t
⊥0

η2

cosθt e
− jk2xsinθt . (8.53)

To satisfy Eqs. (8.51) and (8.53) for all possible values of x

(i.e., all along the boundary), it follows that the arguments of

all three exponentials must be equal. That is,

k1 sinθi = k1 sinθr = k2 sinθt, (8.54)

which is known as the phase-matching condition. The first
equality in Eq. (8.54) leads to

θr = θi, (Snell’s law of reflection) (8.55)

while the second equality leads to

sinθt

sinθi

=
k1

k2

=
ω
√

µ1ε1

ω
√

µ2ε2

=
n1

n2

.

(Snell’s law of refraction)

(8.56)

The results expressed by Eqs. (8.55) and (8.56) are identical
with those derived previously in Section 8-2 through consid-

eration of the ray path traversed by the incident, reflected, and

transmitted wavefronts.
In view of Eq. (8.54), the boundary conditions given by

Eqs. (8.51) and (8.53) reduce to

E
i
⊥0 + E

r
⊥0 = E

t
⊥0, (8.57a)

cosθi

η1

(−E
i
⊥0 + E

r
⊥0) = −cosθt

η2

E
t
⊥0. (8.57b)

These two equations can be solved simultaneously to yield

the following expressions for the reflection and transmission
coefficients in the perpendicular polarization case:

Γ⊥ =
E

r
⊥0

E i
⊥0

=
η2 cosθi −η1 cosθt

η2 cosθi + η1 cosθt

,

τ⊥ =
E

t
⊥0

E i
⊥0

=
2η2 cosθi

η2 cosθi + η1 cosθt

.

(8.58a)

(8.58b)

These two coefficients are known formally as the Fresnel
reflection and transmission coefficients for perpendicular
polarization and are related by

τ⊥ = 1 + Γ⊥. (8.59)

If medium 2 is a perfect conductor (η2 = 0), Eqs. (8.58a and b)

reduce to Γ⊥ = −1 and τ⊥ = 0, respectively, which means

that the incident wave is totally reflected by the conducting
medium.

For nonmagnetic dielectrics with µ1 = µ2 = µ0 and with the
help of Eq. (8.56), the expression for Γ⊥ can be written as

Γ⊥ =
cosθi −

√
(ε2/ε1)− sin2 θi

cosθi +
√

(ε2/ε1)− sin2 θi

(for µ1 = µ2).

(8.60)

Since (ε2/ε1) = (n2/n1)
2, this expression also can be written

in terms of the indices of refraction n1 and n2.
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Example 8-6: Wave Incident Obliquely
on a Soil Surface

Using the coordinate system of Fig. 8-15, a plane wave

radiated by a distant antenna is incident in air upon a plane

soil surface located at z = 0. The electric field of the incident
wave is given by

Ei = ŷ100cos(ωt −πx−1.73πz) (V/m), (8.61)

and the soil medium may be assumed to be a lossless dielectric
with a relative permittivity of 4.

(a) Determine k1, k2, and the incidence angle θi.

(b) Obtain expressions for the total electric fields in air and
in the soil.

(c) Determine the average power density carried by the wave

traveling in soil.

Solution: (a) We begin by converting Eq. (8.61) into phasor

form, akin to the expression given by Eq. (8.46a):

Ẽi = ŷ100e
− jπx− j1.73πz = ŷ100e

− jk1xi (V/m), (8.62)

where xi is the axis along which the wave is traveling and

k1xi = πx + 1.73πz. (8.63)

Using Eq. (8.47a), we have

k1xi = k1xsinθi + k1zcosθi. (8.64)

Hence,

k1 sinθi = π ,

k1 cosθi = 1.73π ,

which together give

k1 =
√

π2 +(1.73π)2 = 2π (rad/m),

θi = tan−1
( π

1.73π

)
= 30◦.

The wavelength in medium 1 (air) is

λ1 =
2π

k1

= 1 m,

and the wavelength in medium 2 (soil) is

λ2 =
λ1√
εr2

=
1√
4

= 0.5 m.

The corresponding wavenumber in medium 2 is

k2 =
2π

λ2

= 4π (rad/m).

Since Ẽi is along ŷ, it is perpendicularly polarized (ŷ is

perpendicular to the plane of incidence containing the surface

normal ẑ and the propagation direction x̂i).

(b) Given that θi = 30◦, the transmission angle θt is obtained

with the help of Eq. (8.56):

sin θt =
k1

k2

sinθi =
2π

4π
sin 30◦ = 0.25

or

θt = 14.5◦.

With ε1 = ε0 and ε2 = εr2
ε0 = 4ε0, the reflection and transmis-

sion coefficients for perpendicular polarization are determined

with the help of Eqs. (8.59) and (8.60),

Γ⊥ =
cosθi −

√
(ε2/ε1)− sin2 θi

cosθi +
√

(ε2/ε1)− sin2 θi

= −0.38,

τ⊥ = 1 + Γ⊥ = 0.62.

Using Eqs. (8.48a) and (8.49a) with E
i
⊥0 = 100 V/m and θi =

θr, the total electric field in medium 1 is

Ẽ1
⊥ = Ẽi

⊥ + Ẽr
⊥

= ŷE
i
⊥0e

− jk1(xsinθi+zcosθi) + ŷΓE
i
⊥0e

− jk1(xsinθi−zcosθi)

= ŷ100e
− j(πx+1.73πz)− ŷ38e

− j(πx−1.73πz),

and the corresponding instantaneous electric field in medium 1
is

E1
⊥(x,z, t) = Re

[
Ẽ1
⊥e

jωt

]

= ŷ[100cos(ωt −πx−1.73πz)

−38cos(ωt −πx + 1.73πz)] (V/m).

In medium 2, using Eq. (8.49c) with E
t
⊥0 = τ⊥E

i
⊥0 gives

Ẽt
⊥ = ŷτE

i
⊥0e

− jk2(xsinθt+zcosθt) = ŷ62e
− j(πx+3.87πz)

and, correspondingly,

Et
⊥(x,z, t) = Re

[
Ẽt
⊥e

jωt

]

= ŷ62cos(ωt −πx−3.87πz) (V/m).

(c) In medium 2, η2 = η0/
√

εr2 ≈ 120π/
√

4 = 60π (Ω), and

the average power density carried by the wave is

S
t
av =

|E t
⊥0|2

2η2

=
(62)2

2×60π
= 10.2 (W/m2).
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Technology Brief 16:
Bar-Code Readers

A bar code consists of a sequence of parallel bars of
certain widths, usually printed in black against a white
background, configured to represent a particular binary
code of information about a product and its manufac-
turer. Laser scanners can read the code and transfer the
information to a computer, a cash register, or a display
screen. For both stationary scanners built into checkout
counters at grocery stores and handheld units that can
be pointed at the bar-coded object like a gun, the basic
operation of a bar-code reader is the same.

Basic Operation

The scanner uses a laser beam of light pointed at
a multifaceted rotating mirror , spinning at a high
speed on the order of 6,000 revolutions per minute
(Fig. TF16-1). The rotating mirror creates a fan beam
to illuminate the bar code on the object. Moreover,
by exposing the laser light to its many facets, it
deflects the beam into many different directions,
allowing the object to be scanned over a wide range
of positions and orientations. The goal is to have
one of those directions be such that the beam reflected

Bar code

Electrical signal

Digital code

Figure TF16-2 Bar code contained in reflected laser beam.

by the bar code ends up traveling in the direction of,
and captured by, the light detector (sensor), which then
reads the coded sequence (white bars reflect laser light
and black ones do not) and converts it into a binary
sequence of ones and zeros (Fig. TF16-2). To eliminate
interference by ambient light, a glass filter is used as
shown in Fig. TF16-1 to block out all light except for a
narrow wavelength band centered at the wavelength of
the laser light.

Bar code

Central store

computer

Cash register

Sensor

Rotating mirror

(6,000 rpm)

Glass !lter

Figure TF16-1 Elements of a bar-code reader.
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Figure 8-16 Parallel-polarized plane wave incident at an

angle θi upon a planar boundary.

8-4.2 Parallel Polarization

If we interchange the roles played by E and H in the perpendic-

ular polarization scenario covered in the preceding subsection,
while keeping in mind the requirement that E×××H must point in

the direction of propagation for each of the incident, reflected,

and transmitted waves, we end up with the parallel polarization
scenario shown in Fig. 8-16. Now the electric fields lie in the

plane of incidence, while the associated magnetic fields are

perpendicular to the plane of incidence. With reference to the
directions indicated in Fig. 8-16, the fields of the incident,

reflected, and transmitted waves are given by

Incident Wave

Ẽi
‖ = ŷiE

i
‖0e

− jk1xi

= (x̂cosθi − ẑsinθi)E
i
‖0e

− jk1(xsinθi+zcosθi), (8.65a)

H̃i
‖ = ŷ

E
i
‖0

η1

e
− jk1xi = ŷ

E
i
‖0

η1

e
− jk1(xsinθi+zcosθi), (8.65b)

Reflected Wave

Ẽr
‖ = ŷrE

r
‖0e

− jk1xr

= (x̂cosθr + ẑsinθr)E
r
‖0e

− jk1(xsinθr−zcosθr), (8.65c)

H̃r
‖ = −ŷ

E
r
‖0

η1

e
− jk1xr = −ŷ

E
r
‖0

η1

e
− jk1(xsinθr−zcosθr), (8.65d)

Transmitted Wave

Ẽt
‖ = ŷtE

t
‖0e

− jk2xt

= (x̂cosθt − ẑsinθt)E
t
‖0e

− jk2(xsinθt+zcosθt), (8.65e)

H̃t
‖ = ŷ

E
t
‖0

η2

e
− jk2xt = ŷ

E
t
‖0

η2

e
− jk2(xsinθt+zcosθt). (8.65f)

By matching the tangential components of Ẽ and H̃ in both

media at z = 0, we again obtain the relations defining Snell’s
laws, as well as the following expressions for the Fresnel
reflection and transmission coefficients for parallel polariza-
tion:

Γ‖ =
E

r
‖0

E i
‖0

=
η2 cosθt −η1 cosθi

η2 cosθt + η1 cosθi

,

τ‖ =
E

t
‖0

E i
‖0

=
2η2 cosθi

η2 cosθt + η1 cosθi

.

(8.66a)

(8.66b)

The preceding expressions can be shown to yield the relation

τ‖ = (1 + Γ‖)
cosθi

cosθt

. (8.67)

We noted earlier in connection with the perpendicular-
polarization case that, when the second medium is a perfect

conductor with η2 = 0, the incident wave gets totally reflected

at the boundary. The same is true for the parallel polarization
case; setting η2 = 0 in Eqs. (8.66a and b) gives Γ‖ = −1 and

τ‖ = 0.

For nonmagnetic materials, Eq. (8.66a) becomes

Γ‖ =
−(ε2/ε1)cosθi +

√
(ε2/ε1)− sin2 θi

(ε2/ε1)cosθi +
√

(ε2/ε1)− sin2 θi

(for µ1 = µ2).

(8.68)
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Figure 8-17 Plots for |Γ⊥| and |Γ‖| as a function of θi for a

dry soil surface, a wet soil surface, and a water surface. For each

surface, |Γ‖| = 0 at the Brewster angle.

To illustrate the angular variations of the magnitudes of Γ⊥
and Γ‖, Fig. 8-17 shows plots for waves incident in air onto
three different types of dielectric surfaces: dry soil (εr = 3),

wet soil (εr = 25), and water (εr = 81). For each of the surfaces,

(1) Γ⊥ = Γ‖ at normal incidence (θi = 0), as expected; (2)

|Γ⊥| = |Γ‖| = 1 at grazing incidence (θi = 90◦); and (3) Γ‖
goes to zero at an angle called the Brewster angle in Fig. 8-17.

Had the materials been magnetic too (µ1 6= µ2), it would have

been possible for Γ⊥ to vanish at some angle as well. However,
for nonmagnetic materials, the Brewster angle exists only for

parallel polarization, and its value depends on the ratio (ε2/ε1),
as we see shortly.

◮ At the Brewster angle, the parallel-polarized com-

ponent of the incident wave is totally transmitted into
medium 2. ◭

8-4.3 Brewster Angle

The Brewster angle θB is defined as the incidence angle θi at

which the Fresnel reflection coefficient Γ = 0.

Perpendicular Polarization

For perpendicular polarization, the Brewster angle θB⊥ can be
obtained by setting the numerator of the expression for Γ⊥,

given by Eq. (8.58a), equal to zero. This happens when

η2 cosθi = η1 cosθt. (8.69)

By (1) squaring both sides of Eq. (8.69), (2) using Eq. (8.56),
(3) solving for θi, and then denoting θi as θB⊥, we obtain

sinθB⊥ =

√
1− (µ1ε2/µ2ε1)

1− (µ1/µ2)2
. (8.70)

Because the denominator of Eq. (8.70) goes to zero when

µ1 = µ2, θB⊥ does not exist for nonmagnetic materials.

Parallel Polarization

For parallel polarization, the Brewster angle θB‖ at which
Γ‖ = 0 can be found by setting the numerator of Γ‖ in

Eq. (8.66a) equal to zero. The result is identical to Eq. (8.70),

but with µ and ε interchanged. That is,

sin θB‖ =

√
1− (ε1µ2/ε2µ1)

1− (ε1/ε2)2
. (8.71)

For nonmagnetic materials,

θB‖ = sin−1

√
1

1 +(ε1/ε2)

= tan−1

√
ε2

ε1

(for µ1 = µ2). (8.72)

The Brewster angle is also called the polarizing angle. This

is because, if a wave composed of both perpendicular and
parallel polarization components is incident upon a nonmag-

netic surface at the Brewster angle θB‖, the parallel polarized

component is totally transmitted into the second medium, and
only the perpendicularly polarized component is reflected by

the surface. Natural light, including sunlight and light gener-
ated by most manufactured sources, is unpolarized because

the direction of the electric field of the light waves varies

randomly in angle over the plane perpendicular to the direction
of propagation. Thus, on average, half of the intensity of

natural light is perpendicularly polarized and the other half is

parallel polarized. When unpolarized light is incident upon a
surface at the Brewster angle, the reflected wave is strictly per-

pendicularly polarized. Hence, the surface acts as a polarizer.



8-5 REFLECTIVITY AND TRANSMISSIVITY 377

Concept Question 8-4: Can total internal reflection
take place for a wave incident from medium 1 (with n1)

onto medium 2 (with n2) when n2 > n1?

Concept Question 8-5: What is the difference between
the boundary conditions applied in Section 8-1.1 for

normal incidence and those applied in Section 8-4.1 for

oblique incidence with perpendicular polarization?

Concept Question 8-6: Why is the Brewster angle also
called the polarizing angle?

Concept Question 8-7: At the boundary, the vector

sum of the tangential components of the incident and
reflected electric fields has to equal the tangential com-

ponent of the transmitted electric field. For εr1 = 1 and

εr2 = 16, determine the Brewster angle and then verify the
validity of the preceding statement by sketching to scale

the tangential components of the three electric fields at the

Brewster angle.

Exercise 8-7: A wave in air is incident upon a soil surface
at θi = 50◦. If soil has εr = 4 and µr = 1, determine Γ⊥,

τ⊥, Γ‖, and τ‖.

Answer: Γ⊥ =−0.48, τ⊥ = 0.52, Γ‖ =−0.16, τ‖ = 0.58.

(See EM .)

Exercise 8-8: Determine the Brewster angle for the
boundary of Exercise 8-7.

Answer: θB = 63.4◦. (See EM .)

Exercise 8-9: Show that the incident, reflected, and trans-

mitted electric and magnetic fields given by Eqs. (8.65a)

through (8.65f) all have the same exponential phase func-
tion along the x direction.

Answer: With the help of Eqs. (8.55) and (8.56), all six
fields are shown to vary as e

− jk1xsinθi . (See EM .)

8-5 Reflectivity and Transmissivity

The reflection and transmission coefficients derived earlier are

ratios of the reflected and transmitted electric field amplitudes

to the amplitude of the incident electric field. We now exam-
ine power ratios, starting with the perpendicular polarization

case. Figure 8-18 shows a circular beam of electromagnetic

P i Pr

P t

A co
s θ

i A cos θ
r

A cos θ t

θi θr

θt

Medium 2 (ε2, μ2)

Medium 1 (ε1, μ1)

A

Figure 8-18 Reflection and transmission of an incident circu-

lar beam illuminating a spot of size A on the interface.

energy incident upon the boundary between two contiguous,

lossless media. The area of the spot illuminated by the beam
is A, and the incident, reflected, and transmitted beams have

electric-field amplitudes E
i
⊥0, E

r
⊥0, and E

t
⊥0, respectively. The

average power densities carried by the incident, reflected, and
transmitted beams are

S
i
⊥ =

|E i
⊥0|2

2η1

, (8.73a)

S
r
⊥ =

|E r
⊥0|2

2η1
, (8.73b)

S
t
⊥ =

|E t
⊥0|2

2η2

, (8.73c)

where η1 and η2 are the intrinsic impedances of media 1

and 2, respectively. The cross-sectional areas of the incident,

reflected, and transmitted beams are

Ai = Acosθi, (8.74a)

Ar = Acosθr, (8.74b)

At = Acosθt, (8.74c)
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and the corresponding average powers carried by the beams
are

P
i
⊥ = S

i
⊥Ai =

|E i
⊥0|2

2η1

Acosθi, (8.75a)

P
r
⊥ = S

r
⊥Ar =

|E r
⊥0|2

2η1

Acosθr, (8.75b)

P
t
⊥ = S

t
⊥At =

|E t
⊥0|2

2η2
Acosθt. (8.75c)

The reflectivity R (also called reflectance in optics) is defined
as the ratio of the reflected to the incident power. The reflec-

tivity for perpendicular polarization is then

R⊥ =
P

r
⊥

Pi
⊥

=
|E r

⊥0|2 cosθr

|E i
⊥0
|2 cosθi

=

∣∣∣∣
E

r
⊥0

E i
⊥0

∣∣∣∣
2

, (8.76)

where we used the fact that θr = θi in accordance with Snell’s
law of reflection. The ratio of the reflected to incident electric

field amplitudes, |E r
⊥0/E

i
⊥0|, is equal to the magnitude of the

reflection coefficient Γ⊥. Hence,

R⊥ = |Γ⊥|2, (8.77)

and similarly, for parallel polarization

R‖ =
P

r
‖

Pi
‖

= |Γ‖|2. (8.78)

The transmissivity T (or transmittance in optics) is defined as
the ratio of the transmitted power to incident power:

T⊥ =
P

t
⊥

Pi
⊥

=
|E t

⊥0|2
|E i

⊥0
|2

η1

η2

Acosθt

Acosθi

= |τ⊥|2
(

η1 cosθt

η2 cosθi

)
,

T‖ =
P

t
‖

Pi
‖

= |τ‖|2
(

η1 cosθt

η2 cosθi

)
.

(8.79a)

(8.79b)

◮ The incident, reflected, and transmitted waves do not

have to obey any such laws as conservation of electric

field, conservation of magnetic field, or conservation of
power density, but they do have to obey the law of

conservation of power. ◭

In fact, in many cases, the transmitted electric field is larger
than the incident electric field. Conservation of power requires

that the incident power equals the sum of the reflected and

transmitted powers. That is, for perpendicular polarization,

P
i
⊥ = P

r
⊥ + P

t
⊥, (8.80)

or

|E i
⊥0|2

2η1

Acosθi =
|E r

⊥0|2
2η1

Acosθr +
|E t

⊥0|2
2η2

Acosθt. (8.81)

Use of Eqs. (8.76), (8.79a), and (8.79b) leads to

R⊥ + T⊥ = 1, (8.82a)

R‖ + T‖ = 1, (8.82b)

or

|Γ⊥|2 + |τ⊥|2
(

η1 cosθt

η2 cosθi

)
= 1,

|Γ‖|2 + |τ‖|2
(

η1 cosθt

η2 cosθi

)
= 1.

(8.83a)

(8.83b)

Figure 8-19 shows plots for (R‖,T‖) as a function of θi for an
air–glass interface. Note that the sum of R‖ and T‖ is always

equal to 1, as mandated by Eq. (8.82b). We also note that, at

the Brewster angle θB, R‖ = 0 and T‖ = 1.
Table 8-2 provides a summary of the general expressions

for Γ, τ , R, and T for both normal and oblique incidence.
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Figure 8-19 Angular plots for (R‖,T‖) for an air–glass inter-

face.
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Table 8-2 Expressions for Γ, τ , R, and T for wave incidence from a medium with intrinsic impedance η1 onto a medium with

intrinsic impedance η2. Angles θi and θt are the angles of incidence and transmission, respectively.

Normal Incidence Perpendicular Parallel

Property θi = θt = 0 Polarization Polarization

Reflection coefficient Γ =
η2 −η1

η2 +η1
Γ⊥ =

η2 cosθi −η1 cosθt

η2 cosθi +η1 cosθt
Γ‖ =

η2 cosθt −η1 cosθi

η2 cosθt +η1 cosθi

Transmission coefficient τ =
2η2

η2 +η1
τ⊥ =

2η2 cosθi

η2 cosθi +η1 cosθt
τ‖ =

2η2 cosθi

η2 cosθt +η1 cosθi

Relation of Γ to τ τ = 1+Γ τ⊥ = 1+Γ⊥ τ‖ = (1+Γ‖)
cosθi

cosθt

Reflectivity R = |Γ|2 R⊥ = |Γ⊥|2 R‖ = |Γ‖|2

Transmissivity T = |τ|2
(

η1

η2

)
T⊥ = |τ⊥|2

η1 cosθt

η2 cosθi

T‖ = |τ‖|2
η1 cosθt

η2 cosθi

Relation of R to T T = 1−R T⊥ = 1−R⊥ T‖ = 1−R‖

Notes: (1) sinθt =
√

µ1ε1/µ2ε2 sinθi; (2) η1 =
√

µ1/ε1; (3) η2 =
√

µ2/ε2; (4) for nonmagnetic media, η2/η1 = n1/n2.

Module 8.3 Oblique Incidence Upon specifying the frequency, polarization and incidence angle of a plane wave incident

upon a planar boundary between two lossless media, this module displays vector information and plots of the reflection and
transmission coefficients as a function of the incidence angle.
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Module 8.4 Oblique Incidence in Lossy Medium This module extends the capabilities of Module 8.1 to situations in
which medium 2 is lossy.

Example 8-7: Beam of Light

A 5 W beam of light with circular cross section is incident
in air upon the plane boundary of a dielectric medium with

index of refraction of 5. If the angle of incidence is 60◦ and the

incident wave is parallel polarized, determine the transmission
angle and the powers contained in the reflected and transmitted

beams.

Solution: From Eq. (8.56),

sinθt =
n1

n2

sinθi =
1

5
sin60◦ = 0.17

or
θt = 10◦.

With ε2/ε1 = n
2
2/n

2
1 = (5)2 = 25, the reflection coefficient for

parallel polarization follows from Eq. (8.68) as

Γ‖ =
−(ε2/ε1)cosθi +

√
(ε2/ε1)− sin2 θi

(ε2/ε1)cosθi +
√

(ε2/ε1)− sin2 θi

=
−25cos60◦+

√
25− sin2 60◦

25cos60◦+
√

25− sin2 60◦
= −0.435.

The reflected and transmitted powers therefore are

P
r
‖ = P

i
‖|Γ‖|2 = 5(0.435)2 = 0.95 W,

P
t
‖ = P

i
‖−P

r
‖ = 5−0.95 = 4.05 W.

8-6 Waveguides

Earlier in Chapter 2, we considered two families of

transmission lines, namely those that support transverse-
electromagnetic (TEM) modes, and those that do not. Trans-
mission lines belonging to the TEM family (Fig. 2-4), includ-

ing coaxial, two-wire, and parallel-plate lines, support E and H

fields that are orthogonal to the direction of propagation. Fields
supported by lines in the other group—often called higher-
order transmission lines—may have E or H orthogonal to the

direction of propagation k̂, but not both simultaneously. Thus,
at least one component of E or H is along k̂.

◮ If E is transverse to k̂ but H is not, we call it a

transverse electric (TE) mode, and if H is transverse
to k̂ but E is not, we call it a transverse magnetic (TM)

mode. ◭
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(a)  Optical fiber

(b)  Circular waveguide

(c)  Rectangular waveguide

Metal
Hollow or
dielectric-filled
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Figure 8-20 Wave travel by successive reflections in (a) an

optical fiber, (b) a circular metal waveguide, and (c) a rectangular

metal waveguide.

Among all higher-order transmission lines, the two most
commonly used are optical fiber and the metal waveguide.

As noted in Section 8-3, a wave is guided along an optical

fiber through successive zigzags by taking advantage of the
total internal reflection at the boundary between the (inner)

core and the (outer) cladding (Fig. 8-20(a)). Another way to

achieve internal reflection at the core’s boundary is to have
its surface coated by a conducting material. Under the proper

conditions (we shall elaborate later) a wave excited in the

(a)  Coax-to-waveguide coupler

(b)  Cross-sectional view at x = a/2

y = b

y = 0

Electric field

EM wave

z

Waveguide

0

Coaxial line

x

b
a

z

y

Probe

Figure 8-21 The inner conductor of a coaxial cable can excite

an EM wave in the waveguide.

interior of a hollow conducting pipe, such as the circular

or rectangular waveguides shown in Figs. 8-20(b) and (c),
undergoes a process similar to that of successive internal

reflection in an optical fiber, resulting in propagation down the

pipe. Most waveguide applications call for air-filled guides, but
in some cases, the waveguide may be filled with a dielectric

material used to alter its propagation velocity or impedance, or

it may be vacuum-pumped to eliminate air molecules in order
to prevent voltage breakdown, thereby increasing its power-

handling capabilities.
Figure 8-21 illustrates how a coaxial cable can be connected

to a rectangular waveguide. With its outer conductor connected

to the metallic waveguide enclosure, the coaxial cable’s inner
conductor protrudes through a tiny hole into the waveguide’s

interior (without touching the conducting surface). Time-

varying electric field lines extending between the protruding
inner conductor and the inside surface of the guide provide

the excitation necessary to transfer a signal from the coaxial
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line to the guide. Conversely, the center conductor can act like
a probe, coupling a signal from the waveguide to the coaxial

cable.

For guided transmission at frequencies below 30 GHz, the
coaxial cable is by far the most widely used transmission line.

At higher frequencies, however, the coaxial cable has a number

of limitations: (a) in order for it to propagate only TEM modes,
the cable’s inner and outer conductors have to be reduced

in size to satisfy a certain size-to-wavelength requirement,

making it more difficult to fabricate, (b) the smaller cross sec-
tion reduces the cable’s power-handling capacity (limited by

dielectric breakdown), and (c) the attenuation due to dielectric
losses increases with frequency. For all of these reasons, metal

waveguides have been used as an alternative to coaxial lines

for many radar and communication applications that operate
at frequencies in the 5–100 GHz range, particularly those re-

quiring the transmission of high levels of radio-frequency (RF)

power. Even though waveguides with circular and elliptical
cross sections have been used in some microwave systems, the

rectangular shape has been the more prevalent geometry.

8-7 General Relations for E and H

The purpose of the next two sections is to derive expressions

for E and H for the TE and TM modes in a rectangular wave-

guide and to examine their wave properties. We choose the
coordinate system shown in Fig. 8-22, where the propagation

occurs along ẑ. For TE modes, the electric field is transverse to

the direction of propagation. Hence, E may have components
along x̂ and ŷ but not along ẑ. In contrast, H has a ẑ-directed

component and may have components along either x̂ or ŷ or
along both. The converse is true for TM modes.

Our solution procedure consists of four steps:

(1) Maxwell’s equations are manipulated to develop general
expressions for the phasor-domain transverse field com-

ponents Ẽx, Ẽy, H̃x, and H̃y in terms of Ẽz and H̃z. When

0

z

b

y

a
x

Figure 8-22 Waveguide coordinate system.

specialized to the TE case, these expressions become

functions of H̃z only, and the converse is true for the TM

case.

(2) The homogeneous wave equations given by Eqs. (7.15)

and (7.16) are solved to obtain valid solutions for Ẽz (TM

case) and H̃z (TE case) in a waveguide.

(3) The expressions derived in step 1 are then used to find Ẽx,

Ẽy, H̃x, and H̃y.

(4) The solutions obtained in step 3 are analyzed to determine
the phase velocity and other properties of the TE and TM

waves.

The intent of the present section is to realize the stated goals

of step 1. We begin with a general form for the E and H fields

in the phasor domain:

Ẽ = x̂ Ẽx + ŷ Ẽy + ẑ Ẽz, (8.84a)

H̃ = x̂H̃x + ŷH̃y + ẑH̃z. (8.84b)

In general, all six components of Ẽ and H̃ may depend on
(x,y,z), and while we do not yet know how they functionally

depend on (x,y), our prior experience suggests that Ẽ and H̃

of a wave traveling along the +z direction should exhibit a

dependence on z of the form e
− jβ z, where β is a yet-to-be

determined phase constant. Hence, we adopt the form

Ẽx(x,y,z) = ẽx(x,y) e
− jβ z, (8.85)

where ẽx(x,y) describes the dependence of Ẽx(x,y,z) on (x,y)
only. The form of Eq. (8.85) can be used for all other compo-

nents of Ẽ and H̃ as well. Thus,

Ẽ = (x̂ ẽx + ŷ ẽy + ẑ ẽz)e
− jβ z, (8.86a)

H̃ = (x̂ h̃x + ŷ h̃y + ẑ h̃z)e
− jβ z. (8.86b)

The notation is intended to clarify that, in contrast to Ẽ and H̃,

which vary with (x,y,z), the lower case ẽ and h̃ vary with (x,y)
only.

In a lossless, source-free medium (such as the inside of a

waveguide) characterized by permittivity ε and permeability µ
(and conductivity σ = 0), Maxwell’s curl equations are given
by Eqs. (7.2b and d) with J = 0,

∇× Ẽ = − jωµH̃, (8.87a)

∇× H̃ = jωεẼ. (8.87b)

Upon inserting Eqs. (8.86a and b) into Eqs. (8.87a and b) and

recalling that each of the curl equations actually consists of
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three separate equations—one for each of the unit vectors x̂, ŷ,
and ẑ, we obtain the following relationships:

∂ ẽz

∂y
+ jβ ẽy = − jωµ h̃x, (8.88a)

− jβ ẽx −
∂ ẽz

∂x
= − jωµ h̃y, (8.88b)

∂ ẽy

∂x
− ∂ ẽx

∂y
= − jωµ h̃z, (8.88c)

∂ h̃z

∂y
+ jβ h̃y = jωε ẽx, (8.88d)

− jβ h̃x −
∂ h̃z

∂x
= jωε ẽy, (8.88e)

∂ h̃y

∂x
− ∂ h̃x

∂y
= jωε ẽz. (8.88f)

Equations (8.88a-f) incorporate the fact that differentiation

with respect to z is equivalent to multiplication by − jβ .
By manipulating these equations algebraically, we can obtain

expressions for the x and y components of Ẽ and H̃ in terms of
their z components, namely

Ẽx =
− j

k2
c

(
β

∂ Ẽz

∂x
+ ωµ

∂ H̃z

∂y

)
,

Ẽy =
j

k2
c

(
−β

∂ Ẽz

∂y
+ ωµ

∂ H̃z

∂x

)
,

H̃x =
j

k2
c

(
ωε

∂ Ẽz

∂y
−β

∂ H̃z

∂x

)
,

H̃y =
− j

k2
c

(
ωε

∂ Ẽz

∂x
+ β

∂ H̃z

∂y

)
.

(8.89a)

(8.89b)

(8.89c)

(8.89d)

Here

k
2
c = k

2 −β 2 = ω2µε −β 2, (8.90)

where k is the unbounded-medium wavenumber earlier

defined as

k = ω
√

µε . (8.91)

For reasons that become clear later (in Section 8-8), the

constant kc is called the cutoff wavenumber. In view of

Eqs. (8.89a-d), the x and y components of Ẽ and H̃ now can be

found readily—so long as we have mathematical expressions

for Ẽz and H̃z. For the TE mode, Ẽz = 0, so all we need to know

is H̃z, and the converse is true for the TM case.

8-8 TM Modes in Rectangular

Waveguide

In the preceding section, we developed expressions for Ẽx, Ẽy,

H̃x, and H̃y in terms of Ẽz and H̃z. Since H̃z = 0 for the TM

mode, our task reduces to obtaining a valid solution for Ẽz.

Our starting point is the homogeneous wave equation for Ẽ.
For a lossless medium characterized by an unbounded-medium

wavenumber k, the wave equation is given by Eq. (7.19) as

∇2Ẽ+ k
2Ẽ = 0. (8.92)

To satisfy Eq. (8.92), each of its x̂, ŷ, and ẑ components has to
be satisfied independently. Its ẑ component is given by

∂ 2
Ẽz

∂x2
+

∂ 2
Ẽz

∂y2
+

∂ 2
Ẽz

∂ z2
+ k

2
Ẽz = 0. (8.93)

By adopting the mathematical form given by Eq. (8.85),

namely,

Ẽz(x,y,z) = ẽz(x,y) e
− jβ z, (8.94)

Eq. (8.93) reduces to

∂ 2
ẽz

∂x2
+

∂ 2
ẽz

∂y2
+ k

2
c ẽz = 0, (8.95)

where k
2
c is as defined by Eq. (8.90).

The form of the partial differential equation (separate,

uncoupled derivatives with respect to x and y) allows us to
assume a product solution of the form

ẽz(x,y) = X(x) Y (y). (8.96)

Substituting Eq. (8.96) into Eq. (8.95) and then dividing all

terms by X(x) Y (y) leads to:

1

X

d
2
X

dx2
+

1

Y

d
2
Y

dy2
+ k

2
c = 0. (8.97)

To satisfy Eq. (8.97), each of the first two terms has to equal a

constant. Hence, we define separation constants kx and ky such

that

d
2
X

dx2
+ k

2
xX = 0, (8.98a)

d
2
Y

dy2
+ k

2
yY = 0, (8.98b)

and

k
2
c = k

2
x + k

2
y . (8.99)
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Before proposing solutions for Eqs. (8.98a and b), we should
consider the constraints that the solutions must meet. The elec-

tric field Ẽz is parallel to all four walls of the waveguide. Since

E = 0 in the conducting walls, the boundary conditions require

Ẽz in the waveguide cavity to go to zero as x approaches 0 and

a and as y approaches 0 and b (Fig. 8-22). To satisfy these
boundary conditions, sinusoidal solutions are chosen for X(x)
and Y (y) as:

ẽz = X(x) Y (y) = (Acoskxx + Bsinkxx)(C coskyy + Dsinkyy).

(8.100)

These forms for X(x) and Y (y) definitely satisfy the differ-
ential equations given by Eqs. (8.98a and b). The boundary

conditions for ẽz are

ẽz = 0 at x = 0 and a, (8.101a)

ẽz = 0 at y = 0 and b. (8.101b)

Satisfying ẽz = 0 at x = 0 requires that we set A = 0, and
similarly, satisfying ẽz = 0 at y = 0 requires C = 0. Satisfying

ẽz = 0 at x = a requires

kx =
mπ

a
, m = 1,2,3, . . . (8.102a)

and similarly, satisfying ẽz = 0 at y = b requires

ky =
nπ

b
, n = 1,2,3, . . . (8.102b)

Consequently,

Ẽz = ẽze
− jβ z = E0 sin

(
mπx

a

)
sin
(

nπy

b

)
e
− jβ z, (8.103)

where E0 = BD is the amplitude of the wave in the guide.

Keeping in mind that H̃z = 0 for the TM mode, the transverse

components of Ẽ and H̃ now can be obtained by applying

Eq. (8.103) to Eqs. (8.89a–d),

Ẽx =
− jβ

k2
c

(
mπ

a

)
E0 cos

(
mπx

a

)
sin
(

nπy

b

)
e
− jβ z, (8.104a)

Ẽy =
− jβ

k2
c

(
nπ

b

)
E0 sin

(
mπx

a

)
cos
(

nπy

b

)
e
− jβ z, (8.104b)

H̃x =
jωε

k2
c

(
nπ

b

)
E0 sin

(
mπx

a

)
cos
(

nπy

b

)
e
− jβ z, (8.104c)

H̃y =
− jωε

k2
c

(
mπ

a

)
E0 cos

(
mπx

a

)
sin
(

nπy

b

)
e
− jβ z.

(8.104d)

Each combination of the integers m and n represents a viable

solution—or a mode—denoted TMmn. Associated with each

mn mode are specific field distributions for the region inside
the guide. Figure 8-23 depicts the E and H field lines for the

TM11 mode across two different cross sections of the guide.

(c) Field lines for side view

y

b

z

H field into page E field

H field out of page

0

(b) Field lines for front view
0

x

y

b

a

H field E field

(a) Cross-sectional planes

Front view

Side view

0x

y
z

a

b

Figure 8-23 TM11 electric and magnetic field lines across two

cross-sectional planes.

According to Eqs. (8.103) and (8.104e), a rectangular wave-

guide with cross section (a× b) can support the propagation
of waves with many different, but discrete, field configurations

specified by the integers m and n. The only quantity in the
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fields’ expressions that we have yet to determine is the propa-
gation constant β , which is contained in the exponential e

− jβ z.

By combining Eqs. (8.90), (8.99), and (8.102), we obtain the

following expression for β :

β =
√

k2 − k2
c =

√
ω2µε −

(
mπ

a

)2

−
(

nπ

b

)2

. (8.105)

(TE and TM)

Even though the expression for β was derived for TM modes,

it is equally applicable to TE modes.
The exponential e

− jβ z describes a wave traveling in the

+z direction—provided that β is real—which corresponds to

k > kc. If k < kc, β becomes imaginary: β = − jα with α
real, in which case e

− jβ z = e
−αz, yielding evanescent waves

characterized by amplitudes that decay rapidly with z due to

the attenuation function e
−αz. Corresponding to each mode

(m,n), there is a cutoff frequency fmn at which β = 0. By

setting β = 0 in Eq. (8.105) and then solving for f , we have

fmn =
up0

2

√(
m

a

)2

+
(

n

b

)2

,

(TE and TM)

(8.106)

where up0
= 1/

√
µε is the phase velocity of a TEM wave in

an unbounded medium with constitutive parameters ε and µ .

◮ A wave in a given mode can propagate through
the guide only if its frequency f > fmn, as only then

β = real. ◭

The mode with the lowest cutoff frequency is known as
the dominant mode. The dominant mode is TM11 among TM

modes and TE10 among TE modes. Whereas a value of zero

for m or n is allowed for TE modes, it is not for TM modes

[because if either m or n is zero, Ẽz in Eq. (8.103) becomes

zero and all other field components vanish as well].

By combining Eqs. (8.105) and (8.106), we can express β
in terms of fmn,

β =
ω

up0

√

1−
(

fmn

f

)2

. (TE and TM) (8.107)

The phase velocity of a TE or TM wave in a waveguide is

up =
ω

β
=

up0√
1− ( fmn/ f )2

. (TE and TM) (8.108)

The transverse electric field consists of components Ẽx

and Ẽy given by Eqs. (8.104a and b). For a wave traveling

in the +z direction, the magnetic field associated with Ẽx

is H̃y [according to the right hand rule given by Eq. (7.39a)].

Similarly, the magnetic field associated with Ẽy is −H̃x. The

ratios, obtained by employing Eq. (8.104e), constitute the

wave impedance in the guide,

ZTM =
Ẽx

H̃y

= − Ẽy

H̃x

=
β η

k
= η

√

1−
(

fmn

f

)2

, (8.109)

where η =
√

µ/ε is the intrinsic impedance of the dielectric

material filling the guide.

Example 8-8: Mode Properties

A TM wave propagating in a dielectric-filled waveguide of un-

known permittivity has a magnetic field with the y component

given by

Hy = 6cos(25πx)sin(100πy)

×sin(1.5π ×1010
t −109πz) (mA/m).

If the guide dimensions are a = 2b = 4 cm, determine (a) the

mode numbers, (b) the relative permittivity of the material
in the guide, and (c) the phase velocity, and (d) obtain an

expression for Ex.

Solution: (a) By comparison with the expression for H̃y given

by Eq. (8.104d), we deduce that the argument of x is (mπ/a)
and the argument of y is (nπ/b). Hence,

25π =
mπ

4×10−2
, 100π =

nπ

2×10−2
,

which yield m = 1 and n = 2. Therefore, the mode is TM12.

(b) The second sine function in the expression for Hy repre-
sents sin(ωt −β z), which means that

ω = 1.5π ×1010 (rad/s) or f = 7.5 GHz,

β = 109π (rad/m).

By rewriting Eq. (8.105) to obtain an expression for εr = ε/ε0

in terms of the other quantities, we have

εr =
c

2

ω2

[
β 2 +

(
mπ

a

)2

+
(

nπ

b

)2
]

,
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where c is the speed of light. Inserting the available values, we
obtain

εr =
(3×108)2

(1.5π ×1010)2

·
[
(109π)2 +

(
π

4×10−2

)2

+

(
2π

2×10−2

)2
]

= 9.

(c)

up =
ω

β
=

1.5π ×1010

109π
= 1.38×108 m/s,

which is slower than the speed of light. However, as explained

later in Section 8-10, the phase velocity in a waveguide may
exceed c, but the velocity with which energy is carried down

the guide is the group velocity ug, which is never greater than c.

(d) From Eq. (8.109),

ZTM = η
√

1− ( f12/ f )2 .

Application of Eq. (8.106) yields f12 = 5.15 GHz for the TM12

mode. Using that in the expression for ZTM, in addition to

f = 7.5 GHz and

η =
√

µ/ε =

√
µ0/ε0√

εr

=
377√

9
= 125.67 Ω,

gives

ZTM = 91.3 Ω.

Hence,

Ex = ZTMHy = 91.3×6cos(25πx)sin(100πy)

× sin(1.5π ×1010
t −109πz) (mV/m)

= 0.55cos(25πx)sin(100πy)

× sin(1.5π ×1010
t −109πz) (V/m).

Concept Question 8-8: What are the primary limita-

tions of coaxial cables at frequencies higher than 30 GHz?

Concept Question 8-9: Can a TE mode have a zero
magnetic field along the direction of propagation?

Concept Question 8-10: What is the rationale for

choosing a solution for ẽz that involves sine and cosine
functions?

Concept Question 8-11: What is an evanescent wave?

Exercise 8-10: For a square waveguide with a = b, what

is the value of the ratio Ẽx/Ẽy for the TM11 mode?

Answer: tan(πy/a)/ tan(πx/a).

Exercise 8-11: What is the cutoff frequency for the dom-

inant TM mode in a waveguide filled with a material with
εr = 4? The waveguide dimensions are a = 2b = 5 cm.

Answer: For TM11, f11 = 3.35 GHz.

Exercise 8-12: What is the magnitude of the phase veloc-

ity of a TE or TM mode at f = fmn?

Answer: up = ∞ ! [See explanation in Section 8-10.]

8-9 TE Modes in Rectangular Waveguide

In the TM case, where the wave has no magnetic field com-

ponent along the z direction (i.e., H̃z = 0), we started our

treatment in the preceding section by obtaining a solution

for Ẽz, and then we used it to derive expressions for the

tangential components of Ẽ and H̃. For the TE case, the same
basic procedure can be applied, except we reversed the roles

of Ẽz and H̃z. Such a process leads to:

Ẽx =
jωµ

k2
c

(
nπ

b

)
H0 cos

(
mπx

a

)
sin
(

nπy

b

)
e
− jβ z, (8.110a)

Ẽy =
− jωµ

k2
c

(
mπ

a

)
H0 sin

(
mπx

a

)
cos
(

nπy

b

)
e
− jβ z,

(8.110b)

H̃x =
jβ

k2
c

(
mπ

a

)
H0 sin

(
mπx

a

)
cos
(

nπy

b

)
e
− jβ z, (8.110c)

H̃y =
jβ

k2
c

(
nπ

b

)
H0 cos

(
mπx

a

)
sin
(

nπy

b

)
e
− jβ z, (8.110d)

H̃z = H0 cos
(

mπx

a

)
cos
(

nπy

b

)
e
− jβ z, (8.110e)

and of course, Ẽz = 0. The expressions for fmn, β , and up

given earlier by Eqs. (8.106), (8.107), and (8.108) remain

unchanged.

◮ Because not all of the fields vanish if m or n assume a

value of zero, the lowest order TE mode is TE10 if a > b or

TE01 if a < b. It is customary to assign a to be the longer
dimension, in which case the TE10 mode is the de facto

dominant mode. ◭
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Table 8-3 Wave properties for TE and TM modes in a rectangular waveguide with dimensions a×b that are filled with a dielectric

material with constitutive parameters ε and µ . The TEM case—shown here for reference—pertains to plane-wave propagation in

an unbounded medium.

Rectangular Waveguides Plane Wave

TE Modes TM Modes TEM Mode

Ẽx = jωµ

k2
c

(
nπ
b

)
H0 cos

(
mπx

a

)
sin
(

nπy

b

)
e
− jβ z

Ẽx = − jβ

k2
c

(
mπ
a

)
E0 cos

(
mπx

a

)
sin
(

nπy

b

)
e
− jβ z

Ẽx = Ex0e
− jβ z

Ẽy = − jωµ

k2
c

(
mπ
a

)
H0 sin

(
mπx

a

)
cos
(

nπy

b

)
e
− jβ z

Ẽy = − jβ

k2
c

(
nπ
b

)
E0 sin

(
mπx

a

)
cos
(

nπy

b

)
e
− jβ z

Ẽy = Ey0e
− jβ z

Ẽz = 0 Ẽz = E0 sin
(

mπx

a

)
sin
(

nπy

b

)
e
− jβ z

Ẽz = 0

H̃x = −Ẽy/ZTE H̃x = −Ẽy/ZTM H̃x = −Ẽy/η

H̃y = Ẽx/ZTE H̃y = Ẽx/ZTM H̃y = Ẽx/η

H̃z = H0 cos
(

mπx

a

)
cos
(

nπy

b

)
e
− jβ z

H̃z = 0 H̃z = 0

ZTE = η/
√

1− ( fc/ f )2 ZTM = η
√

1− ( fc/ f )2 η =
√

µ/ε

Properties Common to TE and TM Modes

fc =
up0

2

√(
m

a

)2

+
(

n

b

)2

fc = not

applicable

β = k
√

1− ( fc/ f )2 k = ω
√

µε

up =
ω

β
= up0

/
√

1− ( fc/ f )2 up0
= 1/

√
µε

Another difference between the TE and TM modes relates

to the expression for the wave impedance. For TE,

ZTE =
Ẽx

H̃y

= − Ẽy

H̃x

=
η√

1− ( fmn/ f )2
. (8.111)

A summary of the expressions for the various wave attributes
of TE and TM modes is given in Table 8-3. As a reference,

corresponding expressions for the TEM mode on a coaxial
transmission line are included as well.

Example 8-9: Cutoff Frequencies

For a hollow rectangular waveguide with dimensions a = 3 cm

and b = 2 cm, determine the cutoff frequencies for all modes
up to 20 GHz. Over what frequency range will the guide

support the propagation of a single dominant mode?

fmn (GHz)

TE10 TE01 TE20

TE11

TM11 TM21 TM12 TM31

TE21 TE30 TE31

TE12

TE02

TM22

0 5 10 15 20

Figure 8-24 Cutoff frequencies for TE and TM modes in

a hollow rectangular waveguide with a = 3 cm and b = 2 cm

(Example 8-9).

Solution: A hollow guide has µ = µ0 and ε = ε0. Hence,

up0
= 1/

√
µ0ε0 = c. Application of Eq. (8.106) gives the cutoff

frequencies shown in Fig. 8-24, which start at 5 GHz for
the TE10 mode. To avoid all other modes, the frequency of

operation should be restricted to the 5–7.5 GHz range.
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(a)

(b)

Gaussian pulse High-frequency
carrier

Amplitude-
modulated
waveform

Figure 8-25 The amplitude-modulated high-frequency wave-

form in (b) is the product of the Gaussian-shaped pulse with the

sinusoidal high-frequency carrier in (a).

8-10 Propagation Velocities

When a wave is used to carry a message through a medium

or along a transmission line, information is encoded into the

wave’s amplitude, frequency, or phase. A simple example is
shown in Fig. 8-25, where a high-frequency sinusoidal wave

of frequency f is amplitude-modulated by a low-frequency

Gaussian pulse. The waveform in Fig. 8-25(b) is the result of
multiplying the Gaussian pulse shape in Fig. 8-25(a) by the

carrier waveform.

By Fourier analysis, the waveform in Fig. 8-25(b) is equiv-
alent to the superposition of a group of sinusoidal waves with

specific amplitudes and frequencies. Exact equivalence may
require a large (or infinite) number of frequency components,

but in practice, it is often possible to represent the modulated

waveform to a fairly high degree of fidelity with a wave group
that extends over a relatively narrow bandwidth surrounding

the high-frequency carrier f . The velocity that the envelope—

or equivalently the wave group—travels through the medium
is called the group velocity ug. As such, ug is the velocity of

the energy carried by the wave group and of the information

encoded in it. Depending on whether or not the propagation
medium is dispersive, ug may or may not be equal to the

phase velocity up. In Section 2-1.1, we described a dispersive

transmission line as one “on which the phase velocity is not a
constant as a function of frequency,” and as a result the shape

of a pulse transmitted through it gets progressively distorted as

it moves down the line. A rectangular waveguide constitutes
a dispersive transmission line because the phase velocity of a

TE or TM mode propagating through it is a strong function of

frequency [per Eq. (8.108)], particularly at frequencies close to
the cutoff frequency fmn. As we see shortly, if f ≫ fmn, the TE

and TM modes become approximately TEM in character—not
only in terms of the directional arrangement of the electric and

magnetic fields but also in terms of the frequency dependence

of the phase velocity.
We now examine up and ug in more detail. The phase

velocity defined as the velocity of the sinusoidal pattern of the

wave is given by

up =
ω

β
, (8.112)

while the group velocity ug is given by

ug =
1

dβ/dω
. (8.113)

Even though we will not derive Eq. (8.113) in this book, it

is nevertheless important that we understand its properties for

TE and TM modes in a metal waveguide. Using the expression
for β given by Eq. (8.107),

ug =
1

dβ/dω
= up0

√
1− ( fmn/ f )2 , (8.114)

where—as before—up0
is the phase velocity in an unbounded

dielectric medium. In view of Eq. (8.108) for the phase

velocity up,

upug = u
2
p0

. (8.115)

Above cutoff ( f > fmn), up ≥ up0
and ug ≤ up0

. As f → ∞, or
more precisely as ( fmn/ f ) → 0, TE and TM modes approach

the TEM case for which up = ug = up0
.

A useful graphical tool for describing the propagation prop-

erties of a medium or transmission line is the ω-β diagram.

In Fig. 8-26, the straight line starting at the origin represents
the ω-β relationship for a TEM wave propagating in an

unbounded medium (or on a TEM transmission line). The

TEM line provides a reference to which the ω-β curves of
the TE/TM modes can be compared. At a given location on

the ω-β line or curve, the ratio of the value of ω to that of
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f21

f11

f01

f10

TE21 and TM21

TE11 and TM11

TE01

TE10

TEM

ω (rad/s)

β (rad/m)

Figure 8-26 ω-β diagram for TE and TM modes in a hollow

rectangular waveguide. The straight line pertains to propagation

in an unbounded medium or on a TEM transmission line.

β defines up = ω/β , whereas it is the slope dω/dβ of the

curve at that point that defines the group velocity ug. For

the TEM line, the ratio and the slope have identical values
(hence, up = ug), and the line starts at ω = 0. In contrast, the

curve for each of the indicated TE/TM modes starts at a cutoff
frequency specific to that mode below which the waveguide

cannot support the propagation of a wave in that mode. At

frequencies close to cutoff, up and ug assume very different
values; in fact, at cutoff up = ∞ and ug = 0. On the other

end of the frequency spectrum—at frequencies much higher

than fmn—the ω-β curves of the TE/TM modes approach the
TEM line. We should note that for TE and TM modes, up

may easily exceed the speed of light, but ug will not. Since

it is ug that represents the actual transport of energy, Einstein’s
assertion that there is an upper bound on the speed of physical

phenomena is not violated.

So far, we have described the fields in the guide, but we
have yet to interpret them in terms of plane waves that zigzag

along the guide through successive reflections. To do just that,

consider the simple case of a TE10 mode. For m = 1 and n = 0,
the only nonzero component of the electric field given by

Eq. (8.110) is Ẽy, so

Ẽy = − j
ωµ

k2
c

(π

a

)
H0 sin

(πx

a

)
e
− jβ z. (8.116)

Using the identity sinθ = (e jθ −e
− jθ )/2 j for any argument θ ,

we obtain

Ẽy =

(
ωµπH0

2k2
c a

)
(e− jπx/a − e

jπx/a)e− jβ z

= E
′
0(e

− jβ (z+πx/β a)− e
− jβ (z−πx/β a))

= E
′
0(e

− jβ z
′ − e

− jβ z
′′
), (8.117)

where we have consolidated the quantities multiplying the two

exponential terms into the constant E
′
0. The first exponential

term represents a wave with propagation constant β traveling
in the z

′ direction, where

z
′ = z+

πx

β a
, (8.118a)

and the second term represents a wave traveling in the z
′′

direction with

z
′′ = z− πx

β a
. (8.118b)

From the diagram shown in Fig. 8-27(a), it is evident that the
z
′ direction is at an angle θ ′ relative to z, and the z

′′ direction is

at an angle θ ′′ =−θ ′. This means that the electric field Ẽy (and

its associated magnetic field H̃) of the TE10 mode is composed

of two TEM waves shown in Fig. 8-27(b) with both traveling
in the +z direction by zigzagging between the opposite walls

of the waveguide. Along the zigzag directions (z′ and z
′′), the

phase velocity of the individual wave components is up0
, but

the phase velocity of the combination of the two waves along

z is up.

Example 8-10: Zigzag Angle

For the TE10 mode, express the zigzag angle θ ′ in terms of the

ratio ( f/ f10), and then evaluate it at f = f10 and for f ≫ f10.

Solution: From Fig. 8-27,

θ ′
10 = tan−1

(
π

β10a

)
,

where the subscript 10 has been added as a reminder that the

expression applies to the TE10 mode specifically. For m = 1
and n = 0, Eq. (8.106) reduces to f10 = up0

/2a. After replacing

β with the expression given by Eq. (8.107) and replacing a

with up0
/2 f10, we obtain

θ ′ = tan−1

[
1√

( f/ f10)2 −1

]
.
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(a)  z' and z'' propagation directions

cos

From Eq. (8.118a), 

Hence,

From Eq. (8.118b), 

Hence,

x

z

.

.

.

.

a

x

H

H

E

E

z

z'

z''

(b)  TEM waves

Figure 8-27 The TE10 mode can be constructed as the sum of

two TEM waves.

At f = f10, θ ′ = 90◦, which means that the wave bounces back
and forth at normal incidence between the two side walls of the

waveguide, making no progress in the z direction. At the other

end of the frequency spectrum, when f ≫ f10, θ ′ approaches
0 and the wave becomes TEM-like as it travels straight down

the guide.

Concept Question 8-12: For TE waves, the dominant

mode is TE10, but for TM the dominant mode is TM11.
Why is it not TM10?

Concept Question 8-13: Why is it acceptable for up to

exceed the speed of light c, but not so for ug?

Exercise 8-13: What do the wave impedances for TE and
TM look like as f approaches fmn?

Answer: At f = fmn, ZTE looks like an open circuit, and

ZTM looks like a short circuit.

Exercise 8-14: What are the values for (a) up, (b) ug, and

(c) the zigzag angle θ ′ at f = 2 f10 for a TE10 mode in a
hollow waveguide?

Answer: (a) up = 1.15c, (b) ug = 0.87c, (c) θ ′ = 30◦.

8-11 Cavity Resonators

A rectangular waveguide has metal walls on four sides. When

the two remaining sides are terminated with conducting walls,
the waveguide becomes a cavity. By designing cavities to

resonate at specific frequencies, they can be used as circuit

elements in microwave oscillators, amplifiers, and bandpass
filters.

The rectangular cavity shown in Fig. 8-28(a) with dimen-
sions (a× b× d) is connected to two coaxial cables that feed

and extract signals into and from the cavity via input and

output probes. As a bandpass filter, the function of a resonant
cavity is to block all spectral components of the input signal

except for those with frequencies that fall within a narrow

band surrounding a specific center frequency f0, which is the
cavity’s resonant frequency. Comparison of the spectrum in

Fig. 8-28(b), which describes the range of frequencies that

might be contained in a typical input signal, with the narrow
output spectrum in Fig. 8-28(c) demonstrates the filtering

action imparted by the cavity.

In a rectangular waveguide, the fields constitute standing
waves along the x and y directions and a propagating wave

along ẑ. The terms TE and TM were defined relative to the

propagation direction; TE meant that E was entirely transverse
to ẑ, and TM meant that H had no component along ẑ.

In a cavity, there is no unique propagation direction, as no

fields propagate. Instead, standing waves exist along all three

directions. Hence, the terms TE and TM need to be modified

by defining the fields relative to one of the three rectangular
axes. For the sake of consistency, we will continue to define

the transverse direction to be any direction contained in the

plane whose normal is ẑ.

The TE mode in the rectangular waveguide consists of a

single propagating wave whose H̃z component is given by
Eq. (8.110e) as

H̃z = H0 cos
(

mπx

a

)
cos
(

nπy

b

)
e
− jβ z, (8.119)
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(a) Resonant cavity

(b) Input spectrum

(c) Output spectrum

f0

∆f

f

f0

f

0

x

b

a

z

y

d

Hollow or dielectric-filled resonant cavity

Output
signal

Input signal

Figure 8-28 A resonant cavity supports a very narrow band-

width around its resonant frequency f0.

where the phase factor e
− jβ z signifies propagation along +ẑ.

Because the cavity has conducting walls at both z = 0 and
z = d, it will contain two such waves: one with amplitude H0

traveling along +ẑ and another with amplitude H
−
0 traveling

along −ẑ. Hence,

H̃z = (H0e
− jβ z + H

−
0 e

jβ z)cos
(

mπx

a

)
cos
(

nπy

b

)
. (8.120)

Boundary conditions require the normal component of H̃ to be

zero at a conducting boundary. Consequently, H̃z must be zero
at z = 0 and z = d. To satisfy these conditions, it is necessary

that H
−
0 =−H0 and β d = pπ , with p = 1,2,3, . . . . In this case,

Eq. (8.120) becomes

H̃z = −2 jH0 cos
(

mπx

a

)
cos
(

nπy

b

)
sin
(

pπz

d

)
. (8.121)

Given that Ẽz = 0 for the TE modes, all of the other compo-

nents of Ẽ and H̃ can be derived readily through the application

of the relationships given by Eq. (8.89). A similar procedure

also can be used to characterize cavity modes for the TM case.

8-11.1 Resonant Frequency

The consequence of the quantization condition imposed on β ,
namely β = pπ/d with p assuming only integer values, is

that for any specific set of integer values of (m,n, p) the wave

inside the cavity can exist at only a single resonant frequency,
fmnp, whose value has to satisfy Eq. (8.105). The resulting

expression for fmnp is

fmnp =
up0

2

√(
m

a

)2

+
(

n

b

)2

+
(

p

d

)2

. (8.122)

For TE, the indices m and n start at 0, but p starts at 1.

The exact opposite applies to TM. By way of an example,
the resonant frequency for a TE101 mode in a hollow cavity

with dimensions a = 2 cm, b = 3 cm, and d = 4 cm is

f101 = 8.38 GHz.

8-11.2 Quality Factor

In the ideal case, if a group of frequencies is introduced into the
cavity to excite a certain TE or TM mode, only the frequency

component at exactly fmnp of that mode will survive, and all
others will attenuate. If a probe is used to couple a sample

of the resonant wave out of the cavity, the output signal will

be a monochromatic sinusoidal wave at fmnp. In practice, the
cavity exhibits a frequency response similar to that shown in

Fig. 8-28(c), which is very narrow, but it is not a perfect spike.

The bandwidth ∆ f of the cavity is defined as the frequency
range between the two frequencies (on either side of fmnp)

at which the amplitude is 1/
√

2 of the maximum amplitude
(at fmnp). The normalized bandwidth, defined as ∆ f/ fmnp, is

approximately equal to the reciprocal of the quality factor Q

of the cavity:

Q ≈ fmnp

∆ f
. (8.123)
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Module 8.5 Rectangular Waveguide Upon specifying the waveguide dimensions, the frequency f , and the mode type
(TE or TM) and number, this module provides information about the wave impedance, cutoff frequency, and other wave

attributes. It also displays the electric and magnetic field distributions inside the guide.

◮ The quality factor is defined in terms of the ratio of the

energy stored in the cavity volume to the energy dissipated

in the cavity walls through conduction. ◭

For an ideal cavity with perfectly conducting walls, no energy

loss is incurred, as a result of which Q is infinite and ∆ f ≈ 0.

Metals have very high (but not infinite) conductivities, so a real
cavity with metal walls stores most of the energy coupled into

it in its volume. However, it also loses some energy to heat

conduction. A typical value for Q is on the order of 10,000,
which is much higher than can be realized with lumped RLC

circuits.

Example 8-11: Q of a Resonant Cavity

The quality factor for a hollow resonant cavity operating in the
TE101 mode is

Q =
1

δs

abd(a2 + d
2)

[a3(d + 2b)+ d3(a + 2b)]
, (8.124)

where δs = 1/
√

π fmnpµ0σc is the skin depth and σc is the

conductivity of the conducting walls. Design a cubic cavity

with a TE101 resonant frequency of 12.6 GHz and evaluate its
bandwidth. The cavity walls are made of copper.

Solution: For a = b = d, m = 1, n = 0, p = 1, and
up0

= c = 3×108 m/s, Eq. (8.122) simplifies to

f101 =
3
√

2×108

2a
(Hz).

For f101 = 12.6 GHz, this gives

a = 1.68 cm.

At f101 = 12.6 GHz, the skin depth for copper (with
σc = 5.8×107 S/m) is

δs =
1

[π f101µ0σc]1/2

=
1

[π ×12.6×109×4π ×10−7×5.8×107]1/2

= 5.89×10−7 m.
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Upon setting a = b = d in Eq. (8.124), the expression for Q of
a cubic cavity becomes

Q =
a

3δs

=
1.68×10−2

3×5.89×10−7
≈ 9,500.

Hence, the cavity bandwidth is

∆ f ≈ f101

Q
≈ 12.6×109

9,500
≈ 1.3 MHz.

Chapter 8 Summary

Concepts

• The relations describing the reflection and transmission

behavior of a plane EM wave at the boundary between

two different media are the consequence of satisfying
the conditions of continuity of the tangential compo-

nents of E and H across the boundary.

• Snell’s laws state that θi = θr and

sinθt = (n1/n2)sin θi.

For media such that n2 < n1, the incident wave is
reflected totally by the boundary when θi ≥ θc, where

θc is the critical angle given by θc = sin−1(n2/n1).
• By successive multiple reflections, light can be guided

through optical fibers. The maximum data rate of digital

pulses that can be transmitted along optical fibers is

dictated by modal dispersion.

• At the Brewster angle for a given polarization, the inci-

dent wave is transmitted totally across the boundary.

For nonmagnetic materials, the Brewster angle exists
for parallel polarization only.

• Any plane wave incident on a plane boundary can be

synthesized as the sum of a perpendicularly polarized
wave and a parallel polarized wave.

• Transmission-line equivalent models can be used to
characterize wave propagation, reflection by, and trans-

mission through boundaries between different media.

• Waves can travel through a metal waveguide in the form
of transverse electric (TE) and transverse magnetic

(TM) modes. For each mode, the waveguide has a

cutoff frequency below which a wave cannot propagate.
• A cavity resonator can support standing waves at spe-

cific resonant frequencies.

Important Terms Provide definitions or explain the meaning of the following terms:

ω-β diagram
acceptance angle θa

angles of incidence, reflection,

and transmission
Brewster angle θB

cladding

critical angle θc

cutoff frequency fmn

cutoff wavenumber kc

dominant mode
evanescent wave

fiber core
grazing incidence

group velocity ug

index of refraction n

modal dispersion

modes

optical fibers
parallel polarization

perpendicular polarization

phase-matching condition
plane of incidence

polarizing angle

quality factor Q

reflection coefficient Γ
reflectivity (reflectance) R

refraction angle

resonant cavity

resonant frequency
Snell’s laws

standing-wave ratio S

surface wave
total internal reflection

transmission coefficient τ
transmissivity (transmittance) T

transverse electric (TE)

polarization

transverse magnetic (TM)
polarization

unbounded-medium wavenumber
unpolarized

wavefront
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Mathematical and Physical Models

Normal Incidence

Γ =
E

r
0

E i
0

=
η2 −η1

η2 + η1

τ =
E

t
0

E i
0

=
2η2

η2 + η1

τ = 1 + Γ

Γ =

√
εr1

−√
εr2√

εr1
+
√

εr2

(if µ1 = µ2)

Snell’s Laws

θi = θr

sinθt

sinθi

=
up2

up1

=

√
µ1ε1

µ2ε2

Oblique Incidence

Perpendicular Polarization

Γ⊥ =
E

r
⊥0

E i
⊥0

=
η2 cosθi −η1 cosθt

η2 cosθi + η1 cosθt

τ⊥ =
E

t
⊥0

E i
⊥0

=
2η2 cosθi

η2 cosθi + η1 cosθt

Parallel Polarization

Γ‖ =
E

r
‖0

E i
‖0

=
η2 cosθt −η1 cosθi

η2 cosθt + η1 cosθi

τ‖ =
E

t
‖0

E i
‖0

=
2η2 cosθi

η2 cosθt + η1 cosθi

Brewster Angle

θB‖ = sin−1

√
1

1 +(ε1/ε2)
= tan−1

√
ε2

ε1

Waveguides

β =

√
ω2µε −

(
mπ

a

)2

−
(

nπ

b

)2

fmn =
up0

2

√(
m

a

)2

+
(

n

b

)2

up =
ω

β
=

up0√
1− ( fmn/ f )2

upug = u
2
p0

ZTE =
η√

1− ( fmn/ f )2

ZTM = η

√

1−
(

fmn

f

)2

Resonant Cavity

fmnp =
up0

2

√(
m

a

)2

+
(

n

b

)2

+
(

p

d

)2

Q ≈ fmnp

∆ f

PROBLEMS

Section 8-1: Reflection and Transmission at Normal Incidence

8.1 A plane wave traveling in medium 1 with εr1 = 2.25 is
normally incident upon medium 2 with εr2 = 4. Both media are

made of nonmagnetic, non-conducting materials. If the electric

field of the incident wave is given by

Ei = ŷ8cos(6π ×109
t −30πx) (V/m).

(a) Obtain time-domain expressions for the electric and mag-

netic fields in each of the two media.

(b) Determine the average power densities of the incident,
reflected and transmitted waves.

∗
8.2 A plane wave in air with an electric field amplitude of

20 V/m is incident normally upon the surface of a lossless,

nonmagnetic medium with εr = 25. Determine:

(a) the reflection and transmission coefficients.

∗
Answer(s) available in Appendix E.
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(b) the standing-wave ratio in the air medium.

(c) the average power densities of the incident, reflected, and

transmitted waves.

8.3 A plane wave traveling in a medium with εr1
= 9 is

normally incident upon a second medium with εr2
= 4. Both

media are made of nonmagnetic, non-conducting materials. If
the magnetic field of the incident plane wave is given by

Hi = ẑ2cos(2π ×109
t − ky) (A/m).

(a) Obtain time-domain expressions for the electric and mag-

netic fields in each of the two media.
∗

(b) Determine the average power densities of the incident,

reflected, and transmitted waves.

8.4 A 200-MHz, left-hand circularly polarized plane wave
with an electric field modulus of 5 V/m is normally incident

in air upon a dielectric medium with εr = 4, and occupies the

region defined by z ≥ 0.

(a) Write an expression for the electric field phasor of the

incident wave, given that the field is a positive maximum
at z = 0 and t = 0.

(b) Calculate the reflection and transmission coefficients.

(c) Write expressions for the electric field phasors of the
reflected wave, the transmitted wave, and the total field

in the region z ≤ 0.

(d) Determine the percentages of the incident average power

reflected by the boundary and transmitted into the second

medium.

8.5 Repeat Problem 8.4, but replace the dielectric medium

with a poor conductor characterized by εr = 2.25, µr = 1, and

σ = 10−4 S/m.

8.6 A 50-MHz plane wave with electric field amplitude of
50 V/m is normally incident in air onto a semi-infinite, perfect

dielectric medium with εr = 36. Determine:
∗

(a) Γ,

(b) the average power densities of the incident and reflected

waves, and

(c) the distance in the air medium from the boundary to the

nearest minimum of the electric field intensity, |E|.
8.7 Repeat Problem 8.6, but replace the dielectric medium
with a conductor with εr = 1, µr = 1, and σ = 2.78× 10−3

S/m.

∗
8.8 What is the maximum amplitude of the total electric field
in the air medium of Problem 8.6, and at what nearest distance

from the boundary does it occur?

∗
8.9 The three regions shown in Fig. P8.9 contain perfect

dielectrics. For a wave in medium 1, incident normally upon

the boundary at z = −d, what combination of εr2
and d

produces no reflection? Express your answers in terms of εr1
,

εr3 and the oscillation frequency of the wave, f .

Medium 2

εr2

Medium 3

εr3

Medium 1

εr1

z = −d z = 0

z

d

Figure P8.9 Dielectric layers for Problems 8.9 to 8.11.

8.10 For the configuration shown in Fig. P8.9, use

transmission-line equations (or the Smith chart) to calculate
the input impedance at z = −d for εr1

= 1, εr2
= 9, εr3

= 4,

d = 1.2 m, and f = 50 MHz. Also determine the fraction of
the incident average power density reflected by the structure.

Assume all media are lossless and nonmagnetic.

∗
8.11 Repeat Problem 8.10, but interchange εr1 and εr3

.

∗
8.12 A plane wave of unknown frequency is normally inci-

dent in air upon the surface of a perfect conductor. Using an
electric-field meter, it was determined that the total electric

field in the air medium is always zero when measured at a

distance of 3 m from the conductor surface. Moreover, no such
nulls were observed at distances closer to the conductor. What

is the frequency of the incident wave?

8.13 Orange light of wavelength 0.61 µm in air enters a
block of glass with εr = 1.44. What color would it appear to

a sensor embedded in the glass? The wavelength ranges of

colors are violet (0.39 to 0.45 µm), blue (0.45 to 0.49 µm),
green (0.49 to 0.58 µm), yellow (0.58 to 0.60 µm), orange

(0.60 to 0.62 µm), and red (0.62 to 0.78 µm).

8.14 Consider a thin film of soap in air under illumination

by yellow light with λ = 0.6 µm in vacuum. If the film is

treated as a planar dielectric slab with εr = 1.72, surrounded
on both sides by air, what film thickness would produce strong

reflection of the yellow light at normal incidence?
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∗
8.15 A 5-MHz plane wave with electric field amplitude of

10 (V/m) is normally incident in air onto the plane surface

of a semi-infinite conducting material with εr = 4, µr = 1,
and σ = 100 (S/m). Determine the average power dissipated

(lost) per unit cross-sectional area in a 2-mm penetration of
the conducting medium.

8.16 A 0.5-MHz antenna carried by an airplane flying over

the ocean surface generates a wave that approaches the water

surface in the form of a normally incident plane wave with
an electric-field amplitude of 3,000 (V/m). Seawater is char-

acterized by εr = 72, µr = 1, and σ = 4 (S/m). The plane is

trying to communicate a message to a submarine submerged at
a depth d below the water surface. If the submarine’s receiver

requires a minimum signal amplitude of 0.01 (µV/m), what is

the maximum depth d to which successful communication is
still possible?

Sections 8-2 and 8-3: Snell’s Laws and Fiber Optics

∗
8.17 A light ray is incident on a prism in air at an angle θ
as shown in Fig. P8.17. The ray is refracted at the first surface
and again at the second surface. In terms of the apex angle φ of

the prism and its index of refraction n, determine the smallest

value of θ for which the ray will emerge from the other side.
Find this minimum θ for n = 1.6 and φ = 60◦.

θ 

n

φ

Su
rf

ac
e 

1 Surface 2

Figure P8.17 Prism of Problem 8.17.

8.18 For some types of glass, the index of refraction varies

with wavelength. A prism made of a material with

n = 1.71− 4

30
λ0 (λ0 in µm),

where λ0 is the wavelength in vacuum, was used to disperse

white light as shown in Fig. P8.18. The white light is incident

at an angle of 50◦, the wavelength λ0 of red light is 0.7 µm, and
that of violet light is 0.4 µm. Determine the angular dispersion

in degrees.

8.19 A parallel-polarized plane wave is incident from air at
an angle θi = 30◦ onto a pair of dielectric layers as shown in

Fig. P8.19.

(a) Determine the angles of transmission θ2, θ3, and θ4.

(b) Determine the lateral distance d.

d

5 cm

5 cm

θi

θ2

θ3

θ4

Air

Air

μr = 1
εr = 6.25

μr = 1
εr = 2.25

Figure P8.19 Problem P8.19.

∗
8.20 The two prisms in Fig. P8.20 are made of glass with

n = 1.5. What fraction of the power density carried by the ray
incident upon the top prism emerges from the bottom prism?

Neglect multiple internal reflections.

45°

45° 

45° 

45° 

90° 

90° 

Figure P8.20 Periscope prisms of Problem 8.20.
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8.21 A light ray incident at 45◦ passes through two dielectric
materials with the indices of refraction and thicknesses given

in Fig. P8.21. If the ray strikes the surface of the first dielectric

at a height of 2 cm, at what height will it strike the screen?

45°
2 cm

Screen

n = 1 n = 1

3 cm 4 cm 5 cm

n = 1.3n = 1.5

Figure P8.21 Light incident on a screen through a multilay-

ered dielectric (Problem 8.21).

∗
8.22 Figure P8.22 depicts a beaker containing a block of
glass on the bottom and water over it. The glass block contains

a small air bubble at an unknown depth below the water

surface. When viewed from above at an angle of 60◦, the air
bubble appears at a depth of 6.81 cm. What is the true depth of

the air bubble?

60°

10 cm

Water
n = 1.33

Glass
n = 1.6

Air bubble

Apparent position
of air bubble

6.81 cm

Figure P8.22 Apparent position of the air bubble in Prob-

lem 8.22.

8.23 A glass semicylinder with n = 1.4 is positioned such
that its flat face is horizontal, as shown in Fig. P8.23, and its

horizontal surface supports a drop of oil, as also shown. When

light is directed radially toward the oil, total internal reflection
occurs if θ exceeds 53◦. What is the index of refraction of the

oil?

θ 

nglass

noil

Oil drop

Figure P8.23 Oil drop on the flat surface of a glass

semicylinder (Problem 8.23).

8.24 Suppose that the optical fiber of Example 8-5 is sub-

merged in water (with n = 1.33) instead of air. Determine θa

and fp in that case.

∗
8.25 A penny lies at the bottom of a water fountain at a depth

of 30 cm. Determine the diameter of a piece of paper which,

if placed to float on the surface of the water directly above the
penny, would totally obscure the penny from view. Treat the

penny as a point and assume that n = 1.33 for water.

∗
8.26 Equation (8.45) was derived for the case where the light

incident upon the sending end of the optical fiber extends over
the entire acceptance cone shown in Fig. 8-12(b). Suppose

the incident light is constrained to a narrower range extending

between normal incidence and θ ′, where θ ′ < θa.

(a) Obtain an expression for the maximum data rate fp in

terms of θ ′.

(b) Evaluate fp for the fiber of Example 8-5 when θ ′ = 3◦.

Sections 8-4 and 8-5: Reflection and Transmission at Oblique
Incidence

8.27 A plane wave in air with

Ẽi = ŷ20e
− j(3x+4z) (V/m)

is incident upon the planar surface of a dielectric material, with
εr = 4, occupying the half-space z ≥ 0. Determine:

(a) the polarization of the incident wave,
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∗
(b) the angle of incidence,

(c) the time-domain expressions for the reflected electric and
magnetic fields,

(d) the time-domain expressions for the transmitted electric

and magnetic fields, and

(e) the average power density carried by the wave in the

dielectric medium.

8.28 Repeat Problem 8.27 for a wave in air with

H̃i = ŷ2×10−2
e
− j(8x+6z) (A/m)

incident upon the planar boundary of a dielectric medium (z ≥
0) with εr = 9.

8.29 A plane wave in air with

Ẽi = (x̂9− ŷ4− ẑ6)e− j(2x+3z) (V/m)

is incident upon the planar surface of a dielectric material, with

εr = 2.25, occupying the half-space z ≥ 0. Determine:
∗

(a) The incidence angle θi.

(b) The frequency of the wave.

(c) The field Ẽr of the reflected wave.

(d) The field Ẽt of the wave transmitted into the dielectric
medium.

(e) The average power density carried by the wave into the
dielectric medium.

∗
8.30 A parallel-polarized plane wave is incident from air

onto a dielectric medium with εr = 9 at the Brewster angle.

What is the refraction angle?

8.31 Natural light is randomly polarized, which means that,
on average, half the light energy is polarized along any given

direction (in the plane orthogonal to the direction of propaga-

tion) and the other half of the energy is polarized along the
direction orthogonal to the first polarization direction. Hence,

when treating natural light incident upon a planar boundary,
we can consider half of its energy to be in the form of parallel-

polarized waves and the other half as perpendicularly polarized

waves. Determine the fraction of the incident power reflected
by the planar surface of a piece of glass with n = 1.5 when

illuminated by natural light at 70◦.

8.32 Show that the reflection coefficient Γ⊥ can be written in

the following form:

Γ⊥ =
sin(θt −θi)

sin(θt + θi)

8.33 A perpendicularly polarized wave in air is obliquely

incident upon a planar glass–air interface at an incidence angle

of 30◦. The wave frequency is 600 THz (1 THz = 1012 Hz),
which corresponds to green light, and the index of refraction

of the glass is 1.6. If the electric field amplitude of the incident

wave is 50 V/m, determine the following:

(a) The reflection and transmission coefficients.

(b) The instantaneous expressions for E and H in the glass
medium.

8.34 Show that for nonmagnetic media, the reflection coeffi-
cient Γ‖ can be written in the following form:

Γ‖ =
tan(θt −θi)

tan(θt + θi)
.

8.35 A parallel-polarized beam of light with an electric
field amplitude of 10 (V/m) is incident in air on polystyrene

with µr = 1 and εr = 2.6. If the incidence angle at the air–

polystyrene planar boundary is 60◦, determine the following:

(a) The reflectivity and transmissivity.

(b) The power carried by the incident, reflected, and trans-
mitted beams if the spot on the boundary illuminated by

the incident beam is 1 m2 in area.

8.36 A 50-MHz right-hand circularly polarized plane wave

with an electric field modulus of 30 V/m is normally incident

in air upon a dielectric medium with εr = 9 and occupying the
region defined by z ≥ 0.

(a) Write an expression for the electric field phasor of the

incident wave, given that the field is a positive maximum

at z = 0 and t = 0.

(b) Calculate the reflection and transmission coefficients.

(c) Write expressions for the electric field phasors of the
reflected wave, the transmitted wave, and the total field

in the region z ≤ 0.

(d) Determine the percentages of the incident average power

reflected by the boundary and transmitted into the second
medium.

8.37 Consider a flat 5 mm thick slab of glass with εr = 2.56.

∗
(a) If a beam of green light (λ0 = 0.52 µm) is normally

incident upon one of the sides of the slab, what percentage
of the incident power is reflected back by the glass?

(b) To eliminate reflections, it is desired to add a thin layer

of antireflection coating material on each side of the

glass. If you are at liberty to specify the thickness of the
antireflection material as well as its relative permittivity,

what would these specifications be?
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Sections 8-6 to 8-11: Waveguides and Resonators

8.38 A TE wave propagating in a dielectric-filled waveguide

of unknown permittivity has dimensions a = 5 cm and b =
3 cm. If the x-component of its electric field is given by

Ex = −36cos(40πx)sin(100πy)

· sin(2.4π ×1010
t −52.9πz), (V/m)

determine:

(a) the mode number,

(b) εr of the material in the guide,

(c) the cutoff frequency, and

(d) the expression for Hy.

∗
8.39 A hollow rectangular waveguide is to be used to trans-
mit signals at a carrier frequency of 10 GHz. Choose its

dimensions so that the cutoff frequency of the dominant TE

mode is lower than the carrier by 25% and that of the next
mode is at least 25% higher than the carrier.

8.40 Derive Eq. (8.89b).

∗
8.41 A waveguide filled with a material whose εr = 2.25 has

dimensions a = 2 cm and b = 1.4 cm. If the guide is to transmit

10.5-GHz signals, what possible modes can be used for the
transmission?

8.42 A narrow rectangular pulse superimposed on a carrier
with a frequency of 9.5 GHz was used to excite all possible

modes in a hollow guide with a = 3 cm and b = 2.0 cm. If

the guide is 100 m in length, how long will it take each of the
excited modes to arrive at the receiving end?

∗
8.43 A waveguide, with dimensions a = 2 cm and

b = 1.4 cm, is to be used at 10 GHz. Determine the wave
impedance for the dominant mode when

(a) the guide is empty, and

(b) the guide is filled with polyethylene (whose εr = 2.25).

8.44 For a rectangular waveguide operating in the TE10

mode, obtain expressions for the surface charge density ρ̃s

and surface current density J̃s on each of the four walls of the

guide.

∗
8.45 If the zigzag angle θ ′ is 20◦ for the TE10 mode, what

would it be for the TE20 mode?

8.46 A hollow cavity made of aluminum has dimensions a =
4 cm and d = 3 cm. Calculate Q of the TE101 mode for
∗

(a) b = 2 cm and

(b) b = 3 cm.

8.47 Measurement of the TE101 frequency response of an air-

filled cubic cavity revealed that its Q is 2401. If its volume
is 8 mm3, what material are its sides made of? [Hint: See

Appendix B.]
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Objectives

Upon learning the material presented in this chapter, you

should be able to:

1. Calculate the electric and magnetic fields of waves radi-

ated by a dipole antenna.

2. Characterize the radiation of an antenna in terms of its

radiation pattern, directivity, beamwidth, and radiation

resistance.

3. Apply the Friis transmission formula to a free-space

communication system.

4. Calculate the electric and magnetic fields of waves radi-

ated by aperture antennas.

5. Calculate the radiation pattern of multi-element antenna

arrays.

400

Radiation and Antennas
Chapter 9



Overview

An antenna is a transducer that converts a guided wave prop-

agating on a transmission line into an electromagnetic wave

propagating in an unbounded medium (usually free space), or
vice versa. Figure 9-1 shows how a wave is launched by a

hornlike antenna with the horn acting as the transition segment

between the waveguide and free space.
Antennas are made in various shapes and sizes (Fig. 9-2)

and are used in radio and television broadcasting and recep-

tion, radio-wave communication systems, cellular telephones,
radar systems, anticollision automobile sensors, and many

other applications. The radiation and impedance properties

of an antenna are governed by its shape, size, and material
properties. The dimensions of an antenna are usually measured

in units of λ of the wave it is launching or receiving; a 1-m long
dipole antenna operating at a wavelength λ = 2 m exhibits the

same properties as a 1-cm long dipole operating at λ = 2 cm.

Hence, in most of our discussions in this chapter, we refer to
antenna dimensions in wavelength units.

Reciprocity

The directional function characterizing the relative distribution
of power radiated by an antenna is known as the antenna ra-
diation pattern (or simply the antenna pattern). An isotropic
antenna is a hypothetical antenna that radiates equally in all
directions, and it is often used as a reference radiator when

describing the radiation properties of real antennas.

◮ Most antennas are reciprocal devices, exhibiting the

same radiation pattern for transmission as for reception. ◭

Reciprocity means that, if in the transmission mode a given

antenna transmits in direction A 100 times the power it trans-
mits in direction B, then when used in the reception mode

it is 100 times more sensitive to electromagnetic radiation

incident from direction A than from B. All of the antennas
shown in Fig. 9-2 obey the reciprocity law, but not all antennas

are reciprocal devices. Reciprocity may not hold for some

solid-state antennas composed of nonlinear semiconductors or
ferrite materials. Such nonreciprocal antennas are beyond the

scope of this chapter; hence, reciprocity is assumed through-
out. The reciprocity property is very convenient because it

allows us to compute the radiation pattern of an antenna in

the transmission mode—even when the antenna is intended to
operate as a receiver.

To fully characterize an antenna, one needs to study its

radiation properties and impedance. The radiation properties
include its directional radiation pattern and the associated

polarization state of the radiated wave when the antenna

Electric field lines
of radiated wave

Wave launched
into free space

Antenna

Transition
region

Transmission line

Guided EM waveGenerator

Incident
wave

Antenna

Transition
region

Transmission line

Guided EM waveDetector 
or receiver

Rec

(a)  Transmission mode

(b)  Reception mode

Figure 9-1 Antenna as a transducer between a guided electro-

magnetic wave and a free-space wave, for both transmission and

reception.

is used in the transmission mode, which is also called the
antenna polarization.

◮ Being a reciprocal device, an antenna, when operating

in the receiving mode, can extract from an incident wave
only that component of the wave whose electric field

matches the antenna polarization state. ◭

The second aspect, the antenna impedance, pertains to the
transfer of power from a generator to the antenna when the

antenna is used as a transmitter and, conversely, the transfer of

power from the antenna to a load when the antenna is used as a
receiver, as will be discussed later in Section 9-5. It should

be noted that throughout our discussions in this chapter it

will be assumed that the antenna is properly matched to the
transmission line connected to its terminals, thereby avoiding

reflections and their associated problems.

401
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Phase shifters

Feed
point

Radiating strip Coaxial feed Dielectric
substrate

Ground metal
plane

(a)  Thin dipole (b)  Biconical dipole (c)  Loop

Circular
plate
reflector

(d)  Helix (e)  Log-periodic

(f)  Parabolic dish
reflector

(h)  Microstrip (i)  Antenna array(g)  Horn

Figure 9-2 Various types of antennas.

Radiation Sources

Radiation sources fall into two categories: currents and aper-
ture fields. The dipole and loop antennas (Fig. 9-2(a) and (c))

are examples of current sources; the time-varying currents

flowing in the conducting wires give rise to the radiated elec-
tromagnetic fields. A horn antenna (Fig. 9-2(g)) is an example

of the second group because the electric and magnetic fields

across the horn’s aperture serve as the sources of the radiated
fields. The aperture fields are themselves induced by time-

varying currents on the surfaces of the horn’s walls. Therefore,
all radiation ultimately is due to time-varying currents. The

choice of currents or apertures as the sources is merely a

computational convenience arising from the structure of the
antenna. We will examine the radiation processes associated

with both types of sources.

Far-Field Region

The wave radiated by a point source is spherical in nature, with

the wavefront expanding outward at a rate equal to the phase
velocity up (or the velocity of light c if the medium is free

space). If R, which is the distance between the transmitting

antenna and the receiving antenna, is sufficiently large enough
for the wavefront across the receiving aperture to be consid-

ered planar (Fig. 9-3), then the receiving aperture is said to be

Source

Transmitting
antenna Spherical wave

Receiving
antenna

Plane-wave
approximation

R

Figure 9-3 Far-field plane-wave approximation.

in the far-field (or far-zone) region of the transmitting point
source. This region is of particular significance because—

for most applications—the location of the observation point

is indeed in the far-field region of the antenna. The far-field
plane-wave approximation allows the use of certain mathe-

matical approximations that simplify the computation of the

radiated field and, conversely, provide convenient techniques
for synthesizing the appropriate antenna structure that would

give rise to the desired far-field antenna pattern.
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Antenna Arrays

When multiple antennas operate together, the combination is
called an antenna array (Fig. 9-2(i)), and the array as a whole

behaves as if it were a single antenna. By controlling the

magnitude and phase of the signal feeding each antenna, it
is possible to shape the radiation pattern of the array and to

electronically steer the direction of the beam electronically.

These topics are treated in Sections 9-9 to 9-11.

9-1 The Hertzian Dipole

By regarding a linear antenna as consisting of a large number

of infinitesimally short conducting elements where each is

so short that current may be considered uniform over its
length, the field of the entire antenna may be obtained by

integrating the fields from all these differential antennas with

the proper magnitudes and phases taken into account. We shall
first examine the radiation properties of such a differential

antenna, known as a Hertzian dipole, and in Section 9-3, we
will extend the results to compute the fields radiated by a half-

wave dipole, which is commonly used as a standard antenna

for many applications.

◮ A Hertzian dipole is a thin, linear conductor whose

length l is very short compared with the wavelength λ ;
l should not exceed λ/50. ◭

In this case, the wire is oriented along the z direction in

Fig. 9-4 and carries a sinusoidally varying current given by

i(t) = I0 cosωt = Re[I0e
jωt ] (A), (9.1)

where I0 is the current amplitude. From Eq. (9.1), the phasor

current Ĩ = I0. Even though the current has to go to zero at the
two ends of the dipole, we shall treat it as constant across its

entire length.

The customary approach for finding the electric and mag-
netic fields at a point Q in space (Fig. 9-4) due to radiation

by a current source is through the retarded vector potential A.

From Eq. (6.84), the phasor retarded vector potential Ã(R) at
a distance vector R from a volume υ ′ containing a phasor

current distribution J̃ is given by

Ã(R) =
µ0

4π

∫

υ ′

J̃e
− jkR

′

R′ dυ ′, (9.2)

where µ0 is the magnetic permeability of free space (because
the observation point is in air) and k = ω/c = 2π/λ is the

wavenumber. For the dipole, the current density is simply

i(t)

i(t)

l

x

z

R

R'

y

θ 

φ 

Q = (R, θ, φ)

Figure 9-4 Short dipole placed at the origin of a spherical

coordinate system.

J̃ = ẑ(I0/s), where s is the cross-sectional area of the dipole

wire. Also, dυ ′ = s dz, and the limits of integration are from
z = −l/2 to z = l/2. In Fig. 9-4, the distance R

′ between the

observation point and a given point along the dipole is not the

same as the distance to its center, R, but because we are dealing
with a very short dipole, we can set R

′ ≈ R. Hence,

Ã =
µ0

4π

e
− jkR

R

∫
l/2

−l/2
ẑI0 dz = ẑ

µ0

4π
I0l

(
e
− jkR

R

)
, (9.3)

◮ The function (e− jkR/R) is called the spherical propaga-
tion factor. It accounts for the 1/R decay of the magnitude
with distance as well as the phase change represented by

e
− jkR. ◭

The direction of Ã is the same as that of the current (z direc-

tion).

Because our objective is to characterize the directional
character of the radiated power at a fixed distance R from

the antenna, antenna pattern plots are presented in a spherical

coordinate system (Fig. 9-5). Its variables, R, θ , and φ , are
called the range, zenith angle, and azimuth angle, respec-

tively. To that end, we need to write Ã in terms of its spherical

coordinate components, which is realized with the help of
Eq. (3.65c) by expressing ẑ in terms of spherical coordinates:

ẑ = R̂cosθ − θ̂θθ sinθ . (9.4)

Upon substituting Eq. (9.4) into Eq. (9.3), we obtain

Ã = (R̂cosθ − θ̂θθsinθ )
µ0I0l

4π

(
e
− jkR

R

)
= R̂ÃR + θ̂θθ Ãθ + φ̂φφ Ãφ ,

(9.5)
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θ = 90°

θ = 0°

θ = 180°

θ = 90° 
φ = 0°

φ = 270°
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φ = 90°

x

y

R

z

S

θ 

Direction (θ, φ)

Radiation
source

φ

Figure 9-5 Spherical coordinate system.

with

ÃR =
µ0I0l

4π
cosθ

(
e
− jkR

R

)
, (9.6a)

Ãθ = −µ0I0l

4π
sinθ

(
e
− jkR

R

)
, (9.6b)

Ãφ = 0.

With the spherical components of Ã known, the next step is

straightforward; we simply apply the free-space relationships
given by Eqs. (6.85) and (6.86) as

H̃ =
1

µ0

∇××× Ã (9.7a)

and

Ẽ =
1

jωε0

∇××× H̃ (9.7b)

to obtain the expressions

H̃φ =
I0lk

2

4π
e
− jkR

[
j

kR
+

1

(kR)2

]
sin θ , (9.8a)

ẼR =
2I0lk

2

4π
η0e

− jkR

[
1

(kR)2
− j

(kR)3

]
cosθ , (9.8b)

Ẽθ =
I0lk

2

4π
η0e

− jkR

[
j

kR
+

1

(kR)2
− j

(kR)3

]
sinθ , (9.8c)

where η0 =
√

µ0/ε0 ≈ 120π (Ω) is the intrinsic impedance of

free space. The remaining components (H̃R, H̃θ , and Ẽφ ) are
everywhere zero. Figure 9-6 depicts the electric field lines of

the wave radiated by the short dipole.

9-1.1 Far-Field Approximation

As was stated earlier, in most antenna applications, we are

primarily interested in the radiation pattern of the antenna at
great distances from the source. For the electric dipole, this

corresponds to distances R so that R ≫ λ or, equivalently,

kR = 2πR/λ ≫ 1. This condition allows us to neglect the
terms varying as 1/(kR)2 and 1/(kR)3 in Eqs. (9.8a) to (9.8c)

in favor of the terms varying as 1/kR, which yields the far-field

expressions

Ẽθ =
jI0lkη0

4π

(
e
− jkR

R

)
sinθ (V/m),

H̃φ =
Ẽθ

η0

(A/m),

(9.9a)

(9.9b)

and ẼR is negligible. At the observation point Q (Fig. 9-4), the

wave now appears similar to a uniform plane wave with its
electric and magnetic fields in phase, related by the intrinsic

impedance of the medium η0, and their directions orthogonal

to each other and to the direction of propagation (R̂). Both
fields are proportional to sinθ and independent of φ (which

is expected from symmetry considerations).

9-1.2 Power Density

Given Ẽ and H̃, the time-average Poynting vector of the

radiated wave, which is also called the power density, can be
obtained by applying Eq. (7.100); that is,

Sav = 1
2
Re

(
Ẽ××× H̃

∗)
(W/m2). (9.10)

For the short dipole, use of Eqs. (9.9a) and (9.9b) yields

Sav = R̂ S(R,θ ), (9.11)
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Dipole
axis

Broadside
direction

2λ 3λ 4λ λ 

Figure 9-6 Electric field lines surrounding an oscillating dipole at a given instant.

with

S(R,θ ) =

(
η0k

2
I

2
0 l

2

32π2R2

)
sin2 θ

= S0 sin2 θ (W/m2). (9.12)

The directional pattern of any antenna is described in terms of

the normalized radiation intensity F(θ ,φ) and is defined as
the ratio of the power density S(R,θ ,φ) at a specified range R

to Smax, which is the maximum value of S(R,θ ,φ) at the same

range. Thus,

F(θ ,φ) =
S(R,θ ,φ)

Smax

. (dimensionless) (9.13)

For the Hertzian dipole, the sin2 θ dependence in Eq. (9.12)

indicates that the radiation is maximum in the broadside

direction (θ = π/2), corresponding to the azimuth plane, and

is given by

Smax = S0 =
η0k

2
I

2
0 l

2

32π2R2
=

15πI
2
0

R2

(
l

λ

)2

(W/m2), (9.14)

where use was made of the relations k = 2π/λ and η0 ≈ 120π.

We observe that Smax is directly proportional to I
2
0 and l

2 (with
l measured in wavelengths) and that it decreases with distance

as 1/R
2.

From the definition of the normalized radiation intensity
given by Eq. (9.13), it follows that

F(θ ,φ) = F(θ ) = sin2 θ . (9.15)

Plots of F(θ ) are shown in Fig. 9-7 in both the elevation plane

(the θ plane) and the azimuth plane (φ plane).
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(a)  Elevation pattern

(b)  Azimuth pattern
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θ2 = 135°
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Figure 9-7 Radiation patterns of a short dipole.

◮ No energy is radiated by the short dipole along the

direction of the dipole axis, and maximum radiation
(F = 1) occurs in the broadside direction (θ = 90◦). Since

F(θ ) is independent of φ , the pattern is doughnut-shaped

in θ–φ space. ◭

Concept Question 9-1: What does it mean to say that
most antennas are reciprocal devices?

Concept Question 9-2: What is the radiated wave like

in the far-field region of the antenna?

Concept Question 9-3: In a Hertzian dipole, what is
the underlying assumption about the current flowing

through the wire?

Concept Question 9-4: Outline the basic steps used to
relate the current in a wire to the radiated power density.

Exercise 9-1: A 1-m long dipole is excited by a 5 MHz

current with an amplitude of 5 A. At a distance of 2 km,

what is the power density radiated by the antenna along
its broadside direction?

Answer: S0 = 8.2×10−8 W/m2. (See EM .)

9-2 Antenna Radiation Characteristics

An antenna pattern describes the far-field directional proper-

ties of an antenna when measured at a fixed distance from the
antenna. In general, the antenna pattern is a three-dimensional

plot that displays the strength of the radiated field or power

density as a function of direction—with direction being speci-
fied by the zenith angle θ and the azimuth angle φ .

◮ By virtue of reciprocity, a receiving antenna has the

same directional antenna pattern as the pattern that it

exhibits when operated in the transmission mode. ◭

Consider a transmitting antenna placed at the origin of the

observation sphere shown in Fig. 9-8. The differential power
radiated by the antenna through an elemental area dA is

dPrad = Sav ·dA = Sav · R̂ dA = S dA (W), (9.16)

θ 

φ

R

y

x

z R sin θ dφ

dA = R2 sin θ dθ dφ
      = R2 dΩ

R dθ 

R dφ

Azimuth plane

Elevation
plane

Figure 9-8 Definition of solid angle dΩ = sinθ dθ dφ .
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Module 9.1 Hertzian Dipole (l ≪ λ ) For a short dipole oriented along the z axis, this module displays the field

distributions for E and H in both the horizontal and vertical planes. It can also animate the radiation process and current
flow through the dipole.

where S is the radial component of the time-average Poynting

vector Sav. In the far-field region of any antenna, Sav is always
in the radial direction. In a spherical coordinate system,

dA = R
2 sinθ dθ dφ , (9.17)

and the solid angle dΩ associated with dA, which is defined as

the subtended area divided by R
2, is given by

dΩ =
dA

R2
= sinθ dθ dφ (sr). (9.18)

Note that, whereas a planar angle is measured in radians and

the angular measure of a complete circle is 2π (rad), a solid
angle is measured in steradians (sr), and the angular measure

for a spherical surface is Ω = (4πR
2)/R

2 = 4π (sr). The solid
angle of a hemisphere is 2π (sr).

Using the relation dA = R
2

dΩ, dPrad can be rewritten as

dPrad = R
2

S(R,θ ,φ) dΩ. (9.19)

The total power radiated by an antenna through a spheri-

cal surface at a fixed distance R is obtained by integrating
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Eq. (9.19) over that surface:

Prad = R
2
∫ 2π

φ=0

∫ π

θ=0
S(R,θ ,φ)sinθ dθ dφ

= R
2
Smax

∫ 2π

φ=0

∫ π

θ=0
F(θ ,φ)sin θ dθ dφ

= R
2
Smax

∫∫

4π
F(θ ,φ) dΩ (W), (9.20)

where F(θ ,φ) is the normalized radiation intensity defined by
Eq. (9.13). The 4π symbol under the integral sign is used as an

abbreviation for the indicated limits on θ and φ . Formally, Prad

is called the total radiated power.

9-2.1 Antenna Pattern

Each specific combination of the zenith angle θ and the

azimuth angle φ denotes a specific direction in the spherical
coordinate system of Fig. 9-8. The normalized radiation inten-

sity F(θ ,φ) characterizes the directional pattern of the energy

radiated by an antenna, and a plot of F(θ ,φ) as a function
of both θ and φ constitutes a three-dimensional pattern—an

example of which is shown in Fig. 9-9.

Often, it is of interest to characterize the variation of F(θ ,φ)
in the form of two-dimensional plots in specific planes in the

spherical coordinate system. The two planes most commonly
specified for this purpose are the elevation and azimuth planes.

The elevation plane, also called the θ plane, is a plane

corresponding to a constant value of φ . For example, φ = 0
defines the x–z plane and φ = 90◦ defines the y–z plane, both

of which are elevation planes (Fig. 9-8). A plot of F(θ ,φ)
versus θ in either of these planes constitutes a two-dimensional
pattern in the elevation plane. This is not to imply, however,

that the elevation-plane pattern is necessarily the same in all

elevation planes.
The azimuth plane, also called the φ plane, is specified by

θ = 90◦ and corresponds to the x–y plane. The elevation and

azimuth planes are often called the two principal planes of the
spherical coordinate system.

Some antennas exhibit highly directive patterns with narrow

beams, in which case it is often convenient to plot the antenna
pattern on a decibel scale by expressing F in decibels:

F (dB) = 10logF .

As an example, the antenna pattern shown in Fig. 9-10(a) is

plotted on a decibel scale in polar coordinates with its intensity

as the radial variable. This format permits a convenient visual
interpretation of the directional distribution of the radiation
lobes.
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Figure 9-9 Three-dimensional pattern of a narrow-beam

antenna.

Another format commonly used for inspecting the pattern

of a narrow-beam antenna is the rectangular display shown in

Fig. 9-10(b), which permits the pattern to be easily expanded
by changing the scale of the horizontal axis. These plots

represent the variation in only one plane in the observation

sphere: the φ = 0 plane. Unless the pattern is symmetrical in φ ,
additional patterns are required to define the overall variation

of F(θ ,φ) with θ and φ .

Strictly speaking, the polar angle θ is always positive,
being defined over the range from 0◦ (z direction) to 180◦

(−z direction), yet the θ axis in Fig. 9-10(b) is shown to have

both positive and negative values. This is not a contradiction,
but rather a different form of plotting antenna patterns. The

right-hand half of the plot represents the variation of F (dB)
with θ because θ is increased in a clockwise direction in the

x–z plane [see inset in Fig. 9-10(b)], corresponding to φ = 0.

The left-hand half of the plot represents the variation of F (dB)
with θ as θ is increased in a counterclockwise direction at

φ = 180◦. Thus, a negative θ value simply denotes that the

direction (θ ,φ) is in the left-hand half of the x–z plane.
The pattern shown in Fig. 9-10(a) indicates that the antenna

is fairly directive, since most of the energy is radiated through
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(a)  Polar diagram (b)  Rectangular plot
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Figure 9-10 Representative plots of the normalized radiation pattern of a microwave antenna in (a) polar form and (b) rectangular form.

a narrow sector called the main lobe. In addition to the

main lobe, the pattern exhibits several side lobes and back
lobes as well. For most applications, these extra lobes are
considered undesirable because they represent wasted energy

for transmitting antennas and potential interference directions

for receiving antennas.

9-2.2 Beam Dimensions

For an antenna with a single main lobe, the pattern solid angle
Ωp describes the equivalent width of the main lobe of the

antenna pattern (Fig. 9-11). It is defined as the integral of the
normalized radiation intensity F(θ ,φ) over a sphere:

Ωp =
∫∫

4π
F(θ ,φ) dΩ (sr). (9.21)

(a)  Actual pattern (b)  Equivalent solid angle

F(θ, φ)
1

Ωp

F = 1 within
the cone

1

Figure 9-11 The pattern solid angle Ωp defines an equivalent

cone over which all of the radiation of the actual antenna is

concentrated with uniform intensity equal to the maximum of

the actual pattern.
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◮ For an isotropic antenna with F(θ ,φ) = 1 in all direc-

tions, Ωp = 4π (sr). ◭

The pattern solid angle characterizes the directional proper-

ties of the three-dimensional radiation pattern. To characterize
the width of the main lobe in a given plane, the term used

is beamwidth. The half-power beamwidth, or simply the

beamwidth β , is defined as the angular width of the main lobe
between the two angles at which the magnitude of F(θ ,φ) is

equal to half of its peak value (or −3 dB on a decibel scale).
For example, for the pattern displayed in Fig. 9-10(b), β is

given by

β = θ2 −θ1, (9.22)

where θ1 and θ2 are the half-power angles at which

F(θ ,0) = 0.5 (with θ2 denoting the larger value and θ1

denoting the smaller one, as shown in the figure). If the pattern
is symmetrical and the peak value of F(θ ,φ) is at θ = 0,

then β = 2θ2. For the short-dipole pattern shown earlier in

Fig. 9-7(a), F(θ ) is maximum at θ = 90◦, θ2 is at 135◦, and
θ1 is at 45◦. Hence, β = 135◦−45◦ = 90◦. The beamwidth β
is also known as the 3 dB beamwidth. In addition to the half-
power beamwidth, other beam dimensions may be of interest

for certain applications, such as the null beamwidth βnull,

which is the angular width between the first nulls on the two
sides of the peak (Fig. 9-10(b)).

9-2.3 Antenna Directivity

The directivity D of an antenna is defined as the ratio of

its maximum normalized radiation intensity, Fmax (which by
definition is equal to 1), to the average value of F(θ ,φ) over

all directions (4π space):

D =
Fmax

Fav

=
1

1

4π

∫∫

4π
F(θ ,φ) dΩ

=
4π

Ωp

. (9.23)

(dimensionless)

Here Ωp is the pattern solid angle defined by Eq. (9.21).
Thus, the narrower Ωp of an antenna pattern is, the greater is

the directivity. For an isotropic antenna, Ωp = 4π; hence, its
directivity Diso = 1.

By using Eq. (9.20) in Eq. (9.23), D can be expressed as

D =
4πR

2
Smax

Prad

=
Smax

Sav

, (9.24)

where Sav = Prad/(4πR
2) is the average value of the radiated

power density and is equal to the total power radiated by

βxz

z

y

x

0 dB

βyz

Figure 9-12 The solid angle of a unidirectional radiation

pattern is approximately equal to the product of the half-power

beamwidths in the two principal planes; that is, Ωp ≈ βxzβyz.

the antenna, Prad, divided by the surface area of a sphere of

radius R.

◮ Since Sav = Siso, where Siso is the power density radiated

by an isotropic antenna, D represents the ratio of the
maximum power density radiated by the antenna to the

power density radiated by an isotropic antenna, where

both are measured at the same range R and excited by the
same amount of input power. ◭

Usually, D is expressed in decibels:∗ D (dB) = 10logD.

For an antenna with a single main lobe pointing in the z

direction shown in Fig. 9-12, Ωp may be approximated as the
product of the half-power beamwidths βxz and βyz (in radians):

Ωp ≈ βxzβyz, (9.25)

and

D =
4π

Ωp

≈ 4π

βxzβyz

. (single main lobe) (9.26)

∗A note of caution: Even though we often express certain dimensionless
quantities in decibels, we should always convert their decibel values to natural
values before using them in the relations given in this chapter.
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Although approximate, this relation provides a useful method
for estimating the antenna directivity from measurements of

the beamwidths in the two orthogonal planes whose intersec-

tion is the axis of the main lobe.

Example 9-1: Antenna Radiation Properties

Determine (a) the direction of maximum radiation, (b) pattern

solid angle, (c) directivity, and (d) half-power beamwidth

in the y–z plane for an antenna that radiates only into the
upper hemisphere with normalized radiation intensity given by

F(θ ,φ) = cos2 θ .

Solution: The statement that the antenna radiates through
only the upper hemisphere is equivalent to

F(θ ,φ) = F(θ ) =





cos2 θ for 0 ≤ θ ≤ π/2

and 0 ≤ φ ≤ 2π ,

0 elsewhere.

(a) The function F(θ ) = cos2 θ is independent of φ and is
maximum when θ = 0◦. A polar plot of F(θ ) is shown in

Fig. 9-13.

90°

–45°

0.5 0.5

45° 
1

y

x

F(θ) = cos2 θ 

z

Figure 9-13 Polar plot of F(θ ) = cos2 θ .

(b) From Eq. (9.21), the pattern solid angle Ωp is given by

Ωp =

∫∫

4π
F(θ ,φ) dΩ =

∫ 2π

φ=0

[∫ π/2

θ=0
cos2 θ sinθ dθ

]
dφ

=
∫ 2π

φ=0

[
−cos3 θ

3

]π/2

0

dφ

=
∫ 2π

0

1

3
dφ =

2π

3
(sr).

(c) Application of Eq. (9.23) gives

D =
4π

Ωp

= 4π

(
3

2π

)
= 6,

which corresponds to D (dB) = 10log6 = 7.78 dB.

(d) The half-power beamwidth β is obtained by setting

F(θ ) = 0.5. That is,

F(θ ) = cos2 θ = 0.5,

which gives the half-power angles θ1 = −45◦ and θ2 = 45◦.
Hence,

β = θ2 −θ1 = 90◦.

Example 9-2: Directivity of a Hertzian Dipole

Calculate the directivity of a Hertzian dipole.

Solution: Application of Eq. (9.23) with F(θ ) = sin2 θ [from

Eq. (9.15)] gives

D =
4π∫∫

4π
F(θ ,φ) sinθ dθ dφ

=
4π

∫ 2π

φ=0

∫ π

θ=0
sin3 θ dθ dφ

=
4π

8π/3
= 1.5

or, equivalently, 1.76 dB.

9-2.4 Antenna Gain

Of the total power Pt (transmitter power) supplied to the
antenna, a part, Prad, is radiated out into space, and the

remainder, Ploss, is dissipated as heat in the antenna structure.

The radiation efficiency ξ is defined as the ratio of Prad to Pt:

ξ =
Prad

Pt

. (dimensionless) (9.27)

The gain of an antenna is defined as

G =
4πR

2
Smax

Pt

, (9.28)

which is similar in form to the expression given by Eq. (9.24)

for the directivity D except that it is referenced to the input
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power supplied to the antenna, Pt, rather than to the radiated
power Prad. In view of Eq. (9.27),

G = ξ D. (dimensionless) (9.29)

◮ The gain accounts for ohmic losses in the antenna
material, whereas the directivity does not. For a lossless

antenna, ξ = 1, and G = D. ◭

9-2.5 Radiation Resistance

To a transmission line connected between a generator supply-

ing power Pt on one end and an antenna on the other end, the

antenna is merely a load with input impedance Zin. If the line
is lossless and properly matched to the antenna, all of Pt is

transferred to the antenna. In general, Zin consists of a resistive

component Rin and a reactive component Xin:

Zin = Rin + jXin. (9.30)

The resistive component is defined as equivalent to a resis-

tor Rin that would consume an average power Pt when the
amplitude of the ac current flowing through it is I0,

Pt =
1
2

I
2
0 Rin. (9.31)

Since Pt = Prad +Ploss, it follows that Rin can be defined as the
sum of a radiation resistance Rrad and a loss resistance Rloss,

Rin = Rrad + Rloss, (9.32)

with

Prad = 1
2

I
2
0 Rrad, (9.33a)

Ploss = 1
2

I
2
0 Rloss, (9.33b)

where I0 is the amplitude of the sinusoidal current exciting the

antenna. As defined earlier, the radiation efficiency is the ratio
of Prad to Pt, or

ξ =
Prad

Pt

=
Prad

Prad + Ploss

=
Rrad

Rrad + Rloss

. (9.34)

The radiation resistance Rrad can be calculated by integrating
the far-field power density over a sphere to obtain Prad and then

equating the result to Eq. (9.33a).

Example 9-3: Radiation Resistance and
Efficiency of a Hertzian Dipole

A 4-cm long center-fed dipole is used as an antenna at
75 MHz. The antenna wire is made of copper and has a radius

a = 0.4 mm. From Eqs. (7.92a) and (7.94), the loss resistance
of a circular wire of length l is given by

Rloss =
l

2πa

√
π f µc

σc

, (9.35)

where µc and σc are the magnetic permeability and conductiv-

ity of the wire, respectively. Calculate the radiation resistance

and the radiation efficiency of the dipole antenna.

Solution: At 75 MHz,

λ =
c

f
=

3×108

7.5×107
= 4 m.

The length to wavelength ratio is l/λ = 4 cm/4 m = 10−2.

Hence, this is a short dipole. From Eq. (9.24),

Prad =
4πR

2

D
Smax. (9.36)

For the Hertzian dipole, Smax is given by Eq. (9.14), and from

Example 9-2, we established that D = 1.5. Hence,

Prad =
4πR

2

1.5
× 15πI

2
0

R2

(
l

λ

)2

= 40π2
I

2
0

(
l

λ

)2

. (9.37)

Equating this result to Eq. (9.33a) and then solving for the
radiation resistance Rrad leads to

Rrad = 80π2(l/λ )2 (Ω). (short dipole) (9.38)

For l/λ = 10−2, Rrad = 0.08 Ω.

Next, we determine the loss resistance Rloss. For cop-

per, Appendix B gives µc ≈ µ0 = 4π × 10−7 H/m and
σc = 5.8×107 S/m. Hence,

Rloss =
l

2πa

√
π f µc

σc

=
4×10−2

2π ×4×10−4

(
π ×75×106×4π ×10−7

5.8×107

)1/2

= 0.036 Ω.

Therefore, the radiation efficiency is

ξ =
Rrad

Rrad + Rloss

=
0.08

0.08 + 0.036
= 0.69.
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Thus, the dipole is 69% efficient.

Concept Question 9-5: What does the pattern solid
angle represent?

Concept Question 9-6: What is the magnitude of the

directivity of an isotropic antenna?

Concept Question 9-7: What physical and material
properties affect the radiation efficiency of a fixed-length

Hertzian dipole antenna?

Exercise 9-2: An antenna has a conical radiation pattern

with a normalized radiation intensity F(θ ) = 1 for θ
between 0◦ and 45◦ and zero for θ between 45◦ and 180◦.

The pattern is independent of the azimuth angle φ . Find

(a) the pattern solid angle and (b) the directivity.

Answer: (a) Ωp = 1.84 sr, (b) D = 6.83 or, equivalently,

8.3 dB. (See EM .)

Exercise 9-3: The maximum power density radiated by
a short dipole at a distance of 1 km is 60 (nW/m2). If

I0 = 10 A, find the radiation resistance.

Answer: Rrad = 10 mΩ. (See EM .)

9-3 Half-Wave Dipole Antenna

In Section 9-1, we developed expressions for the electric

and magnetic fields radiated by a Hertzian dipole of length

l ≪ λ . We now use these expressions as building blocks to
obtain expressions for the fields radiated by a half-wave dipole

antenna, so named because its length l = λ/2. As shown in

Fig. 9-14, the half-wave dipole consists of a thin wire fed at
its center by a generator connected to the antenna terminals

via a transmission line. The current flowing through the wire

has a symmetrical distribution with respect to the center of the
dipole, and the current is zero at its ends. Mathematically, i(t)
is given by

i(t) = I0 cosωt coskz = Re
[
I0 coskze

jωt
]

, (9.39a)

whose phasor is

Ĩ(z) = I0 coskz, −λ/4 ≤ z ≤ λ/4 , (9.39b)

and k = 2π/λ . Equation (9.9a) gives an expression for Ẽθ ,
which is the far field radiated by a Hertzian dipole of length l

when excited by a current I0. Let us adapt that expression to an

l = λ/2

Transmission
line

Dipole
antenna

Current distrubution
I(z) = I0 cos kz

i(t)

i(t)

(a)

(b)

l = λ/2

θ 

θs

dz

z

z = l/2

z = –l/2

z cos θ

s

z

R

Q = (R, θ, φ)

Figure 9-14 Center-fed half-wave dipole.

infinitesimal dipole segment of length dz, which is excited by

a current Ĩ(z) and located at a distance s from the observation

point Q (Fig. 9-14(b)). Thus,

dẼθ (z) =
jkη0

4π
Ĩ(z) dz

(
e
− jks

s

)
sinθs, (9.40a)

and the associated magnetic field is

dH̃φ (z) =
dẼθ (z)

η0

. (9.40b)

The far field due to radiation by the entire antenna is obtained

by integrating the fields from all of the Hertzian dipoles
making up the antenna:

Ẽθ =

∫ λ/4

z=−λ/4
dẼθ . (9.41)

Before we calculate this integral, we make the following

two approximations. The first relates to the magnitude part
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of the spherical propagation factor, 1/s. In Fig. 9-14(b), the
distance s between the current element and the observation

point Q is considered so large in comparison with the length of

the dipole that the difference between s and R may be neglected
in terms of its effect on 1/s. Hence, we may set 1/s ≈ 1/R,

and by the same argument, we set θs ≈ θ . The error ∆ between

s and R is a maximum when the observation point is along
the z axis and it is equal to λ/4 (corresponding to half of the

antenna length). If R ≫ λ , this error will have an insignificant

effect on 1/s. The second approximation is associated with the
phase factor e

− jks. An error in distance ∆ corresponds to an

error in phase k∆ = (2π/λ )(λ/4) = π/2. As a rule of thumb,
a phase error greater than π/8 is considered unacceptable

because it may lead to a significant error in the computed value

of the field Ẽθ . Hence, the approximation s≈ R is too crude for

the phase factor and cannot be used. A more tolerable option

is to use the parallel-ray approximation given by

s ≈ R− zcosθ , (9.42)

as illustrated in Fig. 9-14(b).
Substituting Eq. (9.42) for s in the phase factor of

Eq. (9.40a) and replacing s with R and θs with θ elsewhere

in the expression, we obtain

dẼθ =
jkη0

4π
Ĩ(z) dz

(
e
− jkR

R

)
sinθ e

jkzcosθ . (9.43)

After (1) inserting Eq. (9.43) into Eq. (9.41), (2) using the

expression for Ĩ(z) given by Eq. (9.39b), and (3) carrying out
the integration, the following expressions are obtained:

Ẽθ = j 60I0

{
cos[(π/2)cosθ ]

sinθ

}(
e
− jkR

R

)
,

H̃φ =
Ẽθ

η0

.

(9.44a)

(9.44b)

The corresponding time-average power density is

S(R,θ ) =
|Ẽθ |2
2η0

=
15I

2
0

πR2

{
cos2[(π/2)cosθ ]

sin2 θ

}

= S0

{
cos2[(π/2)cosθ ]

sin2 θ

}
(W/m2).

(9.45)

Examination of Eq. (9.45) reveals that S(R,θ ) is maximum at

θ = π/2, and its value is

Smax = S0 =
15I

2
0

πR2
.

Hence, the normalized radiation intensity is

F(θ ) =
S(R,θ )

S0

=

{
cos[(π/2)cosθ ]

sin θ

}2

. (9.46)

The radiation pattern of the half-wave dipole exhibits roughly
the same doughnut-like shape shown earlier in Fig. 9-7 for the

short dipole. Its directivity is slightly larger (1.64 compared

with 1.5 for the short dipole), but its radiation resistance is

73 Ω (as shown later in Section 9-3.2), which is orders of

magnitude larger than that of a short dipole.

9-3.1 Directivity of λ/2 Dipole

To evaluate both the directivity D and the radiation resistance
Rrad of the half-wave dipole, we first need to calculate the total

radiated power Prad by applying Eq. (9.20):

Prad = R
2
∫∫

4π
S(R,θ ) dΩ

=
15I

2
0

π

∫ 2π

0

∫ π

0

{
cos[(π/2)cosθ ]

sinθ

}2

sinθ dθ dφ .

(9.47)

The integration over φ is equal to 2π , and numerical evaluation

of the integration over θ gives the value 1.22. Consequently,

Prad = 36.6 I
2
0 (W). (9.48)

From Eq. (9.45), we found that Smax = 15I
2
0/(πR

2). Using
this in Eq. (9.24) gives the following result for the directivity D

of the half-wave dipole:

D =
4πR

2
Smax

Prad

=
4πR

2

36.6I2
0

(
15I

2
0

πR2

)
= 1.64 (9.49)

or, equivalently, 2.15 dB.

9-3.2 Radiation Resistance of λ/2 Dipole

From Eq. (9.33a),

Rrad =
2Prad

I2
0

=
2×36.6I

2
0

I2
0

≈ 73 Ω. (9.50)

As was noted earlier in Example 9-3, because the radiation

resistance of a Hertzian dipole is comparable in magnitude

to that of its loss resistance Rloss, its radiation efficiency ξ
is rather small. For the 4-cm long dipole of Example 9-3,

Rrad = 0.08 Ω (at 75 MHz) and Rloss = 0.036 Ω. If we keep



9-3 HALF-WAVE DIPOLE ANTENNA 415

the frequency the same and increase the length of the dipole to
2 m (λ = 4 m at f = 75 MHz), Rrad becomes 73 Ω and Rloss

increases to 1.8 Ω. The radiation efficiency increases from

69% for the short dipole to 98% for the half-wave dipole. More
significant is the fact that it is practically impossible to match

a transmission line to an antenna with a resistance on the order

of 0.1 Ω, while it is quite easy to do so when Rrad = 73 Ω.
Moreover, since Rloss ≪ Rrad for the half-wave dipole,

Rin ≈ Rrad and Eq. (9.30) becomes

Zin ≈ Rrad + jXin. (9.51)

Deriving an expression for Xin for the half-wave dipole is fairly
complicated and beyond the scope of this book. However,

it is significant to note that Xin is a strong function of l/λ
and that it decreases from 42 Ω at l/λ = 0.5 to zero at
l/λ = 0.48, whereas Rrad remains approximately unchanged.

Hence, by reducing the length of the half-wave dipole by 4%,

Zin becomes purely real and equal to 73 Ω, thereby making
it possible to match the dipole to a 75 Ω transmission line

without resorting to the use of a matching network.

9-3.3 Quarter-Wave Monopole Antenna

◮ When placed over a conducting ground plane, a quarter-

wave monopole antenna excited by a source at its base

(Fig. 9-15(a)) exhibits the same radiation pattern in the
region above the ground plane as a half-wave dipole in

free space. ◭

This is because, from image theory (Section 4-11), the con-
ducting plane can be replaced with the image of the λ/4

monopole, as illustrated in Fig. 9-15(b). Thus, the λ/4

monopole radiates an electric field identical to that given by
Eq. (9.44a), and its normalized radiation intensity is given

by Eq. (9.46); but the radiation is limited to the upper half-
space defined by 0 ≤ θ ≤ π/2. Hence, a monopole radiates

only half as much power as the dipole. Consequently, for a

λ/4 monopole, Prad = 18.3I
2
0 , and its radiation resistance is

Rrad = 36.5 Ω.

The approach used with the quarter-wave monopole is also

valid for any vertical wire antenna placed above a conducting
plane, including a Hertzian monopole.

Concept Question 9-8: What is the physical length of

a half-wave dipole operating at (a) 1 MHz (in the AM

broadcast band), (b) 100 MHz (FM broadcast band), and
(c) 10 GHz (microwave band)?

λ/4
I

I

I Image

Conducting
plane

(a)

(b)

Figure 9-15 A quarter-wave monopole above a conducting

plane is equivalent to a full half-wave dipole in free space.

Concept Question 9-9: How does the radiation pattern

of a half-wave dipole compare with that of a Hertzian

dipole? How do their directivities, radiation resistances,
and radiation efficiencies compare?

Concept Question 9-10: How does the radiation effi-

ciency of a quarter-wave monopole compare with that of

a half-wave dipole, assuming that both are made of the
same material and have the same cross section?

Exercise 9-4: For the half-wave dipole antenna, evaluate
F(θ ) versus θ to determine the half-power beamwidth in

the elevation plane (the plane containing the dipole axis).

Answer: β = 78◦. (See EM .)
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Exercise 9-5: If the maximum power density radiated by
a half-wave dipole is 50 µW/m2 at a range of 1 km, what

is the current amplitude I0?

Answer: I0 = 3.24 A. (See EM .)

(a)  l = λ/2 (b)  l = λ (c)  l = 3λ/2

I(z)
~

I(z)
~

I(z)
~

Figure 9-16 Current distribution for three center-fed dipoles.

9-4 Dipole of Arbitrary Length

So far, we examined the radiation properties of the Hertzian
and half-wave dipoles. We now consider the more general case

of a linear dipole of arbitrary length l relative to λ . For a

center-fed dipole, as depicted in Fig. 9-16, the currents flowing
through its two halves are symmetrical and must go to zero at

its ends. Hence, the current phasor Ĩ(z) can be expressed as a
sine function with an argument that goes to zero at z = ±l/2:

Ĩ(z) =

{
I0 sin [k (l/2− z)] , for 0 ≤ z ≤ l/2,

I0 sin [k (l/2+ z)] , for − l/2 ≤ z < 0,
(9.52)

where I0 is the current amplitude. The procedure for cal-

culating the electric and magnetic fields and the associated

power density of the wave radiated by such an antenna is
basically the same as that used previously in connection with

the half-wave dipole antenna. The only difference is the current

distribution Ĩ(z). If we insert the expression for Ĩ(z) given by
Eq. (9.52) into Eq. (9.43), we obtain the following expression

for the differential electric field dẼθ of the wave radiated by
an elemental length dz at location z along the dipole:

dẼθ =
jkη0I0

4π

(
e
− jkR

R

)
sinθ e

jkzcosθ
dz

×
{

sin [k (l/2− z)] for 0 ≤ z ≤ l/2,

sin [k (l/2+ z)] for − l/2 ≤ z < 0.
(9.53)

The total field radiated by the dipole is

Ẽθ =

∫
l/2

−l/2
dẼθ =

∫
l/2

0
dẼθ +

∫ 0

−l/2
dẼθ

=
jkη0I0

4π

(
e
− jkR

R

)
sinθ

×
{∫

l/2

0
e

jkzcosθ sin[k(l/2− z)] dz

+

∫ 0

−l/2
e

jkzcosθ sin[k(l/2 + z)] dz

}
.

(9.54)

If we apply Euler’s identity to express e
jkzcosθ as

e
jkzcosθ = cos(kzcosθ )+ j sin(kzcosθ )],

we can integrate the two integrals and obtain the result

Ẽθ = j60I0

(
e
− jkR

R

)[
cos

(
kl

2
cosθ

)
− cos

(
kl

2

)

sinθ

]
. (9.55)

The corresponding time-average power density radiated by the
dipole antenna is given by

S(θ ) =
|Ẽθ |2
2η0

=
15I

2
0

πR2

[
cos

(
π l

λ cosθ
)
− cos

(
π l

λ

)

sinθ

]2

, (9.56)

where we have used the relations η0 ≈ 120π (Ω) and

k = 2π/λ . For l = λ/2, Eq. (9.56) reduces to the expres-

sion given by Eq. (9.45) for the half-wave dipole. Plots of
the normalized radiation intensity, F(θ ) = S(R,θ )/Smax, are

shown in Fig. 9-17 for dipoles of lengths λ/2, λ , and 3λ/2.
The dipoles with l = λ/2 and l = λ have similar radiation

patterns with both maxima along θ = 90◦, but the half-power

beamwidth of the wavelength-long dipole is narrower than
that of the half-wave dipole, and Smax = 60I

2
0/(πR

2) for the

wavelength-long dipole, which is four times that for the half-

wave dipole. The pattern of the dipole with length l = 3λ/2
exhibits a structure with multiple lobes, and its direction of

maximum radiation is not along θ = 90◦.
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x–y plane
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x–y plane

(a)  l = λ/2

(b)  l = λ

(c)  l = 3λ/2

β = 47°

0.5

1

z
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β = 78°

Figure 9-17 Radiation patterns of dipoles with lengths of λ/2,

λ , and 3λ/2.

Module 9.2 Linear Dipole Antenna For a linear

antenna of any specified length (in units of λ ), this
module displays the current distribution along the antenna

and the far-field radiation patterns in the horizontal and
elevation planes. It also calculates the total power radiated

by the antenna, the radiation resistance, and the antenna

directivity.

9-5 Effective Area of a Receiving

Antenna

So far, antennas have been treated as directional radiators of

energy. Now, we examine the reverse process, namely how a

receiving antenna extracts energy from an incident wave and
delivers it to a load. The ability of an antenna to capture energy

from an incident wave of power density Si (W/m2) and convert
it into an intercepted power Pint (W) for delivery to a matched

load is characterized by the effective area Ae:

Ae =
Pint

Si

(m2). (9.57)

Other commonly used names for Ae include effective aperture
and receiving cross section. The antenna receiving process
may be modeled in terms of a Thévenin equivalent circuit

(Fig. 9-18) consisting of a voltage Ṽoc in series with the

antenna input impedance Zin. Here, Ṽoc is the open-circuit

voltage induced by the incident wave at the antenna terminals,
and ZL is the impedance of the load connected to the antenna

(representing a receiver or some other circuit). In general, both

Zin and ZL are complex:

Zin = Rrad + jXin, (9.58a)

(a)  Receiving antenna

(b)  Equivalent circuit

ZL

Incident
wave

Antenna
Load

Zin = Rrad + jXin

ZL = RL + jXL

LoadAntenna equivalent circuit

Voc
~

Figure 9-18 Receiving antenna represented by an equivalent

circuit.
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Module 9.3 Detailed Analysis of Linear Antenna This module complements Module 9.2 by offering extensive
information about the specified linear antenna, including its directivity and plots of its current and field distributions.

ZL = RL + jXL, (9.58b)

where Rrad denotes the radiation resistance of the antenna

(assuming Rloss ≪ Rrad). To maximize power transfer to
the load, the load impedance must be chosen so that either

ZL = Z
∗
in, or equivalently, RL = Rrad and XL = −Xin. In that

case, the circuit reduces to a source Ṽoc that is connected across

a resistance equal to 2Rrad. Since Ṽoc is a sinusoidal voltage

phasor, the time-average power delivered to the load is

PL =
1

2
|ĨL|2Rrad =

1

2

[
|Ṽoc|
2Rrad

]2

Rrad =
|Ṽoc|2
8Rrad

, (9.59)

where ĨL = Ṽoc/(2Rrad) is the phasor current flowing through

the circuit. Since the antenna is lossless, all of the intercepted
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power Pint ends up in the load resistance RL. Hence,

Pint = PL =
|Ṽoc|2
8Rrad

. (9.60)

For an incident wave with electric field Ẽi parallel to the

antenna polarization direction, the power density carried by
the wave is

Si =
|Ẽi|2
2η0

=
|Ẽi|2
240π

. (9.61)

The ratio of the results provided by Eqs. (9.60) and (9.61) gives

Ae =
Pint

Si

=
30π |Ṽoc|2
Rrad|Ẽi|2

. (9.62)

The open-circuit voltage Ṽoc induced in the receiving antenna

is due to the incident field Ẽi, but the relation between them

depends on the specific antenna under consideration. By way
of illustration, let us consider the case of the short-dipole

antenna of Section 9-1. Because the length l of the short dipole

is small compared with λ , the current induced by the incident
field is uniform across its length, and the open-circuit voltage

is simply Ṽoc = Ẽil. Noting that Rrad = 80π2(l/λ )2 for the

short dipole (see Eq. (9.38)) and using Ṽoc = Ẽil, Eq. (9.62)
simplifies to

Ae =
3λ 2

8π
(m2). (short dipole) (9.63)

In Example 9-2 it was shown that for the Hertzian dipole the

directivity D = 1.5. In terms of D, Eq. (9.63) can be rewritten
in the form

Ae =
λ 2

D

4π
(m2). (any antenna) (9.64)

◮ Despite the fact that the relation between Ae and D

given by Eq. (9.64) was derived for a Hertzian dipole, it

can be shown that it is also valid for any antenna under
matched-impedance conditions. ◭

Exercise 9-6: The effective area of an antenna is 9 m2.

What is its directivity in decibels at 3 GHz?

Answer: D = 40.53 dB. (See EM .)

Exercise 9-7: At 100 MHz, the pattern solid angle of an
antenna is 1.3 sr. Find (a) the antenna directivity D and (b)

its effective area Ae.

Answer: (a) D = 9.67, (b) Ae = 6.92 m2. (See EM .)

Pt PrecPrad

At
Ar

Pint

R

Transmitting
antenna

Receiving
antenna

Figure 9-19 Transmitter–receiver configuration.

9-6 Friis Transmission Formula

The two antennas shown in Fig. 9-19 are part of a free-

space communication link with the separation between the

antennas, R, being large enough for each to be in the far-field
region of the other. The transmitting and receiving antennas

have effective areas At and Ar and radiation efficiencies ξt

and ξr, respectively. Our objective is to find a relationship
between Pt, which is the power supplied to the transmitting

antenna, and Prec, which is the power delivered to the receiver.
As always, we assume that both antennas are impedance-

matched to their respective transmission lines. Initially, we

consider the case where the two antennas are oriented so that
the peak of the radiation pattern of each antenna points in the

direction of the other.

We start by treating the transmitting antenna as a lossless
isotropic radiator. The power density incident upon the receiv-

ing antenna at a distance R from an isotropic transmitting

antenna is simply equal to the transmitter power Pt divided by
the surface area of a sphere of radius R:

Siso =
Pt

4πR2
. (9.65)

The real transmitting antenna is neither lossless nor isotropic.

Hence, the power density Sr due to the real antenna is

Sr = GtSiso = ξtDtSiso =
ξtDtPt

4πR2
. (9.66)

Through the gain Gt = ξtDt, ξt accounts for the fact that only
part of the power Pt supplied to the antenna is radiated out into

space, and Dt accounts for the directivity of the transmitting
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antenna (in the direction of the receiving antenna). Moreover,
by Eq. (9.64), Dt is related to At by Dt = 4πAt/λ 2. Hence,

Eq. (9.66) becomes

Sr =
ξtAtPt

λ 2R2
. (9.67)

On the receiving-antenna side, the power intercepted by the

receiving antenna is equal to the product of the incident power
density Sr and the effective area Ar:

Pint = SrAr =
ξtAtArPt

λ 2R2
. (9.68)

The power delivered to the receiver, Prec, is equal to the
intercepted power Pint multiplied by the radiation efficiency of

the receiving antenna, ξ r. Hence, Prec = ξrPint, which leads to

the result

Prec

Pt

=
ξtξrAtAr

λ 2R2
= GtGr

(
λ

4πR

)2

. (9.69)

◮ This relation is known as the Friis transmission for-
mula, and Prec/Pt is called the power transfer ratio. ◭

If the two antennas are not oriented in the direction of

maximum power transfer, Eq. (9.69) assumes the general form

Prec

Pt

= GtGr

(
λ

4πR

)2

Ft(θt,φt) Fr(θr,φr), (9.70)

where Ft(θt,φt) is the normalized radiation intensity of the

transmitting antenna at angles (θ t,φt) corresponding to the

direction of the receiving antenna (as seen by the antenna
pattern of the transmitting antenna), and a similar definition

applies to Fr(θr,φr) for the receiving antenna.

Example 9-4: Satellite Communication System

A 6 GHz direct-broadcast TV satellite system transmits 100 W

through a 2 m diameter parabolic dish antenna from a distance
of approximately 40,000 km above Earth’s surface. Each TV

channel occupies a bandwidth of 5 MHz. Due to electromag-

netic noise picked up by the antenna as well as noise generated
by the receiver electronics, a home TV receiver has a noise

level given by

Pn = KTsysB (W), (9.71)

where Tsys [measured in kelvins (K)] is a figure of merit called

the system noise temperature that characterizes the noise

performance of the receiver–antenna combination, K is Boltz-
mann’s constant [1.38× 10−23 (J/K)], and B is the receiver

bandwidth in Hz.

The signal-to-noise ratio Sn (which should not be confused
with the power density S) is defined as the ratio of Prec to Pn:

Sn = Prec/Pn (dimensionless). (9.72)

For a receiver with Tsys = 580 K, what minimum diameter of a

parabolic dish receiving antenna is required for high-quality
TV reception with Sn = 40 dB? The satellite and ground

receiving antennas may be assumed lossless, and their effective

areas may be assumed equal to their physical apertures.

Solution: The following quantities are given:

Pt = 100 W, f = 6 GHz = 6×109 Hz, Sn = 104,

transmit antenna diameter dt = 2 m,

Tsys = 580 K, R = 40,000 km = 4×107 m,

B = 5 MHz = 5×106 Hz.

The wavelength λ = c/ f = 5× 10−2 m, and the area of the

transmitting satellite antenna is At = (πd
2
t /4) = π (m2). From

Eq. (9.71), the receiver noise power is

Pn = KTsysB = 1.38×10−23×580×5×106 = 4×10−14 W.

Using Eq. (9.69) with ξt = ξr = 1,

Prec =
PtAtAr

λ 2R2
=

100πAr

(5×10−2)2(4×107)2
= 7.85×10−11

Ar.

The area of the receiving antenna, Ar, can now be determined

by equating the ratio Prec/Pn to Sn = 104:

104 =
7.85×10−11

Ar

4×10−14
,

which yields the value Ar = 5.1 m2. The required minimum

diameter is dr =
√

4Ar/π = 2.55 m.

Exercise 9-8: If the operating frequency of the com-
munication system described in Example 9-4 is doubled

to 12 GHz, what would then be the minimum required

diameter of a home receiving TV antenna?

Answer: dr = 1.27 m. (See EM .)

Exercise 9-9: A 3 GHz microwave link consists of two

identical antennas each with a gain of 30 dB. Determine
the received power given that the transmitter output power

is 1 kW and the two antennas are 10 km apart.

Answer: Prec = 6.33×10−4 W. (See EM .)
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Technology Brief 17:
Health Risks of EM Fields

Can the use of cell phones cause cancer? Does expo-
sure to the electromagnetic fields (EMFs) associated
with power lines pose health risks to humans? Are we
endangered by EMFs generated by home appliances,
telephones, electrical wiring, and the myriad of elec-
tronic gadgets we use every day (Fig. TF17-1)? Despite
reports in some of the popular media alleging a causative
relationship between low-level EMFs and many dis-
eases, according to reports issude by governmental and
professional boards in the U.S. and Europe, the answer
is given here.

◮ NO, we are not at risk, so long as manufacturers
adhere to the approved governmental standards
for maximum permissible exposure (MPE) levels.
With regard to cell phones, the official reports cau-
tion that their conclusions are limited to phone use
of less than 15 years, since data for longer use is not
yet available. ◭

Figure TF17-1 Electromagnetic fields are emitted by power lines,

cell phones, TV towers, and many other electronic circuits and

devices.

Physiological Effects of EMFs

The energy carried by a photon with an EM frequency f

is given by E = h f , where h is Planck’s constant. The
mode of interaction between a photon passing through
a material and the material’s atoms or molecules is
very much dependent on f . If f is greater than about
1015 Hz (which falls in the ultraviolet (UV) band of the
EM spectrum), the photon’s energy is sufficient to free
an electron and remove it completely, thereby ionizing
the affected atom or molecule. Consequently, the energy
carried by such EM waves is called ionizing radiation,
in contrast with non-ionizing radiation (Fig. TF17-2),
where photons may be able to cause an electron to move
to a higher energy level but not eject it from its host atom
or molecule.

Assessing health risks associated with exposure
to EMFs is complicated by the number of variables
involved, including: (1) the frequency f , (2) the intensities
of the electric and magnetic fields, (3) the exposure
duration—whether continuous or discontinuous, pulsed
or uniform—and (4) the specific part of the body that is
getting exposed. We know that intense laser illumination
can cause corneal burn, high-level X-rays can damage
living tissue and cause cancer, and in fact, any form of
EM energy can be dangerous if the exposure level and/or
duration exceed certain safety limits. Governmental and
professional safety boards are tasked with establishing
maximum permissible exposure (MPE) levels that protect
human beings against adverse health effects associated
with EMFs. In the U.S., the relevant standards are IEEE
Std C95.6 (dated 2002), which addresses EM fields in
the 1 Hz to 3 kHz range, and IEEE Std 95.1 (dated 2005),
which deals with the frequency range from 3 kHz to 300
GHz. On the European side of the Atlantic, responsibility
for establishing MPE levels resides with the Scientific
Committee on Emerging and Newly Identified Health
Risks (SCENIHR) of the European Commission.

◮ At frequencies below 100 kHz, the goal is to
minimize adverse effects of exposure to electric
fields that can cause electrostimulation of nerve
and muscle cells. Above 5 MHz, the main concern
is excessive tissue heating, and in the transition
region of 100 kHz to 5 MHz, safety standards are
designed to protect against both electrostimulation
and excessive heating. ◭
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Figure TF17-2 Different types of electromagnetic radiation.
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Figure TF17-3 Maximum permissible exposure (MPE) levels for E and H over the frequency range from 0.1 Hz to 3 kHz.

Frequency Range 0≤ f ≤ 3 kHz: The plots in Fig. TF17-3
display the values of MPE for electric and magnetic fields
over the frequency range below 3 kHz. According to
IEEE Std C95.6, it is sufficient to demonstrate compli-
ance with the MPE levels for either the electric field E

or the magnetic field H. According to the plot for H,
exposure at 60 Hz should not exceed 720 A/m. The
magnetic field due to power lines is typically in the range
of 2 to 6 A/m underneath the lines, which is at least two
orders of magnitude smaller than the established safe
level for H.

Frequency Range 3 kHz ≤ f ≤ 300 GHz: At frequen-
cies below 500 MHz, MPE is specified in terms of the
electric and magnetic field strengths of the EM energy
(Fig. TF17-4). From 100 MHz to 300 GHz (and beyond),
MPE is specified in terms of the product of E and H,
namely the power density S. Cell phones operate in the
1 to 2 GHz band; the specified MPE is 1 W/m2 (or
equivalently 0.1 mW/cm2).
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Figure TF17-4 MPE levels for the frequency range from 10 kHz to 300 GHz.

Bottom Line

We are constantly bombarded by EM energy—from
solar illumination to blackbody radiation emitted
by all matter. Our bodies absorb, reflect, and emit
EM energy all the time. Living organisms, including
humans, require exposure to EM radiation to
survive, but excessive exposure can cause adverse
effects. The term excessive exposure connotes
a complicated set of relationships among such
variables as field strength, exposure duration and mode
(continuous, pulsed, etc.), body part, etc. The emission

standards established by the Federal Communications
Commission in the U.S. and similar governmental bod-
ies in other countries are based on a combination of
epidemiological studies, experimental observations, and
theoretical understanding of how EM energy interacts
with biological material. Generally speaking, the max-
imum permissible exposure levels specified by these
standards are typically two orders of magnitude lower
than the levels known to cause adverse effects, but in
view of the multiplicity of variables involved, there is no
guarantee that adhering to the standards will avoid health
risks absolutely. The bottom line is: Use common sense!
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Exercise 9-10: The effective area of a parabolic dish
antenna is approximately equal to its physical aperture.

If its directivity is 30 dB at 10 GHz, what is its effective

area? If the frequency is increased to 30 GHz, what will
be its new directivity?

Answer: Ae = 0.07 m2, D = 39.44 dB. (See EM .)

z

Q
R

Observation
sphere

θ 

xa Ea(xa, ya)

ya

Figure 9-20 A horn antenna with aperture field distribution

Ea(xa,ya).

9-7 Radiation by Large-Aperture

Antennas

For wire antennas, the sources of radiation are the infinitesimal

current elements comprising the current distribution along the
wire and the total radiated field at a given point in space is

equal to the sum, or integral, of the fields radiated by all

the elements. A parallel scenario applies to aperture antennas,
except that now the source of radiation is the electric-field

distribution across the aperture. Consider the horn antenna

shown in Fig. 9-20. It is connected to a source through a
coaxial transmission line with the outer conductor of the

line connected to the metal body of the horn and the inner

conductor made to protrude through a small hole partially into
the throat end of the horn. The protruding conductor acts as

a monopole antenna, generating waves that radiate outwardly

toward the horn’s aperture. The electric field of the wave
arriving at the aperture, which may vary as a function of xa

and ya over the horn’s aperture, is called the electric-field aper-
ture distribution or illumination, Ea(xa,ya). Inside the horn,

wave propagation is guided by the horn’s geometry, but as the

wave transitions from a guided wave into an unbounded wave,
every point of its wavefront serves as a source of spherical

secondary wavelets. The aperture may then be represented

as a distribution of isotropic radiators. At a distant point Q,
the combination of all the waves arriving from all of these

radiators constitutes the total wave that would be observed by

(b) Parabolic reflector antenna

(a) Opening in an opaque screen

xa

lx

ly

Ea(xa, ya)

ya

Collimating
lens

Imaginary aperture

d

Figure 9-21 Radiation by apertures: (a) an opening in an

opaque screen illuminated by a light source through a collimat-

ing lens and (b) a parabolic dish reflector illuminated by a small

horn antenna.

a receiver placed at that point.

The radiation process described for the horn antenna is
equally applicable to any aperture upon which an electromag-

netic wave is incident. For example, if a light source is used

to illuminate an opening in an opaque screen through a colli-
mating lens, as shown in Fig. 9-21(a), the opening becomes a

source of secondary spherical wavelets, much like the aperture

of the horn antenna. In the case of the parabolic reflector shown
in Fig. 9-21(b), it can be described in terms of an imaginary

aperture representing the electric-field distribution across a
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plane in front of the reflector.
Two types of mathematical formulations are available for

computing the electromagnetic fields of waves radiated by

apertures. The first is a scalar formulation based on Kirch-
hoff’s work, and the second is a vector formulation based on

Maxwell’s equations. In this section, we limit our presentation

to the scalar diffraction technique in part because of its inher-
ent simplicity and also because it is applicable across a wide

range of practical applications.

◮ The key requirement for the validity of the scalar

formulation is that the antenna aperture be at least sev-

eral wavelengths long along each of its principal dimen-
sions. ◭

A distinctive feature of such an antenna is its high directivity
and correspondingly narrow beam, which makes it attractive

for radar and free-space microwave communication systems.

The frequency range commonly used for such applications is
the 1 to 30 GHz microwave band. Because the corresponding

wavelength range is 30 to 1 cm, respectively, it is quite

practical to construct and use antennas (in this frequency
range) with aperture dimensions that are many wavelengths in

size.

The xa–ya plane in Fig. 9-22 (denoted plane A) contains
an aperture with an electric field distribution Ea(xa,ya). For

the sake of convenience, the opening has been chosen to

be rectangular in shape, with dimensions lx along xa and ly

along ya, even though the formulation we are about to discuss

is general enough to accommodate any two-dimensional aper-

ture distribution, including those associated with circular and
elliptical apertures. At a distance z from the aperture plane A

in Fig. 9-22, we have an observation plane O with axes (x,y).
The two planes have parallel axes and are separated by a

distance z. Moreover, z is sufficiently large that any point Q in

the observation plane is in the far-field region of the aperture.
To satisfy the far-field condition, it is necessary that

R ≥ 2d
2/λ , (far-field range) (9.73)

where d is the longest linear dimension of the radiating

aperture.

Aperture
illumination

Aperture plane A

Observation plane O

ya

xa

lx

ly

dya

dxa

y

z

s
R x

Qθ
φ

Figure 9-22 Radiation by an aperture in the xa–ya plane at z = 0.
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The position of observation point Q is specified by the
range R between the center of the aperture and point Q and

by the angles θ and φ (Fig. 9-22), which jointly define the

direction of the observation point relative to the coordinate
system of the aperture. In our treatment of the dipole antenna,

we oriented the dipole along the z axis, and we called θ the

zenith angle. In the present context, the z axis is orthogonal
to the plane containing the antenna aperture. Also, θ usually is

called the elevation angle. The electric field phasor of the wave

incident upon point Q is denoted Ẽ(R,θ ,φ). Kirchhoff’s scalar

diffraction theory provides the following relationship between

the radiated field Ẽ(R,θ ,φ) and the aperture illumination

Ẽa(xa,ya):

Ẽ(R,θ ,φ) =
j

λ

(
e
− jkR

R

)
h̃(θ ,φ), (9.74)

where

h̃(θ ,φ) =

∫∫ ∞

−∞
Ẽa(xa,ya)

· exp[ jk sin θ (xa cosφ + ya sinφ)] dxa dya. (9.75)

We shall refer to h̃(θ ,φ) as the form factor of Ẽ(R,θ ,φ).
Its integral is written with infinite limits with the under-

standing that Ẽa(xa,ya) is identically zero outside the aper-
ture. The spherical propagation factor (e− jkR/R) accounts for

wave propagation between the center of the aperture and the

observation point, and h̃(θ ,φ) represents an integration of the

exciting field Ẽa(xa,ya) over the extent of the aperture, taking

into account [through the exponential function in Eq. (9.75)]
the approximate deviation in distance between R and s, where

s is the distance to any point (xa,ya) in the aperture plane (see

Fig. 9-22).

◮ In Kirchhoff’s scalar formulation, the polarization

direction of the radiated field Ẽ(R,θ ,φ) is the same as

that of the aperture field Ẽa(xa,ya). ◭

Also, the power density of the radiated wave is given by

S(R,θ ,φ) =
|Ẽ(R,θ ,φ)|2

2η0

=
|h̃(θ ,φ)|2
2η0λ 2R2

. (9.76)

9-8 Rectangular Aperture with Uniform

Aperture Distribution

To illustrate the scalar diffraction technique, consider a rect-

angular aperture of height lx and width ly, both at least a few

wavelengths long. The aperture is excited by a uniform field
distribution (i.e., constant value) given by

Ẽa(xa,ya) =





E0 for − lx/2 ≤ xa ≤ lx/2
and − ly/2 ≤ ya ≤ ly/2,

0 otherwise.
(9.77)

To keep the mathematics simple, let us confine our exam-
ination to the radiation pattern at a fixed range R in the

x–z plane, which corresponds to φ = 0. In this case, Eq. (9.75)

simplifies to

h̃(θ ) =

∫
ly/2

ya=−ly/2

∫
lx/2

xa=−lx/2
E0 exp[ jkxa sinθ ] dxa dya. (9.78)

In preparation for performing the integration in Eq. (9.78), we
introduce the intermediate variable u defined as

u = k sinθ =
2π sinθ

λ
. (9.79)

Hence,

h̃(θ ) = E0

∫
lx/2

−lx/2
e

juxa dxa ·
∫

ly/2

−ly/2
dya

= E0

[
e

julx/2 − e
− julx/2

ju

]
· ly

=
2E0ly

u

[
e

julx/2 − e
− julx/2

2 j

]
=

2E0ly

u
sin(ulx/2).

(9.80)

Upon replacing u with its defining expression, we have

h̃(θ ) =
2E0ly(

2π

λ
sinθ

) sin(π lx sinθ/λ )

= E0lxly
sin(π lx sinθ/λ )

π lx sinθ/λ

= E0Ap sinc(π lx sinθ/λ ), (9.81)

where Ap = lxly is the physical area of the aperture. Also, we
used the standard definition of the sinc function, which for any

argument t is defined as

sinc t =
sin t

t
. (9.82)

Using Eq. (9.76), we obtain the following expression for the

power density at the observation point:

S(R,θ ) = S0 sinc2(π lx sinθ/λ ) (x–z plane), (9.83)

where S0 = E
2
0 A

2
p/(2η0λ 2

R
2).
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Figure 9-23 Normalized radiation pattern of a uniformly

illuminated rectangular aperture in the x–z plane (φ = 0).

◮ The sinc function is maximum when its argument is

zero; sinc(0) = 1. ◭

This occurs when θ = 0. Hence, at a fixed range R,

Smax = S(θ = 0) = S0. The normalized radiation intensity is

then given by

F(θ ) =
S(R,θ )

Smax

= sinc2(π lx sinθ/λ )

= sinc2(πγ) (x–z plane). (9.84)

Figure 9-23 shows F(θ ) plotted (on a decibel scale) as a
function of the intermediate variable γ = (lx/λ )sinθ . The

pattern exhibits nulls at nonzero integer values of γ .

9-8.1 Beamwidth

The normalized radiation intensity F(θ ) is symmetrical in the

x–z plane, and its maximum is along the boresight direction
(θ = 0, in this case). Its half-power beamwidth βxz = θ2 −θ1,

where θ1 and θ2 are the values of θ at which F(θ ,0) = 0.5 (or

−3 dB on a decibel scale), as shown in Fig. 9-23. Since the
pattern is symmetrical with respect to θ = 0, θ1 = −θ2, and

βxz = 2θ2. The angle θ2 can be obtained from a solution of

F(θ2) = sinc2(π lx sinθ/λ ) = 0.5. (9.85)

From tabulated values of the sinc function, it is found that

Eq. (9.85) yields the result

π lx

λ
sinθ2 = 1.39, (9.86)

or

sinθ2 = 0.44
λ

lx
. (9.87)

Because λ/lx ≪ 1 (a fundamental condition of scalar diffrac-

tion theory is that the aperture dimensions be much larger than
the wavelength λ ), θ2 is a small angle, in which case we can

use the approximation sinθ2 ≈ θ2. Hence,

βxz = 2θ2 ≈ 2sinθ2 = 0.88
λ

lx
(rad). (9.88a)

A similar solution for the y–z plane (φ = π/2) gives

βyz = 0.88
λ

ly
(rad). (9.88b)

◮ The uniform aperture distribution (Ẽa = E0 across

the aperture) gives a far-field pattern with the narrowest

possible beamwidth. ◭

The first sidelobe level is 13.2 dB below the peak value

(see Fig. 9-23), which is equivalent to 4.8% of the peak
value. If the intended application calls for a pattern with a

lower sidelobe level (to avoid interference with signals from

sources along directions outside the main beam of the antenna
pattern), this can be accomplished by using a tapered aperture
distribution—one that is a maximum at the center of the

aperture and decreases toward the edges.

◮ A tapered distribution provides a pattern with lower

side lobes, but the main lobe becomes wider. ◭

The steeper the taper, the lower are the side lobes and the wider

is the main lobe. In general, the beamwidth in a given plane,



428 CHAPTER 9 RADIATION AND ANTENNAS

(a) Pencil beam

(b) Fan beam

Sidelobes

Boresight
λ

λ

d
β ≈

βxz ≈

d

ly

lx

lx

λβyz ≈ ly

Figure 9-24 Radiation patterns of (a) a circular reflector and

(b) a cylindrical reflector (side lobes not shown).

say the x–z plane, is given by

βxz = kx

λ

lx
, (9.89)

where kx is a constant related to the steepness of the taper. For

a uniform distribution with no taper, kx = 0.88, and for a highly
tapered distribution, kx ≈ 2. In the typical case, kx ≈ 1.

To illustrate the relationship between the antenna dimen-

sions and the corresponding beam shape, we show in Fig. 9-24

the radiation patterns of a circular reflector and a cylindrical

reflector. The circular reflector has a circularly symmetric

pattern, whereas the pattern of the cylindrical reflector has a
narrow beam in the azimuth plane corresponding to its long di-

mension and a wide beam in the elevation plane corresponding

to its narrow dimension. For a circularly symmetric antenna
pattern, the beamwidth β is related to the diameter d by the

approximate relation β ≈ λ/d.

9-8.2 Directivity and Effective Area

In Section 9-2.3, we derived an approximate expression
[Eq. (9.26)] for the antenna directivity D in terms of the half-

power beamwidths βxz and βyz for antennas characterized by a

single major lobe whose boresight is along the z direction:

D ≈ 4π

βxzβyz

. (9.90)

If we use the approximate relations βxz ≈ λ/lx and βyz ≈ λ/ly,

we obtain

D ≈ 4π lxly

λ 2
=

4πAp

λ 2
. (9.91)

For any antenna, its directivity is related to its effective area Ae

by Eq. (9.64):

D =
4πAe

λ 2
. (9.92)

◮ For aperture antennas, their effective apertures are

approximately equal to their physical apertures; that is,

Ae ≈ Ap. ◭

Exercise 9-11: Verify that Eq. (9.86) is a solution of

Eq. (9.85) by calculating sinc2
t for t = 1.39.

Exercise 9-12: With its boresight direction along z,

a square aperture was observed to have half-power
beamwidths of 3◦ in both the x–z and y–z planes. Deter-

mine its directivity in decibels.

Answer: D = 4,583.66 = 36.61 dB. (See EM .)

Exercise 9-13: What condition must be satisfied in order

to use scalar diffraction to compute the field radiated
by an aperture antenna? Can we use it to compute the

directional pattern of the eye’s pupil (d ≈ 0.2 cm) in the

visible part of the spectrum (λ = 0.35 to 0.7 µm)? What
would the beamwidth of the eye’s directional pattern be at

λ = 0.5 µm?

Answer: β ≈ λ/d = 2.5×10−4 rad = 0.86′ (arc minute,

with 60′ = 1◦). (See EM .)

9-9 Antenna Arrays

AM broadcast services operate in the 535 to 1605 kHz band.

The antennas they use are vertical dipoles mounted along

tall towers. The antennas range in height from λ/6 to 5λ/8,
depending on the operating characteristics desired and other

considerations. Their physical heights vary from 46 m (150 ft)

to 274 m (900 ft); the wavelength at 1 MHz, approximately
in the middle of the AM band, is 300 m. Because the field

radiated by a single dipole is uniform in the horizontal plane
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Module 9.4 Large Parabolic Reflector For any specified reflector diameter d (where d ≥ 2λ ) and illumination taper

factor α , this module displays the pattern of the radiated field and computes the associated beamwidth and directivity.

(as discussed in Sections 9-1 and 9-3), it is not possible to di-
rect the horizontal pattern along specific directions of interest,

unless two or more antenna towers are used simultaneously.

Directions of interest may include cities serviced by the AM
station, and directions to avoid may include areas serviced

by another station operating at the same frequency (thereby
avoiding interference effects). When two or more antennas are

used together, the combination is called an antenna array.

The AM broadcast antenna array is only one example of the
many antenna arrays used in communication systems and radar

applications. Antenna arrays provide the antenna designer the

flexibility to obtain high directivity, narrow beams, low side
lobes, steerable beams, and shaped antenna patterns starting

from very simple antenna elements. Figure 9-25 shows a very

large radar system consisting of a transmitter array composed
of 5,184 individual dipole antenna elements and a receiver

array composed of 4,660 elements. The radar system, part

of the Space Surveillance Network operated by the U.S. Air
Force, operates at 442 MHz and transmits a combined peak

power of 30 MW!

Although an array need not consist of similar radiating
elements, most arrays actually use identical elements, such

as dipoles, slots, horn antennas, or parabolic dishes. The

antenna elements comprising an array may be arranged in
various configurations, but the most common are the lin-

ear one-dimensional configuration—wherein the elements are
arranged along a straight line—and the two-dimensional lattice

configuration in which the elements sit on a planar grid. The

desired shape of the far-field radiation pattern of the array can
be synthesized by controlling the relative amplitudes of the

array elements’ excitations.

◮ Also, through the use of electronically controlled solid-

state phase shifters, the beam direction of the antenna
array can be steered electronically by controlling the

relative phases of the array elements. ◭

This flexibility of the array antenna has led to numerous
applications, including electronic steering and multiple-beam
generation.
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9 stories

high6 stories

high

Figure 9-25 The AN/FPS-85 Phased Array Radar Facility in the Florida panhandle is near the city of Freeport. A several-mile no-fly

zone surrounds the radar installation as a safety concern for electroexplosive devices, such as ejection seats and munitions that are carried

on military aircraft.

The purpose of this and the next two sections is to introduce
the reader to the basic principles of array theory and design

techniques used in shaping the antenna pattern and steering

the main lobe. This presentation is confined to the one-
dimensional linear array with equal spacing between adjacent

elements.
A linear array of N identical radiators is arranged along

the z axis, as shown in Fig. 9-26. The radiators are fed by

a common oscillator through a branching network. In each
branch, an attenuator (or amplifier) and phase shifter are

inserted in series to control the amplitude and phase of the

signal feeding the antenna element in that branch.
In the far-field region of any radiating element, the ele-

ment electric-field intensity Ẽe(R,θ ,φ) may be expressed as
a product of two functions: the spherical propagation factor

e
− jkR/R, which accounts for the dependence on the range R,

and f̃e(θ ,φ), which accounts for the directional dependence of

the element’s electric field. Thus, for an isolated element, the
radiated field is

Ẽe(R,θ ,φ) =
e
− jkR

R
f̃e(θ ,φ), (9.93)

and the corresponding power density Se is

Se(R,θ ,φ) =
1

2η0

|Ẽe(R,θ ,φ)|2 =
1

2η0R2
| f̃e(θ ,φ)|2. (9.94)

Hence, for the array shown in Fig. 9-26(b), the far-zone field

due to element i at range Ri from observation point Q is

Ẽi(Ri,θ ,φ) = Ai

e
− jkRi

Ri

f̃e(θ ,φ), (9.95)

where Ai = aie
jψi is a complex feeding coefficient represent-

ing the amplitude ai and phase ψi of the excitation giving rise

to Ẽi, which is relative to a reference excitation. In practice,

the excitation of one of the elements is used as reference. Note
that Ri and Ai may be different for different elements in the

array, but f̃e(θ ,φ) is the same for all of them because they are
all identical; hence, they exhibit identical directional patterns.

The total field at the observation point Q(R0,θ ,φ) is the sum

of the fields due to the N elements:

Ẽ(R0,θ ,φ) =
N−1

∑
i=0

Ẽi(Ri,θ ,φ) =

[
N−1

∑
i=0

Ai

e
− jkRi

Ri

]
f̃e(θ ,φ),

(9.96)

where R0 denotes the range of Q from the center of the

coordinate system, which is chosen to be at the location of
the zeroth element. To satisfy the far-field condition given by

Eq. (9.73) for an array of length l = (N − 1)d, where d is the

interelement spacing, the range R0 should be sufficiently large
to satisfy

R0 ≥
2l

2

λ
=

2(N −1)2
d

2

λ
. (9.97)
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Figure 9-26 Linear-array configuration and geometry.

This condition allows us to ignore differences in the distances
from Q to the individual elements as far as the magnitudes of

the radiated fields are concerned. Thus, we can set Ri = R0

in the denominator in Eq. (9.96) for all i. With regard to the
phase part of the propagation factor, we can use the parallel-

ray approximation given by

Ri ≈ R0 − zi cosθ = R0 − id cosθ , (9.98)

where zi = id is the distance between the ith element and the

zeroth element (Fig. 9-27). Employing these two approxima-

Element 0

z

y

d

id

θ 

R0
Element 1

R1

RN–1

zN–1

zN–2

ziElement i

Element N − 1

Element N − 2

Q

} id cos θ

≈

Figure 9-27 The rays between the elements and a faraway

observation point are approximately parallel lines. Hence, the

distance Ri ≈ R0 − id cos θ .

tions in Eq. (9.96) leads to

Ẽ(R0,θ ,φ) = f̃e(θ ,φ)

(
e
− jkR0

R0

)[
N−1

∑
i=0

Aie
jikd cosθ

]
, (9.99)

and the corresponding array-antenna power density is given by

S(R0,θ ,φ) =
1

2η0

|Ẽ(R0,θ ,φ)|2

=
1

2η0R2
0

| f̃e(θ ,φ)|2
∣∣∣∣∣
N−1

∑
i=0

Aie
jikd cosθ

∣∣∣∣∣

2

= Se(R0,θ ,φ)

∣∣∣∣∣
N−1

∑
i=0

Aie
jikd cosθ

∣∣∣∣∣

2

, (9.100)

where use was made of Eq. (9.94). This expression is a product

of two factors. The first factor, Se(R0,θ ,φ), is the power

density of the energy radiated by an individual element, and the
second, called the array factor, is a function of the positions of

the individual elements and their feeding coefficients but not a

function of the specific type of radiators used.

◮ The array factor represents the far-field radiation inten-
sity of the N elements—had the elements been isotropic

radiators. ◭



432 CHAPTER 9 RADIATION AND ANTENNAS

Denoting the array factor by

Fa(θ ) =

∣∣∣∣∣
N−1

∑
i=0

Aie
jikd cosθ

∣∣∣∣∣

2

, (9.101)

the power density of the antenna array is then written as

S(R0,θ ,φ) = Se(R0,θ ,φ) Fa(θ ). (9.102)

This equation demonstrates the pattern multiplication prin-
ciple. It allows us to find the far-field power density of the
antenna array by first computing the far-field power pattern

with the array elements replaced with isotropic radiators,

which yields the array factor Fa(θ ), and then multiplying the
result by Se(R0,θ ,φ), which is the power density for a single

element (and is the same for all elements).

The feeding coefficient Ai is, in general, a complex ampli-
tude consisting of an amplitude factor ai and a phase factor ψi:

Ai = aie
jψi . (9.103)

Insertion of Eq. (9.103) into Eq. (9.101) leads to

Fa(θ ) =

∣∣∣∣∣
N−1

∑
i=0

aie
jψie

jikd cosθ

∣∣∣∣∣

2

. (9.104)

The array factor is governed by two input functions: the array
amplitude distribution given by the ai’s and the array phase
distribution given by the ψi’s.

◮ The amplitude distribution serves to control the shape
of the array radiation pattern, while the phase distribution

can be used to steer its direction. ◭

Example 9-5: Array of Two Vertical Dipoles

An AM radio station uses two vertically oriented half-

wave dipoles separated by a distance of λ/2, as shown in

Fig. 9-28(a). The vector from the location of the first dipole
to the location of the second dipole points toward the east.

The two dipoles are fed with equal-amplitude excitations, and

the dipole farther east is excited with a phase shift of −π/2
relative to the other one. Find and plot the antenna pattern of

the antenna array in the horizontal plane.

Solution: The array factor given by Eq. (9.104) was derived
for radiators arranged along the z axis. To keep the coordinate

system the same, we choose the easterly direction to be the
z axis, as shown in Fig. 9-28(b), and we place the first dipole

at z = −λ/4 and the second at z = λ/4. A dipole radiates

uniformly in the plane perpendicular to its axis, which in this
case is the horizontal plane. Hence, Se = S0 for all angles θ
in Fig. 9-28(b), where S0 is the maximum value of the power

density radiated by each dipole individually. Consequently, the
power density radiated by the two-dipole array is

S(R,θ ) = S0 Fa(θ ).

For two elements separated by d = λ/2 and excited with equal

amplitudes (a0 = a1 = 1) and with phase angles ψ0 = 0 and

phase
shifter

λ/2

λ/2

a0 = 1

ψ0 = 0

a1 = 1

ψ1 = −π/2

(a) Dipole array (c) Horizontal-plane pattern(b) Observation plane

z

y

F(θ)

θ

x

z

y

(North)

(East)

(South)

θ

Figure 9-28 Two half-wave dipole array of Example 9-5.
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Module 9.5 Two-Dipole Array Given two vertical dipoles, the user can specify their individual lengths and current

maxima, as well as the distance between them and the phase difference between their current excitations. The module

generates plots of the field and power patterns in the far zone and calculates the maximum directivity and total radiated
power.
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ψ1 = −π/2, Eq. (9.104) becomes

Fa(θ ) =

∣∣∣∣∣
1

∑
i=0

aie
jψie

jikd cosθ

∣∣∣∣∣

2

=
∣∣∣1 + e

− jπ/2
e

j(2π/λ )(λ/2)cosθ
∣∣∣
2

=
∣∣∣1 + e

j(π cosθ−π/2)
∣∣∣
2

.

A function of the form |1+ e
jx|2 can be evaluated by factoring

out e
jx/2 from both terms:

|1 + e
jx|2 = |e jx/2(e− jx/2 + e

jx/2)|2

= |e jx/2|2 |e− jx/2 + e
jx/2|2

= |e jx/2|2
∣∣∣∣∣2

[e− jx/2 + e
jx/2]

2

∣∣∣∣∣

2

.

The absolute value of e
jx/2 is 1, and we recognize the function

inside the square bracket as cos(x/2). Hence,

|1 + e
jx|2 = 4cos2

(
x

2

)
.

Applying this result to the expression for Fa(θ ), we have

Fa(θ ) = 4cos2
(π

2
cosθ − π

4

)
.

The power density radiated by the array is then

S(R,θ ) = S0Fa(θ ) = 4S0 cos2
(π

2
cosθ − π

4

)
.

This function has a maximum value Smax = 4S0, and it occurs

when the argument of the cosine function is equal to zero.
Thus,

π

2
cosθ − π

4
= 0,

which leads to the solution θ = 60◦. Upon normalizing S(R,θ )
by its maximum value, we obtain the normalized radiation
intensity given by

F(θ ) =
S(R,θ )

Smax

= cos2
(π

2
cosθ − π

4

)
.

The pattern of F(θ ) is shown in Fig. 9-28(c).

Module 9.6 Detailed Analysis of Two-Dipole
Array This module extends the display and computa-

tional capabilities of Module 9.5 by offering plots for
individual components of E and H at any range from the

antenna, including the near field.

Example 9-6: Pattern Synthesis

In Example 9-5, we were given the array parameters a0, a1,

ψ0, ψ1, and d, and we were then asked to determine the pattern

of the two-element dipole array. We now consider the reverse
process; given specifications on the desired pattern, we specify

the array parameters to meet those specifications.

Given two vertical dipoles, as depicted in Fig. 9-28(b), spec-
ify the array parameters so that the array exhibits maximum

radiation toward the east and no radiation toward the north or

south.

Solution: From Example 9-5, we established that, because
each dipole radiates equally along all directions in the y–z

plane, the radiation pattern of the two-dipole array in that plane

is governed solely by the array factor Fa(θ ). The shape of the
pattern of the array factor depends on three parameters: the

amplitude ratio a1/a0, the phase difference ψ1 −ψ0, and the
spacing d (Fig. 9-29(a)). For convenience, we choose a0 = 1

and ψ0 = 0. Accordingly, Eq. (9.101) becomes

Fa(θ ) =

∣∣∣∣∣
1

∑
i=0

aie
jψie

jikd cosθ

∣∣∣∣∣

2

= |1 + a1e
jψ1e

j(2πd/λ )cosθ |2.

Next, we consider the specification that Fa be equal to zero

when θ = 90◦ (north and south directions in Fig. 9-29(a)).

For any observation point on the y axis, the ranges R0 and R1

shown in Fig. 9-29(a) are equal, which means that the prop-

agation phases associated with the time travel of the waves
radiated by the two dipoles to that point are identical. Hence,

to satisfy the stated condition, we need to choose a1 = a0 and

ψ1 = ±π . With these choices, the signals radiated by the two
dipoles have equal amplitudes and opposite phases—thereby

interfering destructively. This conclusion can be ascertained

by evaluating the array factor at θ = 90◦ with a0 = a1 = 1 and
ψ1 = ±π :

Fa(θ = 90◦) = |1 + 1e
± jπ|2 = |1−1|= 0.

The two values of ψ1, namely π and −π , lead to the same

solution for the value of the spacing d to meet the specification

that the array radiation pattern is maximum toward the east,
corresponding to θ = 0◦. Let us choose ψ1 =−π and examine

the array factor at θ = 0◦:

Fa(θ = 0) = |1 + e
− jπ

e
j2πd/λ |2 = |1 + e

j(−π+2πd/λ )|2.

For Fa(θ = 0) to be a maximum, we require the phase angle of

the second term to be zero or a multiple of 2π . That is,

−π +
2πd

λ
= 2nπ ,
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(b) Array pattern

(a) Array arrangement

z

y

θ 

F(θ)

–y

z (East)

(North)

R0

a0 = 1
ψ0 = 0

a1

ψ1

d

R1

Figure 9-29 (a) Two vertical dipoles separated by a distance d

along the z axis; (b) normalized array pattern in the y–z plane for

a0 = a1 = 1, ψ1 = ψ0 = −π , and d = λ/2.

or

d = (2n + 1)
λ

2
, n = 0,1,2, . . .

In summary, the two-dipole array will meet the given specifi-
cations if a0 = a1, ψ1 −ψ0 = −π , and d = (2n + 1)λ/2.

For d = λ/2, the array factor is

Fa(θ ) = |1 + e
− jπ

e
jπ cosθ |2

= |1− e
jπ cosθ |2

=

∣∣∣∣∣2 je
− j(π/2)cosθ

[
e

j(π/2)cosθ − e
− j(π/2)cosθ

2 j

]∣∣∣∣∣

2

= 4sin2
(π

2
cosθ

)
.

The array factor has a maximum value of 4, which is the
maximum level attainable from a two-element array with unit

amplitudes. The directions along which Fa(θ ) is a maximum

are those corresponding to θ = 0 (east) and θ = 180◦ (west),
as shown in Fig. 9-29(b).

Exercise 9-14: Derive an expression for the array factor

of a two-element array excited in phase with a0 = 1 and

a1 = 3. The elements are positioned along the z axis and
are separated by λ/2.

Answer: Fa(θ ) = [10 + 6cos(π cosθ )]. (See EM .)

Exercise 9-15: An equally spaced N-element array

arranged along the z axis is fed with equal amplitudes and

phases; that is, Ai = 1 for i = 0,1, . . . ,(N−1). What is the
magnitude of the array factor in the broadside direction?

Answer: Fa(θ = 90◦) = N
2. (See EM .)

9-10 N-Element Array with Uniform

Phase Distribution

We now consider an array of N elements with equal spac-

ing d and equal-phase excitations; that is, ψi = ψ0 for
i = 1,2, . . . ,(N − 1). Such an array of in-phase elements is

sometimes referred to as a broadside array because the main
beam of the radiation pattern of its array factor is always in

the direction broadside to the array axis. From Eq. (9.104), the

array factor is given by

Fa(θ ) =

∣∣∣∣∣e
jψ0

N−1

∑
i=0

aie
jikd cosθ

∣∣∣∣∣

2

= |e jψ0 |2
∣∣∣∣∣
N−1

∑
i=0

aie
jikd cosθ

∣∣∣∣∣

2

=

∣∣∣∣∣
N−1

∑
i=0

aie
jikd cosθ

∣∣∣∣∣

2

. (9.105)

The phase difference between the fields radiated by adjacent

elements is

γ = kd cosθ =
2πd

λ
cosθ . (9.106)

In terms of γ , Eq. (9.105) takes the compact form

Fa(γ) =

∣∣∣∣∣
N−1

∑
i=0

aie
jiγ

∣∣∣∣∣

2

. (uniform phase) (9.107)
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For a uniform amplitude distribution with ai = 1 for
i = 0,1, . . . ,(N −1), Eq. (9.107) becomes

Fa(γ) = |1 + e
jγ + e

j2γ + · · ·+ e
j(N−1)γ |2. (9.108)

This geometric series can be rewritten in a more compact form
by applying the following recipe. First, we define

Fa(γ) = | fa(γ)|2, (9.109)

with

fa(γ) = [1 + e
jγ + e

j2γ + · · ·+ e
j(N−1)γ ]. (9.110)

Next, we multiply fa(γ) by e
jγ to obtain

fa(γ)e
jγ = (e jγ + e

j2γ + · · ·+ e
jNγ). (9.111)

Subtracting Eq. (9.111) from Eq. (9.110) gives

fa(γ) (1− e
jγ) = 1− e

jNγ , (9.112)

which in turn gives

fa(γ) =
1− e

jNγ

1− e jγ
=

e
jNγ/2

e jγ/2

(e− jNγ/2 − e
jNγ/2)

(e− jγ/2 − e jγ/2)

= e
j(N−1)γ/2 sin(Nγ/2)

sin(γ/2)
. (9.113)

After multiplying fa(γ) by its complex conjugate, we obtain

the result:

Fa(γ) =
sin2(Nγ/2)

sin2(γ/2)
.

(uniform amplitude and phase)

(9.114)

From Eq. (9.108), Fa(γ) is maximum when all terms

are 1, which occurs when γ = 0 (or equivalently, θ = π/2).

Moreover, Fa(0) = N
2. Hence, the normalized array factor is

given by

Fan(γ) =
Fa(γ)

Fa,max

=
sin2(Nγ/2)

N2 sin2(γ/2)
=

sin2

(
Nπd

λ
cosθ

)

N
2 sin2

(
πd

λ
cosθ

) . (9.115)

A polar plot of Fan(θ ) is shown in Fig. 9-30 for N = 6 and

d = λ/2. The reader is reminded that this is a plot of the

0 dB

–30

–20

–10

Fan(θ)

θ

N = 6

d = λ/2

d

z

17.2° 

1
1
1
1
1
1

–3 dB

Broadside
(θ = 90°)

Figure 9-30 Normalized array pattern of a uniformly excited

six-element array with interelement spacing d = λ/2.

radiation pattern of the array factor alone; the pattern for the

antenna array is equal to the product of this pattern and that

of a single element, as discussed earlier in connection with the
pattern multiplication principle.

Example 9-7: Multiple-Beam Array

Obtain an expression for the array factor of a two-element

array with equal excitation and a separation d = 7λ/2, and
then plot the array pattern.

Solution: The array factor of a two-element array (N = 2)

with equal excitation (a0 = a1 = 1) is given by

Fa(γ) =

∣∣∣∣∣
1

∑
i=0

aie
jiγ

∣∣∣∣∣

2

= |1 + e
jγ|2,

= |e jγ/2(e− jγ/2 + e
jγ/2)|2

= |e jγ/2|2 |e− jγ/2 + e
jγ/2|2 = 4cos2(γ/2),

where γ = (2πd/λ )cosθ . The normalized array pattern shown

in Fig. 9-31 consists of seven beams; all have the same peak
value but not the same angular width. The number of beams

in the angular range between θ = 0 and θ = π is equal to the
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0 dB

–30

–20

–10
Fan(θ)

θ

z

1
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d = 7λ/2 8.2°

–3 dB
Broadside
(θ = 90°)

Figure 9-31 Normalized array pattern of a two-element array

with spacing d = 7λ/2.

separation between the array elements, d, measured in units of

λ/2.

9-11 Electronic Scanning of Arrays

The discussion in the preceding section was concerned with

uniform-phase arrays, in which the phases of the feeding
coefficients, ψ0 to ψN−1, are all equal. In this section, we

examine the use of phase delay between adjacent elements
as a tool to electronically steer the direction of the array-

antenna beam from broadside at θ = 90◦ to any desired angle

θ0. In addition to eliminating the need to mechanically steer
an antenna to change its beam’s direction, electronic steering

allows beam scanning at very fast rates.

◮ Electronic steering is achieved by applying a linear
phase distribution across the array: ψ0 = 0, ψ1 = −δ ,

ψ2 = −2δ , etc. ◭

As shown in Fig. 9-32, the phase of the ith element relative to

that of the zeroth element is

ψi = −iδ , (9.116)

–(N – 1)δ

–iδ

–2δ

–δ

N – 1

N – 2

i

2

1

0

θ

R0

Q

y

z

–(N – 2)δ

Figure 9-32 The application of linear phase.

where δ is the incremental phase delay between adjacent

elements. Use of Eq. (9.116) in Eq. (9.104) leads to

Fa(θ ) =

∣∣∣∣∣
N−1

∑
i=0

aie
− jiδ

e
jikd cosθ

∣∣∣∣∣

2

=

∣∣∣∣∣
N−1

∑
i=0

aie
ji(kd cosθ−δ )

∣∣∣∣∣

2

=

∣∣∣∣∣
N−1

∑
i=0

aie
jiγ ′

∣∣∣∣∣

2

= Fa(γ
′),

(9.117)

where we introduced a new variable given by

γ ′ = kd cosθ − δ . (9.118)

For reasons that become clear later, we define the phase shift

δ in terms of an angle θ0, which we call the scan angle, as

follows:

δ = kd cosθ0. (9.119)

Hence, γ ′ becomes

γ ′ = kd(cosθ − cosθ0). (9.120)
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Module 9.7 N-Element Array This module displays the far-field patterns of an array of N identical, equally spaced
antennas, with N being a selectable integer between 1 and 6. Two types of antennas can be simulated: λ/2-dipoles and

parabolic reflectors. This module provides visual examples of the pattern multiplication principle.

The array factor given by Eq. (9.117) has the same functional
form as the array factor developed earlier for the uniform-

phase array [see Eq. (9.107)], except that γ is replaced with γ ′.
Hence,

◮ Regardless of the amplitude distribution across an array,
its array factor Fa(γ

′), when excited by a linear-phase

distribution, can be obtained from Fa(γ), the expression

developed for the array assuming a uniform-phase distri-
bution, by replacing γ with γ ′. ◭

If the amplitude distribution is symmetrical with respect to

the array center, the array factor Fa(γ
′) is maximum when its

argument γ ′ = 0. When the phase is uniform (δ = 0), this
condition corresponds to the direction θ = 90◦, which is why

the uniform-phase arrangement is called a broadside array.

According to Eq. (9.120), in a linearly phased array, γ ′ = 0
when θ = θ0. Thus, by applying linear phase across the array,

the array pattern is shifted along the cosθ axis by an amount

cosθ0, and the direction of maximum radiation is steered from
the broadside direction (θ = 90◦) to the direction θ = θ0. To

steer the beam all the way to the end-fire direction (θ = 0), the
incremental phase shift δ should be equal to kd radians.

9-11.1 Uniform-Amplitude Excitation

To illustrate the process with an example, consider the case of

the N-element array excited by a uniform-amplitude distribu-

tion. Its normalized array factor is given by Eq. (9.115). Upon
replacing γ with γ ′, we have

Fan(γ
′) =

sin2(Nγ ′/2)

N2 sin2(γ ′/2)
(9.121)

with γ ′ as defined by Eq. (9.120). For an array with N = 10

and d = λ/2, plots of the main lobe of Fan(θ ) are shown in

Fig. 9-33 for θ0 = 0◦, 45◦, and 90◦. We note that the half-
power beamwidth increases as the array beam is steered from

broadside to end-fire directions.
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Figure 9-33 Normalized array pattern of a 10-element array

with λ/2 spacing between adjacent elements. All elements are

excited with equal amplitude. Through the application of linear

phase across the array, the main beam can be steered from the

broadside direction (θ0 = 90◦) to any scan angle θ0. Equiphase

excitation corresponds to θ0 = 90◦.

9-11.2 Array Feeding

According to the foregoing discussion, to steer the antenna
beam to an angle θ0, two conditions must be met: (1) the phase

distribution must be linear across the array and (2) the magni-

tude of the incremental phase delay δ must satisfy Eq. (9.119).
The combination of these two conditions provides the neces-

sary tilting of the beam from θ = 90◦ (broadside) to θ = θ0.

This can be accomplished by controlling the excitation of each
radiating element individually through the use of electronically

controlled phase shifters. Alternatively, a technique known as
frequency scanning can be used to provide control of the

phases of all the elements simultaneously. Figure 9-34 shows

an example of a simple feeding arrangement employed in
frequency-scanning arrays. A common feed point is connected

to the radiating elements through transmission lines of varying

lengths. Relative to the zeroth element, the path between the
common feed point and a radiating element is longer by l for

the first element, by 2l for the second, and by 3l for the third.

l1 = l0 + l

l2 = l0 + 2l

l3 = l0 + 3l

l0

l

Figure 9-34 An example of a feeding arrangement for

frequency-scanned arrays.

Thus, the path length for the ith element is

li = il + l0, (9.122)

where l0 is the path length of the zeroth element. Waves of
frequency f propagating through a transmission line of length

li are characterized by a phase factor e
− jβ li , where β = 2π f/up

is the phase constant of the line and up is its phase velocity.
Hence, the incremental phase delay of the ith element relative

to the phase of the zeroth element is

ψi( f ) = −β (li − l0) = −2π

up

f (li − l0) = −2π i

up

f l. (9.123)

Suppose that at a given reference frequency f0 we choose the
incremental length l so that

l =
n0up

f0

, (9.124)

where n0 is a specific positive integer. In this case, the phase
delay ψ1( f0) becomes

ψ1( f0) = −2π

(
f0l

up

)
. = −2n0π (9.125)

Similarly, ψ2( f0) =−4n0π and ψ3( f0) =−6n0π . That is, at f0

all the elements have equal phase (within multiples of 2π) and
the array radiates in the broadside direction. If f is changed to
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f0 + ∆ f , the new phase shift of the first element relative to the
zeroth element is

ψ1( f0 + ∆ f ) = −2π

up

( f0 + ∆ f )l

= −2π f0l

up

−
(

2π l

up

)
∆ f

= −2n0π −2n0π

(
∆ f

f0

)

= −2n0π − δ , (9.126)

where use was made of Eq. (9.124) and δ is defined as

δ = 2n0π

(
∆ f

f0

)
. (9.127)

Similarly, ψ2( f0 + ∆ f ) = 2ψ1 and ψ3( f0 + ∆ f ) = 3ψ1. Ignor-

ing the factor of 2π and its multiples (since they exercise no
influence on the relative phases of the radiated fields), we see

that the incremental phase shifts are directly proportional to
the fractional frequency deviation (∆ f/ f0). Thus, in an array

with N elements, controlling ∆ f provides a direct control

of δ , which in turn controls the scan angle θ0 according to
Eq. (9.119). Equating Eq. (9.119) to Eq. (9.127) and then

solving for cosθ0 leads to

cosθ0 =
2n0π

kd

(
∆ f

f0

)
(9.128)

As f is changed from f0 to f0 + ∆ f , k = 2π/λ = 2π f/c

also changes with frequency. However, if ∆ f/ f0 is small, we

may treat k as a constant equal to 2π f0/c; the error in cosθ0

resulting from the use of this approximation in Eq. (9.128) is

on the order of ∆ f/ f0.

Example 9-8: Electronic Steering

Design a steerable six-element array with the following speci-
fications:

1. All elements are excited with equal amplitudes.

2. At f0 = 10 GHz, the array radiates in the broadside

direction, and the interelement spacing d = λ0/2, where
λ0 = c/ f0 = 3 cm.

3. The array pattern is to be electronically steerable in the
elevation plane over the angular range extending between

θ0 = 30◦ and θ0 = 150◦.

4. The antenna array is fed by a voltage-controlled oscillator
whose frequency can be varied over the range from 9.5 to

10.5 GHz.

5. The array uses a feeding arrangement of the type shown in

Fig. 9-34, and the transmission lines have a phase velocity

up = 0.8c.

z

θ0 = 30◦

θ0 = 150◦

θ0 = 90◦ (broadside)

d

Figure 9-35 Steerable six-element array (Example 9-8).

Solution: The array is to be steerable from θ0 = 30◦ to

θ0 = 150◦ (Fig. 9-35). For θ0 = 30◦ and

kd =

(
2π

λ0

)(
λ0

2

)
= π ,

Eq. (9.128) gives

0.87 = 2n0

(
∆ f

f0

)
. (9.129)

We are given that f0 = 10 GHz and the oscillator frequency can

be varied between ( f0 − 0.5 GHz) and ( f0 + 0.5 GHz). Thus,
∆ fmax = 0.5 GHz. To satisfy Eq. (9.129), we need to choose n0

so that ∆ f is as close as possible to, but not larger than, ∆ fmax.

Solving Eq. (9.129) for n0 with ∆ f = ∆ fmax gives

n0 =
0.87

2

f0

∆ fmax

= 8.7.

Since n0 is not an integer, we need to modify its value by
rounding it upward to the next whole-integer value. Hence, we

set n0 = 9.
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Module 9.8 Uniform Dipole Array For an array of up to 50 identical vertical dipoles of selectable length and current

maximum that is excited with incremental phase delay δ between adjacent elements, the module displays the elevation and

azimuthal patterns of the array. By varying δ , the array pattern can be steered in the horizontal plane.
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Application of Eq. (9.124) specifies the magnitude of the
incremental length l:

l =
n0up

f0

=
9×0.8×3×108

1010
= 21.6 cm.

In summary, with N = 6 and kd = π , Eq. (9.121) becomes

Fan(γ
′) =

sin2(3γ ′)

36sin2(γ ′/2)

with

γ ′ = kd(cosθ − cosθ0) = π(cosθ − cosθ0)

and

cosθ0 =
2n0π

kd

(
∆ f

f0

)
= 18

(
f −10 GHz

10 GHz

)
. (9.130)

The shape of the array pattern is similar to that shown in

Fig. 9-30, and its main-beam direction is along θ = θ0.
For f = f0 = 10 GHz, θ0 = 90◦ (broadside direction); for

f = 10.48 GHz, θ0 = 30◦; and for f = 9.52 GHz, θ0 = 150◦.

For any other value of θ0 between 30◦ and 150◦, Eq. (9.130)
provides the means for calculating the required value of the

oscillator frequency f .

Concept Question 9-11: Why are antenna arrays use-

ful? Give examples of typical applications.

Concept Question 9-12: Explain how the pattern mul-
tiplication principle is used to compute the radiation

pattern of an antenna array.

Concept Question 9-13: For a linear array, what roles

do the array amplitudes and phases play?

Concept Question 9-14: Explain how electronic beam
steering is accomplished.

Concept Question 9-15: Why is frequency scanning an

attractive technique for steering the beam of an antenna
array?

Chapter 9 Summary

Concepts

• An antenna is a transducer between a guided wave
propagating on a transmission line and an EM wave

propagating in an unbounded medium, or vice versa.
• Except for some solid-state antennas composed of non-

linear semiconductors or ferrite materials, antennas

are reciprocal devices; they exhibit the same radiation
patterns for transmission as for reception.

• In the far-field region of an antenna, the radiated energy

is approximately a plane wave.
• The electric field radiated by current antennas, such as

wires, is equal to the sum of the electric fields radiated

by all the Hertzian dipoles making up the antenna.
• The radiation resistance Rrad of a half-wave dipole is

73 Ω, which can be easily matched to a transmission

line.
• The directional properties of an antenna are described

by its radiation pattern, directivity, pattern solid angle,
and half-power beamwidth.

• The Friis transmission formula relates the power
received by an antenna to that transmitted by another

antenna at a specified distance away.
• The far-zone electric field radiated by a large aper-

ture (measured in wavelengths) is related to the field

distribution across the aperture by Kirchhoff’s scalar
diffraction theory. A uniform aperture distribution pro-

duces a far-field pattern with the narrowest possible

beamwidth.
• By controlling the amplitudes and phases of the indi-

vidual elements of an antenna array, it is possible to

shape the antenna pattern and to steer the direction of
the beam electronically.

• The pattern of an array of identical elements is equal to

the product of the array factor and the antenna pattern
of an individual antenna element.
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Mathematical and Physical Models

Antenna Properties

Pattern solid angle Ωp =

∫∫

4π
F(θ ,φ) dΩ

Directivity D =
4π

Ωp

Gain G = ξ D, ξ =
Prad

Prad + Ploss

Effective area Ae =
λ 2

D

4π

Far-field distance R >
2d

2

λ

Short Dipole (l ≪ λ ) λ/2 Dipole

Ẽθ =
jI0lkη0

4π

(
e
− jkR

R

)
sinθ Ẽθ = j 60I0

{
cos[(π/2)cosθ ]

sinθ

}(
e
− jkR

R

)

H̃φ =
Ẽθ

η0

H̃φ =
Ẽθ

η0

S(R,θ ) =

(
η0k

2
I

2
0 l

2

32π2R2

)
sin2 θ S(R,θ ) =

15I
2
0

πR2

{
cos2[(π/2)cosθ ]

sin2 θ

}

D = 1.5 D = 1.64

β = 90◦ β = 78◦

Rrad = 80π2(l/λ )2
Rrad ≈ 73 Ω

Friis Transmission Formula

Prec

Pt

= GtGr

(
λ

4πR

)2

Ft(θt,φt) Fr(θr,φr)

Antenna Arrays

Multiplication Principle

S(R0,θ ,φ) = Se(R0,θ ,φ) Fa(θ )

Uniform Phase

Fa(γ) =

∣∣∣∣∣
N−1

∑
i=0

aie
jiγ

∣∣∣∣∣

2

, with γ = kd cosθ =
2πd

λ
cosθ

Linear Phase

Fa(θ ) =

∣∣∣∣∣
N−1

∑
i=0

aie
jiγ ′

∣∣∣∣∣

2

, with γ ′ = kd cosθ − δ

Rectangular Aperture (Uniform)

S(R,θ ) = S0 sinc2(π lx sinθ/λ ), x-z plane

S(R,θ ) = S0 sinc2(π ly sinθ/λ ), y-z plane

βxz = 0.88
λ

lx
, βyz = 0.88

λ

ly

D =
4πAe

λ 2
≈ 4πAp

λ 2
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Important Terms Provide definitions or explain the meaning of the following terms:

3 dB beamwidth

antenna
antenna array

antenna directivity D

antenna gain G

antenna input impedance

antenna pattern
antenna polarization

aperture distribution

array distribution
array factor Fa(θ ,φ)
azimuth angle

beamwidth β
broadside direction

effective area

(effective aperture) Ae

electronic steering

elevation and azimuth planes

elevation angle
end-fire direction

far-field (or far-zone) region

feeding coefficient
frequency scanning

Friis transmission formula
half-power beamwidth

isotropic antenna

linear phase distribution
loss resistance Rloss

null beamwidth

pattern multiplication principle
pattern solid angle Ωp

power density S(R,θ ,φ)
Poynting vector
principal planes

radiation efficiency ξ
radiation intensity

(normalized) F(θ ,φ)
radiation lobes

radiation pattern
radiation resistance Rrad

reciprocal
scan angle

short dipole (Hertzian dipole)

signal-to-noise ratio Sn

solid angle

spherical propagation factor

steradian
system noise temperature Tsys

tapered aperture distribution

zenith angle

PROBLEMS

Sections 9-1 and 9-2: Short Dipole and Antenna Radiation

Characteristics

9.1 A 50 cm long center-fed dipole directed along the z

direction and located at the origin is excited by a 1 MHz

source. If the current amplitude is I0 = 20 A, determine:

(a) The power density radiated at 2 km along the broadside

of the antenna pattern.

(b) The fraction of the total power radiated within the sector

between θ = 85◦ and θ = 95◦?

∗
9.2 A center-fed Hertzian dipole is excited by a current I0 =
50 A. If the dipole is λ/50 in length, determine the maximum
radiated power density at a distance of 1 km.

9.3 A 1 m long dipole is excited by a 1 MHz current with an

amplitude of 24 A. What is the average power density radiated

by the dipole at a distance of 5 km in a direction that is 45◦

from the dipole axis?

∗
9.4 Determine the following:

(a) The direction of maximum radiation.

(b) Directivity.

(c) Beam solid angle.

(d) Half-power beamwidth in the x–z plane.

∗
Answer(s) available in Appendix E.

for an antenna whose normalized radiation intensity is given

by

F(θ ,φ) =

{
1, for 0 ≤ θ ≤ 60◦and 0 ≤ φ ≤ 2π
0, elsewhere.

Suggestion: Sketch the pattern prior to calculating the desired
quantities.

9.5 Repeat Problem 9.4 for an antenna with

F(θ ,φ) =





sin2 θ cos2 φ for 0 ≤ θ ≤ π
and −π/2 ≤ φ ≤ π/2

0 elsewhere

9.6 A 2 m long center-fed dipole antenna operates in the AM
broadcast band at 1 MHz. The dipole is made of copper wire

with a radius of 1 mm.

(a) Determine the radiation efficiency of the antenna.

∗
(b) What is the antenna gain in decibels?

(c) What antenna current is required so that the antenna will

radiate 80 W, and how much power will the generator

have to supply to the antenna?

9.7 Repeat Problem 9.6 for a 20 cm long antenna operating

at 5 MHz.
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9.8 Determine the frequency dependence of the radiation
efficiency of the short dipole, and plot it over the range from

600 kHz to 60 MHz. The dipole is made of copper, its length

is 10 cm and its circular cross section has a radius of 1 mm.

∗
9.9 An antenna with a pattern solid angle of 1.5 (sr) radiates

90 W of power. At a range of 1 km, what is the maximum
power density radiated by the antenna?

9.10 An antenna with a radiation efficiency of 90% has a

directivity of 6.0 dB. What is its gain in decibels?

9.11 The normalized radiation intensity of a certain antenna

is given by

F(θ ) = exp(−20θ 2) for 0 ≤ θ ≤ π

where θ is in radians. Determine:

(a) The half-power beamwidth.

(b) The pattern solid angle.

(c) The antenna directivity.

∗
9.12 The radiation pattern of a circular parabolic-reflector

antenna consists of a circular major lobe with a half-power

beamwidth of 2◦ and a few minor lobes. Ignoring the minor
lobes, obtain an estimate for the antenna directivity in dB.

Sections 9-3 and 9-4: Dipole Antennas

9.13 Repeat Problem 9.6 for a 1 m long half-wave dipole that

operates in the FM/TV broadcast band at 150 MHz.

∗
9.14 Assuming the loss resistance of a half-wave dipole

antenna to be negligibly small and ignoring the reactance
component of its antenna impedance, calculate the standing-

wave ratio on a 50 Ω transmission line connected to the dipole

antenna.

9.15 For a short dipole with length l such that l ≪ λ , instead

of treating the current Ĩ(z) as constant along the dipole, as

was done in Section 9-1, a more realistic approximation that

ensures the current goes to zero at the dipole ends is to describe

Ĩ(z) by the triangular function

Ĩ(z) =

{
I0(1−2z/l), for 0 ≤ z ≤ l/2

I0(1 + 2z/l), for − l/2 ≤ z ≤ 0

as shown in Fig. P9.15. Use this current distribution to deter-

mine the following:

l I0

I(z)
~

Figure P9.15 Triangular current distribution on a short dipole

(Problem 9.15).

∗
(a) the far-field Ẽ(R,θ ,φ),

(b) the power density S(R,θ ,φ),

(c) the directivity D, and

(d) the radiation resistance Rrad.

9.16 A 50 cm long dipole is excited by a sinusoidally

varying current with an amplitude I0 = 5 A. Determine the

time average power radiated by the dipole if the oscillating
frequency is:

(a) 1 MHz,

(b) 300 MHz.

9.17 For a dipole antenna of length l = 3λ/2,

∗
(a) determine the directions of maximum radiation,

(b) obtain an expression for Smax,

(c) generate a plot of the normalized radiation pattern F(θ ),
and

(d) compare your pattern with that shown in Fig. 9-17(c).

9.18 For a dipole antenna of length l = λ/4,

(a) Determine the directions of maximum radiation.

(b) Obtain an expression for Smax.

(c) Generate a plot of the normalized radiation pattern F(θ ).

9.19 Repeat parts (a)–(c) of Problem 9.17 for a dipole of

length l = 3λ/4.

∗
9.20 Repeat parts (a)–(c) of Problem 9.17 for a dipole of

length l = λ .
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9.21 A car antenna is a vertical monopole over a conducting
surface. Repeat Problem 9.5 for a 1-m–long car antenna

operating at 1 MHz. The antenna wire is made of aluminum

with µc = µ0 and σc = 3.5×107 S/m, and its diameter is 1 cm.

Sections 9-5 and 9-6: Effective Area and Friis Formula

9.22 Determine the effective area of a half-wave dipole

antenna at 200 MHz, and compare it with its physical cross-
section if the wire diameter is 2 cm.

∗
9.23 A 3 GHz line-of-sight microwave communication link

consists of two lossless parabolic dish antennas, each 1 m in

diameter. If the receive antenna requires 1 nW of receive power
for good reception and the distance between the antennas is

40 km, how much power should be transmitted?

9.24 A half-wave dipole TV broadcast antenna transmits
10 kW at 50 MHz. What is the power received by a home

television antenna with 3-dB gain if located at a distance of

30 km?

9.25 A 150 MHz communication link consists of two vertical

half-wave dipole antennas separated by 2 km. The antennas

are lossless, the signal occupies a bandwidth of 3 MHz, the
system noise temperature of the receiver is 900 K, and the

desired signal-to-noise ratio is 17 dB. What transmitter power

is required?

9.26 Consider the communication system shown in

Fig. P9.26, with all components properly matched. If

Pt = 10 W and f = 6 GHz:

(a) What is the power density at the receiving antenna (as-

suming proper alignment of antennas)?

(b) What is the received power?

(c) If Tsys = 1,000 K and the receiver bandwidth is 20 MHz,

what is the signal-to-noise ratio in decibels?

Tx

Pt

Gt = 20 dB Gr = 23 dB

Rx

Prec20 km

Figure P9.26 Communication system of Problem 9.26.

9.27 The configuration shown in Fig. P9.27 depicts two
vertically oriented half-wave dipole antennas pointed towards

each other, with both positioned on 100 m tall towers separated

by a distance of 5 km. If the transit antenna is driven by a 50
MHz current with amplitude I0 = 2 A, determine:

∗
(a) The power received by the receive antenna in the absence

of the surface. (Assume both antennas to be lossless.)

(b) The power received by the receive antenna after incor-

porating reflection by the ground surface, assuming the
surface to be flat and to have εr = 9 and conductivity

σ = 10−3 (S/m).

9.28 Fig. P9.28 depicts a half-wave dipole connected to a

generator through a matched transmission line. The directivity
of the dipole can be modified by placing a reflecting rod a

distance d behind the dipole. What would its reflectivity in the

forward direction be if:
(a) d = λ/4,

(b) d = λ/2.

5 km

θi

Direct

Reflected
h = 100 m 100 m

Figure P9.27 Problem 9.27.
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d

Figure P9.28 Problem 9.28.

9.29 The configuration shown in Fig. P9.29 depicts a sat-

ellite repeater with two antennas, one pointed towards the
antenna of ground station 1 and the other towards the antenna

of ground station 2. All antennas are parabolic dishes, antennas

A1 and A4 are each 4 m in diameter, antennas A2 and A3 are
each 2 m in diameter, and the distance between the satellite

and each of the ground stations is 40,000 km. Upon receiving

the signal by its antenna A2, the satellite transponder boosts
the power gain by 80 dB and then retransmits the signal to A4.

The system operates at 10 GHz with Pt = 1 kW. Determine the

received power Pr. Assume all antennas to be lossless.

Sections 9-7 and 9-8: Radiation by Apertures

9.30 The 10 dB beamwidth is the beam size between the

angles at which F(θ ) is 10 dB below its peak value. Deter-
mine the 10 dB beamwidth in the x–z plane for a uniformly

illuminated aperture with length lx = 10λ .

∗
9.31 A uniformly illuminated aperture is of length lx = 20λ .
Determine the beamwidth between first nulls in the x–z plane.

∗
9.32 A uniformly illuminated rectangular aperture situated
in the x–y plane is 2 m high (along x) and 1 m wide (along y).

If f = 5 GHz, determine the following:

(a) The beamwidths of the radiation pattern in the elevation

plane (x–z plane) and the azimuth plane (y–z plane).

(b) The antenna directivity D in decibels.

9.33 An antenna with a circular aperture has a circular beam
with a beamwidth of 3◦ at 20 GHz.

(a) What is the antenna directivity in dB?

(b) If the antenna area is doubled, what will be the new

directivity and new beamwidth?

(c) If the aperture is kept the same as in (a), but the frequency

is doubled to 40 GHz, what will the directivity and

beamwidth become then?

∗
9.34 A 94 GHz automobile collision-avoidance radar uses a

rectangular-aperture antenna placed above the car’s bumper. If
the antenna is 1 m in length and 10 cm in height, determine the

following:

(a) Its elevation and azimuth beamwidths.

(b) The horizontal extent of the beam at a distance of 300 m.

G

Station 1

Satellite repeater

Pt PrA1 A4

Station 2

A3A2

Figure P9.29 Satellite repeater system.
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9.35 Compare directivity Dant of a 1 m diameter antenna
aperture operating at 10 GHz with directivity Deye of the

eye’s pupil operating in the middle of the visible spectrum

at λ = 0.5 µm. Treat the pupil as a circular aperture with a
diameter of 4 mm.

9.36 A microwave telescope consisting of a very sensitive

receiver connected to a 100 m parabolic-dish antenna is used
to measure the energy radiated by astronomical objects at

20 GHz. If the antenna beam is directed toward the moon and

the moon extends over a planar angle of 0.5◦ from Earth, what
fraction of the moon’s cross-section will be occupied by the

beam?

Sections 9-9 and 9-11: Antenna Arrays

9.37 A two-element array consisting of two isotropic anten-
nas separated by a distance d along the z axis is placed in a

coordinate system whose z axis points eastward and whose x

axis points toward the zenith. If a0 and a1 are the amplitudes
of the excitations of the antennas at z = 0 and at z = d,

respectively, and if δ is the phase of the excitation of the

antenna at z = d relative to that of the other antenna, find
the array factor and plot the pattern in the x–z plane for the

following:

∗
(a) a0 = a1 = 1, δ = π/4, and d = λ/2

(b) a0 = 1, a1 = 2, δ = 0, and d = λ

(c) a0 = a1 = 1, δ = −π/2, and d = λ/2

(d) a0 = 1, a1 = 2, δ = π/4, and d = λ/2

(e) a0 = 1, a1 = 2, δ = π/2, and d = λ/4

9.38 If the antennas in part (a) of Problem 9.37 are parallel,
vertical, Hertzian dipoles with axes along the x-direction,

determine the normalized radiation intensity in the x–z plane

and plot it.

∗
9.39 Consider the two-element dipole array of Fig. 9-29(a).
If the two dipoles are excited with identical feeding coeffi-

cients (a0 = a1 = 1 and ψ0 = ψ1 = 0), choose (d/λ ) such that

the array factor has a maximum at θ = 45◦.

9.40 Choose (d/λ ) so that the array pattern of the array of

Problem 9.39 has a null, rather than a maximum, at θ = 45◦.

9.41 Find and plot the normalized array factor and determine
the half-power beamwidth for a five-element linear array

excited with equal phase and a uniform amplitude distribution.

The interelement spacing is 3λ/4.

9.42 Repeat Problem 9.41 but change the excitation to
tapered amplitude distribution such that the amplitude of the

central element is 1, the amplitudes of the next adjacent

elements are both 0.5, and those of the outer elements are both
0.25.

9.43 Repeat Problem 9.41 for a nine-element array.

∗
9.44 A five-element equally spaced linear array with
d = λ/2 is excited with uniform phase and an amplitude

distribution given by the binomial distribution

ai =
(N −1)!

i!(N − i−1)!
, i = 0,1, . . . ,(N −1),

where N is the number of elements. Develop an expression for
the array factor.

9.45 A three-element linear array of isotropic sources

aligned along the z axis has an interelement spacing of λ/4

(Fig. P9.45). The amplitude excitation of the center element is
twice that of the bottom and top elements, and the phases are

−π/2 for the bottom element and π/2 for the top element,

relative to that of the center element. Determine the array
factor and plot it in the elevation plane.

1 –π/2

λ/4

λ/4

z

2 0

1 π/2

Figure P9.45 Three-element array of Problem 9.45.
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9.46 A linear array arranged along the z axis consists of 12
equally spaced elements with d = λ/2. Choose an appropriate

incremental phase delay δ so as to steer the main beam to

a direction 30◦ above the broadside direction. Provide an
expression for the array factor of the steered antenna and plot

the pattern. From the pattern, estimate the beamwidth.

∗
9.47 An eight-element linear array with λ/2 spacing is
excited with equal amplitudes. To steer the main beam to a

direction 60◦ below the broadside direction, what should be

the incremental phase delay between adjacent elements? Also,
give the expression for the array factor and plot the pattern.
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Objectives

Upon learning the material presented in this chapter, you

should be able to:

1. Describe the basic operation of satellite transponders.

2. Calculate the power budget for a communication link.

3. Describe how radar attains spatial and angular resolu-

tions, calculate the maximum detectable range, and ex-

plain the trade-off between the probabilities of detection

and false alarm.

4. Calculate the Doppler frequency shift observed by a

radar.

5. Describe the monopulse-radar technique.

450

Satellite Communication 
Systems and Radar Sensors

Chapter 10



Application Examples

This concluding chapter presents overviews of satellite com-

munication systems and radar sensors with emphasis on their
electromagnetic-related aspects.

10-1 Satellite Communication Systems

Today’s world is connected by a vast communication network

that provides a wide array of voice, data, and video services to
both fixed and mobile terminals (Fig. 10-1). The viability and

effectiveness of the network are attributed in large measure

to the use of orbiting satellite systems that function as relay
stations with wide area coverage of Earth’s surface. From a

geostationary orbit at 35,786 km above the equator, a satellite

can view over one-third of Earth’s surface and can connect
any pair of points within its coverage (Fig. 10-2). The history

of communication satellite engineering dates back to the late

1950s when the U.S. Navy used the moon as a passive reflector
to relay low-data-rate communications between Washington

D.C. and Hawaii. The first major development involving ar-

tificial Earth satellites took place in October of 1957 when the
Soviet Union launched Sputnik I and used it for 21 days to

transmit (one-way) telemetry information to a ground receiv-

ing station. This was followed by another telemetry satellite,
Explorer I, launched by the United States in January, 1958.

An important development took place in December of that year
when the United States launched the Score satellite and used

it to broadcast President Eisenhower’s Christmas message,

marking the first instance of two-way voice communication
via an artificial satellite.

Land mobile Ship

Aircraft

Satellite

Land
network

Figure 10-1 Elements of a satellite communication network.

These achievements were followed by a flurry of space
activity, leading to the development of operational commu-

nication satellites by many countries for both commercial

and governmental services. This section describes satellite
communications links with emphasis on transmitter–receiver

power calculations, propagation aspects, frequency alloca-

tions, and antenna design considerations.
A satellite is said to be in a geostationary orbit around the

Earth when it is in a circular orbit in a plane identical with

Earth’s equatorial plane at an altitude where the orbital period
is identical with Earth’s rotational period, thereby appearing

stationary relative to Earth’s surface. A satellite of mass Ms

in circular orbit around Earth (Fig. 10-3) is subject to two

forces: the attractive gravitational force Fg and the repelling

centrifugal force Fc. The magnitudes of these two forces are
given by

Fg =
GMsMe

R2
0

, (10.1)

N

S

35,786 km

Geostationary
orbit

Equator

(a)  Geostationary satellite orbit

(b)  Worldwide coverage by three
       satellites spaced 120◦ apart

17.4◦

17.4◦

17.4◦

N

Figure 10-2 Orbits of geostationary satellites.
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Re = 6,378 km 
        at equator

R0 = Re + h = 42,164 km

h = 35,786 km
Ms

17.4°

us = 11,070 (km/hr)

Geostationary
orbit

Satellite

Me

Re

Re

Re

Earth

Maximum distance = 41,679 km

Figure 10-3 Satellite of mass ms in orbit around Earth. For the orbit to be geostationary, the distance R0 between the satellite and Earth’s

center should be 42,164 km. At the equator, this corresponds to an altitude of 35,786 km above Earth’s surface.

Fc =
Msu

2
s

R0

= Msω
2
R0, (10.2)

where G = 6.67× 10−11 N·m2/kg2 is the universal gravita-
tional constant, Me = 5.98×1024 kg is Earth’s mass, R0 is the

distance between the satellite and the center of Earth, and us

is the satellite velocity. For a rotating object, us = ωR0, where
ω is its angular velocity. In order for the satellite to remain in

orbit, the two opposing forces acting on it have to be equal in

magnitude, or

G
MsMe

R2
0

= Msω
2
R0, (10.3)

which yields a solution for R0 given by

R0 =

(
GMe

ω2

)1/3

. (10.4)

To remain stationary with respect to Earth’s surface, the

satellite’s angular velocity has to be the same as that of Earth’s

own angular velocity around its own axis. Thus,

ω =
2π

T
, (10.5)

where T is the period of one sidereal day in seconds. A sidereal

day, which takes into account Earth’s rotation around the sun,

is equal to 23 hours, 56 minutes, and 4.1 seconds. Using
Eq. (10.5) in Eq. (10.4) gives

R0 =

(
GMeT

2

4π2

)1/3

, (10.6)

and upon using the numerical values for T , Me, and G, we

obtain the result R0 = 42,164 km. Subtracting 6,378 km

for Earth’s mean radius at the equator gives an altitude of
h = 35,786 km above Earth’s surface.

From a geostationary orbit, Earth subtends an angle of

17.4◦, covering an arc of about 18,000 km along the equator,
which corresponds to a longitude angle of about 160◦. With

three equally spaced satellites in geostationary orbit over the

Earth’s equator, it is possible to achieve complete global
coverage of the entire equatorial plane with significant overlap

between the beams of the three satellites. Concerning coverage

toward the poles, a global beam can reach Earth stations up to
81◦ of latitude on either side of the equator.

Not all satellite communication systems use spacecraft that

are in geostationary orbits. Indeed, because of transmitter
power limitations or other considerations, it is sometimes

necessary to operate from much lower altitudes. In this case,
the satellite is placed in a highly elliptical orbit (to satisfy

Kepler’s law) so that for part of the orbit (near its perigee)

it is at a range of only a few hundred kilometers from Earth’s
surface. Whereas only three geostationary satellites are needed

to provide near-global coverage of Earth’s surface, a much

larger number is needed when the satellites operate from
highly elliptical orbits. A good example of the latter is the

Global Positioning System (GPS) described in Technology

Brief 5.

10-2 Satellite Transponders

A communication satellite functions as a distant repeater;
it receives uplink signals from Earth stations, processes

the signals, and then downlinks (retransmits) them to their
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Table 10-1 Communications satellite frequency allocations.

Downlink Uplink

Frequency Frequency

Use (MHz) (MHz)

Fixed Service

Commercial 3,700–4,200 5,925–6,425

(C-band)

Military (X-band) 7,250–7,750 7,900–8,400

Commercial

(K-band)

Domestic (USA) 11,700–12,200 14,000–14,500

International 10,950–11,200 27,500–31,000

Mobile Service

Maritime 1,535–1,542.5 1,635–1,644

Aeronautical 1,543.5–1,558.8 1,645–1,660

Broadcast Service

2,500–2,535 2,655–2,690

11,700–12,750

Telemetry, Tracking, and Command

137–138, 401–402, 1,525–1,540

intended Earth destinations. The International Telecommuni-
cation Union has allocated specific bands for satellite com-

munications (Table 10-1). Of these, the bands used by the

majority of U.S. commercial satellites for domestic commu-
nications are the 4/6 GHz band (3.7 to 4.2 GHz downlink and

5.925 to 6.425 GHz uplink) and the 12/14 GHz band (11.7
to 12.2 GHz downlink and 14.0 to 14.5 GHz uplink). Each

uplink and downlink segment has been allocated 500 MHz

of bandwidth. By using different frequency bands for Earth-
to-satellite uplink segment and for satellite-to-Earth downlink

segments, the same antennas can be used for both functions

while simultaneously guarding against interference between
the two signals. The downlink segment commonly uses a

lower-frequency carrier than the uplink segment because lower

frequencies suffer lower attenuation by Earth’s atmosphere,
thereby easing the requirement on satellite output power.

We shall use the 4/6 GHz band as a model to discuss the

satellite-repeater operation, while keeping in mind that the
functional configuration of the repeater is basically the same

regardless of which specific communication band is used.
Figure 10-4 shows a generalized block diagram of a typical

12-channel repeater. The path of each channel—from the point

of reception by the antenna, transfer through the repeater,
and final retransmission through the antenna—is called a

transponder. The available 500 MHz bandwidth is allocated

to 12 channels (transponders) of 36 MHz bandwidth per
channel and 4 MHz separation between channels. The basic

functions of a transponder are (a) isolation of neighboring
radio frequency (RF) channels, (b) frequency translation, and

(c) amplification. With frequency-division multiple access
(FDMA)—one of the schemes commonly used for information
transmission—each transponder can accommodate thousands

of individual telephone channels within its 36 MHz of band-

width (telephone speech signals require a minimum bandwidth
of 3 kHz, so frequency spacing is nominally 4 kHz per

telephone channel), several TV channels (each requiring a

bandwidth of 6 MHz), millions of bits of digital data, or
combinations of all three.

When the same antenna is used for both transmission and
reception, a duplexer is used to perform the signal separation.

Many types of duplexers are available, but among the simplest

to understand is the circulator shown in Fig. 10-5. A circulator
is a three-port device that uses a ferrite material placed in

a magnetic field induced by a permanent magnet to achieve

power flow from ports 1 to 2, 2 to 3, and 3 to 1, but not in the
reverse directions. With the antenna connected to port 1, the

received signal is channeled only to port 2; if port 2 is properly

matched to the band-pass filter, no part of the received signal
is reflected from port 2 to 3. Similarly, the transmitted signal

connected to port 3 is channeled by the circulator to port 1 for

transmission by the antenna.
Following the duplexer shown in Fig. 10-4, the received

signal passes through a receiver bandpass filter that ensures
isolation of the received signal from the transmitted signal. The

receiver filter covers the bandwidth from 5.925 to 6.425 GHz,

which encompasses the cumulative bandwidths of all 12
channels; the first received channel extends from 5,927 to

5,963 MHz, the second one from 5,967 to 6,003 MHz, and so

on until the twelfth channel, which covers the range from 6,367
to 6,403 MHz. Tracing the signal path, the next subsystem

is the wideband receiver, which consists of three elements:

a low-noise wideband amplifier, a frequency translator, and
an output amplifier. The frequency translator consists of a

stable local oscillator, which generates a signal at frequency

f0 = 10,105 MHz, connected to a nonlinear microwave mixer.
The mixer serves to convert the frequency fr of the received

signal (which covers the range from 5,927 to 6,403 MHz) to

a lower-frequency signal ft = f0 − fr. Thus, the lower end of
the received signal frequency band gets converted from 5,927

to 4,178 MHz and the upper end gets converted from 6,403 to
3,702 MHz. This translation results in 12 channels with new

frequency ranges, but these signals carry the same information

(modulation) that was present in the received signals. In
principle, the receiver output signal can now be further

amplified and then channeled to the antenna through the

duplexer for transmission back to Earth. Instead, the receiver
output signal is separated into the 12 transponder channels

through a multiplexer followed by a bank of narrow band-pass
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Figure 10-4 Elements of a 12-channel (transponder) communications system.

Received signal

Transmitted
signalAntenna

Circulator

Signal to be
transmitted

Receiver1 2

3

From output
multiplexer

Figure 10-5 Basic operation of a ferrite circulator.

filters with each covering the bandwidth of one transponder
channel. Each of the 12 channels is amplified by its own high-
power amplifier (HPA), and then the 12 channels are combined

by another multiplexer that feeds the combined spectrum
into the duplexer. This channel separation and recombination

process is used as a safety measure against losing all 12

channels should a high-power amplifier experience total failure
or degradation in performance.

The information carrying capacity of a satellite repeater can

be doubled from 12 to 24 channels over the same 500 MHz
bandwidth by using polarization diversity. Instead of trans-

mitting one channel of information over channel 1 (5,927 to
5,963 MHz), for example, the ground station transmits to the

satellite two signals carrying different information and cover-

ing the same frequency band, but with different antenna polar-
ization configurations, such as right-hand circular (RHC) and

left-hand circular (LHC) polarizations. The satellite antenna is

equipped with a feed arrangement that can receive each of the
two circular polarization signals individually with negligible

interference between them. Two duplexers are used in this

case: one connected to the RHC polarization feed and another
connected to the LHC polarization feed, as illustrated in

Fig. 10-6.
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From output multiplexer
(channels 1–12)

From output multiplexer
(channels 13–24)

To receiver
(channels 1–12)

To receiver
(channels 13–24)

RHC

LHC

Duplexer

Duplexer

Figure 10-6 Polarization diversity is used to increase the

number of channels from 12 to 24.

10-3 Communication-Link Power

Budget

The uplink and downlink segments of a satellite communi-
cation link (Fig. 10-7) are each governed by the Friis trans-
mission formula (Section 9-6), which states that the power Pr

received by an antenna with gain Gr due to the transmission of
power Pt by an antenna with gain Gt at a range R is given by

Pr = PtGtGr

(
λ

4πR

)2

. (10.7)

F
ree-sp

ace an
d

atm
o
sp

h
eric lo

sses

Receiver
antenna
gain Gsr

Satellite

Transmitter
antenna
gain Gst

Earth
station

Earth
station

Fre
e-

sp
ac

e 
an

d

at
m

os
ph

er
ic

 lo
ss

es

Pt Pri

Uplink Downlink

Figure 10-7 Satellite transponder.

This expression applies to a lossless medium, such as free
space. To account for attenuation by clouds and rain in Earth’s

atmosphere (when present along the propagation path), as well

as absorption by certain atmospheric gases (primarily oxygen
and water vapor), we rewrite Eq. (10.7) as

Pri = ϒ(θ ) Pr = ϒ(θ ) PtGtGr

(
λ

4πR

)2

. (10.8)

Now, Pri represents the input power at the receiver with

atmospheric losses taken into account, and ϒ(θ ) is the one-
way transmissivity of the atmosphere at zenith angle θ . In

addition to its dependence on θ , ϒ(θ ) is a function of the fre-

quency of the communication link and the rain-rate conditions
along the propagation path. At frequencies below 10 GHz,

which include the 4/6 GHz band allocated for satellite com-

munication, absorption by atmospheric gases is very small,
as is attenuation due to clouds and rain. Consequently, the

magnitude of ϒ(θ ) is typically on the order of 0.5 to 1 for most

conditions. A transmissivity of 0.5 means that twice as much
power needs to be transmitted (compared to the free-space

case) in order to receive a specified power level. Among the

various sources of atmospheric attenuation, the most serious
is rainfall, and its attenuation coefficient increases rapidly

with increasing frequency. Consequently, atmospheric atten-
uation assumes greater importance with regard to transmitter

power requirements as the communication-system frequency

is increased toward higher bands in the microwave region.
The noise appearing at the receiver output, Pno, consists

of three contributions: (1) noise internally generated by the

receiver electronics, (2) noise picked up by the antenna due to
external sources, including emission by the atmosphere, and

(3) noise due to thermal emission by the antenna material.

The combination of all noise sources can be represented by an
equivalent system noise temperature, Tsys, defined such that

Pno = GrecKTsysB, (10.9)

where K is Boltzmann’s constant, and Grec and B are the
receiver power gain and bandwidth, respectively. This output

noise level is the same as would appear at the output of a noise-

free receiver with input noise level:

Pni =
Pno

Grec

= KTsysB. (10.10)

The signal-to-noise ratio is defined as the ratio of the signal

power to the noise power at the input of an equivalent noise-

free receiver. Hence,

Sn =
Pri

Pni

=
ϒ(θ ) PtGtGr

KTsysB

(
λ

4πR

)2

. (10.11)
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The performance of a communication system is governed
by two sets of issues. The first encompasses the signal-

processing techniques used to encode, modulate, combine,

and transmit the signal at the transmitter end and to receive,
separate, demodulate, and decode the signal at the receiver

end. The second set encompasses the gains and losses in the

communication link, and they are represented by the signal-to-
noise ratio Sn. For a given set of signal-processing techniques,

Sn determines the quality of the received signal, such as

the bit error rate in digital data transmission and sound and
picture quality in audio and video transmissions. Very high-

quality signal transmission requires very high values of Sn;
in broadcast-quality television by satellite, some systems are

designed to provide values of Sn exceeding 50 dB (or a factor

of 105).
The performance of a satellite link depends on the compos-

ite performance of the uplink and downlink segments. If either

segment performs poorly, the composite performance will be
poor, regardless of how good the performance of the other

segment is.

10-4 Antenna Beams

Whereas most Earth-station antennas are designed to provide
highly directive beams (to avoid interference effects), the

satellite antenna system is designed to produce beams tailored

to match the areas served by the satellite. For global coverage,
beamwidths of 17.4◦ are required. In contrast, for transmission

to and reception from a small area, beamwidths on the order of

1◦ or less may be needed (Fig. 10-8).
An antenna with a beamwidth β of 1◦ would produce a

spot beam on Earth covering an area approximately 630 km
in diameter.

Beam size has a direct connection to antenna gain and,

in turn, to transmitter power requirements. Antenna gain G

is related to the directivity D by G = ξ D, where ξ is the

radiation efficiency and D is related to the beamwidth β by

the approximate expression given by Eq. (9.26). For a circular
beam,

G = ξ
4π

β 2
, (10.12)

where β is in radians. For a lossless antenna (ξ = 1), a

global beam with β = 17.4◦ (= 0.3 rad) corresponds to a gain

G = 136 or 21.3 dB. A narrow 1◦ beam, on the other hand,
corresponds to an antenna gain of 41,253 or 46.2 dB.

To accommodate the various communication functions

associated with satellite systems, four main types of antennas
are used.∗

∗R. G. Meadows and A. J. Parsons, Satellite Communications, Hutchinson
Publishers, London, 1989.

(a)  Zone coverage

(b)  Multispot beams

Individual spot
areas or footprints

Individual transmitters
and horn antennas

Figure 10-8 Spot and multibeam satellite antenna systems for

coverage of defined areas on Earth’s surface.

1. Dipoles and helices at VHF and UHF are used for

telemetry, tracking, and command functions.

2. Horns and relatively small parabolic dishes (with diame-
ters on the order of a few centimeters) to produce wide-

angle beams for global coverage.

3. Parabolic dishes fed by one or more horns provide a beam

for zone coverage (Fig. 10-8(a)) or multiple spot beams

(Fig. 10-8(b)).

4. Antenna arrays consisting of many individual radiating
elements are used to produce multispot beams and for

beam steering and scanning.
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Concept Question 10-1: What are the advantages and
disadvantages of elliptical satellite orbits in comparison

to the geostationary orbit?

Concept Question 10-2: Why do satellite communica-

tion systems use different frequencies for the uplink
and downlink segments? Which segment uses the higher

frequency and why?

Concept Question 10-3: How does the use of antenna

polarization increase the number of channels carried by
the communication system?

Concept Question 10-4: What are the sources of noise

that contribute to the total system noise temperature of a
receiver?

10-5 Radar Sensors

The term radar is a contracted form of the phrase radio
detection and ranging, which conveys some—not all—of the

features of a modern radar system. Historically, radar systems
were first developed and used at radio frequencies, including

the microwave band, but we now also have light radars or
lidars that operate at optical wavelengths. Over the years, the

name radar has lost its original meaning and has come to

signify any active electromagnetic sensor that uses its own
source to illuminate a region of space and then measure the

echoes generated by reflecting objects contained in that region.

In addition to detecting the presence of a reflecting object

and determining its range by measuring the time delay of
short-duration pulses transmitted by the radar, a radar is also

capable of specifying the position of the target and its radial

velocity. Measurement of the radial velocity of a moving
object is realized by measuring the Doppler frequency shift
produced by the object. Also, the strength and shape of the

reflected pulse carry information about the shape and material
properties of the reflecting object.

Radar is used for a wide range of civilian and military

applications, including air traffic control, aircraft navigation,
law enforcement, control and guidance of weapon systems,

remote sensing of Earth’s environment, weather observation,
astronomy, and collision avoidance for automobiles. The fre-

quency bands used for the various types of radar applications

extend from the megahertz region to frequencies as high as
225 GHz.

10-5.1 Basic Operation of a Radar System

The block diagram shown in Fig. 10-9 contains the basic func-

tional elements of a pulse radar system. The synchronizer–
modulator unit serves to synchronize the operation of the
transmitter and the videoprocessor–display unit; it does so

by generating a train of direct-current (dc) narrow-duration,

evenly spaced pulses. These pulses, which are supplied to both
the transmitter, and the videoprocessor–display unit, specify

the times at which radar pulses are transmitted. The transmitter
contains a high-power radio-frequency (RF) oscillator with an

on/off control voltage actuated by the pulses supplied by the

synchronizer–modulator unit. Hence, the transmitter generates
pulses of RF energy equal in duration and spacing to the dc

pulses generated by the synchronizer–modulator unit. Each

pulse is supplied to the antenna through a duplexer, which

Duplexer

Servo

Transmitter

Receiver
Video

processor/display

Synchronizer/modulator
unit

Figure 10-9 Basic block diagram of a radar system.
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allows the antenna to be shared between the transmitter and the
receiver. The duplexer, which often is called the transmitter/
receiver (/R) switch, first connects the transmitter to the

antenna for the duration of the pulse and then connects the
antenna to the receiver for the remaining period until the start

of a new pulse. Some duplexers, however, are passive devices

that perform the sharing and isolation functions continuously.
The circulator shown in Fig. 10-5 is an example of a passive

duplexer. After transmission by the antenna, a portion of the

transmitted signal is intercepted by a reflecting object (often
called a target) and scattered in many directions. The energy

reradiated by the target back toward the radar is collected by
the antenna and delivered to the receiver, which processes

the signal to detect the presence of the target and to extract

information on its location and velocity. The receiver converts
the reflected RF signals into lower-frequency video signals

and supplies them to the videoprocessor–display unit, which

displays the extracted information in a format suitable for the
intended application. The servo unit positions the orientation

of the antenna beam in response to control signals provided

by either an operator, a control unit with preset functions, or a
control unit commanded by another system. The control unit of

an air-traffic-control radar, for example, commands the servo

to rotate the antenna in azimuth continuously. In contrast, the
radar antenna placed in the nose of an aircraft is made to scan

back and forth over only a specified angular sector.

10-5.2 Unambiguous Range

The collective features of the energy transmitted by a radar are
called the signal waveform. For a pulse radar, these features

include (1) the carrier frequency f , (2) the pulse length τ ,

(3) the pulse repetition frequency fp (number of pulses per
second) or equivalently the interpulse period Tp = 1/ fp, and

(4) the modulation (if any) within the pulses. Three of these
features are illustrated in Fig. 10-10. Modulation, which refers

τ
Tp = 1/fp

RF frequency f
Pulse waveform

Figure 10-10 A pulse radar transmits a continuous train of RF

pulses at a pulse repetition frequency fp.

to control of the amplitude, frequency, or phase of the signal,
is beyond the level of the present treatment.

The range of a target is determined by measuring the time

delay T taken by the pulse to travel to the target and back. For
a target at range R,

T =
2R

c
, (10.13)

where c = 3× 108 m/s is the speed of light and the factor 2

accounts for the two-way propagation. The maximum target
range that a radar can measure unambiguously, called the

unambiguous range Ru, is determined by the interpulse period

Tp and is given by

Ru =
cTp

2
=

c

2 fp

. (10.14)

The range Ru corresponds to the maximum range that a target
can have such that its echo is received before the transmission

of the next pulse. If Tp is too short, an echo signal due to a given

pulse might arrive after the transmission of the next pulse, in
which case the target would appear to be at a much shorter

range than it actually is.

According to Eq. (10.14), if a radar is to be used to detect
targets that are as far away as 100 km, for example, then fp

should be less than 1.5 kHz, and the higher the pulse repetition

frequency (PRF), the shorter is the unambiguous range Ru.
Consideration of Ru alone suggests selecting a low PRF, but

other considerations suggest selecting a very high PRF. As we
will see later in Section 10-6, the signal-to-noise ratio of the

radar receiver is directly proportional to fp. Hence, it would be

advantageous to select a PRF as high as possible. Moreover, in
addition to determining the maximum unambiguous range Ru,

the PRF also determines the maximum Doppler frequency

(hence, the target’s maximum radial velocity) that the radar
can measure unambiguously. If the requirements on maximum

range and velocity cannot be met by the same PRF, then some

compromise may be necessary. Alternatively, it is possible to
use a multiple-PRF radar system that transmits a few pulses at

one PRF followed by another series of pulses at another PRF.

Then the two sets of received pulses are processed together
to remove the ambiguities that would have been present with

either PRF alone.

10-5.3 Range and Angular Resolutions

Consider a radar observing two targets located at ranges R1

and R2, as shown in Fig. 10-11. Let t = 0 denote the time

corresponding to the start of the transmitted pulse. The pulse
length is τ . The return due to target 1 will arrive at T1 = 2R1/c

and will have a length τ (assuming that the pulse length in



10-6 TARGET DETECTION 459

Radar

Antenna beam

R1

R2

Figure 10-11 Radar beam viewing two targets at ranges R1

and R2.

Beamwidth β

R ∆x = βR

Figure 10-12 The azimuth resolution ∆x at a range R is equal

to βR.

space is much greater than the radial extent of the target).

Similarly, the return due to target 2 will arrive at T2 = 2R2/c.
The two targets are resolvable as distinct targets so long as

T2 ≥ T1 + τ or, equivalently,

2R2

c
≥ 2R1

c
+ τ . (10.15)

The range resolution of the radar, ∆R, is defined as the mini-

mum spacing between two targets necessary to avoid overlap
between the echoes from the two targets. From Eq. (10.15),

this occurs when

∆R = R2 −R1 = cτ/2. (10.16)

Some radars are capable of transmitting pulses as short as

1 ns in duration or even shorter. For τ = 1 ns, ∆R = 15 cm.
The basic angular resolution of a radar system is determined

by its antenna beamwidth β , as shown in Fig. 10-12. The

corresponding azimuth resolution ∆x at a range R is given by

∆x = β R, (10.17)

where β is in radians. In some cases, special techniques are

used to improve the angular resolution down to a fraction of
the beamwidth. One example is the monopulse tracking radar

described in Section 10-8.

10-6 Target Detection

Target detection by radar is governed by two factors: (1) the

signal energy received by the radar receiver due to reflection

of part of the transmitted energy by the target and (2) the
noise energy generated by the receiver. Figure 10-13 depicts

the output response of a radar receiver as a function of time

and shows the signals due to two targets displayed against the
noise contributed by external sources as well as by the devices

making up the receiver. The random variations exhibited by
the noise may at times make it difficult to distinguish the

signal reflected by the target from a noise spike. In Fig. 10-13,

the mean noise-power level at the receiver output is denoted
by Pno = GrecPni, where Grec is the receiver gain and Pni is

the noise level referred to the receiver’s input terminals. The

power levels Pr1 and Pr2 represent the echoes of the two targets
observed by the radar. Because of the random nature of noise,

it is necessary to set a threshold level, Prmin
, for detection. For

threshold level 1 indicated in Fig. 10-13, the radar will produce
the presence of both targets, but it will also detect a false
alarm. The chance of this occurring is called the false-alarm
probability. On the other hand, if the threshold level is raised
to level 2 to avoid the false alarm, the radar will not detect

the presence of the first target. A radar’s ability to detect the
presence of a target is characterized by a detection probability.

The setting of the threshold signal level relative to the mean

noise level is thus made on the basis of a compromise that
weighs both probabilities.

To keep the noise level at a minimum, the receiver is

designed so that its bandwidth B is barely wide enough to
pass most of the energy contained in the received pulse. Such

a design, called a matched filter, requires that B be equal to

the reciprocal of the pulse length τ (i.e., B = 1/τ). Hence, for
a matched-filter receiver, Eq. (10.10) becomes

Pni = KTsysB =
KTsys

τ
. (10.18)

The signal power received by the radar, Pr, is related to the
transmitted power level, Pt, through the radar equation. We

will first derive the radar equation for the general case of
a bistatic radar configuration in which the transmitter and

receiver are not necessarily at the same location, and then we

will specialize the results to the monostatic radar case where
the transmitter and receiver are colocated. In Fig. 10-14, the

target is at range Rt from the transmitter and at range Rr from

the receiver. The power density illuminating the target is given
by

St =
Pt

4πR2
t

Gt (W/m2), (10.19)

where (Pt/4πR
2
t ) represents the power density that would have

been radiated by an isotropic radiator, and Gt is the gain of the
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Threshold detection level 2
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Target 1
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Prmin(2)Grec

Prmin(2)Grec

Time

Figure 10-13 The output of a radar receiver as a function of time.

Rt

Rr
RCS σt

Transmitter

Receiver

Figure 10-14 Bistatic radar system viewing a target with radar cross section (RCS) σt.

transmitting antenna in the direction of the target. The target is

characterized by a radar cross section (RCS) σt (m2), defined
so that the power intercepted and then reradiated by the target

is

Prer = Stσt =
PtGtσt

4πR2
t

(W). (10.20)

This reradiated power spreads out over a spherical surface,

resulting in a power density Sr incident upon the receiving
radar antenna. Hence,

Sr =
Prer

4πR2
r

=
PtGtσt

(4πRtRr)2
(W/m2). (10.21)

With an effective area Ar and radiation efficiency ξr, the

receiving radar antenna intercepts and delivers (to the receiver)

power Pr given by

Pr = ξrArSr =
PtGtξrArσt

(4πRtRr)2
=

PtGtGrλ
2σt

(4π)3R2
t R2

r

, (10.22)

where we have used Eqs. (9.29) and (9.64) to relate the

effective area of the receiving antenna, Ar, to its gain Gr. For a

monostatic antenna that uses the same antenna for the transmit
and receive functions, Gt = Gr = G and Rt = Rr = R. Hence,

Pr =
PtG

2λ 2σt

(4π)3R4
. (radar equation) (10.23)

Unlike the one-way communication system for which the

dependence on R is as 1/R
2, the range dependence given by
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the radar equation goes as 1/R
4, which is the product of two

one-way propagation processes.

The detection process may be based on the echo from a

single pulse or on the addition (integration) of echoes from
several pulses. We will consider only the single-pulse case

here. A target is said to be detectable if its echo signal

power Pr exceeds Prmin
, which is the threshold detection level

indicated in Fig. 10-13. The maximum detectable range Rmax

is the range beyond which the target cannot be detected,

corresponding to the range at which Pr = Prmin
in Eq. (10.23).

Thus,

Rmax =

[
PtG

2λ 2σt

(4π)3Prmin

]1/4

. (10.24)

The signal-to-noise ratio is equal to the ratio of the received

signal power Pr to the mean input noise power Pni given by
Eq. (10.18):

Sn =
Pr

Pni

=
Prτ

KTsys

, (10.25)

and the minimum signal-to-noise ratio Smin corresponds to

when Pr = Prmin
:

Smin =
Prmin

τ

KTsys

. (10.26)

Use of Eq. (10.26) in Eq. (10.24) gives

Rmax =

[
PtτG

2λ 2σt

(4π)3KTsysSmin

]1/4

. (10.27)

The product Ptτ is equal to the energy of the transmitted
pulse. Hence, according to Eq. (10.27), it is the energy of

the transmitted pulse rather than the transmitter power level

alone that determines the maximum detectable range. A high-
power narrow pulse and an equal-energy, low-power long

pulse will yield the same radar performance as far as maximum

detectable range is concerned. However, the range-resolution
capability of the long pulse is much poorer than that of the

short pulse [see Eq. (10.16)].

The maximum detectable range Rmax also can be increased
by improving the signal-to-noise ratio. This can be accom-

plished by integrating the echoes from multiple pulses in order

to increase the total amount of energy received from the target.
The number of pulses available for integration over a specified

integration time is proportional to the PRF. Hence, from the
standpoint of maximizing target detection, it is advantageous

to use as high a PRF as allowed by other considerations.

10-7 Doppler Radar

The Doppler effect is a shift in the frequency of a wave caused

by the motion of the transmitting source, the reflecting object,

(a)  Stationary source

(b)  Moving source

λ λ

λ λu

(wave moving
in direction
opposite to that
of the source)

(wave moving
in the same
direction as
the source)

Figure 10-15 A wave radiated from a point source when

(a) stationary and (b) moving. The wave is compressed in the

direction of motion, spread out in the opposite direction, and

unaffected in the direction normal to motion.

or the receiving system. As illustrated in Fig. 10-15, a wave

radiated by a stationary isotropic point source forms equally
spaced concentric circles as a function of time travel from

the source. In contrast, a wave radiated by a moving source

is compressed in the direction of motion and is spread out
in the opposite direction. Compressing a wave shortens its

wavelength, which is equivalent to increasing its frequency.
Conversely, spreading it out decreases its frequency. The

change in frequency is called the Doppler frequency shift fd.

That is, if ft is the frequency of the wave radiated by the
moving source, the frequency fr of the wave that would be

observed by a stationary receiver is

fr = ft + fd. (10.28)

The magnitude and sign of fd depend on the direction of the

velocity vector relative to the direction of the range vector
connecting the source to the receiver.

Consider a source transmitting an electromagnetic wave
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Transmitter Receiver

Transmitter moving 
with velocity u

Stationary receiver

ur

Figure 10-16 Transmitter with radial velocity ur approaching a stationary receiver.

with frequency ft (Fig. 10-16). At a distance R from the source,
the electric field of the radiated wave is given by

E(R) = E0e
j(ωtt−kR) = E0e

jφ , (10.29)

where E0 is the wave’s magnitude, ωt = 2π ft, and k = 2π/λt

with λt being the wavelength of the transmitted wave. The

magnitude depends on the distance R and the gain of the source

antenna, but it is not of concern as far as the Doppler effect is
concerned. The quantity

φ = ωtt − kR = 2π ftt −
2π

λt

R (10.30)

is the phase of the radiated wave relative to its phase at R = 0

and reference time t = 0. If the source is moving toward the

receiver, as in Fig. 10-16, or vice versa, at a radial velocity ur,
then

R = R0 −urt, (10.31)

where R0 is the distance between the source and the receiver at

t = 0. Hence,

φ = 2π ftt −
2π

λt

(R0 −urt). (10.32)

This is the phase of the signal detected by the receiver. The

frequency of a wave is defined as the time derivative of the

phase φ divided by 2π . Thus,

fr =
1

2π

dφ

dt
= ft +

ur

λt

. (10.33)

Comparison of Eq. (10.33) with Eq. (10.28) leads to

fd = ur/λt. For radar, the Doppler shift happens twice: once
for the wave from the radar to the target and again for the wave

reflected by the target back to the radar. Hence, fd = 2ur/λt.

The dependence of fd on direction is given by the dot product
of the velocity and range unit vectors, which leads to

fd = −2
ur

λt

= −2u

λt

cosθ , (10.34)

(a)

(b)

θ

u

θ
u

Velocity vector

Range vector

Figure 10-17 The Doppler frequency shift is negative for a

receding target (0 ≤ θ ≤ 90◦), as in (a), and positive for an

approaching target (90◦ ≤ θ ≤ 180◦), as in (b).

where ur is the radial velocity component of u and θ is

the angle between the range vector and the velocity vector

(Fig. 10-17) with the direction of the range vector defined to
be from the radar to the target. For a receding target (relative

to the radar), 0 ≤ θ ≤ 90◦, and for an approaching target,

90◦ ≤ θ ≤ 180◦.
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Figure 10-18 Antenna feeding arrangement for an amplitude-

comparison monopulse radar: (a) feed horns and (b) connection

to phasing network.

10-8 Monopulse Radar

On the basis of information extracted from the echo due to

a single pulse, a monopulse radar can track the direction

of a target with an angular accuracy equal to a fraction of
its antenna beamwidth. To track a target in both elevation

and azimuth, a monopulse radar uses an antenna (such as a
parabolic dish) with four separate small horns at its focal point

(Fig. 10-18). Monopulse systems are of two types. The first is

called amplitude-comparison monopulse because the tracking
information is extracted from the amplitudes of the echoes

received by the four horns, and the second is called phase-
comparison monopulse because it relies on the phases of the
received signals. We shall limit our present discussion to the

amplitude-comparison scheme.

Error

Beam 1

Beam 2

Figure 10-19 A target observed by two overlapping beams of

a monopulse radar.

Individually, each horn would produce its own beam
with the four beams pointing in slightly different directions.

Figure 10-19 shows the beams of two adjacent horns. The

basic principle of the amplitude-comparison monopulse
is to measure the amplitudes of the echo signals received

through the two beams and then apply the difference between

them to repoint the antenna boresight direction toward
the target. Using computer-controlled phase shifters, the

phasing network shown in Fig. 10-18 can combine the signal

delivered to the four-element horn array by the transmitter
or by the echo signals received by them in different ways.

Upon transmission, the network excites all four feeds in

phase, thereby producing a single main beam called the
sum beam. The phasing network uses special microwave

devices that allow it to provide the desired functionality
during both the transmit and receive modes. Its equivalent

functionality is described by the circuits shown in Fig. 10-20.

During the receive period, the phasing network uses power
dividers, power combiners, and phase shifters to generate

three different output channels. One of these is the sum

channel, corresponding to adding all four horns in phase, and
its radiation pattern is depicted in Fig. 10-21(a). The second

channel, called the elevation-difference channel, is obtained

by first adding the outputs of the top-right and top-left horns
(Fig. 10-20(b)), then adding the outputs of the bottom-right

and bottom-left horns, and finally subtracting the second sum

from the first. The subtraction process is accomplished by
adding a 180◦ phase shifter in the path of the second sum

before adding it to the first sum. The beam pattern of the

elevation-difference channel is shown in Fig. 10-21(b). If the
observed target is centered between the two elevation beams,

the receiver echoes will have the same strength for both beams,
thereby producing a zero output from the elevation-difference

channel. If it is not, the amplitude of the elevation-difference

channel will be proportional to the angular deviation of the
target from the boresight direction, and its sign will denote

the direction of the deviation. The third channel (not shown

in Fig. 10-20) is the azimuth-difference channel, and it is
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channel

Angle
error
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(a)  Transmit mode

(b)  Receiver mode for elevation

Figure 10-20 Functionality of the phasing network in (a) the transmit mode and (b) the receive mode for the elevation-difference channel.

accomplished through a similar process that generates a beam

corresponding to the difference between the sum of the two
right horns and the sum of the two left horns.

In practice, the output of the difference channel is multiplied

by the output of the sum channel to increase the strength
of the difference signal and to provide a phase reference for

extracting the sign of the angle. This product, called the angle
error signal, is displayed in Fig. 10-21(c) as a function of the
angle error. The error signal activates a servo-control system

to reposition the antenna direction. By applying a similar

procedure along the azimuth direction using the product of the
azimuth-difference channel and the sum channel, a monopulse

radar provides automatic tracking in both directions. The range
to the target is obtained by measuring the round-trip delay of

the signal.

Concept Question 10-5: How is the PRF related to

unambiguous range?

Concept Question 10-6: Explain how the false-alarm
probability and the detection probability are related to the

noise level of the receiver.

Concept Question 10-7: In terms of the geometry

shown in Fig. 10-17, when is the Doppler shift a maxi-
mum?

Concept Question 10-8: What is the principle of the

monopulse radar?
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Figure 10-21 Monopulse antenna (a) sum pattern, (b) elevation-difference pattern, and (c) angle error signal.

Chapter 10 Summary

Concepts

• Three equally spaced satellites in geostationary orbit can

provide coverage of most of Earth’s surface.

• The use of polarization diversity makes it possible to
double the number of channels per unit bandwidth car-

ried by a satellite repeater.

• A satellite antenna system is designed to produce beams
tailored to match the areas served by the satellite.

Antenna arrays are particularly suitable for this purpose.

• A radar is an electromagnetic sensor that illuminates a
region of space and then measures the echoes due to

reflecting objects. From the echoes, information can be

extracted about the range of a target, its radial velocity,

direction of motion, and other characteristics.

• Due to the random nature of receiver noise, target detec-
tion is a statistical process characterized by detection and

false-alarm probabilities.

• A moving object produces a Doppler frequency shift
proportional to the radial velocity of the object (relative

to the radar) and inversely proportional to λ .

• A monopulse radar uses multiple beams to track the
direction of a target with an angular accuracy equal to

a fraction of its antenna beamwidth.

Important Terms Provide definitions or explain the meaning of the following terms:

atmospheric transmissivity ϒ
azimuth resolution
bistatic radar

circulator

detection probability
Doppler frequency shift fd

duplexer

Explorer I
false-alarm probability

FDMA
geostationary orbit

interpulse period Tp

lidar

matched filter
maximum detectable range Rmax

monopulse radar

monostatic radar
multiplexer

polarization diversity

pulse length τ
pulse repetition frequency (PRF) fp

radar
radar cross section σt

radar equation

radial velocity ur

range resolution
Score

signal-to-noise ratio

Sputnik I
sum and difference channels

synchronizer

system noise temperature
threshold detection level

transponder
unambiguous range Ru

uplink and downlink
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Mathematical and Physical Models

Satellite Communication Systems

Radius of geostationary orbit

R0 =

(
GMeT

2

4π2

)1/3

Received power

Pri = ϒ(θ ) Pr = ϒ(θ ) PtGtGr

(
λ

4πR

)2

Noise power

Pni = KTsysB

Signal-to-noise ratio

Sn =
Pri

Pni

=
ϒ(θ ) PtGtGr

KTsysB

(
λ

4πR

)2

Radar Sensors

Unambiguous range

Ru =
cTp

2
=

c

2 fp

Range resolution

∆R = R2 −R1 = cτ/2

Azimuth resolution

∆x = β R

Radar equation

Pr =
PtG

2λ 2σt

(4π)3R4

Doppler frequency shift

fd = −2
ur

λt

= −2u

λt

cosθ

PROBLEMS

Sections 10-1 to 10-4: Satellite Communication Systems

∗
10.1 A remote-sensing satellite is in circular orbit around
Earth at an altitude of 1,500 km above Earth’s surface. What is

its orbital period?

10.2 A transponder with a bandwidth of 400 MHz uses

polarization diversity. If the bandwidth allocated to transmit
a single telephone channel is 4 kHz, how many telephone

channels can be carried by the transponder?

∗
10.3 Repeat Problem 10.2 for TV channels, each requiring a
bandwidth of 6 MHz.

10.4 A geostationary satellite is at a distance of 40,000 km
from a ground receiving station. The satellite transmitting

antenna is a circular aperture with a 1-m diameter, and the

ground station uses a parabolic dish antenna with an effective
diameter of 20 cm. If the satellite transmits 1 kW of power at

12 GHz and the ground receiver is characterized by a system
noise temperature of 1,000 K, what would be the signal-

to-noise ratio of a received TV signal with a bandwidth of

6 MHz? The antennas and the atmosphere may be assumed
lossless.

10.5 A 10 GHz weather radar uses a 15 cm diameter lossless
antenna. At a distance of 1 km, what are the dimensions of the

volume resolvable by the radar if the pulse length is 1 µs?

∗
10.6 A collision avoidance automotive radar is designed to
detect the presence of vehicles up to a range of 0.1 km. What

is the maximum usable PRF?

∗
10.7 A radar system is characterized by the following param-
eters: Pt = 1 kW, τ = 0.1 µs, G = 30 dB, λ = 3 cm, and

Tsys = 1,500 K. The radar cross section of a car is typically

5 m2. How far away can the car be and remain detectable by

the radar with a minimum signal-to-noise ratio of 13 dB?

10.8 A 3-cm–wavelength radar is located at the origin of
an x–y coordinate system. A car located at x = 100 m and

y = 200 m is heading east (x-direction) at a speed of 120 km/hr.
What is the Doppler frequency measured by the radar?



Symbol Quantity SI Unit Abbreviation

A Magnetic potential (vector) webers/meter Wb/m

B Susceptance siemens S

B Magnetic flux density teslas or webers/meter2 T or W/m2

C Capacitance farads F

D Directivity (antenna) (dimensionless) —

D Electric flux density coulombs/meter2 C/m2

d Moment arm meters m

E Electric-field intensity volts/meter V/m

Eds Dielectric strength volts/meter V/m

F Radiation intensity (normalized) (dimensionless) —

F Force newtons N

f Frequency hertz Hz

fd Doppler frequency hertz Hz

fmn Cutoff frequency hertz Hz

G Conductance siemens S

G Gain (power) (dimensionless) —

H Magnetic field intensity amperes/meter A/m

I Current amperes A

J Current density (volume) amperes/meter2 A/m2

Js Current density (surface) amperes/meter A/m

k Wavenumber radians/meter rad/m

kc Cutoff wavenumber radians/second rad/s

L Inductance henrys H

l Length meters m
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Symbol Quantity SI Unit Abbreviation

M, m Mass kilograms kg

M Magnetization vector amperes/meter A/m

m Magnetic dipole moment ampere-meters2 A·m2

n Index of refraction (dimensionless) —

P Power watts W

P Electric polarization vector coulombs/meter2 C/m2

p Pressure newtons/meter2 N/m2

p Electric dipole moment coulomb-meters C·m
Q Quality factor (dimensionless) —

Q, q Charge coulombs C

R Reflectivity (reflectance) (dimensionless) —

R Resistance ohms Ω
R Range meters m

r Radial distance meters m

S Standing-wave ratio (dimensionless) —

S Poynting vector watts/meter2 W/m2

Sav Power density watts/meter2 W/m2

T Temperature kelvins K

T Transmissivity (transmittance) (dimensionless) —

T Torque newton-meters N·m
t Time seconds s

T period seconds s

u Velocity meters/second m/s

ug Group velocity meters/second m/s

up Phase velocity meters/second m/s

V Electric potential volts V

V Voltage volts V

Vbv Voltage breakdown volts V

Vemf Electromotive force (emf) volts V

W Energy (work) joules J

w Energy density joules/meter3 J/m3

X Reactance ohms Ω
Y Admittance siemens S

Z Impedance ohms Ω
α Attenuation constant nepers/meter Np/m

β Beamwidth degrees ◦

β Phase constant (wavenumber) radians/meter rad/m

Γ Reflection coefficient (dimensionless) —

γ Propagation constant meters−1 m−1

δs Skin depth meters m

ε , ε0 Permittivity farads/meter F/m

εr Relative permittivity (dimensionless) —

η Impedance ohms Ω
λ Wavelength meters m
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Symbol Quantity SI Unit Abbreviation

µ , µ0 Permeability henrys/meter H/m

µr Relative permeability (dimensionless) —

µe, µh Mobility (electron, hole) meters2/volt·second m2/V·s
ρl Charge density (linear) coulombs/meter C/m

ρs Charge density (surface) coulombs/meter2 C/m2

ρv Charge density (volume) coulombs/meter3 C/m3

σ Conductivity siemens/meter S/m

σt Radar cross section meters2 m2

τ Transmission coefficient (dimensionless) —

τ Pulse length seconds s

ϒ Atmospheric transmissivity (dimensionless) —

Φ Magnetic flux webers Wb

ψψψ Gravitational field newtons/kilogram N/kg

χe Electric susceptibility (dimensionless) —

χm Magnetic susceptibility (dimensionless) —

Ω Solid angle steradians sr

ω Angular frequency radians/second rad/s

ω Angular velocity radians/second rad/s



TABLE B-1

RELATIVE PERMITTIVITY εr

OF COMMON MATERIALSa

ε = εrε0 and ε0 = 8.854×10−12 F/m.

Relative Relative
Material Permittivity, εr Material Permittivity, εr

Vacuum 1 Dry soil 2.5–3.5
Air (at sea level) 1.0006 Plexiglass 3.4
Styrofoam 1.03 Glass 4.5–10
Teflon 2.1 Quartz 3.8–5
Petroleum oil 2.1 Bakelite 5
Wood (dry) 1.5–4 Porcelain 5.7
Paraffin 2.2 Formica 6
Polyethylene 2.25 Mica 5.4–6
Polystyrene 2.6 Ammonia 22
Paper 2–4 Seawater 72–80
Rubber 2.2–4.1 Distilled water 81
aThese are low-frequency values at room temperature (20 ◦C).

Note: For most metals, εr ≈ 1.
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TABLE B-2

CONDUCTIVITY σ OF SOME COMMON MATERIALSa

Material Conductivity Material Conductivity
σ (S/m) σ (S/m)

Conductors Semiconductors

Silver 6.2×107 Pure germanium 2.2

Copper 5.8×107 Pure silicon 4.4×10−4

Gold 4.1×107 Insulators

Aluminum 3.5×107 Wet soil ∼ 10−2

Tungsten 1.8×107 Fresh water ∼ 10−3

Zinc 1.7×107 Distilled water ∼ 10−4

Brass 1.5×107 Dry soil ∼ 10−4

Iron 107 Glass 10−12

Bronze 107 Hard rubber 10−15

Tin 9×106 Paraffin 10−15

Lead 5×106 Mica 10−15

Mercury 106 Fused quartz 10−17

Carbon 3×104 Wax 10−17

Seawater 4
Animal body (average) 0.3 (poor cond.)

aThese are low-frequency values at room temperature (20 ◦C).
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TABLE B-3

RELATIVE PERMEABILITY

µr OF SOME COMMON MATERIALSa

µ = µrµ0 and µ0 = 4π ×10−7 H/m.

Relative
Material Permeability, µr

Diamagnetic
Bismuth 0.99983 ≈ 1
Gold 0.99996 ≈ 1
Mercury 0.99997 ≈ 1
Silver 0.99998 ≈ 1
Copper 0.99999 ≈ 1
Water 0.99999 ≈ 1

Paramagnetic
Air 1.000004 ≈ 1
Aluminum 1.00002 ≈ 1
Tungsten 1.00008 ≈ 1
Titanium 1.0002 ≈ 1
Platinum 1.0003 ≈ 1

Ferromagnetic (nonlinear)
Cobalt 250
Nickel 600
Mild steel 2,000
Iron (pure) 4,000–5,000
Silicon iron 7,000
Mumetal ∼ 100,000
Purified iron ∼ 200,000

aThese are typical values; actual values
depend on material variety.

Note: Except for ferromagnetic materials,
µr ≈ 1 for all dielectrics and conductors.



Trigonometric Relations

sin(x± y) = sinxcosy± cosxsiny

cos(x± y) = cosxcosy∓ sinxsiny

2sinxsiny = cos(x− y)− cos(x+ y)

2sinxcosy = sin(x+ y)+ sin(x− y)

2cosxcosy = cos(x+ y)+ cos(x− y)

sin2x = 2sinxcosx

cos2x = 1−2sin2
x

sinx+ siny = 2sin

(
x+ y

2

)
cos

(
x− y

2

)

sinx− siny = 2cos

(
x+ y

2

)
sin

(
x− y

2

)

cosx+ cosy = 2cos

(
x+ y

2

)
cos

(
x− y

2

)

cosx− cosy = −2sin

(
x+ y

2

)
sin

(
x− y

2

)

cos(x±90◦) = ∓sinx

cos(−x) = cosx

sin(x±90◦) = ±cosx

sin(−x) = −sinx

e
jx = cosx+ j sinx (Euler’s identity)

sin x =
e

jx − e
− jx

2 j

cos x =
e

jx + e
− jx

2

Approximations for Small Quantities

For |x| ≪ 1,

(1± x)n ≈ 1±nx

(1± x)2 ≈ 1±2x

√
1± x ≈ 1± x

2

1√
1± x

≈ 1∓ x

2

e
x = 1+ x+

x
2

2!
+ · · · ≈ 1+ x

ln(1+ x) ≈ x

sinx = x− x
3

3!
+

x
5

5!
+ · · · ≈ x

cosx = 1− x
2

2!
+

x
4

4!
+ · · · ≈ 1− x

2

2

lim
x→0

sinx

x
= 1
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Common Derivatives

f (x)
d f

dx

x
a

ax
a−1

1

xa
−ax

−(a+1)

√
x

1

2
x
−1/2 =

1

2
√

x

e
ax

ae
ax

b
x

b
x ln(b)

ln(x)
1

x

loga(x)
1

x ln(a)

sin(ax) acos(ax)

cos(ax) −asin(ax)

tan(ax) asec2(ax)

Common Integrals
∫

x
n

dx =
1

n+1
x

n+1 +C

∫
1

x
dx = ln |x|+C

∫
x
−n

dx =
1

−n+1
x
−n+1 +C

∫
1

ax+b
dx =

1

a
ln |ax+b|+C

∫
cos(ax) dx =

1

a
sin(ax)+C

∫
sin(ax) dx = −1

a
cos(ax)+C

∫
tan(ax) dx =

1

a
ln |sec(ax)|+C

∫
e

ax
dx =

1

a
e

ax +C

∫
b

x
dx =

b
x

ln(b)
+C

∫
lnx dx = x ln(x)− x+C

∫
e

ax sin(bx) dx =
e

ax

a2 +b2
(asin(bx)−bcos(bx))+C

∫
e

ax cos(bx) dx =
e

ax

a2 +b2
(acos(bx)+bsin(bx))+C

∫
xe

x
dx = (x−1)ex +C

Gradient, Divergence, Curl, and Laplacian

Operators

Cartesian (Rectangular) Coordinates (x, y, z)

∇V = x̂
∂V

∂x
+ ŷ

∂V

∂y
+ ẑ

∂V

∂ z

∇ ·A =
∂Ax

∂x
+

∂Ay

∂y
+

∂Az

∂ z

∇×××A =

∣∣∣∣∣∣∣

x̂ ŷ ẑ
∂

∂x

∂

∂y

∂

∂ z

Ax Ay Az

∣∣∣∣∣∣∣

= x̂

(
∂Az

∂y
− ∂Ay

∂ z

)

+ ŷ

(
∂Ax

∂ z
− ∂Az

∂x

)

+ ẑ

(
∂Ay

∂x
− ∂Ax

∂y

)

∇2
V =

∂ 2
V

∂x2
+

∂ 2
V

∂y2
+

∂ 2
V

∂ z2

Cylindrical Coordinates (r, φ , z)

∇V = r̂
∂V

∂ r
+ φ̂φφ

1

r

∂V

∂φ
+ ẑ

∂V

∂ z

∇ ·A =
1

r

∂

∂ r
(rAr)+

1

r

∂Aφ

∂φ
+

∂Az

∂ z

∇×××A =
1

r

∣∣∣∣∣∣∣∣

r̂ φ̂φφr ẑ
∂

∂ r

∂

∂φ

∂

∂ z

Ar rAφ Az

∣∣∣∣∣∣∣∣

= r̂

(
1

r

∂Az

∂φ
− ∂Aφ

∂ z

)

+ φ̂φφ

(
∂Ar

∂ z
− ∂Az

∂ r

)

+ ẑ
1

r

[
∂

∂ r
(rAφ )− ∂Ar

∂φ

]

∇2
V =

1

r

∂

∂ r

(
r

∂V

∂ r

)
+

1

r2

∂ 2
V

∂φ 2
+

∂ 2
V

∂ z2
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Spherical Coordinates (R, θ , φ)

∇V = R̂
∂V

∂R
+ θ̂θθ

1

R

∂V

∂θ
+ φ̂φφ

1

Rsinθ

∂V

∂φ

∇ ·A =
1

R2

∂

∂R
(R2

AR)

+
1

Rsinθ

∂

∂θ
(Aθ sinθ)

+
1

Rsinθ

∂Aφ

∂φ

∇×××A =
1

R2 sinθ

∣∣∣∣∣∣∣∣

R̂ θ̂θθR φ̂φφRsinθ
∂

∂R

∂

∂θ

∂

∂φ
AR RAθ (Rsinθ)Aφ

∣∣∣∣∣∣∣∣

= R̂
1

Rsinθ

[
∂

∂θ
(Aφ sinθ)− ∂Aθ

∂φ

]

+ θ̂θθ
1

R

[
1

sinθ

∂AR

∂φ
− ∂

∂R
(RAφ )

]

+ φ̂φφ
1

R

[
∂

∂R
(RAθ )− ∂AR

∂θ

]

∇2
V =

1

R2

∂

∂R

(
R

2 ∂V

∂R

)

+
1

R2 sinθ

∂

∂θ

(
sinθ

∂V

∂θ

)

+
1

R2 sin2 θ

∂ 2
V

∂φ 2

Some Useful Vector Identities

A ·B = ABcosθAB Scalar (or dot) product

A×××B = n̂ ABsinθAB Vector (or cross)

product, n̂ normal to plane containing A and B

A ·(B×××C) = B ·(C×××A) = C ·(A×××B)

A××× (B×××C) = B(A ·C)−C(A ·B)

∇(U +V ) = ∇U +∇V

∇(UV ) = U∇V +V ∇U

∇ ·(A+B) = ∇ ·A+∇ ·B
∇ ·(UA) = U∇ ·A+A ·∇U

∇××× (UA) = U∇×××A+∇U×××A

∇××× (A+B) = ∇×××A+∇×××B

∇ ·(A×××B) = B ·(∇×××A)−A ·(∇×××B)

∇ ·(∇×××A) = 0

∇×××∇V = 0

∇ ·∇V = ∇2
V

∇×××∇×××A = ∇(∇ ·A)−∇2A
∫

υ
(∇ ·A)dυ =

∫

S

A ·ds Divergence theorem

(S encloses υ )
∫

S

(∇×××A) ·ds =

∫

C

A ·dl Stokes’s theorem

(S bounded by C)



FUNDAMENTAL PHYSICAL CONSTANTS

CONSTANT SYMBOL VALUE

Speed of light in vacuum c 2.998×108 ≈ 3×108 m/s

Gravitational constant G 6.67×10−11 N·m2/kg2

Boltzmann’s constant K 1.38×10−23 J/K

Elementary charge e 1.60×10−19 C

Permittivity of free space ε0 8.85×10−12 ≈ 1
36π ×10−9 F/m

Permeability of free space µ0 4π ×10−7 H/m

Electron mass me 9.11×10−31 kg

Proton mass mp 1.67×10−27 kg

Planck’s constant h 6.63×10−34 J·s
Intrinsic impedance of free space η0 376.7 ≈ 120π Ω
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FUNDAMENTAL SI UNITS

DIMENSION UNIT SYMBOL

Length meter m

Mass kilogram kg

Time second s

Electric current ampere A

Temperature kelvin K

Amount of substance mole mol

MULTIPLE AND SUBMULTIPLE PREFIXES

PREFIX SYMBOL MAGNITUDE PREFIX SYMBOL MAGNITUDE

exa E 1018 milli m 10−3

peta P 1015 micro µ 10−6

tera T 1012 nano n 10−9

giga G 109 pico p 10−12

mega M 106 femto f 10−15

kilo k 103 atto a 10−18



Chapter 1

1.1 5 cm

1.3 p(x, t) = 51.04 cos(4π × 103t − 12.12πx + 36◦)
(N/m2)

1.6 up = 0.83 (m/s); λ = 10.47 m

1.8 (a) y1(x, t) is traveling in positive x direction. y2(x, t)

is traveling in negative x direction.

1.10 y2(t) lags y1(t) by 54◦.

1.12 T = 1.25 s; up = 0.28 m/s; λ = 0.35 m

1.14 α = 2 × 10−3 (Np/m)

1.16 (c) z1z2 = 18ej109.4◦

1.17 (b) z2 = √
3 ej3π/4

1.19 (c) |z|2,

1.20 (d) t = 0; s = 6 ej30◦

1.22 ln(z) = 1.76 + j1.03

1.25 vc(t) = 15.57 cos(2π × 103t − 81.5◦) V

1.26 (d) i(t) = 3.61 cos(ωt + 146.31◦) A

1.27 (d) Ĩ = 2ejπ/4 A

Chapter 2

2.2 (a) l/λ = 2 × 10−5; transmission line may be ignored.

(c) l/λ = 0.6; transmission line effects should be
included.

2.4 R′ = 0.69 (�/m), L′ = 1.57 × 10−7 (H/m), G′ = 0,
C′ = 1.84 × 10−10 (F/m)

2.7 α = 0.109 Np/m; β = 44.5 rad/m;
Z0 = (19.6 + j0.030) �; up = 1.41 × 108 m/s

2.10 w = 0.613 mm, λ = 0.044 m

Appendix E
 Answers To Selected Problems  
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2.14 R′ = 0.5 (�/m); L′ = 200 (nH/m); G′ = 200 (μS/m);
C ′ = 80 (pF/m); λ = 2.5 m

2.16 R′ = 0.4 �/m, L′ = 38.2 nH/m, G′ = 0.25 mS/m,
C′ = 23.9 pF/m

2.17 (a) b = 4.2 mm

(b) up = 2 × 108 m/s

2.22 ZL = (120.5 − j89.3) �

2.23 Z0 = 70.7 �

2.29 Zin = (40 + j20) �

2.31 (b) � = 0.16 e−j80.54◦
.

2.32 (a) � = 0.62e−j29.7◦

2.33 (a) Zin1 = (35.20 − j8.62) �

2.35 L = 8.3 × 10−9 H

2.36 l = λ/4 + nλ/2

2.39 Zin = 1002

33.33
= 300 �

2.41 (b) iL(t) = 3 cos(6π × 108t − 135◦) (A)

2.42 (a) Zin = (41.25 − j16.35) �

2.44 P i
av = 10.0 mW; P r

av = −1.1 mW; P t
av = 8.9 mW

2.45 (a) Pav = 0.29 W

2.48 (b) � = 0.62 exp −29.7◦

2.50 Zin = (66 − j125) �

2.52 (b) S = 1.64

2.53 Z01 = 40 �; Z02 = 250 �

2.55 (a) Zin = −j154 �

(b) 0.074λ + (nλ/2), n = 0, 1, 2, . . .

2.57 The reciprocal of point Z is at point Y , which is at
0.55 + j0.26.

2.61 ZL = (41 − j19.5) �

2.63 Zin = (95 − j70) �

2.69 First solution: Stub at d = 0.199λ from antenna and stub
length l = 0.125λ. Second solution: d = 0.375λ from
antenna and stub length l = 0.375λ.

2.73 Zin = 100 �

2.78 Vg = 19.2 V; Rg = 30 �; l = 700 m

2.80 (a) l = 600 m

(b) ZL = 0

(c) Rg =
(

1 + �g

1 − �g

)
Z0 =

(
1 + 0.25

1 − 0.25

)
50 = 83.3 �

(d) Vg = 32 V

Chapter 3

3.2 â = x̂ 0.32 − ẑ 0.95

3.3 Area = 36

3.5 (a) A = √
14 ; âA = (x̂ + ŷ2 − ẑ3)/

√
14

(e) A · (B ××× C) = 20

(h) (A ××× ŷ) · ẑ = 1

3.9 â = A
|A| = −x̂ − ŷy − ẑ 2√

5 + y2

3.10 â = (x̂ 3 − ẑ 6)/
√

45

3.12 A = x̂ 0.8 + ŷ 1.6

3.15 ĉ = x̂ 0.37 + ŷ 0.56 + ẑ 0.74

3.17 G = ± (−x̂ 8
3 + ŷ 8

3 + ẑ 4
3

)
3.23 (a) P1 = (2.24, 63.4◦, 0) in cylindrical;

P1 = (2.24, 90◦, 63.4◦) in spherical

(d) P4 = (2.83, 135◦, −2) in cylindrical;
P4 = (3.46, 125.3◦, 135◦) in spherical

3.24 (a) P1 = (0, 0, 5)

3.25 (c) A = 12

3.27 (a) V = 21π/2

3.30 (a) θAB = 90◦

(b) ±(r̂ 0.487 + φ̂φφ 0.228 + ẑ 0.843)
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3.31 (a) d = √
3

3.34 (c) C (P3) = r̂0.707 + ẑ4

(e) E(P5) = −r̂ + φ̂φφ

3.35 (c) C(P3) = R̂0.854 + θ̂θθ0.146 − φ̂φφ0.707

3.36 (e) ∇S = x̂8xe−z + ŷ3y2 − ẑ4x2e−z

3.37 (b) ∇T = x̂ 2x

(g) ∇T = −x̂ 2π
6 sin

(
πx
3

)
3.38 T (z) = 10 + (1 − e−4z)/4

3.39
(

dV
dl

)∣∣
(1,−1,2)

= 1.34

3.42 dU/dl = −0.02

3.46 E = R̂2R

3.48 (a)
∮

D · ds = 150π

(b)
∫∫∫

∇ · D dV = 150π

3.56 (a) A is solenoidal, but not conservative.

(d) D is conservative, but not solenoidal.

(h) H is conservative, but not solenoidal.

3.58 (c) ∇2
(

3

x2 + y2

)
= 12(

x2 + y2
)2

Chapter 4

4.2 Q = 2.62 (mC)

4.3 Q = 260 (mC)

4.7 I = 314.2 A

4.8 (a) ρl = −πca4

2
(C/m)

4.11 E = ẑ 51.2 kV/m

4.12 q2 ≈ −94.69 (μC)

4.15 (a) E = −x̂ 1.6 − ŷ 0.66 (MV/m)

4.17 E = ẑ (ρs0h/2ε0)
[√

a2 + h2 + h2/
√

a2 + h2 − 2h
]

4.20 E = −ŷ
ρl

πε0R1

R1

R2
+ ŷ

ρl

πε0R2
= 0

4.23 (a) ρv = y3z3

(b) Q = 32 (C)

(c) Q = 32 (C)

4.25 Q = 4πρ0a
3 (C)

4.26 D = r̂
ρv0(r

2 − 1)

2r
, 1 ≤ r ≤ 2 m

D = r̂ Dr = r̂
3ρv0

2r
, r ≥ 2 m

4.30 R1 = a

2
, R3 = a

√
5

2
, V = 0.55Q

πε0a

4.33 (b) E = ẑ(ρla/2ε0)[z/(a2 + z2)3/2] (V/m)

4.34 V (b) = (ρl/4πε)

× ln

[
l + √

l2 + 4b2

−l + √
l2 + 4b2

]
(V)

4.37 V =
ρl

2πε0

[
ln

(
a√

(x − a)2 + y2

)
− ln

(
a√

(x + a)2 + y2

)]
4.40 VAB = −234.18 V

4.41 (c) ue = −8.125E/|E| (m/s); uh = 3.125E/|E| (m/s)

4.45 R = 4.2 (m�)

4.48 θ = 61◦

4.50 Q = 3πε0 (C)

4.52 (a) |E| is maximum at r = a.

4.56 We = 4.62 × 10−9 (J)

4.57 (a) C = 3.1 pF

4.60 (b) C = 6.07 pF

4.63 C′ = πε0

ln[(2d/a) − 1] (C/m)
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Chapter 5

5.1 a = −ŷ8.44 × 1018 (m/s2)

5.4 T = −ẑ1.66 (N·m); clockwise

5.5 (a) F = 0

5.9 H = ẑ
Iθ (b − a)

4πab

5.10 B = −ẑ0.6 (mT)

5.11 I2 = 2aI1

2πNd
= 1 × 50

π × 20 × 2
= 0.4 A

5.14 I = 100 A

5.16 F = −x̂0.8 (mN)

5.18 (a) H(0, 0, h) = −x̂
I

πw
tan−1

( w

2h

)
(A/m)

5.20 F = ŷ 8 × 10−5 N

5.24 J = ẑ 9e−3r A/m2

5.26 (a) A = ẑ
μ0I

4π
ln

(
� + √

�2 + 4r2

−� + √
�2 + 4r2

)

5.28 (a) B = ẑ5π sin πy − ŷπ cos πx (T)

5.29 (a) A = ẑμ0IL/(4/piR)

(b) H = (IL/4π)[(−x̂y + ŷx)/(x2 + y2 + z2)3/2]

5.30 ne = 1.5 electrons/atom

5.33 H2 = ẑ 7

5.35 	B2 = x̂20000 − ŷ30000 + ẑ12

5.37 L′ = (μ/π) ln[(d − a)/a] (H)

5.40 
 = 1.66 × 10−6 (Wb)

Chapter 6

6.1 At t = 0, current in top loop is momentarily clockwise.
At t = t1, current in top loop is momentarily
counterclockwise.

6.4 (a) Vemf = 750e−3t (V)

6.7 Iind = 18.85 sin(200πt) mA

6.9 B0 = 0.4 (nA/m)

6.10 V12 = −236 (μV)

6.12 I = 0.3 (A)

6.14 I = 0.82 cos(120πt) (μA)

6.17 (b) 888

6.18 f = 5 MHz

6.20 ρv = (8y/ω) sin ωt + C0, where C0 is a constant of
integration.

6.24 k = (4π/30) rad/m;
E = −ẑ941 cos(2π × 107t + 4πy/30) (V/m)

6.26 H(R, θ; t) = φ̂φφ (53/R) sin θ cos(6π × 108t − 2πR)

(μA/m)

6.28 (a) k = 20 (rad/m)

Chapter 7

7.2 (a) Positive y-direction

(c) λ = 12.6 m

7.3 (a) λ = 31.42 m

7.5 εr = 16

7.6 (a) λ = 10 m
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7.14 (a) γ = 73.5◦ and χ = −8.73◦

(b) Right-hand elliptically polarized

7.17 (a) Low-loss dielectric. α = 8.42 × 10−11 Np/m,
β = 468.3 rad/m, λ = 1.34 cm, up = 1.34 × 108

m/s, ηc ≈ 168.5 �

7.19 H lags E by 31.72◦

7.21 z = 287.82 m

7.23 up = 6.28 × 104 (m/s)

7.25 H = −ŷ0.16 e−30x cos(2π × 109t − 40x − 36.85◦)
(A/m)

7.29 (Rac/Rdc) = 287.1

7.34 Sav = ŷ0.48 (W/m2)

7.35 (c) z = 23.03 m

7.36 up = 1 × 108 (m/s)

7.39 (b) Pav = 0

7.42 (a) (we)av = εE2
0

4

Chapter 8

8.2 (a) � = −0.67; τ = 0.33

(b) S = 5

(c) S i
av = 0.52 (W/m2); Sr

av = 0.24 (W/m2);
S t

av = 0.28 (W/m2)

8.3 (b) Si
av = ŷ 251.34, Sr

av = ŷ 10.05,

St
av = ŷ 241.29 (W/m2)

8.6 (a) � = −0.71

8.8 |Ẽ1|max = 85.5 (V/m); lmax = 1.5 m

8.9 εr2 = √
εr1εr3 ; d = c/[4f (εr1εr3)

1/4]

8.11 Zin(−d) = 0.43η0∠−51.7◦

|�|2 = 0.24

8.12 f = 50 MHz

8.15 P ′ = (3.3 × 10−3)2 102

2 × 1.14 [1 − e−2×44.43×2×10−3 ] =
1.01 × 10−4 (W/m2)

8.17 θmin = 35.57◦

8.20
S t

S i
= 0.85

8.22 d = 15 cm

8.25 d = 68.42 cm

8.26 fp = 166.33 (Mb/s)

8.27 (b) θi = 36.87◦

8.29 (a) θi = 33.7◦
8.30 θt = 18.44◦

8.37 (a) 9.4%

8.39 a = 2 cm; b = 1.6 cm

8.41 Any one of the first four modes.

8.43 570 � (empty); 290 � (filled)

8.45 θ ′
20 = 43.16◦

8.46 (a) Q = 8367

Chapter 9

9.2 Smax = 47.5 (μW/m2)

9.4 (a) Direction of maximum radiation is a circular cone
120◦ wide, centered around the +z axis.

(b) D = 4 = 6 dB

(c) �p = π (sr) = 3.14 (sr)

(d) β = 120◦

9.6 (b) G = −3.5 dB

9.9 Smax = 6 × 10−5 (W/m2)

9.12 D = 40.11 dB
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9.14 S = 1.46

9.15 (a) Ẽ(R, θ, φ) = θ̂θθẼθ = θ̂θθj
I0lkη0

8π

(
e−jkR

R

)
sin θ

(V/m)

9.17 (a) θmax1 = 42.6◦, θmax2 = 137.4◦

9.20 (a) θmax1 = 90◦, θmax2 = 270◦

(b) Smax = 60I 2
0

πR2

(c) F(θ) = 1

4

[
cos (π cos θ) + 1

sin θ

]2

9.23 Pt = 25.9 (mW)

9.27 (a) Prec = 3.6 × 10−6 W

9.31 βnull = 5.73◦

9.32 D = 39.96 dB

9.34 (a) βe = 1.8◦; βa = 0.18◦

(b) �y = βaR = 0.96 m

9.37 (a) Fa(θ) = 4 cos2
[

π
8 (4 cos θ + 1)

]
9.39 d/λ = 1.414

9.44 Fa(θ) = [6 + 8 cos(π cos θ) + 2 cos(2π cos θ)]2

9.47 δ = −2.72 (rad) = −155.9◦

Chapter 10

10.1 T = 89.72 minutes

10.3 133.3 ≈ 133 channels

10.6 (fp)max = 150 kHz

10.7 Rmax = 4.84 km
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The following lists of books are arranged alphabetically by the

last name of the first author and provide references for further
reading.

Electromagnetics

Balanis, C. A., Advanced Engineering Electromagnetics, John
Wiley & Sons, New York, 1989.

Cheng, D. K., Fundamentals of Engineering Electromagnet-

ics, Addison Wesley, Reading, MA, 1993.
Hayt, W. H., Jr. and J. A. Buck, Engineering Electromag-

netics, 7th ed., McGraw-Hill, New York, 2005.

Iskander, M. F., Electromagnetic Fields & Waves, Prentice
Hall, Upper Saddle River, New Jersey, 2000.

King, R. W. P. and S. Prasad, Fundamental Electromagnetic

Theory and Applications, Prentice Hall, Englewood Cliffs,
New Jersey, 1986.

Ramo, S., J. R. Whinnery, and T. Van Duzer, Fields and

Waves in Communication Electronics, 3rd ed., John Wiley &
Sons, New York, 1994.

Rao, N. N., Elements of Engineering Electromagnetics,
Prentice Hall, Upper Saddle River, New Jersey, 2004.

Shen, L. C. and J. A. Kong, Applied Electromagnetism, 3rd

ed., PWS Engineering, Boston, Mass., 1995.

Antennas and Radiowave Propagation

Balanis, C. A., Antenna Theory: Analysis and Design, John

Wiley & Sons, New York, 2005.

Ishimaru, A., Electromagnetic Wave Propagation, Radia-

tion, and Scattering, Prentice Hall, Upper Saddle River, New

Jersey, 1991.

Stutzman, W. L. and G. A. Thiele, Antenna Theory and

Design, John Wiley & Sons, New York, 1997.
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Optical Engineering

Bohren, C. F. and D. R. Huffman, Absorption and Scattering

of Light by Small Particles, John Wiley & Sons, New York,

1998.
Born, M. and E. Wolf, Principles of Optics, 7th ed., Perga-

mon Press, New York, 1999.

Hecht, E., Optics, Addison-Wesley, Reading, MA, 2001.
Smith, W. J., Modern Optical Engineering, SPIE Press,

2007.

Walker, B. H., Optical Engineering Fundamentals, SPIE
Press, 2009.

Microwave Engineering

Freeman, J. C., Fundamentals of Microwave Transmission

Lines, John Wiley & Sons, New York, 1996.

Pozar, D. M., Microwave Engineering, Addison-Wesley,
Reading, MA, 2004.

Richharia, M., Satellite Communication Systems, McGraw-

Hill, New York, 1999.
Scott, A. W., Understanding Microwaves, John Wiley &

Sons, New York, 2005.

Skolnik, M. I., Introduction to Radar Systems, 3rd ed.,
McGraw-Hill, New York, 2002.

Stimson, G. W., Introduction to Airborne Radar, Hughes
Aircraft Company, El Segundo, California, 200l.
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3 dB beamwidth, 410 
ω -β diagram, 389

A

abacus, 24
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ac resistance R, 342–344
acceptance angle θa, 367
admittance Y , 106–112
alternating current (ac), 21, 32, 63
AM radio, 432
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amplitude-comparison monopulse radar, 463 
amplitude modulation (AM), 22
angle error signal, 464
angle of incidence θi, 365
angle of reflection θr, 365
angle of transmission θt, 365
angular frequency ω , 54, 64
angular velocity ω , 41, 299, 452
antenna radiation pattern, 408
antennas, 401–453

aperture, 402, 417, 423
rectangular, 426–428 
scalar formulation, 425 
vector formulation, 425

arrays, 428–442
linear phase, 437–439
pattern multiplication principle, 432, 438 
scanning, 437–442
uniform phase, 435–437

broadside direction, 406 
directivity D, 410–415 
effective area, 417

far-field (far-zone) region, 404 
gain, 411
half-wave dipole, 413–418
input impedance, 417
isotropic, 419, 431
large aperture, 424–429 
multiplication principle, 432 
normalized radiation intensity, 405 
pattern solid angle Ωp, 409 
patterns, 408

beam dimensions, 409 
beamwidth β , 410 
directivity D, 410

polarization, 401 
receiving, 402 
reciprocal, 401 
types, 402

arrays, 402, 428
dipoles, 401, 403, 413 
helices, 402
horns, 424
parabolic dishes, 420, 424

arithmometer, 24 
Armstrong, Edwin, 23 
ARPANET, 23
array factor Fa(θ ), 431

array amplitude distribution, 432
array phase distribution, 432 

atmospheric transmissivity ϒ, 455 
attenuation constant α , 43, 71, 333 
average power Pav, 98–100
average power density Sav, 344 
auxiliary angle ψ0, 331
axial ratio R, 331
azimuth angle φ , 403
azimuth-difference channel, 463 
azimuth plane (φ -plane), 405
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azimuth resolution ∆x, 459

B

bac-cab rule, 152
Backus, John, 24
band gap energy, 51
bar-code readers, 363
Bardeen, John, 23
base vector, 147
BASIC, 24
beam dimensions, 409
beamwidth β , 410, 416, 427
Becquerel, Alexandre-Edmond, 307 
Bell, Alexander, 22
Berliner, Emil, 22
Berners–Lee, Tim, 25
Bhatia, Sabeer, 25
bioelectrics, 133
Biot, Jean-Baptiste, 20, 31
Biot–Savart law, 31, 252–258
bistatic radar, 459
bounce diagram, 127
boundary conditions, 216-223, 270–272 
Brattain, Walter, 23
Braun, Karl, 22
Brewster (polarizing) angle, 376 
broadside array, 435
broadside direction, 435
Bush, Vannevar, 24

C

capacitance C, 225–227
capacitor, 225
of a coaxial line, 228–229
of a parallel-plate capacitor, 227–229

capacitive sensors, 219–223 
capacitor, 20

as batteries, 207–208
electrochemical double-layer (EDLC), 207 

Cardullo, Mario, 329
Cartesian coordinate system x, y, z, 147
CAT (CT) scan, 175
cathode ray tube (CRT), 22
cavity resonators, 354, 390–393
cell phone, 23, 421
charge continuity equation, 304
charge dissipation, 305
charge distribution, 204, 221, 231
circular polarization, 326, 331–332
circulation, 173
circulator, 453
cladding, 367
coaxial line, 69, 277, 319
complex conjugate, 47
complex feeding coefficient Ai, 430

complex numbers, 47–51
complex conjugate, 47 
Euler’s identity, 47
polar form, 47
properties, 49–50
rectangular form, 47 
rectangular-polar relations, 47

complex permittivity εc, 319
compressive stress, 306
conductance G, 66, 69, 106
conductivity σ , 33, 67, 202, 206, 210, 472 
conductors, 76, 206–212

conduction current density J, 210 
resistance, 202–215 
semiconductors, 210

conservative (irrotational) field, 200 
constitutive parameters, 206 
convection current, 191
conversion efficiency, 51
coordinate systems, 147–163

Cartesian x, y, z, 147–155 
cylindrical r, φ , z, 154–157 
spherical R, θ , φ , 157–159

coplanar waveguide, 65
Cormack, Allan, 175
coulomb (C), 29
Coulomb, Charles-Augustin de, 19, 20, 29 
Coulomb’s law, 29, 192–196
critical angle θc, 366
cross (vector) product, 149–151
CT (CAT) scan, 175
Curie, Paul-Jacques, 306
Curie, Pierre, 306
curl operator, 173
current density, 189, 191–192, 206, 244 
cutoff frequency fmn, 385
cutoff wavenumber kc, 383
cylindrical coordinate system r, φ , z, 154–157

D

dc motor, 19
De Forest, Lee, 22
Deep Blue, 25
del (gradient operator) ∇, 164 
detection, 215, 457

maximum detectable range Rmax, 458
threshold detection level Prmin , 460 

diamagnetic, 267
dielectric constant (relative permittivity) εr, 30, 192, 471 
dielectrics, 206–213

anisotropic, 215
breakdown, 215
breakdown voltage V

br
, 215 

electric susceptibility χe, 215 
isotropic, 215
polarization, 214
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strength E
ds

, 215
tables, 215, 471 

dimensions of SI units, 27 
dipole, 30, 96, 204, 214, 255

electric, 30, 96, 204, 214 
magnetic, 255
moment, 214

dipole antenna, 403
half-wave, 403, 413 
Hertzian, 413
short, 413

direct current (dc), 19
directional derivative dT /dl, 164 
directivity D (antenna), 410 
dispersive, 64
displacement current Id, 301 
displacement current density Jd, 301 
distance vector, 148
divergence operator, 171
divergence theorem, 171
dominant mode (in waveguide), 385 
Doppler frequency shift fd, 462 
Doppler radar, 461–462
dot (scalar) product, 149
downlink, 452
drift velocity ue, 210
du Fay, Charles -François, 19, 20 
duplexer (T/R switch), 453

E

e (electron) charge, 29
Echo satellite, 23
Eckert, J. Presper, 24
Edison, Thomas, 20, 34
effective aperture, 417. See also effective area 
effective area Ae, 417
Einstein, Albert, 19, 21, 51
electric charge, 19, 20, 29–30

law of conservation of electric charge, 29
principle of linear superposition, 30 

electric dipole, 30, 96, 204
moment, 205

˜

electric-field aperture distribution Ea(xa,ya), 424 
electric field intensity E, 27, 29, 51, 65, 169 
electric field phasor E, 325
electric fields

dipole, 30, 204
e charge, 29 
polarization, 30, 214

electric flux density D, 169, 189 
electric generator, 19
electric potential V , 199

electric scalar potential, 199–204 
due to continuous distributions, 204 
due to point charges, 204
electric dipole, 204

Kirchhoff’s voltage law, 200 
Laplace’s equation, 205 
Poisson’s equation, 205

electric susceptibility χe, 215
electric typewriter, 22
electrical force Fe, 29
electrical permittivity ε ,30, 192, 471

of free space ε0, 29 
electrical sensors, 133, 202

capacitive, 219 
emf, 306 
inductive, 278 
resistive, 202

electromagnetic (EM) force, 29, 245 
electromagnetic generator, 298–300 
electromagnetic induction, 290 
electromagnetic (EM) spectrum, 46–47, 53

gamma rays, 47 
infrared, 47, 53 
microwave band, 47,49

EHF, 48
millimeter-wave band, 48 
SHF, 48
UHF, 48

monochromatic, 46 
radio spectrum, 47, 48 
ultraviolet, 47
visible, 47, 53
X-rays, 47

electromagnetic telegraph, 22
electromagnetic waves, 19, 21, 135, 289, 354 
electromagnetics (EM), 18
electromagnets, 263
electromotive force (emf) V

emf , 290
electron, 19, 21, 29
electronic beam steering, 430
electronic beeper, 23
EM, 19
electrostatics, 33, 189
elevation angle (θ -plane), 426
elevation plane (θ -plane), 426
elliptical polarization, 331–332
ellipticity angle χ , 331
emf sensor, 202
end-fire direction, 438
Engelbart, Douglas, 25
ENIAC, 24
equipotential, 210
Euler’s identity, 37
evanescent wave, 385
Explorer I satellite, 451

F

false-alarm probability, 459
far-field (far-zone) region, 402 
Faraday, Michael, 19, 21, 189, 289
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Faraday’s law, 289
feeding coefficient (antenna) Ai, 430 
Felt, Dorr, 24
ferromagnetic, 32, 244, 263 
Fessenden, Reginald, 22
fiber, 23, 67, 354
fiber optics, 354, 367
floppy disk, 24
fluorescent bulb, 34
flux density, 22, 169
flux sensor, 306
force

electromagnetic, 27, 245 
gravitational, 28
nuclear, 27
weak-interaction, 28

FORTRAN, 24
Franklin, Benjamin, 19, 20
free space, 29

electric permittivity ε , 30 
magnetic permeability µ0, 32 
velocity of light c, 32

frequency, 40
frequency-division multiple access (FDMA), 453 
frequency modulation (FM), 23
frequency scanning (antenna beam), 439
Friis transmission formula, 420

G

gamma rays, 31, 422 
Gauss, Carl Friedrich, 21 
Gauss’s law, 21, 196

for magnetism, 258
Gaussian surface, 196
geostationary orbit, 451
Gilbert, William, 19, 20
Global Positioning System (GPS), 168, 452 
grad (gradient) ∇T , 163
gravitational field ψ, 28
gravitational force, 28
grazing incidence, 376
group velocity ug, 386

H

half-power angle, 410
half-power beamwidth, 410 
half-wave dipole, 413 
Henry, Joseph, 19, 21, 289 
Hertz, Heinrich, 19, 21, 41 
Hertzian dipole, 403
high-power amplifer, 454 
Hoff, Ted, 25
hole drift velocity uh, 210 
hole mobility µh, 210 
homogeneous material, 206

homogeneous wave equation, 320 
horn antenna, 401, 402, 424 
horseshoe electromagnet, 263 
Hotmail, 25
humidity sensor, 219

I

illumination Ea(xa,ya), 345, 421, 424 
image method, 231
imaginary part Im, 47
impedance, 63, 71, 75, 76, 80, 86, 103 
impedance matching, 110

lumped-element matching, 113
single-stub matching, 113–117 

impulse period Tp, 458
in phase, 82, 83, 463
incandescence, 34
incandescent bulb, 34
inclination angle ψ , 167, 325 
incremental phase delay δ , 437
index of refraction, 365
inductance, 21, 66, 69, 91, 202, 244, 272

of a coaxial line,69, 275 
mutual, 275
self, 274
solenoid, 274

inductive sensors, 278
linear variable differential transformer (LVDT), 278
proximity detection, 279

infrared rays, 47, 289, 364
input impedance Zin, 88, 90, 112, 101, 359 
integrated circuit (IC), 23
intercepted power Pint, 417
internal (surface) impedance Zs, 342 
International System of Units (SI), 27 
Internet, 23, 25
intrinsic impedance η , 321
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isotropic antenna, 401

J

Java, 25
Joule’s law, 213

K
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Kemeny, John, 24 
Kilby, Jack, 23 
Kirchhoff’s laws 65

current, 70, 234, 305
voltage, 70, 200, 234 

Kurtz, Thomas, 24
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L

Laplace’s equation, 205
Laplacian operator, 178
lasers, 363
law of conservation of electric charge, 29 
LCD, 336
LED, 34
left-hand circular (LHC) polarization, 326 
Leibniz, Gottfried von, 24
Lenz’s law, 291, 293
Leyden Jar, 19
lidars, 456
light emitting diode (LED), 34
lightning rod, 20
line charge, 190
line charge density ρℓ, 190
linear phase distribution, 437
liquid crystal display (LCD), 18, 336 
liquid crystals, 18
load impedance ZL, 80
logarithm, 24
Lorentz force, 245, 247, 280
loss resistance R

loss
, 412

lossless media, 320, 355, 357, 377
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low-loss dielectric, 335
luminous efficacy (LE), 36
LVDT, 278
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magnetic dipole, 256, 267 
magnetic energy Wm, 277 
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inside a toroidal coil, 261
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of a magnetic dipole, 258

˜
magnetic field intensity H, 31, 65, 189, 244 
magnetic field phasor H, 310
magnetic flux Φ, 266
magnetic flux density B, 31, 244
magnetic flux linkage Λ, 274
magnetic force Fm, 15, 244
magnetic hysteresis, 268
magnetic levitation, 265
magnetic moment m, 267
magnetic monopole, 258
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magnetic permeability µ , 32, 244, 267, 495 
magnetic potential A, 261
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magnetic susceptibility χm, 268
magnetic torque, 249
magnetite, 19, 31
magnetization vector M, 268
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matched filter, 459
matched line, 84, 87, 130
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maximum detectable range Rmax, 461 
Maxwell, James Clerk, 189
Maxwell’s equations, 189, 234, 244, 289 
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microprocessor, 25
microstrip line, 65, 75
microwave band, 46, 47, 364
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modal dispersion, 368
mode, 368, 369, 380
modem, 24
monochromatic, 36, 46, 363
monopulse radar, 459
monostatic radar, 459
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motional emf V m , 290, 295, 299
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multiplexer, 455
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Napier, John, 24
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noise power, 420, 455, 459
noise temperature, 455
normal incidence, 354–362
normalized load admittance, 107
normalized load impedance zL, 81
normalized load reactance xL, 100
normalized load resistance rL, 100
Noyce, Robert, 23
nuclear force, 27
null beamwidth, 410
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oblique incidence, 354, 366, 369–380 
Oersted, Hans Christian, 20, 31, 252
Ohm, Georg Simon, 21
Ohm’s law, 21, 212, 305
optical fiber, 23, 65, 367–369, 381 
orbital magnetic moment, 267
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p-type layer, 51
pager, 23
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parallel polarization, 370
paramagnetic, 267
Pascal, Blaise, 24
pattern multiplication principle, 432
pattern solid angle Ωp, 410
perfect conductor, 33, 68, 206
perfect dielectric, 206
permittivity ε , 30, 192, 470
perpendicular polarization, 370
phase, 40
phase constant β , 41, 57, 71, 93
phase constant (wavenumber) k, 309
phase lag, 42
phase lead, 42
phase-matching condition, 372
phase velocity (propagation velocity) up, 322, 365
phasor representation, 27
phasors, 27, 54
photoelectric effect, 19, 21, 51
photovoltaic (PV), 51
piezein, 202, 306
piezoelectric transducer, 306
piezoresistivity, 202
Planck, Max, 19
plane-wave propagation, 320–347

attenuation rate A, 346
circular polarization, 326, 331–332

left-hand circular (LHC), 326
right-hand circular (RHC), 327 

complex permittivity εc, 319
electromagnetic power density, 344 
elliptical polarization, 331
linear polarization, 326, 332
lossy medium, 334

attenuation constant α , 43, 61, 333
skin depth δs, 335

low-loss dielectric, 335 pocket 
calculator, 25
Poisson’s equation, 205 
polarization, 18, 30, 214, 306, 325

parallel polarization, 370 
perpendicular polarization, 370

transverse electric (TE) polarization, 370 
transverse magnetic (TM) polarization, 370 
unpolarized, 376

polarization diversity, 454
polarization field P, 214
polarization state, 325
position vector, 148
potential energy We, 199
Poulsen, Valdemar, 22
power density  S R( , θ , φ ), 405
power transfer ratio Prec/Pt, 420
Poynting vector (power density) S, 343, 358 
pressure sensor, 219
principal planes, 408
principle of linear superposition, 30 
propagation constant γ , 70, 78, 320 
propagation velocity (phase velocity) up, 40 
proximity detection, 278
pulse code modulation (PCM), 23
pulse length τ , 458
pulse repetition frequency (PRF) fp, 458

Q

quality factor Q, 391
quarter-wavelength transformer, 94 
quasi-conductor, 335

R

radar (radio detection and ranging), 23, 358, 457
azimuth resolution ∆x, 459 
bistatic, 460
cross-section, 460 
detection, 460–462 
Doppler, 461
monopulse, 463 
monostatic, 459
pulse, 458
range resolution ∆R, 459 
unambiguous range Ru, 459

radar cross-section (RCS), 460
radar equation, 460
radial distance, 32
radial velocity ur, 462
radiation efficiency ξ , 411
radiation intensity, 408
radiation pattern, 406
radiation resistance Rrad , 412
radio frequency identifcation (RFID) systems, 329 
radio telegraphy, 22
radio waves, 19, 22, 47
radius of geostationary orbit, 451
range resolution ∆r, 459
RC relation, 234
rectangular aperture, 426
rectangular waveguide, 65, 381
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Reeves, H. A., 23
reflection coefficient, 79, 357, 379 
reflectivity R, 377
refraction angle, 372
Reinitzer, Friedrich, 336
relative permittivity, 215, 472
relaxation time constant τr, 305
resistive sensor, 202
resonant frequency f0, 390
retarded potentials, 308
RHC (right-hand circular) polarization, 327 
right-hand circular (RHC) polarization, 327 
Roentgen, Wilhelm, 19, 21
rotation angle γ , 331

S

satellite, 420, 451
Savart, Félix, 20, 31 
scalar (dot) product, 149 
scalar quantity, 27
scan angle δ , 437
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Seebeck, Thomas, 307 
Seebeck potential Vs, 307 
semiconductor, 210, 220 
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capacitive, 219 
emf, 306 
inductive, 278 
resistive, 202

Shockley, William, 23 
signal-to-noise ratio Sn, 420 
signal waveform, 458
skin depth δs, 335
Smith chart, 100

angle of reflection coefficient, 103
constant-SWR (−|Γ|) circle, 104
unit circle, 100
wavelengths toward generator (WTG), 105
wavelengths toward load (WTL), 105 

Smith, Jack, 25
Smith, P. H., 100
Snell’s law51 381
solar cell, 51
solenoid, 263, 272
solid angle dΩ, 406
spherical propagation factor (e− jkR/R), 414 
spherical wave, 318, 424
spin magnetic moment, 267
spontaneous emission, 363
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standing wave, 63, 74, 88
static conditions, 189
steradians (sr), 407
stimulated emission, 363
Stokes’s theorem, 174

strip line, 65
Sturgeon, William, 22, 23, 263 
supercapacitor, 207
superconductor, 206
superheterodyne radio receiver, 22 
surface charge density ρs, 194, 195, 216 
surface current density Js, 252
surface (internal) impedance Zs, 342 
surface resistance Rs, 68, 342
SWR (standing-wave ratio), 85 
synchronizer–modulator, 457
system noise temperature Tsys, 455

T
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TEM (transverse electromagnetic), 65 
tensile stress, 306
Tesla, Nikola, 19, 21, 32
Thales of Miletus, 19, 20 
thermocouple, 306
Thomas de Colmar, Charles Xavier, 24 
Thompson, Joseph, 19, 21
threshold detection level Prmin , 459 
tomography, 175
toroidal coil, 261
torque, 251
Townes, Charles, 363
transformer, 276, 278
transformer emf V tr , 290

emf

transient response, 124
transistor, 23
transmission coefficient τ , 357 
transmission lines, 35, 63–145, 357

bounce diagram, 127
characteristic impedance Z0, 71 
coaxial line, 69, 277, 319 
conductance G, 106
distortionless line, 138
input impedance Zin, 88
lossless line, 75, 78
lossless microstrip line, 75 
microstrip line, 65, 75
phase-shifted coefficient Γd , 105, 112 
quarter-wavelength transformer, 94 
slotted line, 87
Smith chart, 100
standing wave, 63, 74
wave impedance Z(d), 105

transmissivity ϒ(θ ), 377
transmitter/receiver (T/R) switch, 458 
transponder, 455
transverse electric (TE), 370
transverse electromagnetic (TEM) wave, 65, 321
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Triode tube, 22

U

ultracapacitor, 207 
ultraviolet rays, 47 
unambiguous range Ru, 458 
unit vectors, 28, 147
units, 27
uplink, 452

V

van Musschenbroek, Pieter, 20
vector magnetic potential, 262
velocity of light in free space c, 32
visible light, 47
Volta, Alessandro, 19, 20
voltage maximum, 85
voltage minimum, 85
volume charge density ρv, 159
volume current density J, 252
VSWR (voltage standing-wave ratio) S, 85. See also SWR

W

Walton, Charles, 329
Watson-Watt, Robert, 23
wave polarization, 325
wave polarizer, 336
wavefront, 318
waveguides, 380
wavelength, 35, 47, 51, 53, 64 
wavenumber (phase constant) k, 309 
weak-interaction force, 28
white light, 20
wireless transmission, 22
World Wide Web (WWW), 25

X

X-rays, 19, 21, 46, 47

Z

zenith angle θ , 157, 403 
Zuse, Konrad, 24 
Zworykin, Vladimir, 23
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F U N D A M E NT A L P HY S I C A L C O N ST A NT S
CONSTANT SYMBOL VALUE

speed of light in vacuum c 2.998 × 108 ≈ 3 × 108 m/s

gravitational constant G 6.67 × 10−11 N·m2/kg2

Boltzmann’s constant K 1.38 × 10−23 J/K

elementary charge e 1.60 × 10−19 C

permittivity of free space ε0 8.85 × 10−12 ≈ 1
36π

× 10−9 F/m

permeability of free space μ0 4π × 10−7 H/m

electron mass me 9.11 × 10−31 kg

proton mass mp 1.67 × 10−27 kg

Planck’s constant h 6.63 × 10−34 J·s
intrinsic impedance of free space η0 376.7 ≈ 120π �

F U N D A M E NT A L S I U N IT S
DIMENSION UNIT SYMBOL

Length meter m

Mass kilogram kg

Time second s

Electric current ampere A

Temperature kelvin K

Amount of substance mole mol

Luminous Intensity candela cd

M U LT I P L E & S U B M U LT I P L E P R E F I X E S
PREFIX SYMBOL MAGNITUDE PREFIX SYMBOL MAGNITUDE

exa E 1018 milli m 10−3

peta P 1015 micro μ 10−6

tera T 1012 nano n 10−9

giga G 109 pico p 10−12

mega M 106 femto f 10−15

kilo k 103 atto a 10−18
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GRADIENT, DIVERGENCE, CURL, & LAPLACIAN OPERATORS
CARTESIAN (RECTANGULAR) COORDINATES (x, y, z)

∇V = x̂
∂V

∂x
+ ŷ

∂V

∂y
+ ẑ

∂V

∂z

∇ · A = ∂Ax

∂x
+ ∂Ay

∂y
+ ∂Az

∂z

∇ × A =

∣∣∣∣∣∣∣∣
x̂ ŷ ẑ
∂

∂x

∂

∂y

∂

∂z
Ax Ay Az

∣∣∣∣∣∣∣∣ = x̂
(

∂Az

∂y
− ∂Ay

∂z

)
+ ŷ

(
∂Ax

∂z
− ∂Az

∂x

)
+ ẑ

(
∂Ay

∂x
− ∂Ax

∂y

)

∇2V = ∂2V

∂x2 + ∂2V

∂y2 + ∂2V

∂z2

CYLINDRICAL COORDINATES ( r , φ , z )

∇V = r̂
∂V

∂r
+ φ̂

1

r

∂V

∂φ
+ ẑ

∂V

∂z

∇ · A = 1

r

∂

∂r
(rAr) + 1

r

∂Aφ

∂φ
+ ∂Az

∂z

∇ × A = 1

r

∣∣∣∣∣∣∣∣
r̂ φ̂r ẑ
∂

∂r

∂

∂φ

∂

∂z
Ar rAφ Az

∣∣∣∣∣∣∣∣ = r̂
(

1

r

∂Az

∂φ
− ∂Aφ

∂z

)
+ φ̂

(
∂Ar

∂z
− ∂Az

∂r

)
+ ẑ

1

r

[
∂

∂r
(rAφ) − ∂Ar

∂φ

]

∇2V = 1

r

∂

∂r

(
r
∂V

∂r

)
+ 1

r2

∂2V

∂φ2 + ∂2V

∂z2

SPHERICAL COORDINATES ( R , θ , φ )

∇V = R̂
∂V

∂R
+ θ̂

1

R

∂V

∂θ
+ φ̂

1

R sin θ

∂V

∂φ

∇ · A = 1

R2

∂

∂R
(R2AR) + 1

R sin θ

∂

∂θ
(Aθ sin θ) + 1

R sin θ

∂Aφ

∂φ

∇ × A = 1

R2 sin θ

∣∣∣∣∣∣∣∣
R̂ θ̂R φ̂R sin θ
∂

∂R

∂

∂θ

∂

∂φ
AR RAθ (R sin θ)Aφ

∣∣∣∣∣∣∣∣
= R̂

1

R sin θ

[
∂

∂θ
(Aφ sin θ) − ∂Aθ

∂φ

]
+ θ̂

1

R

[
1

sin θ

∂AR

∂φ
− ∂

∂R
(RAφ)

]
+ φ̂

1

R

[
∂

∂R
(RAθ) − ∂AR

∂θ

]
∇2V = 1

R2

∂

∂R

(
R2 ∂V

∂R

)
+ 1

R2 sin θ

∂

∂θ

(
sin θ

∂V

∂θ

)
+ 1

R2 sin2 θ

∂2V

∂φ2
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S O M E U S E F U L V E CT O R I D E NT IT I E S

A · B = AB cos θAB Scalar (or dot) product

A × B = n̂AB sin θAB Vector (or cross) product, n̂ normal to plane containing A and B

A · (B × C) = B · (C × A) = C · (A × B)

A × (B × C) = B(A · C) − C(A × B)

∇(U + V ) = ∇U + ∇V

∇(UV ) = U∇V + V ∇U

∇ · (A + B) = ∇ · A + ∇ · B

∇ · (UA) = U∇ · A + A · ∇U

∇ × (UA) = U∇ × A + ∇U × A

∇ × (A + B) = ∇ × A + ∇ × B

∇ · (A × B) = B · (∇ × A) − A · (∇ × B)

∇ · (∇ × A) = 0

∇ × ∇V = 0

∇ · ∇V = ∇2V

∇ × ∇ × A = ∇(∇ · A) − ∇2A∫
V

(∇ · A) dV =
∮
S

A · ds Divergence theorem (S encloses V)

∫
S

(∇ × A) · ds =
∮
C

A · dl Stokes’s theorem (S bounded by C)
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