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Preface to the First Edition 

This introduction to the theory of elementary particles is intended primarily for 

advanced undergraduates who are majoring in physics. Most of my colleagues 

consider this subject inappropriate for such an audience - mathematically too 

sophisticated, phenomenologically too cluttered, insecure in its foundations, and 

uncertain in its future. Ten years ago I would have agreed. But in the last decade the 

dust has settled to an astonishing degree, and it is fair to say that elementary particle 

physics has come of age. Although we obviously have much more to learn, there 

now exists a coherent and unified theoretical structure that is simply too exciting 

and important to save for graduate school or to serve up in diluted qualitative form 

as a subunit of modern physics. I believe the time has come to integrate elementary 

particle physics into the standard undergraduate curriculum. 

Unfortunately, the research literature in this field is clearly inaccessible to 

undergraduates, and although there are now several excellent graduate texts, these 

call for a strong preparation in advanced quantum mechanics, if not quantum 

field theory. At the other extreme, there are many fine popular books and a 

number of outstanding Scientific American articles. But very little has been written 
specifically for the undergraduate. This book is an effort to fill that need. It grew 

out of a one-semester elementary particles course I have taught from time to 

time at Reed College. The students typically had under their belts a semester of 

electromagnetism (at the level of Lorrain and Corson), a semester of quantum 

mechanics (at the level of Park), and a fairly strong background in special relativity. 

In addition to its principal audience, I hope this book will be of use to beginning 

graduate students, either as a primary text, or as preparation for a more sophisticated 

treatment. With this in mind, and in the interest of greater completeness and 

flexibility, I have included more material here than one can comfortably cover in a 

single semester. (In my own courses I ask the students to read Chapters 1 and 2 

on their own, and begin the lectures with Chapter 3. I skip Chapter 5 altogether, 

concentrate on Chapters 6 and 7, discuss the first two sections of Chapter 8, and 

then jump to Chapter 10.) To assist the reader (and the teacher) I begin each 

chapter with a brief indication of its purpose and content, its prerequisites, and its 

role in what follows. 

 



X I Preface to the First Edition 

This book was written while I was on sabbatical at the Stanford Linear Accelerator 
Center, and I would like to thank Professor Sidney Drell and the other members of 
the Theory Group for their hospitality. 

DAVID GRIFFITHS 

1986 



Preface to the Second Edition 

It is 20 years since the first edition of this book was published, and it is both 

gratifying and distressing to reflect that it remains, for the most part, reasonably 

up-to-date. There are, to be sure, some gross lacunae - the existence of the top 

quark had not been confirmed back then, and neutrinos were generally assumed 

(for no very good reason) to be massless. But the Standard Model, which is, in 

essence, the subject of the book, has proved to be astonishingly robust. This is 

a tribute to the theory, and at the same time an indictment of our collective 

imagination. I don't think there has been a comparable period in the history of 

elementary particle physics in which so little of a truly revolutionary nature has 

occurred. What about neutrino oscillations? Indeed: a fantastic story (I have added a 

chapter on the subject); and yet, this extraordinary phenomenon fits so comfortably 

into the Standard Model that one might almost say, in retrospect (of course), that it 

would have been more surprising if it had not been so. How about supersymmetry 

and string theory? Yes, but these must for the moment be regarded as speculations 

(I have added a chapter on contemporary theoretical developments). As far as solid 

experimental confirmation goes, the Standard Model (with neutrino masses and 

mixing) still rules. 

In addition to the two new chapters already mentioned, I have brought the 

history up-to-date in Chapter 1, shortened Chapter 5, provided (I hope) a more 

compelling introduction to the Golden Rule in Chapter 6, and eliminated most of 

the old Chapter 8 on electromagnetic form factors and scaling (this was crucially 

important in interpreting the deep inelastic scattering experiments that put the 

quark model on a secure footing, but no one today doubts the existence of quarks, 

and the technical details are no longer so essential). What remains of Chapter 8 

is now combined with the old Chapter 9 to make a new chapter on hadrons. 

Finally, I have prepared a complete solution manual (available free from the 

publisher, though only - I regret - to course instructors). Beyond this the changes 

are relatively minor. 

Many people have sent me suggestions and corrections, or patiently answered my 

questions. I cannot thank everyone, but I would like to acknowledge some of those 

who were especially helpful: Guy Blaylock (UMass), John Boersma (Rochester), 

Carola Chinellato (Brazil), Eugene Commins (Berkeley), Mimi Gerstell (Cal Tech), 

 



XII I Preface to the Second Edition 

Nahmin Horwitz (Syracuse), Richard Kass (Ohio State), Janis McKenna (UBC), 
Jim Napolitano (RPI), Nie Nigro (Seattle), John Norbury (UW-Milwaukee), Jason 
Quinn (Notre Dame), Aaron Roodman (SLAC), Natthi Sharma (Eastern Michigan), 
Steve Wasserbeach (Haverford), and above all Pat Burchat (Stanford). 

Part of this work was carried out while I was on sabbatical, at Stanford and 
SLAC, and I especially thank Patricia Burchat and Michael Peskin for making this 
possible. 

DAVID GRIFFITHS 

2008 



Formulas and Constants 

Particle Data 

I XIII 

Mass in MeV/c2, lifetime in seconds, charge in units of the proton charge. 

Leptons (spin 1 /2) 
Generation Flavor Charge Mass* Lifetime Principal Decays 
first e (electron) -1 0.510999 00 -

v, (e neutrino) 0 0 00 -
second µ, (muon) -1 105.659 2.19703 X 10-o evµv, 

vµ (µ, neutrino) 0 0 00 -
third r (tau) -1 1776.99 2.91 X 10-Jj ev, v,, µ,v, v,,,, rr - v, 

v, (r neutrino) 0 0 00 -

*Neutrino masses are extremely small, and for most purposes can be taken to be zero; for details see Chapter 11. 

Quarks (spin 1/2) 

Generation Flavor Charge Mass* 
first d (down) -1/3 7 

u(up) 2/3 3 

second s (strange) -1/3 120 

c (charm) 2/3 1200 
third b (bottom) -1/3 4300 

t (top) 2/3 174000 

*Light quark masses are imprecise and speculative; for effective masses in mesons and baryons, see Chapter 5. 

Mediators (spin 1) 

Force Mediator Charge Mass• Lifetime Principal Decays 

Strong g (8 gluons) 0 0 00 -
Electromagnetic y (photon) 0 0 00 -
Weak w± (charged) ±1 80,420 3.11 X 10-25 e+v,, µ,+v1,, r+v,, cX ➔ hadrons 

Zo (neutral) 0 91,190 2.64 X 10-25 e+e-, µ,+µ,-, r+r-, qq ➔ hadrons 



Baryons (spin 1/2) 
Baryon Quark Content Charge Mass Lifetime Principal Decays 

N {~ 
uud 1 938.272 00 -
udd 0 939.565 885.7 pev, 

A uds 0 1115.68 2.63 X 10-lO pn-, nn° 
L+ uus 1 1189.37 8.02 X 10-ll pn°, nn+ 
Lo uds 0 1192.64 7.4 X 10-2o Ay 
L- dds -1 1197.45 1.48 X 10-lO nn: -

go USS 0 1314.8 2.90 X 10-lO An:o 

~ dss -1 1321.3 1.64 X 10-lO An:-
A+ 
' 

udc 1 2286.5 2.00 X 10-B pKn:, Ann:, Ln:n: 

Baryons (spin 3/2) 
Baryon Quark Content Charge Mass Lifetime Principal Decays 

ti. uuu, uud, udd, ddd 2,1,0,-1 1232 5.6 X 10-24 Nn: 
L' uus, uds, dds 1,0,-1 1385 1.8 X 10-23 An:, LIT 
S* uss, dss 0,-1 1533 6.9 X 10-23 Sn 
rr sss -1 1672 8.2 X 10-ll AK-, Sn: 

Pseudoscalar Mesons (spin 0) 
Meson Quark Content Charge Mass Lifetime Principal Decays 

n:± ud, au 1,-1 139.570 2.60 X 10-B µ.vµ, 
n:o (uu - dd)/-/i. 0 134.977 8.4 X 10-17 yy 
K± us, SU 1,-1 493.68 1.24 X 10-B µ.vµ, n:n:, n:n:n: 

K°,"R° ds, sd 0 497.65 
{ ~ : 8.95 X 10-ll n:n: 

J<f: 5.11 X 10-& n:ev,, n: µ.vµ,, n:n:n: 

7/ (uu + dd - 2s s)/ ,,;'6 0 547.51 5.1 X 10-19 y y' n:n:n: 
71' (uu + dd + ss)/ ,/3 0 957.78 3.2 X 10-21 ryn:n:, PY 
v± cd, de 1,-1 1869.3 1.04 X 10-12 Kn:n:, Kµ.vµ, Kev, 

D0,rf - - 0 1864.5 4.1 X 10-ll Kn:n:, Kev,, Kµ.vµ, CU, UC 

I "' 
cs, SC 1,-1 1968.2 5.0 X 10-B 7/P, ¢n:n:, tj!p 

B± uh, bu 1,-1 5279.0 1.6 X 10-12 D*£v1, Devi, D*n:n:n: 
B0,'"ff db, bd 0 5279.4 1.5 X 10-12 D*fve, Devi, D*n:n: 

Vector Mesons (spin 1) 
Meson Quark Content Charge Mass Lifetime Principal Decays 

p ud, (uu - dd)/ -/i., au 1,0,-1 775.5 4 X 10-24 n:Jr 
K* us, as, sd, SU 1,0,-1 894 1 X 10-23 Kn: 
/JJ (uu+dd)/-fi. 0 782.6 8 X 10-23 n:n:rr,rry 

V' cc 0 3097 7 X 10-21 e+e-, µ.+µ.-, Sn:, 7rr 
D* cd, cu, uc, de 1,0,-1 2008 3 X 10-21 Dn:,Dy 
y bb 0 9460 1 X 10-2o e+e-, µ.+µ.-, r+r-



Pauli Matrices: 

Dirac Matrices: 

Spin 1/2 

(a• o-)(b • <T) =a• b + i<T • (ax b) 

/J-<T = cos0 + i(0 • <T) sin0 

o (1 0) 
y = 0 -1 ' 

O'j) 
0 ' 

0 
0 

-1 

0 

(For product rules and trace theorems see Appendix C.) 

Dirac Equation: 
iliy 1' oµ,1/f - mei/f = 0 

lj- me)u = 0, I/+ me)v = 0, ulj- me)= 0, vlj +me)= 0 

,freeei/f"i"y0 , f'eeey 0rty0, 1-=a,,yµ, 

Spin 0: 

Spin 1/2: 

Feynman Rules 

External Lines 

Nothing 

I Incoming particle: u 

Incoming antiparticle: v 
Outgoing particle: u 
Outgoing antiparticle: v 

Propagators 

ql - (me)l 

i(g + me) 
q2 - (me)2 



Spin 1: { 
Incoming: Eµ. 

Outgoing: E; I Massless: 

Massive: 
-i[gµ.v - q1.,qv/(mc)2 ] 

q2 - (mc)2 

(For vertex factors see Appendix D.) 

Fundamental Constants 

Planck's constant: n 

Speed oflight: C 

Mass of electron: 

Mass of proton: 

Electron charge (magnitude): e 

Fine structure constant: a 

Bohr radius: a 

Bohr energies: En 

Classical electron radius: re 

QED coupling constant: &e 

Weak coupling constants: &w 

&z 

Weak mixing angle: 0w 

Strong coupling constant: g, 

1.05457 X 10-34 JS 

6.58212 x 10-22 MeV s 

2.99792 x 108 m/s 

9.10938 x 10-31 kg = 0.510999 MeV/c2 

1.67262 x 10-27kg = 938.272 MeV/c2 

1.60218 x 10-19 C 

4.80320 x 10-10 esu 

e2/nc = 1/137.036 

n2 /m.e2 = 5.29177 x 10-11 m 

-m.e4 /2n2n2 = -13.6057/n2 eV 

e2 /mec2 = 2.81794 x 10-15 m 

e✓4rr /nc = 0.302822 

gel sin0w = 0.6295; 

&w/cos0w = 0.7180 

28.76° (sin2 0w = 0.2314) 

1.214 

Conversion Factors 

1A 

1 fm 

1 barn 

1 eV 

1 MeV/c2 

1 Coulomb 

0.1 nm= 10-10 m 

10-1s m 

10-28 m2 

1.60218 X 10-19 J 

1.78266 x 10-JO kg 

2.99792 x 10-9 esu 





Introduction 

Elementary Particle Physics 

Elementary particle physics addresses the question, 'What is matter made of?' at 

the most fundamental level - which is to say, on the smallest scale of size. It's 

a remarkable fact that matter at the subatomic level consists of tiny chunks, with 

vast empty spaces in between. Even more remarkable, these tiny chunks come 

in a small number of different types (electrons, protons, neutrons, pi mesons, 

neutrinos, and so on), which are then replicated in astronomical quantities to make 

all the 'stuff' around us. And these replicas are absolutely perfect copies - not 

just 'pretty similar', like two Fords coming off the same assembly line, but utterly 

indistinguishable. You can't stamp an identification number on an electron, or paint 

a spot on it - if you've seen one, you've seen them all. This quality of absolute 

identicalness has no analog in the macroscopic world. (In quantum mechanics it 

is reflected in the Pauli exclusion principle.) It enormously simplifies the task of 

elementary particle physics: we don't have to worry about big electrons and little 

ones, or new electrons and old ones - an electron is an electron is an electron. It 

didn't have to be so easy. 

My first job, then, is to introduce you to the various kinds of elementary particles -

the actors, if you will, in the drama. I could simply list them, and tell you their 

properties (mass, electric charge, spin, etc.), but I think it is better in this case 

to adopt a historical perspective, and explain how each particle first came on the 

scene. This will serve to endow them with character and personality, making them 

easier to remember and more interesting to watch. Moreover, some of the stories 

are delightful in their own right. 

Once the particles have been introduced, in Chapter 1, the issue becomes, 'How 

do they interact with one another?' This question, directly or indirectly, will occupy 
us for the rest of the book. If you were dealing with two macroscopic objects, and 

you wanted to know how they interact, you would probably begin by holding them 

at various separation distances and measuring the force between them. That's how 

Coulomb determined the law of electrical repulsion between two charged pith balls, 

and how Cavendish measured the gravitational attraction of two lead weights. But 

you can't pick up a proton with tweezers or tie an electron onto the end of a piece of 

string; they're just too small. For practical reasons, therefore, we have to resort to 
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less direct means to probe the interactions of elementary particles. As it turns out, 
almost all of our experimental information comes from three sources: (1) scattering 
events, in which we fire one particle at another and record (for instance) the angle 
of deflection; (2) decays, in which a particle spontaneously disintegrates and we 
examine the debris; and (3) bound states, in which two or more particles stick 
together, and we study the properties of the composite object. Needless to say, 
determining the interaction law from such indirect evidence is not a trivial task. 
Ordinarily, the procedure is to guess a form for the interaction and compare the 
resulting theoretical predictions with the experimental data. 

The formulation of such a guess ('model' is a more respectable term for it) is 
guided by certain general principles, in particular, special relativity and quantum 
mechanics. In the diagram below I have sketched out four realms of mechanics: 

Small ➔ 

Classical Quantum 
mechanics mechanics 

Fast .,t. 
Relativistic Quantum 
mechanics field theory 

The world of everyday life, of course, is governed by classical mechanics. But for 
objects that travel very fast (at speeds comparable to c), the classical rules are 
modified by special relativity, and for objects that are very small (comparable to the 
size of atoms, roughly speaking), classical mechanics is superseded by quantum 
mechanics. Finally, for things that are both fast and small, we require a theory 
that incorporates relativity and quantum principles: quantum field theory. Now, 
elementary particles are extremely small, of course, and typically they are also very 
fast. So, elementary particle physics naturally falls under the dominion of quantum 
field theory. 

Please observe the distinction here between a type of mechanics and a particular 
force law. Newton's law of universal gravitation, for example, describes a specific 
interaction (gravity), whereas Newton's three laws of motion define a mechanical 
system (classical mechanics), which (within its jurisdiction) governs all interactions. 
The force law tells you what F is, in the case at hand; the mechanics tells you how 
to use F to determine the motion. The goal of elementary particle dynamics, then, 
is to guess a set of force laws which, within the context of quantum field theory, 
correctly describe particle behavior. 

However, some general features of this behavior have nothing to do with the 
detailed form of the interactions. Instead they follow directly from relativity, from 
quantum mechanics, or from the combination of the two. For example, in relativity, 
energy and momentum are always conserved, but (rest) mass is not. Thus the decay 
~ ➔ p + TC is perfectly acceptable, even though the ~ weighs more than the sum 
of p plus TC. Such a process would not be possible in classical mechanics, where 
mass is strictly conserved. Moreover, relativity allows for particles of zero (rest) 
mass - the very idea of a massless particle is nonsense in classical mechanics -
and as we shall see, photons and gluons are massless. 
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In quantum mechanics a physical system is described by its state, s (represented 
by the wave function ,;,, in Schrodinger's formulation, or by the ket Is) in Dirac's 
theory). A physical process, such as scattering or decay, consists of a transition 
from one state to another. But in quantum mechanics the outcome is not uniquely 
determined by the initial conditions; all we can hope to calculate, in general, is 
the probability for a given transition to occur. This indeterminacy is reflected in 
the observed behavior of particles. For example, the charged pi meson ordinarily 
disintegrates into a muon plus a neutrino, but occasionally one will decay into an 
electron plus a neutrino. There's no difference in the original pi mesons; they're all 
identical. It is simply a fact of nature that a given particle can go either way. 

Finally, the union of relativity and quantum mechanics brings certain extra 
dividends that neither one can offer by itself: the existence of antiparticles (with 
the same mass and lifetime as the particle itself, but opposite electric charge), a 
proof of the Pauli exclusion principle (which in nonrelativistic quantum mechanics 
is simply an ad hoc hypothesis), and the so-called TCP theorem. I'll tell you more 
about these later on; my purpose in mentioning them here is to emphasize that 
these are features of the mechanical system itself, not of the particular model. 
Short of a catastrophic revolution, they are untouchable. By the way, quantum field 
theory in all its glory is difficult and deep, but don't be alarmed: Feynman invented 
a beautiful and intuitively satisfying formulation that is not hard to learn; we'll 
come to that in Chapter 6. (The derivation of Feynman's rules from the underlying 
quantum field theory is a different matter, which can easily consume the better 
part of an advanced graduate course, but this need not concern us here.) 

In the 1960s and 1970s a theory emerged that described all of the known 
elementary particle interactions, except gravity. (As far as we can tell, gravity is 
much too weak to play any significant role in ordinary particle processes.) This 
theory - or, more accurately, this collection of related theories, based on two 
families of elementary particles (quarks and leptons), and incorporating quantum 
electrodynamics, the Glashow-Weinberg-Salam theory of electroweak processes, 
and quantum chromodynamics - has come to be called the Standard Model. No 
one pretends that it is the final word on the subject, but at least we are now playing 
with a full deck of cards. Since 1978, when the Standard Model achieved the status 
of 'orthodoxy', it has met every experimental test. Moreover, it has an attractive 
aesthetic feature: all of the fundamental interactions derive from one general 
principle, the requirement of local gauge invariance. It seems certain that future 
developments will involve extensions of the Standard Model, not its repudiation. 
This book might be called an 'Introduction to the Standard Model'. 

As that alternative title suggests, it is a book about elementary particle theory, 
with very little on experimental methods or instrumentation. These are important 
matters, and an argument can be made for integrating them into a text such as this, 
but they can also be distracting, and interfere with the clarity and elegance of the 
theory itself, I encourage you to read about the experimental aspects of the subject, 
and from time to time I will refer you to particularly accessible accounts. But for 
now, I'll confine myself to scandalously brief answers to the two most obvious 
experimental questions. 
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How Do You Produce Elementary Particles? 

Electrons and protons are no problem; these are the stable constituents of ordinary 
matter. To produce electrons one simply heats up a piece of metal, and they come 
boiling off. If you want a beam of electrons, you just set up a positively charged plate 
nearby, to attract them over, and poke a small hole in it; the electrons that make it 
through the hole constitute the beam. Such an electron gun is the starting element 
in a television tube or an oscilloscope or an electron accelerator (Figure 1.1). 

To obtain protons you ionize hydrogen (in other words, strip off the electron). In 
fact, if you're using the protons as a target, you don't even need to bother about the 
electrons; they're so light that an energetic incident particle will knock them out of 
the way. Thus, a tank of hydrogen is essentially a tank of protons. For more exotic 
particles there are three main sources: cosmic rays, nuclear reactors, and particle 
accelerators. 

• Cosmic rays: The earth is constantly bombarded with 
high-energy particles (principally protons) coming from 
outer space. What the source of these particles might be 
remains something of a mystery; at any rate, when they hit 
atoms in the upper atmosphere they produce showers of 
secondary particles (mostly muons and neutrinos, by the 

Fig. 1.1 SLAC; the straight line is the accelerator itself. 
(Courtesy Stanford Linear Accelerator Center.) 
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time they reach ground level), which rain down on us all the 
time. As a source of elementary particles, cosmic rays have 
two virtues: they are free, and their energies can be 
enormous - far greater than we could possibly produce in 
the laboratory. But they have two major disadvantages: the 
rate at which they strike any detector of reasonable size is 
very low, and they are completely uncontrollable. So cosmic 
ray experiments call for patience and luck. 

• Nuclear reactors: When a radioactive nucleus disintegrates, it 
may emit a variety of particles - neutrons, neutrinos, and 
what used to be called alpha rays (actually, alpha particles, 
which are bound states of two neutrons plus two protons), 
beta rays (actually, electrons or positrons), and gamma rays 
(actually, photons). 

• Particle accelerators: You start with electrons or protons, 
accelerate them to high energy, and smash them into a target 
(Figure I.1). By skillful arrangements of absorbers and 
magnets, you can separate the particle species that you wish 
to study from the resulting debris. Nowadays it is possible in 
this way to generate intense secondary beams of positrons, 
muons, pions, kaons, B-mesons, antiprotons, and neutrinos, 
which in turn can be fired at another target. The stable 
particles - electrons, protons, positrons, and antiprotons -
can even be fed into giant storage rings in which, guided by 
powerful magnets, they circulate at high speed for hours at a 
time, to be extracted and used at the required moment [1]. 

In general, the heavier the particle you want to produce, the higher must be 
the energy of the collision. That's why, historically, lightweight particles tend to 
be discovered first, and as time goes on, and accelerators become more powerful, 
heavier and heavier particles are found. It turns out that you gain enormously in 
relative energy if you collide two high-speed particles head-on, as opposed to firing 
one particle at a stationary target. (Of course, this calls for much better aim!) For this 
reason many contemporary experiments involve colliding beams from intersecting 
storage rings; if the particles miss on the first pass, they can try again the next time 
around. Indeed, with electrons and positrons (or protons and antiprotons) the same 
ring can be used, with the plus charges circulating in one direction and minus 
charges the other. Unfortunately, when a charged particle accelerates it radiates, 
thereby losing energy. In the case of circular motion (which, of course, involves 
acceleration) this is called synchrotron radiation, and it severely limits the efficiency 
of storage rings for energetic electrons (heavier particles with the same energy 
accelerate less, so synchrotron radiation is not such a problem for them). For this 
reason electron scattering experiments will increasingly turn to linear colliders, 
while storage rings will continue to be used for protons and heavier particles. 
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There is another reason why particle physicists are always pushing for higher en­
ergies: in general, the higher the energy of the collision, the closer the two particles 
come to one another. So if you want to study an interaction at very short range, you 
need very energetic particles. In quantum-mechanical terms, a particle of momen­
tum p has an associated wavelength A given by the de Broglie formula A = h/p, 
where h is Planck's constant. At large wavelengths (low momenta) you can only 
hope to resolve relatively large structures; in order to examine something extremely 
small, you need comparably short wavelengths, and hence high momenta. If you 
like, consider this a manifestation of the uncertainty principle (~x~p c::: h/ 4rr) -
to make ~x small, ~p must be large. However you look at it, the conclusion is the 
same: to probe small distances you need high energies. 

At present the most powerful accelerator in the world is the Tevatron at Fermilab 
(Figure 1.2), with a maximum beam energy of almost 1 TeV. The tevatron (a 
proton-antiproton collider) began operation in 1983; its successor, the Supercon­
ducting Supercollider (SSC) was under construction in 1993 when the project was 
terminated by Congress. As a result, there has been a long period in which no 
fundamental progress was possible. This dry spell should end in 2008, when the 
Large Hadron Collider (LHC) at CERN starts taking data (Figure 1.3). The LHC is 
designed to reach beam energies in excess of7 TeV, and the hope is that this new 
terrain will include the Higgs particle, possibly supersymmetric particles, and -
best of all - something completely unexpected [2]. It's not clear what comes after 
the LHC - most likely the proposed International Linear Collider (ILC). But, accel­
erators have become so huge (the SSC would have been 87km in circumference) 
that there is not much room for expansion. Perhaps we are approaching the end 

Fig. 1.2 Fermilab; the large circle in the background is the 
Tevatron. (Courtesy Fermilab Visual Media Services.) 
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Fig. 1.3 CERN; the circle indicates the path of the LHC tun­
nel (formerly LEP) - Geneva and Mt Blanc are in the back­
ground. (Courtesy CERN.) 

of the accelerator era, and particle physicists will have to turn to astrophysics and 
cosmology for information about higher energies. Or perhaps someone will have a 
clever new idea for squeezing energy onto an elementary particle.• 

How Do You Detect Elementary Particles? 

There are many kinds of particle detectors - Geiger counters, cloud chambers, bub­
ble chambers, spark chambers, drift chambers, photographic emulsions, Cerenkov 
counters, scintillators, photomultipliers, and so on. Actually, a typical modern 

• In macroscopic terms the amount of energy involved is not that great - after all, 1 TeV 
(1012 eV) is only 10-7 Joules; the problem is how to deliver that energy to a particle. No law 
of physics prevents you from doing so, but nobody has yet figured out a way to do it without 
gigantic (and expensive) machinery. 
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Fig. 1.4 The CDF detector at Fermilab, where the top quark 
was discovered . (Courtesy Fermilab Visual Media Services.) 

detector has whole arrays of these devices, wired up to a computer that tracks 
the particles and displays their trajectories on a television screen (Figure 1.4). The 
details do not concern us, but there is one thing you should be aware of: most 
detection mechanisms rely on the fact that when high-energy charged particles pass 
through matter they ionize atoms along their path. The ions then act as 'seeds' in 
the formation of droplets (cloud chamber) or bubbles (bubble chamber) or sparks 
(spark chamber) , as the case may be. But electrically neutral particles do not cause 
ionization, and they leave no tracks. For instance, if you look at the bubble chamber 
photograph in Figure 1.9, you will see that the five neutral particles are 'invisible'; 
their paths have been reconstructed by analyzing the tracks of the charged particles 
in the picture and invoking conservation of energy and momentum at each vertex. 
Notice also that most of the tracks in the picture are curved (actually, all of them 
are, to some extent; try holding a ruler up to one you think is straight). The bubble 
chamber was placed between the poles of a giant magnet; in a magnetic field B, a 
particle of charge q and momentum p will move in a circle of radius R given by the 
famous cyclotron formula: R = pc/qB, where c is the speed of light. The curvature 
of the track in a known magnetic field thus affords a very simple measure of the 
particle's momentum. Moreover, we can immediately tell the sign of the charge 
from the direction of the curve. 
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Units 

Elementary particles are small, so for our purposes the normal mechanical units -
grams, ergs, joules, and so on - are inconveniently large. Atomic physicists 
introduced the electron volt - the energy acquired by an electron when accelerated 
through a potential difference of 1 volt: 1 eV = 1.6 x 10-19 joules. For us the eV is 
inconveniently small, but we're stuck with it. Nuclear physicists use keV (103 eV); 
typical energies in particle physics are MeV (106 eV), GeV (109 eV), or even TeV 
(1012 eV). Momenta are measured in MeV/c (or GeV/c, or whatever), and masses 
in MeV/c2 . Thus the proton weighs 938 MeV/c2 = 1.67 x 10-24 g. 

Actually, particle theorists are lazy (or clever, depending on your point of view) -
they seldom include the e's and !i's (Ii= h/2:n:) in their formulas. You're just 
supposed to fit them in for yourself at the end, to make the dimensions come out 
right. As they say in the business, 'set c = Ii = l '. This amounts to working in 
units such that time is measured in centimeters and mass and energy in inverse 
centimeters; the unit of time is the time it takes light to travel 1 cm, and the 
unit of energy is the energy of a photon whose wavelength is 2:n: cm. Only at the 
end of the problem do we revert to conventional units. This makes everything 
look very elegant, but I thought it would be wiser in this book to keep all the e's 
and !i's where they belong, so that you can check for dimensional consistency as 
you go along. (If this offends you, remember that it is easier for you to ignore 
an Ii you don't like than for someone else to conjure one up in just the right 
place.) 

Finally, there is the question of what units to use for electric charge. In 
introductory physics courses most instructors favor the SI system, in which charge 
is measured in coulombs, and Coulomb's law reads 

F = _1_ q1q2 (SI) 
4:n:Eo r2 

Most advanced work is done in the Gaussian system, in which charge is measured 
in electrostatic units (esu), and Coulomb's law is written 

F = q1q2 (G) 
r2 

But elementary particle physicists prefer the Heaviside - Lorentz system, in which 
Coulomb's law takes the form 

(HL) 

The three units of charge are related as follows: 

1 
qm = v'4nqc = -qs1 

Fa 
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In this book I shall use Gaussian units exclusively, in order to avoid unnecessary 
confusion in an already difficult subject. Whenever possible I will express results 
in terms of the fine structure constant 

e2 1 
0/=-=---nc 137.036 

where e is the charge of the electron in Gaussian units. Most elementary particle 
texts write this as e2 / 4n, because they are measuring charge in Heaviside-Lorentz 
units and setting c = Ii= 1; but everyone agrees that the number is 1/137. 

Further reading 

Since the early 1960s, the Particle Data Group at Berkeley has periodically issued a 
listing of the established particles and their properties. These are published every 
other year in Reviews of Modern Physics or Journal of Physics G, and summarized 
in a (free) booklet that can be ordered on the web at http:\ \pdg.lbl.gov. In the early 
days this summary took the form of 'wallet cards', but by 2006 it had grown to a 
densely packed 315 pages. I shall refer to it as the Particle Physics Booklet (PPB). 
Every student of elementary particle physics must have a copy - don't leave home 
without it! The longer version, called the Review of Particle Physics (RPP) is the bible 
for professionals - the 2006 edition runs to 1231 pages, and it includes authoritative 
articles on every relevant subject, written by the world's leading experts [3]. If you 
want the definitive, up-to-date word on any particular topic, this is the place to go 
(it is also available on-line, at the Particle Data Group web site). 

Particle physics is an enormous and rapidly changing subject. My aim in this 
book is to introduce you to some important ideas and methods, to give you a 
sense of what's out there to be learned, and perhaps to stimulate your appetite 
for more. If you want to read further in quantum field theory, I particularly 
recommend: 

Bjorken, J. D. and Drell, S. D. (1964) Relativistic Quantum Mechanics and 
Relativistic Quantum Fields, McGraw-Hill, New York. 

Itzykson, C. and Zuber, J.-B. (1980) Quantum Field Theory, McGraw-Hill, New 
York. 

Peskin, M. E. and Schroeder, D. V. (1995) An Introduction to Quantum Field 
Theory, Perseus, Cambridge, M.A. 

Ryder, L. H. (1985) Quantum Field Theory, Cambridge University Press, 
Cambridge, UK. 

Sakurai, J. J. (1967) Advanced Quantum Mechanics, Addison-Wesley, Reading, 
M.A. 

I warn you, however, that these are all difficult and advanced books. 
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For elementary particle physics itself, the following books (listed in order of 
increasing difficulty) are especially useful: 

Close, F., Marten, M. and Sutton, C. (1987) The Particle Explosion, Oxford 
University Press, Oxford, UK. 

Frauenfelder, H. and Henley, E. M. (1991) Subatomic Physics, 2nd edn, 
Prentice-Hall, Englewood Cliffs, N.J. 

Gottfried, K. and Weisskopf, V. F. (1984) Concepts of Particle Physics, Oxford 
University Press, Oxford. 

Perkins, D. H. (2000) Introduction to High-Energy Physics, 4th Ed, Cambridge 
University Press, Cambridge, UK. 

Halzen, F. and Martin, A. D. (1984) Quarks and Leptons, John Wiley & Sons, 
Ltd, New York. 

Roe, B. P. (1996) Particle Physics at the New Millennium, Springer, New York. 
Aitchison, I. J. R. and Hey, A. J. G. (2003) Gauge Theories in Particle Physics, 

3rd edn, Institute of Physics, Bristol, UK. 
Seiden, A. (2005) Particle Physics: A Comprehensive Introduction, Addison­

Wesley, San Francisco, C.A. 
Quigg, C. (1997) Gauge Theories of the Strong, Weak, and Electromagnetic 
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Historical Introduction to the Elementary Particles 

This chapter is a kind of folk history' of elementary particle physics. Its purpose is 

to provide a sense of how the various particles were first discovered, and how they fit 

into the overall scheme of things. Along the way some of the fundamental ideas that 

dominate elementary particle theory are explained. This material should be read quickly, 

as background to the rest of the book. ( As history, the picture presented here is certainly 

misleading, for it sticks closely to the main track, ignoring the false starts and blind alleys 

that accompany the development of any science. That's why I call it folk' history - it's 

the way particle physicists like to remember the subject - a succession of brilliant insights 

and heroic triumphs unman-ed by foolish mistakes, confusion, and frustration. It wasn't 

really quite so easy.) 

1.1 

The Classical Era (1897-1932) 

It is a little artificial to pinpoint such things, but I'd say that elementary particle 

physics was born in 1897, with J. J. Thomson's discovery of the electron [1]. (It 

is fashionable to carry the story all the way back to Democritus and the Greek 

atomists, but apart from a few suggestive words their metaphysical speculations 

have nothing in common with modern science, and although they may be of 

modest antiquarian interest, their genuine relevance is negligible.) Thomson knew 

that cathode rays emitted by a hot filament could be deflected by a magnet. This 

suggested that they carried electric charge; in fact, the direction of the curvature 

required that the charge be negative. It seemed, therefore, that these were not rays 

at all, but rather streams of particles. By passing the beam through crossed electric 

and magnetic fields, and adjusting the field strength until the net deflection was 

zero, Thomson was able to determine the velocity of the particles (about a tenth the 

speed of light) as well as their charge-to-mass ratio (Problem 1.1). This ratio turned 

out to be enormously greater than for any known ion, indicating either that the 

charge was extremely large or the mass was very small. Indirect evidence pointed 
to the second conclusion. Thomson called the particles corpuscles. Back in 1891, 

George Johnstone Stoney had introduced the term 'electron' for the fundamental 

unit of charge; later, that name was taken over for the particles themselves. 

 

113 
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Thomson correctly surmised that these electrons were essential constituents 
of atoms; however, since atoms as a whole are electrically neutral and very 
much heavier than electrons, there immediately arose the problem of how the 
compensating plus charge - and the bulk of the mass - is distributed within an 
atom. Thomson himself imagined that the electrons were suspended in a heavy, 
positively charged paste, like (as he put it) the plums in a pudding. But Thomson's 
model was decisively repudiated by Rutherford's famous scattering experiment, 
which showed that the positive charge, and most of the mass, was concentrated in 
a tiny core, or nucleus, at the center of the atom. Rutherford demonstrated this by 
firing a beam of a particles (ionized helium atoms) into a thin sheet of gold foil 
(Figure 1.1). Had the gold atoms consisted of rather diffuse spheres, as Thomson 
supposed, then all of the a particles should have been deflected a bit, but none 
would have been deflected much - any more than a bullet is deflected much when 
it passes, say, through a bag of sawdust. What in fact occurred was that most of 
the a particles passed through the gold completely undisturbed, but a few of them 
bounced off at wild angles. Rutherford's conclusion was that the a particles had 

Zinc sulfide screen Gold foil 

Microscope 

Collimated beam 
of ct-particles 

Source of 
ct-particles 

Vacuum 

~==::::i;r7,=:~-- pump 
"----~ ----

Fig. 1.1 Schematic diagram of the apparatus used in the 
Rutherford scattering experiment. Alpha particles scattered 
by the gold foil strike a fluorescent screen, giving off a flash 
of light, which is observed visually through a microscope. 



1.2 The Photon (1900-1924) 11 s 

encountered something very small, very hard, and very heavy. Evidently the positive 
charge, and virtually all of the mass, was concentrated at the center, occupying only 
a tiny fraction of the volume of the atom (the electrons are too light to play any role in 
the scattering; they are knocked right out of the way by the much heavier a particles). 

The nucleus of the lightest atom (hydrogen) was given the name proton by 
Rutherford. In 1914 Niels Bohr proposed a model for hydrogen consisting of a 
single electron circling the proton, rather like a planet going around the sun, held 
in orbit by the mutual attraction of opposite charges. Using a primitive version of 
the quantum theory, Bohr was able to calculate the spectrum of hydrogen, and the 
agreement with experiment was nothing short of spectacular. It was natural then 
to suppose that the nuclei of heavier atoms were composed of two or more protons 
bound together, supporting a like number of orbiting electrons. Unfortunately, the 
next heavier atom (helium), although it does indeed carry two electrons, weighs four 
times as much as hydrogen, and lithium (three electrons) is seven times the weight of 
hydrogen, and so it goes. This dilemma was finally resolved in 1932 with Chadwick's 
discovery of the neutron - an electrically neutral twin to the proton. The helium 
nucleus, it turns out, contains two neutrons in addition to the two protons; lithium 
evidently includes four; and, in general, the heavier nuclei carry very roughly the 
same number of neutrons as protons. (The number of neutrons is in fact somewhat 
flexible - the same atom, chemically speaking, may come in several different iso­
topes, all with the same number of protons, but with varying numbers of neutrons.) 

The discovery of the neutron put the final touch on what we might call the classical 
period in elementary particle physics. Never before (and I'm sorry to say never since) 
has physics offered so simple and satisfying an answer to the question, 'What is 
matter made of?' In 1932, it was all just protons, neutrons, and electrons. But 
already the seeds were planted for the three great ideas that were to dominate the 
middle period (1930-1960) in particle physics: Yukawa's meson, Dirac's positron, 
and Pauli's neutrino. Before we come to that, however, I must back up for a 
moment to introduce the photon. 

1.2 
The Photon (1900-1924) 

In some respects, the photon is a very 'modern' particle, having more in common 
with the Wand Z (which were not discovered until 1983) than with the classical 
trio. Moreover, it's hard to say exactly when or by whom the photon was really 
'discovered', although the essential stages in the process are clear enough. The 
first contribution was made by Planck in 1900. Planck was attempting to explain 
the so-called blackbody spectrum for the electromagnetic radiation emitted by 
a hot object. Statistical mechanics, which had proved brilliantly successful in 
explaining other thermal processes, yielded nonsensical results when applied to 
electromagnetic fields. In particular, it led to the famous 'ultraviolet catastrophe', 
predicting that the total power radiated should be infinite. Planck found that he could 
escape the ultraviolet catastrophe - and fit the experimental curve - ifhe assumed 
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that electromagnetic radiation is quantized, coming in little 'packages' of energy 

E= hv (1.1) 

where v is the frequency of the radiation and his a constant, which Planck adjusted 
to fit the data. The modern value of Planck's constant is 

h = 6.626 x 10-27 ergs (1.2) 

Planck did not profess to know why the radiation was quantized; he assumed that 
it was due to a peculiarity in the emission process: for some reason a hot surface 
only gives off light* in little squirts. 

Einstein, in 1905, put forward a far more radical view. He argued that quantization 
was a feature of the electromagnetic field itself, having nothing to do with the 
emission mechanism. With this new twist, Einstein adapted Planck's idea, and his 
formula, to explain the photoelectric effect: when electromagnetic radiation strikes a 
metal surface, electrons come popping out. Einstein suggested that an incoming 
light quantum hits an electron in the metal, giving up its energy (hv); the excited 
electron then breaks through the metal surface, losing in the process an energy w 
(the so-called work fanction of the material - an empirical constant that depends 
on the particular metal involved). The electron thus emerges with an energy 

E ::S: hv -w (1.3) 

(It may lose some energy before reaching the surface; that's the reason for the 
inequality.) Einstein's formula (Equation 1.3) is trivial to derive, but it carries an 
extraordinary implication: The maximum electron energy is independent of the 
intensity of the light and depends only on its color (frequency). To be sure, a more 
intense beam will knock out more electrons, but their energies will be the same. 

Unlike Planck's theory, Einstein's met a hostile reception, and over the next 
20 years he was to wage a lonely battle for the light quantum [2]. In saying that 
electromagnetic radiation is by its nature quantized, regardless of the emission 
mechanism, Einstein came dangerously close to resurrecting the discredited parti­
cle theory oflight. Newton, of course, had introduced such a corpuscular model, but 
a major achievement of nineteenth-century physics was the decisive repudiation 
of Newton's idea in favor of the rival wave theory. No one was prepared to see 
that accomplishment called into question, even when the experiments came down 
on Einstein's side. In 1916 Millikan completed an exhaustive study of the photo­
electric effect and was obliged to report that 'Einstein's photoelectric equation ... 
appears in every case to predict exactly the observed results .... Yet the semicor­
puscular theory by which Einstein arrived at his equation seems at present wholly 
untenable' [3]. 

• In this book the word light stands for electromagnetic radiation, whether or not it happens to fall 
in the visible region. 
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Fig. 1.2 Compton scattering. A photon of wavelength A scat­
ters off a particle, initially at rest, of mass m. The scattered 
photon carries wavelength A' given by Equation 1.4. 
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What finally settled the issue was an experiment conducted by A. H. Compton 
in 1923. Compton found that the light scattered from a particle at rest is shifted in 
wavelength, according to the equation 

)...' =)... + Ac(l - cos0) (1.4) 

where)... is the incident wavelength,)...' is the scattered wavelength, 0 is the scattering 
angle, and 

Ac= h/mc (1.5) 

is the so-called Compton wavelength of the target particle (mass m). Now, this is 
precisely the formula you get (Problem 3.27) if you treat light as a particle of zero 
rest mass with energy given by Planck's equation, and apply the laws of conser­
vation of (relativistic) energy and momentum - just as you would for an ordinary 
elastic collision (Figure 1.2). That clinched it; here was direct and incontrovertible 
experimental evidence that light behaves as a particle, on the subatomic scale. We 
call this particle the photon (a name suggested by the chemist Gilbert Lewis, in 
1926); the symbol for a photon is y (from gamma ray). How the particle nature of 
light on this level is to be reconciled with its well-established wave behavior on the 
macroscopic scale (exhibited in the phenomena of interference and diffraction) is 
a story I'll leave for books on quantum mechanics. 

Although the photon initially forced itself on an unreceptive community of physi­
cists, it eventually found a natural place in quantum field theory, and was to offer a 
whole new perspective on electromagnetic interactions. In classical electrodynam­
ics, we attribute the electrical repulsion of two electrons, say, to the electric field 
surrounding them; each electron contributes to the field, and each one responds to 
the field. But in quantum field theory, the electric field is quantized (in the form of 
photons), and we may picture the interaction as consisting of a stream of photons 
passing back and forth between the two charges, each electron continually emitting 
photons and continually absorbing them. And the same goes for any noncontact 
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force: Where classically we interpret 'action at a distance' as 'mediated' by a field, 
we now say that it is mediated by an exchange of particles (the quanta of the field). In 
the case of electrodynamics, the mediator is the photon; for gravity, it is called the 
graviton (though a fully successful quantum theory of gravity has yet to be developed 
and it may well be centuries before anyone detects a graviton experimentally). 

You will see later on how these ideas are implemented in practice, but for now 
I want to dispel one common misapprehension. When I say that every force is 
mediated by the exchange of particles, I am not speaking of a merely kinematic 
phenomenon. Two ice skaters throwing snowballs back and forth will of course 
move apart with the succession of recoils; they 'repel one another by exchange of 
snowballs', if you like. But that's not what is involved here. For one thing, this 
mechanism would have a hard time accounting for an attractive force. You might 
think of the mediating particles, rather, as 'messengers', and the message can just 
as well be 'come a little closer' as 'go away'. 

I said earlier that in the 'classical' picture ordinary matter is made of atoms, 
in which electrons are held in orbit around a nucleus of protons and neutrons 
by the electrical attraction of opposite charges. We can now give this model a 
more sophisticated formulation by attributing the binding force to the exchange 
of photons between the electrons and the protons in the nucleus. However, for 
the purposes of atomic physics this is overkill, for in this context quantization of the 
electromagnetic field produces only minute effects (notably the Lamb shift and the 
anomalous magnetic moment of the electron). To excellent approximation we can 
pretend that the forces are given by Coulomb's law (together with various magnetic 
dipole couplings). The point is that in a bound state enormous numbers of photons 
are continually streaming back and forth, so that the 'lumpiness' of the field is 
effectively smoothed out, and classical electrodynamics is a suitable approximation 
to the truth. But in most elementary particle processes, such as the photoelectric 
effect or Compton scattering, individual photons are involved, and quantization can 
no longer be ignored. 

1.3 
Mesons (1934-1947) 

Now there is one conspicuous problem to which the 'classical' model does not 
address itself at all: what holds the nucleus together? After all, the positively charged 
protons should repel one another violently, packed together as they are in such close 
proximity. Evidently there must be some other force, more powerful than the force 
of electrical repulsion, that binds the protons (and neutrons) together; physicists of 
that less imaginative age called it, simply, the strong force. But if there exists such 
a potent force in nature, why don't we notice it in everyday life? The fact is that 
virtually every force we experience directly, from the contraction of a muscle to the 
explosion of dynamite, is electromagnetic in origin; the only exception, outside a 
nuclear reactor or an atomic bomb, is gravity. The answer must be that, powerful 
though it is, the strong force is of very short range. (The range of a force is like the 
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arm's reach of a boxer - beyond that distance its influence falls off rapidly to zero. 
Gravitational and electromagnetic forces have infinite range, but the range of the 
strong force is about the size of the nucleus itself.)* 

The first significant theory of the strong force was proposed by Yukawa in 1934 
[4]. Yukawa assumed that the proton and neutron are attracted to one another by 
some sort of field, just as the electron is attracted to the nucleus by an electric 
field and the moon to the earth by a gravitational field. This field should properly 
be quantized, and Yukawa asked the question: what must be the properties of its 
quantum - the particle (analogous to the photon) whose exchange would account 
for the known features of the strong force? For example, the short range of the force 
indicated that the mediator would be rather heavy; Yukawa calculated that its mass 
should be nearly 300 times that of the electron, or about a sixth the mass of a proton 
(see Problem 1.2). Because it fell between the electron and the proton, Yukawa's 
particle came to be known as the meson (meaning 'middle-weight'). In the same 
spirit, the electron is called a lepton ('light-weight'), whereas the proton and neutron 
are baryons ('heavy-weight'). Now, Yukawa knew that no such particle had ever 
been observed in the laboratory, and he therefore assumed his theory was wrong. 
But at that time a number of systematic studies of cosmic rays were in progress, 
and by 1937 two separate groups (Anderson and Neddermeyer on the West Coast, 
and Street and Stevenson on the East) had identified particles matching Yukawa's 
description."i" Indeed, the cosmic rays with which you are being bombarded every 
few seconds as you read this consist primarily of just such middle-weight particles. 

For a while everything seemed to be in order. But as more detailed studies 
of the cosmic ray particles were undertaken, disturbing discrepancies began to 
appear. They had the wrong lifetime and they seemed to be significantly lighter 
than Yukawa had predicted; worse still, different mass measurements were not 
consistent with one another. In 1946 (after a period in which physicists were 
engaged in a less savory business) decisive experiments were carried out in Rome 
demonstrating that the cosmic ray particles interacted very weakly with atomic 
nuclei [5]. If this was really Yukawa's meson, the transmitter of the strong force, 
the interaction should have been dramatic. The puzzle was finally resolved in 1947, 
when Powell and his coworkers at Bristol [6] discovered that there are actually 
two middle-weight particles in cosmic rays, which they called Jr (or 'pion') and µ, 

(or 'muon'). (Marshak reached the same conclusion simultaneously, on theoretical 
grounds [7].) The true Yukawa meson is then; it is produced copiously in the upper 
atmosphere, but ordinarily disintegrates long before reaching the ground (see 
Problem 3.4). Powell's group exposed their photographic emulsions on mountain 
tops (see Figure 1.3). One of the decay products is the lighter (and longer lived) µ,, 

and it is primarily muons that one observes at sea level. In the search for Yukawa's 
meson, then, the muon was simply an impostor, having nothing whatever to do 

* This is a bit of an oversimplification. Typically, the forces go like e-(r/•l /r2 , where a is the 
'range'. For Coulomb's law and Newton's law of universal gravitation, a= oo; for the strong 
force a is about 10-13 cm (1 fm). 

1" Actually, it was Robert Oppenheimer who drew the connection between these cosmic ray parti­
cles and Yukawa's meson. 
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Fig. 1.3 One of Powell's earliest pictures 
showing the track of a pion in a photo­
graphic emulsion exposed to cosmic rays at 
high altitude. The pion (entering from the 
left) decays into a muon and a neutrino (the 
latter is electrically neutral, and leaves no 

track) . (Source: Powell, C. F., Fowler, P. H. 
and Perkins, D. H. (1959) The Study of Ele­
mentary Particles by the Photographic Method 
Pergamon, New York. First published in 
(1947) Nature 159, 694.) 

with the strong interactions. In fact, it behaves in every way like a heavier version 
of the electron and properly belongs in the lepton family (though some people to 
this day call it the 'mu-meson' by force of habit). 

1.4 
Antiparticles (1930-1956) 

Nonrelativistic quantum mechanics was completed in the astonishingly brief pe­
riod 1923-1926, but the relativistic version proved to be a much thornier problem. 
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The first major achievement was Dirac's discovery, in 1927, of the equation that 
bears his name. The Dirac equation was supposed to describe free electrons with 
energy given by the relativistic formula E2 - p2c2 = m2c4 • But it had a very trou­
bling feature: for every positive-energy solution (E = +Jp2c2 + m2c4) it admitted 
a corresponding solution with negative energy (E = -Jp2c2 + m2c4 ). This meant 
that, given the natural tendency of every system to evolve in the direction oflower 
energy, the electron should 'runaway' to increasingly negative states, radiating 
off an infinite amount of energy in the process. To rescue his equation, Dirac 
proposed a resolution that made up in brilliance for what it lacked in plausibility: 
he postulated that the negative-energy states are all filled by an infinite 'sea' of 
electrons. Because this sea is always there, and perfectly uniform, it exerts no net 
force on anything, and we are not normally aware ofit. Dirac then invoked the Pauli 
exclusion principle (which says that no two electrons can occupy the same state), to 
'explain' why the electrons we do observe are confined to the positive-energy states. 
But if this is true, then what happens when we impart to one of the electrons in 
the 'sea' an energy sufficient to knock it into a positive-energy state? The absence 
of the 'expected' electron in the sea would be interpreted as a net positive charge 
in that location, and the absence of its expected negative energy would be seen as a 
net positive energy. Thus a 'hole in the sea' would function as an ordinary particle 
with positive energy and positive charge. Dirac at first hoped that these holes might 
be protons, but it was soon apparent that they had to carry the same mass as the 
electron itself - 2000 times too light to be a proton. No such particle was known 
at the time, and Dirac's theory appeared to be in trouble. What may have seemed a 
fatal defect in 1930, however, turned into a spectacular triumph in late 1931, with 
Anderson's discovery of the positron (Figure 1.4), a positively charged twin for the 
electron, with precisely the attributes Dirac required [8]. 

Still, many physicists were uncomfortable with the notion that we are awash in 
an infinite sea of invisible electrons, and in the 1940s Stuckelberg and Feynman 
provided a much simpler and more compelling interpretation of the negative-energy 
states. In the Feynman-Stuckelberg formulation, the negative-energy solutions 
are re-expressed as positive-energy states of a different particle (the positron); the 
electron and positron appear on an equal footing, and there is no need for Dirac's 
'electron sea' or for its mysterious 'holes'. We'll see in Chapter 7 how this - the 
modern interpretation - works. Meantime, it turned out that the dualism in Dirac's 
equation is a profound and universal feature of quantum field theory: for every 
kind of particle there must exist a corresponding antiparticle, with the same mass 
but opposite electric charge. The positron, then, is the antielectron. (Actually, it is 
in principle completely arbitrary which one you call the 'particle' and which the 
'antiparticle' - I could just as well have said that the electron is the antipositron. 
But since there are a lot of electrons around, and not so many positrons, we tend to 
think of electrons as 'matter' and positrons as 'antimatter'). The (negatively charged) 
antiproton was first observed experimentally at the Berkeley Bevatron in 1955, and 
the (neutral) antineutron was discovered at the same facility the following year [9]. 
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Fig. 1.4 The positron. In 1932, Anderson 
took this photograph of the track left in 
a cloud chamber by a cosmic ray particle. 
The chamber was placed in a magnetic field 
(pointing into the page), which caused the 
particle to travel in a curve. But was it a 
negative charge traveling downward or a 
positive charge traveling upward? In order 
to distinguish, Anderson had placed a lead 
plate across the center of the chamber (the 
thick horizontal line in the photograph) . A 

particle passing through the plate slows 
down, and subsequently moves in a tighter 
circle. By inspection of the curves , it is clear 
that this particle traveled upward, and hence 
must have been positively charged. From the 
curvature of the track and from its texture, 
Anderson was able to show that the mass 
of the particle was close to that of the elec­
tron. (Photo courtesy California Institute of 
Technology.) 

The standard notation for antiparticles is an overbar. For example, p denotes the 
proton and p the antiproton; n the neutron and n the antineutron. However, in 
some cases it is customary simply to specify the charge. Thus most people write e+ 

for the positron (note) andµ+ for the antimuon (notµ) .* Some neutral particles are 
their own antiparticles. For example, the photon: y = y . in fact, you may have been 
wondering how the antineutron differs physically from the neutron, since both are 
uncharged. The answer is that neutrons carry other 'quantum numbers' besides 
charge (in particular, baryon number), which change sign for the antiparticle. 
Moreover, although its net charge is zero, the neutron does have a charge structure 
(positive at the center and near the surface, negative in between) and a magnetic 
dipole moment. These, too, have the opposite sign for n. 

There is a general principle in particle physics that goes under the name of 
crossing symmetry. Suppose that a reaction of the form 

A+B--+C+D 

is known to occur. Any of these particles can be 'crossed' over to the other side of 
the equation, provided it is turned into its antiparticle, and the resulting interaction 

* But you must not mix conventions: e+ is ambiguous, like a double negative - the reader doesn't 
know if you mean the positron or the antipositron, (which is to say, the electron). 



will also be allowed. For example, 

A-+ B+C+D 

A+C-+B+D 

c+D-+A+B 
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In addition, the reverse reaction occurs: C + D -+ A + B, but technically this 
derives from the principle of detailed balance, rather than from crossing symmetry. 
Indeed, as we shall see, the calculations involved in these various reactions are 
practically identical. We might almost regard them as different manifestations 
of the same fundamental process. However, there is one important caveat in all 
this: conservation of energy may veto a reaction that is otherwise permissible. 
For example, if A weighs less than the sum of B, C, and D, then the decay 
A-+- B + C + D cannot occur; similarly, if A and C are light, whereas B and D 
are heavy, then the reaction A+ C-+ B + D will not take place unless the initial 
kinetic energy exceeds a certain 'threshold' value. So perhaps I should say that the 
crossed (or reversed) reaction is dynamically permissible, but it may or may not be 
kinematically allowed. The power and beauty of crossing symmetry can scarcely be 
exaggerated. It tells us, for instance, that Compton scattering 

is 'really' the same process as pair annihilation 

although in the laboratory they are completely different phenomena. 
The union of special relativity and quantum mechanics, then, leads to a pleasing 

matter/antimatter symmetry. But this raises a disturbing question: how come our 
world is populated with protons, neutrons, and electrons, instead of antiprotons, 
antineutrons, and positrons? Matter and antimatter cannot coexist for long - if a 
particle meets its antiparticle, they annihilate. So maybe it's just a historical accident 
that in our corner of the universe there happened to be more matter than antimatter, 
and pair annihilation has vacuumed up all but a leftover residue of matter. If this 
is so, then presumably there are other regions of space in which antimatter 
predominates. Unfortunately, the astronomical evidence is pretty compelling that 
all of the observable universe is made of ordinary matter. In Chapter 12 we will 
explore some contemporary ideas about the 'matter-antimatter asymmetry'. 

1.5 
Neutrinos (1930-1962) 

For the third strand in the story we return again to the year 1930 [10]. A problem 
had arisen in the study of nuclear beta decay. In beta decay, a radioactive nucleus A 
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is transformed into a slightly lighter nucleus B, with the emission of an electron: 

(1.6) 

Conservation of charge requires that B carry one more unit of positive charge than 
A (We now realize that the underlying process here is the conversion of a neutron, 
in A, into a proton, in B; but remember that in 1930 the neutron had not yet 
been discovered.) Thus the 'daughter' nucleus (B) lies one position farther along 
on the periodic table. There are many examples of beta decay: potassium goes to 
calcium (igK -..;g Ca), copper goes to zinc (~;cu -..~6 Zn), tritium goes to helium 
aH -..~ He), and so on.* 

Now, it is a characteristic of two-body decays (A-.. B + C) that the outgoing 
energies are kinematically determined, in the center-of-mass frame. Specifically, 
if the 'parent' nucleus (A) is at rest, so that B and e come out back-to-back with 
equal and opposite momenta, then conservation of energy dictates that the electron 
energy is (Problem 3.19) 

(1.7) 

The point to notice is that E is .fixed once the three masses are specified. But when 
the experiments are done, it is found that the emitted electrons vary considerably in 
energy; Equation 1.7 only determines the maximum electron energy for a particular 
beta decay process (see Figure 1.5). 

This was a most disturbing result. Niels Bohr (not for the first time) was ready to 
abandon the law of conservation of energy.t Fortunately, Pauli took a more sober 
view, suggesting that another particle was emitted along with the electron, a silent 
accomplice that carries off the 'missing' energy. It had to be electrically neutral, to 
conserve charge (and also, of course, to explain why it left no track); Pauli proposed 
to call it the neutron. The whole idea was greeted with some skepticism, and in 
1932 Chadwick preempted the name. But in the following year Fermi presented 
a theory of beta decay that incorporated Pauli's particle and proved so brilliantly 
successful that Pauli's suggestion had to be taken seriously. From the fact that the 
observed electron energies range up to the value given in Equation 1.7 it follows 
that the new particle must be extremely light; Fermi called it the neutrino ('little 
neutral one'). For reasons you'll see in a moment, we now call it the antineutrino. 

• The upper number is the atomic weight (the 
number of neutrons plus protons) and the 
lower number is the atomic number (the num­
ber of protons). 

t It is interesting to note that Bohr was an 
outspoken critic of Einstein's light quan­
tum (prior to 1924), that he mercilessly 
denounced Schrodinger's equation, dis­
couraged Dirac's work on the relativistic 

electron theory (telling him, incorrectly, that 
Klein and Gordon had already succeeded), 
opposed Pauli's introduction of the neutrino, 
ridiculed Yukawa's theory of the meson, and 
disparaged Feynman's approach to quantum 
electrodynamics. Great scientists do not al­
ways have good judgment - especially when 
it concerns other people's work - but Bohr 
must hold the all-time record. 
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Fig. 1.5 The beta decay spectrum of tritium (iH ➔ ~He). 
(Source: Lewis, G. M. (1970) Neutrinos, Wykeham, London, 
p. 30.) 
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In modern terminology, then, the fundamental beta decay process is 

(neutron goes to proton plus electron plus antineutrino). 
Now, you may have noticed something peculiar about Powell's picture of the 

disintegrating pion (Figure 1.3): the muon emerges at about 90° with respect to 
the original pion direction. (That's not the result of a collision, by the way; collisions 
with atoms in the emulsion account for the dither in the tracks, but they cannot 
produce an abrupt left turn.) What this kink indicates is that some other particle 
was produced in the decay of the pion, a particle that left no footprints in the 
emulsion, and hence must have been electrically neutral. It was natural (or at any 
rate economical) to suppose that this was again Pauli's neutrino: 

n-µ,+v (1.9) 

A few months after their first paper, Powell's group published an even more striking 
picture, in which the subsequent decay of the muon is also visible (Figure 1.6). By 
then muon decays had been studied for many years, and it was well established 
that the charged secondary is an electron. From the figure there is clearly a neutral 
product as well, and you might guess that it is another neutrino. However, this 
time it is actually two neutrinos: 

µ,- e+2v (1.10) 
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Fig. 1.6 Here, a pion decays into a muon (plus a neutrino); 
the muon subsequently decays into an electron (and two 
neutrinos) . (Source: Powell, C. F., Fowler, P. H. and Perkins, 
D. H. (1959) The Study of Elementary Particles by the Pho­
tographic Method Pergamon, New York. First published in 
(1949) Nature 163, 82.) 

How do we know there are two of them? Same way as before: we repeat the 
experiment over and over, each time measuring the energy of the electron. If it 
always comes out the same, we know there are just two particles in the final state. 
But if it varies, then there must be (at least) three.• By 1949 it was clear that the 

* Here, and in the original beta decay prob­
lem, conservation of angular momentum 
also requires a third outgoing particle, quite 
independently of energy conservation. But 
the spin assignments were not so clear in 

the early days, and for most people energy 
conservation was the compelling argument. 
In the interest of simplicity, I will keep 
angular momentum out of the story until 
Chapter 4. 
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electron energy in muon decay is not fixed, and the emission of two neutrinos was 
the accepted explanation. (By contrast, the muon energy in pion decay is perfectly 
constant, within experimental uncertainties, confirming that this is a genuine 
two-body decay.) 

By 1950, then, there was compelling theoretical evidence for the existence 
of neutrinos, but there was still no direct experimental verification. A skeptic 
might have argued that the neutrino was nothing but a bookkeeping device - a 
purely hypothetical particle whose only function was to rescue the conservation 
laws. It left no tracks, and it didn't decay; in fact, no one had ever seen a 
neutrino do anything. The reason for this is that neutrinos interact extraordinarily 
weakly with matter; a neutrino of moderate energy could easily penetrate a 
thousand light years(!) of lead.* To have a chance of detecting one you need 
an extremely intense source. The decisive experiments were conducted at the 
Savannah River nuclear reactor in South Carolina, in the mid-1950s. Here Cowan 
and Reines set up a large tank of water and watched for the 'inverse' beta decay 
reaction 

(1.11) 

At their detector the antineutrino flux was calculated to be 5 x 1013 particles per 
square centimeter per second, but even at this fantastic intensity they could only 
hope for two or three events every hour. On the other hand, they developed an 
ingenious method for identifying the outgoing positron. Their results provided 
unambiguous confirmation of the neutrino's existence [11]. 

As I mentioned earlier, the particle produced in ordinary beta decay is actually 
an antineutrino, not a neutrino. Of course, since they're electrically neutral, 
you might ask - and many people did - whether there is any difference between 
a neutrino and an antineutrino. The neutral pion, as we shall see, is its own 
antiparticle; so too is the photon. On the other hand, the antineutron is definitely 
not the same as a neutron. So we're left in a bit of a quandary: is the neutrino 
the same as the antineutrino, and if not, what property distinguishes them? 
In the late 1950s, Davis and Harmer put this question to an experimental test 
[12]. From the positive results of Cowan and Reines, we know that the crossed 
reaction 

(1.12) 

must also occur, and at about the same rate. Davis looked for the analogous reaction 
using antineutrinos: 

(1.13) 

* That's a comforting realization when you learn that hundreds of billions of neutrinos per sec­
ond pass through every square inch of your body, night and day, coming from the sun (they hit 
you from below, at night, having passed right through the earth). 
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He found that this reaction does not occur, and concluded that the neutrino and 
antineutrino are distinct particles.* 

Davis's result was not unexpected. In fact, back in 1953 Konopinski and 
Mahmoud [13] had introduced a beautifully simple rule for determining which 
reactions - such as Equation 1.12 - will work, and which - like Equation 1.13 -
will not. In effect,t they assigned a lepton number L = + 1 to the electron, the muon, 
and the neutrino, and L = -1 to the positron, the positive muon, and the antineu­
trino (all other particles are given a lepton number of zero). They then proposed 
the law of conservation of lepton number (analogous to the law of conservation of 
charge): in any physical process, the sum of the lepton numbers before must equal 
the sum of the lepton numbers after. Thus the Cowan-Reines reaction (1.11) is 
allowed (L = -1 before and after), but the Davis reaction (1.13) is forbidden (on 
the left L = -1, on the right L = +1). It was in anticipation of this rule that I called 
the beta decay particle (Equation 1.8) an antineutrino; likewise, the charged pion 
decays (Equation 1.9) should really be written 

(1.14) 

and the muon decays (Equation 1.10) are actually 

(1.15) 

You might be wondering what property distinguishes the neutrino from the 
antineutrino. The cleanest answer is: lepton number - it's +1 for the neutrino and 
-1 for the antineutrino. These numbers are experimentally determinable, just as 
electric charge is, by watching how the particle in question interacts with others. (As 
we shall see, they also differ in their helicity: the neutrino is 'left-handed' whereas 
the antineutrino is 'right-handed'. But this is a technical matter best saved for later.) 

There soon followed another curious twist to the neutrino story. Experimentally, 
the decay of a muon into an electron plus a photon is never observed: 

(1.16) 

and yet this process is consistent with conservation of charge and conservation of 
the lepton number. Now, a famous rule of thumb in particle physics (generally 

* Actually, this conclusion is not as fireproof 
as it once seemed. It could be the spin state 
of the v, rather than the fact that it is distinct 
from v, that forbids reaction 1.13. Today, in 
fact, there are two viable models: Dirac neu­
trinos, which are distinct from their antiparti­
cles, and Majorana neutrinos, for which v and 
iJ are two states of the same particle. For most 

of this book, I shall assume we are dealing 
with Dirac neutrinos, but we'll return to the 
question in Chapter 11. 

t Konopinski and Mahmoud [13] did not use 
this terminology, and they got the muon as­
signments wrong. But never mind, the essen­
tial idea was there. 
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attributed to Richard Feynman) declares that whatever is not expressly forbidden is 
mandatory. The absence ofµ ➔ e + y suggests a law of conservation of'mu-ness', 
but then how are we to explain the observed decays µ ➔ e + v + v? The answer 
occurred to a number of people in the late 1950s and early 1960s [14]: suppose there 
are two different kinds of neutrino - one associated with the electron (ve) and one 
with the muon ( v µ,). If we assign a muon number Lµ, = + 1 to µ - and v µ,, and 
Lµ, = -1 to µ + and v µ,, and at the same time an electron number Le = + 1 to e- and 
Ve, and Le = -1 to e+ and Ve, and refine the conservation of lepton number into 
two separate laws - conservation of electron number and conservation of muon 
number - we can then account for all allowed and forbidden processes. Neutron 
beta decay becomes 

the pion decays are 

:rr- ➔ µ- +v,, 

:rr+ ➔ µ+ + v,, 

and the muon decays take the form 

µ- ➔ e- +Ve+ Vµ, 

µ+ ➔ e+ +Ve+ Vµ, 

(1.17) 

(1.18) 

(1.19) 

I said earlier that when pion decay was first analyzed it was 'natural' and 'economi­
cal' to assume that the outgoing neutral particle was the same as in beta decay, and 
that's quite true: it was natural and it was economical, but it was wrong. 

The first experimental test of the two-neutrino hypothesis (and the separate con­
servation of electron and muon number) was conducted at Brookhaven in 1962 [15]. 
Using about 1014 antineutrinos from :rr- decay, Lederman, Schwartz, Steinberger, 
and their collaborators identified 29 instances of the expected reaction 

(1.20) 

and no cases of the forbidden process 

(1.21) 

With only one kind of neutrino, the second reaction would be just as common 
as the first. (Incidentally, this experiment presented truly monumental shielding 
problems. Steel from a dismantled battleship was stacked up 44-feet thick, to make 
sure that nothing except neutrinos got through to the target.) 

I mentioned earlier that neutrinos are extremely light - in fact, until fairly 
recently it was widely assumed (for no particularly good reason) that they are 
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Table 1.1 The lepton family, 1962-1976 

Lepton Electron Muon 
number number number 

Leptons 
1 1 0 

v, 1 1 0 

J-l 0 1 

Vµ 1 0 1 
Antileptons 
e+ -1 -1 0 
v, -1 -1 0 
µ+ -1 0 -1 

iiµ -1 0 -1 

massless. This simplifies a lot of calculations, but we now know that it is not strictly 
true: neutrinos have mass, though we do not yet know what those masses are, 
except to reiterate that they are very small, even when compared to the electron's. 
What is more, over long distances neutrinos of one type can convert into neutrinos 
of another type (for example, electron neutrinos into muon neutrinos) - and back 
again, in a phenomenon known as neutrino oscillation. But this story belongs much 
later, and deserves a detailed treatment, so I'll save it for Chapter 11. 

By 1962, then, the lepton family had grown to eight: the electron, the muon, their 
respective neutrinos, and the corresponding antiparticles (Table 1.1). The leptons 
are characterized by the fact that they do not participate in strong interactions. For 
the next 14 years things were pretty quiet, as far as the leptons go, so this is a good 
place to pause and catch up on the strongly interacting particles - the mesons and 
baryons, known collectively as the hadrons. 

1.6 

Strange Particles (1947-1960) 

For a brief period in 1947, it was possible to believe that the major problems of 
elementary particle physics were solved. After a lengthy detour in pursuit of the 
muon, Yukawa's meson (then) had finally been apprehended. Dirac's positron 
had been found, and Pauli's neutrino, although still at large (and, as we have 
seen, still capable of making mischief), was widely accepted. The role of the muon 
was something of a puzzle ('Who ordered that?' Rabi asked) - it seemed quite 
unnecessary in the overall scheme of things. On the whole, however, it looked in 
1947 as though the job of elementary particle physics was essentially done. 

But this comfortable state did not last long [16]. In December of that year, 
Rochester and Butler [17] published the cloud chamber photograph shown in 
Figure 1.8 Cosmic ray particles enter from the upper left and strike a lead plate, 
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Fig. 1.7 The first strange particle. Cosmic rays strike a lead 
plate, producing a t<°, which subsequently decays into a pair 
of charged pions. (Photo courtesy of Prof. Rochester, G. D. 
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producing a neutral particle, whose presence is revealed when it decays into two 
charged secondaries, forming the upside-down 'V' in the lower right. Detailed analy­
sis indicated that these charged particles are in fact arr+ and arr- . Here, then, was a 
new neutral particle with at least twice the mass of the pion; we call it the K0 ('kaon'): 

(1.22) 

In 1949 Brown and her collaborators published the photograph reproduced in 
Figure 1.8, showing the decay of a charged kaon: 

(1.23) 

(The K0 was first known as the v0 and later as the 0°; the K+ was originally called 
the r+ . Their identification as neutral and charged versions of the same basic 
particle was not completely settled until 1956 - but that's another story, to which 
we shall return in Chapter 4.) The kaons behave in some respects like heavy pions, 
so the meson family was extended to include them. In due course, many more 
mesons were discovered - the T/ , the </J , thew, the p's, and so on. 

Meanwhile, in 1950 another neutral ' V' particle was found by Anderson's group 
at Cal Tech. The photographs were similar to Rochester's (Figure 1.7), but this time 
the products were a p+ and a rr- . Evidently, this particle is substantially heavier 
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Fig. 1.8 K+, entering from above, decays at A:K+ ➔ ,r+ 
+ ,r+ + ,r-. (The ,r- subsequently causes a nuclear dis­
integration at B.) (Source: Powell , C. F. Fowler, P. H. and 
Perkins, D. H. (1959) The Study of Elementary Particles by the 
Photographic Method, Pergamon, New York. First published 
in Nature, 163, 82 (1949).) 

than the proton; we call it the /\: 

(1.24) 

The lambda belongs with the proton and the neutron in the baryon family. To 
appreciate this, we must go back for a moment to 1938. The question had arisen, 
'Why is the proton stable?' Why, for example, doesn't it decay into a positron and a 
photon: 

(1.25) 
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Needless to say, it would be unpleasant for us if this reaction were common (all 
atoms would disintegrate), and yet it does not violate any law known in 1938. (It does 
violate conservation of lepton number, but that law was not recognized, remember, 
until 1953.) Stiickelberg [18] proposed to account for the stability of the proton by 
asserting a law of conservation of baryon number: assign to all baryons (which in 
1938 meant the proton and the neutron) a 'baryon number' A= +1, and to the 
anti baryons (p and n) A= - l; then the total baryon number is conserved in any phys-
ical process. Thus, neutron beta decay (n ---+ p+ + e- + v,) is allowed (A= 1 before 
and after), and so too is the reaction in which the antiproton was first observed: 

p+p---+ p+p+p+p (1.26) 

(A= 2 on both sides). But the proton, as the lightest baryon, has nowhere to go; 
conservation of baryon number guarantees its absolute stability.• If we are to retain 
the conservation of baryon number in the light of reaction (1.24), the lambda must 
be assigned to the baryon family. Over the next few years, many more heavy baryons 
were discovered - the :E's, the S's, the Li's, and so on. By the way, unlike leptons 
and baryons, there is no conservation of mesons. In pion decay (J!'- ---+ µ- + vµ) a 
meson disappears, and in lambda decay (A ---+ p+ + 7!'-) a meson is created. 

It is some measure of the surprise with which these new heavy baryons and 
mesons were greeted that they came to be known collectively as 'strange' particles. 
In 1952, the first of the modern particle accelerators (the Brookhaven Cosmotron) 
began operating, and soon it was possible to produce strange particles in the 
laboratory (before this the only source had been cosmic rays) ... and with this 
the rate of proliferation increased. Willis Lamb began his Nobel Prize acceptance 
speech in 1955 with the following words [19]: 

When the Nobel Prizes were first awarded in 1901, physicists 
knew something ofjust two objects which are now called "ele­
mentary particles": the electron and the proton. A deluge of oth­

er "elementary" particles appeared after 1930; neutron, neu­

trino, µ meson (sic), 7l' meson, heavier mesons, and various hy­
perons. I have heard it said that "the finder of a new elemen­
tary particle used to be rewarded by a Nobel Prize, but such a 

discovery now ought to be punished by a $10,000 fine". 

Not only were the new particles unexpected; there is a more technical sense 
in which they seemed 'strange': they are produced copiously (on a time scale of 
about 10-23 seconds), but they decay relatively slowly (typically about 10-10 sec­
onds). This suggested to Pais and others [20] that the mechanism involved in 

* 'Grand unified theories' (GUTs) allow for a 
minute violation of baryon number conser­
vation, and in these theories the proton is 
not absolutely stable (see Sections 2.6 and 
12.2). As of 2007, no proton decay has been 

observed, and its lifetime is known to exceed 
1029 years-which is pretty stable, when you 
consider that the age of the universe is about 
1010 years. 
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their production is entirely different from that which governs their disintegration. 
In modern language, the strange particles are produced by the strong force (the 
same one that holds the nucleus together), but they decay by the weak force (the 
one that accounts for beta decay and all other neutrino processes). The details of 
Pais's scheme required that the strange particles be produced in pairs (so-called 
associated production). The experimental evidence for this was far from clear at 
that time, but in 1953 Gell-Mann [21] and Nishijima [22] found a beautifully 
simple and, as it developed, stunningly successful way to implement and improve 
Pais's idea. They assigned to each particle a new property (Gell-Mann called it 
'strangeness') that (like charge, lepton number, and baryon number) is conserved 
in any strong interaction, but (unlike those others) is not conserved in a weak 
interaction. In a pion-proton collision, for example, we might produce two strange 
particles: 

:rr- + p+ ---+ K+ + :E­

---+ Ko+ :Eo 

(1.27) 

Here, the K's carry strangeness S = +1, the :E's and the A have S = -1, and 
the 'ordinary' particles - :rr, p, and n - have S = 0. But we never produce just one 
strange particle: 

T(- + p+ fr T(+ + :E­

fr :rro + A 

f*K0 +n 

On the other hand, when these particles decay, strangeness is not conserved: 

A ---+p++:rr­

:E+ ---+ p+ + :rro 

---+ n + :rr+ 

these are weak processes, which do not respect conservation of strangeness. 

(1.28) 

(1.29) 

There is some arbitrariness in the assignment of strangeness numbers, obviously. 
We could just as well have given S = +1 to the :E's and the A, and S = -1 to K+ 
and K0 ; in fact, in retrospect it would have been a little nicer that way. (In exactly 
the same sense, Benjamin Franklin's original convention for plus and minus 
charge was perfectly arbitrary at the time, and unfortunate in retrospect, since 
it made the current-carrying particle - the electron - negative.) The significant 
point is that there exists a consistent assignment of strangeness numbers to 
all the hadrons (baryons and mesons) that accounts for the observed strong 
processes and 'explains' why the others do not occur. (The leptons and the 



1.7 The Eightfold Way (1961-1964) 135 

photon don't experience strong forces at all, so strangeness does not apply to 
them.) 

The garden that seemed so tidy in 1947 had grown into a jungle by 1960, and 
hadron physics could only be described as chaos. The plethora of strongly interacting 
particles was divided into two great families - the baryons and the mesons - and 
the members of each family were distinguished by charge, strangeness, and mass; 
but beyond that there was no rhyme or reason to it all. This predicament reminded 
many physicists of the situation in chemistry a century earlier, in the days before 
the periodic table, when scores of elements had been identified, but there was no 
underlying order or system. In 1960, the elementary particles awaited their own 
'periodic table'. 

1.7 
The Eightfold Way (1961-1964) 

The Mendeleev of elementary particle physics was Murray Gell-Mann, who intro­
duced the so-called Eightfold Way in 1961 [23]. (Essentially the same scheme was 
proposed independently by Ne'eman.) The Eightfold Way arranged the baryons and 
mesons into weird geometrical patterns, according to their charge and strangeness. 
The eight lightest baryons fit into a hexagonal array, with two particles at the center:* 

n p 
S = 0 - - - --- - - - - --_____ .. 

S; -2 - - - - -- - - - -.. -----• 

\ 
\ 

a =-1 

),_ 

\ 
\ 

O=0 

\ 
\ 

\ 
\ 

\ 
\ 

\ 
\ 

\ 

a= +1 

The baryon octet 

This group is known as the baryon octet. Notice that particles oflike charge lie along 
the downward-sloping diagonal lines: Q = + 1 (in units of the proton charge) for 
the proton and the :E +; Q = 0 for the neutron, the A, the :E0 , and the s0 ; Q = -1 
for the :E- and the s-. Horizontal lines associate particles oflike strangeness: S = 0 
for the proton and neutron, S = -1 for the middle line, and S = -2 for the two S's. 

The eight lightest mesons fill a similar hexagonal pattern, forming the (pseudo­
scalar) meson octet: 

* The relative placement of the particles in the center is arbitrary, but in this book I shall always 
put the neutral member of the triplet (here the I: 0) above the singlet (here the A). 
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Ko 
S=l --------------.. 

S=-1---------+- \ 

\ 
\ 

\ 

,rD 

• • 1/ 

Q=-1 

\ 
\ 

\ 

Q=O 

\ 
\ 

\ 
\ 

\ 
\ 

\ 
\ 

\ 

0=1 

The meson octet 

Once again, diagonal lines determine charge and horizontal lines determine 
strangeness, but this time the top line has S = 1, the middle line S = 0, and the 
bottom line S = -1. (This discrepancy is again a historical accident; Gell-Mann 
could just as well have assigned S = 1 to the proton and neutron, S = 0 to the 
:E's and the A, and S = -1 to the S's. In 1953 he had no reason to prefer that 
choice, and it seemed most natural to give the familiar particles - proton, neutron, 
and pion - a strangeness of zero. After 1961, a new term - hypercharge - was 
introduced, which was equal to S for the mesons and to S + 1 for the baryons. But 
later developments revealed that strangeness was the better quantity after all, and 
the word 'hypercharge' has now been taken over for a quite different purpose.) 

Hexagons were not the only figures allowed by the Eightfold Way; there was 
also, for example, a triangular array, incorporating 10 heavier baryons - the baryon 
decuplet:* 

a-
s= 0 - - - - --------------------'\, 

S=-1 -----+-

S = -2 - - - - .-. 

s = -3 - - - - --+- n · 
\ 

\ 
\ 

\ 

\ 
\ 

1;<+ \ 
\ 

\ \ 

\ a= 2 
\ 

\ 
\ 

\ \ 

\ 
\ 

\ Q = 1 
\ 

\ 

\ 

Q=O 

Q = -1 

* In this book, for simplicity, I adhere to the old-fashioned notation in which the decuplet parti­
cles are designated :E* and 8*; modem usage drops the star and puts the mass in parentheses: 
:E(1385) and 8(1530). 
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Now, as Gell-Mann was fitting these particles into the decuplet, an absolutely 
lovely thing happened. Nine of the particles were known experimentally, but 
at that time the tenth particle (the one at the very bottom, with a charge of 
-1 and strangeness -3) was missing; no particle with these properties had 
ever been detected in the laboratory [24]. Gell-Mann boldly predicted that such 
a particle would be found, and told the experimentalists exactly how to pro­
duce it. Moreover, he calculated its mass (as you can for yourself, in Problem 
1.6) and its lifetime (Problem 1.8) - and sure enough, in 1964 the famous 
omega-minus particle was discovered [25], precisely as Gell-Mann had predicted 
(see Figure 1.9).* 

Since the discovery of the omega-minus (Q-), no one has seriously doubted 
that the Eightfold Way is correct. Over the next 10 years, every new hadron 
found a place in one of the Eightfold Way supennultiplets. Some of these are 
shown in Figure 1.10( In addition to the baryon octet, decuplet, and so on, 
there exist of course an antibaryon octet, decuplet, etc, with opposite charge 
and opposite strangeness. However, in the case of the mesons, the antiparticles 
lie in the same supennultiplet as the corresponding particles, in the diametri­
cally opposite positions. Thus the antiparticle of the pi-plus is the pi-minus, the 
anti-K-minus is the K-plus, and so on (the pi-zero and the eta are their own 

antiparticles). 
Classification is the first stage in the development of any science. The Eightfold 

Way did more than merely classify the hadrons, but its real importance lies in the 
organizational structure it provided. I think it's fair to say that the Eightfold Way 
initiated the modern era in particle physics. 

1.8 
The Quark Model (1964) 

But the very success of the Eightfold Way begs the question: why do the hadrons 
fit into these bizarre patterns? The periodic table had to wait many years for 
quantum mechanics and the Pauli exclusion principle to provide its explanation. 
An understanding of the Eightfold Way, however, came already in 1964, when 
Gell-Mann and Zweig independently proposed that all hadrons are in fact composed 
of even more elementary constituents, which Gell-Mann called quarks [26]. The 

* A similar thing happened in the case of the periodic table. There were three famous 'holes' 
(missing elements) on Mendeleev's chart, and he predicted that new elements would be discov­
ered to fill in the gaps. Like Gell-Mann, he confidently described their properties, and within 20 
years all three - gallium, scandium, and germanium - were found. 

"i" To be sure, there were occasional false alarms - particles that did not seem to fit Gell-Mann's 
scheme - but they always turned out to be experimental errors. Elementary particles have a way 
of appearing and then disappearing. Of the 26 mesons listed on a standard table in 1963, 19 
were later found to be spurious! 



Fi
g.

 1
.9

 T
he

 d
is

co
ve

ry
 o

f 
th

e 
n

-.
 T

he
 a

ct
ua

l 
bu

bb
le

 
ch

am
be

r 
ph

ot
og

ra
ph

 i
s 

sh
ow

n 
on

 t
he

 l
ef

t;
 a

 l
in

e 
di

ag
ra

m
 

of
 th

e 
re

le
va

nt
 t

ra
ck

s 
is 

on
 t

he
 r

ig
ht

. 
(P

ho
to

 c
ou

rt
es

y 
B

ro
ok

ha
ve

n 
N

at
io

na
l 

L
ab

or
at

or
y

.)
 

I I I I I 
'Y

 
I I 

I 
I 

I 

\ 
/ 

A
0 

I 
I 

K
+

 1
1 

I 
.,,

.,,
. 

I 
I 

,,.
.,,

.. 
11

 
,,.

.,,
.. 

, 
, 

,,.
.,,

.. 
'Y

 
,, 

,,.. 
I I I I I 

K
0 

I I I 

,, 
,,..,

,.. 
k 

,,..
,,..

 
,.. ..

.. 
I I :

;;o
 

I 
,,-

n
-

K
-

"' 00 ~ 0 i a c:l t a·
 

"' 0 i ~
 

3 ~ l3'
 

~
 ~
 

;:i
. ~ 



6) K•O K•+ 

_r::\' 
p \::_VP 

K•- i<•O 

Fig. 1.10 Some meson nonets, labeled in 
spectroscopic notation (see Chapter 5). 
There are now at least 15 established nonets 
(though in some cases not all members 
have been discovered). For the baryons there 
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0 K~A K:A 

··0•: 
K,-A K1'i 

are three complete octets (with spins l /2, 
3/2, and 5/2) and 10 others partly filled; 
there is only one complete decuplet, but 6 
more are partly filled, and there are three 
known singlets. 

quarks come in three types (or 'flavors'), forming a triangular 'Eightfold-Way' 
pattern: 

\ 
\ 
\ 
\ 
\ 

\ 

s=O-------+-yd u 

\ 
Q-2 s=-1--------- 5 -3 

\ 
\ 

\ 
\ 
\ 
\ 

'a=-..!. 
3 

The quarks 

The u (for 'up') quark carries a charge of i and a strangeness of zero; the d ('down') 
quark carries a charge of-½ and S = O; the s (originally 'sideways', but now more 
commonly 'strange') quark carries a charge of-½ and S = -1. To each quark (q) 
there corresponds an antiquark (q), with the opposite charge and strangeness: 

The antiquarks 
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And there are two composition rules: 
1. Every baryon is composed of three quarks (and every 

antibaryon is composed of three antiquarks). 
2. Every meson is composed of a quark and an antiquark. 

With this, it is a matter of elementary arithmetic to construct the baryon decuplet 
and the meson octet. All we need to do is list the combinations of three quarks (or 
quark-antiquark pairs) and add up their charge and strangeness: 

The baryon decuplet 

qqq Q s Baryon 

uuu 2 0 t:,.++ 

uud 1 0 t:,.+ 

udd 0 0 t:,.O 

ddd -1 0 1:,.-

uus 1 -1 1;•+ 

uds 0 -1 1:•0 

dds -1 -1 1;•-

USS 0 -2 S*o 

dss -1 -2 3*-

sss -1 -3 Q-

Notice that there are 10 combinations of three quarks. Three u's, for instance, 
at Q = t each, yield a total charge of +2 and a strangeness of zero. This is the 
!:,. ++ particle. Continuing down the table, we find all the members of the decuplet 
ending with the n-, which is evidently made of three s quarks. 

A similar enumeration of the quark-antiquark combinations yields the meson 
table: 

The meson nonet 

qq Q s Meson 

uu 0 0 :rro 

ud 1 0 :rr+ 

cru -1 0 :rr 

dd 0 0 T/ 
us 1 1 K+ 
ds 0 1 Ko 
SU -1 -1 K-
sd 0 -1 K° 
ss 0 0 ?? 
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But wait! There are nine combinations here, and only eight particles in the meson 
octet. The quark model requires that there be a third meson (in addition to then° 
and the 1J) with Q = 0 and S = 0. As it turns out, just such a particle had already 
been found experimentally - the 1)1• In the Eightfold Way, the 1)1 had been classified 
as a singlet, all by itself. According to the quark model, it properly belongs with the 
other eight mesons to form the meson nonet. (Actually, since uu, dd, and ss all have Q 
= 0 and S = 0, it is not possible to say, on the basis of anything we have done so far, 
which is then°, which the 1), and which the 1)1 • But never mind, the point is that there 
are three mesons with Q = S = 0.) By the way, the antimesons automatically fall in 
the same supermultiplet as the mesons: ud is the antiparticle of au, and vice versa. 

You may have noticed that I avoided talking about the baryon octet - and it is 
far from obvious how we are going to get eight baryons by putting together three 
quarks. In truth, the procedure is perfectly straightforward, but it does call for some 
facility in handling spins, and I would rather save the details for Chapter 5. For now, 
I'll just tantalize you with the mysterious observation that if you take the decuplet 
and knock off the three corners (where the quarks are identical - uuu, ddd, and sss) 
and double the center (where all three are different - uds), you obtain precisely the 
eight states in the baryon octet. So the same set of quarks can account for the octet; 
it's just that some combinations do not appear at all, and one appears twice. 

Indeed, all the Eightfold Way supermultiplets emerge naturally in quark model. 
Of course, the same combination of quarks can go to make a number of different 
particles: the delta-plus and the proton are both composed of two u's and a d; the 
pi-plus and the rho-plus are both ud, and so on. Just as the hydrogen atom (electron 
plus proton) has many different energy levels, a given collection of quarks can 
bind together in many different ways. But whereas the various energy levels in 
the electron/proton system are relatively close together (the spacings are typically 
several electron volts, in an atom whose rest energy is nearly 109 eV), so that we 
naturally think of them all as 'hydrogen', the energy spacings for different states 
of a bound quark system are very large, and we normally regard them as distinct 
particles. Thus we can, in principle, construct an infinite number of hadrons out of 
only three quarks. Notice, however, that some things are absolutely excluded in the 
quark model: for example, a baryon with S = 1 or Q = -2; no combination of the 
three quarks can produce these numbers (though they do occur for antibaryons). 
Nor can there be a meson with a charge of +2 (like the/';.++ baryon) or a strangeness 
of -3 (like the r.i-). For a long time, there were major experimental searches for 
these so-called 'exotic' particles; their discovery would be devastating for the quark 
model, but none has ever been found (see Problem 1.11). 

The quark model does, however, suffer from one profound embarrassment: 
in spite of the most diligent search, no one has ever seen an individual quark. 
Now, if a proton is really made out of three quarks, you'd think that if you hit 
one hard enough, the quarks ought to come popping out. Nor would they be 
hard to recognize, carrying as they do the unmistakable fingerprint of fractional 
charge - an ordinary Millikan oil drop experiment would clinch the identification. 
Moreover, at least one of the quarks should be absolutely stable; what could it decay 
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Fig. 1.11 (a) In Rutherford scattering, the 
number of particles deflected through large 
angles indicates that the atom has internal 
structure (a nucleus). (b) In deep inelastic 
scattering, the number of particles deflected 
through large angles indicates that the pro• 
ton has internal structure (quarks). The 
dashed lines show what you would expect 

if the positive charge were uniformly dis­
tributed over the volume of (a) the atom, 
(b) the proton. (Source: Halzen, F. and Mar­
tin, A. D. (1984) Quarks and Leptons, John 
Wiley & Sons, New York, p. 17. Copyright © 
John Wiley & Sons, Inc. Reprinted by permis­
sion.) 

into, since there is no lighter particle with fractional charge? So quarks ought to be 
easy to produce, easy to identify, and easy to store, and yet, no one has ever found one. 

The failure of experiments to produce isolated quarks occasioned widespread 
skepticism about the quark model in the late 1960s and early 1970s. Those who 
clung to the model tried to conceal their disappointment by introducing the notion 
of quark confinement: perhaps, for reasons not yet understood, quarks are absolutely 
confined within baryons and mesons, so that no matter how hard you try, you 
cannot get them out. Of course, this doesn't explain anything, it just gives a 
name to our frustration. But it does pose sharply a critical theoretical question 
that is still not completely answered: what is the mechanism responsible for quark 
confinement? [27] 

Even if all quarks are stuck inside hadrons, this does not mean they are 
inaccessible to experimental study. One can explore the interior of a proton in 
much the same way as Rutherford probed the inside of an atom - by firing things 
into it. Such experiments were carried out in the late 1960s using high-energy 
electrons at the Stanford Linear Accelerator Center (SLAC). They were repeated in 
the early 1970s using neutrino beams at CERN, and later still using protons. The 
results of these so-called 'deep inelastic scattering' experiments [28] were strikingly 
reminiscent of Rutherford's (Figure 1.11): most of the incident particles pass right 
through, whereas a small number bounce back sharply. This means that the charge 
of the proton is concentrated in small lumps, just as Rutherford's results indicated 
that the positive charge in an atom is concentrated at the nucleus [29]. However, 
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in the case of the proton the evidence suggests three lumps, instead of one. This is 
strong support for the quark model, obviously, but still not conclusive. 

Finally, there was a theoretical objection to the quark model: it appears to vi­
olate the Pauli exclusion principle. In Pauli's original formulation, the exclusion 
principle states that no two electrons can occupy the same state. However, it was 
later realized that the same rule applies to all particles of half-integer spin (the 
proof of this is one of the most important achievements of quantum field theory). 
In particular, the exclusion principle should apply to quarks, which, as we shall 
see, must carry spin ½- Now the ~ ++, for instance, is supposed to consist of three 
identical u quarks in the same state; it (and also the ~ - and the n-) appear to be 
inconsistent with the Pauli principle. In 1964, 0. W. Greenberg proposed a way 
out of this dilemma [30]. He suggested that quarks not only come in three flavors 
(u, d, ands) but each of these also comes in three colors ('red', 'green', and 'blue', 
say). To make a baryon, we simply take one quark of each color; then the three u's 
in~++ are no longer identical (one's red, one's green, and one's blue). Since the 
exclusion principle only applies to identical particles, the problem evaporates. 

The color hypothesis sounds like sleight of hand, and many people initially 
considered it the last gasp of the quark model. As it turned out, the introduction of 
color was extraordinarily fruitful [31]. I need hardly say that the term 'color' here 
has absolutely no connection with the ordinary meaning of the word. Redness, 
blueness, and greenness are simply labels used to denote three new properties that, 
in addition to charge and strangeness, the quarks possess. A red quark carries 
one unit of redness, zero blueness, and zero greenness; its antiparticle carries 
minus one unit of redness, and so on. We could just as well call these quantities 
X-ness, Y-ness, and Z-ness, for instance. However, the color terminology has one 
especially nice feature: it suggests a delightfully simple characterization of the 
particular quark combinations that are found in nature. 

All naturally occurring particles are colorless. 

By 'colorless' I mean that either the total amount of each color is zero or all 
three colors are present in equal amounts. (The latter case mimics the optical 
fact that light beams of three primary colors combine to make white.) This clever 
rule 'explains' (if that's the word for it) why you can't make a particle out of two 
quarks, or four quarks, and for that matter why individual quarks do not occur in 
nature. The only colorless combinations you can make are qq (the mesons), qqq 
(the baryons), and qqq (the antibaryons).* 

* Of course, you can package together combi­
nations of these - the deuteron, for example, 
is a six quark state (three u's and three d's). 
In 2003, there was a flurry of excitement 
over the apparent observation of four-quark 
'mesons' (actually, qqqq) and pentaquark 
'baryons' (qqqqq). The latter now appear to 

have been statistical artifacts (32], but in at 
least one meson case (the so-called X(3872) 
discovered at KEK in Japan), the four-quark 
interpretation seems to be holding up, though 
it is still not clear whether it is best thought 
of as a DD* 'molecule' or as a meson in its 
own right (33]. 
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1.9 
The November Revolution and Its Aftermath (1974-1983 and 1995) 

The decade from 1964 to 1974 was a barren time for elementary particle physics. 
The quark model, which had seemed so promising at the beginning, was in 
an uncomfortable state of limbo by the end. It had some striking successes: it 
neatly explained the Eightfold Way, and correctly predicted the lumpy structure 
of the proton. But it had two conspicuous defects: the experimental absence 
of free quarks and inconsistency with the Pauli principle. Those who liked the 
model papered over these failures with what seemed at the time to be rather 
transparent rationalizations: the idea of quark confinement and the color hy­
pothesis. But I think it is safe to say that by 1974 most elementary particle 
physicists felt queasy, at best, about the quark model. The lumps inside the pro­
ton were called partons, and it was unfashionable to identify them explicitly with 
quarks. 

Curiously enough, what rescued the quark model was not the discovery of 
free quarks, or an explanation of quark confinement, or confirmation of the 
color hypothesis, but something entirely different and (almost) [34] completely 
unexpected: the discovery of the psi meson. The v, was first observed at Brookhaven 
by a group under C. C. Ting, in the summer of 1974. But Ting wanted to check 
his results before announcing them publicly, and the discovery remained an 
astonishingly well-kept secret until the weekend of November 10-11, when the 
new particle was discovered independently by Burton Richter's group at SlAC. 
The two teams then published simultaneously [35], Ting naming the particle ], 
and Richter calling it v,. The j/ij, was an electrically neutral, extremely heavy 
meson - more than three times the weight of a proton (the original notion that 
mesons are 'middle-weight' and baryons 'heavy-weight' had long since gone by the 
boards). But what made this particle so unusual was its extraordinarily long lifetime, 
for the v, lasted fully 10-20 seconds before disintegrating. Now, 10-20 seconds may 
not impress you as a particularly long time, but you must understand that the 
typical lifetimes for hadrons in this mass range are on the order of 10-23 seconds. 
So the v, has a lifetime about a 1000 times longer than any comparable particle. It's 
as though someone came upon an isolated village in Peru or the Caucasus where 
people live to be 70 000 years old. That wouldn't just be some actuarial anomaly, it 
would be a sign of fundamentally new biology at work. And so it was with the v,: its 
long lifetime, to those who understood, spoke of fundamentally new physics. For 
good reason, the events precipitated by the discovery of the v, came to be known as 
the November Revolution [36]. 

In the months that followed, the true nature of the v, meson was the subject of 
lively debate, but the explanation that won was provided by the quark model: the 
v, is a bound state of a new (fourth) quark, the c (for charm) and its antiquark, 
v, = (cc). Actually, the idea of a fourth flavor, and even the whimsical name, had 
been introduced many years earlier by Bjorken and Glashow [37]. There was an 
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intriguing parallel between the leptons and the quarks: 

Leptons : e, v,, µ,, vµ 

Quarks : d, u, s 

If all mesons and baryons are made out of quarks, these two families are left as the 
truly fundamental particles. But why four leptons and only three quarks? Wouldn't 
it be nicer if there were four of each? Later, Glashow, Iliopoulos, and Maiani [38] 
offered more compelling technical reasons for wanting a fourth quark, but the 
simple idea of a parallel between quarks and leptons is another of those far-fetched 
speculations that turned out to have more substance than their authors could have 
imagined. 

So when the 1/; was discovered, the quark model was ready and waiting with an 
explanation. Moreover, it was an explanation pregnant with implications. For if a 
fourth quark exists, there should be all kinds of new baryons and mesons, carrying 
various amounts of charm. Some of these are shown in Figure 1.12; you can work 
out the possibilities for yourself (Problems 1.14 and 1.15). Notice that the 1/; itself 

(a) 
'Pl;::"-;,;,;;--t-~--=c;;--:-i,L;+ 

+ 

~ ~ 

(b) 

s "'L1++ 
es;:-~;;,-~,,;-j----''--'=u~u·d,--"',;,:;. 

r dds u s•L u. 

Fig. 1.12 Supermultiplets constructed using four-quark fla­
vors: baryons (a and b) and mesons (c and d). (Source: 
Review of Particle Physics.) 
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carries no net charm, for if the c is assigned a charm of+ 1, then c will have a charm 
of-1; the charm of the ijr is, if you will, 'hidden'. To confirm the charm hypothesis, 
it was important to produce a particle with 'naked' (or 'bare') charm [39]. The first 
evidence for charmed baryons (At = udc and 1::,+ = uuc) appeared already in 
1975 (Figure 1.13) [40], followed later by S, = usc and S1, = ssc. (In 2002 there were 
hints of the first doubly charmed baryon at Fermilab.) The first charmed mesons 
(D0 = cu and D+ = cd) were discovered in 1976 [41], followed by the charmed 
strange meson (D; = cs) in 1977 [42]. With these discoveries, the interpretation of 
the ijr as cc was established beyond reasonable doubt. More important, the quark 
model itself was put back on its feet. 

However, the story does not end there, for in 1975 a new lepton was discovered 
[43], spoiling Glashow's symmetry. This new particle (the tau) has its own neutrino, 
so we are up to six leptons, and only four quarks. But don't despair, because 2 years 
later a new heavy meson (the upsilon) was discovered [44], and quickly recognized 
as the carrier of a fifth quark, b (for beauty, or bottom, depending on your taste): 
T = bb. Immediately the search began for hadrons exhibiting 'naked beauty', or 
'bare bottom.' (I'm sorry. I didn't invent this terminology. In a way, its silliness is 
a reminder of how wary people were of taking the quark model seriously, in the 
early days.) The first bottom baryon, AZ= udb, was observed in the 1980's, and the 
second (I:t = uub) in 2006; in 2007 the first baryon with a quark from all three 
generations was discovered (Sb = dsb). The first bottom mesons (B0 = bd and 
B- = bu) were found in 1983 [45]. The B0 JB0 system has proven to be especially 
rich, and so-called 'B factories' are now operating at SLAC ('BaBar') and KEK 
('Belle'). The Particle Physics Booklet also lists B? = sb and Bt = cb. 

At this point, it didn't take a genius to predict that a sixth quark (t, for truth, 
of course, or top) would soon be found, restoring Glashow's symmetry with six 
quarks and six leptons. But the top quark turned out to be extraordinarily heavy 
and frustratingly elusive (at 174 GeV/c2 , it is over 40 times the weight of the 
bottom quark). Early searches for 'toponium' (a it meson analogous to the ijr and 
T) were unsuccessful, both because the electron-positron colliders did not reach 
high enough energy and because, as we now realize, the top quark is simply too 
short-lived to form bound states - apparently there are no top baryons and mesons. 
The top quark's existence was not definitively established until 1995, when the 
Tevatron finally accumulated enough data to sustain stro~g indications from the 
previous year [46]. (The basic reaction is u + u (or d + d) ➔ t + t; the top and 
anti-top immediately decay, and it is by analyzing the decay products that one is 
able to infer their fleeting appearance.) Until the LHC begins operation, Fermilab 
will be the only accelerator in the world capable of producing top quarks. 

1.10 
Intermediate Vector Bosons (1983) 

In his original theory of beta decay (1933), Fermi treated the process as a contact 
interaction, occurring at a single point, and therefore requiring no mediating 
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particle. As it happens, the weak force (which is responsible for beta decay) is of 
extremely short range, so that Fermi's model was not far from the truth, and yields 
excellent approximate results at low energies. However, it was widely recognized 
that this approach was bound to fail at high energies and would eventually have 
to be supplanted with a theory in which the interaction is mediated by the 
exchange of some particle. The mediator came to be known by the prosaic name 
intennediate vector boson. The challenge for theorists was to predict the properties 
of the intermediate vector boson, and for experimentalists, to produce one in the 
laboratory. You may recall that Yukawa, faced with the analogous problem for the 
strong force, was able to estimate the mass of the pion in terms of the range of 
the force, which he took to be roughly the same as the size of a nucleus. But we 
have no corresponding way to measure the range of the weak force; there are no 
'weak bound states' whose size would inform us - the weak force is simply too 
feeble to bind particles together. For many years, predictions of the intermediate 
vector boson mass were little more than educated guesses (the 'education' coming 
largely from the failure of experiments at progressively higher energies to detect 
the particle). By 1962, it was known that the mass had to be at least half the 
proton mass; 10 years later the experimental lower limit had grown to 2.5 proton 
masses. 

But it was not until the emergence of the electroweak theory of Glashow, 
Weinberg, and Salam that a really firm prediction of the mass became pos­
sible. In this theory, there are in fact three intermediate vector bosons, two 
of them charged (W±) and one neutral (Z). Their masses were calculated to 
be [47] 

Mw = 82 ± 2GeV/c2 , Mz = 92 ± 2GeV/c2 (predicted) (1.30) 

In the late 1970s, CERN began construction of a proton-antiproton collider de­
signed specifically to produce these extremely heavy particles (bear in mind that 
the mass of the proton is 0.94 GeV /c2, so we're talking about something nearly 
100 times as heavy). In January 1983, the discovery of the W was reported by Carlo 
Rubbia's group [48], and 5 months later the same team announced discovery of the 
Z [49]. Their measured masses are 

Mw = 80.403 ± 0.029GeV/c2, Mz = 91.188±0.002GeV/c2 (measured) 
(1.31) 

These experiments represent an extraordinary technical triumph [50], and they 
were of fundamental importance in confirming a crucial aspect of the Standard 
Model, to which the physics community was by that time heavily committed (and 
for which a Nobel Prize had already been awarded). Unlike the strange particles 
or the 1/r, however, (but like the top quark a decade later) the intermediate vector 
bosons were long awaited and universally expected, so the general reaction was a 
sigh of relief, not shock or surprise. 
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1.11 
The Standard Model (1978-?) 

In the current view, then, all matter is made out of three kinds of elementary 
particles: leptons, quarks, and mediators. There are six leptons, classified according 
to their charge (Q), electron number (le), muon number (11,), and tau number 
(Lr). They fall naturally into three generations: 

First generation 

Second generation 

Third generation 

l 
e 

Ve 

µ 
Vµ 

T 

VT 

Lepton classification 

Q Le Lµ L, 

-1 1 0 0 
0 1 0 0 

-1 0 1 0 
0 0 1 0 

-1 0 0 1 
0 0 0 1 

There are also six antileptons, with all the signs reversed. The positron, for example, 
carries a charge of +1 and an electron number -1. So there are really 12 leptons, 
all told. 

Similarly, there are six 'flavors' of quarks, classified by charge, strangeness (S), 
charm (C), beauty (B), and truth (T). (For consistency, I suppose we should include 
'upness', U, and 'downness', D, although these terms are seldom used. They are 
redundant, inasmuch as the only quark with S = C = B = T = 0 and Q = i, for 
instance, is the up quark, so it is not necessary to specify U = l and D = 0 as well.) 
The quarks, too, fall into three generations: 

First generation 

Second generation 

Third generation 

q 
d 
u 
s 
C 

b 
t 

Q 
-1/3 

2/3 
-1/3 

2/3 
-1/3 

2/3 

Quark classification 
D u s C B T 
-1 0 0 0 0 0 
0 1 0 0 0 0 
0 0 -1 0 0 0 
0 0 0 1 0 0 
0 0 0 0 -1 0 
0 0 0 0 0 1 

Again, all signs would be reversed on the table of antiquarks. Meanwhile, each 
quark and antiquark comes in three colors, so there are 36 of them in all. 

Finally, every interaction has its mediator - the photon for the electromagnetic 
force, two W's and a Z for the weak force, the graviton (presumably) for gravity 
... but what about the strong force? In Yukawa's original theory the mediator of 
strong forces was the pion, but with the discovery of heavy mesons this simple 
picture could not stand; protons and neutrons could now exchange p's and 17's 
and K's and <f>'s and all the rest of them. The quark model brought an even more 
radical revision: for if protons, neutrons, and mesons are complicated composite 
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Fig. 1.14 The three generations of quarks and leptons, in order of increasing mass. 

structures, there is no reason to believe their interaction should be simple. To study 
the strong force at the fundamental level, one should look, rather, at the interaction 
between individual quarks. So the question becomes: what particle is exchanged 
between two quarks, in a strong process? This mediator is called the gluon, and in 
the Standard Model there are eight of them. As we shall see, the gluons themselves 
carry color, and therefore (like the quarks) should not exist as isolated particles. We 
can hope to detect gluons only within hadrons or in colorless combinations with 
other gluons (glueballs). Nevertheless, there is substantial indirect experimental 
evidence for the existence of gluons: the deep inelastic scattering experiments 
showed that roughly half the momentum of a proton is carried by electrically 
neutral constituents, presumably gluons; the jet structure characteristic of inelastic 
scattering at high energies can be explained in terms of the disintegration of quarks 
and gluons in flight (51] and glueballs may conceivably have been observed (52]. 

This is all adding up to an embarrassingly large number of supposedly 'elemen­
tary' particles: 12 leptons, 36 quarks, 12 mediators (I won't count the graviton, 
since gravity is not included in the Standard Model). And, as we shall see later, the 
Glashow-Weinberg-Salam theory calls for at least one Higgs particle, so we have 
a minimum of 61 particles to contend with. Informed by our experience first with 
atoms and later with hadrons, many people have suggested that some, at least, of 
these 61 must be composites of more elementary subparticles (see Problem 1.18) 
(53]. Such speculations lie beyond the Standard Model and outside the scope of 
this book. Personally, I do not think the large number of 'elementary' particles in 
the Standard Model is by itself alarming, for they are tightly interrelated. The eight 
gluons, for example, are identical except for their colors, and the second and third 
generations mimic the first (Figure 1.14). 

Still, it does seem odd that there should be three generations of quarks and 
leptons - after all, ordinary matter is made of up and down quarks (in the form of 
protons and neutrons) and electrons, all drawn from the first generation. Why are 
there two 'extra' generations; who needs 'em? It's a peculiar question, presuming 
a kind of purpose and efficiency on the part of the creator for which there is 
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little evidence ... but one can't help wondering. Actually, there is a surprising 
answer: as we shall see, the predominance of matter over antimatter admits a 
plausible accounting within the Standard Model, but only if there are (at least) 
three generations. 

Of course, this begs the reverse question: why are there only three generations? 
Indeed, could there be more of them, which have not yet been discovered (presum­
ably because they are too heavy to be made with existing machines)? As recently as 
1988 [54], there were good reasons to anticipate a fourth generation, and perhaps 
even a fifth. But within a year that possibility was foreclosed by experiments at 
SLAC and CERN [55]. The z0 is (as Saddam would say) the 'mother of all particles', 
in the sense that it can decay (with a precisely calculable probability) into any 

quark/antiquark or lepton/antilepton pair (e- + e+, u + u, vµ + vµ, etc.), provided 
only that the particle's mass is less than half that of the z0 (else there wouldn't be 
enough energy to make the pair). So by measuring the lifetime of the zo you can 
actually count the number of quarks and leptons with mass less than 45 GeV/c2 • 

The more there are, the shorter the lifetime of the z0, just as the more fatal diseases 
we are susceptible to the shorter our average lifespan becomes. The experiments 
show that the lifetime of the z0 is exactly what you would expect on the basis of 
the established three generations. Of course, the quarks (and conceivably even the 
charged lepton) in a putative fourth generation might be too heavy to affect the zo 
lifetime, but it is hardly to be imagined that the fourth neutrino would suddenly 
jump to over 45 GeV/c2• At any rate, what the experiments do unequivocally show 
is that the number of light neutrinos is 2.99 ± 0.06. 

Although the Standard Model has survived unscathed for 30 years, it is certainly 
not the end of the story. There are many important issues that it simply does not 
address - it does not, for example, tell us how to calculate the quark and lepton 
masses.* 

Quark and lepton masses (in MeV /c2) 

lepton mass quark mass 
Ve <2 X 10-G u 2 
Vu <0.2 d 5 
Vr <18 s 100 
e 0.511 C 1200 
µ 106 b 4200 
i 1777 t 174000 

In the Standard Model, these are simply empirical numbers, taken from experi­
ment, but a mature theory, presumably, would explain them, just as we can for 
the atoms on the periodic table.I As we shall see, the Standard Model also takes as 
empirical input three angles and a phase in the Kobayashi-Maskawa matrix, and 
analogous numbers for the leptons, and the Weinberg angle describing electroweak 

* There is substantial uncertainty in the light quark masses; I have rounded them off for the sake 
of clarity. 

t Note, however, that the quark/lepton mass formula is going to look very strange, since it has to 
cover a range of at least 11 powers of 10, from the electron neutrino to the top quark. 
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mixing, and ... all told, there are over 20 arbitrary parameters in the Standard 
Model, and this is simply unacceptable in any 'final' theory [56]. 

On the experimental side, there remains much to be learned about neutrino 
oscillations (see Chapter 11), and CP violation (Chapter 12), but the most conspic­
uous missing link is the Higgs particle, which is necessary in the Standard Model 
to account for the masses of the Wand Z (and perhaps all other particles as well). 
Like the top quark, the predicted mass of the Higgs has increased with time, as 
each new experiment failed to discover it. At this point, it is presumably beyond the 
range of any existing accelerator, and, since the cancellation of the SSC, the LHC 
is our best hope for finding this elusive particle. 

Meanwhile, there are a number of theoretical speculations (supported as yet by 
no direct experimental evidence) that go beyond the Standard Model. There are the 
Grand Unified Theories (GUTs) that link the strong, electromagnetic, and weak 
interactions (Chapter 2); these are so widely accepted, at least in some form, as to be 
practically orthodox. Also very attractive to theorists is the idea of 'supersymmetry' 
(SUSY), which (among other things) would double the number of particles, 
associating with every fermion a boson, and vice versa. Thus the leptons would 
be joined by 'sleptons' ('selectrons', 'sneutrinos', etc.) and quarks by 'squarks'; 
the mediators would acquire twins (the 'photino', 'gluino', 'wino', and 'zino'). 
If subquarks or supersymmetric particles are discovered, this will be huge news, 
resetting the whole agenda for the next era in elementary particle physics. But except 
for several tantalizing false alarms [57], no evidence for either has yet appeared. 

And then there is superstring theory, which since 1984 has captured the 
imagination of an entire generation of particle theorists. Superstrings promise 
not only to reconcile quantum mechanics and general relativity, and to eliminate 
the infinities that plague quantum field theory, but also to provide a unified 'theory 
of everything', from which all of elementary particle physics (including gravity) 
would emerge as an inescapable consequence. String theory has certainly enjoyed 
a brilliant and adventurous youth; it remains to be seen whether it can deliver on 
its extravagant ambition [58]. 
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Problems 

1.1 If a charged particle is undeflected in passing through uniform crossed electric and 
magnetic fields E and B (mutually perpendicular and both perpendicular to the direction 
of motion), what is its velocity? If we now tum off the electric field, and the particle 
moves in an arc of radius R, what is its charge-to-mass ratio? 

1.2 The mass of Yukawa's meson can be estimated as follows. When two protons in a 
nucleus exchange a meson (mass m), they must temporarily violate the conservation of 
energy by an amount mc2 (the rest energy of the meson). The Heisenberg uncertainty 
principle says that you may 'borrow' an energy fl£, provided you 'pay it back' in a time 
flt given by fl£ flt= li/2 (where Ii ea h/2n). In this case, we need to borrow fl£= mc2 

long enough for the meson to make it from one proton to the other. It has to cross the 
nucleus (size r0), and it travels, presumably, at some substantial fraction of the speed of 
light, so, roughly speaking, flt= r0/c. Putting all this together, we have 

ti 
m=--

2roc 

Using r0 = 10-13 cm (the size of a typical nucleus), calculate the mass of Yukawa's 
meson. Express your answer in MeV /c2 , and compare the observed mass of the pion. 
[Comment: If you find that argument compelling, I can only say that you're pretty 
gullible. Try it for an atom, and you'll conclude that the mass of the photon is about 
7 x 10-30 g, which is nonsense. Nevertheless, it is a useful device for 'back-of-the­
envelope' calculations, and it does very well for the pi meson. Unfortunately, many 
books present it as though it were a rigorous derivation, which it certainly is not. The 
uncertainty principle does not license violation of conservation of energy (nor does 
any such violation occur in this process; we shall see later on how this comes about). 
Moreover, it's an inequality, flE flt 2: li/2, which at most could give you a lower bound 
on m. It is typically true that the range of a force is inversely proportional to the mass of 
the mediator, but the size of a bound state is not always a good measure of the range. 
(That's why the argument fails for the photon: the range of the electromagnetic force is 
infinite, but the size of an atom is not.) In general, when you hear a physicist invoke the 
uncertainty principle, keep a hand on your wallet.] 

1.3 In the period before the discovery of the neutron, many people thought that the nucleus 
consisted of protons and electrons, with the atomic number equal to the excess number 
of protons. Beta decay seemed to support this idea - after all, electrons come popping 
out; doesn't that imply that there were electrons inside? Use the position-momentum 
uncertainty relation, flx flp 2: li/2, to estimate the minimum momentum of an electron 
confined to a nucleus (radius 10-13 cm). From the relativistic energy-momentum 
relation, £2 - p2c2 = m2c4, determine the corresponding energy and compare it with 
that of an electron emitted in, say, the beta decay of tritium (Figure 1.5). (This result 
convinced some people that the beta decay electron could not have been rattling around 
inside the nucleus, but must be produced in the disintegration itself.) 

1.4 The Gell-Mann/Okubo mass formula relates the masses of members of the baryon octet 
(ignoring small differences between p and n; I;+, I:0 , and E-; and s 0 and s-): 

Using this formula, together with the known masses of the nucleon N (use the average 
of p and n), E (again, use the average), and S (ditto), 'predict' the mass of the A. How 
close do you come to the observed value? 



1. 11 The Standard Model (1978-?) 157 

1.5 The same formula applies to the mesons (with E ➔ rc, A ➔ CJ, etc.), except that in this 
case, for reasons that remain something of a mystery, you must use the squares of the 
masses. Use this to 'predict' the mass of the rJ. How close do you come? 

1.6 The mass formula for decuplets is much simpler - equal spacing between the rows: 

Use this formula (as Gell-Mann did) to predict the mass of then-. (Use the average of 
the first two spacings to estimate the third.) How close is your prediction to the observed 
value? 

1.7 (a) Members of the baryon decuplet typically decay after 10-23 seconds into a lighter 
baryon (from the baryon octet) and a meson (from the pseudo-scalar meson octet). 
Thus, for example, />,. ++ ➔ p+ + rc+. List all decay modes of this form for the />,. - , 

E*+, and s•-. Remember that these decays must conserve charge and strangeness 
(they are strong interactions). 

(b) In any decay, there must be sufficient mass in the original particle to cover the 
masses of the decay products. (There may be more than enough; the extra will be 
'soaked up' in the form of kinetic energy in the final state.) Check each of the 
decays you proposed in part (a) to see which ones meet this criterion. The others are 
kinematically forbidden. 

1.8 (a) Analyze the possible decay modes of then-, just as you did in Problem 1.7 for the />,., 

E*, and S*. See the problem? Gell-Mann predicted that then- would be 'metastable' 
(i.e. much longer lived than the other members of the decuplet), for precisely this 
reason. (The n- does in fact decay, but by the much slower weak interaction, which 
does not conserve strangeness.) 

(b) From the bubble chamber photograph (Figure 1.9), measure the length of the n­
track, and use this to estimate the lifetime of the n-. (Of course, you don't know 
how fast it was going, but it's a safe bet that the speed was less than the velocity 
of light; let's say it was going about O. lc. Also, you don't know if the reproduction 
has enlarged or shrunk the scale, but never mind: this is quibbling over factors of 2, 
or 5, or maybe even 10. The important point is that the lifetime is many orders of 
magnitude longer than the 10-23 seconds characteristic of all other members of the 
decuplet). 

1.9 Check the Coleman-Glashow relation [ Phys. Rev. B134, 671 (1964)]: 

(the particle names stand for their masses). 
1.10 Look up the table of 'known' mesons compiled by Roos, M. (1963) Reviews of Modem 

Physics, 35,314, and compare the current Particle Physics Booklet to determine which of 
the 1963 mesons have stood the test of time. (Some of the names have been changed, 
so you will have to work from other properties, such as mass, charge, strangeness, 
etc.) 

1.11 Of the spurious particles you identified in Problem 1.10, which are 'exotic' (i.e., 
inconsistent with the quark model)? How many of the surviving mesons are exotic? 

1.12 How many different meson combinations can you make with 1, 2, 3, 4, 5, or 6 different 
quark flavors? What's the general formula for n flavors? 

1.13 How many different baryon combinations can you make with 1, 2, 3, 4, 5, or 6 different 
quark flavors? What's the general formula for n flavors? 

1.14 Using four quarks (u, d, s, and c), construct a table of all the possible baryon species. 
How many combinations carry a charm of +1? How many carry charm +2, and 
+3? 

1.15 Same as Problem 1.14, but this time for mesons. 
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1.16 Assuming the top quark is too short-lived to form bound states ('truthful' mesons and 
baryons), list the 15 distinct meson combinations qq (not counting antiparticles) and 
the 35 distinct baryon combinations qqq. From the Particle Physics Booklet and/or other 
sources, determine which of these have been found experimentally. Give their name, 
mass, and year of discovery (just the lightest one, in each case). Thus, for instance, one 
baryon entry would be 

sss: ~r. 1672 MeV/c2, 1964. 

All hadrons are (presumably) various excitations of these 50 quark combinations. 
1.17 A. De Rujula, H. Georgi, and S. L. Glashow [Physical Review, D12, 147 (1975)] estimated 

the so-called constituent quark masses* to be: mu= md = 336 MeV/c2, m, = 540 MeV/c2, 

and me= 1500 MeV/c2 (the bottom quark is about 4500 MeV/c2). If they are right, the 
average binding energy for members of the baryon octet is -62 MeV. If they all had 
exactly this binding energy, what would their masses be? Compare the actual values 
and give the percent error. (Don't try this on the other supermultiplets, however. There 
really is no reason to suppose that the binding energy is the same for all members of 
the group. The problem of hadron masses is a thorny issue, to which we shall return in 
Chapter 5.) 

1.18 Shupe, M. (1979) [Physics Letters, 86B, 87] proposed that all quarks and leptons are 
composed of two even more elementary constituents: c (with charge -1/3) and n (with 
charge zero) - and their respective antiparticles, c and n. You're allowed to combine 
them in groups of three particles or three antiparticles (ccn, for example, or nnn). 
Construct all of the eight quarks and leptons in the first generation in this manner. (The 
other generations are supposed to be excited states.) Notice that each of the quark states 
admits three possible permutations (ccn, enc, nee, for example) - these correspond to the 
three colors. Mediators can be constructed from three particles plus three antiparticles. 
w±, z0, and y involve three like particles and three like antiparticles (W- = cccnnn, 
for instance). Construct w+, z0, and y in this way. Gluons involve mixed combinations 
(ccnccn, for instance). How many possibilities are there in all? Can you think of any 
way to reduce this down to eight? 

1.19 Your roommate is a chemistry major. She knows all about protons, neutrons, and 
electrons, and she sees them in action every day in the laboratory. But she is skeptical 
when you tell her about positrons, muons, neutrinos, pions, quarks, and intermediate 
vector bosons. Explain to her why none of these plays any direct role in chemistry. (For 
instance, in the case of the muon a reasonable answer might be 'They are unstable, and 
last only a millionth of a second before disintegrating.') 

• For reasons we will come to in due course, the effective mass of a quark bound inside a hadron 
is not the same as the 'bare' mass of the 'free' quark. 



2 

Elementary Particle Dynamics 

This chapter introduces the fundamental forces by which elementary particles interact, 

and the Feynman diagrams we use to represent these interactions. The treatment is

entirely qualitative and can be read quickly to get a sense of the 'lay of the land'. The 

quantitative details will come in Chapters 6 through 9.

2.1 

The Four Forces 

As far as we know, there are just four fundamental forces in nature: strong, 

electromagnetic, weak, and gravitational. They are listed in the following table in 

order of decreasing strength:* 

Force Strength Theory Mediator 

Strong 10 Chromodynamics Gluon 

Electromagnetic 10-
2 Electrodynamics Photon 

Weak 10-13 Flavor dynamics WandZ 

Gravitational 10-42 Geometrodynamics Graviton 

To each of these forces there belongs a physical theory. The classical theory of gravity 

is, of course, Newton's law of universal gravitation. Its relativistic generalization 

is Einstein's general theory of relativity ('geometrodynamics' would be a better 

term). A completely satisfactory quantum theory of gravity has yet to be worked 

out; for the moment, most people assume that gravity is simply too weak to play 

a significant role in elementary particle physics. The physical theory that describes 

electromagnetic forces is called electrodynamics. It was given its classical formulation 

* The 'strength' of a force is an intrinsically ambiguous notion - after all, it depends on the 
nature of the source and on how far away you are. So the numbers in this table should not 
be taken too literally, and (especially in the case of the weak force) you will see quite different 
figures quoted elsewhere. 

1
59 
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by Maxwell over one hundred years ago. Maxwell's theory was already consistent 
with special relativity (for which it was, in fact, the main inspiration). The quantum 
theory of electrodynamics was perfected by Tomonaga, Feynman, and Schwinger 
in the 1940s. The weak forces, which account for nuclear beta decay (and also, as we 
have seen, the decay of the pion, the muon, and many of the strange particles), were 
unknown to classical physics; their theoretical description was given a relativistic 
quantum formulation right from the start. The first theory of the weak forces 
was presented by Fermi in 1933; it was refined by Lee and Yang, Feynman and 
Gell-Mann, and many others, in the 1950s, and put into its present form by Glashow, 
Weinberg, and Salam, in the 1960s. For reasons that will appear in due course, 
the theory of weak interactions is sometimes called flavordynamics [l ]; in this book, 
I refer to it simply as the Glashow-Weinberg-Salam (GWS) theory. (The GWS 
model treats weak and electromagnetic interactions as different manifestations of 
a single electroweak force, and in this sense the four forces reduce to three.) As for 
the strong forces, beyond the pioneering work ofYukawa in 1934 there really was 
no theory until the emergence of chromodynamics in the 1970s. 

Each of these forces is mediated by the exchange of a particle. The gravitational 
forces are mediated by the graviton, electromagnetic forces are mediated by the 
photon, strong forces by the gluon, and weak forces by the intermediate vector bosons, 
W and Z. These mediators transmit the force between one quark or lepton and 
another. In principle, the force of impact between a bat and a baseball is nothing 
but the combined interaction of the quarks and leptons in one with the quarks 
and leptons in the other. More to the point, the strong force between two protons, 
say, which Yukawa took to be a fundamental and irreducible process, must be 
regarded as a complicated interaction of six quarks. This is clearly not the place 
to look for simplicity. Rather, we must begin by analyzing the force between one 
truly elementary particle and another. In this chapter, I will show you qualitatively 
how each of the relevant forces acts on individual quarks and leptons. Subsequent 
chapters develop the machinery needed to make the theory quantitative. 

2.2 
Quantum Electrodynamics (QED) 

Quantum electrodynamics (QED) is the oldest, the simplest, and the most suc­
cessful of the dynamical theories; the others are self-consciously modeled on it. So 
I'll begin with a description of QED. All electromagnetic phenomena are ultimately 
reducible to the following elementary process: 

Time--+-

e e 
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In these figures time flows horizontally, to the right, so this diagram reads: a 
charged particle, e, enters, emits (or absorbs) a photon, y, and exits. For the sake of 
argument, I'll assume that the charged particle is an electron; it could just as well 
be a quark, or any lepton except a neutrino (the latter is neutral, of course, and does 
not experience an electromagnetic force). 

To describe more complicated processes, we simply combine two or more repli­
cas of this primitive vertex. Imagine that you have a bag full of 'tinker toy' models 
of the primitive vertex, made out of flexible plastic. You can snap them together, 
photon-to-photon or electron-to-electron (but in the latter case you must preserve 
the direction of the arrows). Consider, for example, the following: 

e e 

e e 

Here, two electrons enter, a photon passes between them (I need not say which 
one emits the photon and which one absorbs it; the diagram represents both 
orderings), and the two exit.* This diagram, then, describes the interaction between 
two electrons; in the classical theory, we would call it the Coulomb repulsion oflike 
charges. In QED, this process is called Moller scattering; we say that the interaction 
is 'mediated by the exchange of a photon', for reasons that should now be apparent. 

You're allowed to twist these 'Feynman diagrams' around into any topological 
configuration you like - for example, we could stand the previous picture on its side: 

e e 

e e 

A particle line running 'backward in time' (an arrow pointing toward the left) is 
interpreted as the corresponding antiparticle going forward (the photon is its own 
antiparticle, that's why I didn't need an arrow on the photon line). In this process 

* In reading a Feynman diagram it sometimes helps to picture a vertical line that sweeps along 
to the right, representing the passage of time. In the beginning (far left) it intersects two elec­
tron lines, in the middle it encounters the exchanged photon, and at the end (far right) there 
are again just two electrons. 
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an electron and a positron* annihilate to form a photon, which in turn produces 
a new electron-positron pair. An electron and a positron went in, an electron and 
a positron came out (not the same ones, but then, since all electrons are identical, 
it hardly matters). This represents the interaction of two opposite charges: their 
Coulomb attraction. In QED, this process is called Bhabha scattering. Actually, there 
is a quite different diagram which also describes Bhabha scattering: 

e e 

e e 

As we shall see, both diagrams must be included in the analysis. 
Using just two vertices we can also construct the following diagrams, describing, 

respectively, pair annihilation, e- + e+ -+ y + y; pair production, y + y -+ 

e- + e+; and Compton scattering, e- + y -+ e- + y: 

X 
Notice that Bhabha and M0ller scattering are related by crossing symmetry 
(Section 1.4), as are the three processes shown here. In terms of Feynman di­
agrams, crossing symmetry corresponds to twisting or rotating the figure. If we 
allow more vertices (just reach in the bag and pull out a few more tinker toys), the 
possibilities rapidly proliferate; for example, with four vertices we obtain, among 
others, the following diagrams: 

* Some authors would label the upper left and 
lower right lines in this diagram with e, to re­
mind you that it's an antiparticle. I think this 
is dangerous notation. The arrow already tells 
you it's the antiparticle, and a literal reading 

would suggest that it is an antiparticle going 
backwards in time ... which would be a par­
ticle. I prefer to label all lines with the particle 
symbol, and let the arrow tell you whether it 
is in fact the antiparticle. 
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In each of these figures two electrons went in and two electrons came out. They 
too describe the repulsion of like charges (M0ller scattering). The 'innards' of the 
diagram are irrelevant as far as the observed process is concerned. Internal lines 
(those which begin and end within the diagram) represent particles that are not 
observed - indeed, that cannot be observed without entirely changing the process. 
We call them virtual particles. Only the external lines (those that enter or leave 
the diagram) represent 'real' (observable) particles. The external lines, then, tell 
you what physical process is occurring; the internal lines describe the mechanism 
involved. 

At the purely qualitative level this is such a childishly simple game that there's 
a serious danger you will inadvertently embellish the rules. If you find yourself 
drawing a Feynman diagram that contains the vertex 

for example, or 

X 
or you snap a photon line onto an electron line 

______ ,\J\MN\I\, 

you have made a mistake - the bag contains no such tinker toys, and the snaps just 
don't work when you try to hook a photon to an electron. Your diagram might 
conceivably describe some other interaction, but it's not electrodynamics. 
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Feynman diagrams are purely symbolic; they do not represent particle trajectories 
(as you might see them in, say, a bubble chamber photograph). The horizontal 
dimension is time, but vertical spacing does not correspond to physical separation. 
For instance, in Bhabha scattering the electron and positron are attracted, not 
repelled (as the diverging lines might seem to suggest). All that the diagram says 
is: 'Once there was an electron and a positron; they exchanged a photon; then there 
was an electron and a positron again'. 

Quantitatively, each Feynman diagram stands for a particular number, which 
can be calculated using the so-called Feynman rules (you'll learn how to do this 
in Chapter 6). Suppose you want to analyze a certain physical process (say, 
M0ller scattering). First you draw all the diagrams that have the appropriate 
external lines (the one with two vertices, all the ones with four vertices, and 
so on), then you evaluate the contribution of each diagram, using the Feyn­
man rules, and add it all up. The sum total of all Feynman diagrams with the 
given external lines represents the actual physical process. Of course, there's a 
wee problem here: there are infinitely many Feynman diagrams for any partic­
ular reaction! Fortunately, each vertex within a diagram introduces a factor of 
a = e2 /he= 1/137, the fine structure constant. Because this is such a small num­
ber, diagrams with more and more vertices contribute less and less to the final 
result, and, depending on the accuracy you need, may be ignored. In fact, in 
QED it is rare to see a calculation that includes diagrams with more than four 
vertices. The answers are only approximate, to be sure, but when the approx­
imation is valid to six significant digits, only the most fastidious are likely to 
complain. 

The Feynman rules enforce conservation of energy and momentum at each 
vertex, and hence for the diagram as a whole. It follows that the primitive QED 
vertex by itself does not represent a possible physical process. We can draw 
the diagram, but calculation would assign to it the number zero. The reason is 
purely kinematical: e- ➔ e- + y would violate conservation of energy. (In the 
center-of-mass frame the electron is initially at rest, so its energy is mc2 • It cannot 
decay into a photon plus a recoiling electron because the latter alone would require 
an energy greater than mc2 .) Nor, for instance, is e- + e+ ➔ y kinematically 
possible, although it is easy enough to draw the diagram: 

e 

y 
e 

In the center-of-mass system the electron and positron enter symmetrically with 
equal and opposite velocities, so the total momentum before the collision is 
obviously zero. But the final momentum cannot be zero, since photons always 
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travel at the speed of light; an electron-positron pair can annihilate to make two 
photons, but not one. Within a larger diagram, however, these figures are perfectly 
acceptable, because, although energy and momentum must be conserved at each 
vertex, a virtual particle does not calT}' the same mass as the corresponding free 
particle. In fact, a virtual particle can have any mass.* In the business, we say that 
virtual particles do not lie on their mass shell. External lines, by contrast, represent 
real particles, and these do carry the 'correct' mass.i" 

I have been assuming that the charged particle in question is an electron,+ but it 
could just as well be a muon, say, or a quark. What would you make of the following 
diagram? 

u 

u 

Here a u/u pair annihilates, producing two photons (one photon, remember, is 
kinematically forbidden). Because of quark confinement you're not going to wit­
ness this as a scattering experiment, but what if the quarks were bound together 
in the form of a meson - a rr 0 , for example? This diagram would represent the 
'decay' of the rr 0 : rr 0 --+ y + y. I put the word in quotes, because in a deeper sense 
this is not a decay at all - it's just ordinary old pair annihilation, in which the 
original pair happen to be bound together as a meson. This explains why the rr0 

has a lifetime 9 orders of magnitude smaller than its charged siblings (rr±) - it 
decays by an electromagnetic process, whereas the others have to await the weak 
interactions, which are much slower. 

I cannot resist telling you an amusing fable, but you must promise not to take 
it too seriously. Feynman claimed that his advisor (J. A. Wheeler) once offered the 

* In special relativity, the energy £, momen­
tum, p, and mass m of a free particle are re­
lated by the equation £2 - p2c2 = m2c4 • But 
for a virtual particle £2 - p2 c2 can take on any 
value. Many authors interpret this to mean 
that virtual processes violate conservation of 
energy (see Problem 1.2). Personally, I con­
sider this misleading, at best. Energy is always 
conserved. 

i" Actually, the physical distinction between real 
and virtual particles is not quite as sharp as 
I have implied. If a photon is emitted on Al­
pha Centauri, and absorbed in your eye, it is 
technically a virtual photon, I suppose. How­
ever, in general, the farther a virtual particle 
is from its mass shell the shorter it lives, so 

a photon from a distant star would have to 
be extremely close to its 'correct' mass - it 
would have to be almost 'real'. As a calcula­
tional matter, you would get essentially the 
same answer if you treated the process as two 
separate events (emission of a real photon by 
star, followed by absorption of a real photon 
by eye). You might say that a real particle is a 
virtual particle that lasts long enough that we 
don't care to inquire how it was produced, or 
how it is eventually absorbed. 

'.( In practice, the term 'quantum electrodynam­
ics' is usually taken to mean the interaction 
of electrons, positrons, and photons, unless 
otherwise specified. 
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following explanation for why all electrons are identical: there's only one of 'em! 
It's riding along on a diagram of the form 

At a given instant (the vertical line) the electron is present (on this segment) four 
times as a particle and three times as an antiparticle - but it's all the same electron. 
Of course, this does imply that the number of positrons in the universe should 
equal the number of electrons (give or take one), but apart from that it's kind of cute. 

2.3 
Quantum Chromodynamics (QCD) 

In chromodynamics, color plays the role of charge, and the fundamental process 
(analogous toe ➔ e + y) is quark ➔ quark plus gluon (q ➔ q + g):* 

As before, we combine two or more such 'primitive vertices' to represent more 
complicated processes. For example, the force between two quarks (which is 
responsible in the first instance for binding quarks together to make hadrons, 
and indirectly for holding the neutrons and protons together to form a nucleus) is 
described in lowest order by the diagram: 

q q 

q q 

* Since leptons do not carry color, they do not participate in the strong interactions. 
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We say that the force between two quarks is 'mediated' by the exchange of 
gluons. 

At this level chromodynamics is very similar to electrodynamics. However, there 
are also important differences, most conspicuously the fact that whereas there is 
only one kind of electric charge (it can be positive or negative, to be sure, but a single 
number suffices to characterize the charge of a particle), there are three kinds of 
color (red, green, and blue). In the fundamental process q ➔ q + g, the color of the 
quark (but not its flavor) may change. For example, a blue up-quark may convert 
into a red up-quark. Since color (like charge) is always conserved, this means that 
the gluon must carry away the difference - in this instance, one unit of blueness 
and minus one unit of redness: 

g(b,r) 

u(b) u(r) 

Gluons, then, are 'bicolored', carrying one positive unit of color and one nega­
tive unit. There are evidently 3 x 3 = 9 possibilities here, and you might expect 
there to be nine kinds of gluons. For technical reasons, which we'll come to in 
Chapter 8, there are actually only eight. 

Since the gluons themselves carry color (unlike the photon, which is electrically 
neutral), they couple directly to other gluons, and hence in addition to the 
fundamental quark-gluon vertex, we also have primitive gluon-gluon vertices; in 
fact, two kinds: three-gluon vertices and four-gluon vertices: 

rx 
This direct gluon-gluon coupling makes chromodynamics a lot more complicated 
than electrodynamics, but also far richer, allowing, for instance, the possibility of 
glueballs (bound states of interacting gluons, with no quarks in sight). 

Another difference between chromodynamics and electrodynamics is the size 
of the coupling constant. Remember that each vertex in QED introduces a factor 
of a = 1/137, and the smallness of this number means that we need only 
consider Feynman diagrams with a small number of vertices. Experimentally, the 
corresponding coupling constant for the strong forces, a 5 - as determined, say, 
from the force between two protons - is greater than 1, and the bigness of this 
number has plagued particle physics for decades. Instead of contributing less 
and less, the more complex diagrams contribute more and more, and Feynman's 
procedure, which worked so well in QED, is apparently doomed. One of the great 
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Fig. 2.1 Screening of a charge q by a dielectric medium. 

triumphs of quantum chromodynamics (QCD) was the discovery that in this theory 
the number that plays the role of coupling 'constant' is in fact not constant at 
all, but depends on the separation distance between the interacting particles (we 
call it a 'running' coupling constant). Although at the relatively large distances 
characteristic of nuclear physics it is big, at very short distances (less than the size 
of a proton) it becomes quite small. This phenomenon is known as asymptotic 
freedom [2]; it means that within a proton or a pion, say, the quarks rattle around 
without interacting much. Just such behavior was found experimentally in the deep 
inelastic scattering experiments. From a theoretical point of view, the discovery of 
asymptotic freedom rescued the Feynman calculus as a legitimate tool for QCD, in 
the high-energy regime. 

Even in electrodynamics, the effective coupling depends somewhat on how far 
you are from the source. This can be understood qualitatively as follows. Picture first 
a positive point charge q embedded in a dielectric medium (i.e. a substance whose 
molecules become polarized in the presence of an electric field). The negative end 
of each molecular dipole will be attracted toward q, and the positive end repelled 
away, as shown in Figure 2.1 As a result, the particle acquires a 'halo' of negative 
charge that partially cancels its field. In the presence of the dielectric, then, the 
effective charge of any particle is somewhat reduced: 

(2.1) 

(The factor E by which the field is reduced is called the dielectric constant of the 
material; it is a measure of the ease with which the substance can be polarized 
[3].) Of course, if you are closer than the nearest molecule, then there is no such 
screening, and you 'see' the full charge q. Thus if you were to make a graph of the 
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Fig. 2.2 Effective charge as a function of distance. 
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effective charge, as a function of distance, it would look something like Figure 2.2 
The effective charge increases at very small distances. 

Now, it so happens that in quantum electrodynamics the vacuum itself behaves 
like a dielectric; it sprouts positron-electron pairs, as shown in Feynman diagrams 
such as these: 

... etc. 

The virtual electron in each 'bubble' is attracted toward q, and the virtual positron 
is repelled away; the resulting vacuum polarization partially screens the charge 
and reduces its field. Once again, however, if you get too close to q, the screening 
disappears. What plays the role of the 'intermolecular spacing' in this case is the 
Compton wavelength of the electron, 1'., = hjmc = 2.43 x 10-10 cm. For distances 
smaller than this the effective charge increases, just as it did in Figure 2.2. 
Notice that the unscreened ('close-up') charge, which you might regard as the 
'true' charge of the particle, is not what we measure in any ordinary experiment, 
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since we are seldom working at such minute separation distances.* What we have 
always called 'the charge of the electron' is actually the fully screened effective 
charge. 

So much for electrodynamics. The same thing happens in QCD, but with an 
important added ingredient. Not only do we have the quark-quark-gluon vertex 
(which, by itself, would again lead to an increasing coupling strength at short 
distances), but now there are also the direct gluon-gluon vertices. So in addition to 
the diagrams analogous to vacuum polarization in QED, we must now also include 
gluon loops, such as these: 

It is not clear a priori what influence these diagrams will have on the story [4]; as 
it turns out, their effect is the opposite: There occurs a kind of competition between 
the quark polarization diagrams (which drive ex, up at short distances) and gluon 
polarization (which drives it down). Since the former depends on the number of 
quarks in the theory (hence on the number of flavors,!), whereas the latter depends 
on the number of gluons (hence on the number of colors, n), the winner in the 
competition depends on the relative number of flavors and colors. The critical 
parameter turns out to be 

a= 2f-11n (2.2) 

If this number is positive, then, as in QED, the effective coupling increases at short 
distances; if it is negative, the coupling decreases. In the Standard Model, f = 6 and 
n = 3, so a= -21, and the QCD coupling decreases at short distances. This is the 
origin of asymptotic freedom. 

The final distinction between QED and QCD is that whereas many particles carry 
electric charge, no naturally occurring particles carry color. Quarks are confined 
in colorless packages of two (mesons) and three (baryons). As a consequence, 
the processes we actually observe in the laboratory are necessarily indirect and 
complicated manifestations of chromodynamics. It is as though our only access to 
electrodynamics came from the van der Waals forces between neutral molecules. 
For example, the (strong) force between two protons involves (among many others) 

* An exception is the Lamb shift - a tiny perturbation in the spectrum of hydrogen - in which 
the influence of vacuum polarization (or rather, its absence at short distances) is clearly dis­
cernible. 
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the following diagram: 

u U (1to} 

(p) (p) 

You will recognize here the remnants ofYukawa's pion-exchange model, but the 
entire process is enormously more complex than Yukawa ever imagined. 

If QCD is correct, it must contain the explanation for quark confinement; that 
is, it must be possible to prove, as a consequence of this theory, that quarks can 
only exist in the form of colorless combinations. Presumably this proof will take 
the form of a demonstration that the potential energy increases without limit as 
the quarks are pulled farther and farther apart, so that it would require an infinite 
energy (or at any rate, enough to create new quark-antiquark pairs) to separate 
them completely (see Figure 2.3). So far, no one has provided a conclusive proof 
that QCD implies confinement (see, however, Reference 27 in Chapter 1). The 
difficulty is that confinement involves the long-range behavior of the quark-quark 
interaction, but this is precisely the regime in which the Feynman calculus fails.* 

2.4 
Weak Interactions 

There is no particular name for the 'stuff that produces weak forces, in the sense 
that electric charge produces electromagnetic forces and color produces strong 

• There are strong indications that a 'phase 
transition' occurs at extremely high densi­
ties - three or four times that of an atomic 
nucleus - leading to deconfinement and 
the so-called quark-gluon plasma. Thus, free 

quarks may have existed in the first moments 
after the Big Bang, and efforts are underway 
to recreate similar conditions (on a smaller 
scale!) in the laboratory, using the Relativistic 
Heavy Ion Collider (RHIC) at Brookhaven (5). 
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forces. Some people call it 'weak charge'. Whatever word you use, all quarks and all 
leptons carry it [6]. (Leptons have no color, so they do not participate in the strong 
interactions; neutrinos have no charge, so they experience no electromagnetic 
forces; but all of them join in the weak interactions.) There are two kinds of weak 
interactions: charged (mediated by the Ws) and neutral (mediated by the Z). The 
neutral weak interactions are much simpler, so I'll start with them.* 

2.4.l 
Neutral 

The fundamental neutral vertex is:'1 

f f 

where f can be any lepton or any quark. The Z mediates such processes as 
neutrino-electron scattering (vµ + e- -+ Vµ + e-): 

* Although charged weak interactions were 
known right from the start (beta decay is the 
classic example), the theoretical possibility of 
neutral weak processes was not appreciated 
until 1958. The GWS model includes neutral 
weak interactions as essential ingredients, 
and their existence was first confirmed in 
neutrino scattering experiments at CERN, in 
1973 (7). 

'r It is traditional to use a waY'f line for the photon, 
and a springy line for the gluon, but there is 
no consistency in the literature for the weak 
mediators. I'm going to use a jagged line, but 
this is not standard notation. (I'll use a solid 
line for spin-1/2 particles, which is standard, 
and a dashed line for spin 0, which is not.) 
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e e 

and neutrino-proton scattering (vµ + p---'> vµ + p) 

d d 
u 

(p)~(p) 

(in the latter case, two 'spectator' quarks go along for the ride, bound to the d by 
strong forces - gluon exchange - that, for simplicity, we do not draw).* 

Notice that any process mediated by the photon could also be mediated by the 
Z - for example, electron-electron scattering: 

e e e e 

y 

e e e e 

Presumably there is a minute correction to Coulomb's law attributable to the 
second diagram, but the photon-mediated process overwhelmingly dominates. 
Experiments at DESY (in Hamburg) studied the reaction e- + e+ ---'> µ- +µ+at 
very high energy and found unmistakable evidence of a contribution from the Z 
(8]. In atomic physics, neutral weak contamination of electromagnetic processes 
can sometimes be teased out by exploiting the fact that weak interactions carry 
a unique fingerprint: they violate conservation of parity (mirror symmetry) (9]. 

• There are also, of course, diagrams in which the Z couples to one of the u quarks. 
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Still, to observe a pure neutral weak interaction one has to resort to neutrino 
scattering, in which there is no competing electromagnetic mechanism - and 
neutrino experiments are notoriously difficult. 

2.4.2 

Charged 

The primitive vertices for strong, electromagnetic, and neutral weak interactions 
all share the feature that the same quark or lepton comes out as went in - accompa­
nied, of course, by a gluon, photon, or Z, as the case may be. Well ... OK: in QCD 
the color of the quark may change, but the flavor never does. The charged weak 
interactions are the only ones that change flavor, and in this sense they are the only 
ones capable of causing a 'true' decay (as opposed to a mere repackaging of the 
quarks, or a hidden pair production or annihilation). I'll begin with the charged 
weak interactions ofleptons.* 

2.4.2. l Leptons 

The fundamental charged vertex looks like this: 

lw­

~ 
A negative lepton (it could be e-, µ,-, or .-) converts into the corresponding 
neutrino, with emission of a w- (or absorption of a w+): 1- -+ v1 + w- .t As 
always, we combine the primitive vertices to generate more complicated reactions. 
For example, the process µ,- + v, -+ e- + Vµ would be represented by the 
diagram: 

Such a neutrino-muon scattering event would be hard to set up in the laboratory, 
but with a slight twist essentially the same diagram describes the decay of the 

* The discovery of neutrino oscillations will force some modifications in this picture, but we do 
not know yet exactly what form they will take (perhaps they will bring the theory into line with 
the quarks), so for the moment I will stick to the simple (pre-oscillation) story. 

I This implies, of course, that the crossed reaction i+ -+ "iii + w+ is also allowed. 
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muon,µ,- -+ c + vµ + v,: 

w· 

µ 

This is the cleanest of all charged weak interactions; we'll study it in detail in 
Chapter 10.* 

2.4.3 
Quarks 

Notice that the leptonic weak vertices connect members of the same generation: e­
converts to v, (with emission of w-), orµ,- -+ µ,- (emitting a Z), but e- never goes 
toµ,- norµ,- to v,. In this way, the theory enforces the conservation of electron 
number, muon number, and tau number. It is tempting to suppose that the same 
rule applies to the quarks, so that the fundamental charged vertex is: 

q-1/3 q+213 

A quark with charge - ½ (which is to say: d, s, or b) converts into the corresponding 
quark with charge +i (u, c, or t, respectively), with the emission of a w-. The 
outgoing quark carries the same color as the ingoing one, but a different flavor.I 

The far end of the W line can couple to leptons (a 'semileptonic' process), or to 
other quarks (a purely hadronic process). The most important semileptonic process 
is d + v, -+ u + e: 

w· 

d u 

* Technically, it is only the lowest-order contribution to muon decay, but in weak interaction the­
ory one almost never needs to consider higher-order corrections. 

·;· It's not that the w- carries off the 'missing' flavor - the W's have no flavor; flavor is simply not 
conserved in the charged weak interactions. 
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Because of quark confinement, this process would never occur in nature as it 
stands. However, turned on its side, and with the u and d bound together (by the 
strong force), this diagram represents a possible decay of the pion, rr- -+ e- + v,: 

d 

(For reasons to be discussed later, the more common decay is actually rr- -+ 

µ,- + v/l, but the diagram is the same, withe replaced byµ,.) Moreover, essentially 
the same diagram accounts for the beta decay of the neutron (n-+ p+ + e- + 
v,): 

e 

w-

d u 

d 

(p) ~ (p) 

Thus, apart from strong interaction contamination (in the form of the spectator 
quarks), the decay of the neutron is identical in structure to the decay of the muon, 
and closely related to the decay of the pion. In the days before the quark model, 
these appeared to be three very different processes. 

Eliminating the electron-neutrino vertex in favor of a second quark vertex we 
obtain a purely hadronic weak interaction, /'i. 0 -+ p+ + rr - :* 

d 

w-

d 

d 

(t> o) ~ (p) 

* The ti. 0 has the same quark content as the neutron, but this decay is not possible for neutrons 
because they are not heavy enough to make a proton and a pion. 
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Actually, this particular decay also proceeds by the strong interaction: 

d 

d 

d 

(t.o}~(p} 

the weak mechanism is an immeasurably small contribution. We'll see more 
realistic examples of nonleptonic weak interactions in a moment. 

So far, it's all pretty simple: the quarks mimic the leptons - the only difference 
is that the strong force (to which, remember, the leptons are immune) complicates 
the picture with spectators and what-not that have nothing to do with the basic weak 
process. Sad to say, this story is a little too simple. For as long as the fundamental 
quark vertex is allowed to operate only within each generation, we can never hope 
to account for strangeness-changing weak interactions, such as the decay of the 
lambda (A-+ p+ + n-) or the omega-minus (lJ--+ A+ K-), which involves the 
conversion of a strange quark into an up quark: 

d 

w· 

s u 

d 

(t.) ~(p) 

The solution to this dilemma was suggested by Cabibbo in 1963, perfected 
by Glashow, Illiopoulos, and Maiani (GIM) in 1970, and extended to three 
generations by Kobayashi and Maskawa (KM) in 1973.* The essential idea is 
that the quark generations are 'skewed,' for the purposes of weak interactions) 

* The Cabibbo/GIM/KM mechanism will be 
discussed more fully in Chapter 9. 

"t Technically, this applies to the neutral as 
well as the charged weak interactions. But in 
the former case it doesn't matter, and I have 
tried to keep the story as clear as possible by 
avoiding the issue at that stage. Historically, 
when there were only three quarks known 
it was a puzzle why (experimentally) there 

were no strangeness-changing neutral weak 
interactions. The GIM mechanism introduced 
a fourth quark (four years before the Novem­
ber Revolution), and a 2 x 2 'KM matrix', to 
provide for a miraculous cancellation, the net 
effect of which (in the neutral case) was the 
same as if we had never 'skewed' the quarks 
in the first place. 
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Instead of 

the weak force couples the pairs 

where d', i, and b' are linear combinations of the physical quarks d, s, and b: 

Vub) (d) Vcb s 
Vtb b 

(2.3) 

(2.4) 

(2.5) 

If this 3 x 3 Kobayashi-Maskawa matrix were the unit matrix, then d', i, and b' 

would be the same as d, s, and b, and no 'cross-generational' transitions could 
occur. 'Upness-plus-downness' would be absolutely conserved (just as the electron 
number is); 'strangeness-plus-charm' would be conserved (like muon number); 
and so would 'topness-plus-bottomness' (like tau number). But it's not the unit 
matrix (although it's pretty close); experimentally, the magnitudes of the matrix 
elements are [10] 

(
0.974 0.227 
0.227 0.973 
0.008 0.042 

0.004) 
0.042 
0.999 

(2.6) 

V ud measures the coupling of u to d, V us the coupling of u to s, and so on. The fact 
that the latter is nonzero is what permits strangeness-changing processes, such as 
the decay of the A and the Q-, to occur.• 

2.4.4 
Weak and Electromagnetic Couplings of W and Z 

There are also direct couplings of Wand Z to one another, in GWS theory (just as 
there are direct gluon-gluon couplings in QCD): 

tz wx ~/z 
~ w w ~ 

* Neutrino oscillations involve cross-generational couplings in the lepton sector, so it may be that 
we will have a 'KM matrix' for the leptons as well. See Chapter 11. 
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Moreover, because the Wis charged, it couples to the photon: 

ly wx v, 
~• z~~~ 

Although these interactions are critical for the internal consistency of the theory, 
they are oflimited practical importance at this stage (see Problem 2.6). 

2.5 
Decays and Conservation Laws 

One of the most striking general properties of elementary particles is their 
tendency to disintegrate; we might almost call it a universal principle that every 
particle decays in.to lighter particles, unless prevented from doing so by some conservation. 
law. The photon is stable (having zero mass, there is nothing lighter for it to 
decay into); the electron is stable (it's the lightest charged particle, so conservation 
of charge prevents its decay); the proton is presumably stable (it's the lightest 
baryon, and the conservation of baryon number saves it - likewise conservation 
of lepton number protects the lightest of the neutrinos). By the same token, the 
positron, the anti proton, and the lightest antineutrino are stable. But most particles 
spontaneously disintegrate - even the neutron, although it becomes stable in the 
protective environment of many atomic nuclei. In practice, our world is populated 
mainly by protons, neutrons, electrons, photons, and neutrinos; more exotic things 
are created now and then (by collisions) but they don't last long. Each unstable 
species has a characteristic mean lifetime,* -r: for the muon it's 2.2 x 10-6 sec; for 
the n+ it's 2.6 x 10-8 sec; for the n° it's 8.3 x 10-17 sec. In fact, most particles 
exhibit several different decay modes; 64% of all K+ 1s, for example, decay into 
µ+ + vµ, but21%goton+ +n°, 6%ton+ + n+ +n-, 5%to (e+ +Ve+ n°), and 
so on. One of the goals of elementary particle theory is to calculate these lifetimes 
and branching ratios. 

A given decay is governed by one of the three fundamental forces: t:,. ++ ➔ 
p+ + n+, for example, is a strong decay; n° ➔ y + y is electromagnetic; and 
1:- ➔ n. + e- + Ve is weak. How can you tell? Well, ifa photon comes out, the pro­
cess is certainly electromagnetic, and if a neutrino emerges, the process is certainly 
weak. But if neither a photon nor a neutrino is present, it's a little harder to say. 
For example, 1:- ➔ n. + n- is weak, but!:,. - ➔ n. + n- is strong. I'll show you 
in a moment how to figure that out, but first I want to mention the most dramatic 
experimental difference between strong, electromagnetic, and weak decays: a typical 

• The lifetime T is related to the half-life t112 by the formula t112 = (ln2)r = 0.693T. The half-life 
is the time it takes for half the pa1iicles in a large sample to disintegrate (see Section 6.1). 
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strong decay involves a lifetime around 10-23 sec, a typical electromagnetic decay 
takes about 10-16 sec, and weak decay times range from around 10-13 sec (for 
the r) up to 15 min (for the neutron). For a given type of interaction, the decay 
generally proceeds more rapidly the larger the mass difference between the original 
particle and the decay products, just as a ball rolls faster down a steeper hill.* It 

is this kinematic effect that accounts for the enormous range in weak interaction 
lifetimes. In particular, the proton and electron together are so close to the neutron's 
mass that the decay n ➔ p+ + e- + Ve barely makes it at all, and the lifetime of the 
neutron is greater by far than that of any other unstable particle. Experimentally, 
though, there is a vast separation in lifetime between strong and electromagnetic 
decays (a factor of about 10 million), and again between electromagnetic and weak 
decays (a factor of at least a thousand). Indeed, particle physicists are so used to 
thinking in terms of 10-23 sec as the 'normal' unit of time that the handbooks 
generally classify anything with a lifetime greater than 10-17 sec or so as a 'stable' 
particle!t 

Now, what about the conservation laws which, as I say, permit certain reactions 
and forbid others? To begin with there are the purely kinematic conservation 
laws - conservation of energy and momentum (which we shall study in Chapter 3) 
and conservation of angular momentum (which comes in Chapter 4). The fact that 
a particle cannot spontaneously decay into particles heavier than itself is actually 
a consequence of conservation of energy (although it may seem so 'obvious' as 
to require no explanation at all). The kinematic conservation laws apply to all 
interactions - strong, electromagnetic, weak, and for that matter anything else 
that may come along in the future - since they derive from special relativity itself. 
However, our concern right now is with the dynamical conservation laws that follow 
from the structure of the fundamental vertices: 

g 

q q e 

* There are exceptions: J!' + ➔ µ, + + v,,, for 
example, is shorter by a factor of 104 than J!'+ 

➔ e+ + v,, but such cases cry out for some 
special explanation. 

t Incidentally, 10-23 sec is about the time it 
takes light to cross a proton (diameter ~ 
10-15 m). You obviously cannot determine 
the lifetime of such a particle with a stop­
watch, or even by measuring the length of 
its track (as you did for the n- in Problem 
1.8(b)) - it doesn't move far enough to leave a 
track. Instead, you make a histogram of mass 

e f' 

measurements, and invoke the uncertainty 
principle: LiELit c: li/2. Here LiE = (Lim)c2 , 

and Lit= r, so 

ti 
r>--­

- 2(~m)c2 

Thus the spread in mass is a measure of the 
particle's lifetime. (Technically it's only a 
lower bound on r, but for such short-lived 
particles we are presumably right up against 
the uncertainty limit (11]). 
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Since all physical processes are obtained by sticking these together in elaborate 
combinations, anything that is conserved at each vertex must be conserved for the 
reactions as a whole. So, what do we have? 

1. Charge: All three interactions, of course, conserve electric 
charge. In the case of the weak interactions, the lepton (or 
quark) that comes out may not have the same charge as the one 
that went in, but if so, the difference is carried away by the W. 

2. Color: The electromagnetic and weak interactions do not 
affect color. At a strong vertex the quark color does change, 
but the difference is carried off by the gluon. (The direct 
gluon-gluon couplings also conserve color.) However, since 
naturally occurring particles are always colorless, the 
observable manifestation of color conservation is pretty 
trivial: zero in, zero out. 

3. Baryon number: In all the primitive vertices, if a quark goes in, 
a quark comes out, so the total number of quarks present is 
a constant. In this arithmetic we count antiquarks as negative, 
so that, for example, at the vertex q + q ➔ g the quark 
number is zero before and zero after. Of course, we never 
see individual quarks, only baryons (with quark number 
3), antibaryons (quark number -3), and mesons (quark 
number zero). So, in practice, it is more convenient to speak 
of the conservation of baryon number (1 for baryons, -1 for 
antibaryons, and O for everything else). The baryon number 
is just ½ the quark number. Notice that there is no analogous 
conservation of meson number; since mesons carry zero quark 
number, a given collision or decay can produce as many 
mesons as it likes, consistent with conservation of energy. 

4. Lepton number: The strong forces do not touch leptons 
at all; in an electromagnetic interaction the same particle 
comes out (accompanied by a photon) as went in; and in 
the weak interactions if a lepton goes in, a lepton comes out 
(not necessarily the same one, this time). So, lepton number 
is absolutely conserved. Until recently there appeared 
to be no cross-generation mixing among the leptons, 
so electron number, muon number, and tau number were 
all separately conserved. This remains true in most cases, 
but neutrino oscillations indicate that it is not absolute.* 

* There would be a similar 
conservation of generation type 
for quarks (upness-plus-downness, 
strangeness-plus-charm, and 
beauty-plus-truth), but here the intergen­
erational mixing has been obvious for 

decades. Still, because the off-diagonal el­
ements in the KM matrix are relatively small, 
cross-generational decays tend to be sup­
pressed, and processes that require two such 
crossings are extremely rare - hence an old 
rule that 'forbids' decays with I), S = 2. 
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5. Flavor: What about quark flavor? Flavor is conserved at a 
strong or electromagnetic vertex, but not at a weak vertex, 
where an up-quark may turn into a down quark or a strange 
quark, with nothing at all picking up the lost upness or 
supplying the 'gained' downness or strangeness. Because the 
weak forces are so weak, we say that the various flavors are 
approximately conserved. In fact, as you may remember, it 
was precisely this approximate conservation that led 
Gell-Mann to introduce the notion of strangeness in the first 
place. He 'explained' the fact that strange particles are always 
produced in pairs: 

(2.7) 

for instance, but 

(2.8) 

by arguing that the latter violates conservation of strange­
ness. (Actually, this is a possible weak interaction, but it will 
never be seen in the laboratory, because it must compete 
against enormously more probable strong processes that do 
conserve strangeness.) In decays, however, the 
nonconservation of strangeness is very conspicuous, because 
for many particles this is the only way they can decay; there is 
no competition from strong or electromagnetic processes. 
The A, for instance, is the lightest strange baryon; if it is to 
decay, it must go to n (or p) plus something. But the lightest 
strange meson is the K, and n (or p) plus K weighs 
substantially more than the A. If the A decays at all (and it 
does as we know: A -,, p+ + n:- 64% of the time, and A -,, n 
+ n:0 36% of the time), then strangeness cannot be 
conserved, and the reaction must proceed by the weak 
interaction. By contrast, the /:;. 0 (with a strangeness of zero) 
can go top+ + n:- or n + n:0 by the strong interaction, and its 
lifetime is accordingly much shorter. 

6. The OZI rule: Finally, I must tell you about 
one very peculiar case that has been on my conscience since 
Chapter 1. I have in mind the decay of the ,Jr meson, which, 
you will recall, is a bound state of the charmed quark and its 
antiquark: ,Jr = cc. The ,Jr has an anomalously long lifetime 
(~ 10-20 sec); the question is, why? It has nothing to do with 
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conservation of charm; the net charm of the v, is zero. The 
v, lifetime is short enough so that the decay is clearly due to 
the strong interactions. But why is it a thousand times slower 
than a strong decay 'ought' to be? The explanation (if you can 
call it that) goes back to an old observation by Okubo, Zweig, 
and Iizuka, known as the 'OZ! rule'. These authors [12] were 
puzzled by the fact that the </J meson (whose quark content, 
ss, makes it the strange analog to the v,) decays much more 
often into two K's than into three rr's (the two pion decay is 
forbidden for other reasons, which we will come to in Chapter 
4), in spite of the fact that the three-pion decay is energetically 
favored (the mass of two K's is 990 MeV/c2; three rr's weigh 
only 415 MeV/c2). In Figure 2.4, we see that the three-pion 
diagram can be cut in two by snipping only gluon lines. 
The OZ! rule states that such processes are 'suppressed'. Not 
absolutely forbidden, mind you, for the decay rp --+ 3rr does 
in fact occur, but far less likely than one would otherwise have 
supposed. The OZ! rule is related to asymptotic freedom, in 
the following sense: in an OZI-suppressed diagram the gluons 
must be 'hard' (high energy), since they carry the energy 
necessary to make the hadrons into which they fragment. 
But asymptotic freedom says that gluons couple weakly 
at high energies (short ranges). By contrast, in OZI-allowed 
processes the gluons are typically 'soft' (low energy), 
and in this regime the coupling is strong. Qualitatively, at 

Fig. 2.4 The OZI rule: if the diagram can be cut in two by 
slicing only gluon lines (and not cutting any external lines), 
the process is suppressed. 
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2.6 

least, this accounts for the OZ! rule. (The quantitative details 
will have to await a more complete understanding of QCD.) 
But what does all this have to do with the ,fr? Well, 
presumably the same rule applies, suppressing ,fr ➔ 3n, and 
leaving the decay into two charmed D mesons (analogs to the 
K, but with the charmed quarks in place of the strange 
quarks) as the favored route. Only there's a new twist in the 
,fr system, for the D's turn out to be too heavy: a pair of D's 
weighs more than the ,fr. So the decay ,fr ➔ D+ + D- (or 
Do + 15°) is kinematically forbidden, while ,fr ➔ 3n is OZI 
suppressed, and it is to this happy combination that the ,fr 
owes its unusual longevity. 

Unification Schemes 

At one time, electricity and magnetism were two distinct subjects, the one dealing 
with pith balls, batteries, and lightning; the other with lodestones, bar magnets, 
and the North Pole. But in 1820 Oersted noticed that an electric current could 
deflect a magnetic compass needle, and 10 years later Faraday discovered that 
a moving magnet could generate an electric current in a nearby loop of wire. 
By the time Maxwell put the whole theory together in its final form, electric­
ity and magnetism were properly regarded as two aspects of a single subject: 
electromagnetism. 

Einstein dreamed of going a step further, combining gravity with electrodynamics 
in a single unified field theory. Although this program was not successful, a similar 
vision inspired Glashow, Weinberg, and Salam to join the weak and electromagnetic 
forces. Their theory starts out with four massless mediators, but, as it develops, 
three of them acquire mass (by the so-called Higgs mechanism), becoming the W's 
and the Z, while one remains massless: the photon. Although experimentally a 
reaction mediated by W or Z is quite different from one mediated by the y, they are 
both manifestations of a single electroweak interaction. The relative weakness of the 
weak force is attributable to the enormous mass of the intermediate vector bosons; 
its intrinsic strength is in fact somewhat greater than that of the electromagnetic 
force, as we shall see in Chapter 9. 

Beginning in the early 1970s, many people have worked on the obvious next step: 
combining the strong force (chromodynamics) with the electroweak force (GWS). 
Several different schemes for implementing this grand unification are now on the 
table, and although it is too soon to draw any definitive conclusions, the basic idea 
is widely accepted. You will recall that the strong coupling constant as decreases at 
short distances (which is to say, for very high-energy collisions). So too does the 
weak coupling aw, but at a slower rate. Meanwhile, the electromagnetic coupling 
constant, ae, which is the smallest of the three, increases. Could it be that they all 
converge to a common limiting value, at extremely high energy (Figure 2.5)? Such 
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1015 GeV E 

Fig. 2.5 Evolution of the three fundamental coupling constants. 

is the promise of the grand unified theories (G UTs). Indeed, from the functional 
form of the running coupling constants it is possible to estimate the energy at which 
this unification occurs: around 1015 GeV. This is, of course, astronomically higher 
than any currently accessible energy (remember, the mass of the Z is 90 GeV/ c2). 

Nevertheless, it is an exciting idea, for it means that the observed difference in 
strength among the three interactions is an 'accident' resulting from the fact that 
we are obliged to work at low energies, where the unity of the forces is obscured. 
If we could just get in close enough to see the 'true' strong, electric, and weak 
charges, without any of the screening effects of vacuum polarization, we would 
find that they are all equal. How nice! 

Another prediction of the G UTs is that the proton is unstable, although its half-life 
is fantastically long (at least 1019 times the age of the universe). It has often been 
remarked that conservation of charge and color are in a sense more 'fundamental' 
than the conservation of baryon number and lepton number, because charge is the 
'source' for electrodynamics, and color for chromodynamics. If these quantities 
were not conserved, QED and QCD would have to be completely reformulated. But 
baryon number and lepton number do not function as sources for any interaction, 
and their conservation has no deep dynamical significance. In the grand unified 
theories new interactions are contemplated, permitting decays such as 

(2.9) 

in which baryon number and lepton number change. Several major experiments 
have searched for these rare proton decays, but so far the results are negative [13]. 

If grand unification works, all of elementary particle physics will be reduced 
to the action of a single force. The final step, then, will be to bring in gravity, 
vindicating at last Einstein's dream, with the ultimate unification. At this point 
superstring theory is the most promising approach.* Stay tuned! 

* See Section 12.2 for more on grand unification, and Section 12.4 for supersymmetry and super­
strings. 
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2.1 Calculate the ratio of the gravitational attraction to the electrical repulsion between two 
stationary electrons. (Do I need to tell you how far apart they are?) 

2.2 Sketch the lowest-order Feynman diagram representing Delbruck scattering: y + 
y -+ y + y. (This process, the scattering of light by light, has no analog in classical 
electrodynamics.) 

2.3 Draw all the fourth-order (four vertex) diagrams for Compton scattering. (There are 17 
of them; disconnected diagrams don't count.) 

2.4 Determine the mass of the virtual photon in each of the lowest-order diagrams for 
Bhabha scattering (assume the electron and positron are at rest). What is its velocity? 
(Note that these answers would be impossible for real photons.) 

2.5 (a) Which decay do you think would be more likely, 

s---+A+:rr- or s---+n+:rr-

Explain your answer, and confirm it by looking up the experimental data. 
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(b) Which decay of the D0(cu) meson is most likely, 

Which is least likely? Draw the Feynman diagrams, explain your answer and check 
the experimental data. (One of the successful predictions of the Cabibbo/GIM/KM 
model was that charmed mesons should decay preferentially into strange mesons, 
even though energetically the 2n mode is favored.) 

(c) How about the 'beautiful' (B) mesons? Should they go to the D's, K's, or n's? 
2.6 Draw all the lowest-order diagrams contributing to the process e+ + e- -+ w+ + w-. 

(One of them involves the direct coupling of Z to W's and another the coupling of y to 
W's, so when LEP (the electron-positron collider at CERN) achieved sufficient energy 
to make two W's, in 1996, these exotic processes could be studied experimentally. See 
B. Schwarzschild, Physics Today (September 1996), p. 21.) 

2.7 Examine the following processes, and state for each one whether it is possible or 
impossible, according to the Standard Model (which does not include GUTs, with their 
potential violation of the consetvation of lepton number and baryon number). In the 
former case, state which interaction is responsible - strong, electromagnetic, or weak; 
in the latter case, cite a consetvation law that prevents it from occurring.* (Following 
the usual custom, I will not indicate the charge when it is unambiguous, thus y, A, and 
n are neutral; pis positive, e is negative; etc.) 

(a) p + p ➔ n+ + n° 
(c) r: 0 ➔ A + n° 
(e) e+ + e- ➔ µ+ + µ­

(g) b. + ➔ p + n° 
(i) e + p ➔ Ve+ n° 
(k)p ➔ e+ + y 

(m) n+n ➔ n+ +n-+n° 
(o) K- ➔ n- +n° 
(q) r;O ➔ A + y 

(s) s0 ➔ p+n-
(u) n° ➔ y + y 

(b) T/ ➔ y + y 
(d) r;- ➔ n+n­
(f) µ- ➔ C + Ve 

(h) Ve + p ➔ n + e+ 
(j)p+p ➔ r;+ + n+ K0 +n+ +n° 
(l) p + p ➔ p + p + p + p 
(n) n+ + n ➔ n- + p 

(p) r;+ + n ➔ r;- + p 

(r) s- ➔ A +n-
(t) n- + p ➔ A + K0 

(v) r;- ➔ n + e + v, 

2.8 Some decays involve two (or even all three) different forces. Draw possible Feynman 
diagrams for the following processes: 

(a) µ,-> e + e + e+ + vµ + v, 
(b) I;+-+ p+ y 

What interactions are involved? (Both these decays have been obseived, by the 
way.) 

* Note: A collision is never kinematically forbid­
den. If you claim, for example, that reaction 
(e) is forbidden by conservation of energy 
(because the electron weighs less than the 
muon), you are at least half wrong - it can 
(and does) occur, as long as the electrons 
have enough kinetic energy to make up the 

difference. But don't try to play this game for 
decays - a single particle cannot decay into 
heavier secondaries no matter what its kinetic 
energy is, as you can easily see by examining 
the process in the rest frame of the decaying 
particle. 
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2.9 The -Y meson, bb, is the bottom-quark analog to the VI, cc. Its mass is 9460 MeV /c2, and 
its lifetime is 1.5 x 10-20 sec. From this information, what can you say about the mass 
of the B meson, ub? (The obseived mass is 5280 MeV/c2.) 

2.10 The VI' meson, at 3686 MeV/c2 , has the same quark content as the VI (viz. cc). Its 
principal decay mode is VI' --+ VI + ,r+ + ,r-. Is this a strong interaction? Is it 
OZ! suppressed? What lifetime would you expect for the VI'? (The obseived value is 
3 x 10-21 sec.) 

2.11 Figure 1.9 shows the first confirmed production of an rr, in a hydrogen bubble 
chamber. The incident K- evidently hit a stationary particle X, producing a K0, a K+, 
and then-. (a) What was the charge of the X? What was its strangeness? What particle do 
you suppose it was? (b) Follow each line in the right-hand diagram, listing every reaction 
as you go along; also specify what kind of interaction - (strong, electromagnetic, or 
weak - was responsible. (In case the diagram is unclear, the two photons are supposed 
to come from the same point. Incidentally, while y --+ e- + e+ is impossible in vacuum 
(it doesn't conseive momentum), it does occur in the vicinity of a nucleus - the nucleus 
soaks up the 'missing' momentum. The reaction is really y + p --+ e- + e+ + p, but the 
p leaves no track, because it is so heavy that it scarcely moves; the electron and positron 
carry off the photon's energy, and the proton simply acts as a passive momentum 
'sink'.) 

2.12 Thew- was discovered in 1983 at CERN, using proton/antiproton scattering: 

where X represents one or more particles. What is the most likely X, for this process? 
Draw a Feynman diagram for your reaction, and explain why your Xis more probable 
than the various alternatives. 
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Relativistic Kinematics 

In this chapter, I summarize the basic principles, notation, and terminology of relativistic 

kinematics. This is material you must know cold in order to understand Chapters 6 

through 10 (it is not needed for Chapters 4 and 5, however, and if you prefer you can read 

them first). Although the treatment is reasonably self-contained, I do assume that you 

have encountered special relativity before - if not, you should pause here and read the 

appropriate chapter in any introductory physics text before proceeding. If you are already 

quite familiar with relativity, this chapter will be an easy review - but read through it 

anyway because some of the notation may be new to you. 

3.1 

Lorentz Transformations 

According to the special theory of relativity (1 ], the laws of physics apply just as 

well in a reference system moving at constant velocity as they do in one at rest. An 

embarrassing implication of this is that there's no way of telling which system (if 

any) is at rest, and hence there is no way of knowing what 'the' velocity of any other 

system might be. So perhaps I had better start over. Ahem. 

According to the special theory of relativity [1 ], the laws of physics are equally valid 

in all inertial reference systems. An inertial system is one in which Newton's first law 

(the law of inertia) is obeyed: objects keep moving in straight lines at constant speeds 

unless acted upon by some force.* It's easy to see that any two inertial systems must 

be moving at constant velocity with respect to one another, and conversely, that any 

system moving at constant velocity with respect to an inertial system is itself inertial. 

Imagine, then, that we have two inertial frames, S and S', with S' moving at 

uniform velocity v (magnitude v) with respect to S (S, then, is moving at velocity 

-v with respect to S'). We may as well lay out our coordinates in such a way that

the motion is along the common x/x axis (Figure 3.1), and set the master clocks at

the origin in each system so that both read zero at the instant the two coincide (that

is, t = t' = 0 when x = x = 0). Suppose, now, that some event occurs at position

* If you are wondering whether a freely falling system in a uniform gravitational field is 'inertial', 

you know more than is good for you. Let's just keep gravity out of it. 

189 
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S S' 

y y' 

V 

x' 

X 

z 

Fig. 3.1 The inertial systems 5 and S'. 

(x, y, z) and time tin S. Question: What are the space-time coordinates (x', y', z') and 
t:' of this same event in S'? The answer is provided by the Lorentz transformations: 

where 

i. x' = y (x - vt) 

ii.y'=y 

iii.Z=Z 

• 1 ( V ) lV. t = y t - ~X 

(3.1) 

(3.2) 

The inverse transformations, which take us back from S' to S, are obtained by 
simply changing the sign of v (see Problem 3.1): 

i'. x = y(x' + vt') 

ii'. y=y' 

iii'.z=z (3.3) 

iv'. t = y (t' + ix') 
The Lorentz transformations have a number of immediate consequences, of 

which I mention briefly the most important: 
1. The relativity of simultaneity: If two events occur at the same 

time in S, but at different locations, then they do not occur at 
the same time in S'. Specifically, if tA = tB, then 

(3.4) 
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(see Problem 3.2). Events that are simultaneous in one 
inertial system, then, are not simultaneous in others. 

2. Lorentz contraction: Suppose a stick lies on the x' axis, at rest 
in S'. Say one end is at the origin (x' = 0) and the other is at 
L' (so its length in S' is L'). What is its length as measured in 
S? Since the stick is moving with respect to S, we must be 
careful to record the positions of its two ends at the same 
instant, say t = 0. At that moment, the left end is at x = 0 and 
the right end, according to Equation (i), is at x = L' /Y. Thus 
the length of the stick is L = L' /y, in S. Notice that y is 
always greater than or equal to 1. It follows that a moving 
object is shortened by a factor of y, as compared with its length 
in the system in which it is at rest. Notice that Lorentz 
contraction only applies to lengths along the direction of 
motion; perpendicular dimensions are not affected. 

3. Time dilation: Suppose the clock at the origin in S' ticks off 
an interval T'; for simplicity, say it runs from t' = 0 to t' = T'. 
How long is this period as measured in S? Well, it begins 
when t = 0, and it ends when t' = T' at x' = 0, so (according 
to Equation (iv')) t = y T'. Evidently the clocks in S tick off a 
longer interval, T = y T', by that same factor of y; or, put it 
the other way around: moving clocks run slow. 

Unlike Lorentz contraction, which is only indirectly 
relevant to elementary particle physics, time dilation is a 
commonplace in the laboratory. For, in a sense, every 
unstable particle has a built-in clock: whatever it is that tells 
the particle when its time is up. And these internal clocks do 
indeed run slow when the particle is moving. That is to say, a 
moving particle lasts longer (by a factor of y) than it would at 
rest.* (The tabulated lifetimes are, of course, for particles at 
rest.) In fact, the cosmic ray muons produced in the upper 
atmosphere would never make it to ground level were it not 
for time dilation (see Problem 3.4). 

4. Velocity addition: Suppose a particle is moving in the x 
direction at speed u', with respect to S'. What is its speed, u, 
with respect to S? Well, it travels a distance Lix = y(Lix' + v 
Lit') in a time Lit= y[Lit' + (v/c2 )Lix'], so 

Lix Lix' + v Lit' (Lix'/M) + v 

Lit Lit'+ (v/c2 )Lix' 1 + (v/c2 )(Lix' / M) · 

* Actually, the disintegration of an individual particle is a random process; when we speak of a 
'lifetime' we really mean the average lifetime of that particle type. When I say that a moving par­
ticle lasts longer, I really mean that the average lifetime of a group of moving particles is longer. 
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But !),_x/1),_t = u, and !),_:,cj!),_f = u', so 

u' +v 
U=---~ 

1 + (u'v/c2) 
(3.5) 

Notice that if u' = c, then u = c also: the speed of light is the same in all inertial 
systems. 

It can sometimes be confusing to figure out in a particular context, which 
numbers should be primed and what signs attach to the velocities, so I personally 
remember three rules: moving sticks are short (by a factor of y), moving clocks 
are slow (by a factor of y) - so put the y (which, remember, is greater than 1) on 
whichever side of the equation you need to achieve these results, - and 

(3.6) 

where VAB (for instance) means the velocity of A with respect to B. The numerator is 
the classical result (the so-called 'Galilean velocity addition rule'); the denominator 
is Einstein's correction - it is very close to 1 unless the velocities are close to c. 

3.2 
Four-vectors 

It is convenient at this point to introduce some simplifying notation. We define the 
position-time four-vector xµ, µ = 0, 1, 2, 3, as follows: 

XO= ct, X 1 = X, xi =y, x3 =Z (3.7) 

In terms of xµ, the Lorentz transformations take on a more symmetrical appear­
ance: 

where 

x0' = y(x0 - flx1) 

xi, = y(xI - fixo) 

xi'= xi 

x3' = x3 

More compactly: 

3 

xµ' = LA~x" 
v=O 

(3.8) 

(3.9) 

(µ = 0, 1,2,3) (3.10) 
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The coefficients At may be regarded as the elements of a matrix A: 

(3.11) 

(i.e. 11.g = A~ = y; A5 = A~ = -yfJ; A~ = A~ = 1; and all the rest are zero). To 
avoid writing lots of I:'s, we shall follow Einstein's 'summation convention', which 
says that repeated Greek indices (one as subscript, one as superscript) are to be 
summed from Oto 3. Thus Equation 3.10 becomes, finally,* 

(3.12) 

A special virtue of this tidy notation is that the same form describes Lorentz 
transformations that are not along the x direction; in fact, the Sand S' axes need not 
even be parallel; the A matrix is more complicated, naturally, but Equation 3 .12 still 
holds. (On the other hand, there is no real loss of generality in using Equation 3.11, 
since we are always free to choose parallel axes, and to align the x axis along the 
direction of v.) 

Although the individual coordinates of an event change, in accordance with 
Equation 3.12, when we go from S to S', there is a particular combination of them 
that remains the same (Problem 3.8): 

Such a quantity, which has the same value in any inertial system, is called an 
invariant. (In the same sense, the quantity r2 = x2 + y2 + z2 is invariant under 
rotations.) Now, I would like to write this invariant in the form ofa sum: I:!=0xJJ.xJJ., 
but unfortunately there are those three irritating minus signs. To keep track of 
them, we introduce the metric, gµ.v, whose components can be displayed as a 
matrixg: 

.~ l 1 0 0 
0 -1 0 
0 0 -1 

0 0 0 ~ 1 -1 

* In an expression such as this the Greek 
letter used for the summation index, v, is 
of course completely arbitrary. The same 
goes for the 'hanging' index µ., although 
it must match on the two sides of the 
equation. Thus Equation (3.12) could just 
as well be written ,r;'' = A1x1•• Either expres­
sion stands for the set of four equations: 

x0' = A8x0 + Aix1 + A~x2 + A~x3 

x11 = A5x0 + A)x1 + A}x2 + Alx3 

x21 = A5x0 + Ai x1 + A~x2 + A~x3 

x 31 = Alx0 + A;x1 + A~x2 + Ajx3 

(3.14) 
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(i.e. goo = l; gu = g22 = g33 = -1; all the rest are zero).* With the help of gµv, the 
invariant I can be written as a double sum: 

3 3 

I= L LgµvXµXv = gµv~Xv 
µ=Ov=O 

(3.15) 

Carrying things a step further, we define the covariant four-vector Xµ (index down) 
as follows: 

(3.16) 

(i.e. x0 = x0 , x 1 = -x1 , x 2 = -x2 , x3 = -x3). To emphasize the distinction we call 
the 'original' four-vector xµ (index up) a contravariant four-vector. The invariant I 
can then be written in its cleanest form: 

(3.17) 

(or, equivalently, xµxµ)- All this will no doubt seem like monstrous notational 
overkill, just to keep track of three pesky minus signs, but it's actually very simple, 
once you get used to it. (What's more, it generalizes nicely to non-Cartesian 
coordinate systems and to the curved spaces encountered in general relativity, 
though neither of these is relevant to us here.) 

The position-time four-vector xµ is the archetype for all four-vectors. We define 
a four-vector, aµ, as a four-component object that transforms in the same way xµ 
does when we go from one inertial system to another, to wit: 

(3.18) 

with the same coefficients Ai. To each such (contravariant) four-vector we associate 
a covariant four-vector aµ, obtained by simply changing the signs of the spatial 
components, or, more formally 

(3.19) 

Of course, we can go back from covariant to contravariant by reversing the signs 
again: 

(3.20) 

where gµv are technically the elements in the matrix g-1 (however, since our metric 
is its own inverse, gµv is the same as gµv}· Given any two four-vectors, aµ and bµ, 
the quantity 

(3.21) 

• I should warn you that some physicists define the metric with the opposite signs (-1, 1, 1, 1). It 
doesn't matter much - if I is an invariant, so too is -I. But it does mean that you must be on 
the lookout for unfamiliar signs. Fortunately, most particle physicists nowadays use the conven­
tion in Equation 3.14. 
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is invariant (the same number in any inertial system). We shall refer to it as the 
scalar product of a and b; it is the four-dimensional analog to the dot product of two 
three-vectors (there is no four-vector analog to the cross product).* 

If you get tired of writing indices, feel free to use the dot notation: 

(3.22) 

However, you will then need a way to distinguish this four-dimensional scalar 
product from the ordinary dot product of two three-vectors. The best way is to 
be scrupulously careful to put an arrow over all three-vectors (except perhaps the 
velocity, v, which, since it is not part of a four-vector, is not subject to ambiguity). 
In this book, I use boldface for three-vectors. Thus 

(3.23) 

We also use the notation a2 for the scalar product of aµ with itself:"t 

(3.24) 

Notice, however, that a2 need not be positive. Indeed, we can classify all four-vectors 
according to the sign of a2: 

Ifa2 > 0, 
If a2 < 0, 
If a2 = 0, 

aµ is called timelike 
aµ is called spacelike 
aµ is called lightlike 

(3.25) 

From vectors it is a short step to tensors: a second-rank tensor, sµv, carries two 
indices, has 42 = 16 components, and transforms with two factors of A: 

(3.26) 

a third-rank tensor, tµv>., has three indices, 43 = 64 components, and transforms 
with three factors of A: 

* The closest thing is (a" b" - a" b"), but this is 
a second-rank tensor, not a four-vector (see be­
low). 

°I On its face, this is dangerously ambiguous 
notation, since a1 could also be the second 
spatial component of a". But in practice we 
so seldom refer to individual components 
that this causes no problems (if you really 
mean the component, better say so explic­
itly). More serious is the potential confusion 

(3.27) 

between a1 and the square of the magnitude 
of the three-vector part of aµ. I personally 
write the latter in bold face, to avoid any pos­
sible misunderstanding: a1 = a • a. This is 
not standard notation, however, and if you 
prefer some other device, that's fine. But I 
do urge you to find a clear way to distinguish 
a1 from a1, or you are asking for real trouble 
down the road. 
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and so on. In this hierarchy, a vector is a tensor of rank one, and a scalar (invariant) 
is a tensor of rank zero. We construct covariant and 'mixed' tensors by lowering 
indices (at the cost of a minus sign for each spatial index), for example 

(3.28) 

and so on. Notice that the product of two tensors is itself a tensor: ( aµ b v) is a tensor 
of second rank; (aµtvM) is a tensor of fourth rank; and so on. Finally, we can obtain 
from any tensor of rank n + 2 a 'contracted' tensor of rank n, by summing like upper 
and lower indices. Thussµµ is a scalar; tvµv is a vector; aµtµv>. is a second-rank tensor. 

3.3 
Energy and Momentum 

Suppose you're driving down the highway, and pretend for the sake of argument 
that you're going at close to the speed of light. You might want to keep an eye 
on two different 'times': if you're worried about making an appointment in San 
Francisco, you should check the stationary clocks posted now and then along the 
side of the road. But if you're wondering when would be an appropriate time to 
stop for a bite to eat, it would be more sensible to look at the watch on your wrist. 
For, according to relativity, the moving clock (in this case, your watch) is running 
slow (relative to the 'stationary' clocks on the ground), and so too is your heart 
rate, your metabolism, your speech and thought, everything. Specifically, while the 
'ground' time advances by an infinitesimal amount dt, your own (or proper) time 
advances by the smaller amount dr: 

dr = ~ 
y 

(3.29) 

At normal driving speeds, of course, y is so close to 1 that dt and dr are essentially 
identical, but in elementary particle physics the distinction between laboratory 
time (read off the clock on the wall) and particle time (as it would appear on the 
particle's watch) is crucial. Although we can always get from one to the other, using 
Equation 3.29, in practice it is usually most convenient to work with proper time, 
because r is invariant - all observers can read the particle's watch, and at any given 
moment they must all agree on what it says, even though their own clocks may 
differ from it and from one another. 

When we speak of the 'velocity' of a particle (with respect to the laboratory), we 
mean, of course, the distance it travels (measured in the lab frame) divided by the 
time it takes (measured on the lab clock): 

dx 
V=-

dt 
(3.30) 

But in view of what has just been said, it is also useful to introduce the proper 
velocity, 17, which is the distance traveled (again, measured in the lab frame) divided 



by the proper time:* 

dx 
rJ= -

d-r 
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(3.31) 

According to Equation 3.29, the two velocities are related by a factor of y: 

rJ = yv (3.32) 

However, r, is much easier to work with, for if we want to go from the lab system, S, 

to a moving system, S', both the numerator and the denominator in Equation 3.30 must 
be transformed - leading to the cumbersome velocity addition rule Equation 3.5 -
whereas in Equation 3.31 only the numerator transforms; d-r, as we have seen, is 
invariant. In fact, proper velocity is part of a four-vector: 

dx1' 
rt=-­

d-r 

whose zeroth component is 

0 dx0 d(ct) 
r, = dr = (1/y) dt = ye 

Thus 

(3.33) 

(3.34) 

(3.35) 

Incidentally, r,µrt should be invariant, and it is: 

(3.36) 

They don't make 'em more invariant than that! 
Classically, momentum is mass times velocity. We would like to carry this over in 

relativity, but the question arises: which velocity should we use - ordinary velocity 
or proper velocity? Classical considerations offer no clue, for the two are equal in the 
nonrelativistic limit. In a sense, it's just a matter of definition, but there is a subtle 
and compelling reason why ordinary velocity would be a bad choice, whereas proper 
velocity is a good choice. The point is this: if we defined momentum as mv, then 
the law of conservation of momentum would be inconsistent with the principle 
of relativity (if it held in one inertial system, it would not hold in other inertial 

* Proper velocity is a hybrid quantity, in the 
sense that distance is measured in the lab 
frame, whereas time is measured in the par­
ticle frame. Some people object to the adjec­
tive 'proper' in this context, holding that this 
should be reserved for quantities measured 
entirely in the particle frame. Of course, in its 
own frame the particle never moves at all -

its velocity is zero. If my terminology disturbs 
you, call ~ the 'four-velocity'. I should add 
that although proper velocity is the more con­
venient quantity to calculate with, ordinary ve­
locity is still the more natural quantity from 
the point of view of an observer watching a 
particle fly past. 
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systems). But, if we define momentum as m7J, then conservation of momentum 
is consistent with the principle of relativity (if it holds in one inertial system, it 
automatically holds in all inertial systems). I'll let you prove this for yourself in 
Problem 3.12. Mind you, this doesn't guarantee that momentum is conserved -
that's a matter for experiments to decide. But it does say that if we're hoping to 
extend momentum conservation to the relativistic domain, we had better not define 
momentum as mv, whereas m7J is perfectly acceptable. 

That's a tricky argument, and if you didn't follow it, try reading that last paragraph 
again. The upshot is that in relativity, momentum is defined as mass times proper 
velocity: 

(3.37) 

Since proper velocity is part of a four-vector, the same goes for momentum: 

(3.38) 

The spatial components of pµ constitute the (relativistic) momentum three-vector: 

mv 
p = ymv = -;======== J1 - v2/c2 

Meanwhile, the 'temporal' component is 

P°=ymc 

(3.39) 

(3.40) 

For reasons that will appear in a moment, we define the relativistic energy, E, as 

mc2 

E = ymc2 = -;======== J1 - v2/c2 
(3.41) 

The zeroth component of pµ, then, is E/c. Thus, energy and momentum together 
make up a four-vector - the energy-momentum four-vector (or four-momentum) 

(3.42) 

Incidentally, from Equations 3.36 and 3.38 we have 

(3.43) 

which, again, is manifestly invariant. 
The relativistic momentum (Equation 3.37) reduces to the classical expression 

in the nonrelativistic regime (v « c), but the same cannot be said for relativistic 
energy (Equation 3.41). To see how this quantity comes to be called 'energy,' we 
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expand the radical in a Taylor series: 

2 ( 1 v2 3 v4 ) 2 1 2 3 v4 
E=mc l+--+--+··· =me +-mv +-m-+•·· 

2 c2 8 c4 2 8 c2 
(3.44) 

Notice that the second term here corresponds to the classical kinetic energy, 
while the leading term (mc2) is a constant. Now you may recall that in classical 
mechanics only changes in energy are physically significant - you can add a 
constant with impunity. In this sense, the relativistic formula is consistent with 
the classical one, in the limit v « c where the higher terms in the expansion are 
negligible. The constant term, which survives even when v = 0, is called the rest 
energy; 

Reee mc2 (3.45) 

the remainder, which is energy attributable to the motion of the particle, is the 
relativistic kinetic energy:* 

2 1 2 3 v4 
T = me (y -1) = 2mv + 8m cZ + • • • (3.46) 

In classical mechanics, there is no such thing as a massless particle; its momen­
tum (mv) would be zero, its kinetic energy (½mv2) would be zero, it could sustain 
no force, since F = ma, and hence (by Newton's third law) it could not exert a 
force on anything else - it would be a dynamical ghost. At first glance you might 
suppose that the same would be true in relativity, but a careful inspection of the 
formulas 

mv 
p= -;======:c, Jl - v2/c2 

(3.47) 

reveals a loophole: when m = 0, the numerators are zero, but if v = c, the de­
nominators also vanish, and these equations are indeterminate (0/0). So it is just 
possible that we could allow m = 0, provided the particle always travels at the speed 
of light. In this case, Equation 3.47 will not serve to define E and p; nevertheless, 
Equation 3.43 still holds: 

V = C, E= lplc (for massless particles) (3.48) 

Personally, I would regard this 'argument' as a joke, were it not for the fact that 
massless particles (photons) are known to exist in nature, they do travel at the speed 
oflight, and their energy and momentum are related by Equation 3.48. So we have 

• Notice that I have never mentioned 'relativis­
tic mass' in all this. It is a superfluous quan­
tity that serves no useful function. In case you 
encounter it, the definition is m,.1 = y m; it 
has died out because it differs from E only 

by a factor of c2 • Whatever can be said about 
m,.1 could just as well be said about E. For in­
stance, the 'conservation of relativistic mass' 
is nothing but conservation of energy, with a 
factor of c2 divided out. 
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to take the loophole seriously. You may well ask: if Equation 3.47 doesn't define 
p and E, what does determine the momentum and energy of a massless particle? 
Not the mass (that's zero by assumption); not the speed (that's always c). How, 
then, does a photon with an energy of 2 eV differ from a photon with an energy of 
3 eV? Relativity offers no answer to this question, but curiously enough quantum 
mechanics does, in the form of Planck's formula: 

E= hv (3.49) 

It is the frequency of the photon that determines its energy and momentum: the 
2-eV photon is red, and the 3-eV photon is purple! 

3.4 
Collisions 

So far, relativistic energy and momentum are nothing but definitions; the physics 
resides in the empirical fact that these quantities are conserved. In relativity, as in 
classical mechanics, the cleanest application of the conservation laws is to collisions. 
Imagine first a classical collision, in which object A hits object B (perhaps they are 
both carts on an air table), producing objects C and D (Figure 3.2). Of course, C 
and D might be the same as A and B; but we may as well allow that some paint 
(or whatever) rubs off A onto B, so that the final masses are not the same as the 
original ones. (We do assume, however, that A, B, C, and D are the only actors 
in the drama; if some wreckage, W, is left at the scene, then we would be talking 
about a more complicated process: A + B ➔ C + D + W.) By its nature, a collision 
is something that happens so fast that no external force, such as gravity, or friction 
with the track, has an appreciable influence. Classically, mass and momentum are 
always conserved in such a process; kinetic energy may or may not be conserved. 

3.4.l 
Classical Collisions 

1. Mass is conserved: mA + mB = me + mv. 
2. Momentum is conserved: PA+ PB= Pc+ PD• 
3. Kinetic energy may or may not be conserved. 

0---.-­

A 

Before 

Fig. 3.2 A collision in which A + 8 -+ C + D. 

After 
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I like to distinguish three types of collisions: 'sticky' ones, in which the kinetic 

energy decreases (typically, it is converted into heat); 'explosive' ones, in which the 
kinetic energy increases (for example, suppose A has a compressed spring on its 
front bumper, and the catch is released in the course of the collision so that spring 
energy is converted into kinetic energy); and elastic ones, in which the kinetic 
energy is conserved. 

(a) Sticky (kinetic energy decreases): TA + TB > Tc+ TD• 
(b) Explosive (kinetic energy increases): TA + TB < Tc + TD• 
(c) Elastic (kinetic energy conserved): TA + TB = Tc+ TD• 

In the extreme case of type (a), the two particles stick together, and there is really 
only one final object: A + B -;- C. In the extreme case of type (b), a single object 
breaks in two: A -;- C + D (in the language of particle physics, A decays into 
C+D). 

3.4.2 
Relativistic Collisions 

In a relativistic collision, energy and momentum are always conserved. In other words, 
all four components of the energy-momentum four-vector are conserved. As in 
the classical case, kinetic energy may or may not be conserved. 

1. Energy is conserved: EA+ EB= Ee+ Ev. 
2. Momentum is conserved: PA+ PB= pc+ PD• 
3. Kinetic energy may or may not be conserved. 

(The first two can be combined into a single expression: p~ + p~ = p~ + p~.) 
Again, we can classify collisions as sticky, explosive, or elastic, depending on 

whether the kinetic energy decreases, increases, or remains the same. Since the 
total energy (rest plus kinetic) is always conserved, it follows that rest energy (and 
hence also mass) increases in a sticky collision, decreases in an explosive collision, 
and is unchanged in an elastic collision. 

(a) Sticky (kinetic energy decreases): rest energy and mass 
increase. 

(b) Explosive (kinetic energy increases): rest energy and mass 
decrease. 

(c) Elastic (kinetic energy is conserved): rest energy and mass 
are conserved. 

Please note: except in elastic collisions, mass is not conserved.* For example, in the 
decay n:0 -;- y + y the initial mass was 135 MeV/c2, but the final mass is zero. 

* In the old terminology, we would say that relativistic mass is conserved, but rest mass is not. 
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Here rest energy was converted into kinetic energy (or, in the absurd language of 
the popular press, infuriating to anyone with the slightest respect for dimensional 
consistency, 'mass was converted into energy'). Conversely, if mass is conserved, 
then the collision was elastic. In elementary particle physics, there is only one 
way this ever happens: the same particles come out as went in*- electron-proton 
scattering (e + p -;- e + p), for example. 

In spite of a certain structural similarity between the classical and relativistic 
analyses, there is a striking difference in the interpretation of inelastic collisions. 
In the classical case, we say that energy is converted from kinetic form to some 
'internal' form (thermal energy, spring energy, etc.), or vice versa. In the relativistic 
analysis, we say that it goes from kinetic energy to rest energy or vice versa. How 
can these possibly be consistent? After all, relativistic mechanics is supposed to 
reduce to classical mechanics in the limit v « c. The answer is that all 'internal' 
forms of energy are reflected in the rest energy of an object. A hot potato weighs 
more than a cold potato; a compressed spring weighs more than a relaxed spring. 
On the macroscopic scale, rest energies are enormously greater than internal 
energies, so these mass differences are utterly negligible in everyday life, and very 
small even at the atomic level. Only in nuclear and particle physics are typical 
internal energies comparable to typical rest energies. Nevertheless, in principle, 
whenever you weigh an object, you are measuring not only the rest energies 
(masses) of its constituent parts, but all of their kinetic and interaction energies 
as well. 

3.5 
Examples and Applications 

Solving problems in relativistic kinematics is as much an art as a science. Although 
the physics involved is minimal - nothing but conservation of energy and conser­
vation of momentum - the algebra can be formidable. Whether a given problem 
takes two lines or seven pages depends a lot on how skillful and experienced you 
are at manipulating the tools and the tricks of the trade. I now propose to work a 
few examples, pointing out as I go along some of the labor-saving devices that are 
available to you [2]. 

Example 3.1 Two lumps of clay, each of mass m, collide head-on at ¾c (Figure 3.3). 
They stick together. Question: What is the mass M of the final composite lump? 

Solution: Conservation of energy says E1 + E2 = EM. Conservation of momentum 
says P1 + pz = PM· In this case, conservation of momentum is trivial: p1 = -p2 , so 
the final lump is at rest (which was obvious from the start). The initial energies are 

* In principle, if there existed two distinct pairs of particles (A, B and C, D) that happened to add 
up to the same total mass, then I suppose the reaction A + B ----> C + D might be considered 
'elastic', but in reality there are no such coincidences, so to a particle physicist the word 'elastic' 
has come to mean that the same particles come out as went in. 
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Fig. 3.3 Sticky collision of two equal masses (Example 3.1). 

equal, so conservation of energy yields 

2 2mc2 5 2 
Mc = 2Em = --;==== = -(2mc ) 

✓1 - (3/5)2 4 
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Conclusion: M = ~m. Notice that this is greater than the sum of the initial masses; 
in sticky collisions kinetic energy is converted into rest energy, so the mass 
increases. 

Example 3.2 A particle of mass M, initially at rest, decays into two pieces, each of 
mass m (Figure 3.4). Question: What is the speed of each piece as it flies off? 

Solution: This is, of course, the reverse of the process in Example 3.1 Conservation 
of momentum just says that the two lumps fly off in opposite directions at equal 
speeds. Conservation of energy requires that 

M- 2m so v = cJl-(2m/M)2 - ✓1-v2/c2 ' 

This answer makes no sense unless M exceeds 2m: there has to be at least enough 
rest energy available to cover the rest energies in the final state (any extra is fine; 
it can be soaked up in the form of kinetic energy). We say that M = 2m is the 
threshold for the process M ➔ 2m to occur. The deuteron, for example, is below 
the threshold for decay into proton plus neutron (md = 1875.6 Mev/c2 ; mp+ mn = 
1877.9 MeV/c2), and therefore is stable. A deuteron can be pulled apart, but only by 
pumping enough energy into the system to make up the difference. (If it puzzles 
you that a bound state of p and n should weigh less than the sum of its parts, the 
point is that the binding energy of the deuteron - which, like all internal energy, 
is reflected in its rest mass - is negative. Indeed, for any stable bound state the 
binding energy must be negative; if the composite particle weighs more than the 
sum of its constituents, it will spontaneously disintegrate.) !filffl 

Example 3.3 A pion at rest decays into a muon plus a neutrino (Figure 3.5). 
Question: What is the speed of the muon? 

0 
V 

-------0 
V 

0----
M m m 

Before After 

Fig. 3.4 A particle decays into two equal pieces. (Example 3.2). 
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11' 

0 
Before 

Fig. 3.5 Decay of the charged pion (Example 3.3). 

Solution: Conservation of energy requires E" = Eµ, + Ev. Conservation of mo­
mentum gives Prr = pµ, + Pv; but Prr = 0, sopµ, = -Pv• Thus the muon and the 
neutrino fly off back-to-back, with equal and opposite momenta. To proceed, we 
need a formula relating the energy of a particle to its momentum; Equation 3.43 
does the job.* 

Suggestion 1. To get the energy of a particle, when you know its 
momentum (or vice versa), use the invariant 

In the present case, then: 

Err= m,,c2 

Eµ, = cJmic2 +pi 

Ev = IPv le = Ipµ, le 

Putting these into the equation for conservation of energy, we have 

or 

Solving for Ipµ, I, 

Meanwhile, the energy of the muon (from Equation 3.50) is 

(3.50) 

* You might be inclined to solve Equation 3.39 for the velocity, and plug the result into 
Equation 3.41, but that would be a very poor strategy. In general, velocity is a bad parameter 
to work with, in relativity. Better to use Equation 3.43, which takes you directly back and forth 
between E and p. 
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Once we know the energy and momentum of a particle, it is easy to find its 

velocity. If E = ymc2 and p = ymv, dividing gives 

p/E=v/c2 

Suggestion 2. If you know the energy and momentum of a par­
ticle, and you want to determine its velocity, use 

So the answer to our problem is 

m;-m~ 
v,, = m2 + m2 c 

" µ, 

Putting in the actual masses, I get v,, = 0.271c. ~-

(3.51) 

There is nothing wrong with that calculation; it was a straightforward and 
systematic exploitation of the conservation laws. But I want to show you now a 
faster way to get the energy and momentum of the muon, by using four-vector 
notation. (I should put a superscript µ on all the four-vectors, but I don't 
want you to confuse the space-time index µ with the particle identifier µ, so 
here, and often in the future, I will suppress the space-time indices, and use 
a dot to indicate the scalar product.) Conservation of energy and momentum 
requires 

Prr = Pµ, + Pv, or Pv = Prr - Pµ, 

Taking the scalar product of each side with itself, we obtain 

But 

Therefore 

from which E,, follows immediately. 
By the same token 

Pµ, = Prr - Pv 

Squaring yields 
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But Ev= IPvlc = IPµlc, so 

2mrrlPµI = (m; - m~)c 

which gives us lpµI- In this case, the problem was simple enough that the savings 
afforded by four-vector notation are meager, but in more complicated problems the 
benefits can be enormous. 

Suggestion 3. Use four-vector notation, and exploit the invari­
ant dot product. Remember that p2 = m2c2 (Equation 3.43) 
for any (real) particle. 

One reason why the use of invariants is so powerful in this business is that we 
are free to evaluate them in any inertial system we like. Frequently, the laboratory 
frame is not the simplest one to work with. In a typical scattering experiment, for 
instance, a beam of particles is fired at a stationary target. The reaction under study 
might be, say, p + p-+ whatever, but in the laboratory the situation is asymmetrical, 
since one proton is moving and the other is at rest. Kinematically, the process is 
much simpler when viewed from a system in which the two protons approach 
one another with equal speeds. We call this the center-ofmomentum (CM) frame, 
because in this system the total (three-vector) momentum is zero. 

Example 3.4 The Bevatron at Berkeley was built with the idea of producing 
antiprotons, by the reaction p + p -+ p + p + p + p. That is, a high-energy proton 
strikes a proton at rest, creating (in addition to the original particles) a proton­
antiproton pair. Question: What is the threshold energy for this reaction (i.e. the 
minimum energy of the incident proton)? 

Solution: In the laboratory the process looks like Figure 3.6a; in the CM frame, 
it looks like Figure 3.6b. Now, what is the condition for threshold? Answer: Just 
barely enough incident energy to create the two extra particles. In the lab frame, it 
is hard to see how we would formulate this condition, but in the CM it is easy: all 
four final particles must be at rest, with nothing 'wasted' in the form of kinetic energy. 
(We can't have that in the lab frame, of course, since conservation of momentum 
requires that there be some residual motion.) 

Let P;oT be the total energy-momentum four-vector in the lab; it is conserved, 
so it doesn't matter whether we evaluate it before or after the collision. We'll do it 
before: 

µ (E+mc2 ) PrnT = --c-• lpl,0,0 

where E and p are the energy and momentum of the incident proton, and m is 
the proton mass. Let p;0 / be the total energy-momentum four-vector in the CM. 
Again, we can evaluate it before or after the collision; this time we'll do it after: 

~ 0 / = (4mc, 0, 0, 0) 
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Fig. 3.6 p + p --> p + p + p + p. (a) In the lab frame; (b) in the CM frame. 

since (at threshold) all four particles are at rest. Now P~oT i= p~0/, obviously, but 
the invariant products PtJ.ToTP~oT and Pµ.~oTP~o/ are equal: 

(f +mc)
2 
-p2 = (4mc)2 

Using the standard invariant (Equation 3.50) to eliminate p2, and solving for E, we 
find 

E = 7mc2 

Evidently, the incident proton must carry a kinetic energy at least six times its rest 
energy, for this process to occur. (And in fact the first antiprotons were discovered 
when the machine reached about 6000 MeV.) 

This is perhaps a good place to emphasize the distinction between a conserved 
quantity and an invariant quantity. Energy is conserved - the same value after the 
collision as before - but it is not invariant. Mass is invariant - the same in all 
inertial systems - but it is not conserved. Some quantities are both invariant and 
conserved (e.g. electric charge); many are neither (speed, for instance). As Example 
3.4 indicates, the clever exploitation of conserved and invariant quantities can save 
you a lot of messy algebra. It also demonstrates that some problems are easier to 
analyze in the CM system, whereas others may be simpler in the lab frame. 

Suggestion 4. If a problem seems cumbersome in the lab frame, 
try analyzing it in the CM system. 

Even if you're dealing with something more complicated than a collision of two 
identical particles, the CM (in which PTOT = 0) is still a useful reference frame, for 
in this system conservation of momentum is trivial: zero before, zero after. But you 
might wonder whether there is always a CM frame. In other words, given a swarm 
of particles with masses m1, m2, m3, ... , and velocities V1, V2, V3, ... , does there 
necessarily exist an inertial system in which their total (three-vector) momentum 
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is zero? The answer is yes; I will prove it by finding the velocity of that frame and 
demonstrating that this velocity is less than c. The total energy and momentum in 
the lab frame (S) are 

(3.52) 

Since p!{:0 T is a four-vector, we can use the Lorentz transformations to get the 
momentum in system S', moving in the direction of PTOT with speed v 

In particular, this momentum is zero if v is chosen such that 

v IPToTlc 
c ErnT 

IL y;m,v;I 
LYim,c 

Now, the length of the sum of three-vectors cannot exceed the sum of their lengths 
(this geometrically evident fact is known as the triangle inequality), so 

and since v; < c, we can be sure that v < c.* Thus the CM system always exists, 
and its velocity relative to the lab frame is given by 

(3.53) 

It seems odd, looking back at the answer to Example 3.4, that it takes an incident 
kinetic energy six times the proton rest energy to produce a p /p pair. After all, we're 
only creating 2mc2 of new rest energy. This example illustrates the inefficiency of 
scattering off a stationary target; conservation of momentum forces you to waste a 
lot of energy as kinetic energy in the final state. Suppose we could have fired the 
two protons at one another, making the laboratory itself the CM system. Then it 
would suffice to give each proton a kinetic energy of only mc2 , one-sixth of what 
the stationary-target experiment requires. This realization led, in the early 1970s, 
to the development of colliding-beam machines (see Figure 3.7). Today, virtually 
every new machine in high-energy physics is a collider. 

Example 3.5 Suppose two identical particles, each with mass m and kinetic energy 
T, collide head-on. Question: What is their relative kinetic energy, T' (i.e. the kinetic 
energy of one in the rest system of the other)? 

• I am tacitly assuming that at least one of the particles is massive. If all of them are massless, 
we may obtain v = c, in which case there is no CM system. For example, there is no CM frame 
for a single photon. 
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Fig. 3.7 Two experimental arrangements: (a) Colliding beams; (b) fixed target. 

Solution: There are many ways to do this one. A quick method is to write down the 
total four-momentum in the CM and in the lab 

µ, (2£ ) PTOT = --z-,0 , µ, , ( E' + mc2 ') PToT= c ,p 

use Equation 3.50 to eliminate p' 

and express the answer in terms of T = E - mc2 and T' = E' - mc2 

T' = 4T (1 + ~) 2mc 
(3.54) 

The classical answer would have been T' = 4 T, to which this reduces when T « mc2 • 

(In the rest system of B, A has, classically, twice the velocity, and hence four times as 
much kinetic energy, as in the CM.) Now, a factor of 4 is some benefit, to be sure, but 
the relativistic gain can be greater by far. Colliding electrons with a laboratory kinetic 
energy ofl GeV, for example, would have a relative kinetic energy of 4000 GeV! ill 
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3.1 Solve Equation 3.1 for x, y, z, tin terms of x', y', :z!, t', and check that you recover 
Equation 3.3. 

3.2 (a) Derive Equation 3.4. 
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(b)According to clocks on the ground (system S), streetlights A and B (situated 4km 
apart) were both turned on at precisely 8:00 P.M. Which one went on first according 
to an observer on a train (system S'), which moves from A toward B at ¾ the speed 
of light? How much later (in seconds) did the other light go on? Note: As always in 
relativity, we are talking here about what S' observed, after correcting for the time it 
took the light to reach her, not what she actually saw (which would depend on where 
she was located on the train). 

3.3 (a) How do volumes transform? (If a container has volume V' in its own rest frame, S', 
what is its volume as measured by an observer in S, with respect to which it is moving 
at speed v?) 

(b) How do densities transform? (If a container holds p' molecules per unit volume in its 
own rest frame, S', how many molecules per unit volume does it carry in S?) 

3.4 Cosmic ray muons are produced high in the atmosphere (at 8000 m, say) and travel 
toward the earth at very nearly the speed oflight (0.998 c, say). 

(a) Given the lifetime of the muon (2.2 x 10-6 sec ), how far would it go before 
disintegrating, according to prerelativistic physics? Would the muons make it to 
ground level? 

(b) Now answer the same question using relativistic physics. (Because of time dilation, 
the muons last longer, so they travel farther.) 

(c) Pions are also produced in the upper atmosphere. In fact, the sequence is proton 
(from outer space) hits proton (in atmosphere) -,. p + p + pions. The pions then 
decay into muons: rr--,. µ,- + vµ; rr+-+ µ,+ + Vµ- But, the lifetime of the pion is 
much shorter (2.6 x 10-s s). Assuming the pions have the same speed (0.998 c), will 
they reach ground level? 

3.5 Half the muons in a monoenergetic beam decay in the first 600 m. How fast are they 
going? 

3.6 As the outlaws escape in their getaway car, which goes ¾ c, the cop fires a bullet from 
the pursuit car, which only goes ½c. The muzzle velocity (speed relative to gun) of the 
bullet is ½ c. Does the bullet reach its target 

(a) According to prerelativistic physics? 
(b) According to relativity? 

3.7 Find the matrix M that inverts Equation 3.12: xµ = M~x"' (use Equation 3.3). Show 
that Mis the matrix inverse of A: AM= 1. 

3.8 Show that the quantity I (in Equation 3.13) is invariant under Lorentz transformations 
(Equation 3.8). 

3.9 Given two four-vectors, aµ= (3, 4, 1, 2) and bµ = (5, 0, 3, 4), find: aµ, hµ, a2 , b2 , a• b, 
a2 , b2 , and a • b. Characterize aµ and bµ as timelike, spacelike, or lightlike. 

3.10 A second-rank tensor is called symmetric if it is unchanged when you switch the indices 
(s"µ =~");it is antisymmetric ifit changes sign (a"µ= -aµ"). 

(a) How many independent elements are there in a symmetric tensor? (Since s12 = s21 , 

these would count as only one independent element.) 
(b) How many independent elements are there in an antisymmetric tensor? 
(c) Show that symmetry is preserved by Lorentz transformations - that is, if s1'" is 

symmetric, so too is sµ"'. What about antisymmetry? 
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(d) Ifs"" is symmetric, show that s1"" is also symmetric. If a"" is antisymmetric, show 
that a,_.v is antisymmetric. 

(e) Ifs"" is symmetric and a"" is antisymmetric, show thats"" a,_.v = 0. 
(f) Show that any second-rank tensor (t"") can be written as the sum of an antisymmetric 

part (a1"") and a symmetric part (s""): t"" =a""+ s""· Constructs"" and a"" explicitly, 
given t.l'". 

3.11 A particle is traveling at ¾ c in the x direction. Determine its proper velocity, '7'" (all four 
components). 

3.12 Consider a collision in which particle A (with 4-momentum p~) hits particle B (4-
momentum p\:), producing particles C (p~) and D (p~)- Assume the (relativistic) energy 
and momentum are conserved in systems S (p~ + p\: = p~ + p~)- Using the Lorentz 
transformations (Eq. 3.12), show that energy and momentum are also conserved in 
S'. 

3.13 Is p" timelike, spacelike, or lightlike for a (real) particle of mass m? How about a 
massless particle? How about a virtual particle? 

3.14 How much more does a hot potato weigh than a cold one (in kg)? 
3.15 A pion traveling at speed v decays into a muon and a neutrino, n- ➔ µ,- + v,_,. If the 

neutrino emerges at 90° to the original pion direction, at what angle does the µ, come 
ofl? [Answer: tan0 = (1 - m!Jm;)/(2,By 2 ).] 

3.16 Particle A (energy E) hits particle B (at rest), producing particles Ci, C2, ••• :A+ B ➔ Ci 
+ C2 + ---+ Cn- Calculate the threshold (i.e. minimum E) for this reaction, in terms 
of the various particle masses. 

Answer : A 8 c2, where M = m1 + m2 + ... + mn [ ~-~-~ ] 
2mB 

3.17 Use the result of Problem 3.16 to find the threshold energies for the following reactions, 
assuming the target proton is stationary:* 

(a)p + p ➔ p + p + lTO 

(b)p + p ➔ p + p + n+ + n­

(c)n- + p ➔ p + p + n 

(d)n- + p ➔ Ko+ :Eo 

(e)p + p ➔ p + 1;+ + K0 

3.18 The first man-made n- (Fig. 1.9) was created by firing a high-energy proton at a 
stationary hydrogen atom to produce a K+ / K- pair: p + p ➔ p + p + K+ + K-; 
the K- in turn hit another stationary proton, K- + p ➔ n- + K0 + K+. What 
minimum kinetic energy is required (for the incident proton), to make an n- in this 
way? (Gell-Mann must have done this calculation to see whether the experiment would 
be feasible.) 

Beware: The Particle Physics Booklet (and 
most other sources) list particle 'masses' in 
MeV. For example, the mass of the muon 
is quoted as 105.658 MeV. What they mean, 
of course, is the rest energy of the muon: 
m,,c2 = 105.658 MeV - or, what is the same 

thing, m,, = 105.658 MeV /c2• It is safest to 
convert formulas from mass to rest energy 
before plugging in any numbers. In this 
case, for example, multiply top and bottom 
by c2, to get E,..,,. = [(Mc2)2 - (mAc2)2 -
(mBc2)2]/2(mBc2). 



1121 3 Relativistic Kinematics 

3.19 Particle A, at rest, decays into particles Band C (A ➔ B + C). 

(a) Find the energy of the outgoing particles, in terms of the various masses. 

Answer: EB = A B c c2 [ 
m2 + m2 - m2 ] 

2mA 

(b) Find the magnitudes of the outgoing momenta. 

where A is the so-called triangle function : 

1..(x, y, z) = x2 + y2 + z2 - 2xy - 2xz - 2yz. 

(c) Note that),. factors: '-(a2 , b2 , c2 ) =(a+ b + c)(a + b - c)(a - b + c)(a - b - c). Thus 
IPBI goes to zero when mA = mB + me, and runs imaginary if mA < (mB + me). 
Explain. 

3.20 Use the result of Problem 3.19 to find the CM energy of each decay product in the 
following reactions (see footnote to Problem 3.17): 

(a)n- ➔ µ,-+iiµ 

(b)n° ➔ y+y 
(c) K+ ➔ n+ + n° 
(d)A ➔ p+n-

(e) n- ➔ A+ K-
3.21 A pion at rest decays into a muon and a neutrino (n- ➔ µ,-+iiµ)· On the average, 

how far will the muon travel (in vacuum) before disintegrating? [Answer: d = [(m; -
mt)/(2m,,mµ)]cr = 186 m.] 

3.22 Particle A at rest, decays into three or more particles: A ➔ B + C + D + • • ·. 

(a) Determine the maximum and minimum energies that B can have in such a decay, in 
terms of the various masses. 

(b)Find the maximum and minimum electron energies in muon decay,µ,- ➔ e- + 
Ve+ Vµ-

3.23 (a) A particle traveling at speed u approaches an identical particle at rest. What is 
the speed (v) of each particle in the CM frame? (Classically, of course, it would 
just be u/2.) 

[Answer: (c2 ju) ( 1 - J1 - u2 /c2 )l 
(b)Find y = 1/~in termsofy' = 1/Jl- u2/c2• 

[Answer: J(y' + 1)/2] 
(c) Use your result in part (b) to express the kinetic energy of each particle in the CM 

frame, and thus re-derive Equation 3.54 
3.24 In reactions of the type A+ B ➔ A+ C1 + C2 + • • • (in which particle A scatters off 

particle B, producing C1 , C2 , ... ), there is another inertial frame, in addition to the lab 
(Bat rest) and the CM (PmT = 0), which is sometimes useful. It is called the Breit, or 
'brick wall' frame, and it is the system in which A recoils with its momentum reversed 
(Pafter = -Pbefore), as though it had bounced off a brick wall. Take the case of elastic 
scattering (A+ B ➔ A+ B); if particle A carries energy E, and scatters at an angle 0, 
in the CM, what is its energy in the Breit frame? Find the velocity of the Breit frame 
(magnitude and direction) relative to the CM. 
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3.25 In a two-body scattering event, A + B ➔ C + D, it is convenient to introduce the 

Mandelstam variables 

s = (FA+ PBf /c2 

= (FA - Pc)2 /c2 

u = (FA - pvf /c2 

(a) Show that s + t + u = m;. + mi + m2 + mt. 
Tbe theoretical virtue of the Mandelstam variables is that they are Lorentz invariants, 
with the same value in any inertial system. Experimentally, though, the more accessible 
parameters are energies and scattering angles. 

(b) Find the CM energy of A, in terms of s, t, u and the masses. [Answer: E~M = 
(s + m;. - mi)c2 /20 .] 

(c) Find the Lab (Bat rest) energy of A. [Answer: E)t = (s - m;. - mi)c2 /2mB.] 
(d) Find the total CM energy (Erny= EA+ EB= Ee+ ED)• [Answer: Efi1T = 0c2.] 

3.26 For elastic scattering of identical particles, A +A ➔ A + A, show that the Mandelstam 
variables (Problem 3.25) become 

s = 4(p2 + m2c2)/c2 

= -2p2 (1 - cos 0)/c2 

u = -2p2(1 + cos 0)/c2 

where pis the CM momentum of the incident particle, and 0 is the scattering angle. 
3.27 Work out the kinematics of Compton scattering: a photon of wavelength A collides 

elastically with a charged particle of mass m. If the photon scatters at angle 0, find its 
outgoing wavelength,).'. [Answer:).'=).+ (h/mc)(l - cos 0).] 





4 

Symmetries 

Symmetries play an important role in elementary particle physics, in part because of their 
relation to conservation laws and in part because they permit one to make some progress 
when a complete dynamical theory is not yet available. The first section of this chapter 
contains some general remarks about the mathematical description of symmetry (group 
theory) and the relation between symmetry and conservation laws (Noether's theorem). 
We then take up the case of rotational symmetry and its relation to angular momentum 
and spin. This leads in turn to the 'internal' symmetries - isospin, SU(3 ), and flavor
SU(6). Finally, we consider 'discrete' symmetries - parity, charge conjugation, and
time reversal. Except for the theory of spin (Section 4.2) - which will be used extensively
in later chapters - and the material on parity in Section 4.1 - which is usefal
background for Chapter 9 - this chapter can be studied as supeiftcially ( or as deeply)
as the reader wishes. I recommend a quick pass at this stage and a return to specific
sections later, if warranted. Some knowledge of matrix theory is presupposed; readers
familiar with quantum mechanics will find the sections on angular momentum an easy
review (those unacquainted with quantum mechanics may find them hopelessly obscure,
in which case they should study the relevant chapter of an introductory quantum text).
Group theory is touched on here in a scandalously cursory fashion (my main purpose is 
to introduce some standard terminology); a serious student of elementary particle physics 
should plan eventually to study this subject in far greater detail. 

4.1 

Symmetries, Groups, and Conservation Laws 

Take a look at the graph in Figure 4.1. I won't tell you what the functional form of 
f(x) is, but this much is clear: It's an odd function,f(-x) = -f(x). (If you don't
believe me, trace the curve, rotate the tracing by 180° , and check that it perfectly 
fits the original.) From this it follows, for instance, that 

dfl dx +2 
= 

dfl 
dx -2 

1+3 

_
3 

f (x) dx = 0, 

1+7 
1

+7 [f (x)J2 dx = 2 [f (x)]2 dx, 
-7 0 

(4.1) 

1,,s 
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f(x) 

X 

Fig. 4.1 An odd function. 

that no cosines appear in the Fourier expansion of f(x), and that its Taylor series 
contains only odd powers of x. In fact, you can deduce quite a lot aboutf(x), even 
though you don't know its functional form, just from the observation that it has 
a particular symmetry - oddness, in this case. In physics, intuition or a general 
principle often suggests symmetries in a problem, and their systematic exploitation 
can be an extremely powerful tool.* 

The most striking examples of symmetry in physics are, I suppose, crystals. But 
we're not so much interested here in static symmetries of shape as in dynamical sym­
metries of motion. The Greeks apparently believed that the symmetries of nature 
should be directly reflected in the motion of objects: stars must move in circles be­
cause those are the most symmetrical trajectories. Of course, planets do not, and that 
was embarrassing (it was not the last time that naive intuitions about symmetry ran 
into trouble with experiment). Newton recognized that fundamental symmetries 
are revealed not in the motions of individual objects, but in the set of all possible mo­
tions - symmetries are manifest in the equations of motion rather than in particular 
solutions to those equations. Newton's law of universal gravitation, for instance, ex­
hibits spherical symmetry (the force is the same in all directions), and yet planetary 
orbits are elliptical. Thus the underlying symmetry of the system is only indirectly 
revealed to us; indeed, you might wonder how we would ever have discovered it 
from the observed planetary trajectories, if we didn't have a pretty strong hunch 
that the gravitational field of the sun 'ought' to be spherically symmetrical. 

It was not until 1917 that the dynamical implications of symmetry were com­
pletely understood. In that year, Emmy Noether published her famous theorem 

* In some respects, the appeal to symmetry 
is characteristic of an incomplete theory. For 
example, if we somehow discovered the ex­

plicit form of f(x), say.f(x) = e-x2 sin(x3). 

then the theorems in Equation 4.1 would lose 
their luster. Why bother with partial informa­
tion when we can have it all? But even in a 

mature theory, symmetry considerations of­
ten lead to deeper understanding and calcu­
lational simplification. For instance, if you're 
called upon to integrate f(x) from -3 to +3, 
it pays to notice that f(x) is odd, even if you 
do know its functional form. 
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Table 4.1 Symmetries and conservation laws. 

Symmetry Conservation law 

Translation in time <+ Energy 
Translation in space <+ Momentum 
Rotation <+ Angular momentum 
Gauge transformation <+ Charge 

relating symmetries and conservation laws: 

Noether's Theorem: Symmetries ++ Conservation laws 

Every symmetry of nature yields a conservation law; conversely, every conservation 
law reflects an underlying symmetry. For example, the laws of physics are sym­
metrical with respect to translations in time (they work the same today as they did 
yesterday). Noether's theorem relates this invariance to conservation of energy. If 
a system is invariant under translations in space, then momentum is conserved; if 
it is symmetrical under rotations about a point, then angular momentum is con­
served. Similarly, the invariance of electrodynamics under gauge transformations 
leads to conservation of charge (we call this an internal symmetry, in contrast to 
the space-time symmetries). I'm not going to prove Noether's theorem; the details 
are not terribly enlightening [1 ]. The important thing is the profound and beautiful 
idea that symmetries are associated with conservation laws (see Table 4.1). 

I have been speaking rather casually about symmetries, and I cited some 
examples; but what precisely is a symmetry? It is an operation you can perform 
(at least conceptually) on a system that leaves it invariant - that carries it into a 
configuration indistinguishable from the original one. In the case of the function in 
Figure 4.1, changing the sign of the argument, x ➔ -x, and multiplying the whole 
thing by -1, f(x) ➔ -f(-x), is a symmetry operation. For a meatier example, 
consider the equilateral triangle (Figure 4.2). It is carried into itself by a clockwise 
rotation through 120° (R+), and by a counterclockwise rotation through 120° (R-), 
by flipping it about the vertical axis a (Ra), or around the axis through b (Rb), or c 
(Re)- Is that all? Well, doing nothing (I) obviously leaves it invariant, so this too is a 
symmetry operation, albeit a pretty trivial one. And then we could combine opera­
tions - for example, rotate clockwise through 240°. But that's the same as rotating 
counter clockwise by 120° (i.e. Rt = R_ ). As it turns out, we have already identified 
all the distinct symmetry operations on the equilateral triangle (see Problem 4.1). 

The set of all symmetry operations (on a particular system) has the following 
properties: 

l. Closure: If R; and R1 are in the set, then the product, R;R1 -
meaning: first perform R1, then perform R;* - is also in the 
set; that is, there exists some Rk such that R,Rj = Rk. 

* Note the 'backwards' ordering. Think of the symmetry operations as acting on a system to their 
right: R,R1(t,) = R,[R1(t,)]; R1 acts first, and then R; acts on the result. 
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a 

,,-b 

Fig. 4.2 Symmetries of the equilateral triangle. 

2. Identity: There is an element I such that IR; = R;I = R; for 
all elements R;. 

3. Inverse: For every element R; there is an inverse, R;-- 1 , such 
that R;R;--1 = R;--1 R; = I. 

4. Associativity: R;(RjRk) = (R;Rj)Rk. 

These are the defining properties of a mathematical group. Indeed, group theory 
may be regarded as the systematic study of symmetries. Note that group elements 
need not commute: R;Rj =j, RjRi, in general. If all the elements do commute, the 
group is called Abelian. Translations in space and time form Abelian groups; 
rotations (in three dimensions) do not [2]. Groups can be finite (like the triangle 
group, which has just six elements) or in.finite (for example, the set of integers, with 
addition playing the role of group 'multiplication'). We shall encounter continuous 
groups (such as the group of all rotations in a plane), in which the elements depend 
on one or more continuous parameters* (the angle of rotation, in this case), and 
discrete groups, in which the elements may be labeled by an index that takes on 
only integer values (all finite groups are, of course, discrete). 

As it turns out, most of the groups of interest in physics can be formulated as 
groups of matrices. The Lorentz group, for instance, consists of the set of 4 x 
4 A matrices introduced in Chapter 3. In elementary particle physics, the most 
common groups are of the type mathematicians call U(n): the collection of all 
unitary n x n matrices (see Table 4.2). (A unitary matrix is one whose inverse 
is equal to its transpose conjugate: u-1 = U*.) Ifwe restrict ourselves further to 
unitary matrices with determinant 1, the group is called SU(n). (The S stands for 
'special', which just means 'determinant 1'.) If we limit ourselves to real unitary 
matrices, the group is 0(n). (0 stands for 'orthogonal'; an orthogonal matrix is 
one whose inverse is equal to its transpose: 0-1 = 0.) Finally, the group of real, 
orthogonal, n x n matrices of determinant 1 is S0(n); S0(n) may be thought of 
as the group of all rotations in a space of n dimensions. Thus, S0(3) describes the 

• If this dependence takes the form of an analytic function, it is called a Lie group. All of the con­
tinuous groups one encounters in physics are Lie groups [3]. 
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Table 4.2 Important symmetry groups. 

Group name Dimension Matrices in group 

U(n) nxn unitary (U* U = l) 
SU(n) nxn unitary, determinant 1 
O(n) nxn orthogonal (00 = 1) 
SO(n) nxn orthogonal, determinant 1 

rotational symmetry of our world, a symmetry that is related by Noether's theorem 
to the conservation of angular momentum. Indeed, the entire quantum theory of 
angular momentum is really closet group theory. It so happens that S0(3) is almost 
identical in mathematical structure to SU(2), which is the most important internal 
symmetry in elementary particle physics. So the theory of angular momentum, to 
which we turn next, will actually serve us twice. 

One final thing. Every group G can be represented by a group of matrices: for 
every group element a there is a corresponding matrix Ma, and the correspon­
dence respects group multiplication, in the sense that if ab = c, then MaMb = Mc. 
A representation need not be 'faithful': there may be many distinct group ele­
ments represented by the same matrix. (Mathematically, the group of matrices is 
homomorphic, but not necessarily isomorphic, to G.) Indeed, there is a trivial case, 
in which we represent every element by the 1 x 1 unit matrix (which is to say, the 
number 1). If G is a group of matrices, such as SU(6) or 0(18), then it is (obviously) 
a representation of itself - we call it the fundamental representation. But there will, 
in general, be many other representations, by matrices of various dimensions. For 
example, S U(2) has representations of dimension 1 (the trivial one), 2 (the matrices 
themselves), 3, 4, 5, and in fact every positive integer. A major problem in group 
theory is the characterization of all the representations of a given group. 

Of course, you can always construct a new representation by combining two old 
ones, thus 

I Mil) I 
(zeros) 

(zeros) ) 

I Mi2) I 

But we don't count this separately; when we list the representations of a group, 
we are talking about the so-called irreducible representations, which cannot be 
decomposed into block-diagonal form. Actually, you have already encountered 
several examples of group representations, probably without realizing it: an ordinary 
scalar belongs to the one-dimensional representation of the rotation group, S0(3), 
and a vector belongs to the three-dimensional representation; four-vectors belong 
to the four-dimensional representation of the Lorentz group; and the curious 
geometrical arrangements of Gell-Mann's Eightfold Way correspond to irreducible 
representations of the group S U(3). 
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4.2 
Angular Momentum 

The earth, in its motion, carries two kinds of angular momentum: orbital angular 
momentum, nnv, associated with its annual revolution around the sun, and spin 
angular momentum, Iw, associated with its daily rotation about the north-south 
axis. The same goes for the electron in a hydrogen atom: it too carries both orbital 
and spin angular momentum. In the macroscopic case, the distinction is not terribly 
profound; after all, the spin angular momentum of the earth is nothing but the sum 
total of the 'orbital' angular momenta of all the rocks and dirt clods that make it up, 
in their daily 'orbit' around the axis. In the case of the electron this interpretation 
is not open to us: the electron, as far as we know, is a true point particle; its spin 
angular momentum is not attributable to constituent parts revolving about an axis, 
but is simply an intrinsic property of the particle itself (see Problem 4.8). 

Classically, we are free to measure all three components of the orbital angular 
momentum vector, L = r x mv, to any desired precision, and these components 
can assume any values whatever. In quantum mechanics, however, it is impossible 
in principle to measure all three components simultaneously; a measurement of 
Lx, say, inevitably alters the value of Ly, by an unpredictable amount. The best 
we can do is to measure the magnitude of L, (or rather, its square: L2 = L • L) 
together with one component (which we customarily take to be the z component, 
Lz). Furthermore, these measurements can only return certain 'allowed' values.* 
Specifically, a (competent) measurement of L2 always yields a number of the form 

l(l+ l)ti 

where l is a nonnegative integer: 

l = 0, 1. 2, 3, ... 

For a given value of l, a measurement of Lz always gives a result of the form 

where mi is an integer in the range -1 to+!: 

mi= -l,-l+ l, ... ,-1.0,+1, . .. ,l- l,l 

(4.2) 

(4.3) 

(4.4) 

(4.5) 

(21 + 1) possibilities. Figure 4.3 may help you to visualize the situation. Here l = 2, 
so the magnitude of Lis v'6li = 2.45 Ii; Lz can assume the values 2h, h, 0, - h, or 

* I am not going to prove the quantization rules for angular momentum, and if this material is 
new to you, I suggest that you consult a textbook on quantum mechanics. All I propose to do 
here is summarize the essential results we will need in what follows. 



4.2 Angular Momentum 1121 
z 

Fig. 4.3 Possible orientations of the angular momentum vector for / = 2. 

-2/i. Notice that the angular momentum vector cannot be oriented purely in the z 
direction. 

The same goes for spin angular momentum: a measurement of S2 = S • S can 
only return values of the form 

s(s + l)li2 (4.6) 

In the case of spin, however, the quantum number scan be a half-integer as well 
as an integer: 

5=0,½,1,~,2,½, ... (4.7) 

For a given value of s, a measurement of S2 must yield an answer of the form 

m,li (4.8) 

where m, is an integer or half-integer (whichever sis) in the range -s to s: 

m, = -s, -s + l, ... , s - 1, s (4.9) 

(2s + 1) possibilities. 
Now, a given particle can be given any orbital angular momentum l you like, but 

for each type of particle, the value of s is fixed. Every pion or kaon, for example, 
has s = O; every electron, proton, neutron, and quark carries s = ½; for the p, the 
ifr, the photon, and the gluon, s = l; for the Ll's and the n-, s = ! ; and so on. We 
call s the 'spin' of the particle. Particles with half-integer spin are fennions - all 
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Table 4.3 Classification of particles by spin. 

Bosons (integer spin} Fermions (half-integer spin) 

Spin 0 Spin l Spin J Spin! 

- Mediators Quarks/Leptons - ~ Elementary 
Pseudoscalar mesons Vector mesons Baryon octet Baryon decuplet ~ composite 

baryons, leptons, and quarks are fermions; particles with integer spin are bosons -
all mesons and mediators are bosons (see Table 4.3).* 

4.2.1 
Addition of Angular Momenta 

Angular momentum states are represented by 'kets': II mi ) or Is ms). Thus, if I 
say the electron in a hydrogen atom occupies the orbital state 13 -1) and the spin 
state I½ ½), I am telling you that!= 3, mi= -l, s = ½ (which is unnecessary, of 
course; if it is an electron, s must be ½ ), and ms = ½- Now, it may happen that we 
are not interested in the spin and orbital angular momenta separately, but rather in 
the total angular momentum, L + S. (In the presence of coupling between Land S 
- tidal, if it's the earth-sun system; magnetic, for the electron-proton system - it 
is the sum, and not Land S individually, that will be conserved.) Or perhaps we are 
studying the two quarks that go to make a i/1 meson; in this case, as we shall see, 
the orbital angular momentum is zero, but we are confronted with the problem of 
combining the two quark spins to get the total spin of the i/f: S = S1 + S2. In either 
case, the question arises: how do we add two angular momenta'i' 

J=h +h (4.10) 

Classically, of course, we just add the components. But in quantum mechanics 
we do not have access to all three components; we are obliged to work with one 
component and the magnitude. So the question becomes: if we combine states 
l/1m1} and l/2m2}, what total angular momentum state(s) 1/m} do we get? The z 
components still add, naturally, so 

m=m1 +m2 (4.11) 

but the magnitudes do not; it all depends on the relative orientation of Ji and h 
(Figure 4.4). If they are parallel the magnitudes add, but if they are antiparallel the 

* The terms 'fermion' and 'boson' refer to 
the rules for constructing composite wave• 
functions for identical particles: boson 
wave functions must be symmetric under 
interchange of any two particles, fermion 
wavefunctions are antisymmetric. This leads 
to the Pauli exclusion principle for fermions, 
and to profound differences in the statis­
tical mechanics of the two particle types. 

The 'connection between spin and statistics' 
(all fermions have half-integer spin and all 
bosons have integer spin) is a deep theorem 
in quantum field theory. 

t I'll use the letter J for generic angular mo­
mentum - it could be orbital (L), spin (S), or 
some combined quantity. 
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Fig. 4.4 Addition of angular momenta. 

magnitudes subtract; in general, the magnitude of the vector sum is somewhere 
between these extremes. As it turns out, we get every jfrom U1 + )2) down to U1 - )21, 
in integer steps [4]: 

(4.12) 

For instance, a particle of spin 1 in an orbital state l = 3 could have total angular 
momentum)= 4 (i.e.]2 = 201i2), orj = 3 U2 = 121i2), orj = 2 U2 = 61i2). 

Example 4. 1 A quark and an antiquark are bound together, in a state of zero orbital 
angular momentum, to form a meson. Question: What are the possible values of 
the meson's spin? 

Solution: Quarks (and therefore also antiquarks) carry spin ½, so we can get 
½ + ½ = 1 or ½ - ½ = 0. The spin-0 combination gives us the 'pseudoscalar' 
mesons (n's, K's, 1J, 1J 1) - 'scalar' means spin 0, 'pseudo-' will be explained shortly. 
The spin-I combination gives the 'vector' mesons (p's, K*'s, ¢, w) - 'vector' means 
spin 1. i1lll!l1l 

To add three angular momenta, we combine two of them first, using Equation 
4.12, and then add on the third. Thus, ifwe allow the quarks in Example 4.1 an 
orbital angular momentum 1 > 0, we get mesons with spin l + I, l, and 1- 1. 

Because the orbital quantum number has to be an integer, all mesons carry integer 
spin (they are bosons). By the same token, all baryons (made up of three quarks) 
must have half-integer spin (they are fermions). 

Example 4.2 Suppose you combine three quarks in a state of zero orbital angular 
momentum. Question: What are the possible spins of the resulting baryon? 

Solution: From two quarks, each spin ½, we get a total angular momentum of 
½ + ½ = 1 or ½ - ½ = 0. Adding in the third quark yields 1 + ½ = ½ or 1 - ½ = ½ 
(when the first two add to 1 ), and 0 + ½ = ½ (when the first two add to zero). Thus 
the baryon can have a spin of½ or ½ (and the latter can be achieved in two different 
ways). In practice, s = ½ is the decuplet, s = ½ is the octet, and evidently, the 
quark model would allow for another family with s = ½. (If we permit the quarks 
to revolve around one another, throwing in some orbital angular momentum, 
the number of possibilities increases accordingly - but the total will always be a 
half-integer). 

Well, Equation 4.12 tells us what total angular momenta j we can obtain by 
combining j 1 and )2, but occasionally we require the explicit decomposition of 
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-
5/2 

2 X 1 /2 +5/2 5/2 3/2 

I +2 1/2 1 3/2 +3/2 I +2 
-1/2 1/5 4/5 5/2 3/2 

+1 +1/2 4/5 -1/5 +1/2 +1/2 

1 -1/2 2/5 3/5 5/2 

0 +1/2 3/5 -2/5 -1/2 

0 -1/2 3/5 

-1 +1/2 2/5 

-1 

-2 

Fig. 4.5 Clebsch-Gordan coefficients for j 1 = 2, j 2 = ½­
(A square root sign over each number is implied.) 

3/2 

-1/2 

2/5 5/2 3/2 

-3/5 -3/2 -3/2 

-1/2 4/5 1/5 

+1/2 1/5 -4/5 

-2 -1/2 

l/1m1 ) l/2m2) into specific states of total angular momentum, 1/m): 

U1 +J2l 
l/1m1)1/2m2) = L c~1m21/m), with m = m1 + m2 

J=U1 -hi 

5/2 

-5/2 

1 

(4.13) 

The numbers c-!!itm2 are known as Clebsch-Gordan coefficients. A book on advanced 
quantum mechanics will explain how to calculate them. In practice, we normally 
look them up in a table. (There is one in the Particle Physics Booklet, and the case 
j 1 = 2, )2 = ½ is reproduced in Figure 4.5) The Clebsch-Gordan coefficients tell 
you the probability of gettingj{j + 1 )h2, for any particular allowed j, if we measure 
J2 on a system consisting of two angular momentum states l/1m1) and l/2m2): the 
probability is the square of the corresponding Clebsch-Gordan coefficient. 

Example 4. 3 The electron in a hydrogen atom occupies the orbital state 12 -1) 
and the spin state I½ ½). Question: If we measure J2, what values might we get, and 
what is the probability of each? 

Solution: The possible values of j are l + s = 2 + ½ = ½ and 1- s = 2 - ½ = i· 
The z components add: m = -1 +½=-½.We go to the Clebsch-Gordan table 
(Figure 4.5) labeled 2 x ½, which indicates that we are combiningj1 = 2 withj2 = ½, 
and look for the horizontal row, labeled -1, ½; these are the values of m 1 and m2. 

Reading off the two entries, we find 12 -1)1½ ½) = jf I~ - ½) -/f It - ½), 

So the probability of getting j = ~ is % , and the probability of getting j = ½ is ¾. 
Notice that the probabilities add to 1, as, of course, they must. liii[,l 

Example 4.4 We know from Example 4.1 that two spin-½ states combine to give 
spin 1 and spin 0. Problem: Find the explicit Clebsch-Gordan decomposition for 
these states. 



Solution: Consulting the ½ x ½ table, we find 

I½ ½ll½ ½} = 111) 
l½½}I½ - ½} = (}z)llO} + (}z)IOO} 
I½ - ½ll½ ½} = (}z)llO} -(}z)IOO} 

I½ - ½ll½ - ½l = 11 -1) 

Thus the three spin 1 states are 

whereas the spin O state is 
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(4.14) 

(4.15) 

(4.16) 

By the way, Equations (4.15) and (4.16) can be read directly off the Clebsch-Gordan 
table; the coefficients work both directions: 

1/m) = I: c-e.~1m21/1m1}1/2m2} (4.17) 

This time we read down the columns, instead of along the rows. The spin-1 
combination is called the 'triplet', for obvious reasons, and spin O is called the 
'singlet'. For future reference, notice that the triplet is symmetric under interchange 
of the particles, 1 ++ 2, whereas the singlet is antisymmetric (that is, it changes 
sign). Incidentally, in a singlet state the spins are oppositely aligned (antiparallel); 
however, it is not the case that in a triplet state the spins are necessarily parallel; 
they are for m = l and m = - l, but not for m = 0. 

4.2.2 

Spin½ 

The most important spin system is s = ½; the proton, neutron, electron, all quarks, 
and all leptons carry spin ½. Furthermore, once you understand the formalism for 
s = ½, any other case is a relatively simple matter to work out. So I will pause here 
to develop the theory of spin ½ in some detail. 

A particle with spin ½ can have m, = ½ ('spin up'), or m, = -½ ('spin down'). 
Informally, we represent these two states by arrows: t and +· But a better notation 
is afforded by two-component column vectors, or spinors: 

I l (1) In}= 0 , (4.18) 
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It is often said that a particle of spin ½ can only exist in one or the other of these 
two states, but that is quite false. The most general state of a spin-½ particle is the 
linear combination 

(4.19) 

where a and f3 are two complex numbers. It is true that a measurement of S2 

can only return the value + ½ h or -½ h, but the first outcome, say, does not prove 
that the particle was in the state t prior to the measurement. In the general case 
(Equation 4.19), la J2 is the probability that a measurement of S2 would yield the 
value +½n, and 1/31 2 is the probability of getting -½n. Since these are the only 
allowed results, it follows that 

(4.20) 

Apart from this 'normalization' condition, there is no a priori constraint on the 
numbers a and f3. 

Suppose now that we are to measure Sx or Sy on a particle in the generic state 
given by Equation 4.19 What results might we get, and what is the probability of 
each? Symmetry dictates that the allowed values be ±½ h - after all, it's perfectly 
arbitrary which direction we choose to call z in the first place. But determining 
the probabilities is not so simple. To each component of S we associate a 2 x 2 
matrix:* 

(4.21) 

The eigenvalues of Sx are ±q, and corresponding normalized eigenvectors 
are"t 

* Again, the derivation of these matrices will be 
found in any quantum-mechanics text. My 
purpose here is to show you how angular mo­
mentum is handled in particle physics, not to 
explain why it is done this way. 

"f A nonzero column matrix 

x=m 

(4.22) 

is called an eigenvector of a given n x n ma­
trix M if 

Mx =AX 

for some number A (the eigenvalue). Notice 
that any multiple of x is still an eigenvector, 
with the same eigenvalue. 
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(see Problem 4.15). An arbitrary spinor (;) can be written as a linear combination 

of these eigenvectors: 

(4.23) 

where 

(4.24) 

The probability that a measurement of Sx will yield the value ½Ii is lal2 ; the 
probability of getting -½Ii is 1h1 2 . Evidently, lal 2 + 1h12 = 1 (see Problem 4.16). 

The general procedure, of which this was a particular instance, is as follows: 
1. Construct the matrix, A, representing the observable A in 

question. 
2. The allowed values of A are the eigenvalues of A. 
3. Write the state of the system as a linear combination of 

eigenvectors of A; the absolute square of the coefficient of 
the ith eigenvector is the probability that a measurement of 
A would yield the ith eigenvalue. 

Example 4.5 Suppose we measure (Sx)2 on a particle in the state (;). Question: 

What values might we get, and what is the probability of each? 
Solution. The matrix representing ( Sx)2 is the square of the matrix representing Sx: 

(4.25) 

Since 

every spinor is an eigenvector of S~, with eigenvalue ¥. Thus we would be certain to 

get¥ (probability 1). The same goes for s; ands;, so every spinor is an eigenstate 

of 52 = S~ + s; + S;, with eigenvalue 3t . This should come as no surprise - in 
general, for spins we must have S2 = s(s + l)li2. §~ 

For mathematical purposes, the factor of~ in Equation 4.21 is ugly, and it is 
customary to introduce the Pauli spin matrices: 

(4.26) 
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so that S = (~)a. The Pauli matrices have many interesting properties, some of 
which are explored in Problems 4.19 and 4.20. We shall encounter them repeatedly 
in the course of this book. 

In a sense, spinors (two-component objects) occupy an intermediate position 
between scalars (one component) and vectors (three components). Now, when you 
rotate your coordinate axes, the components of a vector change, in a prescribed 
manner (see Problem 4.6), and we might inquire how the components of a spinor 
transform, under the same circumstances. The answer [5] is provided by the 
following rule: 

where U(O) is the 2 x 2 matrix 

U((I) = e-i(9-u)/2 

(4.27) 

(4.28) 

The vector 9 points along the axis of rotation, and its magnitude is the angle of 
rotation, in the right-hand sense, about that axis. Notice that the exponent here is 
itself a matrix! An expression of this form is to be interpreted as shorthand for the 
power series: 

(4.29) 

(see Problem 4.21).* As you can check for yourself (Problem 4.22), U(9) is a unitary 
matrix of determinant 1; in fact, the set of all such rotation matrices constitutes 
the group SU(2). Thus spin-½ particles transform under rotations according to the 
two-dimensional representation of S U(2). Similarly, particles of spin 1, described by 
vectors, belong to the three-dimensional representation of SU(2); spin-i particles, 
described by a four-component object, transform under the four-dimensional 
representation of SU(2); and so on. (The construction of these higher-dimensional 
representations is explored in Problem 4.23.) You're probably wondering what 
SU(2) has to do with rotations; well, as I mentioned earlier, SU(2) is essentially"i" 
the same group as S0(3), the group of rotations in three dimensions. Particles of 
different spin, then, belong to different representations of the rotation group. 

* Beware: For matrices it is not the case that 
eAeB = eA+B, in general. You might want to 
check this by using the matrices in Problem 
4.21. However, the usual rule does apply if A 
and B commute (i.e. if AB= BA). 

"f There is actually a subtle distinction between 
SU(2) and S0(3). According to Problem 4.21, 
the matrix U for rotation through an angle 
of 2rr is -1; a spinor changes sign under such 
a rotation. And yet, geometrically, a rotation 
through 2,r is equivalent to no rotation at all. 

S 1/(2) is a kind of 'doubled' version of S0(3), 
in which you don't come back to the begin­
ning until you have turned through 720°. In 
this sense, spinor representations of S 1/(2) 
are not 'true' representations of the rotation 
group, and that's why they do not appear in 
classical physics. In quantum mechanics only 
the square of the wave function carries phys­
ical significance, and in the squaring the mi­
nus sign goes away. 
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4.3 
Flavor Symmetries 

There's an extraordinary thing about the neutron, which Heisenberg observed 
shortly after its discovery in 1932: apart from the obvious fact that it carries 
no charge, it is almost identical to the proton. In particular, their masses are 
astonishingly close, mp = 938.28 MeV /c2, mn = 939.57 MeV /c2• Heisenberg [6] 
proposed that we regard them as two 'states' of a single particle, the nucleon. 
Even the small difference in mass might be attributed to the fact that the proton 
is charged, since the energy stored in its electric field contributes, according to 
Einstein's formula E = mc2 , to its inertia. (Unfortunately, this argument suggests 
that the proton should be the heavier of the two, which is not only untrue, but would 
be disastrous for the stability of matter. More on this in a moment.) If we could 
somehow 'turn off all electric charge, the proton and neutron would, according to 
Heisenberg, be indistinguishable. Or, to put it more prosaically, the strong forces 
experienced by protons and neutrons are identical. 

To implement Heisenberg's idea, we write the nucleon as a two-component 
column matrix 

(4.30) 

with 

p= G) and n= (~) (4.31) 

This is nothing but notation, of course, but it is notation seductively reminiscent 
of the spinors we encountered in the theory of angular momentum. By direct 
analogy with spin, S, we are led to introduce isospin, I.* However, I is not a vector 
in ordinary space, with components along the coordinate directions x, y, and z, but 
rather in an abstract 'isospin space', with components we will call I 1, h and !J. On 
this understanding, we may borrow the entire apparatus of angular momentum, 
as developed earlier in the chapter. The nucleon carries isospin ½, and the third 
component, h has the eigenvalues"!+½ (the proton) and-½ (the neutron): 

(4.32) 

The proton is 'isospin up'; the neutron is 'isospin down'. 
This is still just notation; the physics comes in Heisenberg's proposition that the 

strong interactions are invariant under rotations in isospin space, just as, for example, 
electrical forces are invariant under rotations in ordinary configuration space. We 

* The word derives from the misleading older term isotopic spin (introduced by Wigner in 1937). 
Nuclear physicists use the (better) word isobaric spin. 

t There is no factor of r,, in this case; isospin is dimensionless. 
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call this an internal symmetry, because it has nothing to do with space and time, 
but rather with the relations between different particles. A rotation through 180° 
about axis number 1 in isospin space converts protons into neutrons, and vice 
versa. If the strong force is invariant under rotations in isospin space, it follows, by 
Noether's theorem, that isospin is conserved in all strong interactions, just as angular 
momentum is conserved in processes with rotational invariance in ordinary space.* 

In the language of group theory, Heisenberg asserted that the strong interactions 
are invariant under an internal symmetry group SU(2), and the nucleons belong to 
the two-dimensional representation (isospin ½).In 1932, this was a bold suggestion; 
today the evidence is all around us, most conspicuously in the 'multiplet' structure 
of the hadrons. Recall the Eightfold Way diagrams in Chapter 1: the horizontal 
rows all display exactly the feature that caught Heisenberg's eye in the case of the 
nucleons; they have very similar masses but different charges. To each of these 
multiplets, we assign a particular isospin I, and to each member of the multiplet, 
we assign a particular !J. For the pions, I= 1: 

(4.33) 

for the A, I= 0: 

A= 100) (4.34) 

for the t,,.'s, I= f: 
(4.35) 

and so on. To determine the isospin of a multiplet, just count the number of 
particles it contains; since l3 ranges from -I to +I, in integer steps, the number of 
particles in the multiplet is 2I + 1: 

multiplicity = 2I + 1 (4.36) 

The third component ofisospin, I3, is related to the charge, Q, of the particle. We 
assign the maximum value, I3 = I, to the member of the multiplet with the highest 
charge, and fill in the rest in order of decreasing Q. For the 'pre-1974' hadrons -
those composed of u, d, ands quarks only - the explicit relation between Q and I3 

is the Gell-Mann-Nishijima formula: 

Q= lJ + ½(A+S) 

* It is tempting to overstate the so-called 
'charge independence' of the strong forces 
(the fact that they are the same for protons 
as for neutrons). It does not say that you 
will get the same result if you substitute an 
individual proton for a neutron, only if you 
interchange all protons and neutrons. (For 
example, there exists a bound state of the 

(4.37) 

proton and the neutron - the deuteron - but 
there is no bound state of two protons or two 
neutrons.) Indeed, any such assertion would 
be incompatible with the Pauli exclusion 
principle, since a proton and a neutron can be 
in the same quantum state, but two neutrons 
(or two protons) cannot. 
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where A is the baryon number and Sis the strangeness.* Originally, this equation 
was a purely empirical observation, but in the context of the quark model it follows 
simply from the isospin assignments for quarks: u and d form a 'doublet' (like the 
proton and the neutron): 

(4.38) 

and all the other flavors carry isospin zero"i" (see Problems 4.25 and 4.26). 
But classification is not all that isospin does for us. It also has important dy­

namical implications. For example, suppose we have two nucleons. From the rules 
for addition of angular momenta we know that the combination gives a total 
isospin of 1 or 0. Specifically (using Example 4.4), we obtain a symmetric isotriplet: 

lll)=pp 

110) = (1) (pn+ np) 

11 -1) = nn 

and an antisymmetric isosinglet: 

100) = (1) (pn- np) 

(4.39) 

(4.40) 

Experimentally, the neutron and proton form a single bound state, the deuteron (d); 
there is no bound state of two protons or of two neutrons. Thus the deuteron must be 
an isosinglet. If it were a triplet, all three states would have to occur, since they differ 
only by a rotation in isospin space. Evidently, there is a strong attraction in the I = 0 
channel, but not in the I = l channel. Presumably, the potential describing the 
interaction between two nucleons contains a term of the form 1(1) - 1(2), which takes 
the value¼ in the triplet configuration and-¾ in the singlet (see Problem 4.27). 

Isospin invariance has implications, too, for nucleon-nucleon scattering. Con­
sider the processes 

(a) p + p ➔ d + rr+ 

(b) p+n ➔ d+n° 

(c)n+n ➔ d+rr-

(4.41) 

Since the deuteron carries I= 0, the isospin states on the right are 11 1), 
11 0), and 11-1), respectively, whereas those on the left are pp= 111), nn = 11 - 1), 

* Since Q, A, and S are all conserved by the 
electromagnetic forces, it follows that !J is 
also conserved. However, the other two com­
ponents (I, and I2), and hence also I itself, 
are not conserved in electromagnetic interac­
tions. For example, in the decay rr0 -'> y + 
y, I goes from 1 to 0. As for the weak inter­
actions, they don't even conserve S, so [3 is 

not conserved in weak processes (for example, 
A -'> p + rr- takes !3 = 0 to !3 = -½ ). 

"i" Since isospin pertains only to the strong 
forces, it is not a relevant quantity for leptons. 
For consistency, all leptons and mediators are 
assigned isospin zero. 
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and pn = (}i)(ll 0) + 10 O)).* Only the I= l combination contributes (since the 
final state in each case is pure I = l, and isospin is conserved), so the scattering 
amplitudes are in the ratio 

(4.42) 

As we shall see,i" the cross section, a, goes like the absolute square of the amplitude; 
thus 

O'a : O'b : O'c = 2 : 1 : 2 (4.43) 

Process (c) would be hard to set up in the laboratory, but (a) and (b) have been 
measured, and (when corrections are made for electromagnetic effects) they are 
found to be in the predicted ratio [7]. 

As a final example, let's consider pion-nucleon scattering, TC N ➔ TC N. There are 
six elastic processes: 

(a) TC++ p ➔ TC++ p 

(c) TC- + p ➔ TC- + p 

(e) TC 0 + n ➔ TCo + n 

and four charge-exchange processes: 

(g) TC+ + n ➔ TCo + p 

(i) TC 0 + n ➔ TC- + p 

(b) T(o + p ➔ T(o + p 

(d) TC+ + n ➔ TC+ + n 

if) TC- + n ➔ TC- + n 

(h) TCo + p ➔ TC+ + n 

U) TC- + p ➔ TCo + n 

(4.44) 

(4.45) 

Since the pion carries I= l, and the nucleon I= ½, the total isospin can be ½ or ½­
So there are just two distinct amplitudes here: J/t 3 , for I = ½, and J/t 1, for I = ½­
From the Clebsch-Gordan tables we find the following decompositions: 

T(+ +p: 111)1½½) =IB) 

T(o +p: 110)1½ ½) = fi1B) -(~) I½½) 

T(- + p: 11 -1)1½ ½) =(~) l~-½)-fil½ -½) 
(4.46) 

TC+ +n: 111)1½ - ½) = (~) IH) +fil½½) 

TCo + n: 110)1½ - ½) =fi1t-½)+(~) I½ - ½) 

TC-+ n: 11-1)1½ -½) = I½ - ½) 

* Add Equations 4.39 and 4.40 
"I The theory of scattering amplitudes and cross sections will be developed in Chapter 6. In this 

and the following paragraph, I anticipate later results, but I hope it is clear from the context 
how the calculation proceeds. If you wish, skip these two paragraphs for now. 
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Reactions (a) and (f) are pure I = ! : 

(4.47) 

The others are all mixtures; for example, 

(4.48) 

(I'll let you work out the rest, see Problem 4.28). The cross sections, then, stand in 
the ratio 

(4.49) 

At a CM energy of 1232 MeV, there occurs a famous and dramatic bump in 
pion-nucleon scattering, first discovered by Fermi et al. in 1951 [8]; here the pion 
and nucleon join to form a short-lived 'resonance' state - the /',,. We know the /',, 
carries I = ! , so we expect that at this energy A 3 » A 1 , and hence 

0-a : 0-c : OJ = 9 : 1 : 2 (4.50) 

Experimentally, it is easier to measure the total cross sections, so (c) and (j) are 
combined: 

0-tot(rr+ + p) = 3 
0-tot(lT- + p) 

As you can see in Figure 4.6, this prediction is well satisfied by the data. 

(4.51) 

In the late 1950s history repeated itself. Just as in 1932 the proton and neutron 
were seen to form a pair, it was now increasingly clear that the nucleons, the A, 
the :E's, and the S's together, constituted a natural grouping within the baryon 
family. They all carry spin ½, and their masses are similar. It is true that the latter 
range from 940 MeV/c2, for the nucleons, up to 1320 MeV/c2, for the S's, so it 
would be stretching things a bit to argue that they are all different states of one 
particle, as Heisenberg had suggested for the proton and neutron. Nevertheless, it 
was tempting to regard these eight baryons as a supennultiplet, and this presumably 
meant that they belonged in the same representation of some enlarged symmetry 
group, in which the SU(2) of isospin would be incorporated as a subgroup. The 
critical question became: what is the larger group? (The 'Eight Baryon Problem', 
as it was called, was not always phrased this way; at the time, most physicists 
were surprisingly ignorant of group theory. Gell-Mann worked out most of the 
formalism he needed from scratch, and only later learned that it was well known to 
mathematicians.) The Eightfold Way was Gell-Mann's solution to the Eight Baryon 
Problem. The symmetry group is SU(3); the octets constitute eight-dimensional 
representations of SU (3), the decuplet a 10-dimensional representation, and so on. 
One thing that made this case more difficult than Heisenberg's was that no naturally 
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occurring particles fall into the fundamental (three-dimensional) representation of 
SU(3), as the nucleons, and later the K's, the S's, and so on, do for SU(2). This 
role was reserved for the quarks: u, d, and s together form a three-dimensional 
representation of SU(3), which breaks down into an isodoublet (u, d) and an 
isosinglet (s) under SU(2). 

Of course, when the charmed quark came along, the flavor symmetry group of 
the strong interactions expanded once again - this time to SU(4) (some SU(4) 

supermultiplets are shown in Figure 1.13). But things barely paused there before 
the arrival of the bottom quark, taking us to SU(S), and finally the top quark, SU(6). 



Table 4.4 Quark masses (MeV /c2) 

Quark flavor Bare mass Effective mass 

u 2 336 
d 5 340 

95 486 
C 1300 1550 
b 4200 4730 

174 000 177 000 

Warning: These numbers are somewhat 
speculative and model dependent [12]. 
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However, there is an important caveat in this neat hierarchy: isospin, SU(2), is a 
very 'good' symmetry; the members of an isospin multiplet differ in mass by at 
most 2 or 3%, which is about the level at which electromagnetic corrections would 
be expected.* But the Eightfold Way, SU(3), is a badly 'broken' symmetry; mass 
splittings within the baryon octet are around 40%. The symmetry breaking is even 
worse when we include charm; the At(udc) weighs more than twice the A(uds), 
although they are in the same SU(4) supermultiplet. It is worse still with bottom, 
and absolutely terrible with top, which doesn't form bound states at all. 

Why is isospin such a good symmetry, the Eightfold Way fair, and flavor SU(6) 
so poor? The Standard Model blames it all on the quark masses. Now, the theory 
of quark masses is a slippery business, given the fact that they are not accessible to 
direct experimental measurement. Various arguments [9] suggest that the u and d 
quarks are intrinsically very light, about 10 times the mass of the electron. However, 
within the confines of a hadron, their effective mass is much greater. The precise 
value, in fact, depends on the context; it tends to be a little higher in baryons than 
in mesons (more on this in Chapter 5). In somewhat the same way, the effective 
inertia of a spoon is greater when you're stirring honey than when you're stirring 
tea, and in either case it exceeds the true mass of the spoon. Generally speaking, the 
effective mass of a quark in a hadron is about 350 MeV/c2 greater than its bare mass 
[10] (see Table 4.4). Compared to this, the quite different bare masses of up and 
down quarks are practically irrelevant; they function as though they had identical 
masses. But the s quark is distinctly heavier, and the c, b, and t quarks are widely 
separated. Apart from the differences in quark masses, the strong interactions treat 
all flavors equally. Thus isospin is a good symmetry because the effective u and d 
masses are so nearly equal (which is to say, on a more fundamental level, because 
their bare masses are so small); the Eightfold Way is a fair symmetry because the 
effective mass of the strange quark is not too far from that of the u and d. But 

* Indeed, it used to be thought that isospin 
was an exact symmetry of the strong interac­
tions, and all of the symmetry breaking was 
attributable to electromagnetic contamination. 
The fact that the n-p mass splitting is in the 

wrong direction to be purely electromagnetic 
was troubling, however, and we now believe 
that SU(2) is only an approximate symmetry 
of the strong interactions. 



1361 4 Symmetries 

the heavy quarks are so far apart that their flavor symmetry is severely broken. Of 
course, this 'explanation' raises two further questions: (i) Why does the binding 
of quarks into hadrons increase their effective mass by about 350 MeV/c2 ? The 
answer presumably lies within QCD, but the details are not fully understood [11 ]. 
(ii) Why do the bare quarks have the particular masses they do? Is there some 
pattern here? To this question, the Standard Model offers no answer; the six bare 
quark masses, and also the six lepton masses, are simply input parameters, for 
now, and it is the business of theories beyond the Standard Model to say where they 
come from. 

4.4 
Discrete Symmetries 

4.4. l 

Parity 

Prior to 1956, it was taken for granted that the laws of physics are ambidextrous; that 
is, the mirror image of any physical process also represents a perfectly possible phys­
ical process [13]. To be sure, we drive on the right (at least, Americans do) and our 
hearts are on the left, but these are obviously historical or evolutionary accidents; it 
could just as well have been the other way around. Indeed, most physicists held the 
mirror symmetry (or 'parity invariance') of the laws of nature to be self-evident. But 
in 1956, Lee and Yang [14] were led to wonder (for reasons we will come back to at the 
end of this section) whether there had been any experimental test of this assumption. 
Searching the literature, they were surprised to discover that although there was am­
ple evidence for parity invariance in strong and electromagnetic processes, there was 
no confirmation in the case of weak interactions. They proposed a test, which was 
carried out later that year by Wu [15], to settle the issue. In this famous experiment, 
radioactive cobalt 60 nuclei were carefully aligned, so that their spins pointed in, say, 
the z direction (Figure 4.7). Cobalt 60 undergoes beta decay (6°Co ➔60Ni +e + v,), 
and Wu recorded the direction of the emitted electrons. What she found was that 
most of them came out in the 'southerly' direction, opposite to the nuclear spin. 

That's all there was to it. But that simple observation had astonishing implica­
tions. For suppose we examine the mirror image of that same process (Figure 4.8). 
The image nucleus rotates in the opposite direction; its spin points downward. And 
yet, the electrons (in the mirror) still came off downward. In the mirror, then, the 
electrons are emitted preferentially in the same direction as the nuclear spin. Here, 
then, is a physical process whose mirror image does not occur in nature; evidently 
parity is not an invariance of the weak interactions. If it were, the electrons in Wu's 
experiment would have to come out in equal numbers, 'north' and 'south', but they 
don't. 

The overthrow of parity had a profound effect on physicists - devastating to 
some, exhilarating to others [16]. The violation is not a small effect; as we shall 
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Fig. 4.7 In the beta decay of cobalt 60, most Fig. 4.8 Mirror image of Figure 4.7: Most 
electrons are emitted in the direction oppo- electrons are emitted parallel to the nuclear 
site to the nuclear spin. spin. 

see in Chapter 9, it is in fact 'maximal'. Nor is it limited to beta decay in cobalt; 
once you look for it, parity violation is practically the signature of the weak force. 
It is most dramatically revealed in the behavior of the neutrino. In the theory 
of angular momentum, the axis of quantization is, by convention, the z axis. Of 
course, the orientation of the z axis is completely up to us, but if we are dealing with 
a particle traveling through the laboratory at velocity v, a natural choice suggests 
itself: why not pick the direction of motion as the z axis? The value of m,/s for 
this axis is called the helicity of the particle. Thus a particle of spin ½ can have a 
helicity of +l(m, =½)or -l(m, =-½);we call the former 'right-handed' and the 
latter 'left-handed.'* The difference is not terribly profound, however, because it is 
not Lorentz-invariant. Suppose I have a right-handed electron going to the right 
(Figure 4.9a), and someone else looks at it from an inertial system traveling to the 
right at a speed greater than v. From his perspective, the electron is going to the left 
(Figure 4.9b); but it is still spinning the same way, so this observer will say it's a 
le.ft-handed electron. In other words, you can convert a right-handed electron into a 
left-handed one simply by changing your frame of reference. That's what I mean, 
when I say the distinction is not Lorentz-invariant. 

But what if we applied that same reasoning to a neutrino - taken, for the moment, 
to be massless, so it travels at the speed of light, and hence there is no observer 
traveling faster? It is impossible to 'reverse the direction of motion' of a (massless) 
neutrino by getting into a faster-moving reference system, and therefore the helicity 

* In Chapter 9, I shall introduce a technical distinction between 'handedness' and helicity, but for 
the moment I will use the terms interchangeably. 
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Fig. 4.9 Helicity. In (a) the spin and velocity are parallel (he­
licity +l); in (b) they are antiparallel (helicity -1). 

of a neutrino (or any other massless particle)* is Lorentz-invariant - a fixed and 
fundamental property, which is not an artifact of the observer's reference frame. 
It becomes an important experimental matter to determine the helicity of a given 
neutrino. Until the mid-fifties, everyone assumed that half of all neutrinos would 
be left-handed, and half right-handed, just like photons. What they in fact discovered 
was that 

NEUTRINOS ARE LEFT-HANDED; 

ANTINEUTRINOS ARE RIGHT-HANDED. 

Of course, it's tough to measure the helicity of a neutrino directly; they're hard 
enough to detect at all. There is, however, a relatively easy indirect method, using 
the decay of the pion: re- ➔ µ- + vw If the pion is at rest, the muon and the 
antineutrino come out back to back (Figure 4.10). Moreover, since the pion has spin 
0, the muon and the antineutrino spins must be oppositely aligned.i" Therefore, if 
the antineutrino is right-handed, the muon must be right-handed too (in the pion 
rest frame) - and this is precisely what is found experimentally [17]. Measurement 
of the muon helicity, then, enables us to determine the antineutrino helicity. By the 
same token, in re+ decay, the antimuon is always left-handed, and this indicates 
that the neutrino is left-handed. By contrast, consider the decay of the neutral pion, 
rc 0 ➔ y + y. Once again, in any given decay the two photons must have the same 
helicity. But this is an electromagnetic process, which respects parity, and thus, on 
the average, we get just as many right-handed photon pairs as left-handed pairs. 
Not so for neutrinos; they only interact weakly, and every one is left-handed; the 

9 µ • "~ 8 1f 

s s 

Fig. 4.10 Decay of rr- at rest. 

* For massless particles, only the maximal value of lm,I occurs. For example, the photon can have 
m, = +l or m, = -1, but not m, = 0. So the helicity of a massless particle is always ±1. In the 
case of the photon, these represent states of left- and right-circular polarization. The absence of 
m, = 0 corresponds to the absence of longitudinal polarization in classical optics. 

i" The orbital angular momentum (if there is any) points perpendicular to the outgoing velocities, 
so it does not affect this argument. 
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mirror image of a neutrino does not exist.• That is about the starkest violation of 
mirror symmetry you could ask for."i" 

In spite of its violation in weak processes, parity invariance remains a valid 
symmetry of the strong and electromagnetic interactions. It is useful, therefore, to 
develop some formalism and terminology. First, a minor technical point: Instead 
of reflections, which oblige us to choose arbitrarily the plane of the 'mirror', we 
will talk about inversions, in which every point is carried through the origin to the 
diametrically opposite location (Figure 4.11). Both transformations turn a right 
hand into a left hand; in fact, an inversion is nothing but a reflection followed by 
a rotation (180° about they axis, in the figure). Thus in the cases of interest (which 
also possess rotational symmetry) it is a matter of indifference which one is used. 
Let P denote inversion; we call it the 'parity operator'. If the system in question is 
a right hand, P turns it into an upside-down and backward left hand (Figure 4.1 lb). 
When applied to a vector, a, P produces a vector pointing in the opposite direction: 
P(a) = -a. How about the cross product of two vectors: c = a x b? Well, if P 

changes the sign of a and of b, then c itself does not change sign: P(c) = c. Very 
strange! Evidently, there are two kinds of vectors - 'ordinary' ones, which change 
sign under the parity transformation, and this other type, of which the cross 
product is the classic example, which do not. We call the former 'polar' vectors, 
when the distinction must be drawn, and the latter 'pseudo' (or 'axial') vectors. 
Notice that the cross product of a polar vector with a pseudo vector would be a polar 
vector. 

You have encountered pseudovectors before, though probably without using this 
language; angular momentum is one, and so is the magnetic field. In a theory 
with parity invariance, you must never add a vector to a pseudovector. Consider, 
for example, in the Lorentz force law: F = q[E + (v x B)/c]; vis a vector, and Bis a 
pseudovector, so v x Bis a vector, and it is legal to add it to E. But B itself could never 

* This is too strong a statement. There could, I 
suppose, be right-handed neutrinos around, 
but they do not interact with ordinary mat-
ter by any mechanism presently known. In 
fact, since we now know that neutrinos have 
a small but nonzero mass, right-handed neu­
trinos must exist. None of this, however, alters 
the fact that when a :n:- decays, the emerging 
JL- is right-handed in tl1e CM frame and that 
by itself destroys mirror symmetry. 
By the way, back in 1929, shortly after the 
publication of Dirac's equation, Wey! pre­
sented a beautifully simple theory of mass­
less particles of spin ½, which had the feature 
that they carried a fixed 'handedness'. At the 
time, Weyl's theory aroused limited interest, 
since there were no massless particles known, 
except for the photon, which carries spin 1. 

When Pauli introduced the neutrino, in 1931, 
you might suppose that he would dust off 
Weyl's theory and put it to use. He did not. 
Pauli rejected Weyl's theory out of hand, on 
the ground that it violated mirror symmetry. 
He lived to regret this mistake, and in 1957, 
Weyl's theory was triumphantly vindicated. 

"i" It may occur to you, as it did to many physi­
cists at the time, that if we simultaneously 
convert all particles into their antiparti-
cles, then a kind of mirror symmetry is 
restored; the image of :n:- ---+ µ- + v1, 

(with a right-handed antineutrino) becomes 
:n:+ ---+ µ+ + v1, (with a left-handed neutrino), 
which is perfectly okay. This realization was 
some comfort, until 1964, when it, too, was 
shown to fail. More on this in the following 
sections. 
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Fig. 4.11 Reflections and inversions. 

be added to E. As we shall see, it is precisely the addition of a vector to a pseudovector 
in the theory of weak interactions that leads to the breakdown of parity. 

Finally, the dot product of two polar vectors does not change sign under P, but 
the dot product of a polar vector and a pseudovector (or the triple product of three 
vectors: a • (b x c)) does change sign. So there are two kinds of scalars, too: the 
'ordinary' kind, which don't change sign, and 'pseudoscalars,' which do. All this is 
summarized in Table 4.5.* 

If you apply the parity operator twice, of course, you're right back where you 
started: 

(4.52) 

(The parity group, then, consists of just two elements: I and P.) It follows that the 
eigenvalues of Pare ±1 (Problem 4.34). For example, scalars and pseudovectors 
have eigenvalue +1, whereas vectors and pseudoscalars have eigenvalue -1. The 
hadrons are eigenstates of P and can be classified according to their eigenvalue, 

* The terminology extends very simply to special relativity: a" = (a0, a) is called a pseudovector if 
its spatial components constitute a pseudovector P(a) = a; p is a pseudoscalar if it goes into mi­
nus itself under spatial inversions P(p) = -p. 



Table 4.5 Scalars and vectors under parity 

Scalar 
Pseudoscalar 
Vector (or polar vector) 
Pseudovector (or axial vector) 

P(s) = s 
P(p) = -p 
P(v) = -v 
P(a) =a 
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just as they are classified by spin, charge, isospin, strangeness, and so on. According 
to quantum field theory, the parity of a fermion (half-integer spin) must be opposite 
to that of the corresponding antiparticle, while the parity of a boson (integer 
spin) is the same as its antiparticle. We take the quarks to have positive intrinsic 
parity, so the antiquarks are negative.* The parity of a composite system in its 
ground state is the product of the parities of its constituents (we say that parity 
is a 'multiplicative' quantum number, in contrast to charge, strangeness, and so 
on, which are 'additive').i" Thus the baryon octet and decuplet have positive parity, 
( + 1 )3, whereas the pseudoscalar and vector meson no nets have negative parity, 
(-1)(+1). (The prefix 'pseudo' tells you the parity of the particles.) For an excited 
state (of two particles) there is an extra factor of (-1)1, where l is the orbital 
angular momentum [18]. Thus, in general, the mesons carry a parity of (-1)1+1 

(see Table 4.6). Meanwhile, the photon is a vector particle (it is represented by the 
vector potential Aµ); its spin is 1 and its intrinsic parity is -1. 

The mirror symmetry of strong and electromagnetic interactions means that 
parity is conserved in all such processes. Originally, everyone took it for granted 
that the same goes for the weak interactions as well. But a disturbing paradox arose 
in the early fifties, known as the 'tau-theta puzzle'. Two strange mesons, called at 
the time -r and 0, appeared to be identical in every respect - same mass, same spin 
(zero), same charge, and so on - except that one of them decayed into two pions 
and the other into three pions, states of opposite parity: 

(P = (-1)2 = +1) 

(P = (-1)3 = -1) (4.53) 

* This choice is completely arbitrary; we could 
just as well do it the other way around. In­
deed, in principle we could assign positive 
parity to some quark flavors and negative to 
others. This would lead to a different set of 
hadronic parities, but the consen,ation of par­
ity would still hold. The rule stated here is ob­
viously the simplest, and it leads to the con­
ventional assignments. 

"i" There is less to this distinction than 
meets the eye; in a sense, it results from 
a notational anomaly. Scrupulous consistency 
would require that we write the parity oper­
ator in exponential form, P = e'" K, with the 
operator K playing a role analogous to, say, 
spin (Equation 4.28). The eigenvalues of K 
would be O and 1, corresponding to + 1 and 
-1 for P, and multiplication of parities would 
correspond to addition of K. 
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Table 4.6 Quantum numbers of some meson nonets 

Observed Nonet 
Orbital Net Average 
angular momentum spin fC I= 1 I= i 1=0 mass (MeV/c2) 

l=O s=0 o-+ T( K Y/,11' 400 
s=l 1-- p K* ¢.w 900 

I= 1 s=0 1+- b1 K1B h1, h1 1200 
s = 1 o++ ao K* 0 Jo.Jo 1100 
s = 1 1++ a1 K1A Ji.Ji 1300 
s = 1 2++ a2 K* 2 J' 2,J2 1400 

It seemed peculiar that two otherwise identical particles should carry different 
parity. The alternative, suggested by Lee and Yang in 1956 was that r and 0 are 
really the same particle (now known as the K+), and parity is simply not conserved in 
one of the decays. This idea prompted their search for evidence of parity invariance 
in the weak interactions and, when they found none, to their proposal for an 
experimental test. 

4.4.2 
Charge Conjugation 

Classical electrodynamics is invariant under a change in the sign of all electric 
charges; the potentials and fields reverse their signs, but there is a compensating 
charge factor in the Lorentz law, so the forces still come out the same. In elementary 
particle physics, we introduce an operation that generalizes this notion of'changing 
the sign of the charge'. It is called charge conjugation, C, and it converts each particle 
into its antiparticle: 

Clp) = Ip) (4.54) 

'Charge conjugation' is something of a misnomer, for C can be applied to a neutral 
particle, such as the neutron (yielding an antineutron), and it changes the sign 
of all the 'internal' quantum numbers - charge, baryon number, lepton number, 
strangeness, charm, beauty, truth - while leaving mass, energy, momentum, and 
spin untouched. 

As with P, application of C twice brings us back to the original state: 

C2 = I (4.55) 

and hence the eigenvalues of Care ±1. Unlike P, however, most of the particles 
in nature are clearly not eigenstates of C. For if Ip) is an eigenstate of C, it follows 
that 

Clp) =±Ip)= Ip) (4.56) 



4.4 Discrete Symmetries 1143 

so Ip) and Ip) differ at most by a sign, which means that they represent the 
same physical state. Thus, only those particles that are their own antiparticles can be 
eigenstates of C. This leaves us the photon, as well as all those mesons that lie at the 
center of their Eightfold-Way diagrams: n°, T/, ry', p0 , <p, w, 1/J, and so on. Because 
the photon is the quantum of the electromagnetic field, which changes sign under 
C, it makes sense that the photon's 'charge conjugation number' is -1. It can be 
shown (19] that a system consisting of a spin-½ particle and its antiparticle, in a 
configuration with orbital angular momentum I and total spin s, constitutes an 
eigenstate of C with eigenvalue (-1 )l+s. According to the quark model, the mesons 
in question are of precisely this form: for the pseudoscalars, l = 0 and s = 0, so 
C = +1; for the vectors, l = 0 ands= 1, so C = -1. (Often, as in Table 4.6, C is 
listed as though it were a valid quantum number for the entire supermultiplet; in 
fact it pertains only to the central members.) 

Charge conjugation is a multiplicative quantum number, and, like parity, it is 
conserved in the strong and electromagnetic interactions. Thus, for example, the 
n° decays into two photons: 

(4.57) 

(for n photons C = (-lf, so in this case C = +1 before and after), but it cannot 
decay into three photons. Similarly, thew goes ton° + y, but never ton° + 2y. In 
the strong interactions, charge conjugation invariance requires, for example, that 
the energy distributions of the charged pions in the reaction 

(4.58) 

should (on average) be identical (20]. On the other hand, charge conjugation is 
not a symmetry of the weak interactions: when applied to a neutrino (left-handed, 
remember), C gives a left-handed antineutrino, which does not occur. So the 
charge-conjugated version of any process involving neutrinos is not a possible 
physical process. And purely hadronic weak interactions also show violations of C 
as well as P. 

Because so few particles are eigenstates of C, its direct application in elementary 
particle physics is rather limited. Its power can be somewhat extended, if we confine 
our attention to the strong interactions, by combining it with an appropriate 
isospin transformation. Rotation by 180° about the number 2 axis in isospin 
space* will carry I 3 into -I3, converting, for instance, an+ into a Jr-. If we 
then apply the charge conjugation operator, we come back to n+. Thus the 
charged pions are eigenstates of this combined operator, even though they are 
not eigenstates of C alone. For some reason the product transformation is called 
'G-parity': 

G = CR2, where R2 = eirr/2 (4.59) 

* Some authors use the number 1 axis. Obviously, any axis in the 1-2 plane will do the job. 
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All mesons that carry no strangeness (or charm, beauty, or truth) are eigenstates of 
G;* for a multiplet of isospin I the eigenvalue is given (Problem 4.36) by 

(4.60) 

where C is the charge conjugation number of the neutral member. For a single 
pion, G = -1, and for a state with n pions 

(4.61) 

This is a very handy result, for it tells you how many pions can be emitted in 
a particular decay. For example, the p mesons, with I= l, C = -1, and hence 
G = +1, can go to two pions, but not to three, whereas the¢, thew, and the i/1 (all 
I = 0) can go to three, but not to two. 

4.4.3 
CP 

As we have seen, the weak interactions are not invariant under the parity transfor­
mation P; the cleanest evidence for this is the fact that the antimuon emitted in 
pion decay 

(4.62) 

always comes out left-handed. Nor are the weak interactions invariant under C, for 
the charge-conjugated version of this reaction would be 

(4.63) 

with a left-handed muon, whereas in fact the muon always comes out right-handed. 
However, if we combine the two operations we're back in business: CP turns the 
left-handed antimuon into a right-handed muon, which is exactly what we observe 
in nature. Many people who had been shocked by the fall of parity were consoled 
by this realization; perhaps, it was the combined operation that our intuition had 
been talking about all along - maybe what we should have meant by the 'mirror 
image' of a right-handed electron was a left-handed positron.I If we had defined 
parity from the start to be what we now call CP, the trauma of parity violation might 
have been avoided (or at least postponed). It is too late to change the terminology 

• K+, for example, is not an eigenstate of G, for R2 takes it to K0, and C takes that to K". The 
idea could be extended to the K's, by using an appropriate SU(3) transformation in place of R2, 

but since SU(3) is not a very good symmetry of the strong forces, there is little percentage in 
doing so. 

t Incidentally, we could perfectly well take electric charge to be a pseudoscalar in classical electro­
dynamics; E becomes a pseudovector and B a vector, but the results are all the same. It is really 
a matter of taste whether you say the mirror image of a plus charge is positive or negative. But 
it seems simplest to say the charge does not change, and this is the standard convention. 
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now, but at least this helps to appease our visceral sense that the world 'ought' to 
be left-right symmetric. 

4.4.3.l Neutral Kaons 

CP invariance has bizarre implications for the neutral K mesons, as was first 
pointed out in a classic paper by Gell-Mann and Pais [21 ]. They noted that the K°, 
with strangeness +1, can turn into its antiparticle "f<O, strangeness -1 

(4.64) 

through a second-order weak interaction we now represent by the 'box' diagrams 
in Figure 4.12.* As a result, the particles we normally observe in the laboratory are 
not K0 and "f<O, but rather some linear combination of the two. In particular, we can 
form eigenstates of CP, as follows. Because the K's are pseudoscalars 

(4.65) 

On the other hand, from Equation 4.54 

(4.66) 

d u s 

• T ), T ), 

K'{ 
I I },, I 

+ w-t w-
I 

I I 

"" • • • "" s u d 

d w- s ----
K'{ u u },, 

-----s w- d 

Fig. 4.12 Feynman diagrams contributing to K0 a=="R°. (There 
are others, including those with one or both u quarks re· 
placed by c or t.) 

* The possibility of such an interconversion is almost unique to the neutral kaon system; among 

the 'stable' hadrons the only other candidates are D0 /f5°, B0 /B0 , and B~/B; (Problem 4.38). 
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Accordingly, 

and hence the (normalized) eigenstates of CP are 

with 

(4.67) 

(4.68) 

(4.69) 

Assuming CP is conserved in the weak interactions, Ki can only decay into a 
state with CP = + 1, whereas K2 must go to a state with CP = -1. Typically, 
neutral kaons decay into two or three pions. But we have already seen that the 
two-pion configuration carries a parity of +1, and the three-pion system has P = -l 
(Equation 4.53); both have C = +1. Conclusion: Ki decays into two pions; K2 decays 
into three pions (never two):* 

Ki --+ 2rr, K2 --+ 3rr (4.70) 

Now, the 2rr decay is much faster, because the energy released is greater. So ifwe 
start with a beam of K°'s 

II<°)= (Jz) (IKi) + IK2)) (4.71) 

the Ki component will quickly decay away, and down the line we shall have a beam 
of pure Kz's. Near the source, we should see a lot of 2rr events, but farther along 
we expect only 3rr decays. 

Well ... that's a lot to swallow. As Cronin put it, in a delightful memoir [22]: 

So these gentlemen, Gell-Mann and Pais, predicted that in ad­
dition to the short-lived K mesons, there should be long-lived K 
mesons. They did it beautifully, elegantly and simply. I think 

theirs is a paper one should read sometime just for its pure 

beauty of reasoning. It was published in the Physical Review in 
1955. A very lovely thing! You get shivers up and down your 

spine, especially when you find you understand it. At the time, 
many of the most distinguished theoreticians thought this pre­

diction was really baloney. 

* Actually, with the right combination of orbital angular momenta, it is possible to construct a 
CP = +l state of the rr+rr-rr 0 system, but while this might allow K1 to decay (rarely) into 3rr, 
it does not alter the critical fact that K2 cannot go to 2rr. 
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But it wasn't baloney, and in 1956, Lederman and his collaborators discovered 

the K2 meson at Brookhaven [23]. Experimentally, the two lifetimes are 

r1 = 0.895 x 10-10 sec 

r2 = 5.11 x 10-8 sec (4.72) 

so the Ki's are mostly gone after a few centimeters, whereas the K2's can travel 
many meters. Notice that K1 and K2 are not antiparticles of one another, like K° 
and K°; rather, each is its own antiparticle (C = -1 for K1 and C = +1 for K2). 
They differ ever-so-slightly in mass; experiments give [24] 

m2 - m1 = 3.48 x 10-6 eV /c2 (4.73) 

The neutral kaon system adds a subtle twist to the old question, 'What is a 
particle?' Kaons are typically produced by the strong interactions, in eigenstates of 
strangeness (K0 and K°), but they decay by the weak interactions, as eigenstates 
of CP (K1 and K2). Which, then, is the 'real' particle? If we hold that a 'particle' 
must have a unique lifetime, then the 'true' particles are K1 and K2.* But we 
need not be so dogmatic. In practice, it is sometimes more convenient to use 
one set, and sometimes, the other. The situation is in many ways analogous 
to polarized light. Linear polarization can be regarded as a superposition of 
left-circular polarization and right-circular polarization. If you imagine a medium 
that preferentially absorbs right-circularly polarized light, and shine on it a linearly 
polarized beam, it will become progressively more left-circularly polarized as it 
passes through the material, just as a K0 beam turns into a K2 beam. But whether 
you choose to analyze the process in terms of states oflinear or circular polarization 
is largely a matter of taste. 

4.4.3.2 CP Violation 
The neutral kaons provide a perfect experimental system for testing CP invariance. 
By using a long enough beam, we can produce an arbitrarily pure sample of the 
long-lived species. If at this point, we observe a 2n decay, we shall know that CP has 
been violated. Such an experiment was reported by Cronin and Fitch in 1964.[25] 
At the end of a beam 57 feet long, they counted 45 two pion events in a total of 
22,700 decays. That's a tiny fraction (roughly 1 in 500), but unmistakable evidence 
of CP violation. Evidently, the long-lived neutral kaon is not a perfect eigenstate of 
CP after all, but contains a small admixture of K1: 

(4.74) 

* This, incidentally, was the position advocated by Gell-Mann and Pais. 
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The coefficient E is a measure of nature's departure from perfect CP invariance;* 
experimentally, its magnitude is about 2.24 x 10-3 . 

Although the effect is small, CP violation poses a far deeper problem than parity 
ever did. The nonconservation of parity was quickly incorporated into the theory 
of weak interactions (in fact, part of the 'new' theory - Weyl's equation for the 
neutrino - had been waiting in the wings for many years). Parity violation was 
easier to handle precisely because it was such a large effect: all neutrinos are 
left-handed, not just 50.01 % of them. Parity is, in this sense, maximally violated, in 
the weak interactions. By contrast, CP violation is a small effect by any measure. 
Within the Standard Model, it can be accommodated by including an empirical 
phase factor (8) in the Cabibbo-Kobayashi-Maskawa (CKM) matrix, provided that 
there are (at least) three generations of quarks. Indeed, it was this realization that 
led Kobayashi and Maskawa to propose a third generation of quarks in 1973, before 
even charm was discovered. [27] 

The Fitch-Cronin experiment destroyed the last hope for any form of exact 
mirror symmetry in nature. And subsequent study of the semileptonic decays of 
Kt revealed even more dramatic evidence of CP violation. Although 32% of all Kt's 
decay by the 3n mode we have discussed, 41 % go to 

or (4.75) 

Notice that CP takes (a) into (b), so if CP were conserved, and Kt were a pure 
eigenstate, (a) and (b) would be equally probable. But experiments show [28] that 
Kt decays more often into a positron than into an electron, by a fractional amount 
3.3 x 10-3 . Here, for the first time, is a process that makes an absolute distinction 
between matter and antimatter, and provides an unambiguous, convention-free 
definition of positive charge: it is the charge carried by the lepton preferentially produced 
in the decay of the long-lived neutral K meson. The fact that CP violation permits 
unequal treatment of particles and antiparticles suggests that it may be responsible 
for the dominance of matter over antimatter in the universe. [29] We will explore 
this further in Chapter 12. 

For almost 40 years, the decay of Kt was the only context in which CP violation was 
observed in the laboratory. In 1981, Carter and Sanda pointed out that the violation 
should also occur with the neutral B mesons. [30] To explore this possibility, 
'B-factories' were constructed at SLAC and KEK (in Japan), designed specifically to 
produce enormous numbers of B0JB0 pairs [31]. By 2001, their detectors ('BaBar' 
and 'Belle', respectively) had recorded incontrovertible evidence of CP violation 
in neutral B decays. [32]'f Unlike the kaon system, where CP violation is a tiny 
effect in relatively common decays (such as Equation 4.75), for the B's it tends 
to be a large effect in extremely rare decays. For example, the branching ratio 

* This is not the only route by which Ki can decay to 2,r; in the Standard Model, there is also a 
small 'direct' CP violation that does not involve K° -<-> K' mixing, but is associated instead with 
the so-called 'penguin' diagrams (Problem 4.40). Direct CP violation in Ki -> 2,r was confirmed 
in 1999 [26]. 

i' 'Direct' CP violation in neutral B decays was confirmed by both labs in 2004 [33]. 
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for B0 --+ K+ + rr- is only 1.82 x 10-5 , but this decay is 13% more common than 
its CP 'mirror image' B0 --+ K- + rr+. So far, this is the only other system in which 
CP violation has been detected.* 

4.4.4 
Time Reversal and the TCP Theorem 

Suppose we made a movie of some physical process, say, an elastic collision of 
two billiard balls. If we ran the movie backward, would it depict a possible physical 
process, or would the viewer be able to say with certainty 'No, no, that's impossible; 
the film must be running in reverse'? In the case of classical elastic collisions, the 
'time-reversed' process is perfectly possible. (To be sure, if we put a lot of billiard 
balls in the picture, the backward version might be highly improbable; we would be 
surprised to see the balls gather themselves together into a perfect triangle, with a 
single cue ball rolling away, and we would strongly suspect that the film had been 
reversed. But that's just because we know it would be extraordinarily difficult to 
set up the necessary starting conditions, such that all the balls would roll together 
at just the right speeds and in just the right directions. Thus the initial conditions 
may give us a clue to the 'arrow of time', but the laws governing the collisions 
themselves work just as well forward as backward.) Until fairly recently, it was 
taken for granted that all elementary particle interactions share this time-reversal 
invariance. But with the downfall of parity, it was natural to wonder whether time 
reversal was really so sacred.[36] 

As it turns out, time reversal is a lot harder to test than P or C. In the first place, 
whereas many particles are eigenstates of P, and some are eigenstates of C, none is 
an eigenstate of T (the 'time-reversal operator', which runs the movie backward).t 
So we cannot check the 'conservation of T' simply by multiplying numbers, the 
way we can for P and C. The most direct test would be to take a particular reaction 
(say, n + p--+ d + y), and run it in reverse (d + y --+ n + p). For corresponding 
conditions of momentum, energy, and spin, the reaction rate should be the same 
in either direction. (This is called the 'principle of detailed balance', and it follows 
directly from time-reversal invariance.) Such tests work fine for the strong and elec­
tromagnetic interactions, and a variety of processes have been checked. The results 
have always been negative (no evidence of T violation), but this is hardly surprising. 

* There is some evidence for B~ /if', mixing [34), 
and more recently D0 /f5° mixing [35), but 
as yet no evidence of CP violation in either 
case. Because the b quark - like the s quark 
- cannot decay ,vithout crossing a genera­
tion boundary, the B mesons - like the Ks -
tend to be relatively long-lived (10-12 s). The 
c quark, by contrast, can go to an s without 
crossing a boundary, and that makes the D 

mesons short-lived (10- 15 s). This is one rea­
son the B system is a more promising place 
to look for CP violation, even though D's are 
easier to produce. 

t A particle can be identical to its mirror im­
age, and, if it's neutral, to its own antipar­
ticle, but it can't be identical to itself-going­
backward-in-time (at least, not if anything 
ever happens to it). 
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On the basis of our experience with P and C, we expect to see a failure of time 
reversal in the weak interactions, if anywhere. Unfortunately, inverse-reaction 
experiments are tough to do in the weak interactions. Take, for instance, the 
typical weak decay A ---+ p+ + ,r-. The inverse reaction would be p+ + ,r- ---+ A, 
but we are never going to see such a process, because the strong interaction of the 
proton and the pion will totally swamp the feeble weak interaction. To avoid strong 
and electromagnetic contamination, we might go to a neutrino process. But it is 
notoriously difficult to do accurate measurements on neutrinos, and here we are 
presumably looking for a very small effect. In practice, therefore, the critical tests of 
T invariance involve careful measurements of quantities that should be precisely 
zero if T is a perfect symmetry. The classic example is a static electric dipole 
moment of an elementary particle.• Probably, the most sensitive experimental tests 
are the upper limits on the electric dipole moments of the neutron [37] and the 
electron:[38] 

dn < (6 x 10-26 cm) e, d, < (1.6 x 10-27 cm) e (4.76) 

where e is the charge of the proton; no experiment has shown direct evidence of T 
violation. 

Nevertheless, there is a compelling reason to believe that time reversal cannot 
be a perfect symmetry of nature. It comes from the so-called TCP theorem, 
one of the deepest results of quantum field theory [39]. Based only on the most 
general assumptions - Lorentz invariance, quantum mechanics, and the idea that 
interactions are represented by fields - the TCP theorem states that the combined 
operation of time reversal, charge conjugation, and parity (in any order) is an 
exact symmetry of any interaction. It is simply impossible to construct a quantum 
field theory in which the product TCP is not conserved. If, as the Fitch-Cronin 
experiment demonstrated, CP is violated, there must be a compensating violation 
of T. Of course, like any assertion of impossibility, the TCP theorem may just be 
a measure of our lack of imagination; it must be tested in the laboratory, and that 
is one reason it is so important to look for independent evidence of T violation. 
But the TCP theorem has other implications that are also subject to experimental 
verification: if the theorem is correct, every particle must have precisely the same 
mass and lifetime as its antiparticle.I Measurements have been made on a number 
of particle-antiparticle pairs; the most sensitive test to date is the K0 - K° mass 

* For an elementary particle, the dipole mo· 
ment d, would have to point along the axis 
of the spin, s; there is no other direction 
available. But d is a vector, whereas s is a 
pseudovector, so a nonzero dipole moment 
would imply violation of P. Similarly, s 
changes sign under time reversal, but d does 
not, so a nonzero d would also (and more 
interestingly) mean violation of T. For further 
details, see Ramsey, ref. [32]. 

t This would also follow from C invariance. 
However, since we know that the lat· 
ter is violated, it is significant that the 
equality of masses and lifetimes (also 
magnetic moments, incidentally, al­
though they have opposite signs) follows 
from the far weaker assumption of TCP 
symmetry. 
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difference, which, as a fraction of the K° mass, is known to be less than 10-18 . 

So the TCP theorem is on extremely firm ground theoretically, and it is relatively 
secure experimentally. Indeed, as one prominent theorist has put it, if a departure 
is ever found, 'all hell breaks loose'. 
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individually. It was only with the fall 
of parity, and especially with the fail-
ure of CP, that the importance of 
this theorem was fully appreciated. 

Problems 

4.1 Prove that J, R+, R_, Ra, Rb, and Re are all the symmetries of the equilateral triangle. 
[ Hint: One way to do this is to label the three corners, as in Figure 4.2 A given symmetry 
operation carries A into the position formerly occupied by A, B, or C. If A ➔ A, then 
either B ➔ B and C ➔ C, or else B ➔ C and C ➔ B. Take it from there.] 

4.2 Construct a 'multiplication table' for the triangle group, filling in the blanks on the 
following diagram: 

I R+ R_ Ra Rb Re 
I 

R+ 
R_ 
Ra 
Rb 
Re 

In row i, columnj, put the product R;Rj- Is this an Abelian group? How can you tell, 
just by looking at the multiplication table? 

4.3 (a) Construct a 3 x 3 representation of the triangle group as follows: let D(R) be the 

matrix representing operation R. It acts on the column matrix (]) to produce a 

new column matrix (t) = D(R) (]), where A' is the vertex now occupying the 

location originally held by A. Thus, for example, 

1 
0 

0 

Find the other five matrices. (You might want to check that multiplication of your 
matrices fits the table you constructed in Problem (4.2).) 

(b) The triangle group, like any other group, has a trivial one-dimensional representation. 
It also has a nontrivial, one-dimensional representation, in which the elements are 
not all represented by 1. Work out this second one-dimensional representation. That 
is, figure out what number (1 x 1 matrix) each group element is represented by. Is 
this representation faithful? 

4.4 Work out the symmetry group of a square. How many elements does it have? Construct 
the multiplication table, and determine whether or not the group is Abelian. 

4.5 (a) Show that the set of all unitary n x n matrices constitutes a group. (To prove closure, 
for instance, you must show that the product of two unitary matrices is itself unitary.) 

(b) Show that the set of all n x n unitary matrices with determinant 1 constitutes a group. 
(c) Show that O(n) is a group. 
(d) Show that SO(n) is a group. 
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4.6 Consider a vector A in two dimensions. Suppose its components with respect to 
Cartesian axes x, y, are (ax, ay). What are its components (a'x, a~) in a system x', y' which 
is rotated, counterclockwise, by an angle 0, with respect to x, y? Express your answer in 
the form of a 2 x 2 matrix R(0): 

Show that R is an orthogonal matrix. What is its determinant? The set of all such 
rotations constitutes a group; what is the name of this group? By multiplying the 
matrices, show that R(0 1)R(02 ) = R(0 1 + 02); is this an Abelian group? 

4.7 Consider the matrix G -~} Is it in the group 0(2)? How about S0(2)? What is its 

effect on the vector A of Problem (4.6)? Does it describe a possible rotation of the plane? 
4.8 Suppose we interpret the electron literally as a classical solid sphere of radius r, mass m, 

spinning with angular momentum ½n.. What is the speed, v, of a point on its 'equator'? 
Experimentally, it is known that r is less than 10-16 cm. What is the corresponding 
equatorial speed? What do you conclude from this? 

4.9 When you are adding angular momenta, using Equation 4.12, it is useful to check your 
results by counting the number of states before and after the addition. For instance, in 
Example 4.1 we had two quarks to begin with, each could have m, = + ½ or m, = -½, so 
there were four possibilities in all. After adding the spins, we had one combination with 
spin 1 (hence m, = 1, 0, or -1) and one with spin O (m, = 0) - again, four states in all. 

(a) Apply this check to Example 4.2 
(b) Add angular momenta 2, 1, and ½- List the possible values of the total angular 

momentum, and check your answer by counting states. 
4.10 Show that the 'original' beta-decay reaction n ➔ p + e would violate conservation of 

angular momentum (all three particles have spin ½ ). If you were Pauli, proposing that 
the reaction is really n ➔ p + e + v,, what spin would you assign to the neutrino? 

4.11 In the decay 6. ++ ➔ p + ,r+, what are the possible values of the (CM) orbital angular 
momentum quantum number, l, in the final state? 

4.12 An electron in a hydrogen atom is in a state with orbital angular momentum quantum 
number l = 1. If the total angular momentum quantum number j is ½, and the z 
component of total angular momentum is ½ n., what is the probability of finding the 
electron with m, = +½? 

4.13 Suppose you had two particles of spin 2, each in a state with S2 = 0. If you measured 
the total angular momentum of this system, given that the orbital angular momentum 
is zero, what values might you get, and what is the probability of each? Check that they 
add up to 1. 

4.14 Suppose you had a particle of spin f, and another of spin 2. If you knew that their 
orbital angular momentum was zero, and that the total spin of the composite system 
was f, and its z component was -½, what values might you get for a measurement of 
S2 on the spin-2 particle? What is the probability of each? Check that they add up to 1. 

4.15 Check that x ±, Equation 4.22, are normalized eigenvectors of Sx, Equation 4.21, and 
find the associated eigenvalues. 

4.16 Show that lal2 + 1h12 = 1 (Equation 4.24), provided the spinor in question is normalized 
(Equation 4.20). 

4.17 (a) Find the eigenvalues and normalized eigenspinors of Sy (Equation 4.21). 

(b) If you measured Sy on an electron in the state (;), what values might you get, and 

what is the probability of each? 

4.18 Suppose an electron is in the state ( t). 
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(a) If you measured Sx, what values might you get, and what is the probability of each? 
(b) If you measured Sy, what values might you get, and what is the probability of each? 
(c) If you measured S,, what values might you get, and what is the probability of each? 

4.19 (a) Show that er; = er; = er; = 1. ('1' here really means the 2 x 2 unit matrix; if no 
matrix is specified, the unit matrix is understood.) 

(b) Show that erxery = -eryerx = ier,, eryerz = -er,ery = icrx, er,erx = -erxerz = iery- These re­
sults are neatly summarized in the formula 

(summation over k implied), where 8u is the Kronecker delta: 

8ij = { 1, 

0, 
if i = j } 
otherwise 

and Eijk is the Levi-Civita symbol: 

l 1. 
Eijk= -1, 

0, 

if ijk = 123,231, or 312 
if ijk = 132,213, or 321 
otherwise 

4.20 Use the results of Problem 4.19 to show that 

(a) The commutator, [A, BJ = AB - BA, of two Pauli matrices is [er;, erj] = 2iEijkO"k­

(b) The anticommutator, {A. B} =AB+ BA, is {er;,erj} = 28u. 
(c) For any two vectors a and b, (o- · a)(o- · b)=a · b + io- · (a x b). 

4.21 (a) Show that e'""•/2 = ier,. 
(b) Find the matrix U representing a rotation by 180° about the y axis, and show that it 

converts 'spin up' into 'spin down', as we would expect. 
(c) More generally, show that 

0 0 . • . 0 
U( ) = cos - - i(0·a) sm -

2 2 

where U(O) is given by Equation 4.28, 0 is the magnitude of 11, and 0 = 0/0. [Hint: 
Use Problem 4.20, part (c).] 

4.22 (a) Show that U, in Equation 4.28, is unitary. 
(b) Show that det U = 1. [ Hint: You can either do this directly (however, see footnote 

after Equation 4.29), or else use the results of Problem 4.21.] 
4.23 The extension of everything in Section 4.2.2 to higher spin is relatively straightforward. 

For spin 1 we have three states (m, = +1, 0, -1), which we may represent by column 
vectors: 

respectively. The only problem is to construct the 3 x 3 matrices Sx, Sy and S,. The 
latter is easy: 
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(a) Construct S2 for spin 1. To obtain Sx and Sy it is easiest to start with the 'raising' and 
'lowering' operators, 5± =Sx ± iSy, which have the property 

S±lsm) = !iJs(s + 1) - m(m ± 1)1s(m ± 1)) 

(b) Construct the matrices S+ and S_, for spin 1. 
(c) Using (b), determine the spin-1 matrices Sx and Sy. 
(d) Carry out the same construction for spin ½. 

(4.77) 

4.24 Determine the isospin assignments JIJ3) for each of the following particles (refer to the 
Eightfold Way diagrams in Chapter 1): n-, :E+, s0,p+, '1, J<!l. 

4.25 (a) Check that the Gell-Mann-Nishijima formula works for the quarks u, d, ands. 
(b) What are the appropriate isospin assignments, JIJ3), for the antiquarks, u, d, ands? 

Check that your assignment is consistent with the Gell-Mann-Nishijima formula. 
[Since Q, 13 , A, and 5 all add, when we combine quarks, it follows that the 
Gell-Mann-Nishijima formula holds for all hadrons made out of u, d, s, u, d, ands.] 

4.26 (a) The Gell-Mann-Nishijima formula, Equation 4.37, was proposed in the early fifties, 
which is to say long before the discovery of charm, beauty, or truth. Using the table 
of quark properties (in Section 1.11), and the quark isospin assignments, Equation 
4.38, deduce the general formula expressing Qin terms of A, 13, S, C, B, and T. 

(b) Because u and d are the only quarks with nonzero isospin, it should be possible 
to express J3 in terms of U ('upness') and D ('downness'). What's the formula? 
Likewise, express A in terms of the flavor numbers U, D, S, C, B, and T. 

(c) Putting it all together, obtain the formula for Qin terms of the flavor numbers (that 
is, eliminate A and 1J from your formula in part (a)). This final version represents 
the cleanest statement of the Gell-Mann-Nishijima formula, in the three-generation 
quark model. 

4.27 For two isospin-½ particles, show that 1!11.1(21 = ¼ in the triplet state and-¾ in the 
singlet. [Hint: l,0, = 1111 + 1(21; square both sides.] 

4.28 (a) Referring to Equations 4.47 and 4.48, work out all the rr N scattering amplitudes, J/( 0 

through Jltj, in terms of J/t 1 and Ji/J. 
(b) Generalize Equation 4.49 to include all 10 cross sections. 
(c) In the same way, generalize Equation 4.50 

4.29 Find the ratio of the cross sections for the following reactions, assuming the CM energy 
is such that the I= ½ channel dominates: (a) rr- + p ➔ K0 + :E 0; (b) rr- + p ➔ K+ 
+ :E-; (c) rr+ + p ➔ K+ + :E+. What if the energy is such that the I=½ channel 
dominates? 

4.30 What are the possible total isospins for the following reactions: (a) K- + p ➔ :E 0 + rr 0; 

(b) K- + p ➔ :E+ + rr-; (c) J<!l + p ➔ :E+ + rr 0; (d) J<!l + p ➔ :E 0 + rr+. Find the ratio 
of the cross sections, assuming one or the other isospin channel dominates. 

4.31 On the graph in Figure 4.6, we see 'resonances' as 1525, 1688, 1920, and 2190 (as well as 
the one at 1232). By comparing the two curves, determine the isospin of each resonance. 
The nomenclature is N (followed by the mass) for any state with I = ½, and l'l for any 
state with I= f. Thus the nucleon is N(939), and the 'original' l'l is 1'1(1232). Name the 
other resonances, and confirm your answers by looking in the Particle Physics Booklet. 

4.32 The :E*0 can decay into :E+ + rr-, :E 0 + rr 0, or :E- + rr+ (also A+ rr 0, but we're not 
concerned with that here). Suppose you observed 100 such disintegrations, how many 
would you expect to see of each type? 

4.33 (a) The O! particle is a bound state of two protons and two neutrons, that is, a 4He 
nucleus. There is no isotope of hydrogen with an atomic weight of four (4 H), nor of 
lithium 4 Li. What do you conclude about the isospin of an O! particle? 

(b) The reaction d + d ➔ O! + rr 0 has never been observed. Explain why. 
(c) Would you expect 4 Be to exist? How about a bound state of four neutrons? 
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4.34 (a) Using Equation 4.52, prove that the eigenvalues of Pare ±1. 

(b) Show that any scalar function f (x, y, z) can be expressed as the sum ofan eigenfunction 
f + (x, y, z) with eigenvalue + 1 and an eigenfunction f _ (x, y, z) with eigenvalue -1. 
Construct the functionsf + andf _, in terms off. [Hint: P f(x, y, z) = f(-x, - y, -
z).] 

4.35 (a) Is the neutrino an eigenstate of P? If so, what is its intrinsic parity? 
(b) Now that we know ,+ and 0+ are actually both the K+, which of the decays in 

Equation 4.53 actually violates parity conservation? 
4.36 (a) Using the information in Table 4.6, determine the G parity of the following mesons: 

71:' p, w, 1), 11', tf,,Ji. 
(b) Show that R2 I IO ) =(-lf !IO), and use this result to justify Equation 4.60 

4.37 The dominant decays of the 1J meson are 

11--+ 2y(39%), 1J--+ 3rr(55%), 1J--+ nny(5%) (4.78) 

and it is classified as a 'stable' particle, so evidently none of these is a purely strong 
interaction. Offhand, this seems odd, since at 549 MeV/c2 • the 1J has plenty of mass to 
decay strongly into 2n: or 3n:. 
(a) Explain why the 2n: mode is forbidden, for both strong and electromagnetic interac­

tions. 
(b) Explain why the 3n: mode is forbidden as a strong interaction, but allowed as an 

electromagnetic decay. 
4.38 For two hadrons to interconvert, Aa=B, it is necessary that they have the same mass 

(which in practice means that they must be antiparticles of one another), the same 
charge, and the same baryon number. In the Standard Model, with the usual three 
generations, show that A and B would have to be neutral mesons, and identify their 
possible quark contents. What, then, are the candidate mesons? Why doesn't the neutron 
mix with the antineutron, in the same way as the K0 and K!' mix to produce K1 and K2? 
Why don't we see mixing of the neutral strange vector mesons K0• and K!'*? 

4.39 Suppose you wanted to inform someone in a distant galaxy that humans have their 
hearts on the left side. How could you communicate this unambiguously, without 
sending an actual 'handed' object (such as a corkscrew, a circularly polarized light beam, 
or a neutrino). For all you know their galaxy may be made of antimatter. You cannot 
afford to wait for any replies, but you are allowed to use English. 

4.40 The charged weak interactions couple a d, s, or b to a u, c, or t, but a d (for example) 
cannot go directly to an s or a b. However, such a coupling can occur indirectly, via a 
so-called "penguin" diagram, in which a quark emits a virtual W that it subsequently 
reabsorbs, having in the mean time interacted with a gluon:* 

A t 

b 

A 'tree' diagram is one with no closed loops. Construct a penguin diagram representing 
B0 ➔ n: + + n:-, and a tree diagram for the same process (the latter should have no 
gluons). In both cases, let the d quark be a spectator. ['Direct' CP violation comes from 
the interference of these two diagrams.] 

Don't look for anything resembling the bird here - the name is a joke. The story is told best by 
Woit, P. (2006) Not Even Wrong, Basic Books, New York, pp. 54-55. 
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Bound States 

The first part of this chapter is devoted to the nonrelativistic theory of two-particle bound 
states - hydrogen (e-p+), positronium (e-e+), charmonium (cc), and bottomonium 
(bb). This material is not used in subsequent chapters and can be skimmed, saved for 
later, or skipped entirely. Some acquaintance with quantum mechanics is essential. The 
final two sections (5.5 and 5.6) concern relativistic light-quark systems - the familiar 
mesons and baryons - about which far less can be said with confidence. I concentrate on 
the spin /flavor /color structure of the wave Junctions and develop a model for estimating 
masses and magnetic moments. 

5.1 

The Schrodinger Equation 

The analysis of a bound state is simplest when the constituents travel at speeds sub­

stantially less than c, for then the apparatus of nonrelativistic quantum mechanics 
can be brought to bear. Such is the case for hydrogen and for hadrons made out of 

heavy quarks (c and b). The more familiar light-quark states (made out of u, d, and 
s) are much more difficult to handle, because they are intrinsically relativistic, and

quantum field theory (as currently practiced) is not well suited to the description of
bound states. Most of the techniques available assume that the particles are initially

free, and become free again after some briefinteraction, whereas in a bound state the

particles interact continuously over an extended period. Thus there exists a very rich

theory of 'charmonium' (cc, the ,jJ meson system), and 'bottomonium' (bb, the Y 
system), but comparatively little can be said about the excited states of uu (say) or dd.

How can you tell whether a given bound state is relativistic or not? The sim­
plest criterion is as follows: if the binding energy is small compared to the rest 
energies of the constituents, then the system is nonrelativistic.* For example, 

* In general, the total energy of a composite 
system is the sum of three terms: (i) the 
rest energy of the constituents, (ii) the ki­
netic energy of the constituents, and (iii) the 
potential energy of the configuration. The 
latter two are typically comparable in size 
(the precise relation is given by the virial 

theorem). If the binding energy is much less

than the constituent rest energies, so too is 
their kinetic energy, and hence the system is 

nonrelativistic. On the other hand, if the mass 
of the composite structure is substantially 
different from the sum of the rest masses of 
the constituents, then the kinetic energy is 
large and the system is relativistic. 

1159 
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the binding energy of hydrogen is 13.6 eV, whereas the rest energy of an elec­
tron is 511 000 e V - this is clearly a nonrelativistic system. On the other hand, 
quark-quark binding energies are on the order of a few hundred MeV, which is 
about the same as the effective rest energy of u, d, or s quarks, but substantially 
less than c, b, and t (see Table 4.4). So the light-quark hadrons are relativistic, but 
heavy-quark systems are not. 

The foundation for nonrelativistic quantum theory is Schri:idinger's equation [1 ]. 

( n2 z ) '" a - - "il + V ljJ = in- \jl 
2m at (5.1) 

It governs the time evolution of the wavefanction \jJ(r, t), describing a particle of 
mass min the presence ofa specified potential energy V(r, t). Specifically, jljJ(r, t)i 2 

d3r is the probability of finding the particle in the infinitesimal volume d3r, at time 
t. Since the particle must be somewhere, the integral ofJ1jJJ 2 over all space has to be 1: 

J J1jJJ 2 d3r= 1 (5.2) 

We say that the wave function is 'normalized'.* 
If V does not depend explicitly on t, the Schri:idinger equation can be solved by 

separation of variables: 

ljJ (r, t) = ,jJ(r)e-iEt/n (5.3) 

where ,fr satisfies the time-independent Schriidinger equation 

(5.4) 

and the separation constant E is the energy of the particle. The operator on the left 
is the Hamiltonian: 

fi2 
H= --'12 + V 

2m 
(5.5) 

and the (time-independent) Schri:idinger equation has the form of an eigenvalue 
equation: 

H,jJ=E,jJ (5.6) 

,fr is an eigenfunction of H, and Eis the eigenvalue.1' 

* A solution to the Schrodinger equation can be multiplied by any constant and remain a solu­
tion. In practice, we fix this constant by demanding that Equation 5.2 be satisfied; this process 
is called 'normalizing' the wave function. 

'f Notice that IWl2 = 11/11 2• For most purposes it is only the absolute square of the wave function 
that matters, and we shall work almost exclusively with ,t,. Casually, we often refer to ,t, as 'the 
wave function', but remember that the actual wave function carries the exponential time depen­
dence. 



Table 5.1 Spherical harmonics for/ = 0, 1, 2, and 3 

Yf = (T cos 0, v~ Yf = (s(3cos20-1), vu;; 

Yf = (7(5cos30 - 3cos0), vu;;; 

Y} = - (T sin0ei4>, vs,; Y1 = - (K sin0 cos0ei4> z vs,; 

Y¾ = - {21 sin0(5cos2 0 - l)ei1> v~ 

Y2 = {Ts sin2 0e2'4> 
2 vn;: · Yf = {fos sin2 0 cos 0ei4> vn;: 

y3 = - (3s sin3 03fr/> 
3 v~ 
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In the case of a spherically symmetrical (or 'central') potential, Vis a function 
only of the distance from the origin, and the (time-independent) Schrodinger 
equation separates in spherical coordinates: 

(5.7) 

Here Y is a spherical harmonic; these functions are tabulated in many places 
(including the Particle Physics Booklet); a few of the more useful ones are given in 
Table 5.1. The constants l and mi correspond to the orbital angular momentum 
quantum numbers introduced in Chapter 4. Meanwhile u(r) satisfies the radial 
Schriidinger equation, 

ti2 d2u [ li21(1+1)] ---+ V(r)+--- u=Eu 
2m dr2 2m r2 

(5.8) 

Curiously, this has exactly the same form as Equation 5.4 for one dimension, except 
that the potential is augmented by the centrifagal barrier, (li2 /2m)l(l + 1)/r2 • 

That is about as far as we can pursue the matter in general terms; at this point we 
have to put in the particular potential V(r) for the problem at hand. The strategy is to 
solve the radial equation for u(r), combine the result with the appropriate spherical 
harmonic, and multiply by the exponential factor exp(-iEt/n), to get the full wave 
function W. In the course of solving the radial equation, however, we discover that 
only certain special values of E lead to acceptable results. For most values of Ethe 
solution to Equation 5.8 blows up at large r, and yields a non-normalizable wave 
function. Such a solution does not represent a possible physical state. This rather 
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technical detail is the source of the most striking and important feature of quantum 
mechanics: a bound state cannot have just any old energy (as it could classically); 
instead, the energy can take on only certain specific values, the allowed energies of 
the system. Indeed, our real concern is not with the wave function itself, but with 
the spectrum of allowed energies. 

5.2 
Hydrogen 

The hydrogen atom (electron plus proton) is not an elementary particle, of course, 
but it serves as the model for nonrelativistic bound systems. The proton is so heavy 
(relatively) that it just sits at the origin; the wave function in question is that of the 
electron. Its potential energy, due to the electrical attraction of the nucleus, is (in 
Gaussian units) 

e2 
V(r) = --

r 
(5.9) 

When this potential is put into the radial equation, it is found that normalizable 
solutions occur only when E assumes one of the special values 

me4 2 2 (1) 2 En= --- = -a me - = -13.6eV/n 
2h2n2 2n2 

(5.10) 

where n = 1, 2, 3, ... , and 

e2 1 
a=-=---

hc 137.036 
(5.11) 

is the fine structure constant. The corresponding (normalized) wave function, 
'11n,l,m1(r,0,<jJ, t), is 

where 

{ 
3 } 1/2 I (2) (n-l-1)! -r/na(2r) 21+1 (2r) m1 -iEnt/h - ~--~ e - L - Y (0,<jJ)e 

na 2n[(n + 1)!]3 na n-l-l na 1 

fi2 
a= - 2 = 0.529 x 10-8 cm 

me 

(5.12) 

(5.13) 

is the Bohr radius (roughly speaking, the size of the atom), and L is an associated 
Laguerre polynomial. 

Obviously, the wave function itself is a mess, but that's not really what concerns 
us. The crucial thing is the formula of the allowed energies, Equation 5.10. It 
was first obtained by Bohr in 1913 (more than a decade before the Schri:idinger 
equation was introduced) by a serendipitous amalgam of inapplicable classical 
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ideas and primitive quantum theory - an inspired blend, as Rabi put it, of'artistry 
and effrontery'. 

Notice that the wave function is labeled by three numbers: n (the principal 
quantum number), which can be any positive integer - it determines the energy of 
the state (Equation 5.10); !, an integer ranging from Oto n - l that specifies the 
total orbital angular momentum (Equation 4.2); and m1, an integer that can assume 
any value between -! and +l, giving the z component of the angular momentum 
(Equation 4.4). Evidently, there are 21 + 1 different mi's, for each!, and n different 
l's, for each n. The total number of distinct states that share the same principal 
quantum number n (and hence the same energy) is, therefore 

n-1 

L(2l + 1) = n2 

l=O 

(5.14) 

This is called the degeneracy of the nth energy level. Hydrogen is a surprisingly 
degenerate system; spherical symmetry alone dictates that the 21 + 1 states with a 
given value of the total angular momentum should be degenerate, since they differ 
only in the orientation of L, but this suggests a sequence 1, 3, 5, 7, ... , whereas 
the energy levels of hydrogen have much higher degeneracies: 1, 4, 9, 16, .... This 
is because states with different l share the same n; it is an unusual feature of the 
Coulomb potential. 

In practice, we do not measure the energies themselves, but rather the wave­
length of the light emitted when the electron makes a transition from a higher level 
to a lower one (or the light absorbed when it goes the other way) [2]. The photon 
carries the difference in energy between the initial and final states. According to the 
Planck formula (Equation 1.1), 

The emitted wavelength is therefore given by 

where 

me4 

R = --3- = 1.09737 x 105 /cm 
4nfi C 

(5.15) 

(5.16) 

(5.17) 

Equation 5.16 is the famous Rydberg formula for the spectrum of hydrogen. It 
was discovered experimentally by nineteenth-century spectroscopists, for whom 
R was simply an empirical constant. The greatest triumph of Bohr's theory was 
its derivation of the Rydberg formula, and the expression for R in terms of the 
fundamental constants m, e, c, and ti (Figure 5.1). 
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Fig. 5.1 The spectrum of hydrogen. When 
an atom changes from one state to an­
other, the difference in energy appears as 
a quantum of radiation. The energy of the 
photon is directly proportional to the fre­
quency of the radiation and inversely pro­
portional to its wavelength. Absorption of 
radiation stimulates a transition to a state 
of higher energy; an atom falling to a state 
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of lower energy emits radiation. The spec­
trum is organized into series of lines that 
share a common lower level. Wavelengths 
are given in angstroms; the relative inten-
sity of the lines is indicated by thickness. 
(Source: Hansch, T. W., Schawlow, A. L. and 
Series, G. W. (March 1979) 'The Spectrum of 
Atomic Hydrogen', Scientific American, p. 94, 
reprinted by permission.) 
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5.2.l 
Fine Structure 

As the precision of experimental spectroscopy improved, small departures from the 
Rydberg formula were detected. Spectral lines were resolved into doublets, triplets, 
and even larger families of closely spaced peaks. This fine structure is actually 
attributable to two distinct mechanisms: 

1. Relativistic correction: The first term in the Hamiltonian 
(Equation 5.5) comes from the classical expression for kinetic 
energy (p2 /2m), with the quantum replacement p ➔ -ihV. 
The lowest-order relativistic correction (Problem 5.4) is 
-p4/8m3c2. 

2. Spin-orbit coupling: The spinning electron constitutes a tiny 
magnet, with a dipole moment* 

e 
µ. = --S 

me 
(5.18) 

From the electron's perspective the 'orbiting' proton sets up 
a magnetic field B, and the spin-orbit term is the associated 
magnetic energy -µ,B. 

The net result is a perturbation of the nth energy level by the amount [1] 

4 2 1 ( 2n 3) 
/:J..Ers = -a me 4n4 (j + ½) - 2 (5.19) 

where j = l ± ½ is the total angular momentum (spin plus orbital) of the electron 
(Equation 4.12). Recall that the Bohr energies go like a 2mc2 (Equation 5.10); fine 
structure carries two more powers of a, and hence is smaller by a factor of about 
10-4 • So we're talking about a tiny correction.t Since I can take on any integer value 

* In the SI system the magnetic dipole moment 
is defined as current times area (la), but in 
Gaussian units it is Ia/c. The proportionality 
factor between the magnetic dipole moment 
and the angular momentum is known as the 
gyromagnetic ratio. Classically, it should have 
the (Gaussian) value [3) -e/2mc, and this is 
correct for orbital angular momentum. But it 
turns out that spin is 'twice as effective as it 
ought to be' in producing a magnetic dipole 
(one of the major successes of Dirac's original 
theory of the electron was its explanation of 
this extra 2). As it happens, however, even this 
is not quite right; there are minute correc­
tions introduced by quantum electrodynamics 
(QED) that were first calculated by Schwinger 

in the late 1940s. By now, both experimental 
and theoretical determinations of the anoma­
lous magnetic moment of the electron have 
been carried to fantastic precision, and stun­
ning agreement [4). 

t The fine structure constant, a, owes its name 
to the fact that it (or rather, a 2) sets the rel­
ative scale of the fine structure in hydrogen. 
However, one might equally well say that a 2 

sets the scale of the Bohr levels themselves. 
Actually, the best way to characterize the 
fine structure constant is to say that it is the 
dimensionless measure (in units of lie) of 
the (square of the) fundamental charge: a = 
e2 /lie. 
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n=1---------------------.. 

l=O 
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/= 1 
(Pl 

/= 2 
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Fig. 5.2 Fine structure in hydrogen. The 
nth Bohr level (fine line) splits into n sub­
levels (dashed lines), characterized by j = 
½, f, ... , (n - ½l- Except for the last of 
these, two different values of I contribute to 

I= 3 
IF) 

--- j= ¾ 

each level: I= j - ½ and I= j + ½- Spectro­
scopists' nomenclature - 5 for I = 0, P for I 
= l, 0 for I= 2, F for I= 3 - is indicated. 
All levels are shifted downward, as shown 
(the diagram is not to scale, however). 

from Oto n - l,j can be any half-integer from½ ton - ½; thus the nth Bohr level, 
En, splits into n sublevels (see Figure 5.2). 

5.2.2 
The Lamb Shift 

A striking feature of the fine structure formula (Equation 5.19) is that it depends 
only onj, not on l; in general, two different values of l share the same energy. For 
example, the 2S1;2 (n = 2, l = O,j = ½) and 2P1;2 (n = 2, l = l,j = ½) states remain 
perfectly degenerate. In 1947, Lamb and Retherford performed a classic experiment 
[5] which demonstrated that this is not, in fact, the case; the S state is slightly 
higher in energy than the P state. The explanation of the Lamb shift was provided 
by Bethe, Feynman, Schwinger, Tomonaga, and others; it is due to the quantization 
of the electromagnetic field itself. Everywhere else in the analysis - the Bohr levels, 
fine structure formula, and even hyperfine splitting (in the next section) - the 
electromagnetic field is treated entirely classically. The Lamb shift, by contrast, is 
an example of a radiative correction in QED, to which the semiclassical* theory is 
insensitive. In the Feynman formalism, it results from loop diagrams, such as those 
in Figure 5.3, which we shall discuss quantitatively later on. 

* I call it semiclassical because the electron is treated quantum mechanically, whereas the electro­
magnetic field is treated classically. 
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Vacuum polarization Electron mass renormalization Anomalous magnetic moment 

Fig. 5.3 Some loop diagrams contributing to the Lamb shift. 

Qualitatively, the first diagram in Figure 5.3 describes spontaneous production 
of electron-positron pairs in the neighborhood of the nucleus (misnamed vacuum 

polarization), leading to a partial screening of the proton's charge (Figure 2.1). 
The second diagram reflects the fact that the ground state of the electromagnetic 
field is not zero [6]; as the electron moves through the 'vacuum fluctuations' in 
the field, it jiggles slightly, and this alters its energy. The third diagram leads 
to a tiny modification of the electron's magnetic dipole moment (see footnote to 
Equation 5.18). We are not in a position to calculate these effects now, but here are 
the results [7]: For l = 0, 

5 2 l 
LiE1.amb = a me - 3 k(n, 0) 

4n 
(5.20) 

where k(n, 0) is a numerical factor that varies slightly with n, from 12.7 (for n = 1) 
to 13.2 (for n ➔ oo). For l i= 0, 

s 2 1 { 1 } LiE1.amb = a me - 3 k(n, !) ± . 1 1 , 
4n nU+ 2)(!+ 2) 

forj=l±½ (5.21) 

where k(n, l) is a very small number (less than 0.05) that varies slightly with n and l. 
Evidently the Lamb shift is miniscule, except for states with!= 0, where it is about 
one-tenth the size of the fine structure. However, because it depends on l, it lifts 
the degeneracy of the pairs of states with common n and j, in Figure 5.2, and in 
particular it splits the 2S1;2 and 2P1;2 levels (Problem 5.6). 

5.2.3 
Hyperfine Splitting 

Fine structure and the Lamb shift are minute corrections to the Bohr energy levels, 
but they are not the end of the story; there is a refinement that is smaller still 
(by a factor of 1000), due to the spin of the nucleus. The proton, like the electron, 
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En (modified by fine 
structure and lamb shift) 

Triplet 

<=r 
Singlet 

Fig. 5.4 Hyperfine splitting for / = 0. 

constitutes a tiny magnet, but because it is so much heavier, its dipole moment is 
much smaller: 

(5.22) 

(The proton is a composite object, and its magnetic moment is not simply efi/2mpc, 
as it would be for a truly elementary particle of spin ½. Hence the factor y p, 

whose experimental value is 2.7928. Later on we shall see how to calculate this 
quantity in the quark model.) The nuclear spin interacts with the electron's orbital 
motion by the same mechanism as the spin-orbit contribution to fine structure; in 
addition, it interacts directly with the electron spin. Together, the nuclear spin-orbit 
interaction and the proton-electron spin-spin coupling are responsible for the 
hypeifme splitting [8]: 

for f=J±½ (5.23) 

wheref is the total angular momentum quantum number (orbital plus both spins). 
Comparing the fine structure formula (Equation 5.19), we see that the difference 

in scale is due to the mass ratio (m/mp) out front; it follows that hyperfine effects 
in hydrogen are about 1000 times smaller. If the orbital angular momentum is 
zero (l = 0), then f can take on two possible values: zero, in the singlet state (when 
the spins are oppositely aligned) and one, in the triplet state (when the spins are 
parallel). Thus, each l = 0 level splits into two, with the singlet pushed down and 
the triplet lifted up (Figure 5.4). In the ground state [9] n = l the energy gap is 

corresponding to a photon of wavelength 

2n: fie 
J.. = -- = 21.1 cm 

€ 

(5.24) 

(5.25) 

This is the transition that gives rise to the famous '21-centimeter line' in microwave 
astronomy [10]. 
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The theory of hydrogen carries over, with some modifications, to the so-called 
'exotic' atoms, in which either the proton or the electron is replaced by some other 
particle. For instance, one can make muonic hydrogen (p+ J.l-), pionic hydrogen 
(p+n-), positronium (e+ e-), muonium (J.l+e-), and so on. Of course, these exotic 
states are unstable, but many of them last long enough to exhibit a well-defined 
spectrum. In particular, positronium provides a rich testing ground for QED. It was 
analyzed theoretically by Pirenne in 1944, and first produced in the laboratory by 
Deutsch in 1951 [11 ]. In particle physics, positronium assumes special importance 
as the model for quarkonium. 

The most conspicuous difference between positronium and hydrogen is that we 
are no longer dealing with a heavy, essentially stationary nucleus, around which 
the electron orbits, but rather with two particles of equal mass, both orbiting the 
common center. As in classical mechanics, this two-body problem can be converted 
into an equivalent one-body problem with the reduced mass [1] 

(5.26) 

In the case of positronium m 1 = m 2 = m, so m,ed = m/2, and we get the 
unperturbed energy levels by the simple substitution m ➔ m/2 in the Bohr 
formula (Equation 5.10):* 

(5.27) 

For example, the ground-state binding energy is 13.6 eV /2 = 6.8 eV. The wave 
functions are the same as hydrogen's (Equation 5.12), except that the Bohr radius, 
which goes like 1/m (Equation 5.13), is doubled: 

aP0 • = 2a = 1.06 x 10-s cm (5.28) 

The perturbations run much as before, apart from pesky numerical factors, with 
one dramatic exception: in positronium, the hyperfine splitting is of the same order 
as the fine structure (a 4 mc2 ), since the mass ratio (m/mp) that suppresses proton 
spin effects in hydrogen is one for positroniumJ Meanwhile, since the 'nucleus' 
(e+) is no longer stationary, there is a new correction due to the finite propagation 

• In the case of hydrogen, the reduced mass differs from the electron mass by only a very small 
amount, about 0.05%. Nevertheless, technically the m in the Bohr formula is the reduced mass, 
and this leads to observable differences between the spectra of hydrogen and deuterium. 

"i' This leads to some terminological confusion in the literature. I'll use the words 'fine structure' 
for all perturbations of order a4mc2, except the pair annihilation term (see below), including the 
spin-spin and positron spin-orbit couplings, whose analogs in hydrogen would be called 'hy­
perfine'. 
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Fig. 5.5 Pair annihilation diagram, which affects the spec­
trum of positronium but does not occur in hydrogen. 

time for the electromagnetic field; its contribution is also of order (a 4 mc2). When all 
this is put together, the fine structure formula for positronium is found to be [11] 

Epos = a4mc2 _l_ [_!_!_ _ (1 + H] 
fs 2n3 32n (2l + 1) 

(5.29) 

where E = 0 for the singlet spin combination, whereas for the triplet* 

-(31+4) 
forj = l + l 

(l + 1)(21 + 3)' 

1 
forj = l E= 

l(l+ 1)' 
(5.30) 

(31-1) 
forj=l-1 

1(21-1)' 

The Lamb shift, of order a 5mc2, makes a smallish correction to this; however, 
since the 'accidental' degeneracy is already broken at the fine structure level in 
positronium, this contribution loses much of its interest. There is, however, an 
entirely new perturbation, with no analog in hydrogen, resulting from the fact 
that e+ and e- can annihilate temporarily to produce a virtual photon. In the 
Feynman picture, this process is represented by the diagram in Figure 5.5. Because 
it requires that the electron and positron coincide, this perturbation is proportional 
to I \l! (0) I 2, and hence occurs only when l = 0 (\l! goes like r1 near the origin - see 
Equation 5.12). Moreover, since the photon carries spin 1, it takes place only in 
the triplet configuration. This process raises the energy of the triplet S states by an 
amount 

4 2 1 D.Eann = a me - 3 (l = 0,s = 1) 
4n 

* In hydrogen, where the proton spin (Sp) con­
tributes only at the hyperfine level. we used 
J for the sum of the electron's spin and or­
bital angular momentum (J = L + S,); for the 
total angular momentum we needed a new 

(5.31) 

letter: F = L + S, + Sp. In positronium the 
two spins contribute on an equal footing, and 
it is customary to combine them first (S = 
S1 + S2) and use J for the total: J = L + S1 + 
s,. 
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- the same order as fine structure. The complete splitting of the n = l and n = 2 
Bohr levels in positronium is indicated on Figure (5.6)* 

As in the case of hydrogen, positronium can make transitions from one state 
to another with the emission or absorption of a photon, whose wavelength is 
determined by the difference in energy between the two levels. Unlike hydrogen, 
positronium can also disintegrate completely, the positron annihilating the elec­
tron to produce two or more real photons. The charge conjugation number for 
positronium is (-1)1+', while for n photons C = (-It (see Section 4.4.2). Thus, 
charge conjugation invariance prescribes the selection rule 

(5.32) 

for the decay of positronium from the state l, s to n photons. Since the positron and 
electron overlap only when l = 0, such decays occur only from S states:1· Evidently, 
the singlet (s = 0) must go to an even number of photons (typically two), whereas 
the triplet (s = 1) must go to an odd number (typically three). In Chapter 7 we will 
be in a position to calculate the lifetime of the ground state: 

2/'i 
r = - 5--2 = 1.25 x 10-10 seconds 

a me 

5.4 
Quarkonium 

(5.33) 

In the quark model all mesons are two-particle bound states, q1i:fa, and it is natural 
to ask if the methods developed for hydrogen and positronium can be applied 
to mesons as well. Light-quark (u, d, s) states are intrinsically relativistic, so any 
analysis based on the Schrodinger equation is out of the question, but heavy-quark 
mesons (cc, be, and bb) should be suitable candidates. Even here, however, the 
interaction energy(£) is such a substantial fraction of the total that we are disposed 
to regard the various energy levels as representing different particles, with masses 
given by 

(5.34) 

Unlike hydrogen and positronium, in which the forces at work are entirely 
electromagnetic, and the energy levels can be calculated to great precision, quarks 
are bound by the strong force; we don't know what potential to use, in place of 
Coulomb's law, or what the strong analog to magnetism might be, to obtain the 
spin couplings. In principle, these are derivable from chromodynamics, but no one 

* Positronium states are conventionally labeled nl2s+11;, with! given in spectroscopist's notation (S 
for!= 0, P for ! = 1, D for!= 2, etc.), ands the total spin (0 for the singlet, 1 for the triplet). 

i' Actually, positronium can in principle decay directly from a state with ! > 0 by a higher-order 
process, but it is much more likely to cascade down to an S state first, and decay from there. 



C
ha

rm
on

iu
m

 
t 

D
is

so
ci

at
io

n 
P

os
itr

on
iu

m
 

10
00

 f-
-

3 
Js

 
7 

en
er

gy
 

1 
~ 

1
--

--
--

--
~
 

~
 

~
 

90
0 

I-
~ 

~
 

~
 

6 
3 

~
 

80
0 

f-
5 

2 
3 S

, 
2 

P2
 

ex
, 

:':
 

n 
=

 2
 

8 
2 

1 P
 

,
_

_
_

_
 

g 
>

 7
00

 
~ 

5 
6 

1 
,
,
-
-
-
-

~ 
~ 

t
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

0 
;::

 
2 

'S
o 

2 
3p

, 
,
-
-
-
-

),f 
i 

Go
o 

_
_

_
_

 
N

 
~
 

2
3 P

0 
~ 

~ 
2

'S
 

(7
7'

) 
2

3
S

,(
,t

,'
l 

£! 
-;:

 
4 

Cll
 

O
 

C
 

"'C
 

o
, 

~ 
50

0 
2 

3 
P

2 
I x

2
) 

§ 
:0 

-~
 

2
1

p
, 

-
-
-
-

~ 
)i; 

"'ii
i 

-
-
-
-

-
-
-
-

~ 
3 

a:
 

40
0 

2 
3p

, 
Ix

,) 
t 

1 a:
 

JO
O

 I 
2 

3
P

0 
lx

0
l 

2 

20
0 

10
0 

L 
1

3
S

1
(,

t,)
 

nT
 

1
3 S

 
0 

-
-
-
-

0 
0 

1 

-
10

0 
f--

1 
, S

o 
(1

1c
l 

~ 
1 

'S
o 

is
 st

at
es

 
JS

 s
ta

te
s 

,P
st

at
es

 
JP

 s
ta

te
s 

I 
1S

 s
ta

te
s 

JS
 s

ta
te

s 
,P

st
at

es
 

JP
 s

ta
te

s 

Fi
g.

 5
.6

 S
pe

ct
ru

m
 o

f 
en

er
gy

 l
ev

el
s 

in
 

p
o

si
tr

o
n

iu
m

 a
nd

 c
h

a
rm

o
n

iu
m

. 
N

o
te

 t
h

a
t 

th
e

 s
ca

le
 i

s 
gr

ea
te

r 
by

 a
 f

a
ct

o
r 

o
f 

10
0 

m
ill

io
n

 f
o

r 
ch

a
rm

o
n

iu
m

. 
In

 
p

o
si

tr
o

n
iu

m
, 

th
e 

va
ri

ou
s 

co
m

b
in

a
-

ti
o

n
s 

o
f 

a
n

g
u

la
r 

m
o

m
e

n
tu

m
 c

au
se

 o
n

ly
 m

in
u

sc
u

le
 s

hi
ft

s 
in

 e
ne

rg
y 

(s
ho

w
n 

by
 e

xp
an

di
ng

 t
h

e
 

ve
rt

ic
al

 s
ca

le
),

 
b

u
t 

in
 c

h
a

rm
o

n
iu

m
 t

h
e

 s
hi

ft
s 

ar
e 

m
u

ch
 l

ar
ge

r.
 A

ll 
en

er
gi

es
 a

re
 g

iv
en

 w
it

h
 

re
fe

re
nc

e 
to

 t
h

e
 1

3 
S 1

 
st

at
e.

 A
t 

6.
8 

eV
 p

o
si

tr
o

n
iu

m
 d

is
so

ci
at

es
. 

A
t 

63
3 

M
eV

 a
bo

ve
 t

h
e

 e
ne

rg
y 

o
f 

th
e 

,fl
 c

h
a

rm
o

n
iu

m
 b

ec
om

es
 q

u
a

si
-b

o
u

n
d

, 
be

ca
us

e 
it

 c
an

 
de

ca
y 

in
to

 o
0 

an
d 

o0
 

m
es

on
s.

 
(S

ou
rc

e:
 

B
lo

om
, 

E.
 a

nd
 

F
el

dm
an

, 
G

. 
(M

ay
 1

98
2)

 
'Q

u
a

rk
o

n
iu

m
', 

Sc
ie

nt
ifi

c 
A

m
er

ic
an

, 
p.

 
66

, 
re

p
ri

n
te

d
 b

y 
p

e
rm

is
si

o
n

.)
 



Table 5.2 'Bohr' Energy levels for linear-plus-Coulomb poten­
tial (Equation 5.83) with various values of Fo. They are for 
5-states (/ = 0) and assume a, = 0.2, m = 1500 MeV /c2 (re­
duced mass, 750 MeV/c2). 

500 307 677 961 1210 
1000 533 1100 1550 1940 
1500 727 1480 2040 2550 

Numerical results from unpublished tables prepared by Richard E. 
Crandall. 
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yet knows how to do the calculation. Still, we can make some educated guesses, 
for chromodynamics is very similar in structure to electrodynamics, except for 
some nonlinear terms which, in the light of asymptotic freedom, probably don't 
contribute much at short distances. 

In quantum chromodynamics (QCD), the short-distance behavior is domi­
nated by one-gluon exchange, just as in QED it is dominated by one-photon 
exchange. Since the gluon and the photon are both massless spin-1 particles, 
the interactions are, in this approximation, identical, apart from the overall cou­
pling strength and various so-called 'color factors', which result from counting 
the number of different gluons that contribute to a given process. At short 
range, therefore, we expect a Coulomb-like potential, V ~ l/r, and a fine 
structure that is qualitatively similar to that of positronium [12]. On the other 
hand, at large distances we have to account for quark confinement: the po­
tential must increase without limit. The precise functional form of V(r) at 
large r is rather speculative; some authors favor a harmonic oscillator po­
tential, V ~ r2 , others a logarithmic dependence, V ~ In (r), still others a 
linear potential, V ~ r, corresponding to a constant force. The fact is, any of 
these can match the data reasonably well, because they do not differ substan­
tially over the rather narrow range of distances for which we have sensitive 
probes. 

For our purposes, we may as well choose 

4a,hc 
V(r) = --- + For 

3 r 
(5.35) 

where a, is the chromodynamic analog to the fine structure constant, and 1 is the 
appropriate color factor, which we'll calculate in Chapter 8. Unfortunately, exact 
solutions to the Schrodinger equation with linear-plus-Coulomb potential are not 
known, and I cannot give you a simple formula for the 'Bohr' energies. However, it 
can, of course, be done numerically (see Table 5.2), and Fo can then be chosen so as 
to fit the data [13] (Problem 5.11). The result is about 16 tons(!), or, in more sensible 
units, 900 MeV fm- 1, which is to say that a quark and an antiquark attract one 
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another with a force of at least 16 tons, regardless of how far apart they are.* This 
perhaps makes it easier to understand why no one has ever managed to pull a free 
quark out of a meson. 

5.4.1 
Charmonium 

Shortly before the discovery of the ,ff, Appelquist and Politzer [14] suggested that 
if a heavy 'charm' quark existed (as Glashow and others had proposed) it should 
form a nonrelativistic bound state, cc, with a spectrum of energy levels similar to 
positronium. They called the system 'charmonium' (which does more to emphasize 
the parallel than to beautify the language). When the ,ff was found, in 1974, it was 
quickly identified as the 13 S1 state of charmonium.t (In the SLAC experiments 
the ,ff was produced from e+ e- annihilation through a virtual photon: e+ e- --+ y 

--+ ,ff, so it has to carry the same quantum numbers as y - in particular, spin 1. 

Thus it could not be the ground state of charmonium, but presumably it was the 
lowest-lying state with total angular momentum 1.) Consulting the positronium 
energy-level diagram (Figure 5.6), we immediately anticipate a spin-0 state at lower 
mass (the 11 S0) and six n = 2 configurations. Within two weeks the ,ff' (23 S1) was 
found. This was easy, because it again carries the same spin - and parity - as the 
photon; it was produced in the same way as the ,ff, simply by cranking up the beam 
energy. 

In due course all then= land n = 2 states were discovered [15], save for the 21 P1 

at a predicted mass of about 3500 MeV /c2 , which presents special experimental 
problems. The following nomenclature has been adopted: singlet S states (spin 0) 
are called rye's, triplet S states (spin 1) are ,j!'s, and triplet P states (spin 0, 1, or 2) 
are designated Xco, Xcl, Xc2- For a while the value of n was indicated by primes, 
but this quickly got out of hand, and the current practice is simply to list the mass 
parenthetically; thus for n = l we have ,ff= ,ff (3097); for n = 2, ,ff'= ,ff (3686); for n 

= 3, ,ff"= ,ff (4040); for n = 4, ,ff"'= ,ff (4160); and so on) The correlation between 
states of charmonium and those of positronium is almost perfect (Figure 5 .6). Bear 
in mind that the gap between the two n = I levels (which would be called hyperfine 
splitting in the case of hydrogen) is greater by a factor ofl011 in charmonium than 
in positronium. Yet even over so huge a change of scale, the ordering of the energy 
levels and, for a given value of n, their relative spacing, are strikingly similar. 

All the charmonium states with n = l and n = 2 are relatively long-lived, 
because the OZ! rule (Section 2.5) suppresses their strong decays. For n ::: 3 the 
charmonium masses lie above the threshold for (OZI-allowed) production of two 

* At extremely short distances, F0 and a, themselves decrease, leading to asymptotic freedom, but 
for now we shall treat them as constants. 

°I The nomenclature is borrowed from that of positronium - see footnote after Equation 5.31. 
j: Some authors, including those of the Particle Physics Booklet, number states consecutively, start­

ing with 1 for each combination of s, l, and j, so that what I call a 2P state (Figure 5.6) is listed 
as IP. Sorry about that. Incidentally, the i/1(3770) is a displaced 33 D1 state, and does not really 
belong in this hierarchy. 



Fig. 5.7 (a) OZl-suppressed decay for charmonium below 
the DD threshold, (b) OZl-allowed decay for charmonium 
above the DO threshold. 
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charmed D mesons (D0 , 15° at a mass of1865 MeV/c2, or D±, at 1869 MeV/c2). 

Their lifetimes are therefore much shorter, and we call them 'quasi-bound states' 
(see Figure 5.7). Quasi-bound states of charmonium have been observed going up 
at least as high as n = 5. 

5.4.2 
Bottomonium 

In the aftermath of the November Revolution there was widespread speculation 
about the possible existence of a third-quark generation (b and t), and in 1976 
Eichten and Gottfried [16] predicted that 'bottomonium' (bb) would exhibit a 
hierarchy of bound states even richer than charmonium (Figure 5.8). The bottom 
analog to the D meson (to wit, the B) had an estimated mass large enough that not 
only the n = l and n = 2, but also the n = 3 levels should be bound. In 1977 the 
upsilon meson was discovered, and immediately interpreted as the 13 S1 state of 
bottomonium. At present, the 3 S1 states have been found for n up to 6, as well as 
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Fig. 5.8 Bottomonium. Note that there are far more bound 
states than for charmonium - compare Figure 5.6 (Source: 
Bloom, E. and Feldman, G. (May 1982) 'Quarkonium', Sci­
entific American, p. 66, reprinted by permission. Corrected 
masses from Particle Physics Booklet (2006).) 

1 D states a D states 

the six 3 P states for n = 2 and n = 3. The level spacings in the 1/r and Y' systems* 
are remarkably similar (Figure 5.9), in spite of the fact that the bottom quark is 
more than three times as heavy as the charm quark (17]. 

5.5 
Light Quark Mesons 

Consider now the mesons made entirely out of light quarks (u, d, s). These are 
relativistic systems, remember, so we cannot use the Schrodinger equation, and 
the theory is rather limited (18]. In particular, we shall not concern ourselves with 
the spectrum of excited states (Table 4.6), as we did in the case of the heavy 

* In principle there should be a similar system for the B~ mesons (cb and be), but so far only one 
of these, at 6286 MeV, has been produced in the laboratory. 
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4 3s1 1/1 (4159) 
')""'(10579) 

1.0 

t 3 3s, 1/1(4039) 
')""(10355) 

> 
Q) 

l? 
....,-
<I 

2 3s, lj,'(3686) 
1"'(10023) 

0.5 

0 1 3s, ------ 1/1 (3097) ------ ')"(9460) 

Fig. 5.9 Level spacings in the ,fr and , systems. (Source: Particle Physics Booklet (2006).) 

quarks, but will confine our attention to the ground state, with ! = 0. The quark 
spins can be antiparallel (singlet state, s = 0) or parallel (triplet state, s = 1); the 
former configuration yields the pseudoscalar nonet, the latter gives the vector nonet 
(Figure 5.10). 

To begin with, I want to clear up a problem that was not resolved in Chapter 1. We 
obtained nine mesons simply by combining a quark and an antiquark in all possible 
combinations (Section 1.8), but this left three neutral states with strangeness 0 (uu, 
dd, and ss), and it was not clear which of these was the :rr 0 , which the 71, and which 
the r,' (or, in the vector case, the p0 , w, and</!). We are now in a position to resolve 

.,, p 

Pseudoscalar nonet Vector nonet 

Fig. 5.10 Light-quark mesons with / = 0. 
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the ambiguity. The up and down quarks constitute an isospin doublet: 

(5.36) 

So too do the antiquarks: 

(5.37) 

(Notice that d carries 13 = +½, and u has 13 = -½; within a multiplet, the particle 
with the higher charge is assigned the greater h The minus sign is a technical 
detail [19], which does not affect the argument here in any essential way.) When 
we combine two particles with I= ½, we obtain an isotriplet (Equation 4.15) 

111 1) = -ud 
11 0) = (uu - dd)/-/2 
11-1) = du 

and an isosinglet (Equation 4.16) 

100) = (uu + dd)/-✓2 

(5.38) 

(5.39) 

In the case of the pseudoscalar mesons the triplet is the pion; for the vector mesons 
it is the p. Evidently, the rr 0 (or the p0 ) is neither uu nor dd, but rather the linear 
combination 

(5.40) 

If you could pull a rr 0 apart, half the time you'd get au in one hand and au in the 
other, and half the time you'd get a d and a d. 

This leaves two I = 0 states (the isosinglet combination, Equation 5.39, and ss) 
which must represent I) and 1)1 (or wand ,P). Here the situation is not so clean, for 
these particles carry identical quantum numbers, and they tend in practice to 'mix.' 
In the case of the pseudoscalars the physical states appear to be 

1J = (uu + dd- 2ss)/v16 

1)1 = (uu + dd + ss)/-13 

whereas for the vector mesons 

w = (uu + dd)/-✓2 

(5.41) 

(5.42) 

(5.43) 

(5.44) 

To the extent that the Eightfold Way is a good symmetry, the pseudoscalar 
combinations are more 'natural', since the 1)1 , which treats u, d, ands symmetrically, 
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d u s 

-s u d 

Fig. 5.11 Quarks and antiquarks. 

is unaffected by SU(3) transformations; it is a 'singlet' under SU(3), in exactly the 
same sense that the :rr0 is a singlet under S U(2) (isospin). The rJ, meanwhile, 
transforms as part of an SU(3) 'octet', whose other members are the three pions 
and the four K's. (This is, in fact, the original pseudoscalar octet.) By contrast, 
neither the¢ nor thew is an SU(3) singlet. They are, you might say, 'maximally' 
mixed, since the strange quark is isolated from the other two. Incidentally, the 
other meson nonets seem to follow the ¢ - w mixing pattern [20]. 

Meanwhile, the strange mesons are constructed by combining ans quark with u 

or d 

(5.45) 

In the language of group theory, the three light quarks belong to the fundamen­
tal representation (denoted 3) of SU(3), whereas the antiquarks belong to the 
conjugate representation (3) (Figure 5.11). What we have done is combine these 
representations, obtaining an octet and a singlet: 

3®3=8EEil (5.46) 

just as in Chapter 4 we combined two two-dimensional (spin-½) representations of 
S U(2) to obtain a triplet and a singlet:* 

2@2=3EB1 (5.47) 

If SU(3) were a perfect symmetry, all the particles in a given supermultiplet 
would have the same mass. But they obviously do not; the K weighs more than 
three times the :rr, for example. As I indicated in Chapter 4, the breaking of flavor 
symmetry is due to the fact that the quarks themselves have unequal masses; the 
u and d quarks weigh about the same, but the s quark is substantially heavier. 
Roughly speaking, the K's weigh more than the :rr's because they contain an s 

* Unfortunately (from the point of view of 
notational consistency) representations of 
SU(3) are customarily labeled by their di­
mension, whereas representations of S U(2) 
are more often identified by their spin, so 
Equation 5.45 would usual!y be written as 
½ 0 ½ = 1 EB 0. By the way, it happens that 

the fundamental representation of SU(2) is 
equivalent to its conjugate; there's only one 
kind of spin ½- That's why we were able to 

represent u and d in Equation 5.79 in terms 
of ordinary isospin-½ states. For S U(3) this is 
no longer the case. 
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Table 5.3 Pseudoscalar and vector meson masses, (MeVJc2 ) 

Meson Calculated Observed 

Jr 139 138 
K 487 496 
ry 561 548 
p 775 776 
{JJ 775 783 
K* 892 894 

<f, 1031 1020 

in place of a u or d. But, that cannot be the whole story, for if it were, the p's would 
weigh the same as the rr's; after all, they have the same quark content and are both in 
the spatial ground state (n = l, l = 0). Since the pseudoscalar and vector mesons dif­
fer only in the relative orientation of the quark spins, the difference in their masses 
must be attributed to a spin-spin interaction, the QCD analog to hyperfine splitting 
in the ground state of hydrogen. This suggests the following meson mass formula:* 

(5.48) 

where A is a constant (21]. By squaring S = S1 + S2 , we obtain 

1 4 1 ' 

s1 • S2 = - ( s2 - sf - sD = (5.49) 1
1 /j2 

2 _}"2 
4" ' 

for s = l (vector mesons) I 
for s = 0 (pseudoscalars) 

For constituent masses mu= md = 308 MeV/c2, m5 = 483 MeV/c2, the best-fit 
value of A is (2mu/l'i)2 159 MeV /c2 , and we obtain the results in Table 5.3. 

5.6 
Baryons 

Some day, presumably, we shall be able to make nonrelativistic heavy-quark 
baryons - ccc, ccb, ebb, and bbb. These are the baryonic relatives of quarkonium -
'quarkelium', you might call it, since the nearest atomic analog would be helium. 
At present, though, it is hard enough to make a baryon with one heavy quark, never 

* In I = 0 states the hyperfine correction is pro­
portion to the dot product of the magnetic 
moments, µ 1 • µ 2 ; dipole moments, in turn, 
are proportional to spin angular momentum 
and inversely proportional to mass. That's the 
inspiration behind Equation 5.46 Of course, 
this is for QED, not QCD. What's worse, it 

ignores the mass dependence of the wave 
function (contained in the 'constant' A), and 
it is based on nonrelativistic quantum me­
chanics. But nothing succeeds like success, 
and Equation 5.46 works surprisingly well. 
(Notice, however, that the ry' is not included 
in the table - see Problem 5.12). 
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Table 5.4 Light-quark baryons U = spin, P = parity, 5 = 
strangeness, I = isospin. This is not a complete list; baryons 
with spins as high as 11 /2 have been observed) 

S = -1 

SU(3) Representation r S=0 I= 0 I=l S= -2 S= -3 

8 1+ N(939) A (1116) :E (1193) 8 (1318) 2 

10 3+ 
I',. (1232) :E (1385) 8 (1530) Q (1672) 2 

1- A (1405) 2 
3- A (1520) 2 

8 1 - N(1535) A (1670) :E (1620) 2 
3- N(1520) A (1690) :E (1670) 8 (1820) 2 
5- N(1675) A (1830) :E (1775) 2 

10 1-
t,. (1620) 2 

3- t,. (1700) 2 

8 3+ N(1720) A (1890) 2 
5+ N(1680) A (1820) :E (1915) S (2030) 2 

10 s+ t,. (1905) 2 
7+ t,. (1950) :E (2030) 2 

8 1+ N(1440) A(1600) :E (1660) 2 

Source: Review of Particle Physics (2006), Section 14.4. 

mind three, and I won't speculate here about the heavy-quark baryon spectrum. 
On the other hand, the array of observed light quark baryons is immense (see 
Table 5.4). 

5.6.l 
Baryon Wave Functions 

Baryons are harder to analyze than mesons, for several reasons. In the first place, 
a baryon is a three-body system. There's not just one orbital angular momentum 
to consider, but two (see Figure 5.12). We'll concentrate on the ground state, for 
which l = l' = 0. In that case, the angular momentum of the baryon comes entirely 
from the combined spins of the three quarks. Now, the quarks carry spin ½, so 
each can occupy either of two states: 'spin up' (t) or 'spin down'(-!,). Thus, we have 
eight possible states for the three quarks: (t t t), (t t -1-), (t -1- t), (t -1- -1-), (-1- t t), 
(-1- t -!,), (-1- -1, t), and (-1- -1, -!,). But these are not the most convenient configurations 
to work with, because they are not eigenstates of the total angular momentum. As 
we found in Example 4.2, the quark spins can combine to give a total of½ or ½, and 
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Fig. 5.12 Orbital angular momenta for a three-body system. 
L is the angular momentum of l and 2 about their center of 
mass (A); L' is the angular momentum of this combination 
and 3 about the center of mass of all three (8). 

the latter can be achieved in two distinct ways. Specifically, 

IH)=(ttt) 

IH) = (tH +Ht+ Ht)!-v'3 

I½ - ½l =(Ht+ Hi+ tH)/-v'3 

I½ - ½l = (Hi) 

1½½)12 = (H - H) t ;,Ji. 

I½ - ½l12 = (H - H) i ;,Ji. 

l½½b =t (H - H)/,./z 

I½ - ½lz3 =i (H - H)/,./z 

spin ½ (,fr,) (5.50) 

l spin½ (i/112) (5.51) 

l spin½ (i/123) (5.52) 

The spin-½ combinations are completely symmetric, in the sense that interchanging 
any two particles leaves the state untouched. The spin-½ combinations are partially 
antisymmetric - interchange of two particles switches the sign. The first set is anti­
symmetric in particles 1 and 2 - hence the subscript; the second is antisymmetric 
in 2 and 3. We could also, of course, construct a pair of states antisymmetric in 1 
and 3: 

I½ ½ln = (tH - Ht)/,./z 

I½ - ½ln = (tH - Ht)/,./z l spin½ (i/lu) (5.53) 
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However, these are not independent of the other two; as you can check for yourself, 

I }u = I h2+ I h3 (5.54) 

In the language of group theory, the direct product of three fundamental 
(two-dimensional) representations of S U(2) decomposes into the direct sum of a 
four-dimensional representation and two two-dimensional representations:* 

2©2©2=4E!)2E!)2 (5.55) 

A second respect in which baryons are more complicated than mesons has to do 
with the Pauli exclusion principle. In its original formulation the Pauli principle 
stated that no two electrons can occupy the same quantum state. It was designed to 
explain why all the electrons in an atom don't simply cascade down to the ground 
state, ifrioo (there wouldn't be much left of chemistry if they did): they cannot, 
because the ground state can only accommodate two of them - one spin up, one 
spin down. Once those positions are occupied, the next electrons are stuck in the 
first excited state, n = 2, ... , and so on. In this form, the Pauli principle seems 
a little ad hoc, but it is actually based on something far deeper: if two particles 
are absolutely identical, then the wave function should treat them on an equal 
footing. If someone secretly interchanges them, the physical state should not be 
altered. You might conclude from this that ifr(l, 2) = ,fr(2, 1), but that's a little 
too strong. Physical quantities are determined by the square of the wave function, 
so all we can say for sure is that ifr(l, 2) = ± ,fr(2, 1): the wave function must 
either be even - symmetric - or odd - antisymmetric - under the interchange of 
two identical particles.I But which is it, even or odd? Nonrelativistic quantum 
mechanics offers no answer; there are simply two classes of particles - bosons, for 
which the wave function is even, and Jennions, for which it is odd. It is an empirical 
fact that all particles of integer spin are bosons, whereas those of ½-integer spin are 
fermions. One of the major achievements of quantum field theory was the rigorous 
proof of this connection between 'spin and statistics'. 

Boson (integer spin)=} symmetric wave function: ifr(l, 2) = ,fr(2, 1) 

Fermion (½-integer spin) =} antisymmetric wave function: ifr(l, 2) 

= -ifr(2,1) 

Suppose we have two particles, one in state ,fr a and the other in state ,fr /J. If the 
particles are distinct (one a muon and one an electron, say) then it makes sense to 

* If the representations are labeled by spin, instead of dimensionality, Equation 5.55 reads ½ ® 

½ ® ½ = f EB ½ EB ½- Incidentally, it is also possible to construct a spin-½ combination that is 
symmetric in particles 1 and 2: I ) = I )13 + I )D. Some authors prefer to use I )12 and I ), in­
stead of I )12 and I hi-

"i" From 11/r(l, 2)1 2 = 11/r(2, 1)1 2 it follows only that if,(1, 2) = e'¢,t,(2, 1). However, applying the in­
terchange twice brings us back to where we started, so e2'¢ = 1, and hence e'¢ = ± 1. 
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ask which is in state ifr a and which is in state ifr /3. The wave function for the system is 

ifr(l, 2) = i/ra(l)i/r13(2) 

if particle 1 is in ifr a and 2 is in ifr p, or 

i/r(l, 2) = i/rp(l)i/ra(2) 

if it's the other way around. But if the two particles are indistinguishable, we cannot 
say which one is in which state. If the particles are identical bosons, the wave 
function is the symmetric combination 

ifr(l, 2) = (1/✓2) [ ifra(l)i/r13(2) + i/r13(l)ifra(2)] (5.56) 

and if they are identical fermions, the wave function is the antisymmetric combi­
nation 

ifr(l, 2) = (1/✓2) [ ifra(l)i/rp(2) - i/rp(l)ifra(2)] (5.57) 

In particular, if you try to put two fermions (electrons, say) into the same state (i/r a = 
ifr 13) you get zero; it can't be done. That's the original Pauli exclusion principle; but we 
see now that it is not an ad hoc assumption, but rather a consequence of a structural 
requirement on the wave functions of identical particles. Notice, by the way, that the 
Pauli principle does not apply to bosons; you can put as many pions into the same 
state as you like. Nor is there any symmetry requirement for distinguishable particles; 
that's why we didn't have to worry about it when we were constructing meson wave 
functions (since one constituent is a quark and the other an antiquark, they're always 
distinguishable). But in the case of the baryons we're putting three quarks together, 
and this time we must take the antisymmetrization requirement into account. 

Now, the wave function of a baryon consists of several pieces; there is the spatial 
part, describing the locations of the three quarks; there is the spin part, representing 
their spins; there is a flavor component, indicating what combination of u, d, ands 
is involved; and there is a color term, specifying the colors of the quarks: 

ifr = ifr(space)ijr(spin)ijr(flavor)ijr(color) (5.58) 

It is the whole works that must be antisymmetric under the interchange of any 
two quarks.* We do not know the functional form of the spatial ground-state 
wave function, but it is surely symmetric; since l = l' = 0, there is no angular 
dependence at all. The spin state can either be completely symmetric (j = ! ) or of 
mixed symmetry (j = ½l- As for flavor, there are 33 = 27 possibilities: uuu, uud, 
udu, udd, ... , sss, which we reshuffie into symmetric, antisymmetric, and mixed 
combinations; they form irreducible representations of S U(3), just as the analogous 

* Notice that a subtle extension of the notion of 'identical particle' has implicitly been made here, 
for we are treating all quarks, regardless of color or even flavor, as different states of a single 
particle (22]. 
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spin combinations form representations of S U(2). These are conveniently displayed 
in Eightfold-Way patterns: 

ddd (ddu +dud+ udd)/-JJ (uud + udu + duu)/-JJ uuu 

(dds + dsd +sdd)l.,/3 

( uds + usd + dus + dsu + sud + sdu) 1./6 

• (uus +usu +suu)l../3 

( dss + sds + ssd)l..j3 (uss +sus +ssu)l,/3 

(ds-sd)d/.,/2 

sss 

,Ji,: Completely symmetric states 

• 
( uds - usd + dsu - dus + sud - sdu) 1./6 

,Ji A : Completely antisymmetric state 

(ud- du )d/.,/2 (ud-du)u/.,/2 

[(us-su)d+ (ds-sd)u]/2 

• • 
[2 (ud- du )s + (us -su )d- (ds -sd)u] lv'12 

(ds - sd)sl-./2 ( us - su )sl-./2 

,Ji 1 2 : Antisymmetric in 1 and 2 

(us - su) u/,/2 
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d(ds-sd)/yl 

d(ud-du)/yl u(ud-du)/yl 

[d(us -su) + u(ds - sd)] /2 

• • 
[2s(ud -du)+ d(us -su) - u (ds -sd)] /.,/12 

s(ds -sd)/yl s(us-su)l../2 

,J, 23 : Antisymmetric in 2 and 3 

u(us -su)!../2 

Thus the combination of three light-quark flavors yields a decuplet, a singlet, and 
two octets;* in the language of group theory, the direct product of three fundamental 
representations of SU(3) decomposes according to the rule 

3 ® 3 ® 3 = 10 EB 8 EB 8 EB 1 (5.59) 

Incidentally, we can also construct an octet that is antisymmetric in 1 and 3, but 
this is not independent (ifru = ifr12 + ifr23); we have already used up the 27 states 
available in making the four representations 10, 8, 8, and 1. 

( dds - sdd) !../2 

(udd-ddu)/,/2 ( uud - duu) 1../2 

[uds - sdu + dus -sud] /2 

• • 
[2(usd-dsu) + uds -sdu -dus + sud]/.,/12 

(uus -suu)/yl 

(dss-ssd)!yl (uss -ssu)!./'i 

1/1 1 3 : Antisymmetric in 1 and 3 

* As always in octet (and nonet) diagrams, I put the isotriplet ('1:0 ') above, and the isosinglet(s) 
(' J\') beneath it, in the center. 
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Finally, there is the question of color. In Chapter 1, I stated a general rule that 

all naturally occurring particles are colorless; if a meson contains a red quark, it 
must also contain an antired quark, and every baryon must harbor one quark of 
each color. Actually, this is a naive formulation of a deeper law: 

Every naturally occurring particle is a color singlet. 

The three colors generate a color SU(3) symmetry, just as the three light-quark 
flavors generate flavor SU(3). (The former is, however, an exact symmetry - quarks 
of different colors all weigh the same - whereas the latter is only approximate.) By 
putting together three colors, we obtain a color decuplet, two color octets, and a 
color singlet (simply make the flavor ➔ color transcription, u ➔ red, d ➔ green, s 
➔ blue, in the diagrams above). But nature chooses the singlet, and so for baryons 
the color state is always 

ifr(color) = (rgb - rbg + gbr - grb + brg- bgr)/v'G (5.60) 

Because the color wave function is the same for all baryons, we generally do not 
bother to include it. However, it is absolutely crucial to remember that 1/r(color) is 
antisymmetric, for this means the rest of the wave function must be symmetric. In 
particular, in the ground state, with 1/r(space) symmetric, the product of 1/r(spin) 
and 1/r (flavor) has to be completely symmetric. Suppose we start with the symmetric 
spin configuration; this must go with the symmetric flavor state, and we obtain the 
spin-~ baryon decuplet: 

1/r(baryon decuplet) = 1/r,(spin)l/r,(flavor) (5.61) 

Example 5. 1 Write down the wave function for the !:,. +, in the spin state mj = - ½ 
(never mind the space and color parts). 

Solution: 

J!:,. +: f - ½) = { (uud + udu + duu)/-v'3} [(.1-H + H .j, + t H)/-v'3] 

= [ u(.j,)u(.j,)d(t) + u(.j,)u(t)d(.j,) + u(t)u(.j,)d(.j,) 

+ u(.j,)d(.j,)u(t) + u(.j,)d(t)u(.j,) + u(t)d(.j,)u(.j,) 

+ d(.j,)u(.j,)u(t) + d(.j,)u(t)u(.j,) + d(t)u(.j,)u(.j,)]/3 

For instance, if you could pull such a particle apart, the probability is ! that the first 
quark would bead with spin up, and i that it would be a u with spin down. M 

The baryon octet is a little trickier, for here we must put together states of 
mixed symmetiy to make a completely symmetric combination. Notice first that 
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the product of two antisymmetric functions is itself symmetric. Thus i/r12 (spin) x 
ijr 12 (flavor) is symmetric in 1 and 2, for we pick up two minus signs when 1 ++ 2. 
Likewise, ifr23(spin) x ifr23(flavor) is symmetric in 2 and 3, and 1/ru(spin) x 
ijr 13 (flavor) is symmetric in 1 and 3. If we now add these, the result will clearly be 
symmetric in all three (for the normalization factor, see Problem 5.16): 

ifr(baryon octet)= (-v'2/3)[ifr12(spin)i/r12(flavor) 

+ ifr23(spin)1/J23(flavor) + 1/J13(spin)1/J13(flavor)] (5.62) 

Example 5.2 Write down the spin/flavor wave function for a proton with spin up. 

Solution: 

Ip:½½)= { ½(Ht - Ht)(udu- duu) + ½(tt-1- - t-1-t)(uud- udu) 

-12 
+½(tH - Ht)(uud- duu)) 3 = (uud(2 tt-1- - t-1- t - Ht) 

1 
+ udu(2 t-1- t - Ht - tt-1-) + duu(2 Ht - Ht - tH)} ,-; 

3-v 2 

2 1 
= ,-;(u(t)u(t)d(.j,)) - ,-;(u(t)u(.j,)d(t)) 

3-v2 3-v2 
1 

- ,-;(u(.j,)u(t)d(t)) +permutations. ~ill\1 
3-v2 

If nothing else, I hope you will have gathered from this exercise that the 
construction of baryon wave functions is a nontrivial business, in the quark model. 
Apart altogether from the spatial wave function, there are three spins to juggle, as 
well as three flavors and three colors, and it all has to be put together in a way that is 
consistent with the Pauli principle. Perhaps, also you will forgive me for deferring 
the explanation of how three quarks can generate the baryon octet (the decuplet, 
remember, we got by naive quark counting back in Chapter 1). The essential point 
is that the corners of the decuplet contain three identical quarks (uuu, ddd, and 
sss); they necessarily form a symmetric flavor state, and hence must go with the 
symmetric spin state (j = ~)- With two identical quarks (uud, say) there are three 
arrangements (uud, udu, duu); you can make a symmetric linear combination, 
which goes into the decuplet, and two of mixed symmetry, which belong to 
SU(3) octets. Finally, with all three different, uds, there are six possibilities - the 
completely symmetric linear combination completes the decuplet, the completely 
antisymmetric combination makes an SU(3) singlet, and the remaining four go 
into the two octets. Notice again the essential (if hidden) role of color in all this. 
Without it we would be looking for antisymmetric spin/flavor wave functions; 
spin ~ (symmetric) would have to go with the flavor singlet (antisymmetric). It is 
possible to make a spin•½ octet without color (see Problem 5.18), but in place of 
the decuplet we would have just one spin-~ baryon. It was to avoid that disaster, 
without sacrificing the Pauli principle, that color was introduced in the first place. 
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5.6.2 
Magnetic Moments 

As an application of the baryon spin/flavor wave functions, we now calculate the 
magnetic dipole moments of the particles in the octet. In the absence of orbital 
motion, the net magnetic moment of a baryon is simply the vector sum of the 
moments of the three constituent quarks: 

f.1, = f.1,1 + f.1,2 + f.1,3 (5.63) 

It depends on the quark flavors (because the three flavors carry different magnetic 
moments) and on the spin configuration (because that determines the relative 
orientations of the three dipoles). Apart from minute radiative corrections, the 
magnetic dipole moment of a spin•½ point particle of charge q and mass m is 
(Equation 5.18): 

µ,= .i..s 
me 

Its magnitude is 

qn 
µ=-

2mc 

(5.64) 

(5.65) 

More precisely, this is the value of µ 2 in the spin-up state, for which S2 = h/2. It 
is customary to refer to µ, rather than µ, itself, as 'the magnetic moment' of the 
particle. For the quarks, 

l en 
µ,= ----

3 2m,c 

The magnetic moment of baryon B, then, is 

2 3 

µB = (B t 1(µ1 + µz + µ3)zlB t) = h, L(B t l(µiSi2 )IB t) 
i=I 

Example 5.3 Calculate the magnetic moment of the proton. 

Solution: The wave function was found in Example 5.2. The first term is 

2 
3,Jz[u(t)u(t)d(-1-)] 

Now (µ1S1, + µ2S2, + µ3S3,)lu(t)u(t)d(-I-)) 

= [µu~ + µu~ + µd (-i)] lu(t)u(t)d(-1-)) 

(5.66) 

(5.67) 
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Table 5.5 Magnetic dipole moments of octet baryons 

Baryon Moment Prediction Experiment 

p 

n 

A 

z:;+ 

:Eo 

:E-

30 

.::, 

(i)J.lu - (½)J.ld 2.79 2.793 

(i)J.ld - (½)J.lu -1.86 -1.913 

J.ls -0.58 -0.613 

(i)J.lu - (½)/.ls 2.68 2.458 

(~)(J.lu + J.ld) - (½)J.ls 0.82 

(i)J.la-{½)J.ls -1.05 -1.160 

(i)J.ls - {½)J.lu -1.40 -1.250 

(i)J.ls - (½)J.ld -0.47 -0.651 

The numerical values are given as multiples of the nuclear 
magneton, eli/2mpc. Source: Particle Physics Booklet (2006). 

so this term contributes an amount 

Similarly, the second term (u(t)u(-1,)d(t)) gives ft/-ld, as does the third.* We could 
continue in this way to evaluate all nine terms, but the rest are simply permutations, 
in which d occupies position 2 or position 1. The result, then, is 

In this way we can calculate all the octet magnetic moments in terms of 
1-lu, 1-ld, and µ,, (Problem 5.19). The results are listed in the second column of 
Table 5.5. To get the actual numbers, we need to know the quark magnetic moments 
(Equation 5.66). Using the constituent quark masses mu = md = 336 MeV/c2 , 

m, = 538 MeV/c2, we obtain the figures in the third column of Table 5.5. The 
comparison with experiment is reasonably good, considering the uncertainties in 
the quark masses. Somewhat better predictions are obtained if we take ratios. In 
particular, to the extent that mu= md, we have 

(5.68) 

which compares well with the experimental value, -0.68497945 ± 0.00000058. 

* Note that everything is normalized, so that for instance (u(t)lu(t)) - 1, and the states are or­
thogonal (u(t)lu(.j,)) = 0. 
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Finally, we turn to the problem of baryon masses. The situation is the same as for 
the mesons: if flavor SU(3) were a perfect symmetry, all the octet baryons would 
weigh the same. But they don't. We attribute this in the first instance to the fact 
that the s quark is more massive than u and d. But that can't be the whole story, 
or the I\. would have the same mass as the :E's, and the t.'s would match the 
proton. Evidently, there is a significant spin-spin ('hyperfine') contribution, which, 
as before, we take to be proportional to the dot product of the spins and inversely 
proportional to the product of the masses. The only difference is that this time 
there are three pairs of spins to contend with: 

(5.69) 

Here, A' (like A in Equation 5.46) is a constant, which we adjust to obtain the 
optimal fit to the data. 

The spin products are easiest when the three quark masses are equal, for 

and hence 

S1 • S2 + S1 • S3 + S2 • S3 = li
2 1/(j + 1) - ~] 

2 

Thus the nucleon (neutron or proton) mass is 

3 li2 
MN=3m---A' 

u 4 mt 
the t. is 

3 li,2 
M" = 3m + --A' 

u 4 m~ 

and then- is 

3 li2 
Mn=3m +--A' 

' 4 m; 

for j = (decuplet) } 
for j = (octet) 

(5.71) 

(5.72) 

(5.73) 

(5.74) 

In the case of the decuplet the spins are all 'parallel' (every pair combines to make 
spin 1) so 

(5.75) 
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(and the same for 1 and 3, or 2 and 3). Hence for the decuplet 

(5.76) 

(which is consistent, notice, with Equation 5.71), and therefore 

(5.77) 

while 

(5.78) 

The ~ and A can be done by noting that the up and down quarks combine to 
make isospin 1 and 0, respectively, and in order for the spin/flavor wave function to 
be symmetric, under the interchange of u and d, the spins must therefore combine 
to a total ofl and 0, respectively. For the ~•s, then 

(5.79) 

whereas for the A 

(5.80) 

Using these results together with Equation 5.71, we find 

Table 5.6 Baryon octet and decuplet masses. (MeV /c2) 

Baryon Calculated Obseived 

N 939 939 
A 1114 1116 
:E 1179 1193 
s 1327 1318 
t,,. 1239 1232 
:E* 1381 1385 
8* 1529 1533 
Q 1682 1672 
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and 

(5.82) 

I'll let you figure out the mass of the S's (Problem 5.22): 

(5.83) 

Using the constituent quark masses mu= md = 363 MeV/c2, ms= 538 MeV/c2, and 
picking A'= (2mu/li)2 50 MeV/c2 , we obtain an excellent fit to the experimental 
data (Table 5.6).* 
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5.1 (a) The deuteron's mass is 1875.6 MeV /c2 • What is its binding energy? Is this a relativistic 
system? 

(b) If you take the up- and down-quark masses to be those given in Table 4.4, what is the 
binding energy of a pion? Is this a relativistic system? 

5.2 Use Equation 5.12 to obtain the ground-state wave function ,tr100 • Show that it satisfies 
the Schriidinger equation (Equation 5.1), with the appropriate energy, and check that it 
is properly normalized. [Answer: lj!100 = (1J.Jmi3)e-rf•e-iE1tfh] 

5.3 Workout all of the hydrogen wave functions for n = 2, using Equation 5.12. (How many 
are there?) 

5.4 Using Equation 3.43 to express the kinetic energy (T = E - mc2 ) in terms of p (and m), 
show that the lowest-order relativistic correction to T = p2 /2m is -p4 /8m3c2. 

5.5 Find the energy splitting between the j = ½ and j = ½ levels for n = 2 (Figure 5.2), in 
electron volts. How does this compare with the spacing between the n = 2 and n = 1 
Bohr energies? 

5.6 Estimate the Lamb shift energy gap between the 2S1; 2 and 2P1; 2 levels in hydrogen, 
using Equations 5.20 and 5.21. What is the frequency of the photon emitted in such a 
transition? (The experimental value is 1057 MHz.) 
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5.7 If you include the fine structure, Lamb shift, and hyperfine splitting, how many different 

n = 2 energy levels are there altogether in hydrogen? Find the hyperfine splitting between 
the 2S112 and 2P112 levels, and compare the Lamb shift (Problem 5.6). 

5.8 Analyze the splitting of the n = 3 Bohr level in positronium. How many different levels 
are there, and what are their relative energies? Construct the level diagram, analogous 
to Figure 5.6 

5.9 Would you consider the cf>(ss) meson bound or quasi-bound? 
5.10 On dimensional grounds, show that the energy levels of a purely linear potential, V(r) 

= For, must be of the form 

- ( (Fofi)2) t/3 
En - --- an 

m 
(5.84) 

where a. is a dimensionless numerical factor. 
5.11 Use the numerical results in Table 5.2 to 'predict' the masses of the four lightest ,tr's 

and Y's; compare the experimental results (Figure 5.9). What value ofF0 gives the best 
fit to the level spacings? Why aren't the calculated masses in better agreement with the 
experiments? 

5.12 Using Equation 5.46, with the values of mu, md, m,, and A given in the text, calculate 
the meson masses in Table 5.3. [Hint: For the 1/, first find the mass for pure uu, pure 
dd, and pure ss, and think of the ry as being ¾uu, ¾dd, and tss.] Also apply the formula 
to the 17', and note the disastrous result. [For commentary on the 17' mass problem, see 
Quigg, C. (1983) Gauge Theories of the Strong, Weak, and Electromagnetic Interactions, 
Benjamin, New York, p. 252.] 

5.13 In the text, we used Equation 5.46 to calculate the masses of light-quark pseudoscalar 
and vector mesons. But the same formula can be applied to heavy-quark systems 
involving charm and beauty quarks. 
(a) Calculate the masses of the pseudoscalar mesons 11c(cc), D0(cu), D;(cs), and the 

corresponding vector mesons ,tr (cc), D*0 (cu), and D' + (cs). Compare the experimental 
values, from the Particle Data Booklet. 

(b) Do the same for the 'bottom' mesons ub, sb, cb, and bb. At present only the 
pseudoscalars a+(ub), B~(sb), Bt(cb) and the vector 1 (bb) have been detected 
experimentally. 

5.14 Construct the eight states ,t,12 in Section 5.6.1. [ Hint: The six outer ones are easy - the 
quark content is determined by Q and S, and all you have to do is antisymmetrize 
in 1 and 2. To get the two states in the center, remember that the one in the •:i: 0• 

position forms an isotriplet with the •:i:;+• and •:i:-•; the 'A' can then be constructed by 
orthogonalizing with respect to •:i:0• and ,tr A-] 

5.15 Construct the (singlet) color wave function for mesons, analogous to Equation 5.60. 
5.16 Check that the baryon octet spin/flavor wave function (Equation 5.60) is correctly 

normalized. Remember that 1/r!J is not independent of i/r12 and i/rn-
5.17 Construct the spin-flavor wave functions, as in Example 5.2, for :i:;+ with spin up and 

A with spin down. 
5.18 Construct a totally antisymmetric spin/flavor baryon octet. (In this configuration we 

do not need color to antisymmetrize the wave function. However, an antisymmetric 
decuplet cannot be constructed. See Halzen and Martin, Reference [19], Exercise 2.18.) 

5.19 (a) Derive the expressions in the second column of Table S.S. 
(b) From these results, calculate the numbers in the third column ofTable 5.5, using the 

quark masses given in the text. 
5.20 Calculate the ratio µ,./µ,pin the configuration you found for Problem 5.18 Notice that 

/J.,p is negative in this case! Is your result consistent with experiment? (Here, then, is a 
second strike against the quark model without color, the first strike being its failure to 
account for the decuplet.) 
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5.21 Show that /.lp+ = -J.lp- = J.lp· (See Halzen and Martin, Reference [19], Exercise 2.19). As 
far as I know, the magnetic dipole moments of vector mesons have not been measured. 

5.22 Use Equation 5.69 to determine the mass of the 3. 
5.23 Using Equations 5.12, 5.13, and 5.28, calculate the electron density at the location of the 

positron, in the ground state ofpositronium, i,Jr 100(0)1 2 • 
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The Feynman Calculus 

In this chapter, we begin the quantitative formulation of elementary particle dynamics, 
which amounts, in practice, to the calculation of decay rates (f) and scattering cross 
sections (a). The procedure involves two distinct parts: (1) evaluation of the relevant 
Feynman diagrams to determine the 'amplitude' (.$/)for the process in question and 
(2) insertion of.4 into Fermi's 'Golden Rule' to computer ora, as the case may be. To 
avoid distracting algebraic complications, I introduce here a simplified model. Realistic 

theories - QED, QCD, and GWS - are developed in succeeding chapters. If you like, 

Chapter 6 can be read immediately after Chapter 3. Study it with scrupulous care, or 
what follows will be unintelligible.

6.1 

Decays and Scattering 

As I mentioned in the Introduction, we have three experimental probes of 

elementary particle interactions: bound states, decays, and scattering. Nonrela­

tivistic quantum mechanics (in Schrodinger's formulation) is particularly well 

adapted to handle bound states, which is why we used it, as far as possible, 

in Chapter 5. By contrast, the relativistic theory (in Feynman's formulation) is 

especially well suited to describe decays and scattering. In this chapter I'll in­

troduce the basic ideas and strategies of the Feynman 'calculus'; in subsequent 

chapters we will use it to develop the theories of strong, electromagnetic, and weak 

interactions. 

6.1. l 

Decay Rates 

To begin with, we must decide what physical quantities we would like to calculate. 

In the case of decays, the item of greatest interest is the lifetime of the particle 

in question. What precisely do we mean by the lifetime of, say, the muon? We 

have in mind, of course, a muon at rest; a moving muon lasts longer (from our 

perspective) because of time dilation. But even stationary muons don't all last the 

same amount of time, for there is an intrinsically random element in the decay 
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process. We cannot hope to calculate the lifetime of any particular muon; rather, 
what we are after is the average (or 'mean') lifetime, r, of the muons in any large 
sample. 

Now, elementary particles have no memories, so the probability of a given muon 
decaying in the next microsecond is independent of how long ago that muon was 
created. (It's quite different in biological systems: an 8O-year-old man is much more 
likely to die in the next year than is a 2O-year-old, and his body shows the signs 
of eight decades of wear and tear. But all muons are identical, regardless of when 
they were produced; from an actuarial point of view they're all on an equal footing.) 
The critical parameter, then, is the decay rate, r, the probability per unit time that 
any given muon will disintegrate. If we had a large collection of muons, say, N(t), 
at time t, then Nrdt of them would decay in the next instant dt. This would, of 
course, decrease the number remaining: 

dN=-rNdt 

It follows that 

N(t) = N(O)e-rt 

(6.1) 

(6.2) 

Evidently, the number of particles left decreases exponentially with time. As you 
can check for yourself (Problem 6.1), the mean lifetime is simply the reciprocal of 
the decay rate: 

1 
T = -r (6.3) 

Actually, most particles can decay by several different routes. The 1r +, for instance, 
usually decays toµ,++ Vµ, but sometimes one goes toe++ v,; occasionally, a 1r+ 

decays toµ,++ Vµ + y, and they have even been known to go toe++ v, + 1r 0• In 
such circumstances, the total decay rate is the sum of the individual decay rates: 

n 

riot= Lr; 
i=l 

and the lifetime of the particle is the reciprocal of r 101: 

1 
T=­

r10t 

(6.4) 

(6.5) 

In addition to r, we want to calculate the various branching ratios, that is, the 
fraction of all particles of the given type that decay by each mode. Branching ratios 
are determined by the decay rates: 

Branching ratio for ith decay mode= r;/ r 101 (6.6) 

For decays, then, the essential problem is to calculate the decay rate r; for each 
mode; from there it is an easy matter to obtain the lifetime and branching ratios. 
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6.1.2 
Cross Sections 

How about scattering? What quantity should the experimentalist measure and 
the theorist calculate? If we were talking about an archer aiming at a 'bull's-eye', 
the parameter of interest would be the size of the target or, more precisely, the 
cross-sectional area it presents to a stream of incoming arrows. In a crude sense, 
the same goes for elementary particle scattering: if you fire a stream of electrons 
into a tank of hydrogen (which is essentially a collection of protons), the parameter 
of interest is the size of the proton - the cross-sectional area a it presents to the 
incident beam. The situation is more complicated than in archery, however, for 
several reasons. First of all the target is 'soft'; it's not a simple case of'hit-or-miss', 
but rather 'the closer you come the greater the deflection'. Nevertheless, it is still 
possible to define an 'effective' cross section; I'll show you how in a moment. Sec­
ondly, the cross section depends on the nature of the 'arrow' as well as the structure 
of the 'target'. Electrons scatter off hydrogen more sharply than neutrinos and less 
so than pions, because different interactions are involved. It depends, too, on the 
outgoing particles; if the energy is high enough we can have not only elastic scattering 
(e + p ➔ e + p), but also a variety of inelastic processes, such as e + p ➔ e + p + y, 
ore+ p + n°, or even, in principle, Ve+ A. Each one of these has its own ('exclusive') 
scattering cross section, a i (for process i). In some experiments, however, the final 
products are not examined, and we are interested only in the total ('inclusive') cross 
section: 

n 

a101= Lai 
i=l 

(6.7) 

Finally, each cross section typically depends on the velocity of the incident particle. 
At the most naive level we might expect the cross section to be proportional to the 
amount of time the incident particle spends in the vicinity of the target, which is to 
say that a should be inversely proportional to v. But this behavior is dramatically 
altered in the neighborhood of a 'resonance' - a special energy at which the 
particles involved 'like' to interact, forming a short-lived semibound state before 
breaking apart. Such 'bumps' in the graph of a versus v (or, as it is more commonly 
plotted, a versus E) are in fact the principal means by which short-lived particles 
are discovered (see Figure 4.6). So, unlike the archer's target, there's a lot of physics 
in an elementary particle cross section. 

Let's go back, now, to the question of what we mean by a 'cross section' when 
the target is soft. Suppose a particle (maybe an electron) comes along, encounters 
some kind of potential (perhaps the Coulomb potential of a stationary proton), and 
scatters off at an angle 0. This scattering angle is a function of the impact parameter b, 
the distance by which the incident particle would have missed the scattering center, 
had it continued on its original trajectory (Figure 6.1). Ordinarily, the smaller the 
impact parameter, the larger the deflection, but the actual functional form of 0 (b) 
depends on the particular potential involved. 
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/~ 0 
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Scattering center 

Fig. 6.1 Scattering from a fixed potential: 0 is the scattering 
angle and b is the impact parameter. 

Example 6. 1 Hard-sphere Scattering Suppose the particle bounces elastically off a 
sphere of radius R. From Figure 6.2, we have 

b = Rsina, 2a+0=n 

Thus, 

sin a = sin(n /2 - 0 /2) = cos(0 /2) 

and hence 

b=Rcos(0/2) or 0=2cos-1(b/R) 

This is the relation between 0 and b for classical hard-sphere scattering. [,';;;q~; 

Fig. 6.2 Hard-sphere scattering. 
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do 

b 

Fig. 6.3 Particle incident in area da scatters into solid angle dQ. 

If the particle comes in with an impact parameter between b and b + db, it will 
emerge with a scattering angle between 0 and 0 + d0. More generally, if it passes 
through an infinitesimal area dcr, it will scatter into a corresponding solid angle 
dQ (Figure 6.3). Naturally, the larger we make dcr, the larger dQ will be. The 
proportionality factor is called the differential (scattering) cross section, D:* 

dcr = D(0) dr.! (6.8) 

The name is poorly chosen; it's not a differential, or even a derivative, in the 
mathematical sense. The words would apply more naturally to dcr than to dcr /dQ ... 
but I'm afraid we're stuck with it. 

Now, from Figure 6.3 we see that 

dcr = lb db d¢1, dr.! = I sin0 d0 d¢1 (6.9) 

(Areas and solid angles are intrinsically positive, hence the absolute value signs.) 
Accordingly, 

dcr I b (db)I D(e) = dn = sin0 d0 (6.10) 

Example 6.2 In the case of hard-sphere scattering, Example 6.1, we find 

* In principle D can depend on the azimuthal angle ¢: however, most potentials of interest are 
spherically symmetrical, in which case the differential cross section depends only on 0 (or, if 
you prefer, on b). By the way, the notation (D) is my own; most people just write da /dQ, and in 
the rest of the book I'll do the same. 
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and hence 

Rb sin(0 /2) R2 cos(0 /2) sin(0 /2) R2 
D(0) = ---- = - ------ = - !:Rfilfil 

2 sin0 2 sin0 4 

Finally, the total cross section is the integral of dcr over all solid angles: 

er = f dcr = f D(0) dQ 

Example 6.3 For hard-sphere scattering, 

f R2 
er= 4 dQ =nR2 

(6.11) 

which is, of course, the total cross section the sphere presents to an incoming 
beam: any particles within this area will scatter, and any outside will pass by 
unaffected. tlt)Fll,'! 

As Example 6.3 indicates, the formalism developed here is consistent with our 
naive sense of the term 'cross section', in the case of a 'hard' target; its virtue is 
that it applies as well to 'soft' targets, which do not have sharp edges. 

Example 6.4 Rutherford Scattering A particle of charge q1 scatters off a stationary 
particle of charge q2. In classical mechanics, the formula relating the impact 
parameter to the scattering angle is [1] 

b = q~!2 cot(0/2) 

where E is the initial kinetic energy of the incident charge. The differential cross 
section is therefore 

In this case, the total cross section is actually infinite:* 

( q1q2 ) 2 1JT 1 . er= 2n -- 4 sm0 d0 = oo 
4E O sin (0 /2) 

Suppose we have a beam of incoming particles, with uniform luminosity C (C is 
the number of particles passing down the line per unit time, per unit area). Then 

* This is related to the fact that the Coulomb potential has infinite range (see footnote in 
Section 1.3). 
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$Detector 

"° L-------1► • 
Target Incident beam 

Fig. 6.4 Scattering of a beam with luminosity C. 

dN = £, da is the number of particles per unit time passing through area da, and 
hence also the number per unit time scattered into solid angle dn: 

dN = £ da = LD(0) dQ (6.12) 

Suppose I set up a detector that subtends a solid angle dQ with respect to 
the collision point (Figure 6.4). I count the number of particles per unit time 
(dN) reaching my detector - what an experimentalist would call the event rate. 
Equation 6.12 says that the event rate is equal to the luminosity times the differential 
cross section times the solid angle. Whoever is operating the accelerator controls 
the luminosity; whoever set up the detector determined the solid angle. With these 
parameters established, the differential cross section can be measured by simply 
counting the number of particles entering the detector: 

da 
dQ 

dN 
LdQ 

(6.13) 

If the detector completely surrounds the target, then N = a L; as accelerator 
physicists like to say, 'the event rate is the cross section times the luminosity'.• 

6.2 
The Golden Rule 

In Section 6.1 I introduced the physical quantities we need to calculate: decay rates 
and cross sections. In both cases there are two ingredients in the recipe: (i) the 
amplitude (..,ft) for the process and (ii) the phase space available.'i' The amplitude 
contains all the dynamical information; we calculate it by evaluating the relevant 
Feynman diagrams, using the Feynman rules appropriate to the interaction in 

* In this discussion, I have assumed that the 
target itself is stationary and that the incident 
particle is simply deflected as it passes through 
the scattering potential. My purpose was to 
introduce the essential ideas in the simplest 
possible context. But in Section 6.2 the for­
malism is completely general; it includes the 
recoil of the target, and allows for a change 

in the identity of the participants during the 
scattering process (in the reaction Jr- + p+ ...,. 
K+ + :i:;-, for example, dr.! might represent 
the solid angle into which the K+ scatters). 

't The amplitude is also called the matrix ele­
ment; the phase space is sometimes called the 
density of final states. 
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question. The phase space factor is purely kinematic; it depends on the masses, 
energies, and momenta of the participants, and reflects the fact that a given process 
is more likely to occur the more 'room to maneuver' there is in the final state. For 
example, the decay of a heavy particle into light secondaries involves a large phase 
space factor, for there are many different ways to apportion the available energy. 
By contrast, the decay of the neutron (n-+ p + e + Ve), in which there is almost 
no extra mass to spare, is tightly constrained and the phase space factor is very 
small.* 

The ritual for calculating reaction rates was dubbed the Golden Rule by Enrico 
Fermi. In essence, Fermi's Golden Rule says that a transition rate is given by 
the product of the phase space and the (absolute) square of the amplitude. You 
may have encountered the nonrelativistic version, in the context of time-dependent 
perturbation theory [2]. We need the relativistic version, which comes from quantum 
field theory [3]. I can't derive it here; what I will do is state the Golden Rule and try 
to make it plausible. Actually, I'll do it twice: once in a form appropriate to decays 
and again in a form suitable for scattering. 

6.2.l 
Golden Rule for Decays 

Suppose particle 1 (at rest)t decays into several other particles 2, 3, 4, ... , n: 

1-+2+3+4+-··+n (6.14) 

The decay rate is given by the formula 

(6.15) 

where mi is the mass of the ith particle and p; is its four-momentum. S is a 
statistical factor that corrects for double-counting when there are identical particles 
in the final state: for each such group of s particles, S gets a factor of (1/s!). For 
instance, if a-+ b + b + c + c + c, then S = (1/2!)(1/3!) = 1/12. If there are no 
identical particles in the final state (the most common circumstance), then S = 1. 

Remember: The dynamics of the process is contained in the amplitude, .d'(p1 , 

p2, ... ,Pn), which is a function of the various momenta; we'll calculate it (later) 

* For a more extreme case, consider the (kinematically forbidden) decay i;r -> s- + K'. Since 
the final products weigh more than the sl, there is no phase space available at all and the decay 
rate is zero. 

t There is no loss of generality in assuming particle 1 is at rest; this is simply an astute choice of 
reference frame. 
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by evaluating the appropriate Feynman diagrams. The rest is phase space; it tells us 
to integrate over all outgoingfour-momenta, subject to three kinematical constraints: 

1. Each outgoing particle lies on its mass shell: pJ = mJc1 

(which is to say, EJ - pJc1 = mJc4). This is enforced by the 

delta function 8 (PJ - mJ c1), which is zero unless its 

argument vanishes.* 
2. Each outgoing energy is positive: pJ = Ej/c > 0. Hence the 0 

function.I 
3. Energy and momentum must be conserved: pi = Pl + p3 · • · 

+ Pn· This is ensured by the factor 84(p1 - p1 - p3 · · · -pn)-

The Golden Rule (Equation 6.15) may look forbidding, but what it actually says 
could hardly be simpler: all outcomes consistent with the three natural kinematic 
constraints are a priori equally likely. To be sure, the dynamics (contained in .A) 
may favor some combinations of momenta over others, but with that modulation 
you just add up all the possibilities. How about all those factors of 2:rr? These are easy 
to keep track of if you adhere scrupulously to the following rule:t 

Every 8 gets (2:rr); every d gets 1/(2:rr). (6.16) 

Four-dimensional 'volume' elements can be split into spatial and temporal parts: 

(6.17) 

(I'll drop the subscript j, for simplicity - this argument applies to each of the 
outgoing momenta). The P° integrals! can be performed immediately, by exploiting 
the delta function 

Now 

1 
8(x1 - a1 ) = - [o(x - a)+ 8(x + a)] (a> 0) 

2a 

(6.18) 

(6.19) 

* If you are unfamiliar with the Dirac delta function, you must study Appendix A carefully before 
proceeding. 

"i" 0(x) is the (Heaviside) step function: 0 if x < 0 and 1 if x > 0 (see Appendix A). 
'r Some of these factors eventually cancel out, and you might wonder if there is a more efficient 

way to manage them. I don't think so. Feynman is supposed to have shouted in exasperation 
(at a graduate student who 'couldn't be bothered with such trivial matters') 'If you can't get the 
2,r's right, you don't know nothing!' 

§ The integral sign in Equation 6.15 actually stands for 4(n - 1) integrations - one for each com­
ponent of the n - 1 outgoing momenta. 
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(see Problem A.7), so 

(the theta function kills the spike at P° = -Jp2 + m2c2, and it's 1 at P° = 
Jp2 + m2c2). Thus Equation 6.15 reduces to 

(6.21) 

with 

(6.22) 

wherever it appears (in .,,ff and in the remammg delta function). This is a 
more useful way to express the Golden Rule, though it obscures the physical 
content.* 

6.2.1. l Two-particle Decays 
In particular, if there are only two particles in the final state 

(6.23) 

The four-dimensional delta function is a product of temporal and spatial parts: 

(6.24) 

But particle 1 is at rest, so p1 = 0 and p~ = m1c. Meanwhile, p~ and p~ have been 
replaced (Equation 6.22), sot 

S f 8 ( m1c - JP~+ ~c2 - JP~+ m~c2) 
r = z 1.,,«12 ------;===c--;====--

32n hm1 JP~+ ~c2Jp~ + m~c2 

X 83 (P2 + p3) d3pz d3p3 (6.25) 

* You might recognize the quantity JP]+ mJc2 as Ej/c, and many books write it this way. It's 

dangerous notation: PJ is an integration variable, so Ej is not some constant you can take out­
side the integral. Use it as shorthand, if you like, but remember that Ej is a function of PJ, not 
an independent variable. 

t We can drop the minus sign in the final delta function, since 8(-x) = o(x). 
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The p3 integral is now trivial: in view of the final delta function it simply makes the 
replacement 

p3 --+ -p2 

leaving 

(6.26) 

For the remaining integral we adopt spherical coordinates, p2--+ (r, 0, </>), 
d3p2 --+ r2 sin0drd0 d</> (this is momentum space, of course: r = lp21). 

S o(mic-Jr2+~c2 -Jr2 +m~c2) 
r = 2 j l.,,¢lf--------;===c-;====---

32Jr limI Jr2 + mic2Jr2 + m~c2 

x r2 sin0 drd0 d</> (6.28) 

Now, .,ft was originally a function of the four-momenta PI, p2, and p3, but PI = 
(mI c, 0) is a constant (as far as the integration is concerned), and the integrals already 

performed have made the replacements p~ --+ JPi + mic2, p~ --+ JP~+ m~c2, and 
p3 --+ -p2, so by now .,,¢t' depends only on pz. As we shall see, however, amplitudes 
must be scalars, and the only scalar you can make out of a vector is the dot product 
with itself:* p2 • p2 = r2. At this stage, then, .,,¢[ is a function only of r (not of 0 or 
</>). That being the case we can do the angular integrals 

1" sin0 d0 = 2, 12
" d</> = 2rr (6.29) 

and there remains only the r integral: 

To simplify the argument of the delta function, let 

(6.31) 

* If the particles carry spin, then .4 might depend also on (pr SJ) and (S,-Sj)- However, since ex­
periments rarely measure the spin orientation, we almost always work with the spin-averaged 
amplitude. In that case, and of course in the case of spin 0, the only vector in sight is p2 and 
the only scalar variable is (p2)2. 
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so 

du 
dr 

Then 

ur 

The last integral sends* u to m1 c, and hence r to 

(6.32) 

(6.33) 

(6.34) 

(Problem 6.5). Remember that r was short for the variable Jp2 J; ro is the particular 
value of Jp2J that is consistent with conservation of energy, and Equation 6.25 
simply reproduces the result we obtained back in Chapter 3 (Problem 3.19). In 
more comprehensible notation, then, 

r = ~ l.4'1 2 

8nnmfc 
(6.35) 

where Jpl is the magnitude of either outgoing momentum, given in terms of the 
three masses by Equation 6.34, and ,,,ff is evaluated at the momenta dictated by 
the conservation laws. The various substitutions (Equations 6.22, 6.26, and 6.34) 
have systematically enforced these conservation laws - hardly a surprise, since they 
were built into the Golden Rule. 

The two-body decay formula (Equation 6.35) is surprisingly simple; we were 
able to carry out all the integrals without ever knowing the fanctional form of .4'! 
Mathematically, there were just enough delta functions to cover all the variables; 
physically, two-body decays are kinematically determined: the particles have to come 
out back-to-back with opposite three-momenta - the direction of this axis is not 
fixed, but since the initial state was symmetric, it doesn't matter. We will use 
Equation 6.35 frequently. Unfortunately, when there are three or more particles in 
the final state, the integrals cannot be done until we know the specific functional 
form of .4'. In such cases (of which we shall encounter mercifully few), you have 
to go back to the Golden Rule and work it out from scratch. 

6.2.2 
Golden Rule for Scattering 

Suppose particles 1 and 2 collide, producing particles 3, 4, ... , n: 

(6.36) 

* This assumes m1 > (mz + m3); otherwise the delta function spike is outside the domain of 
integration and we get r = 0, recording the fact that a particle cannot decay into heavier 
secondaries. 
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The scattering cross section is given by the formula 

(6.37) 

where p; is the four-momentum of particle i (mass m;) and the statistical factor 
(S) is the same as before (Equation 6.15). The phase space is essentially the same 
as before: integrate over all outgoing momenta, subject to the three kinematical 
constraints (every outgoing particle is on its mass shell, every outgoing energy is 
positive, and energy and momentum are conserved), which are enforced by the 
delta and theta functions. Once again, we can simplify matters by performing the 
pJ integrals: 

with 

wherever it occurs in . .d and the delta function. 

6.2.2.1 Two-body Scattering in the CM Frame 
Consider the process 

1+2-+3+4 

in the CM frame, p2 = -p1 (Figure 6.5), where 

(Problem 6.7). In this case, Equation 6.38 reduces to 

(6.38) 

(6.39) 

(6.40) 

(6.41) 

(6.42) 
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Before 

Fig. 6.5 Two-body scattering in the CM frame. 

As before, we begin by rewriting the delta function:* 

(6.43) 

Next we insert Equation 6.39 and carry out the p4 integral (which sends p4 -+ 

-p3): 

a - ( ti )2 Sc f l..4'12 
- 8n (E1+E2)lp11 

8 [(£1 + £2)/c - ✓p~ + m~c2 - ✓p~ + m~c2] 

x----=------;=====-;====,-----=-d3p 
✓p~ + m~c2✓p~ + m~c2 

3 
(6.44) 

This time, however, l..4'1 2 depends on the direction of p3 as well as its magnitude,t 
so we cannot carry out the angular integration. But that's all right - we didn't 
really want a in the first place; what we're after is da /dQ. Adopting spherical 
coordinates, as before, 

d3p3 = r2 dr dQ (6.45) 

(where r is shorthand for lp31 and dQ = sin0 d0 d,P), we obtain 

da - (}!__)2 Sc 100 1412 
dQ - 8n (E1+E2)lp11 o . 

8 [(£1 + £2)/c - ✓r2 + m~c2 - ✓r2 + m~c2] 

x ~~-----;:====--====,---------=- r2 dr (6.46) 
✓r2 + m~c2✓r2 + m~c2 

* Observe that p1 and p2 are fixed vectors (re­
lated by our choice of reference frame: p2 = 
-p1), but at this stage p3 and p4 are integra­
tion variables. It is only after the p4 integra­
tion that they are restricted (p4 = -p3), and 
after the IP3 I integration that they are deter­
mined by the scattering angle 0. 

t In general, l-«1 2 depends on all 
four-momenta. However, in this case 

p2 = -p1 and p4 = -p3, so it remains 
a function only of p1 and p3 (assuming 
again that spin does not come into it). 
From these vectors we can construct three 
scalars: p1 ·p1 = lp112, p3 ·p3 = lp312, and 
p1·P3 = lp1llp3 1 cos 0. But p1 is fixed, so the 
only integration variables on which l-«1 2 can 
depend are lp3 I and 0. 
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The integral over r is the same as in Equation 6.30, with m2 -+ m4 and m1 -+ 

(£1 + E2)/c2. Quoting our previous result (Equation 6.35), I conclude that 

(6.47) 

where IPJ I is the magnitude of either outgoing momentum and IP; I is the magnitude 
of either incoming momentum. 

As in the case of decays, the two-body final state is peculiarly simple, in the sense 
that we are able to carry the calculation through to the end without knowing the 
explicit functional form of Ji/. We will be using Equation 6.47 frequently in later 
chapters. 

By the way, lifetimes obviously carry the dimensions of time (seconds); decay 
rates (f' = 1/r), therefore, are measured in inverse seconds. Cross sections have 
dimensions of area - cm2 , or, more conveniently, 'barns': 

1 b = 10-24 cm2 (6.48) 

Differential cross sections, dO" /d0., are given in barns per steradian or simply barns 
(steradians, like radians, being dimensionless). The amplitude, Ji/, has units that 
depend on the number of particles involved: if there are n external lines (incoming 
plus outgoing), the dimensions of JI[ are those of momentum raised to the power 
4- n: 

Dimensions of .,I/= (mc) 4-n (6.49) 

For example, in a three-body process (A -+ B + C), .4 has dimensions of 
momentum; in a four-body process (A-+ B + C + Dor A+ B -+ C + D), Ji/ is 
dimensionless. You can check for yourself that the two Golden Rules then yield the 
correct units for f' and O'. 

6.3 
Feynman Rules for a Toy Theory 

In Section 6.2, we learned how to calculate decay rates and scattering cross sections, 
in terms of the amplitude .4 for the process in question. Now I'll show you how to 
determine Ji/ itself, using the 'Feynman rules' to evaluate the relevant diagrams. 
We could go straight to a 'real-life' system, such as quantum electrodynamics, with 
electrons and photons interacting via the primitive vertex: 
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This is the original, the most important, and the best understood application 
of Feynman's technique. Unfortunately, it involves diverting complications (the 
electron has spin ½, the photon is massless and carries spin 1), which have nothing 
to do with the Feynman calculus as such. In Chapter 7, I'll show you how to handle 
particles with spin, but for the moment I don't want to confuse the issue, so I'm 
going to introduce a 'toy' theory, which does not pretend to represent the real world, 
but will serve to illustrate the method, with a minimum of extraneous baggage [4]. 

Imagine a world in which there are just three kinds of particles - call them A, 
B, and C - with masses mA, mB, and me. They all have spin O and each is its own 
antiparticle (so we don't need arrows on the lines). There is one primitive vertex, 
by which the three particles interact: 

I shall assume that A is the heaviest of the three and in fact weighs more than Band 
C combined, so that it can decay into B + C. The lowest-order diagram describing 
this disintegration is the primitive vertex itself; to this there are (small) third-order 
corrections: 

and even smaller ones of higher order. Our first project will be to calculate the 
lifetime of the A, to lowest order. After that, we'll look at various scattering 
processes, such as A+ A---+ B + B: 

X B 

A + B ---+ A + B: 

X \J ✓~ 
and so on. 
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~ _E§..... 

Fig. 6.6 A generic Feynman diagram, with external lines labeled (internal lines not shown). 

Our problem is to find the amplitude ./It associated with a given Feynman 
diagram. The ritual is as follows [5]: 

1. Notation: Label the incoming and outgoing four-momenta 
p1, p2, ... , Pn (Figure 6.6). Label the internal momenta q1, 

q2, ... Put an arrow beside each line, to keep track of the 
'positive' direction (forward in time for external lines, 
arbitrary for internal lines). 

2. Vertex factors: For each vertex, write down a factor 

-ig 

g is called the coupling constant; it specifies the strength of the 
interaction between A, B, and C. In this toy theory, g has the 
dimensions of momentum; in the 'real-world' theories, we 
shall encounter later on, the coupling constant is always 
dimensionless. 

3. Propagators: For each internal line, write a factor 

where 'vis the four-momentum of the line and mj is the 
mass of the particle the line describes. (Note that qJ =fa mJc2 , 

because a virtual particle does not lie on its mass shell.) 
4. Conservation of energy and momentum: For each vertex, write a 

delta function of the form 

where the k's are the three four-momenta coming into the 
vertex (if the arrow leads outward, then k is minus the 
four-momentum of that line). This factor imposes 
conservation of energy and momentum at each vertex, since 
the delta function is zero unless the sum of the incoming 
momenta equals the sum of the outgoing momenta. 
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A 

Fig. 6.7 Lowest-order contribution to A---,. B + C. 

6.3.l 

5. Integration over internal momenta: For each internal line, 
write down a factor* 

1 d4 
(2n)4 'Ii 

and integrate over all internal momenta. 
6. Cancel the delta Junction: The result will include a delta 

function 

reflecting overall conservation of energy and momentum. 
Erase this factort and multiply by i. The result is . .,//. 

Lifetime of the A 

The simplest possible diagram, representing the lowest-order contribution to 
A ➔ B + C, has no internal lines at all (Figure 6.7). There is one vertex, at which 
we pick up a factor of -ig (Rule 2) and a delta function 

(Rule 4), which we promptly discard (Rule 6). Multiplying by i, we get 

(6.50) 

This is the amplitude (to lowest order); the decay rate is found by plugging ..,ft into 
Equation 6.35: 

(6.51) 

* Notice (again) that every 8 gets a factor of (2rr) and every d gets a factor of 1/(2rr). 
t Of course, the Golden Rule immediately puts this factor back in Equations 6.15 and 6.37, and 

you might wonder why we don't just keep it in Jft. The problem is that IA12, not A, comes 
into the Golden Rule and the square of a delta function is undefined. So you have to remove it 
here, even though you'll be putting it back at the next stage. 
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where lpl (the magnitude of either outgoing momentum) is 

(6.52) 

The lifetime of the A, then, is 

1 8rrhm3-c 
r=-=---r g2 1pl 

(6.53) 

You should check for yourself that r comes out with the correct units. 

6.3.2 
A+ A --+ B + B Scattering 

The lowest-order contribution to the process A+ A --+ B + Bis shown in Figure 6.8 
In this case, there are two vertices (hence two factors of -ig), one internal line, 
with the propagator 

two delta functions: 

and one integration: 

1 d4 
(2rr)4 q 

Rules 1-5, then, yield 

· 4 if l 4 4 d4 -1(27!") g 2 2 2 8 (pi - p3 - q) 8 (p2 + q - p4) q 
q -mcc 

Doing the integral, the second delta function sends q--+ p4 - p2, and we have 

Fig. 6.8 Lowest-order contribution to A+ A -> B + B. 
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A~ 1):/ B 

qr C 

A 

~ 
~ B 

Fig. 6.9 Second diagram contributing in lowest order to A+ A----> B + B. 

As promised, there is one remaining delta function, reflecting overall conservation 
of energy and momentum. Erasing it and multiplying by i (Rule 6), we are left with 

g2 
.,,f/=--~--~ 

(p4 - p2)2 - m2c2 
(6.54) 

But that's not the whole story, for there is another diagram of order g2, obtained 
by 'twisting' the B lines (Figure 6.9).* Since this differs from Figure 6.8 only by 
the interchange p3 +* p4, there is no need to compute it from scratch; quoting 
Equation 6.54, we can write down immediately the total amplitude (to order g2) for 
the process A + A ---+ B + B: 

g2 g2 
.,,f/= 22+ 2 

(p4 - p2)2 - mcc (p3 - p2)2 - mcc2 
(6.55) 

Notice, incidentally, that .,,ff is a Lorentz-invariant (scalar) quantity. This is always 
the case; it is built into the Feynman rules. 

Suppose we are interested in the differential cross section (da /dr.!) for this 
process, in the CM system (Figure 6.10). Say, for simplicity, that mA =ms= m and 
mc=O. Then 

(p4 - p2)2 - m2c2 =Pi+ p~ - 2p2 · p4 = -2p2(1 - cos0) 

(p3 - p2)2 - m2c2 = p~ + p~ - 2p3 · P2 = -2p2(1 + cos0) 

(where pis the incident momentum of particle 1), and hence 

g2 
.,,f/=---

p2 sin2 0 

According to Equation 6.47, then, 

da 1 ( licg2 )
2 

dr.! = 2 16n Ep2 sin2 0 

(6.56) 

(6.57) 

(6.58) 

(6.59) 

(there are two identical particles in the final state, so S = 1/2). As in the case of 
Rutherford scattering (Example 6.4), the total cross section is infinite. 

* You don't get yet another new diagram by twisting the A lines; the only choice here is whether 
p3 connects to Pi or to pz. 
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B 

.,?:_ __ 
8
// 

After 

Fig. 6.10 A+ A--+ B + B in the CM frame. 

6.3.3 
Higher-order Diagrams 

So far we have looked only at lowest-order ('tree level') Feynman diagrams; in the 
case of A+ A --+ B + B, for instance, we considered the graph: 

X B 

This diagram has two vertices, so .,,ff is proportional to g2• But there are eight 
diagrams with four vertices (and eight more with the external B lines 'twisted'): 

• five 'self.energy' diagrams, in which one of the lines sprouts 
a loop: 

A 
B 

C 

A B 

• two 'vertex corrections', in which a vertex becomes a triangle: 

X A 

C 

B 

• and one 'box' diagram: 

M A 

B 
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(Disconnected diagrams, such as 

x,~c 
don't count.) 

I am certainly not going to evaluate all these 'one-loop' diagrams (or even think 
about two-loop diagrams), but I would like to take a closer look at one of them - the 
one with a bubble on the virtual Cline: 

Applying Feynman rules 1-5, we obtain 

4 J 84(p1 - q1 - p3) 84(q1 - qi - q3) 84(qi + q3 - q4) 84(q4 + pi - p4) 
g (qf - m2ci)(q~ - m7,ci)(q~ - m1ci)(qi - m2ci) 

(6.60) 

Integration over q1, using the first delta function, replaces q1 by (p1 - p3 ); integration 
over q4, using the last delta function, replaces q4 by (p4 - pi): 

g4 

(6.61) 

Here, the first delta function sends qi --+ p1 - p3 - q3, and the second delta function 
becomes 

84(p1 + pi - p3 - p4) 

which, by Rule 6, we erase, leaving 

(I drop the subscript on q3 at this point.) 
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You can try calculating this integral, if you've got the energy, but I'll tell you 

right now you're going to hit a snag. The four-dimensional volume element 
could be written as d4q = q3 dq dQ' (where dQ' stands for the angular part), just 
as in two-dimensional polar coordinates the element of area is r dr de and in 
three-dimensional spherical coordinates the volume element is r2 dr sin e de def>. 
At large q the integrand is essentially just 1/q4, so the q integral has the form 

Joo 1 
q4q3 dq = lnql 00 = oo (6.63) 

The integral is logarithmically divergent at large q. This disaster, in one form 
or another, held up the development of quantum electrodynamics for nearly two 
decades, until, through the combined efforts of many great physicists - from 
Dirac, Pauli, Kramers, Weisskopf, and Bethe through Tomonaga, Schwinger, and 
Feynman - systematic methods were developed for 'sweeping the infinities under 
the rug'. The first step is to regularize the integral, using a suitable cutoff procedure 
that renders it finite without spoiling other desirable features (such as Lorentz 
invariance). In the case of Equation 6.62, this can be accomplished by introducing 
a factor 

(6.64) 

under the integral sign. The cutoff mass M is assumed to be very large, and will be 
taken to infinity at the end of the calculation (note that the 'fudge factor', Equation 
6.64, goes to 1 as M---+ oo).* The integral can now be calculated [6] and separated 
into two parts: a finite term, independent of M, and a term involving (in this case) 
the logarithm of M, which blows up as M---+ oo. 

At this point, a miraculous thing happens: all the divergent, M-dependent terms 
appear in the final answer in the form of additions to the masses and the coupling 
constant. If we take this seriously, it means that the physical masses and couplings 

* No one would deny that this procedure is artificial. Still, it can be argued that the inclusion of 
Equation 6.64 merely confesses our ignorance of the high-energy (short distance) behavior of 
quantum field theory. Perhaps the Feynman propagators are not quite right in this regime, and 
M is simply a crude way of accounting for the unknown modification. (This would be the case, 
for example, if the 'particles' have substructure that becomes relevant at extremely close range.) 
Dirac said, of renormalization, 

It's just a stop-gap procedure. There must be some fundamental 

change in our ideas, probably a change just as fundamental as the 
passage from Bohr's orbit theory to quantum mechanics. When 

you get a number turning out to be infinite which ought to be 
finite, you should admit that there is something wrong with your 

equations, and not hope that you can get a good theory just by 

doctoring up that number. 

P. Buckley and F. D. Peat, A Question of Physics (Toronto: University of Toronto Press, 1979), 
page 39. 
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are not the m's and g's that appeared in the original Feynman rules, but rather the 
'renormalized' ones, containing these extra factors: 

lnphysical = m + om; gphysical = g + og (6.65) 

The fact that om and og are infinite (in the limit M ➔ oo) is disturbing, but not 
catastrophic, for we never measure them anyway; all we ever see in the laboratory 
are the physical values, and these are (obviously) finite (evidently the unmeasurable 
'bare' masses and couplings, m and g, contain compensating infinities).* As a 
practical matter, we take account of the infinities by using the physical values of 
m and g in the Feynman rules, and then systematically ignoring the divergent 
contributions from higher-order diagrams. 

Meanwhile, there remain the.finite (M-independent) contributions from the loop 
diagrams. They, too, lead to modifications in m and g (perfectly calculable ones, in 
this case) - which, however, are functions of the four-momentum of the line in 
which the loop is inserted (p1 - p3 in the example). This means that the effective 
masses and coupling constants actually depend on the energies of the particles 
involved; we call them 'running' masses and 'running' coupling constants. The 
dependence is typically rather slight, at low energies, and can ordinarily be ignored, 
but it does have observable consequences, in the form of the Lamb shift (in QED) 
and asymptotic freedom (in QCD)J 

* In case it is some comfort, essentially the same thing occurs in classical electrodynamics: the 
electrostatic energy of a point charge is infinite, and makes an infinite contribution (via E = 
mc2) to the particle's mass. Perhaps this means that there are no true point charges, in classi­
cal electrodynamics; perhaps that's what it means in quantum field theory, too. In neither case, 
however, do we know how to avoid the point particle as a theoretical construct. 

·;- A physical interpretation of the running coupling constant in QED and QCD was suggested in 
Chapter 2, Section 2.3. A nice explanation of mass renormalization is given by P. Nelson in 
American Scientist, 73, 66 (1985): 

According to renormalization theory, not only the strengths 
of the various interactions but the masses of the participating 
particles appear to vary on differing length scales. To get a 
feel for this seemingly paradoxical statement, imagine firing a 
cannon underwater. Even neglecting friction, the trajectory will 
be very different from the corresponding one on land, since the 
cannonball must now drag with it a considerable amount of 
water, modifying its apparent, or "effective," mass. We can ex­
perimentally measure the cannonball's effective mass by shaking 
it to and fro at a rate w, computing the mass from F = ma. 
(This is how astronauts "weigh" themselves in space.) Hav-
ing found the effective mass, we can now replace the difficult 
problem of underwater ballistics by a simplified approximation: 
we ignore the water altogether, but in Newton's equations we 
simply replace the true cannonball mass by the effective mass. 
The complicated details of the interaction with the medium are 
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The procedure I have sketched in the last three paragraphs is called renor­

malization [7]. If all the infinities arising from higher-order diagrams can be 
accommodated in this way, we say that the theory is renormalizable. ABC the­
ory and quantum electrodynamics are renormalizable. In the early 1970s, 't Hooft 
showed that all gauge theories, including chromodynamics and the electroweak the­
ory of Glashow, Weinberg, and Salam, are renormalizable. This was a profoundly 
important discovery, because, beyond lowest-order calculations, a nonrenormaliz­
able theory yields answers that are cutoff-dependent and, therefore, really, quite 
meaningless. 
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A key feature of this approach is that the effective mass so com­

puted depends on w, since as w approaches zero, for example, 
the water has no effect whatever. In other words, the pres-

ence of a medium can introduce a scale-dependent effective 
mass. We say that the effective mass is "renormalized" by the 
medium. In quantum physics, every particle moves through 

a "medium" consisting of the quantum fluctuations of all 
particles present in the theory. We again take into account 

this medium by ignoring it but changing the values of our 
parameters to scale-dependent "effective" values. 
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6.1 Derive Equation 6.3. [ Hint: What fraction of the original sample decays between t and 
t + dt? What, then, is the (initial) probability, p(t) dt, of any given particle decaying 
between t and t + dt? Tbe average lifetime is f0

00 tp(t) dt.] 
6.2 Nuclear physicists traditionally work with 'half-life' (t1; 2) instead of mean life (r); t1; 2 is 

the time it takes for half the members of a large sample to decay. For exponential decay 
(Equation 6.2), derive the formula for t112 (as a multiple of r). 

6.3 (a) Suppose you started out with a million muons (at rest); how many would still be 
around 2.2 x 10-5 seconds later? 

(b)What is the probability of an:- lasting more than 1 second (express your answer as a 
power ofl0)? 

6.4 A nonrelativistic particle of mass m and (kinetic) energy E scatters from a fixed repulsive 
potential, V(r) = k/r2, where k is a constant. 
(a) Find the scattering angle, 0, as a function of the impact parameter, b. 
(b) Determine the differential cross section dcr /dQ, as a function of 0 (not b). 
(c) Find the total cross section. 

[References: Goldstein, H., Poole, C. and Safko, J. (2002) Classical Mechanics, 3rd edn, 
Addison-Wesley, San Francisco, CA. Sect. 3-10., Equation 3-97; Becker, R.A. (1954) 
Introduction to Theoretical Mechanics, McGraw-Hill, New York, Example 10-3.] 

6.5 Derive Equation 6.34, starting from Equation 6.31 with u = m1c. 
6.6 As an application of the Golden Rule, consider the decay of n: 0 ---> y + y. Of course, 

the n: 0 is a composite object, so Equation 6.35 does not really apply, but let's pretend 
that it's a true elementary particle, and see how close we come. Unfortunately, we don't 
know the amplitude .4; however, it must have the dimensions of mass times velocity 
(Equation 6.49), and there is only one mass and one velocity available. Moreover, the 
emission of each photon introduces a factor of fa (the fine structure constant) into 
./It, as we shall see in Chapter 7, so the amplitude must be proportional to a. On this 
basis, estimate the lifetime of the n: 0• Compare the experimental value. [Evidently, the 
decay of the n: 0 is a much more complicated process than this crude model suggests. 
See Quigg, C. (1997) Gauge Theories of the Strong, Weak, and Electromagnetic Interactions, 
Addison-Wesley, Reading, M.A, Equation 1.2.25 - but beware of the misprint:f,,. should 
be squared.] 

6.7 (a) Derive Equation 6.41 for scattering of particles 1 and 2 in the CM. 
(b)Obtain the corresponding formula for the lab frame (particle 2 at rest). 
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6.8 Consider elastic scattering, a+ b ➔ a+ b, in the lab frame (b initially at rest), assuming 

the target is so heavy (mbc2 » £0 ) that its recoil is negligible. Determine the differential 
scattering cross section. [ Hint: In this limit the lab frame and the CM frame are the 
same.] 

6.9 Consider the collision 1 + 2 ➔ 3 + 4 in the lab frame (2 at rest), with particles 3 and 4 
massless. Obtain the formula for the differential cross section. 

6.10 (a) Analyze the problem of elastic scattering (m3 = m1, m4 = mz) in the lab frame 
(particle 2 at rest). Derive the formula for the differential cross section. 

(b) If the incident particle is massless (m1 = 0), show that the result in part (a) simplifies 
to 

6.11 (a) ls A ➔ B + Ba possible process in the ABC theory? 
(b) Suppose a diagram has nA external A lines, n8 external B lines, and ne external C 

lines. Develop a simple criterion for determining whether it is an allowed reaction. 
(c) Assuming A is heavy enough, what are the next most likely decay modes, after 
A ➔ B + C? Draw a Feynman diagram for each decay. 

6.12 (a) Draw all the lowest-order diagrams for A+ A ➔ A+ A. (There are six of them.) 
(b)Find the amplitude for this process, in lowest order, assuming m8 =me= 0. Leave 

your answer in the form of an integral over one remaining four-momentum, q. 
6.13 Calculate da /dQ for A+ A ➔ B + B, in the CM frame, assuming m8 = me = 0. Find 

the total cross section, a. 
6.14 Find da /dQ and a for A+ A ➔ B + Bin the lab frame. (Let Ebe the energy, and p the 

momentum, of the incident A. Assume m8 =me= 0.) Determine the nonrelativistic 
and ultrarelativistic limits of your formula. 

6.15 (a) Determine the lowest-order amplitude for A+ B ➔ A+ B. (There are two diagrams.) 
(b) Find the differential cross section for this process in the CM frame, assuming 

mA = m8 = m, me= 0. Express your answer in terms of the incident energy (of A), 
E, and the scattering angle (for particle A), 0. 

(c) Find da /dQ for this process in the lab frame, assuming Bis much heavier than A and 
remains stationary. A is incident with energy E. [Hint: See Problem (6.8). Assume 
ma » mA, me, and E/c2 .] 

(d) In case (c), find the total cross section, a. 
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Quantum Electrodynamics 

In this chapter I introduce the Dirac equation, state the Feynman rules for quantum 
electrodynamics, develop usefal calculational tools, and derive some of the classic QED 
results. The treatment leans heavily on material from Chapters 2, 3, and 6, as well as the 
spin-½ formalism in Chapter 4. In turn, Chapter 7 is the indispensable foundation for 
everything that follows (however, you may want to skip Example 7.8 and Section 7.9,

together with the related passages in Chapters 8 and 9). 

7.1 

The Dirac Equation 

Although the 'ABC' model in Chapter 6 is a perfectly legitimate quantum field 
theory, it does not describe the real world, because the particles A, B, and 
C have spin 0, whereas quarks and leptons carry spin ½ and mediators carry 
spin 1. The inclusion of spin can be algebraically cumbersome; that's why I 
introduced the Feynman calculus in the context of a 'toy' theory free of such 
distractions. 

In nonrelativistic quantum mechanics, particles are described by Schrodinger's 
equation; in relativistic quantum mechanics, particles of spin O are described by 
the Klein-Gordon equation, particles of spin ½ by the Dirac equation, and particles 
of spin 1 by the Proca equation. Once the Feynman rules have been established, 
however, the underlying field equation fades into the background - that's how we 
got through Chapter 6 without ever mentioning the Klein-Gordon equation. But 
for spin ½ the very notation of the Feynman rules presupposes some familiarity 
with the Dirac equation. So for the next three sections we'll study the Dirac theory 
in its own right. 

One way to 'derive' the Schri:idinger equation is to start with the classical 
energy-momentum relation: 

(7.1) 

1225 
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apply the quantum prescription 

p ➔ -iff'v, 
. a 

E ➔ ili­
/Jt 

and let the resulting operators act on the 'wave function', \II: 

(Schriidinger equation) 

(7.2) 

(7.3) 

The Klein-Gordon equation can be obtained in exactly the same way, beginning 
with the relativistic energy-momentum relation, £2 - p2c2 = m2c4, or (better) 

(I'll leave out the potential energy, from now on; we'll stick to free particles). 
Surprisingly, the quantum substitution (Equation 7.2) requires no relativistic 
modification; in four-vector notation, it reads 

p,, ➔ iii a,, (7.5) 

Here* 

a a=­
µ,- /JxJL 

which is to say 

a 
03 = -

/Jz 

(7.6) 

(7.7) 

Putting Equation 7.5 into Equation 7.4, and letting the derivatives act on a wave 
function v,,t we obtain 

(7.8) 

or 

1 /J 2,j, 2 (mc)2 ---+'1 if,= - if, 
c2 /Jt2 Ii 

(Klein-Gordon equation) (7.9) 

Schri:idinger actually discovered this equation even before the nonrelativistic one 
that bears his name; he abandoned it when (with the Coulomb potential included) 

* The gradient with respect to a contravariant position-time four-vector xµ is itself a covariant 
four-vector; hence the placement of the index. Written out in full, Equation (7.5) says 
(E/c, -p)-+ in(¼ f,, v). Of course, a"= a;axw See Problem 7.1. 

t In nonrelativistic quantum mechanics we customarily use the capital letter (W) for the wave 
function, and reserve ,ft for its spatial part (Equation 5.3). In the relativistic theory it is more 
common to use ,ft for the wave function itself. 
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it failed to reproduce the Bohr energy levels for hydrogen. The problem is that the 
electron has spin ½, and the Klein-Gordon equation applies to particles with spin 0. 
Moreover, the Klein-Gordon equation is incompatible with Born's statistical inter­
pretation, which says that li/r(r)l 2 gives the probability of finding the particle at the 
point r. The source of this difficulty was traced to the fact that the Klein-Gordon 
equation is second order int.* So Dirac set out to find an equation consistent with 
the relativistic energy-momentum formula, and yet first order in time. Ironically, 
in 1934, Pauli and Weisskopf showed that the statistical interpretation itself must 
be reformulated in relativistic quantum theory,t and restored the Klein-Gordon 
equation to its rightful place, while keeping the Dirac equation for particles of spin 
1 
2· 

Dirac's strategy was to 'factor' the energy-momentum relation (Equation 7.4). 
This would be easy ifwe had only P° (that is, if p were zero): 

(7.10) 

We obtain two first-order equations: 

(p0 - me) = 0 or (p0 + me) = 0 (7.11) 

either one of which guarantees that pµ pµ - m2e2 = 0. But it's a different matter 
when the spatial components are included; in that case we are looking for something 
of the form 

(7.12) 

where fY and yA are eight coefficients yet to be determined.:/ Multiplying out the 
right-hand side, we have 

We don't want any terms linear in pK, so we must choose f3K = yK; to finish the 
job, we need to find coefficients yK such that 

* Notice that the Schriidinger equation is first order in t. 
"i" A relativistic theory has to account for pair production and annihilation, and hence the number 

of particles is not a conserved quantity. 
t In case the notation confuses you, let me write Equation (7.12) 'long-hand': 

(po)2 _ (p1)2 _ (p2)2 _ (p3)2 _ m2e2 = (f3oP° - f31p1 _ 132p2 _ 133p3 + me) 

X (YOP° - ylp1 - y2p2 - y3p3 - me) 
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which is to say 

(P°f _ (p1)2 _ (p2)2 _ (p3)2 = (y0)2(p0)2 + (y1)2(p1)2 + (y2)2(p2)2 

+ (y3)2(p3)2 + (yoy1 + Y1Yo)PoPi 

+ (y0y2 + y2yo)pop2 + (YOY3 + Y3YO)pop3 

+ (yly2 + y2y1)P1P2 + (yly3 + y3yl)P1P3 

(7.13) 

You see the problem: we could pick y 0 = 1 and y 1 = y 2 = y 3 = i, but there doesn't 
seem to be any way to get rid of the cross terms. 

At this point Dirac had a brilliant inspiration: what if the y's are matrices, instead 
of numbers? Since matrices don't commute, we might be able to find a set such that 

forµ f. V (7.14) 

Or, more succinctly, 

(7.15) 

where gµv is the Minkowski metric (Equation 3.13), and curly brackets denote the 
anticommutator: 

{A, BJ = AB+ BA (7.16) 

You might try fiddling with this problem for yourself. It turns out that it can be 
done, although the smallest matrices that work are 4 x 4. There are a number of 
essentially equivalent sets of 'gamma matrices'; we'll use the standard 'Bjorken 
and Drell' convention [1 ]: 

i _ ( 0 ai) y - . 
-a' 0 

(7.17) 

where ai(i = 1, 2, 3) is the indicated Pauli matrix (Equation 4.26), 1 denotes the 
2 x 2 unit matrix, and O is the 2 x 2 matrix of zeroes.* 

* When the context allows no room for ambiguity, I'll use 1 and O this way for 2 x 2 or 4 x 4 ma­
trices; also, a unit matrix of the appropriate dimension is implied, when necessary, as on the 
right-hand side of Equation 7.15 Incidentally, since u is not the spatial part of a four-vector, we 
do not distinguish upper and lower indices: rr' = rr,. 
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As a 4 x 4 matrix equation, then, the relativistic energy-momentum relation 

does factor: 

(7.18) 

We obtain the Dirac equation, now, by peeling off one term (it doesn't really matter 
which one, but this is the conventional choice - see Problem 7.10): 

(7.19) 

Finally, we make the quantum substitution pµ, ➔ iii aµ, (Equation 7.5), and let the 
result act on the wave function ij,: 

iliyµ,aµ,ijr - mcijr = 0 (Dirac equation) (7.20) 

Note that ij, is now a four-element column matrix: 

(7.21) 

We call it a 'bi-spinor', or 'Dirac spinor'. (Although it has four components, this ob­
ject is not a four-vector. In Section 7.3 I'll show you how it does transform when you 
change inertial systems; it's not going to be an ordinary Lorentz transformation.) 

7.2 
Solutions to the Dirac Equation 

Suppose that ij, is independent of position: 

avr = avr = avr = 0 
ax ay az 

(7.22) 

In view of Equation 7.5, this describes a state with zero momentum (p = 0), which 
is to say, a particle at rest. The Dirac Equation (7.20) reduces to 

iii O avr 
-y --mcifr=O 
C at (7.23) 

or 

(7.24) 

where 

o/A = (V'l) 
1/rz 

(7.25) 
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consists of the upper two components, and 

comprises the lower two. Thus 

alfA =-i(mc2)1/fA 
at Ii ' 

and the solutions are 

_ alfB = -i (mc2
) lfB 

at Ii 

Referring to Equation 5.10, we recognize the factor 

e-iEt/li 

(7.26) 

(7.27) 

(7.28) 

(7.29) 

as the characteristic time dependence of a quantum state with energy E. For a 
particle at rest, E = mc2, so 1fr A is exactly what we should have expected, in the 
case p = 0. But what about lfr8? It ostensibly represents a state with negative energy 
(E = -mc2). This is the famous disaster I mentioned back in Chapter 1, which 
Dirac at first tried to avoid by postulating an unseen infinite 'sea' of negative-energy 
particles, which fill up all those unwanted states.* Instead, we now take the solutions 
with 'anomalous' time dependence to represent antiparticles with positive energy.1" 
Thus 1fr A describes electrons (for example), whereas 1/fB describes positrons; each is 
a two-component spinor, just right for a system of spin ½. Conclusion: The Dirac 
equation with p = 0 admits four independent solutions (ignoring normalization 
factors, for the moment): 

;<•< ~ ,-,,~1•• rn ;~ ~ ,-,,~!'{) 
;''' ~ ,•••"l'1• m. ;<•I~ ,+<l~/'I< rn (7.30) 

* You might ask why we don't simply stipulate that ,jl8 (0) = 0 - call the 'negative-energy' solu­
tions 'physically unacceptable', and forget about them. Unfortunately, this can't be done. In a 
quantum system we need a complete set of states, and the positive energy states by themselves 
are not complete. 

i" In the Schrodinger equation the sign of i is purely conventional. Had Schrodinger made the op­
posite choice, e'E<fr, would be the 'normal' time dependence for a stationary state of energy E. In 
the relativistic theory both signs arise, and this, when properly interpreted, implies the existence 
of antiparticles. 
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They describe, respectively, an electron with spin up, an electron with spin down, 
a positron with spin down,* and a positron with spin up. 

We look next for plane-wave solutions:t 

(7.31) 

We're hoping to find a four-vector kµ. and an associated bispinor u(k) such that 
ifr (x) satisfies the Dirac equation (a is a normalization factor, irrelevant to our 
present purpose but necessary later to keep the units consistent). Because the x 
dependence is confined to the exponent+ 

(7.32) 

Putting this into the Dirac Equation (7.20), we get 

or 

Notice that this equation is purely algebraic - no derivatives. If u satisfies 
Equation 7.33, then ifr (Equation 7.31) satisfies the Dirac equation. 

Now 

u) = ( k0 -k ·t) 
0 k-u -k 

(7.34) 

so 

µ. ((nk0 - me) 
(ny k1, - me)u = nk. u -/l,k · <r ) (uA) 

(-nk0 - me) UB 

* Notice the 'backward' antiparticle spin orientations. In Dirac's interpretation (which remains a 
handy mnemonic device) 1/1(31 is a negative-energy electron state with spin up, whose absence (a 
'hole' in the 'sea') behaves as a positive-energy positron with spin down [2). 

t Here k. x = k,,x'' = k0ct - k- r, so the real part of the exponential is cos(k0ct - k. r), which 
represents a sinusoidal plane wave of (angular) frequency w = ck0 and wavelength A = 2rr /lkl, 
propagating in the direction k. 

I This looks right, but if it makes you nervous you can easily check it: 

a -ik-x (l/ ) a -ik0ct+ik-r 'ko -ik-x oe = e -e = -i e at 
(and k0 = k0). Similarly 

(but k1 = -k1). 
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where, as before, the subscript A denotes the upper two components, and B stands 
for the lower two. In order to satisfy Equation 7.33, then, we must have 

(7.35) 

Substituting the second of these into the first gives 

But 

so 

(7.36) 

(kx - iky)) 
-kz 

(7.37) 

kz(kx - iky) - kz(kx - iky)) = k21 
(kx + iky)(kx - iky) + k~ 

(7.38) 

where 1 is the 2 x 2 unit matrix (written in explicitly, just this once). Thus 
k2 

UA = (k0)2 - (mc/n)2 UA (7.39) 

and hence* 

(7.40) 

In order for ,fr= exp(-ik • x)u(k) to satisfy the Dirac equation, then, nkµ, must be 
a four-vector, associated with the particle, whose 'square' is m2c2. Of course, we 
know such a quantity: the energy-momentum four-vector. Evidently 

(7.41) 

The positive sign (time dependence e-iEt/li) is associated with particle states, and 
the negative sign (time dependence e+iEtfli) with antiparticle states. 

Returning to Equation 7.35 (and using Equation 7.37), it is a simple matter to 
construct four independent solutions to the Dirac equation: 

1 PrckuA = · UB = --- = ---. (1) p · CT (1) C ( Pz ) 
( ) 0 · p0 + me O E + mc2 Px + ipy 

* Equation 7.39 would also allow uA = 0 as a solution. However, the same argument, starting 
with Equation 7.35 but inserting the first into the second, yields Equation 7.39 with ua in place 
of uA. So, unless uA and ua are both zero (in which case we have no solution at all) Equation 
7.40 must hold. 
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(2) Pick UA = (0) : u8 = +.-!!-- (0) = _c 2 (Px - ipy) 
l p + me l E + me -p2 

3 PrckuB = · uA = --- = ---. (1) p · CT (1) C ( Pz ) 
( ) 0 · p0 + me O E + mc2 Px + ipy 

(4) Pick UB = (0) : UA = +.-!!-- (0) = _c 2 (Px - ipy) 
l p + me l E + me -pz 

(7.42) 

For (1) and (2) we were obliged to use the plus sign in Equation 7.41 - otherwise 
u8 blows up as p ➔ 0; these are particle solutions. For (3) and (4) we must use the 
minus sign; these are antiparticle states. 

A convenient normalization for these spinors is* 

utu = 2E/c (7.43) 

Here the dagger signifies the transpose conjugate (or Hermitian conjugate): 

so 

(7.44) 

With the resulting normalization factor (Problem 7.3) 

the four canonical solutions become: 

u(I) = N [ ci) l • 
E+ mc2 

c(px + ipy) 

E+ mc2 

* Notice that any multiple of u is still a solu­
tion to Equation 7.33; normalization merely 
fixes the overall constant. Actually, there are 
at least three different conventions in the 
literature: uiu = 2E/c (Halzen and Martin), 

(7.45) 

(7.46) 

u'ru = E/mc2 (Bjorken and Drell), u'ru = 1 
(Bogoliubov and Shirkov). In this one in­
stance I depart from Bjorken and Drell, 
whose choice introduces spurious difficulties 
when m--> 0. 
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[

C(px - ipy)) 
E+mc2 

v(I) = N c(-Pz) ' 
E+mc2 

0 
1 

(7.47) 

,fr = ae-ip-xfliu (particles), ,fr = ae'P•xfnv (antiparticles) (7.48) 

It is customary, from here on, to use the letter v for antiparticles (and to include 
a minus sign in v(2l), as indicated. Notice that whereas particle states satisfy the 
momentum space Dirac equation (see Equation 7.33) in the form 

(yµ.pµ. - mc)u = 0 

antiparticles (v's) satisfy: 

(y 1'pµ. + mc)v = 0 

(7.49) 

(7.50) 

You might guess that u(I) describes an electron with spin up, u(2l an electron 
with spin down, v(I) a positron with spin up, and v(2l a positron with spin down,* 
but this is not quite the case. For Dirac particles the spin matrices (generalizing 
Equation 4.21) are 

(7.51) 

and it's easy to check that u(I), for instance, is not an eigenstate of E2 • However, if 
we orient the z axis so that it points along the direction of motion (in which case 
Px = Py = 0) then u(I), u(2l, v(I), and v(2l are eigenspinors of S2 ; u(ll and v(I) are spin 
up, u(2l and v(2l are spin downt (Problem 7.6). 

Incidentally, plane waves are, of course, rather special solutions to the Dirac 
equation. They are the ones of interest to us, however, because they describe 
particles with specified energies and momenta, and in a typical experiment these 
are the parameters we control and measure. 

* See the footnote to Equation 7.30 for positron 
spin orientations. 

t As a matter of fact, it is impossible to con­
struct plane-wave solutions to the Dirac 
equation and are, at the same time, eigen­
states of S, (except in the special case 
p = p,z). The reason is that S by itself is not 
a conserved quantity; only the total angular 
momentum, L + S, is conserved here (see 

Problem 7.8). It is possible to construct 
eigenstates of helicity, 1: • p (there's no orbital 
angular momentum about the direction of 
motion), but these are rather cumbersome 
(see Problem 7.7), and in practice it is easier 
to work with the spinors in Equations 7.46 
and 7.47, even though their physical interpre­
tation is not so clean. All that really matters is 
that we have a complete set of solutions. 



7.3 Bilinear Covariants 1235 
7.3 
Bilinear Covariants 

I mentioned in Section 7 .1 that the components of a Dirac spinor do not transform 
as a four-vector, when you go from one inertial system to another. How, then, do 
they transform? I shall not work it out here (you get to do it, in Problem 7 .11), but 
merely quote the result: if you go to a system moving with speed v in the x direction 

(7.52) 

where S is the following 4 x 4 matrix: 

(~ 0 0 

I) O I ( a+ a_cr1) = 0 a+ a_ 
S =a++ a_y y = 

a_cr1 a+ 0 a_ a+ 
a_ 0 0 a+ 

(7.53) 

with 

(7.54) 

and y = l/Jl - v2/c 2, as usual. 
Suppose we want to construct a scalar quantity out of a spinor ,fr. It would be 

reasonable to try the expression 

(7.55) 

Unfortunately, this is not invariant, as you can check by applying the transformation 
rule:* 

* Note that the transpose of a product is the product of the transposes in reverse order: 

(AB)u = (AB)j, = L Aj.Bk, 
k 

= L B,.ll.kj = (BA.)y 
k 

The same goes for the Hermitian conjugate: 

(7.56) 
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In fact (Problem 7.13): 

t 2 ( 1 SS=S=y 
-(v/c)cr1 

(7.57) 

Of course, the sum of the squares of the elements of a four-vector is not invariant 
either; we need minus signs for the spatial components (Equation 3.12). With 
a little trial and error you will discover that in the case of spinors we need 
minus signs for the third and fourth components. Just as we introduced covariant 
four-vectors to keep track of the signs in Chapter 3, we now introduce the adjoint 
spinor: 

(7.58) 

I claim that the quantity 

(7.59) 

is a relativistic invariant. For st y 0 S = y 0 (Problem 7.13), and hence 

(7.60) 

In Chapter 4 we learned to distinguish scalars and pseudoscalars, according 
to their behavior under the parity transformation, P: (x, y, z) -+ (-x, -y, -z). 
Pseudoscalars change sign; scalars do not. It is natural to ask whether lfri/r is the 
former type, or the latter. First, we need to know how Dirac spinors transform 
under P. Again, I won't derive it, but simply quote the result (Problem 7.12):* 

(7.61) 

It follows that 

(7.62) 

so (lfri/r) is invariant under P - it's a 'true' scalar. But we can a/so make a pseudoscalar 
out of 1/r: 

(7.63) 

where 

(7.64) 

* The sign in Equation 7.61 is pure convention; -y0 ,;, would do just as well. 
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I'll let you check that it is Lorentz invariant (Problem 7.14). As for its behavior 
under parity 

(7.65) 

(I used the fact that (y 0)2 = 1 in the last step.) Now, the y 0 is on the 'wrong side' of 
the y 5, but we can 'pull it through' by noting that it anticommutes with y 1, y 2, and 
y 3 (Equation 7.15) and commutes (of course) with itself (y 3y 0 = -y0y 3, y 2y 0 = 
-yDy2, ylyO = -yOyl, yOyO = yoyo), so 

By the same token, y 5 anticommutes with all the other y matrices: 

(7.66) 

At any rate 

(7.67) 

so it's a pseudoscalar. 

All told, there are 16 products of the form 1/J,*1/lj (taking one component from ,fr* 

and one from ,fr), since i andj run from 1 to 4. These 16 products can be assembled 
in various linear combinations to construct quantities with distinct transformation 
behavior, as follows: 

where 

(1) lfr,fr = scalar 
(2) "ify 5,fr = pseudoscalar 
(3) lfryµ,1/f = vector 
(4) lfryµ,y 5,fr = pseudovector 
(5) lfraµ,"1/1 = antisymmetric tensor 

(one component) 
(one component) 
(four components) 
(four components) 
(six components) 

(7.68) 

(7.69) 

This gives 16 terms, so it's all we can hope to make. You cannot, for example, 
construct a symmetric tensor bilinear in ,fr* and ,fr, and if you're looking for a vector, 
lfryµ,1/f is the only candidate.* (Another way to think ofit is this: l,y5,yµ,,yµ,y 5, 

and a 1," constitute a 'basis' for the space of all 4 x 4 matrices; any 4 x 4 matrix can 
be written as a linear combination of these 16. In particular, if you ever encounter a 

* Notice that fy 0 ,;, = y,"i"y 0 y 0 ,;, = ,;,t,;,, so ,;,t,;, is actually the zeroth component ofa 
four-vector. That's why the normalization convention (Equation 7.43), which no doubt looked 
peculiar at the time, is actually very sensible. By normalizing ui" u to the zeroth component of 
the four-vector p'', we obtain a relativistically 'natural' convention (see Problem 7.16). 
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product of five y matrices, say, you may be sure that it can be reduced to a product 
of no more than two.) 

Pause a moment to admire the ingenious notation in Equation 7.68. The tensorial 
character of the bilinear covariants, and even their behavior under parity, is indicated 
at a glance: 'if yl-',fr looks like a four-vector, and it is a four-vector. But y 1-' by itself is 
certainly not a four-vector; it's a collection of four fixed matrices (Equation 7.17); they 
don't change when you go to a different inertial system - it's ,fr that changes, and in 
just such a way as to give the whole 'sandwich' the tensorial taste of the jam inside. 

7.4 
The Photon 

In classical electrodynamics, the electric and magnetic fields (E and B) produced by 
a charge density panda current density J are determined by Maxwell's equations:* 

I (i) V · E = 4np 
.. 1 aB 

(n) V x E + - - = 0 
C at 

(iii) V · B = 0 I 
1 aE 4n 

(iv) V x B - - - = - J 
C at C 

(7.70) 

In relativistic notation, E and B together form an antisymmetric second-rank tensor, 
the 'field strength tensor', fl-'": 

-Ex -Ey 
0 -Bz 

Bz 0 
(7.71) 

-By Bx 

(that is, F01 = -Ex, F12 = - B2 , etc.), while p and J constitute a four-vector: 

JI-' = (cp, J) (7.72) 

The inhomogeneous Maxwell equations, (i) and (iv) in Equation 7.70, can be written 
more neatly in tensor notation (Problem 7.20) 

(7.73) 

From the antisymmetry of fl-'" (f"I-' = -fl-'") it follows (Problem 7.20) that]'" is 
divergenceless: 

af.L]I-' = o (7.74) 

Or, in three-vector notation, V • J = -ap/at; this is the 'continuity equation', 
expressing local conservation of charge (Problem 7.21). 

* This section presupposes some familiarity with classical electrodynamics; it is designed to make 
the description of photons in quantum electrodynamics more plausible. As always, I use Gaus­
sian cgs units. 
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As for the homogeneous Maxwell equations, (iii) in Equation 7.70 is equivalent 

to the statement that B can be written as the curl of a vector potential, A: 

B=VxA (7.75) 

With this, (ii) becomes 

Vx E+-- =0 ( 1 aA) 
C at 

(7.76) 

which is equivalent to the statement that E + (l/c)(aA/at) can be written as the 
gradient of a scalar potential, V: 

IaA 
E=-VV--­

c at 

In relativistic notation, Equations 7.75 and 7.77 become 

where 

Aµ,=(V,A) 

(7.77) 

(7.78) 

(7.79) 

In terms of this four-vector potential, the inhomogeneous Maxwell Equations (7.73) 
read: 

(7.80) 

In classical electrodynamics the fields are the physical entities; the potentials 
are simply useful mathematical constructs. The virtue of the potential formulation 
is that it automatically takes care of the homogeneous Maxwell equations: given 
Equations 7.75 and 7.77, (ii) and (iii) in Equation 7.70 follow immediately, no 
matter what V and A might be. This leaves us only the inhomogeneous Equation 
(7.80) to worry about. The defect of the potential formulation is that V and A 
are not uniquely determined. Indeed, it is clear from Equation 7.78 that new 
potentials 

(7.81) 

(where ;,_ is any function of position and time) would do just as well, since 
aµ A"' - a" AJL' = aµ N' - a" AJL. Such a change of potentials, which has no effect 
on the fields, is called a gauge transformation. We can exploit this gauge freedom to 
impose an extra constraint on the potential [3): 

(7.82) 
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This is called the Lorentz condition; with it Maxwell's equations (7.80) simplify still 
further: 

Here 

DA.I"= 4.7!']'-' 
C 

(7.83) 

(7.84) 

is the relativistic extension of the Laplacian (v' 2); it is called the d'Alembertian. 
Even the Lorentz condition, however, does not uniquely specify N'. Further 

gauge transformations are possible, without disturbing Equation 7.82, provided 
that the gauge function J.. satisfies the wave equation: 

□J..=0 (7.85) 

Unfortunately, there is no clean way to eliminate the residual ambiguity in N', 
and one must choose either to live with the indeterminacy, which means carrying 
along spurious degrees of freedom, or to impose an additional constraint, which 
spoils the manifest Lorentz covariance of the theory. Both approaches have been 
used in formulating QED; we shall follow the latter course. In empty space, where 
fl'= 0, we pick (see Problem 7.22) 

A0 =0 (7.86) 

The Lorentz condition then reads 

(7.87) 

This choice (the Coulomb gauge) is attractively simple, but by selecting one com• 
ponent (A0) for special treatment, it ties us down to a particular inertial system 
(or rather, it obliges us to perform a gauge transformation in conjunction with 
every Lorentz transformation, in order to restore the Coulomb gauge condition). 
In practice, this is very seldom a problem, but it is aesthetically displeasing. 

In QED, N' becomes the wave function of the photon. The free photon satisfies 
Equation 7.83 with]!'= 0, 

(7.88) 

which we recognize in this context as the Klein-Gordon Equation (7.9) for a 
massless particle. As in the case of the Dirac equation, we look for plane•wave 
solutions with four.momentum p = (E/c, p): 

N'(x) = ae-(i/li)p•xEJL(p) (7.89) 

Here EJL is the polarization vector - it characterizes the spin of the photon - and a 
is a normalization factor. Substituting Equation 7.89 into Equation 7.88, we obtain 
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a constraint on pl-': 

(7.90) 

which is as it should be for a massless particle. 
Meanwhile, E1J. has four components, but they are not all independent. The 

Lorentz condition (Equation 7.82) requires that 

(7.91) 

In the Coulomb gauge, moreover, 

EO = 0, SO € · p = 0 (7.92) 

which is to say that the polarization three-vector (€) is perpendicular to the direction 
of propagation; we say that a free photon is transversely polarized.• Now, there are 
two linearly independent three-vectors perpendicular top; for example, if p points 
in the z direction, we might choose 

(7.93) 

Instead of four independent solutions for a given momentum (too many, for a 
particle of spin 1), we are left with only two. That sounds like too few - shouldn't the 
photon have three spin states? The answer is no: a massive particle of spin s admits 
2s + 1 different spin orientations, but a massless particle has only two, regardless of 
its spin (except for s = 0, which has only one). Along its direction of motion it can 
only have m, = +s or m, = -s; its helicity, in other words, can only be + 1 or -1. t 

7.5 
The Feynman Rules for QED 

In Section 7 .2 we found that free electrons and positrons of momentum p = (E / c, p), 
with E = Jm2c4 + p2c2 , are represented by the wave functionst 

* This corresponds to the fact that electromag­
netic waves are transverse. 

t Photon states with m, = ± 1 correspond 
to right- and left-circular polarization; 
the respective polarization vectors are 
f± = 'f(fl1l ± if12l)/ ./2. Notice that it was 
by specifying a particular gauge that we elim­
inated the nonphysical (m, = 0) solution. If 
we were to follow a 'covariant' approach, in 
which we avoid imposing the Coulomb gauge 
condition, longitudinal free photons would 

be present in the theory. But these 'ghosts' 
decouple from everything else, and they do 
not affect the final results. 

;t For reference, I begin with a summary of the 
essential results from earlier sections. I speak 
of 'electrons' and 'positrons', but they could 
as well beµ.- and µ.+, or c and r+, or (with 
the appropriate electric charges) quarks and 
antiquarks - in short, any point charges of 
spin½-
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Electrons Positrons 

(7.94) 

wheres = 1, 2 for the two spin states. The spinors u(s) and v(s) satisfy the momentum 
space Dirac equation(s): 

their adjoints, u = uty 0 , v = vi•y 0 , satisfy 

They are orthogonal, 

normalized, 

uu = 2mc 

and complete, in the sense that 

L u(s)u:(s) = (yl-'pµ. + me) 
s=I.2 

vv = -2mc 

L v('iv(,1 = (yl-'pµ. - me) 
s=I.2 

(7.95) 

(7.96) 

(7.97) 

(7.98) 

(7.99) 

(see Problem 7.24). A convenient explicit set {u(1l, u(2l, v(11, v(2l} is given in Equations 
7.46 and 7.47. Ordinarily, we'll be averaging over electron and positron spins, and 
in that case it doesn't matter that these are not pure spin up and spin down - all 
we really need is completeness. For the occasional problem in which the spins 
are specified, we must, of course, use the spinors appropriate to the case at 
hand. 

Meanwhile, a free photon of momentum p = (E/c, p), with E = !pie, is repre­
sented by the wave function 

Photons 

Aµ.(x} = ae-(i/li)p•xEJl (7.100) 

wheres= 1, 2 for the two spin states (polarizations). The polarization vectors Ef1 

satisfy the momentum space Lorentz condition: 

(7.101) 

They are orthogonal, in the sense that 

(7.102} 
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__E_§___ 

Fig. 7.1 A generic QED diagram, with external lines labeled. (Internal lines not shown.) 

and normalized 

(7.103) 

In the Coulomb gauge 

(7.104) 

and the polarization three-vectors obey the completeness relation (Problem 7.25) 

(7.105) 

A convenient explicit pair (E(I), E(21) is given in Equation 7.93. 
To calculate the amplitude, .,¢/, associated with a particular Feynman diagram, 

proceed as follows: 

Feynman Rules 

l. Notation: To each external line associate a momentum 
Pr, p2, ... , Pn, and draw an arrow next to the line, indicating 
the positive direction (forward in time).* To each internal line 
associate a momentum q1 , q2, .. . ; again draw an arrow next 
to the line indicating the positive direction (arbitrarily 
assigned). See Figure 7.1. 

2. External lines: External lines contribute factors as follows: 

Electrons: 

Positrons: 

Photons: 

tincoming(-) : u 

Outgoing(--+-) : 11 

Incoming( -+4) : ii 
Outgoing(--+-) : v 

J Incoming(""""') : €µ 

l Outgoing("""") : Eµ* 

* For a fermion, of course, there will already be an arrow on the line, telling us whether it is an 
electron or a positron. The two arrows have nothing to do with one another; they may or may 
not point in the same direction. 
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3. Vertex factors: Each vertex contributes a factor 

The dimensionless coupling constant g. is related to the 
charge of the electron: g. = eJ4n:/nc = -v'4Jra.* 

4. Propagators: Each internal line contributes a factor as 
follows: 

Electrons and positrons: 
i(yl'qµ + me) 

q2 _ m2c2 

Photons: 

5. Conservation of energy and momentum: For each vertex, write 
a delta function of the form 

where the k's are the three four-momenta coming into the 
vertex (if an arrow leads outward, then k is minus the 
four-momentum of that line). 

6. Integrate over internal momenta: For each internal 
momentum q, write a factor 

and integrate. 
7. Cancel the delta Junction: The result will include a factor 

corresponding to overall energy-momentum conservation. 
Cancel this factor, and multiply by i; what remains is /It. 

It is critically important that the pieces be assembled in the correct order -
otherwise the matrix multiplications will be gibberish. The safest procedure is 

* In Heaviside-Lorentz units, with Ii and c set 
equal to 1, g, is the charge of the positron, 
and hence is written 'e' in most texts. In 
this book I use Gaussian units, and keep all 
factors of Ii and c. The easiest way to avoid 
trouble over units is to express all results in 
terms of the dimensionless number a. In 

writing the Feynman rules for QED I assume 
we are dealing with electrons and positrons. 
In general, the QED coupling constant is 
-q✓ 4rr / lie, where q is the charge of the 
particle (as opposed to the antiparticle). For 
electrons, q = -e, but for 'up' quarks, say, 
q = fe. 
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to track each fermion line backward through the diagram. Start (for example) with 
an outgoing electron line, and follow the arrow (the one on the line) back until 
it emerges, either as an incoming electron or as an outgoing positron, writing 
down the various line factors, vertex factors, and propagators, left to right, as you 
encounter them. Each fermion line produces a 'sandwich', of the form adjoint 
spinor, 4 x 4 matrix, spinor (row• matrix• column= number). Meanwhile, each 
vertex carries a contravariant vector index (µ,, v, J.., ... ), which contracts with the 
covariant index of the associated photon line or propagator. (Don't worry: all of 
this will make much better sense when we work some examples, but I wanted to 
prescribe the ritual, for future reference.) 

As before, the idea is to draw all the diagrams contributing to the process in 
question (up to the desired order), calculate the amplitude (.4) for each one, and 
add them up to get the total amplitude, which is then inserted into the appropriate 
Golden Rule for the decay rate or the scattering cross section, as the case may be. 
There's one new twist that occasionally arises: the antisymmetrization of fermion 
wave functions requires that we insert a minus sign in combining amplitudes 
that differ only in the interchange of two identical external fermions. It doesn't 
matter which diagram you associate the minus sign with, since the total will 
be squared eventually anyway; but there must be a relative minus sign between 
them: 

8. Antisymmetrization: Include a minus sign between diagrams 
that differ only in the interchange of two incoming (or 
outgoing) electrons (or positrons), or of an incoming electron 
with an outgoing positron (or vice versa). 

7.6 
Examples 

We are now in a position to reproduce many of the classic calculations in quantum 
electrodynamics. Just so you don't get lost in the details, let me begin by giving 
you a catalog of the most important processes (Table 7.1). The simplest case 
is electron-muon scattering, for here only one diagram contributes in second 
order.* 

* It doesn't have to be an e and a µ., of course. 
Any spin-½ point charges would do (e and 
T, for instance, or µ. and T, or electron and 
quark, etc.), as long as you put in the cor­
rect masses and charges. As a matter of fact, 
most books use electron-proton scattering as 
the canonical example, but that is actually a 
rather inappropriate choice, since the proton 
is a composite structure, not a point particle. 
Still, to the extent that the internal structure 

of the proton can be ignored, it is not a bad 
approximation (rather like treating the sun as 
a point mass in the theory of the solar sys­
tem). If the 'muon' is much heavier than the 
'electron', we have Mott scattering; if, more­
over, the 'electron' is nonrelativistic, we get 
Ruthe,ford scattering, for which QED repro­
duces precisely the classical formula (Example 
6.4). 
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Table 7.1 Catalog of basic quantum electrodynamic processes. 

Second-order processes 

Elastic 

X { Electron-muon scattering(e + µ. ----> e + µ.) 
(Mott scattering(M » m) =} Rutherford scattering(v « c)) 

xx 
XK 
XK 
Inelastic 

xx 
xx 

{ Electron-electron scattering(e- + e- ----> e- + ,-) 
(M0ller scattering) 

{ Electron-positron scattering(e- + e+ ----> e- + e+) 
(Bhabha scattering) 

{ Compton scattering(y + e- ----> y + e-) 

{ Pair annihilation(e- + e+ ----> y + y) 

{ Pair production(y + y ----> e- + e+) 

Most important third-order process 

{ ⇒ Anomalous magnetic moment of electron 

Example 7.1 Electron-Muon Scattering Walking 'backward' along each fermion 
line (Figure 7.2), and applying the Feynman rules as we go: 

(2n"}4 ! [u(s3) {p3)(ig,ylL)u(s1) (pi)] -:1;"" [u(s4) {p4)(ig,y ")u(s2) (p2)] 

X 84(p1 - p3 - q)84(p2 + q - p4) d4 q 

Notice how the space-time indices on the photon propagator contract with those 
of the vertex factors at either end of the photon line. Carrying out the (trivial) q 
integration, and dropping the overall delta function, we find 

(7.106) 

In spite of its complicated appearance, with four spinors and eight y matrices, 
this is just a number, which you can work out once the spins are specified (see 
Problem 7.26). 



Fig. 7.2 Electron-muon scattering. Fig. 7.3 'Twisted' diagram for 
electron-electron scattering. 

7.6 Examples 1247 

Example 7.2 Electron-Electron Scattering In this case there is a second diagram, 
in which the electron that emerges with momentum p3 and spin s3 comes from 
the p2 , s2 electron, instead of the p1 , s1 electron (Figure 7.3). We can obtain 
this amplitude from Equation 7.106 simply by the replacement p3, S3 ++ p4, s4 . 

According to Rule 8, the two diagrams are to be subtracted, so the total ampli­
tude is 

2 
./It = - g, 2 [u(3)yµ u(l)][u(4)Yµ u(2)] 

(p1 - p3) 

2 

+ g, 2 [u(4)yµu(l)][u(3)yµu(2)] 
(F1 - p4) 

(7.107) 

(Note the transparent shorthand I have adopted to label the spinors.) 

Example 7.3 Electron-Positron Scattering Again, there are two diagrams.* The first 
is similar to the electron-muon diagram (Figure 7.4): 

(2n')4 J [u(3)(ig,yµ)u(l)l-:-r [v(2)(ig,y")v(4)] 

X 84(p1 - p3 - q)84(p2 + q - p4) d4q 

Notice that 'proceeding backwards' along an antiparticle line means workingforward 
in time; the order is always adjoint/matrix/spinor. The amplitude for this diagram 

• The fact that there are two diagrams for 
electron-electron and electron-positron 
scattering, but only one for electron-muon 
scattering, would appear offhand to be in­
consistent with the classical limit. After all, 
Coulomb's law says that the force of attraction 
or repulsion between two particles depends 
only on their charges, not on whether they 
happen to be identical (or antiparticles of 
one another); in the nonrelativistic limit, 
then, we should get the same answer whether 

we use the electron-muon formula or the 
electron-electron formula. The amplitudes, it 
is true, are not the same, but the cross section 
formula (Equation 6.34) carries a factor of 
S, which is ½ for electron-electron scat­
tering and 1 for electron-muon scattering. 
For electron-positron scattering, S = 1, but 
the second amplitude (Equation 7.109) is 
smaller than the first (Equation 7.108) by a 
factor (v/c) 2 , so only ..-«1 contributes, in the 
nonrelativistic limit. 
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Fig. 7.4 Electron-positron scattering. Fig. 7.5 Second diagram contributing to 
electron-positron scattering. 

is thus 

(7.108) 

The other diagram represents virtual annihilation of the electron and positron, 
followed by pair production (Figure 7.5): 

(2n"}4 J [u(3)(ig,yµ)v(4)]-~~v [v(2)(ig,y")u(l)] 

X 84(q - p3 - p4)84(p1 + P2 - q) d4q 

The amplitude for this diagram is therefore 

(7.109) 

Now, should we add these amplitudes, or subtract them? Interchanging the incom­
ing positron and the outgoing electron in the second diagram (Figure 7.5), and 
then redrawing it in a more customary configuration 

we recover the first diagram (Figure 7.4). According to Rule 8, then, we need a 
minus sign: 

2 

JFI = - g, 2 [u(3)yµu(l)][v(2)yµv(4)] 
(p1 - p3) 

2 

+ g, 2 [u(3)yµv(4)][v(2)yµu(l)] 
(p1 + p2) 

(7.110) 
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Fig. 7.6 Compton scattering. Fig. 7.7 Second diagram for Compton scatter­
ing. 

Example 7.4 Compton Scattering For an example involving the electron propagator 
and photon polarization, consider Compton scattering, y + e ➔ y + e. Again there 
are two diagrams, but they do not differ by the interchange of fermions, and the 
amplitudes add. The first diagram (Figure 7.5) yields 

(2n)4 J E1,(2) [u(4)(ig,yµ) i~fi + ~c~ (ig,y")u(l)] Ev(3)* 
(q -m C) 

X 84(p1 - p3 - q)84(p2 + q- p4) d4q 

Notice that the space-time index on each photon polarization vector is contracted 
with the index of they matrix at the vertex where the photon was created or absorbed. 
Notice also how the electron propagator fits in as we work our way backward along 
the electron line. I have introduced here the very convenient 'slash' notation: 

Evidently, the amplitude associated with Figure 7.6 is* 

2 

• .-#'ti = g~ 2 2 [u(4)/(2)(/1 - }'3 + mc)/(3)*u(l)] 
(p1 - p3) - m C 

Meanwhile, the second diagram (Figure 7.7) yields 

2 

.£2 = g~ 2 2 [u(4)/(3)*(/1 + /2 + mc)/(2)u(l)] 
(p1 + p2) - m C 

and the total amplitude is JI/= u1l1 + u1l2 . ~lll 

7.7 
Casimir's Trick 

(7.111) 

(7.112) 

(7.113) 

In some experiments the incoming and outgoing electron (or positron) spins are 
specified, and the photon polarizations are given. If so, the next thing to do is to 

* Here and below, f' means y"(€;,); the y-matrix is not conjugated. 
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insert the appropriate spinors and polarization vectors into the expression for .,,ff, 

and compute [.,$/[ 2 - the quantity we actually need, to determine cross sections 
and lifetimes. More often, however, we are not interested in the spins. A typical 
experiment starts out with a beam of particles whose orientations are random, and 
simply counts the number of particles scattered in a given direction. In this case the 
relevant cross section is the average over all initial spin configurations, s;, and the sum 
over all final spin configurations, SJ. In principle, we could compute [.,$/(s; ➔ s1)i2 
for every possible combination, and then do the summing and averaging: 

([.,$/[ 2) = average over initial spins, sum over final spins, 

of [.,$/(s; ➔ s1)1 2 (7.114) 

In practice, it is much easier to compute ([.,$/[ 2) directly, without ever evaluating 
the individual amplitudes. 

Consider, for instance, the electron-muon scattering amplitude (Equation 7.106). 
Squaring, we have 

(I use v for the second contraction, sinceµ has been preempted.) A glance at the 
first and third 'sandwiches' (or the second and fourth) reveals that we must handle 
quantities of the generic form 

(7.116) 

where a and b stand for the appropriate spins and momenta, and r1, and 
r2 are 4 x 4 matrices. All the other processes described in Section 7.6 - M0ller, 
Bhabha, and Compton scattering, as well as pair production and annihilation - lead 
to expressions with similar structure. To begin with, we evaluate the complex 
conjugate (which is the same as the Hermitian conjugate, since the quantity in 
square brackets is a 1 x 1 'matrix'): 

(7.117) 

Now, y 0t = y 0 , and (y 0)2 = 1, so 

(7.118) 

where* 

(7.119) 

* Observe that the overbar now serves two different functions. On a spinor it denotes the adjoint: 
,ii= vrty0 (Equation 7.58); on a 4 x 4 matrix it defines a new matrix: r = y 0 r.,.y 0• 
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Thus 

G = [u(a)f1u(b)][u(b)f'iu(a)] (7.120) 

We are now ready to sum over the spin orientations of particle b. Using the 
completeness relation (Equation 7.99), we have 

L G = u(a)f1 I L u('b)(pb)u''b)(pb) I f'2u(a) 
b spins sb=l,2 

= u(a)f1(p'b + mbc)f'2u(a) = u(a)Qu(a) (7.121) 

where Q is a temporary shorthand for the 4 x 4 matrix 

(7.122) 

Next, we do the same for particle a: 

L L G = L u(sa) (p.) Qu(sa) (p.) 
a spins b spins sa=l,2 

Or, writing out the matrix multiplication explicitly:* 

.~,.tw•11P,l,Q;•1' 11P,IJ - t, Q; I,~, •1'"11P,)W'11P,I t 
4 4 

= L Qjj{pa + maC)ji = L[Q(p'a +mac)];;= Tr[Q(p'a + mac)] (7.123) 

iJ=l i=l 

where 'Tr' denotes the trace of the matrix (the sum of its diagonal elements): 

Tr(A) see LA;; (7.124) 

Conclusion: 

L [u(a)r1u(b)][u(a)f2u(b)]* = Tr[r1(p'b + mbc)f2(pa + mac)] (7.125) 
all spins 

This may not look like much of a simplification, but it is actually huge. Notice that 
there are no spinors left - once we do the summation over spins, all that remains is 
to multiply matrices and take the trace. This is sometimes called 'Casimir's trick', 
since Casimir was apparently the first one to use it [4]. Incidentally, if either u (in 

* This is fancy footwork, so watch closely. You can't mess with the ordering of two spinors, but 
their components are just numbers ... they can be written either way: u,uj = Uju,. In the second 
step we recognize this product as the Ji element of the matrix uu (note the unusual matrix mul­
tiplication here, column times row: 4 x 1 times 1 x 4 produces 4 x 4). 
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Equation 7.125) is replaced by av, the corresponding mass on the right-hand side 
switches sign (see Problem 7.28). 

Example 7.5 In the case of electron-muon scattering (Equation 7.115), r 2 = y", 
and hence r\ = y 0y v·j· y 0 = y" (Problem 7.29). Applying Casimir's trick twice, we 
find 

4 

(JAJ2) = g, 4 Tr[yµ(p'1 + mc)y"(p'3 + me)] 
4(p1 - p3) 

x Tr[Yu(p2 + Mc)Yv{p4 + Mc)] (7.126) 

where m is the mass of the electron and M is the mass of the muon. The factor 
of ¼ is included because we want the average over the initial spins; since there are 
two particles, each with two possible orientations, the average is a quarter of the 
sum. !l!!lil 

Casimir's trick reduces everything to an exercise in calculating the trace of 
some complicated product of y matrices. This algebra is facilitated by a number 
of theorems, which I shall now list (I'll leave the proofs to you - see Problems 
7.31-7.34). First of all, I should mention three facts about traces in general: if A 
and B are any two matrices, and a is any number 

1. Tr(A + B) = Tr(A) + Tr(B) 

2. Tr(aA) = a Tr(A) 

3. Tr(AB) = Tr(BA) 

It follows from number 3 that Tr(ABC) = Tr(CAB) = Tr(BCA), but this is not 
equal, in general, to the trace of the matrices taken in the other order: Tr(ACB) = 
Tr(BAC) = Tr(CBA). You can 'peel' matrices off the back end of a product and 
move them around to the front, but you must preserve the ordering. It is useful to 
note that 

and to recall the fundamental anticommutation relation for the y matrices (together 
with an associated rule for 'slash' products): 

5'. /}5 +}5/ = 2a• b 

From these there follows a sequence of 'contraction theorems': 

4 

- 2y" 
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8. YµY"i'Yµ 4gv!. 8'. Yµf,){yµ 4(a• b) 

9. Y,,y"y!.yayµ _ 2ya Y!.Yv 9'. Yµf,J5fYµ - 2¢;51, 

and a collection of 'trace theorems': 

10. The trace of the product of an odd number of gamma matrices is zero. 

11. Tr(l) 4 

12. Tr(yµy") 4gµv 12'. Tr(/,J5) 4(a · b) 

13. Tr(yµyvy!.ya) 13'. Tr(l,;5¢/,) 

= 4(g''"g!.a _ gµ!.gva + gµa g"!.) = 4(a • be• d - a• e b - d +a. db. e) 

Finally, since y 5 = iy 0y 1y 2y 3 is the product of an even number of y matrices, it 
follows from Rule 10 that Tr (y 5y 1') = Tr (y 5yµyvy!.) = 0. When y 5 is multiplied 
by an even number of y's, we find 

14. Tr(y5) 0 

15. Tr(y 5yµy") 0 15'. Tr(y5/,J5) 0 

1253 

16. Tr(ysy''y"y!.ya) 4iEµv!.a 16'. Tr(y5/,J5¢/,) 4iEµv!.a aµbve;.da 

where* 

if µ,vJ...a is an even permutation of 0123, 

ifµ, vJ...a is an odd permutation, (7.127) 

if any two indices are the same. 

Example 7. 6 Evaluate the traces in electron-muon scattering (Equation 7.126): 

Tr[yµ(/1 + me)y" (/3 + me)] 

= Tr(y1'/1y"p3) + me [Tr(yµp1y") + Tr(yµy"/3)] + (me) 2Tr(yµy") 

* By 'even permutation' I mean an even num­
ber of interchanges of two indices. Thus 
Eµvla = -Ev11->..o = Evlµ<1 = -EvAoµ • and SO 

on - in other words, E1"''" is antisymmet­
ric in every pair of superscripts. It might 
seem strange that E0123 is minus l; why not 
make it plus 1? It's purely conventional, 
of course - evidently, whoever established 
the definition wanted Eom to be plus 1, 

and from that it follows that Eom = -1, 
since three spatial indices are raised. By the 
way, if you are used to working with the 
three-dimensional Levi-Civita symbol Eijk 

(Problem 4.19), be warned that although 
an even permutation on three indices cor­
responds to preservation of cyclic order 

(Eijk = Ejki = Ekij), this is not the case for four 
indices: Eµ,vAa = -Ev).aµ. = EA011v = -EaµvA_ 
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Solution: According to Rule 10, the terms in square brackets are zero. The last term 
can be evaluated using Rule 12, and the first by Rule 13: 

Thus 

Tr(ylLj1Y"j3) = (pI)i.(p3)a Tr(ylLy>.yvya) 

= (pi)i.(pJ)a4(glLAgva _ glL"la + gµa l") 

= 4 [PiPJ - glL"(p1 · p3) + PiPrJ 

Tr [Yµ(p'1 + mc)y"(Ji3 + me)] 

= 4 {PiPJ + Pi Pr+ glL" [(mc)2 - (p1 · p3)]) (7.128) 

The second trace in Equation 7.126 is the same, with m--+ M, l --+ 2, 3 --+ 4, and 
the Greek indices lowered. So 

7.8 

4g4 
(l.4'12) = (p e )4 {PiPJ + Pi Pr+ glL" [(mc)2 - (p1. p3)]) 

I - p3 

x {p2µP4v + P4µP2v + gµv [(Mc)2 - (p2 · p4)]} 

8g4 
(p ' )4 [(p1 · P2)(p3 · p4) + (p1 · p4)(p2 · p3) 

I - p3 

- (p1 · p3)(Mc)2 - (p2 · p4)(mc)2 + 2(mMc2)2] 

Cross Sections and Lifetimes 

(7.129) 

We are now back on familiar turf. Having calculated l.4'1 2 (or, where appropriate, 
(l.4'12)), we simply plug it into the relevant cross section formula from Chapter 6: 
Equation 6.38 in the general case, Equation 6.47 for two-body scattering in the CM, 
or one of the equations from Problems 6.8, 6.9, or 6.10 in the lab frame. 

Example 7. 7 Mott and Ruthe,ford Scattering An electron (mass m) scatters off 
a much heavier 'muon' (mass M » m). Assuming that the recoil of M can be 
neglected, find the differential scattering cross section in the lab frame (M at 
rest). 

Solution: According to Problem 6.8, the cross section is given by 

da -(-ti )2 .4' 2 
dQ - 8:rrMc (I I ) 
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E,p, ----- . 
Before After 

Fig. 7.8 Electron scattering from a heavy target. 

Because the target is stationary, we have (Figure 7.8): 

PI = (E/c, pi), p2 = (Mc, 0), p3 = (E/c, p3), p4 = (Mc, 0) 

where E is the incident (and scattered) electron energy, p1 is the incident 
momentum, and p3 is the scattered momentum (their magnitudes are equal, 
lp1 I = lp3 I = lpl, and the angle between them is 0 so p1 • p3 = p2 cos 0). Thus 

(p1 - p3)2 = -(P1 - p3)2 = -pi - P~ + 2p1 · P3 

= -2p2(1- cos0) = -4p2 sin2 (0/2) 

(p1 · p3) = (E/c) 2 - p1 · p3 = p2 + m2c2 - p2 cos0 = m2c2 + 2p2 sin2 (0/2) 

(p1 · P2)(p3 · p4) = (p1 · p4)(p2 · p3) = (ME)2 

(p2 · p4) = (Mc) 2 

Putting this into Equation 7.129, we have 

(7.130) 

and therefore (recalling that g, = ..J4Jra) 

do- ( ali ) 2 
-d = . 2 [(mc)2 +p2 cos2 (0/2)] 

Q 2p2 sm (0 /2) 
(7.131) 

This is the Mott formula. It gives, to good approximation, the differential cross 
section for electron-proton scattering. If the incident electron is nonrelativis­
tic, so p2 « (mc)2, Equation 7.131 reduces to the Rutherford formula (compare 
Example 6.4): 

da ( e2 )
2 

dQ = 2mv2 sin2 (0 /2) 
(7.132) 

~ 

What about decays? Actually, there is no such thing, in pure QED, for if a single 
fermion goes in, that same fermion must eventually come out; a fermion line 
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Fig. 7.9 Two contributions to pair annihilation. 

cannot simply terminate within a diagram, nor is there any mechanism in QED for 
converting one fermion (say, a muon) into another (such as an electron). To be sure, 
there exist electromagnetic decays of composite particles, for example, n° ➔ y + y; 

but the electromagnetic component in this process is nothing but quark-antiquark 
pair annihilation, q + q ➔ y + y. It is really a scattering event, in which the two 
colliding particles happen to be in a bound state. 

The cleanest example of such a process is the decay of positronium: e+ + e- ➔ 

y + y, which we consider in the following example. We'll do the analysis in the 
positronium rest frame (which is to say, in the CM frame of the electron-positron 
pair). The electron and positron are moving rather slowly - indeed, for purposes 
of calculating the amplitude we shall assume they are at rest. On the other hand, 
this is one of those cases in which we cannot average over initial spins, because the 
composite system is either in the singlet configuration - spins antiparallel - or in 
the triplet configuration - spins parallel - and the formula for the cross section 
(and hence the lifetime) is quite different in the two cases.* 

Example 7.8 PairAnnihilation_i_ Compute the amplitude, .,ff, fore++ e- ---+ y + y, 

assuming that the electron and positron are at rest, and in the singlet spin 
configuration. 

Solution: Two diagrams contribute (Figure 7.9). The amplitudes are (for simplicity 
I'll suppress the complex conjugate signs on the E's): 

2 

.#11 = g; 2 2 v(2)/4(/1 - /3 + mc)/3u(l) 
(p1 - p3) - m C 

(7.133) 

2 

.#12 = g; 2 2 v(2)/3(11 - /4 + mc)/4u(l) 
(p1 - p4) - m C 

(7.134) 

* As a matter of fact, you can do this particu­
lar problem by Casimir's trick, because of a 
rather special circumstance: the singlet state 
can only decay to an even number of pho­
tons (predominantly two) and the triplet to 
an odd number (usually three)- So in calculat­
ing the matrix element for e+ + e- --> y + y, 
we are automatically selecting out the singlet 
configuration even if the triplet was included 

in the sum over spins. See Problem 7 -40_ 
I Warning: This is not an easy calculation, 

though every step is reasonably straightfor­
ward. You may prefer to skim it (or skip it 
altogether). The final result will be used once 
or twice later on, but it is not necessary to 
master the details at this stage. (However, I 
do think it is an illuminating application of 
the Feynman rules-) 
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and they add 

(7.135) 

With the initial particles at rest, the photons come out back-to-back, and we may as 
well choose the z axis to coincide with the direction of the first photon; then 

Pi= mc(l,0,0,0), 

p3 = mc(l, 0, 0, 1), 

and hence 

P2 = mc(l, 0, 0, 0), 

p4 = mc(l, 0, 0, -1) 

The amplitudes simplify somewhat if we exploit Rule 5' from Section 7.7: 

(7.136) 

(7.137) 

But E3 has only spatial components (in the Coulomb gauge), whereas p1 is purely 
temporal, so p1 • E3 = 0, and hence 

(7.138) 

Similarly 

but (p3 • E3) = 0 by virtue of the Lorentz condition (Equation 7.91), so 

(7.139) 

Therefore 

But (p1 - mc)u(l) = 0 (Equation 7.33), so 

(7.140) 

By the same token 

(7.141) 
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Putting all this together, we find 

Now 

so the expression in square brackets (Equation 7.142) can be written as 

But 

I=-€. r = - ( 0 O". €) 
-0". € 0 

and therefore 

In Chapter 4 (Problem 4.20) we encountered the useful theorem 

(u • a)(u • b) =a• b + iu • (a x b) 

It follows that 

(which we could also have obtained from Rule S'), and 

where I: = ( ~ ~), as before. Accordingly 

2 

__,ff= &v(2) [(€3 · €4)y0 + i(f3 x €4) · I:y 3] u(l) 
me 

(7.142) 

(7.143) 

(7.144) 

(7.145) 

(7.146) 

(7.147) 

(7.148) 

(7.149) 

So far I have said nothing about the spins of the electron and positron. Remember 
that we are interested in the singlet state: 
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Symbolically 

,,,«singlet= (,4Zt-J, - -4tt-J,)/h (7.150) 

.,,f/H is obtained from Equation 7.149 with 'spin up' for the electron (u(I) in 
Equation 7.46) 

and 'spin down' for the positron (v(2) in Equation 7.47) 

v(2) = -v'2mc(O 0 1 0) 

Using these spinors, we find 

v(2)y 0u(l) = O 

v(2)1:y 3u(l) = -2mcz 

So 

Meanwhile, for ,,«u we have 

from which it follows that 

(7.151) 

(7.152) 

(7.153) 

(7.154) 

(7.155) 

(7.156) 

(7.157) 

Thus the amplitude for annihilation of a stationary e+ e- pair into two photons, 
which emerge in the directions ±z, is 

(7.158) 

(I note in passing that since .4tt-J, = -.,,f/+t, the triplet configuration (t -J, + -J, t)/ .,ti. 
gives zero, confirming our earlier observation that the two-photon decay is forbidden 
in that case.) 

Finally, we must put in the appropriate photon polarization vectors. Recall that 
for 'spin up' (m, = +1) we have (see footnote to Equation 7.94) 

€+ = -(1/h)(l, i, 0) (7.159) 

whereas for 'spin down' (m, = -1) 

L = (1/h)(l, -i, 0) (7.160) 
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If the photon is traveling in the +z direction, these correspond to right and 
left-circular polarization, respectively. Since the z component of the total angular 
momentum must be zero, the photon spins must be oppositely aligned: t-!, or -!, t. 
In the first case we have 

€3 = -(l/-v'2)(1, i, 0), €4 = (1/-v'2)(1, -i, 0), 

so 

In the second case 3 and 4 are interchanged: 

€3 X €4 = -ik 

(7.161) 

(7.162) 

Evidently we need the antisymmetric combination, ( t-!, - -!, t) / ,,/2, which should 
come as no surprise: this corresponds to a total spin of zero, just as it did when we 
combined two particles of spin ½- Again, the amplitude is (.4lu - .42'-J.t )/ ,,/2, only 
this time the arrows refer to photon polarization. Finally, then: 

.4t'singlet = -4g; (7.163) 

(I have restored the complex conjugation of the polarization vectors, suppressed 
until now; this simply reverses the signs in Equation 7.161 and 7.162.) 

That was a lot of work, for a modest-looking answer.• What can we do with it? 
In the first place, we can calculate the total cross section for electron-positron 
annihilation. In the CM frame, the differential cross section is (Equation 6.47) 

do- ( fie ) 2 IPJI .41 2 
dn = 8n(E1 + E2) IP;I I I (7.164) 

Here 

(7.165) 

and, since the collision is nonrelativistic 

(7.166) 

where v is the incident electron (or positron) speed.I Putting all this together, we 
find 

(7.167) 

* Once you get used to it the evaluation of Feynman diagrams becomes a tedious and mechanical 
process, and there exist a number of computer programs that will do the hard work for you. In 
particular, Mathematica and Maple both support useful packages [S]. 

t We used v = 0 in calculating A't, but obviously we cannot do so here. Is there an inconsistency 
in this? Not really. Think of it this way: .4't (and also E1 , Ez, IPJL and lp;I) could be expanded in 
powers of v/c. What we have done is to calculate the leading term in each expansion. 
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Since there is no angular dependence, the total cross section is 4rr times this [6]: 

a= 4rr (ria) 2 

CV m 
(7.168) 

Does it make sense that the cross section is inversely proportional to the incoming 
velocity? Yes: the more slowly the electron and positron approach one another, 
the more time there is for them to interact, and the greater is the likelihood of 
annihilation. 

Finally, we can calculate the lifetime of positronium, in the singlet state. This is 
clearly related to the cross section for pair annihilation (Equation 7.168), but what 
is the precise connection? Well, going back to Equation 6.13, 

da 1 dN 

dn 2 dn 

we see that the total number of scattering events per unit time is equal to the 
luminosity times the total cross section: 

N = .!t:a (7.169) 

If p is the number of incident particles per unit volume, and if they are traveling at 
speed v, then the luminosity (Figure 7.10) is 

.!t: = pv (7.170) 

For a single 'atom', the electron density is 11/r(0)l2, and N represents the probability 
of a disintegration, per unit time - which is to say, the decay rate. Thus 

4rr ( 00 ) 2 
r = vaJv,(0)1 2 = ----z- ~ 11/r(0)l2 

Now, in the ground state 

11/r(0)12 = ~ (a2:c/ 
(Problem 5.23), so the lifetime of positronium is 

1 2/i -10 , = - = - 5--2 = 1.25 X 10 S r a me 

which is the result I quoted back in Chapter 5 (Equation 5.33) . 

. . . : : .. :-: . . . . . . 
• • ••••• ·······•:: 

vdt 

V -
Fig. 7.10 The number of particles in the cylinder is pAv dt, 
so the luminosity (number per unit area per unit time) is pv. 

(7.171) 

(7.172) 

(7.173) 
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7.9 
Renormalization 

In Section 7.6 we considered 'electron-muon' scattering, described in lowest order 
by the diagram 

and by the corresponding amplitude 

(7.174) 

with 

q = Pl - p3 (7.175) 

There are a number of fourth-order corrections, of which perhaps the most 
interesting is 'vacuum polarization': 

Here the virtual photon momentarily splits into an electron-positron pair, leading 
(as we saw qualitatively in Chapter 2) to a modification in the effective charge of 
the electron. My purpose now is to indicate how this works out quantitatively. 

The amplitude for this diagram is (Problem 7.42) 

(7.176) 
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I ts inclusion amounts to a modification of the photon propagator: 

(7.177) 

where (comparing Equations 7.174 and 7.176): 

(7.178) 

Unfortunately, this integral is divergent. Naively, it should go like 

(7.179) 

(that is, it should be 'quadratically divergent'). In actual fact, because ofcancellations 
in the algebra, it only goes like In lkl (it is 'logarithmically divergent'). But never 
mind - either way, it blows up. We encountered a similar problem in Chapter 6; it 
seems to be characteristic of closed-loop diagrams in the Feynman calculus. Once 
again, the strategy will be to absorb the infinities into 'renormalized' masses and 
coupling constants. 

The integral in Equation 7.178 carries two space-time indices; once we have 
integrated over k, the only four-vector left is qµ., so Iµ.,, must have the generic form 
gµ.,,( ) + qµ.qv( ), where the parentheses contain some functions of q2• We write it 
thus [7]: 

(7.180) 

The second term contributes nothing to .A, since the qµ. contracts with yµ. in 
Equation 7.176, giving 

while, from Equations 7.95 and 7.96, 

and hence 

(7.181) 

So we can forget about the second term in Equation 7.180 As for the first term, 
appropriate massaging of the integral (7.174) reduces it to the form (Problem 
7.43) 

I(q2) = _e_ - - 6 z(l - z) In 1 - -z(l - z) dz g2 {1""dz 11 [ q2 ] } 
12rr2 m2 z O m2c2 

(7.182) 
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The first integral cleanly isolates the logarithmic divergence. To handle it, we 
temporarily impose a cutoff M (not to be confused with the mass of the muon), 
which we will send to infinity at the end of the calculation: 

The second integral 

f (x) = 611 
z(l - z) ln[l + xz(l - z)] dz 

=-~+~+2(x-2)Jx+4tanh_1 ✓ x 
3 X X X x+4 

(7.183) 

(7.184) 

is cumbersome but perfectly finite (Figure 7.11); the limiting expressions for large 
and small x are 

Thus 

f(x) ~ { x/5 
In x 

(x « l)} 
(x » 1) 

(7.185) 

(7.186) 

Notice that q2 is negative, here: if the incident electron's three-momentum in the 
CM is p, and the scattering angle is 0, then (Problem 7.44) 

q2 = -4p2 sin2 ~ 
2 

(7.187) 

Thus -q2/m2c2 ~ v2/c2, and the limiting cases in Equation 7.185 correspond to 
nonrelativistic and ultrarelativistic scattering, respectively. 

I X 

I 

Fig. 7.11 Graph off(x) (Equation 7.184). The solid line is 
the numerical result; the dashed line below it is In x (which 
approximates f (x) at large x); the straight line above it is 
x/5 (which approximates f (x) at small x). 
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The amplitude for electron-muon scattering, including vacuum polarization, is 

therefore 

(7.188) 

Now comes the critical step, in which we 'sop up' the infinity (contained for the 
moment in the cutoff M) by introducing the 'renormalized' coupling constant 

1- -•-ln -g2 (M2) 
12n2 m2 

(7.189) 

Rewriting Equation 7.188 in terms of gR, we have 

(7.190) 

(Equation 7.188 is only valid to order g: anyway, so it doesn't matter whether we 
use g. or gR inside the curly brackets.) 

There are two important things to notice about this result: 
1. The infinities are gone. There is no Min Equation 7.190. All 

reference to the cutoff has been absorbed into the coupling 
constant. To be sure, everything is now written in terms of 
gR, instead of g •. But that's all to the good: gR, not g., is what 
we actually measure in the laboratory (in Heaviside-Lorentz 
units it is the charge of the electron - or muon - and we 
determine it experimentally as the coefficient of attraction or 
repulsion between two such particles). If, in our theoretical 
analysis, we look only at 'tree level' (lowest-order) diagrams, 
we are led to suppose that the physical charge is the same as 
the 'bare' coupling constant, g •. But as soon as we include 
higher-order effects we find that it is really gR, not g., that 
corresponds to the measured electric charge. Does this mean 
that our earlier results are all wrong? No. What it means is 
that by naively interpreting g. as the physical electric charge 
we were unwittingly taking into account the divergent part of 
the higher-order diagrams. 

2. There remains the finite correction term, and here the 
important thing to notice is that it depends on q2 . We can 
absorb this, too, into the coupling constant, but the 'constant' 
is now a function of q2; we call it a 'running' coupling 
constant: 

(7.191) 
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or, in terms of the fine structure 'constant' (ge = .J4rra): 

(7.192) 

The effective charge of the electron (and the muon), then, 
depends on the momentum transferred in the collision. 
Higher momentum transfer means closer approach, so 
another way of saying it is that the effective charge of each 
particle depends on how far apart they are. This is a 
consequence of vacuum polarization, which 'screens' each 
charge. We now have an explicit formula for what was, in 
Chapter 2, a purely qualitative description. How come 
Millikan and Rutherford, or even Coulomb, never noticed 
this effect? If the electron's charge is not a constant, why 
doesn't this foul up everything from electronics to chemistry? 
The answer is that the variation is extremely slight, in 
nonrelativistic situations. Even in a head-on collision at fa c, 

the correction term in Equation 7.192 is only about 6 x 10-6 

(Problem 7.45). For most purposes, therefore, a(O) = 1~7 will 
do just fine. Nevertheless, the second term in Equation 7 .192 

makes a detectable contribution to the Lamb shift [8], and it 
has been measured directly in inelastic e+ e- scattering [9]. 
Moreover, we shall encounter the same problem in quantum 
chromodynamics, where (because of quark confinement) the 
short-distance, relativistic regime is the case of interest. 

I have concentrated on one particular fourth-order process (vacuum polarization), 
but there are, of course, several others. There are the 'ladder-diagrams': 

These are finite and present no particular problems. But there are also three 
divergent graphs: 

XXX 
(and of course three more in which the extra virtual photon couples to the 
muon). The first two renormalize the electron's mass; the third modifies its 
magnetic moment. In addition, all three, considered separately, contribute to the 
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renormalization of the electron's charge. Luckily, the latter contributions cancel 
one another, so Equation 7.189 remains valid. (I say 'luckily', for these corrections 
depend on the mass of the particle to which the virtual photon line attaches, and if 
they did not cancel we would have a different renormalization for the muon than for 
the electron. The Ward identity (the official name for this cancellation) guarantees 
that renormalization preserves the equality of electric charges, irrespective of the 
mass of the carrier).* And then, there are even higher-order diagrams, such as 

' ' ... 

These introduce further terms in Equation 7 .192, of order a 2, a 3, and so on, but I 
won't pursue the matter here; the essential ideas are all on the table. 
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Problems 
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7.1 Show that oif>Joxµ is a covariant four-vector (¢ is a scalar function of x, y, z, and t). 
[Hint: First determine (from Equation 3.8) how covariant four-vectors transform; then 
use oif>Joxµ' = (oif>Joxv)(oxv /0#1

) to find out how oif>Joxµ transforms.] 
7.2 Show that Equation 7.17 satisfies Equation 7.15 
7.3 Derive Equation 7.45, using Equations 7.43, 7.46, and 7.47 
7.4 Show that u!1l and u!2l (Equation 7.46) are orthogonal, in the sense that u!1H u!2l = 0. 

Likewise, show that v!1l and vl2l are orthogonal. Are ul1l and vl1l orthogonal? 
7.5 Show that for u!1l and ul2l (Equation 7.46) the lower components (u8 ) are smaller 

than the upper ones (uA), in the nonrelativistic limit, by a factor v/c. [1bis simplifies 
matters, when we are doing nonrelativistic approximations; we think of uA as the 'big' 
components and u8 as the 'little' components. (For vl1l and vl2l the roles are reversed.) 
In the relativistic limit, by contrast, uA and u 8 are comparable in size.] 

7.6 If the z axis points along the direction of motion, show that u!1l (Equation 7.46) reduces to 

and construct ul2l, vl1l, and v!2l. Confirm that they are all eigenspinors of S2 , and find 
the eigenvalues. 

7.7 Construct the normalized spinors ul+l and uH representing an electron of momentum 
p with helicity ± 1. That is, find the u's that satisfy Equation 7.49 and are eigenspinors 
of the helicity operator (p • ~ with eigenvalues ± 1. 

[ Solution : u!±) = A ( ±c~I u) , 
(E + mc2) 

h ( Pz ± Jpl) dA2 (E + mc2 ) ] w ere u = an = ------
Px + ipy 2JpJc(Jpl ± Pz) 

7.8 The purpose of this problem is to demonstrate that particles described by the Dirac equation 
carry 'intrinsic' angular momentum (S) in addition to their orbital angular momentum (L), 
neither of which is separately conserved, although their sum is. It should be attempted only if 
you are reasonably familiar with quantum mechanics. 

(a) Construct the Hamiltonian, H, for the Dirac equation. [Hint: Solve Equation 7.19 for 
P°c. Solution: H = cy0(y • p + me), where p = (h/i)V is the momentum operator.] 

(b) Find the commutator of H with the orbital angular momentum L = r x p. [ Solution: 
[H, L] = -incy0(y x p)] Since [H, L] is not zero, L by itself is not conserved. Evidently 
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there is some other form of angular momentum lurking here. Introduce the 'spin 
angular momentum', S, defined by Equation 7.51 

(c) Find the commutator of H with the spin angular momentum, Sea (ll/2)"1:. [Solution: 
[H, SJ = i/\cy0(y x p)] It follows that the total angular momentum, J = L + S, is 
conserved. 

(d) Show that every bispinor is an eigenstate of S2, with eigenvalue 1\2s(s + 1), and find 
s. What, then, is the spin of a particle described by the Dirac equation? 

7.9 The charge conjugation operator (C) takes a Dirac spinor ,tr into the 'charge-conjugate' 
spinor ,tr,, given by 

where y 2 is the third Dirac gamma matrix. [See Halzen and Martin [7], Sect. 5.4.] Find 
the charge-conjugates of ul1l and ul2l, and compare them with vl1l and vl2l. 

7.10 In going from Equation 7.18 to Equation 7.19, we (arbitrarily) chose to work with the 
factor containing the minus sign. How would Section 7.2 be changed if we were to 
replace Equation 7.19 by yµpµ +me= O? 

7.11 Confirm the transformation rule (Equation 7.52, with 7.53 and 7.54) for spinors. [Hint: 
we want it to carry solutions to the Dirac equation in the original frame to solutions in 
the primed frame: 

i/\yµ8 11 ,tr - mc,tr = 0 -<-> i/\y11 a~ ,tr' - mc,tr' = 0 

where ,tr' = S,fr and 

It follows that 

The (inverse) Lorentz transformations tell us ax• ;axµ'_ Take it from there.] 
7.12 Derive the transformation rule for parity, Equation 7.61, using the method in Prob­

lem 7.11. 

7.13 (a) Starting with Equation 7.53, calculate Si" S, and confirm Equation 7.57. 
(b) Show that si• y 0 S = y 0 . 

7.14 Show that 'ify 5 ,tr is invariant under the transformation 7.52. 
7.15 Show that the adjoint spinors ,:;:ll,Z) and vl1•2l satisfy the equations 

[Hint: Take the transpose conjugate of Equations 7.49 and 7.50; multiply from the right 
by y 0 , and show that (y'')i°y0 = y 0 yµ.] 

7.16 Show that the normalization condition (Equation 7.43), expressed in terms of the adjoint 
spinors, becomes 

uu = -vv = 2mc 

7.17 Show that ,iiy11 ,tr is a four-vector, by confirming that its components obey the Lorentz 
transformations (Equation 3.8). Check that it transforms as a (polar) vector under parity 
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(that is, the 'time' component is invariant, whereas the 'spatial' components switch 
sign). 

7.18 Show that the spinor representing an electron at rest (Equation 7.30) is an eigenstate of 
the parity operator, P. What is its intrinsic parity? How about the positron? What if you 
changed the sign convention in Equation 7.61 ? Notice that whereas the absolute parity 
of a spin-½ particle is in a sense arbitrary, the fact that particles and antiparticles carry 
opposite parity is not arbitrary. 

7.19 (a) Express y"yv as a linear combination of 1, y 5, y", y"y 5, and a"v. 
(b) Construct the matrices a 12 , a 13 , and a 23 (Equation 7.69), and relate them to I: 1 , I: 2 , 

and I:3 (Equation 7.51). 
7.20 (a) Derive Equations 7.70 (i and iv) from Equation 7.73. 

(b) Prove Equation 7.74, from Equation 7.73. 
7.21 Show that the continuity equation (Equation 7.74) enforces conservation of charge. [If 

you don't see how to do this, look in any electrodynamics textbook.] 
7.22 Show that we are always free to pick A0 = 0, in free space. That is, given a potential A" 

which does not satisfy this constraint, find a gauge function A, consistent with Equation 
7.85, such that A'0 (in Equation 7.81) is zero. 

7.23 Suppose we apply a gauge transformation (Equation 7.81) to the plane-wave potential 
(Equation 7.89), using as the gauge function 

A = i/ixae-(ifli)p-x 

where K is an arbitrary constant and pis the photon four-momentum. 

(a) Show that this A satisfies Equation 7.85. 
(b) Show that this gauge transformation has the effect of modifying E1' : E" -+ E" +KP". 

(In particular, if we choose K = -E0 IP° we obtain the Coulomb gauge polarization 
vector, Equation 7. 92) This observation leads to a beautifully simple test for the 
gauge invariance of QED results: the answer must be unchanged if you replace E" by 

E" +KP"· 
7.24 Using ul1), ul2) (Equation 7.46) and vl1), vl2) (Equation 7.47), prove the completeness 

relations for spinors (7.99). [Note: uu is the 4 x 4 matrix defined by (uu)!i = u;uj.] 
7.25 Using Ell) and El2) (Equation 7.93), confirm the completeness relation for photons 

(Equation 7.105). 
7.26 Evaluate the amplitude for electron-muon scattering (Equation 7.106) in the CM 

system, assuming the e andµ, approach one another along the z axis, repel, and return 
back along the z axis. Assume the initial and final particles all have helicity + 1. [Answer: 
J/t = -2g;] 

7.27 Derive the amplitudes (Equations 7.133 and 7.134) for pair annihilation, e+ + e- -+ 

y +y. 
7.28 Work out the analog to Casimir's trick (Equation 7.125) for antiparticles 

L [v(a)r1v(b)][v(a)r2v(b)]* 
all spins 

and for the 'mixed' cases 

L [u(a)f 1 v(b)](u(a)r2v(b)]* and L [v(a)r1 u(b)][v(a)r2u(b)]* 
all spins all spins 

7.29 (a) Show that y 0 y vt y 0 = yv, for v = 0, 1, 2, and 3. 
(b) If r is any product of y matrices (r = Ya Yb••• y,) show that f (Equation 7.119) is the 

same product in reverse order, f = y, ···Yb Ya• 
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7.30 Use Casimir's trick to obtain an expression analogous to Equation 7.126 for Compton 

scattering. Note that there are four terms here: 

7.31 (a) Prove trace theorems 1, 2, and 3, in Section 7.7. 
(b) Prove Equation 4. 
(c) Using the anticommutation relation 5, prove 5'. 

7.32 (a) Use the anticommutation relation 5 to prove the contraction theorems 6, 7, 8, and 9. 

(b) From 7, prove 7'; from 8, prove 8'; from 9, prove 9'. 
7.33 (a) Confirm the trace theorems 10, 11, 12, and 13. 

(b) From 12, prove 12'; from 13, prove 13'. 
7.34 (a) Prove theorems 14, 15, and 16. 

(b) From 15, prove 15'; from 16, prove 16'. 
7.35 (a) Show that EµvM Eµv,r = -6 8~ (summation overµ,, v,). implied). 

(b) Show that Eµv).c Eµv0r = -2(8~ 8~ - o; 89)-
(c) Find the analogous formula for EµvM Eµ,t,0r· 

(d) Find the analogous formula for EµvM Ew,pe,. 

[Here 8~ is the Kronecker delta: 1 ifµ,= v, 0 otherwise. It can also be written in terms 
of the mixed (co/contravariant) metric tensor: 8~ = gli v = g.l' .] 

7.36 Evaluate the following traces: 

(a) Tr [yliy" (1 - y 5) y' (1 + ys) y,] 

(b)Tr [(f + me) (t + Mc) (f +me)(~+ Mc)], where pis the four-momentum of a (real) 
particle of mass m and q is the four-momentum of a (real) particle of mass M. Express 
your answer in terms of m, M, c, and {p • q). 

7.37 Starting with Equation 7.107, determine the spin-averaged amplitude, (analogous to 
Equation 7.129) for elastic electron-electron scattering. Assume we're working at high 
energies, so that the mass of the electron can be ignored (i.e., set m = 0). [ Hint: You 
can read (l.4?"112 ) and (l.4?"212 ) from Equation 7.129 For (.4?"1 . .,lti) use the same strategy 
as Casimir's trick to get 

Then exploit the contraction theorems to evaluate the trace. Notice that for massless 
particles the conservation of momentum {p1 + pz = p3 + p4) implies that p1 · p2 = 
p3 · p4,p1 · p3 = pz · p4, andp1 · p4 = pz · p3.] 

7.38 (a) Starting with Equation 7.129, find the spin-averaged amplitude for electron-muon 
scattering in the CM frame, in the high-energy regime (m, M-> 0). 

(b) Find the CM differential cross section for electron-muon scattering at high energy. 
Let E be the electron energy and 0 the scattering angle. 

[Answer: do- = ( lie )2 g: ( 1+cos40 /2)] 
dQ 81r 2£2 sin4 0 /2 

7.39 (a) Using the result of Problem 7.37, determine the spin-averaged amplitude for 
electron-electron scattering in the CM in the high-energy regime (m-> 0). 
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Fig. 7.12 Decay of the photon, y ----> 2y - a process forbid­
den by Furry's theorem (Problem 7.46). 

(b) Find the CM differential cross section for electron-electron scattering at high energy. 

[Answer: da = ( lie ) 2 g: (1- _ 4 ) 2
] 

dn 8n 2£2 sin2 0 

Compare your answer to Problem 7.38 (see footnote to Example 7.3). 
7.40 Starting with Equation 7.158, calculate 1..-//1 2, and use Equation 7.105 to sum over photon 

polarizations. Check that the answer is consistent with Equation 7.163, and explain why 
this method gives the correct answer (note that we are now summing over all photon 
polarizations, whereas in fact the photons must be in the singlet configuration). 

7.41 Starting with Equation 7.149, calculate (IJ//12) fore+ + e- ----> y + y, and use it to get 
the differential cross section for pair annihilation. Compare Equation 7.167 (see footnote 
before Example 7.8). 

7.42 Derive Equation 7.176 You'll need one last Feynman rule: for a closed fermion loop 
include a factor -1 and take the trace. 

7.43 Derive Equation 7.182 [Hint: use the integral theorems in Appendix E of Sakurai [6].] 
7.44 Derive Equation 7.187. 
7.45 Evaluate the correction term in Equation 7.192 for the case ofa head-on collision in the 

CM; assume the electron is traveling at to c. In the experiment [9], the beam energies 
were 57.8 GeV; what should the measured fine structure 'constant' have been? Look up 
the actual result, and compare it with your prediction. 

7.46 Why can't the photon 'decay', by the process y ----> y + y (Figure 7.12)? Calculate the 
amplitude for this diagram. [This is an example of Funy's theorem, which says that 
any diagram containing a closed electron loop with an odd number of vertices has an 
amplitude of zero.] 

7.47 Starting with your answer to Problem 7.30, derive the Klein-Nishina formula for 
Compton scattering (in the rest frame of the target): 

da na2 (w') 2 [w' w . 2 ] dn = --;;;z -;;;- -;;;- + -;;; - sm 0 

where w and w' are the frequencies of the incident and scattered photons (Problem 
3.27). 

Problems 48-50 pertain to the following model: Imagine that the photon, instead of being a massless 
vector ( spin 1) particle, were a massive scalar (spin O). Specifically, suppose the QED vertex factor were 

igel 



(where 1 is the 4 x 4 unit matrix), and the 'photon' propagator were 

-i 

7. 9 Renormalization 1273 

There is no photon polarization vector now, and hence no factor for external photon lines. Apart from 
that, the Feynman rules for QED are unchanged. 

7.48 Assuming it is heavy enough, this 'photon' can decay. 

(a) Calculate the decay rate for y --> e+ + e-. 
(b) If my = 300 MeV /c2, find the lifetime of the 'photon', in seconds. 

7.49 (a) Find the amplitude, J/t, for electron-muon scattering, in this theory. 
(b) Calculate the spin-averaged quantity, (IAi'f). 
(c) Determine the differential cross section for electron-muon scattering in the CM 

frame. Assume the energy is high enough so that the electron and muon masses 
can be neglected: m,, mµ --> 0. Express your answer in terms of the incident electron 
energy, E and the scattering angle, 0. 

(d) From your result in (c), calculate the total cross section, assuming the 'photon' is 
extremely heavy, myc2 » E. 

(e) Going back to (b), consider now the case of low-energy scattering from an extremely 
heavy 'muon': lp,1/c « m, « my « mµ. Find the differential cross section in the lab 
frame (muon at rest), assuming the muon does not recoil appreciably. Compare the 
Rutherford formula (Example 7.7), and calculate the total cross section. [Actually, if 
you set my --> 0 and then take lpl « me, you get precisely the Rutherford formula.] 

7.50 (a) Find the amplitude, .,It, for pair annihilation (e+ + e- --> y + y), in this theory. 
(b) Determine (IJ/tl 2), assuming the energy is high enough that we can ignore both the 

electron and the 'photon' mass (m,, my --> 0). 
(c) Evaluate your result, in (b), in the CM system. Express your answer in terms of the 

incident electron energy, E, and the scattering angle, 0. 
(d) Find the differential cross section for pair annihilation, in the CM system, still 

assuming m, = my = 0. Is the total cross section finite? 
7.51 Spin-½ particles that are electrically neutral could conceivably be their own antiparticles 

(if so, they are called "Majorana" fermions - in the Standard Model the only possible 
candidates are the neutrinos) 

(a) According to Problem 7.9, the charge conjugate spinor is ifrc = iy 2ifr*. Evidently, if 
a particle is the same as its antiparticle, then 1/r = 1/r,. Show that this condition is 
Lorentz invariant (if true in one inertial frame, it is true in any inertial frame). [ Hint: 
Use Equations 7.52 and 7.53.] 

(b) Show that if ifr = ifr,, the "lower" two elements of 1/r are related to the "upper" two by 
ifrB = -ic,y,fr~. For Majorana particles, then, we only need a two-component spinor, 
x = ifrA• This makes sense: A Dirac spinor takes four elements to represent the two 
spin states (each) of the particle and the antiparticle, but in this case the latter two 
are redundant. Show that the Dirac equation for a Majorana particle can be written 
in 2-component form as 

in [aox + i(o- · 'v)ayx*] - mcx = 0 

Check that the equation you get for the "lower" elements is consistent with this. 
(c) Construct spinors x representing plane wave Majorana states. [ Hint: Form the 

general linear combination 1/r = a1,tr11) + a2ifr12) + a3ifrl3) + a4ifrl4) (Equations 7.46 
and 7.47), impose the constraint in part (b), and solve for a3 and a4 (in terms of a1 

and a2); then pick (say) a1 = 1, a2 = 0 for xl1), and a1 = 0, a2 = 1 for x12) .] 





8 

Electrodynamics and Chromodynamics of Quarks 

Because the electromagnetic interactions of electrons are well understood, they serve 
as useful probes of the structure of hadrons. Everything I said in Chapter 7 about 
leptons applies just as well to quarks (using, of course, the appropriate charge: ie or 
-½e). However, the experimental situation is complicated by the fact that the quarks
themselves never see the light of day, and we are obliged to infer from the observed
behavior of mesons and baryons what their constituents are up to. In this chapter we 
shall consider two important examples: the production of hadrons in electron-positron
collisions (Section 8.1), and elastic electron-proton scattering (Section 8.2). We then
turn to chromodynamics: the Feynman rules (Section 8.3 ), color factors (Section 8.4),
pair annihilation in QCD (Section 8.5), and asymptotic freedom (Section 8.6).

8.1 

Hadron Production in e+e- Collisions 

When electrons and positrons collide, they can (of course) scatter elastically, e+ + 

e- -+ e+ + e- (Bhabha scattering), or they could produce two photons, e+ + e- -+
y + y (pair annihilation), or - if the energy is sufficiently high - they could make

a pair of muons (or taus), e+ + e- -+ µ + + µ-. But they can also produce a pair

of quarks: e+ + e- -+ q + q, and it is this process that I want to consider next. The

lowest-order QED diagram is

e q 

e 

For a brief moment the quarks fly apart as free particles, but when they reach a 

separation distance of around 10-15 m (the diameter of a hadron), their (strong) in­

teraction is so great that new quark-antiquark pairs are produced - this time mainly 

from gluons (Figure 8.1). These quarks and antiquarks (literally dozens of 

1275 
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q 

q 

Fig. 8.1 Hadronization and jet formation. 

them, in a typical modern experiment) join together in myriad combinations to 
make the mesons and baryons that are actually recorded in the detector - a process 
known as 'hadronization'. What we observe in the laboratory, then, is e+ + e- --+ 

hadrons. 
In all the debris there is often an unmistakable footprint left behind by the original 

quark-antiquark pair: the hadrons emerge in two back-to-back 'jets', one along the 
direction of the primordial quark,* the other along the direction of the antiquark 
(Figure 8.2). Sometimes one sees a three-jet event (Figure 8.3), indicating that a 
gluon carrying a substantial fraction of the total energy was emitted in conjunction 
with the original qq production: 

e 

e 

Fig. 8.2 A typical two-jet event. (Source: J. 
Dorfan, SLAC) 

Fig. 8.3 A three-jet event. (Source: J. Dorfan, 
SLAC) 

* Notice that the quark (say) has to 'reach back' and pick up an antiquark from the other branch, 
to make each jet colorless, but as long as the energy transferred is relatively small this does not 
disrupt the jet structure. 



8. 1 Hadron Production in e+ e- Collisions 1277 
Indeed, the observation of three-jet events is generally regarded as our most direct 
evidence for the existence of gluons. 

Now, the first stage in all this (e+ + e- --+ y --+ q + q) is ordinary QED; the 
calculation is exactly the same as for e+ + e- --+ µ, + + µ, -: 

The amplitude is 

(8.1) 

where Q is the quark charge, in units of e (t, for u, c, and t; -½ ford, s, and b). 
Exploiting Casimir's trick, we obtain 

(l.,,,«12) =~[(pi ~~2)2 r Tr[yµ(/1 + mc)yv(/2 - me)] 

xTr[yµ(/4 - Mc)Yv(/3 + Mc)] (8.2) 

where m is the mass of the electron and M is that of the quark (Problem 8.1). 
Invoking the trace theorems of Chapter 7, we can reduce this to 

[ Qg2 ]2 
(l.,,,«1 2) = 8 (pi+ ; 2)2 [(p1 · p3)(p2 · p4) + (p1 · p4)(p2 · p3) 

+(mc}2(p3 · p4) + (Mc}2(p1 · p2) + 2(mc)2(Mc) 2] (8.3) 

or, in terms of the incident (CM) electron energy E and the angle 0 between the 
incoming electron and the outgoing quark: 

(8.4) 

The differential scattering cross section is given by Equation 6.47; integrating over 
0 and¢, we obtain the total cross section (Problem 8.2): 

c, = nQ3 2 (nEca) 2 1- (Mc2/E)2 [l ~ (Mc2) 2] [l ~ (mc2) 2] 
1-(mc2/E)2 +2 E +2 E 

(8.5) 



2781 8 Electrodynamics and Chromodynamics of Quarks 

Notice the threshold at E = Mc2 ; for energies less than this the square root is 
imaginary, reflecting the fact that the process is kinematically forbidden when there 
is not enough energy to create the qq pair. If we are substantially above threshold 
(E > Mc2 » mc2), Equation 8.5 simplifies considerably:* 

er=~ c~ar (8.6) 

As we crank up the beam energy, we encounter a succession of such thresholds -
first the muon and the light quarks, later (at about 1300 MeV) the charm quark, 
the tau (at 1777 MeV), the bottom quark (4500 MeV), and eventually the top quark. 
There is a beautiful way to display this structure: suppose we examine the ratio of 
the rate of hadron production to that for muon pairs: 

er (e+ e- --+ hadrons) 
R=--'--------'­

er(e+e- --+ µ+ µ-) 
(8.7) 

Since the numerator includes all the quark-antiquark events/ Equation 8.6 gives 

(8.8) 

in which the sum is over all quark flavors with thresholds below E. Notice the 3 in 
front - it records the fact that there are three colors for each flavor. We anticipate 
a 'staircase' graph for R(E), then, ascending one step at each new quark threshold, 
with the height of the rise determined by the quark's charge. At low energy where 
only the u, d, ands quarks contribute, we expect 

(8.9) 

Between the c threshold and the b threshold we should have 

( 2) 2 10 R = 2 + 3 3 = 3 = 3.33 (8.10) 

at the b threshold it goes up slightly, 

10 ( 1) 2 11 R = 3 + 3 - 3 = 3 = 3.67 (8.11) 

and the top quark should produce a jump to R = 5. 

* This approximation is actually better 
than it looks, because of a lucky al-
gebraic cancellation: expanding the 
radical, J1 - (McZ / f}2[1 + ½ (Mc2 / £) 2] = 
1 - ¾ (Mc2 / £)4 ... , so the error is of order 
(Mc2 / £)4 , not (Mc2 / £)2. As for the electron 
mass terms, these are smaller to begin with, 
though there is a second-order correction; 

however, these terms cancel exactly in the 
calculation of R (Equation 8.7). 

t The r lepton decays predominantly into 
hadrons, and this adds a bit to R, above 1777 
MeV; that's why the experimental numbers are 
somewhat above the 'u + d + s + c' line in 
Figure 8.4 
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The experimental results are shown in Figure 8.4. The agreement between theory 

and experiment is pretty good, especially at high energy. But you may well ask why it 
is not peifect. Apart from the approximation in going from Equation 8.5 to Equation 
8.6 (which artificially sharpens the corners at each threshold), and the neglect of 
the tau, we have made a fundamental oversimplification in assuming that we could 
treat the process as a sequence of two independent operations: e+ e- --+ qq (QED) 
followed by qq --+ hadrons (QCD). In point of fact, the quarks produced in the 
first step are not free particles, obeying the Dirac equation; rather, they are virtual 
particles, on their way to a second interaction. This is particularly critical when the 
energy is right for formation of a bound state(¢= ss, ,fr= cc, Y = bb); in the vicinity of 
such a 'resonance', the interaction of the two quarks can scarcely be ignored. Hence 
the sharp spikes in the graph, which typically occur just below each threshold. 
Finally, above about 50 GeV, the graph starts to rise toward the z0 peak, at 91 GeV. 

But, really, all this is quibbling anyway, for the importance of Figure (8.4) lies 
not in what the small discrepancies whisper, but in what the overall agreement 
shouts: the factor of 3 in Equation 8.8 clearly belongs there. Without it the theory 
would be wildly off (look at the dashed line in Figure 8.4) - and not just at 
isolated resonances, but across-the-board. That 3, remember, counts the number 
of colors. Here, then, is compelling experimental evidence for the color hypothesis 
- a hypothesis that was introduced originally for esoteric theoretical reasons but is 
now an indispensable ingredient in the recipe for strong interactions. 

8.2 
Elastic Electron-Proton Scattering 

We now turn to electron-proton scattering, our best probe of the internal structure 
of the proton. If the proton were a simple point charge, obeying the Dirac equation, 
we could just copy our analysis of electron-muon scattering, with M now the mass 
of the proton. The lowest-order Feynman diagram would be 

and the (spin-averaged) amplitude would be (Equation 7.126) 

4 

(lv-#tf) = ~L~~ctronLµv proton (8.12) 



10
 

9 

p,
O

l 
<j) 

lj
l 

ljl
' 

y 
y'

 
y"

y'
II 

rr 
8 
r 

7 
:_ 

6 5 4 

jl /l it It I 
. 

t 
; 

. t
,' r

, 
,.,, 

' 
,,

, 
. 

•I 
i f•

H
•"

°"
"~

~•
t.t

-
·•.

i 
+ 

¥"
••

♦.
t"
'u
••
•~
t 

~ 
* 

~ 
.;., 

-~ 
{, 

·:. 
~

;
i:

:
J

+
~

+
+

-
~

~
 

it 
·Y

-'
 

~
~

,,
 

3 
, 
I
/ 

u
+

d
+

s
 

, 
I _

: 
I
!
 
I 

)!
 

I 
I
'
 

j 
' 

,!~
J 
~
 

. ,
 \ •

 I ,
 l !1

 1
; j

,•~
~ 

j 
\ 

:: 
}'

ii
ll
t~

· 
...

 
l-+

1'
 

u
+

d
+

s
+

c
 

u
 +

 d
 +

 s
 +

 c
+

b
 

2 
,_

 

1 
; 

\l
~

,,
)'

t 
( 

«~
· 

-
-

-
-

-
-

-
-

-
-

(n
o 

co
lo

r)
 

o 
E

 
a)

 
2 

4 
6 

8 
10

 

to
 9 8 7 6 5 4 

I, 
I 

4--
----

­
$1

 ~
 ~
 I 

-~ 
. f

' ¢
 

,_
o

 
t 

) 
, 

? 
-=

-•
¥'

?-
:"

'-
,, 

:'. 
,[ 

; 
~ 

,:-
"'

~r
,-

:<
1,

c-
S'

•§
-

-
-,t 

.j--
-f-'

i-$k
i&;i

l.9❖
: ·

P, 
-

-
. 

'i'
~(

 
\ 

3 2 1 0 
b)

 
10

 
20

 
3

0
 

Fi
g.

 8
.4

 
G

ra
ph

 
o

f 
R,

 
b

as
ed

 o
n 

ex
pe

ri
m

en
ta

l 
da

ta
, 

pl
ot

te
d 

ag
ai

n
st

 t
ot

al
 e

ne
rg

y 
(2

E
),

 i
n 

G
eV

. 
(C

ou
rt

es
y 

o
f 

th
e 

C
O

M
 P

A
S 

(I
H

E
P,

 
R

us
si

a)
 

an
d

 
H

E
PD

A
T

A
 

(D
ur

ha
m

, 
U

K
) 

gr
ou

ps
, 

w
it

h 
co

rr
ec

ti
on

s 
by

 P
. J

an
ot

 (
C

E
R

N
) 

an
d

 M
. 

S
ch

m
it

t 
(N

or
th

w
es

te
rn

).
) 

40
 

5
0

 
6

0
 

N
 

0
0

 
0 - O

o !!
! "' ~ ~
 

:,
 " 3 ~- " :, "- 9 cl 3 0 ~
 

:,
 " 

12
 

3 S?
" 

~
 

/0
 

s:: " ~ 

70
 



8.2 Elastic Electron-Proton Scattering 1281 
where q = p1 - p3 and (Equation 7.128) 

(8.13) 

(and a similar expression for r~;oton• only with m ➔ Mand 1, 3 ➔ 2, 4). We used 
these results in Example 7.7 to derive the Mott and Rutherford scattering formulas. 

But the proton is not a simple point charge, and so, long before the advent 
of the quark model, a more flexible formalism was introduced for describing 
electron-proton scattering. We might represent the process, in lowest-order QED, 
by a diagram like this: 

where the blob serves to remind us that we don't really know how the (virtual) 
photon interacts with the proton. (However, we do assume, that the scattering is 
elastic: e + p ➔ e + p; inelastic electron-proton scattering, e + p ➔ e + X, is much 
more complicated, and we will not consider it in this book.) Now, the essential 
point is that the electron vertex and the photon propagator are unchanged, and 
therefore, since (IAo/'1 2 ) neatly factors (Equation 8.12), 

4 
(IAo/'1 2) - ~qµv K 

- q4 electron µ v proton (8.14) 

where Kµv is an unknown quantity describing the photon-proton vertex. 
Well ... not completely unknown, for this much we can say: it is certainly a 

second-rank tensor, and the only variables that it can possibly depend on are p2, p 4 , 

and q. Since q = p4 - p2 , these three are not independent, and we are free to use 
any two of them; the customary choice is q and p2 (I'll drop the subscript from here 
on: p = p2 is the initial proton momentum). Now, there aren't many tensors that 
can be constructed out of just two four-vectors; the most general possible form is 

where the Ki are (unknown) functions of the only scalar variable in the problem: 
q2.* The factors (Mc)-2 have been pulled out, in defining K2, K4, and Ks, just 
so all the K's will have the same dimensions:1· In principle, we could add an 

* Notice that p2 = (Mc)2 is a constant, and p~ = (q + p)2 = q2 + 2q -p + p2 = (Mc) 2 ⇒ q -p = -q2 /2. 
"i" The subscript 3 is traditionally reserved for a term that enters in the corresponding analysis of 

neutrino-proton scattering, but does not occur here. 
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antisymmetric combination (pµqv - p" qµ), but since Lµv is symmetric (Equation 
8.13), such a term would contribute nothing to (IA"/1 2). Now, these four functions 
are not independent; it can be shown (Problem 8.4) that 

(8.16) 

from which it follows (Problem 8.5) that 

(Mc)2 1 1 
Ki= - 2-Ki + -K2 and Ks= -K2 

q 4 2 
(8.17) 

Thus K1'" can be expressed in terms of just two (unknown) functions, K1 (q2) and 
K2(q2): 

(8.18) 

The 'form factors' K1 and K2 are directly related to the electron-proton elastic 
scattering cross section. According to Equations 8.13 and (8.18) (Problem 8.7) 

(l.4'12) = ( 2:1) 2 
{ K1 [(p1 · p3) - 2(mc) 2] + K2 [ (pi . (t~~ . p) + ~]} 

(8.19) 
We shall work in the laboratory frame, with the target proton at rest, p = (Mc, 0, 0, 

0). An electron with incident energy E scatters at an angle 0, emerging with energy 
E'. Let us assume it's a moderately energetic collision (E, E') » mc2 , so that we 
can safely ignore the mass of the electron (set m = O);* then p1 = (E/ c)(l, Pi) and 
p3 = (E' /c)(l, PJ), with p; • PJ = cos 0, and we find (Problem 8.8) 

(I.Af'/1 2) = g, 2K sin2 - + K cos2 -4c2 ( 0 0) 
4EE' sin4 (0 /2) 1 2 2 2 

(8.20) 

The outgoing electron energy, E', is not an independent variable; it is kinematically 
determined by E and 0 (Problem 8.9): 

E' = E 
1 + (2E/ Mc2) sin2(0 /2) 

(8.21) 

For a massless incident particle we have (Problem 6.10) 

du ( Ii£' ) 2 2 
dQ = 8:rrMcE (l.4'I } (8.22) 

* The Mott formula (Equation 7.131) neglects proton structure and proton recoil; it applies to the 
regime E « Mc2, but it does not assume E » mc2• We now work in the regime E » mc2, but 
do not ignore proton structure and recoil (i.e. we do not assume E « Mc2). In the intermediate 
range, mc2 « E « Mc2, the two results agree (Problem 8.10). 
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and so, for elastic electron-proton scattering 

du ( afi ) 2 E' -d = . 2 -E [2K1 sin2(0/2) + K2 cos2(0/2)] n 4MEsm (0/2) 
(8.23) 

where E' is given by Equation 8.21 This is known as the Rosenbluth formula; it was 
first derived in 1950 [l]. By counting the number of electrons scattered in a given 
direction, for a range of incident energies, we can determine Ki(q2) and K2(q2) 
experimentally. Actually, it is traditional to work instead with the 'electric' and 
'magnetic' form factors, GE(q2) and GM(q2): 

G2 - [q2/(2Mc)2]G2 
K = (2Mc)2 E M 2 1 - [q2 /(2Mc)2] 

(8.24) 

GE and GM are related to the charge and magnetic moment distributions of the 
proton, respectively [2]. 

There is precious little physics in all of this; what we have done is to set the agenda 
for a model of the proton. A successful theory must enable us to calculate the form 
factors, which at this stage are completely arbitrary. The most naive model treats 
the proton as a simple point charge; in this case (Problem 8.6) 

(8.25) 

It's not a bad approximation at low energies, where the electron never gets close 
enough to 'see' inside the proton. But it is grossly inadequate at high energies 
(Figure 8.5). Evidently the proton has a rich internal structure. That's no surprise 
in light of the quark model, but it would shock anyone who still thinks the proton 
is a truly elementary particle. 

8.3 
Feynman Rules For Chromodynamics 

Quantum electrodynamics (QED) describes the interactions of charged particles; 
quantum chromodynamics (QCD) describes the interactions of colored particles. 
Electromagnetic interactions are mediated by photons, chromodynamic interac­
tions by gluons. The strength of the electromagnetic force is set by the coupling 
constant 

(8.26) 

In appropriate units g, is the fundamental charge (the charge of the positron). 
The strength of the chromodynamic force is set by tlie 'strong' coupling con­
stant 

(8.27) 
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10• 

10- 1 

10- 2 

G•--[ 1 ]' 
4 1-q2/071 

10-3 

30 

Fig. 8.5 Proton elastic form factors. Apart 
from an overall constant, the electric and 
magnetic form factors Gf and GM are 
practically identical, and - at least, up to 
about 10 (GeV/c)2 - are well fit by the 
phenomenological 'dipole' function Gd 

(solid line). Circles are experimental values 
of GM/(1 + K)('°"Gf). [Source: Frauenfelder, 
H. and Henley, E. M. (1991) Subatomic 
Physics, 2nd edn, Prentice-Hall, Englewood 
Cliffs, NJ, p. 141. Based on data of Kirk, 
P. N. et al., (1973) Physical Review, 08, 63.] 

which may be thought of as the fundamental unit of color. Quarks come in three 
colors,* 'red' (r), 'blue' (b), and 'green' (g). Thus the specification of a quark state 
in QCD requires not only the Dirac spinor u!'l(p), giving its momentum and spin, 
but also a three-element column vector c, giving its color: 

(8.28) 

I'll label the elements of c by a Roman subscript near the middle of the alphabet -
c;, for example - so that i,j, k, ... run from 1 to 3 over quark colors.·, 

Typically, quark color changes at a quark-gluon vertex, and the difference is 
carried off by the gluon. For example: 

rE 

r b 

* Quarks also come in different flavors, of course, but this is irrelevant in QCD, except insofar as 
the different quark flavors carry different masses. Just as QED only looks at the charge of a parti­
cle, QCD cares only about its color. 

t I should perhaps warn you that most books do not specify quark color states explicitly; they are 
'implied', or 'understood to be contained in u(p)'. I think it is wiser at this stage to write them 
out explicitly, even at the cost of some extra notational baggage. 
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In this diagram, a red quark turned into a blue quark emitting a red-antiblue gluon. 
Each gluon carries one unit of color and one unit of anticolor. It would appear, 
then, that there should be nine species of gluons - rr, rb, rg, hr, bb, bg, gr, gb, gg. 
Such a nine-gluon theory is perfectly possible in principle, but it would describe a 
world very different from our own. In terms of color SU(3) symmetry (on which, 
as we shall see, QCD is based), these nine states constitute a 'color octet': 

l I1) = (rb + br)/../2 

12) = -i(rb--::_ br)/-v'2 

13) = (rr - bb)/-v'2 

14) = (rg+gr)/-v'2 

15) = -i(rg - gr)/-v'2 l 
16) = (bg + gb)/-v'2 
17) = -i(bg- gb)/-v'2 
18) = (rr + bb - 2gg)/ ,/6 

(8.29) 

and a 'color singlet': 

19) = (rr+bb+gg)/✓3 (8.30) 

(See Section 5.5; there we were concerned with flavor, not color, but the math­
ematics is identical - just let u, d, s ➔ r, b, g. We're not dealing with isotopic 
spin, here, and I have used different linear combinations of states within the 
octet. This simplifies the notation later on.) If the singlet gluon existed, it would 
be as common and conspicuous as the photon.• Confinement requires that all 
naturally occurring particles be color singlets, and this 'explains' why the octet 
gluons never appear as free particles.t But 19) is a color singlet, and if it exists as 
a mediator it should also occur as a free particle. Moreover, it could be exchanged 
between two color singlets (a proton and a neutron, say), giving rise to a long-range 
force with strong coupling/ whereas in fact we know that the strong force is 

* Maybe the 'ninth gluon' is the photon! That 
would make for a beautiful unification of 
the strong and electromagnetic interactions. 
Of course, the coupling strength isn't quite 
right, but that's a problem with all unification 
schemes, and could presumably be managed. 
There's a much more serious difficulty with 
this idea, which I'll let you figure out (see 
Problem 8.10). 

t Notice the distinction between 'colorless' and 
'color singlet'. Gluons 13) and 18) are color­
less, in the sense that the net amount of each 
color is zero, but they are not color singlets. 
This situation has an analog in the theory 
of spin: we can have a state with Sz - 0, but 
this does not prove it has spin 0 (although 
spin O certainly implies Sz - 0, and by the 
same token a color singlet is necessarily col­
orless). Many authors use the word 'color­
less' to mean 'color singlet', but this can lead 
to misunderstanding. (I was sloppy myself, 

back in Chapters 1 and 2, because at that 
stage it was not possible to explain the idea 
of a color singlet.) You might prefer the word 
'color-invariant' (instead of 'color singlet') or 
even 'color scalar'; the essential point is that 
such a state is unaffected by the transforma­
tions of color SU(3) (see Problem 8.12). 

:( Because gluons are massless, they mediate a 
force of infinite range (the same as electro­
dynamics). In this sense the force between 
two quarks is actually long range. However, 
confinement, and the absence of a singlet 
gluon, conceals this from us. A singlet state 
(such as the proton) can only emit and absorb 
a singlet (such as the pion), so individual glu­
ons cannot be exchanged between a proton 
and a neutron. That's why the force we ob­
serve is of sho,t range. If the singlet gluon ex­
isted, it could be exchanged between singlets, 
and the strong force would have a component 
of infinite range. 
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of very short range. In our world, then, there are evidently only eight kinds of 
gluons.* 

Like the photon, gluons are massless particles of spin 1; they are represented by 
a polarization vector, Eµ, which is orthogonal to the gluon momentum, p: 

Eµpµ = 0 (Lorentz condition) 

As before, we adopt the Coulomb gauge:I 

Ea = 0, so that " · p = 0 

(8.31) 

(8.32) 

This spoils manifest Lorentz covariance, but it cannot be helped (see Section 7.4). In 
order to describe the color state of the gluon, we need in addition an eight-element 
column vector, a: 

1 0 
0 0 
0 0 
0 

for 11), 
0 

for 17), and so on (8.33) a= 
0 0 
0 0 
0 1 
0 0 

Elements of a will be labeled by a Greek superscript near the front of the alphabet 
(aa): a, /3, y, ... run from 1 to 8 over gluon color states. Because the gluons them­
selves carry color (in contrast to the photon, which is electrically neutral), they couple 
directly to one another. In fact, there is a three-gluon vertex and a four-gluon vertex: 

>-X 
Before I can state the Feynman rules for QCD, I need to introduce two pieces of 

notation. First, the Gell-Mann '>..-matrices', which are to SU(3) what the Pauli spin 

* In group-theoretical terms, the issue here is 
whether the symmetry of QCD is U(3) (which 
would require all nine gluons) or SU(3) 
(which calls for only eight). The experimental 
situation resolves the question decisively in 
favor of the latter. 

t There is a subtle problem here, because 
gauge transformations in chromodynamics 
are more complicated than Equation 7.81, 

and in fact the Coulomb gauge cannot be 
consistently imposed. However, the correction 
to Equation 7.81 contains a factor of g,, and 
hence, in the Feynman calculus, the 'error' 
introduced by using the Coulomb gauge can 
be compensated for by appropriate modifica­
tion of the rules for computing higher-order 
(loop) diagrams. 
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matrices are to SU(2): 

,. -(: 1 

:) ,, -(: -i 

:) ,, = (: 

0 

:) 0 0 -1 

0 0 0 

,·-(: 0 

:) ,, -(; 0 

I) ,·-(: 0 

!) 0 0 0 (8.34) 

0 0 1 

,, = (l 0 ~,) 1(1 0 

1,) 0 As= ✓3 ~ 1 
0 

Second, the commutators of the Jc matrices define the 'structure constants' if" 13 Y) of 
the group SU(3): 

[Jc", Jcl3] = 2if"/3Y )cY (8.35) 

(summation over y - from 1 to 8 - implied by the repeated index). The structure 
constants are completely antisymmetric.Jl3"Y = l"Y/3 = -l"/3Y. You can work them 
out for yourself (Problem 8.15). Since each index runs from 1 to 8, there are 8 x 8 
x 8 = 512 structure constants in all, but most of them are zero, and the rest can be 
obtained by antisymmetry from the following set: 

1123 = 1, 1147 = 1246 = 1257 = 1345 = 1516 = 1637 = ~. 

1458 = 1678 = ✓3/2 (8.36) 

I can now state the Feynman rules for evaluating tree-level diagrams in QCD: 
l. External Lines. For an external quark with momentum p, spin 

s, and color c: 

{ 
Incoming ( - ) : u(s) (p)c } 

Quark: (l " 
Outgoing ( ---) : u' (p)c·1 

(note that ci" = c* will be a row matrix). For an external 
antiquark: 

. { Incoming ( _......) : v(s) (p)ci" } 
Antiquark: 

Outgoing ( ......... ) : v(s) (p)c 

(8.37) 

(8.38) 

where c represents the color of the corresponding quark. For 
an external gluon of momentum p, polarization E, and color 
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a, include a factor 

GI I Incoming(~) : Eµ(p)a" ] 
uon: 

a,µ 
Outgoing(~): E:(p)a"* 

(8.39) 

(To avoid confusion it is helpful to indicate on the diagram 
the indices - space-time and color - you are using for each 
gluon.) 

2. Propagators. Each internal line contributes a factor 

Quarks and antiquarks: (• ~ •) · i(d + me) 
· q2 _ m2c2 

q -igµv8"/l 
Gluons: ( ~ ) : 2 

a,µ ~' V q 

3. Vertices. Each vertex introduces a factor 

Quark-gluon: (*) : -~g, A" y 1' 

O', µ #, l' 

½,~ 

(8.40) 

(8.41) 

(8.42) 

-gJ"flY[gµv(k1 - k2)A + gvA(k2 - k3}µ + gi.,,(k3 - k1)v] 
(8.43) 

Here the gluon momenta (k1, k2, k3) are assumed to point 
into the vertex; if any point outward in your diagram, change 
their signs. 

Four gluon: (r~,) : 
O',~I' 

-ig;[f"flryfy8ry{gµi.gvp - gµpgvA) + J"8ryfflyry{gµvg!.p - gµAgvp) 

+f"YryJ8flry{gµpgvi. - gµvgi.p)] (8.44) 

(summation over T/ implied). 

Everything else is the same as for QED*: impose conservation of energy and mo­
mentum at each vertex to determine the internal four momenta; follow each fermion 
line 'backward' along the arrow, erase the overall delta function, and multiply by i to 
get.4. In the next two sections I'll work out some examples to show you how it goes. 

* Loop diagrams in QCD require special rules, including the introduction of so-called 
'Faddeev-Popov ghosts'. These are deep waters, into which we shall not venture [3]. 
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8.4 
Color Factors 

In this section, we consider the interaction between two quarks (also a quark and 
an antiquark) in lowest-order QCD. Of course, we cannot observe quark-quark 
scattering directly in the laboratory (although hadron-hadron scattering is an 
indirect manifestation), so we won't be looking for cross sections here. Instead, 
we concentrate on the effective potentials between quarks - the QCD analog of the 
Coulomb potential in electrodynamics. We used such potentials, with a promise to 
derive them later, back in Chapter 5, in the analysis of quarkonium. Bear in mind 
that this is a perturbation theory calculation, valid only insofar as the coupling a, 
is small. We cannot hope to get the confining term in the potential by this route 
- we are implicitly relying on asymptotic freedom, and all we're going to find 
is the short-range behavior. Nevertheless, we will obtain a very suggestive result: 
Quarks attract one another most strongly when they are in the color singlet configuration 
(indeed, in other arrangements they generally repel). At very short range, then, the 
color singlet is the 'maximally attractive channel' - an indication that binding is 
more likely, at least, for singlet states.• 

8.4.l 
Quark and Antiquark 

Consider first the interaction of a quark and an antiquark, in QCD. We shall 
assume that they have different flavors, so the only diagram (in lowest order) is the 
one in Figure (8.6)) representing, for instance, u + d ➔ u + d. The amplitude is 
given by 

Thus 

/It= i[u(3)c!J [-i,>-"yµ] [u(l)c!] [-ig;t'",8] 

x[v(2)c!J [-i,>-.By"] [v(4)c4] (8.45) 

(8.46) 

(summation over a implied). This is exactly what we had for electron-positron 
scattering (Equation 7.108), except thatg, is replaced by g, (of course), and we have 

* This is a very pleasing conclusion, but it does not prove that binding must occur in the color 
singlet, or that it cannot occur in other configurations. For this we would have to know the 
long-range behavior of the potential, about which, at present, we can only speculate. 

't In principle, for the same flavor (e.g. u + u - u + u) we should include a second diagram, as 
in electron-positron scattering (Figure 7.5). However, in the nonrelativistic limit of interest here 
this second diagram does not contribute anyway (see footnote to Example 7.3), so in practice 
what we're doing applies just as well whatever the quark flavors. (See also Problem 8.17) 
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Fig. 8.6 The quark-antiquark interaction. 

in addition the 'color factor' 

(8.47) 

Therefore, the potential describing the qq interaction is the same as that acting 
in electrodynamics between two opposite charges (to wit: the Coulomb potential), 
only with a replaced by fa,: 

a,l'ic 
Vqq(r) =-f­

r 
(8.48) 

Now, the color factor depends on the color state of the interacting quarks. From 
a quark and an antiquark we can make a color singlet, Equation 8.30, and a color 
octet, Equation 8.29 (all members of which yield the same f). I'll calculate the octet 
color factor first, because it's a little easier [4]. 

Example 8. 1 Color Factor for the Octet Configuration A typical octet state (Equation 
8.29) is rb (any of the others would do just as well; see Problem 8.16). Here 
the incoming quark is red, and the incoming antiquark is antiblue. Because color 
is conserved,* the outgoing quark must also be red and the antiquark antiblue. 
Thus 

and hence 

* Yes, quark color can change at a QCD vertex, but in this case the outgoing antiquark cannot 
carry off the positive unit of redness, so the outgoing quark is forced to do that job. 
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A glance at the Jc matrices reveals that the only ones with entries in the 11 and 22 
positions are Jc 3 and Jc 8 . So 

(8.49) 

B 

Example 8.2 Color Factor for the Singlet Configuration The color singlet state 
(Equation 8.30) is 

(1/✓3)(rr + bb + gg) 

If the incoming quarks are in the singlet state (as they would be for a meson, say), 
the color factor is a sum of three terms: 

f ~ ~;, 1 [ 4A· m J [[1, O)A"4] + [,1A· (!) J 1101 OJA·,. 

+ [,1A. m J [(O Ol)A •411 
The outgoing quarks are necessarily also in the singlet state, and we get nine terms 
in all, which can be written compactly as follows: 

(8.50) 

(summation over i andj, from 1 to 3, implied in the second expression). Now 

(Problem 8.23), so, with the summation over a (from 1 to 8), 

Evidently, then, for the color singlet 

f=~ 
3 

(8.51) 

(8.52) 

(8.53) -Putting Equations 8.49 and 8.53 into Equation 8.48, we conclude that the 
quark-antiquark potentials are 

4a,hc 
Vqq(r) = - 3-r- (color singlet) 

1 a,hc 
Vqq(r) = - - (color octet) 

6 r 

(8.54) 

(8.55) 



2921 8 Electrodynamics and Chromodynamics of Quarks 

Fig. 8.7 The quark-quark interaction. 

From the signs it appears that the force is attractive in the color singlet but repulsive 
for the octet. This helps to explain why quark-antiquark binding (to form mesons) 
occurs in the singlet configuration but not in the (color) octet (which would have 
produced colored mesons). 

8.4.2 
Quark and Quark 

We turn now to the interaction of two quarks. Again, we shall assume that they 
have different flavors, so the only diagram (in lowest order) is the one indicated in 
Figure (8.7),* representing, say, u + d-,. u + d. The amplitude is 

(8.56) 

This is the same as for electron-muon scattering (Equation 7.106), except that g, 
is replaced by g,, and there is a color factor 

1 -·- -·-
f = 4(c;)..ac1)(cJ)..ac2) (8.57) 

The potential, therefore, takes the same form as that for like charges in electrody-
namics: 

a,lic 
Vqq(r) =f­

r 
(8.58) 

Again, the color factor depends on the configuration of the quarks. However, from 
two quarks you can't make a singlet and an octet (as for qq) - rather, we obtain a 
triplet (the antisymmetric combinations): 

I (rb-br)/-v'2 I 
(bg - gb)/-v'2 
(gr - rg)/-v'2 

(triplet) (8.59) 

* For identical quarks there is also a 'crossed' diagram. However, inclusion of this diagram, to­
gether with the statistical factor S in the cross section formula, leads to the same nonrelativis­
tic limit (see footnote to Example 7.3), so in fact our potentials are correct even for same-flavor 
quarks. 
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and a sextet (the symmetric combinations):* 

{ rr, bb,gg, } 
(rb + br)/-v'2, (bg + gb)/-v'2, (gr+ rg)/-v'2 (sextet) 

(8.60) 

Example 8. 3 Color Factor for the Sextet Configuration A typical sextet state is rr (use 
any of the others if you prefer - you'll get the same result for f). In this case 

1(33 88) 1[ ✓3 ./3] 1 = 4 ).11 ). 11 + ). 11 ). 11 = 4 (1)(1) + (1/ 3)(1/ 3) = 3 (8.61) 

al 

Example 8.4 Color Factor for the Triplet Configuration A typical triplet state is 
(rb - br)/-v'2, soi• 

0 O)A0 
(:)] [10 1 O)A" (:)] 

+ 1 O)A0 (:)][11 0 O)A" (:)] 

+ 0 0)A0 ([)][10 1 O)A" (:)] 

+ 1 ow(:)] [11 0 O)A" (:)] I 
* In group-theoretical language, 3 0 3 = 1 EB 8, but 3 0 3 = 3 EB 6. 
-r Here (rb - br) --> (rb - br), so there are four terms. Schematically, rb-+ rb, rb ➔ -br, -br--> 

rb, and -br--> -br (in the last term the factors of -1 cancel). 



2941 8 Electrodynamics and Chromodynamics of Quarks 

= ~(>-f1>-22 - >-f2>-21) 

l(A3 ;_3 +;_8 ;_8 ;_I ;_I ;_2 ;_2) = 4 11 22 11 22 - 12 21 - 12 21 

=~(-1+~-1-1)=-~ (8.62) 

Putting Equations 8.61 and 8.62 into Equation 8.58, we conclude that the 
quark-quark potentials are 

2 a,tic 
Vqq(r) = - - - (color triplet) 

3 r 

l a,tic 
Vqq(r) = - - (color sextet) 

3 r 

(8.63) 

(8.64) 

In particular, the signs indicate that the force is attractive for the triplet and re­
pulsive for the sextet. Of course, that's not too helpful as it stands, because neither 
combination occurs in nature.* However, it does have interesting implications for 
the binding of three quarks. This time we can make a singlet (completely antisym­
metric), a decuplet (completely symmetric), and two octets (of mixed symmetry), 
as we found in Section S.6.1.t Since the singlet is completely antisymmetric, every 
pair of quarks is in the (antisymmetric) triplet state - the attractive channel. In the 
decuplet, every pair is in the (symmetric) sextet state - they repel. As for the two 
octets, some pairs are triplet and some are sextet; we expect some attraction, then, 
and some repulsion. Only in the singlet configuration, though, do we get complete 
mutual attraction of the three quarks. Again, this is a comforting result: as in the 
case of mesons, the potential is most favorable for binding when the quarks are in 
the color singlet configuration. 

8.5 
Pair Annihilation in QCD 

In this section we consider the process quark plus antiquark --+ two gluons - the 
QCD analog of pair annihilation. The calculation is quite similar to Example 7.8; 

* If you don't heed the warning in footnote 
(*) to the first paragraph of Section 8.4, you 
may be alarmed to find that two quarks in 
the triplet state attract one another. There is 
some comfort in the observation that the sin­
glet qq coupling is twice as strong; but still, if 
this were the whole story we might very well 

expect triplet qq binding to occur, leading to 
free 'diquark' states. There has, in fact, been 
some speculation about the possible existence 
of diquarks within nuclei [5]. 

t In Chapter 5 we were dealing with flavor, not 
color, but the mathematics is the same. Group 
theoretically, 3 0 3 0 3 - 1 EB 8 EB 8 EB 10. 
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however, in QCD there are three contributing diagrams, in lowest order: 

(2) (4) (2) (4) (2) 

~ ~ ~ ' V ~ qr q 
µ, 

Ii 1 ~ 
a, µ, 

// // 
(I) (3) (I) (3) (]) (3) 

The amplitude for the first diagram is 

.4"1 = iv(2)ci [-i~)Jlyv] [EXA*l [ i~fi + ~c~] 
2 q -m C 

X [-i,A"yµ] [Ejµa3*]u(l)c1 (8.65) 

(To simplify the already overburdened notation I'll leave the ,~ off the gluon 
polarization vectors and color states until the end.) Here q = p1 - p3, so 

(8.66) 

and hence 

Similarly, for the second diagram: 

Notice that the ),_'s appear this time in the opposite order. Finally, for the third 
diagram: 

.4"3 = iv(2)ci [-i,A0Ycr] u(l)c1 [-/'':ty] {-gJ".BY[g1,v(-p3 + p4)!_ 

+gvA(-p4 - q)µ + gAµ(q + P3)v]}[Ef aJHE:a!] (8.69) 

In this case q = p3 + p4, so q2 = 2p3 · p4; simplifying (and using E3 · p3 = E4 · p4 = 0), 
we find (Problem 8.20): 

(8.70) 
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So far, this is all completely general (and rather messy). To make things more 
manageable, let's assume (as we did in our study of e+ e- annihilation) that the 
initial particles are at rest: 

p1 = p2 = (me, 0), p3 = (me, p), p4 = (me, -p) 

Then 

p3 · p4 = 2(me)2 

Meanwhile, in the Coulomb gauge (Equation 8.32) 

(8.71) 

(8.72) 

(8.73) 

(likewise p4 • E3 = 0), so two terms in..£3 drop out. Using Equations 7.140 and 7.141 
to simplify ..£1 and ..£2, we find that the total amplitude (..£ = ..£1 + ..£2 + ..£3) 
can be written 

2 

..£ = -~a3a!v(2)e!l¢'3/q'4J,.")Jl + /4/3/3A13 A" 
8(me) 

-i(E3 · E4)(/4 - f3)f"13Y V]e1 u(l) 

We may as well orient our coordinates so that the z axis lies along p; then 

From Equations 7.145 and 7.146 we have 

(8.74) 

(8.75) 

Putting this into Equation 8.74, and exploiting the commutation relation (Equation 
8.35) for the J,.'s, we obtain 

2 

..£ = _&__a3a!v(2)ei[(E3 · E4){J,.",J,.13 }y0 
8me 

+i(E3 x E4) · l:([J,.",J,.f3Jy 0 + {J,.",J,.13 }y3)]e1u(l) (8.77) 

where curly brackets denote the anticommutator: {AB}= AB+ BA. You might 
compare this result with the corresponding expression in QED (Equation 7.146), 
to which it reduces if you set all the J,.'s equal to 1, drop the color states a and e, and 
let g,/2 ➔ g,. 

Suppose now we put the quarks into a spin-0 (singlet) state (the triplet state 
cannot go to two gluons anyway; it needs at least three): 

(8.78) 
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For .4'u we have (Equations 7.153 and 7.154) 

v(2)y 0u(l) = v(2)2:y 0u(l) = o, v(2)2:y 3u(l) = -2mcz (8.79) 

As before, .4'tt = -.4'u, and we are left with* 

(8.80) 

Once again, we have obtained a result that is identical to the one in QED (Equation 
7.158), except that g, ➔ g,, and there is a color factor 

(8.81) 

In particular, if the quarks occupy the color singlet state, (1/ -v13)(rr + bb + gg), then 

f - ~,;,! :,/ (1 00)(A",A'J m + (01 0)(A",A'J m 
+(00 l)(A",A'J (~) I- .~«;,!,T,(A",A'J 

But 

(8.82) 

(Problem 8.13), so 

( color singlet) (8.83) 

Now, the singlet state for two gluons (see Problem 8.22) is 

(8.84) 

Evidently 

(8.85) 

* At this stage all terms in £3 · £4 drop out. Tbe fact that Al3 is proportional to £3 · £4 (Equation 
8.74) means that the diagram containing a three-gluon vertex makes no contribution, when the 
quarks are at rest in the spin singlet configuration. Most books simply ignore it from the start, 
but in principle it should be included (see Problem 8.21). 
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and hence 

(8.86) 

Conclusion: For q + q --+ g + g in the spin singlet, color singlet configuration, 
with the quarks at rest, the amplitude is 

.,ft = -4..fij3 g; 

(compare Equation 7.163), and the cross section is 

O" = ~ 4rr (tirx,) 2 

3 CV m 

(8.87) 

(8.88) 

(see Equation 7.168). Just as the cross section fore++ e- --+ y + y determines the 
positronium decay rate 

r = O"vl,t,(0)12 (8.89) 

(Equation 7.171), so we can now give a formula for the decay ofa spin-0 quarkonium 
state, such as 7/c (note that ,fr and I themselves carry spin 1, and go to three gluons): 

8rr (tirx,) 2 
f(TJc--+ 2g) = - - 11fr(0)1 2 

3c m 
(8.90) 

As it stands, this is not terribly useful, since we don't know ,t,(O). However, the 
electromagnetic decay 7/c--+ 2y involves the same factor, and we can derive a clean 
expression for the branching ratio (see Problem 8.23). 

8.6 
Asymptotic Freedom 

In the last section of Chapter 7 we found that the loop diagram 
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in QED makes the effective charge of the electron a function of the momentum 
transfer q:* 

(8.91) 

The coupling strength increases as the charges get closer together (larger lq2 I), a fact 
that we interpret physically as a consequence of'vacuum polarization': the vacuum 
functions as a kind of dielectric medium, partially screening the charge. The closer 
we approach, the less complete is the screening, and the greater is the effective 
charge. Of course, Equation 8.91 is valid only to order a (0) 2 . There are higher-order 
corrections, of which the dominant ones come from chains of bubbles: 

' ' ... 

As it happens, these can be summed explicitly, and the result ist 

2 a(0) 2 2 

a(lq I)= 1 - [a(0)/3:rr]ln[lq2 1/(mc)2] (lq I» (me) ) (8.92) 

Ostensibly, the coupling blows up at ln[lq2 1/(mc)2 ] = 3:rr /a(0). However, this is not 
to be taken too seriously, since it occurs at an energy of about 10280 MeV, which (to 
put it mildly) is not an accessible region (see Problem 8.24). 

• It also introduces a divergent term, which 
we soak up in the 'renormalized' charge 
(Equation 7.189). But that's an entirely differ­
ent problem, one that (however troublesome 
you may find it in principle) has no observ­
able consequences, and once the appropriate 
incantation has been made, is of no further 
significance. The perfectly finite dependence 
of c, on q2 is the significant matter, for it 
carries direct and measurable implications. 

t This is not so surprising. What we have, in 
effect, is the geometric series 

2 3 l 
l+x+x +x +··· = -­

l-x 

where x is for one bubble, x2 is for two, and 
so on. Although Equation 8. 92 is correct to all 

orders in c,(O), it is not exact, since we are ig­
noring diagrams such as 

These can be shown to make a much smaller 
contribution in the limit lq21 » (mc)2. 
Equation 8. 92 is known as the 'leading log' 
approximation. 
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Much the same thing happens in QCD: quark-antiquark bubbles 

lead to a screening of the quark color, which (modulo appropriate color factors) is 
the same as Equation 8.91. However, there is a new twist to the story, for in QCD 
we also have virtual gluon bubbles 

as well as diagrams of the form 

It turns out (6] that the gluon contribution works in the other direction, producing 
'antiscreening' or 'camouflage'. I do notknowofa persuasive qualitative explanation 
of this effect [7] - suffice it to say that the formula for the running coupling constant 
in QCD (analogous to Equation 8.92) is 

2 a,(µ 2) 2 2 
a,(lq I) = 1 + [a,(µ2)/121r](lln - 2f) ln(lq2I/ µ2) (lq I » µ ) (8.93) 
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where n is the number of colors (3, in the Standard Model), andf is the number of 
flavors (6, in the Standard Model). In any theory for which l ln > 2f, antiscreening 
will dominate, and the coupling constant will decrease with increasing lq21; at short 
distances the 'strong' force becomes relatively weak. This is the source of asymptotic 
.freedom, on which so much of what we can say quantitatively about the hadrons is 
predicated. Asymptotic freedom is what licenses the use of the Feynman calculus 
in QCD to calculate interquark potentials; it is a basic ingredient in the theory of 
quarkonium; and it is presumably responsible for the OZI rule. Chromodynamics 
would have gone out of business if it had not been for the timely discovery of 
asymptotic freedom [8]. 

You may have noticed the appearance of a new parameter, µ, in Equation 8.93 
In electrodynamics it is natural to define 'the charge' of a particle as the long-range 
(fully screened) value - that's what Coulomb and Millikan measured, and it's what 
an engineer or a chemist or even an atomic physicist (unless he's measuring the 
Lamb shift) is concerned with. Thus a(0) is the 'good old' fine structure constant, 
1/137, and it is the sensible parameter in terms of which to do perturbation 
expansions. But we don't have to do it this way; we could work from any other 
value of q2 (provided only that we stay well below the singularity in Equation 8.92, 
where a(lq2 I) runs larger than 1, and perturbation theory breaks down). In QCD, 
however, we cannot work from q2 = 0, because that's where a, is large. We must 
use as a reference some place where a, is small enough to justify a perturbation 
expansion. That's why Equation 8.93 is expressed in terms of a,(µ 2), instead of 
a,(0). Provided that it's large enough so that a,(µ 2) < 1, it doesn't matter what 
value ofµ you use (see Problem 8.25). Indeed, if we introduce a new variable A, 
defined by 

ln A 2 = lnµ 2 - 12rr/[(lln - 2f)a,(µ 2)] (8.94) 

the running coupling constant can be expressed in terms of a single parameter: 

2 12rr 2 2 
a,(lq I)= (lln - 2f) ln(lq2I/ A2) (lq I» A ) (8.95) 

(see Problem 8.26). This compact result tells us explicitly the value of the strong 

coupling at any lq21, in terms of the constant A. Unfortunately, it is hard to 
determine A precisely from experimental data, but Ac appears to lie somewhere 
in the range 

100 MeV < Ac < 500 MeV. (8.96) 

Notice that whereas the QED coupling varies only minutely over the accessi­

ble energy range (Problem 8.24), variation in the QCD coupling is substantial 
(Problem 8.27). 
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(a) Derive Equation 8.1, from the Feynman rules for QED. 
(b) Obtain Equation 8.2 from Equation 8.1 
(c) Derive Equation 8.3 from Equation 8.2 
(d) Derive Equation 8.4 from Equation 8.3 

8.2 Derive Equation 8.5, starting with Equation 8.4 
8.3 Why don't we use IY (e+e- --> e+ e-) in the denominator, to define R (Equation 8.7)? 
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8.4 Prove Equation 8.16 [Hint: First show that q,,Lµ.v=0. Then argue that we may as well 

take Kµ.v such that q,,Kµ.v=0, in the sense that any term in K''v that does not obey 
q,,Kµ.v=0 will contribute nothing to L"v Kµ.v·l Comment: Equation 8.16 actually follows 
more simply and generally from charge conservation at the proton vertex, but I have 
not developed the formalism here to make this argument (see Halzen and Martin [2], 
Sections 8.2 and 8.3). 
[One way to proceed is as follows. Take qi'= (0, 0, 0, q); then qµ.LI'" = 0 => L"v = 

□~L~'K",~□n PD.,.dfueXsm,hl~=ll 
be zero.] 

8.5 Prove Equation 8.17, from Equation 8.16 [Hint: First contract Kµ.v with q,,, then with 

Pv•l 
8.6 Find K1 and K2, and also GE and GM, for a 'Dirac' proton (Equation 8.25). 
8.7 Derive Equation 8.19 
8.8 Derive Equation 8.20 
8.9 Derive Equation 8.21 

8.10 Check that the Rosenbluth formula (Equation 8.23) agrees with the Mott formula 
(Equation 7.131) in the intermediate-energy regime (mc2 « E « Mc2). Use the 
expressions for K1 and K2 appropriate to a 'Dirac' proton (Problem 8.6). 

8.11 Why can't the 'ninth gluon' be the photon? [Answer: The gluon would couple to all 
baryons with the same strength, not (as the photon does) in proportion to their charge. 
Since mass and baryon number are approximately proportional in bulk matter, such a 
force would, in fact, look very much like an extra contribution to gravity. There was a 
flurry of interest in this possibility in early 1986. (Fischbach, E. et al., (1986) Physical 
Review Letters, 56, 3. See, however, the comments in Physical Review Letters, (1986) 56, 
2423.] 

8.12 Color SU(3) transformations relabel 'red', 'blue', and 'green' according to the transfor­
mation rule 

c---+ c' = Uc 

where U is any unitary ( uut =1) 3 x 3 matrix of determinant 1, and c is a three-element 
column vector. For example 

would take r ----,. g, g ----,. b, b ----,. r. The ninth gluon (19)) is obviously invariant under U, 
but the octet gluons are not. Show that 13) and 18) go into linear combinations of one 
another: 

13') = al3) + ,818), 18') = yl3) + 818) 

Find the numbers a, {3, y, and 15. 
8.13 Show that 

(Notice that all the A matrices are traceless.) 
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8.14 What are the structure constants for SU(2)? That is, what are the numbersJUk in 

8.15 (a) Given that f''PY is completely antisymmetric (so that f 112=0 automatically, and 
having calculated J 123 , we don't need to bother with J21l .J231 , etc.) how many distinct 
nontrivial structure constants remain? 

[ 8-7-6 ] Answer : --- = 56 
3 · 2 · 1 

Of these, it turns out that only nine are nonzero (those listed in Equation 8.36), and 
among these there are only three different numbers. 

(b) Work out[A1, A 2], and confirm thatf12Y =0 for ally except 3, whilef123 =1. 
(c) Similarly, compute ['- 1 , A3] and ['-4. ,.5], and determine the resulting structure 

constants. 
8.16 Calculate the octet qq color factor using the state 

(a) bg 
(b) (rr - bb)/v'2 
(c) (rr + bb - 2gm/-/6 

8.17 Find the amplitude .,,ff for the diagram 

~• C~4, ~ 

~.c, P3,~ 

What is the color factor (analogous to Equation 8.47) in this case? Evaluatef in the color 
singlet configuration. Can you explain this result? [Answer: It's zero; a singlet cannot 
couple to an octet (gluon).] 

8.18 Calculate the sextet qq color factor using the state (rb + hr)/ v-'2. 
8.19 Color factors always involve expressions of the form '-ij'-kl (summed over a). There is a 

simple formula for this quantity, which shortens the arithmetic: 

(see Kane [4]). Check this theorem for 

(a) i=J=k=l=l (see Equation 8.61) 
(b) i=J=l. k=l=2 (see Equation 8.49) 
(c) i=l=l,J=k=2 (see Equation 8.62) 

and 
(d) Use it to confirm Equation 8.52 

8.20 Derive Equation 8.70, starting from Equation 8.69 
8.21 There is a simple test for the gauge invariance of an amplitude (Ji!) in QCD (or 

QED): Replace any gluon (or photon) polarization vector by its momentum (EJ --,. p3, 

say), and you must get zero (see Problem 7.23). Show using this criterion that J/t = 
J/t1 + J//2 + ./1{3 is gauge-invariant, but J/t1 + J/(2 alone is not. [Thus the three-gluon 
vertex is essential in QCD to preserve gauge invariance. Notice, by contrast, that 
J/t1 + J/t2 alone is gauge-invariant in QED (Example 7.8). The fact that A matrices do 
not commute makes the difference.] 
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8.22 Construct the color singlet combination of two gluons (Equation 8.84). One method is 

as follows: Let 

Under SU(3), c--> c'=Uc, where U is a unitary matrix of determinant 1. Similarly, let 
dt =(r, b, g), transforming by the rule dt--> £·;·=dt ut. Form the matrix 

Note that M'=c' cit =UMUt. Now remove the trace: 

1 
N = M - 3[Tr(M)], so that Tr(N) = 0 

[Tr(M')=Tr(M)=(rr + bb + gg), so this combination is SU(3)-invariant; it is the singlet 
combination in 3 181 3 = 1 $ 8, N is the octet.] Note that 

N' = M' - !(Tr(M')] = UMU"i - ![Tr(M)]Uut = UNut 
3 3 

This tells us how the gluons themselves (which are in the octet representation) transform 
under color SU(3). The question is how to put together two octets to make a singlet; 
that is, how to make something bilinear in N 1 and N2 which is invariant under U. The 
solution is 

for 

It remains to figure out whats is in terms of the elements of M1 and M2: 

1 1 
Tr(N1N2) = Tr{(M1 - 3[Tr(M1)])(M2 - 3[Tr(M2)])} 

1 = Tr(M1M2) - 3[Tr(M1)][Tr(M2)] 

2 - -= 3 [(ri')I (rr)i + (bb)I (bb)i + (gg)i (gg)z] 

1 - - -- 3[(rr)l(bb)i + (rr)!(gg)i + (bb)I(rr)i + (bb)I(gg)i 

+(gg)i (rr)i + (gg)I (bb)i] + [(rb)I (br)i + (rg)I (gi')z 

+(br)I (rb)i + (bg)I (gb)z + (gr)I (rg)z + (gb)I (bg)z] 
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= llhll)z + l2)il2)z + l3)il3)z + l4)rl4h 
8 

+15)il5h + 16)il6)z + 17)il7)z + 18)il8)z = L ln)iln)i 
n=I 

(To normalize the state, divide by Js.) This - the invariant product of two octets - is 
the SU(3) analog to the dot product of two 3-vectors in SU(2). 

8.23 Determine the branching ratio r ('7, -> 2g)/r ('7, -> 2y). [Hint: Use Equation 8.90 
for the numerator, and a suitable modification of Equations 7.168 and 7.171 for the 
denominator. There are two modifications: (i) the quark charge is Qe and (ii) there is a 
color factor of 3, for quarks in the singlet state (Equation 8.30). Answer: ~ (a,/a) 2 .] 

8.24 (a) Calculate the energy (/fq2jc2) at which the QED coupling constant (Equation 8.86) 
blows up. (Remember, a(0)=l/137, the fine structure constant.) 

(b) At what energy do we get a 1 % departure from a (0)? Is this an accessible energy? 
8.25 Prove that the value ofµ, in Equation 9.69 is arbitrary. [That is, suppose physicist A uses 

the value /La, and physicist Buses a different value, /Lb· Assume A's version of Equation 
9.69 is correct, and prove that B's is also correct.] 

8.26 Derive Equation 9.71 from Equations 8.93 and 8.94 
8.27 Calculate a, at 10 and 100 GeV. Assume Ac=0.3 GeV. What if Ac=l GeV? How about 

Ac=0.1 GeV? 
8.28 (Gluon-gluon scattering) 

(a) Draw the lowest-order diagrams (there are four of them) representing the interaction 
of two gluons. 

(b) Write down the corresponding amplitudes. 
(c) Put the incoming gluons into the color singlet state; do the same for the outgoing 

gluons. Compute the resulting amplitudes. 
(d) Go to the CM frame, in which each gluon has energy E; express all the kinematic 

factors in terms of E and the scattering angle 0. Add the amplitudes to get the 
total, A. 

(e) Find the differential scattering cross section. 
(f) Determine whether the force is attractive or repulsive (if it is the former, this may be 

a likely glueball configuration). 
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Weak Interactions 

This chapter surveys the theory of weak interactions. It relies heavily on Chapter 7,

but not on Chapter 8; Section 4.4.1 would be usefal background. I begin by stating 

the Feynman Rules for the coupling of leptons to w±, and treat three classic problems 

in some detail: beta decays of the muon, the neutron, and the charged pion. Next, 

we consider the coupling of quarks to w±, which brings in the Cabibbo angle, the 

GIM mechanism, and the Kobayashi-Maskawa matrix. In Section 9.6, I state the 

Feynman rules for coupling quarks and leptons to the z!J, and the final section sketches 

the Glashow-Weinberg-Salam electroweak theory. Throughout this chapter I take the 

neutrinos to be massless; none of the results are measurably affected if (minute) neutrino 

masses are included. 

9.1 

Charged Leptonic Weak Interactions 

The mediators of weak interactions (analogous to photons in QED and gluons 

in QCD) are the W's (W+ and w-) and the z0. Unlike the photon and glu­

ons, which are massless, these 'intermediate vector bosons' are extremely heavy; 

experimentally, 

Mw = 80.40 ± .03 GeV/c2
, Mz = 91.188 ± .002 GeV/c2 (9.1) 

Now, a massive particle of spin 1 has three allowed polarization states (ms = 1, 0, 

-1), whereas a free massless particle has only two (if z is the direction of motion, the

'longitudinal' polarization ms= 0 does not occur). Thus, for photons and gluons,

we imposed both the Lorentz condition

(9.2) 

(reducing the number of independent components in f:I'' from 4 to 3) and also the 

Coulomb gauge (Eo = 0, so that €·p = 0, which reduces it further from 3 to 2).

For the W's and the Z we do not impose the latter constraint. As a result, the 

completeness relation is quite different (see Problem 9.1) and the propagator is 

 

1307 
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no longer simply -igµv/ q2 , but rather,* 

-i(gµv - qµqv/M2c2) 

q2 _ M2c2 (propagator for W and Z) (9.3) 

where Mis Mw or Mz, as the case may be. In practice, q2 is ordinarily so much 
smaller than (Mc) 2 that we may safely use 

(propagator for q2 « (Mc) 2) (9.4) 

However, when a process involves energies that are comparable to Mc2 we must, 
of course, revert to the exact expression. 

The theory of 'charged' weak interactions (mediated by the W's) is simpler than 
that for 'neutral' ones (mediated by the Z), so for the moment I shall concentrate 
on the former. In this section we consider the coupling of W's to leptons; in the 
next section we'll discuss their coupling to quarks and hadrons. The fundamental 
leptonic vertex is 

w-1 
~ 

Here an electron, muon, or tau is converted into the associated neutrino, with 
emission of a w- (or absorption of w+). The reverse process (vi -+ 1- + w+) 
is also possible, of course, as well as the 'crossed' reactions involving antileptons. 
The Feynman rules are the same as for QED (apart from the modifications already 
mentioned to accommodate the massive mediator), except for the vertex factor, 
which is 

-igw yµ (1 - y 5) (weak vertex factor) 
2-Ji. 

(9.5) 

The various 2's are purely conventional, and gw = ✓4naw is the 'weak coupling 
constant' (analogous toge in QED and g, in QCD). The term (1 - y 5), however, is 
of profound importance, for yµ alone would represent a vector coupling (like QED 
or QCD), whereas yµy 5 would be an axial vector (see Equation 7.68). A theory that 

* It might bother you that this does not reduce 
to the photon propagator as M ➔ 0. For par­
ticles of spin 1 (or higher), the massless limit 
is notoriously treacherous, because in one 
critical respect it is not a continuous proce­
dure. The number of degrees of freedom (that 

is, the number of allowed spin orientations) 
drops abruptly from 2s + 1 (for M # 0) to 2 
(for M = 0). There are ways of formulating 
the theory that allow a smooth transition to M 
= 0, but only at the cost of introducing spuri­
ous nonphysical states. 
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adds a vector to an axial vector is bound to violate the conservation of parity, and 
this is precisely what happens in the weak interactions.* 

Example 9. 1 Inverse Muon Decay Consider the process 

represented (in lowest order) by the diagram 

Here q = p1 - p3, and we'll assume q2 « M~c2 , so we can safely use the simplified 
propagator (Equation 9.4); the amplitude is 

(9.6) 

Applying Casimir's trick (Equation 7.125), and assuming the neutrino masses are 
negligible, we find 

The theorems of Section 7. 7 yield 

for the first trace, and 

* In fact, the violation is 'maximal', in the 
sense that the two terms are equally large. 
When parity violation was first considered, 
a factor of the form (1 + e y 5) was used, but 
experiments soon dictated that E = -1 (see 
Problem 9.3). We call it a 'V-A' ('vector 
minus axial vector') coupling. Fermi's original 

(9.7) 

(9.8) 

(9.9) 

theory of beta decay was a pure vector theory 
(like QED), and although others proposed 
scalar, pseudoscalar, tensor, or pure axial 
couplings, it was not until 1956 that any­
one seriously contemplated mixing terms of 
different parity. 
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for the second. It follows that* 

(9.10) 

Actually, we want the sum over final spins but the average over initial spins. The 
electron has two spin states, but (massless) neutrinos (as we learned in Section 4.6) 
have only one (if you like, the incident neutrinos are always polarized, since they 
only come 'left-handed'). So 

(1~12) = 2 (i:J 4 
(p1 . p2)(p3 . p4) (9.11) 

If we now go to the CM frame, and neglect the mass of the electron 

(9.12) 

where E is the incident electron (or neutrino) energy. The differential scattering 
cross section (Equation 6.47) is isotropic (all scattering angles equally likely) 

(9.13) 

and the total cross section is 

[ 2 ]2 { 2 2}2 a= 8~ CJ;c2 ) ncE 1- (m;; ) (9.14) 

9.2 
Decay of the Muon 

Electron-neutrino scattering is not the easiest thing in the world to study exper­
imentally, but the closely related process, muon decay (µ, -,. e + v/L + ve), is the 
cleanest of all weak interaction phenomena, theoretically and experimentally. The 
Feynman diagram 

* Note that Eµ,,a Eµm = -2(8;8; - 8}8~) (Problem 7.35). The traces in Equation 9.7 are special 
cases of a structure that will occur repeatedly in this chapter; it might be a good idea to pause 
here and work out the generic result (Problem 9.2). 



leads to the amplitude 

from which we obtain, as before, 

In the muon rest frame, p1 = (mµc, 0), we have 

and since Pi = pi + p3 + p4 

~+~f=~+i+~-~=~~+~-~ 
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(9.15) 

(9.16) 

(9.17) 

= (p1 - p2)2 =Pi+ p~ - 2p1 ·pi= m~c2 - 2p1 · pi (9.18) 

from which it follows that 

(9.19) 

The algebra will be simpler later on, at no significant cost in accuracy, if we set 
m, = 0, so that 

(9.20) 

The decay rate is given by Equation 6.21:* 

dr - (l.-4tl2) ( d3P2 ) ( d3p3 ) ( d3p4 ) 
- 2nmµ (2n)32lp2I (2n)32IP3I (2n)321p41 

x (2n)484(p1 - p2 - p3 - p4) (9.21) 

To begin with, we peel apart the delta function: 

and perform the p3 integral: 

* Note that this is a three body decay, so we have to go all the way back to the Golden Rule. 
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Next we'll do the p2 integral. Setting the polar axis along p4 (which is fixed, for the 
purposes of the p2 integration), we have 

(9.24) 

and 

(9.25) 

The <P integral is trivial (f d<fi = 2n); to carry out the 0 integration we change 
variables (0 ➔ u): 

2 udu = -2 lp21 IP41 sin0 d0 

so 

where 

The u integral is 1 if 

(and O otherwise) - which is to say (Problem 9.4), 

I IP2I < ½mµcl 
IP41 < ½mµc 

(lp2I + lp41) > ½mµc 

(9.26) 

(9.27) 

(9.28) 

(9.29) 

(9.30) 

These constraints make good sense kinematically: particle 2, for example, gets the 
maximum possible momentum when 3 and 4 emerge diametrically opposite to it: 

2 -+----- -----+ 3 ---•4 

In this case 2 picks up half the available energy (½ mµc 2), while 3 and 4 share 
the rest. If there is a nonzero angle between 3 and 4, 2 gets less, and 3 plus 4 
correspondingly more. Thus ½ mµ c is the maximum momentum for any individual 
outgoing particle, and the minimum total for any pair. 

The 0 and <P integrals have left us with 

(9.31) 
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The inequalities in Equation 9.30 specify the limits on the lp2I and lp41 integrals: 
lp2I runs from ½m/Lc - IP41 up to ½m/Lc, and IP41 will then go from Oto ½m/Lc. 
Putting in Equation 9.20* and carrying out the IP2l integral, we have 

( 
g )4 m d3p 1(1/2)m/Lc 

dr = 4 Mw "'~ -1 Ii lp2l(m/Lc - 2lp2I) dlp2I 
n: W nC P4 (l/2)m/Lc-lP41 

(9.32) 

Finally, writing 

and expressing the answer in terms of the electron energy, E = lp4Jc, we concludet 

(9.33) 

This tells us the energy distribution of the electrons emitted in muon decay; it 
nicely matches the experimental spectrum (Figure 9.1). The total decay rate is 

(9.34) 

and hence the lifetime of the muon is 

(9.35) 

Notice that gw and Mw do not appear separately, either in the muon lifetime 
formula or in the electron-neutrino scattering cross section; only their ratio occurs. 
It is traditional, in fact, to express weak interaction formulas in terms of the 'Fermi 
coupling constant' 

(9.36) 

* Notice that ( 1Afl2 ) depends only on the magnitude of p2 , not on its direction; that's why I was 
free to ignore it in the 0 and ,P integrations. 

t Remember that Equation 9.33 applies only up to E = ½m,,c2 (Equation 9.30), at which point it 
drops abruptly to zero (the corners are softened a bit by the inclusion of particle masses and 
radiative corrections). 
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Fig. 9.1 Experimental spectrum of positrons 
in µ,+ -> e+ + v, + Vµ, The solid line is 
the theoretically predicted spectrum based 
on Equation (9.33), corrected for electro­
magnetic effects. (Source: Bardon, M. et al. 

Thus the muon lifetime is written 

l92n3ti7 
r=---

G}m~c4 

(1965) Physical Review Letters, 14, 449. For 
the latest high-precision data on muon de­
cay go to the TWIST collaboration web site 
at TRIUMF, Vancouver, BC.) 

(9.37) 

In Fermi's original theory of beta decay (1933) there was no W; the interaction 
was supposed to be a direct four-particle coupling, represented in the Feynman 
language by a diagram of the form 

X e 
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From the modern perspective, Fermi's theory combined the W propagator with 
the two vertex factors, in the diagram 

to make an effective four-particle coupling constant Gp. It worked, but only because 
the Wis so heavy that Equation 9.4 is a good approximation to the true propagator 
(Equation 9.3),* and in fact it was recognized already in the 1950s that Fermi's 
theory could not be valid at high energies. The idea of a weak mediator (analogous 
to the photon) was suggested by Klein as far back as 1938. 

If we put in the observed muon lifetime and mass, we find that 

Gp/(hc)3 = ,,/2 (~)
2 = 1.166 x 10-5 /GeV2 

8 Mwc 
(9.38) 

The corresponding value of gw is 

gw = 0.653 (9.39) 

and hence the 'weak fine structure constant' is 

g~ 1 
O'.w = 4Jt = 29.5 (9.40) 

This number should come as something of a shock: it is larger than the electromag­
netic fine structure constant (a= 1~7 ), by a factor of nearly S! Weak interactions 
are feeble not because the intrinsic coupling is small (it isn't), but because the 
mediators are so massive - or, more precisely, because we typically work at energies 
so far below the W mass that the denominator in the propagator lq2 - M~c21 is 
extremely large. 

9.3 
Decay of the Neutron 

The success of the muon decay formula (Equation 9.33) encourages us to apply 
the same methods to the decay of the neutron, n -4 p + e + v,. Of course, the 
neutron and proton are composite particles, but just as the Mott and Rutherford 
cross sections (which treat the proton as an elementary 'Dirac' particle) give a 

* Fermi also thought the coupling was pure 
vector, as I mentioned earlier. Despite these 
defects (for which Fermi could scarcely be 
blamed; after all, he invented the theory 
at a time when the neutrino was a wild 

speculation and the Dirac equation itself was 
brand new), Fermi's theory was astonishingly 
prescient, and all subsequent developments 
have been relatively small adjustments to it. 
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good account oflow-energy electron-proton scattering, so we might hope that the 
diagram 

»e 

p 

~ 

(the same as for muon decay, only with n-+ p + w- in place ofµ -+ v µ + w-) will 
afford a reasonable approximation to neutron beta decay. From a calculational point 
of view the only new feature is that 3 is now a massive particle (a proton, instead of 
a neutrino). As it happens (Problem 9.8) this does not change the amplitude: 

(1-4'1 2) = 2 (i:J 4 
(p1. p2)(p3. p4) 

- same as Equation 9.16. In the rest frame of the neutron, we find 

(1-4'12) = mn (~)4 IP2I (m2 - m2 - m2 - 2mnlP2I) 
C Mw n P e c 

(9.41) 

(9.42) 

But because the electron rest energy is a substantial fraction of the total energy 
released, (mn - mp - m,)c2, we cannot afford to ignore the electron mass, this time. 

Toe decay rate calculation proceeds as before (with the masses now included): 

(9.44) 

where 

(9.45) 

To carry out the p2 integral, we again set 

(9.46) 
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and orient the coordinates so that the z axis lies along p4 (which is fixed, for 
purposes of the p2 integral); then 

and 

udu = -lp2I IP41 sin0 d0 

The </J and 0 (or rather, u) integrals yield 

where 

l= 1:+ o(mnc-lp2I-Jlp412+m;c2-u) du 

= { 1, ifu_ < (mnc-lp2I-Jlp412 +m;c2) <U+} 
0, otherwise 

and the limits are 

(9.47) 

(9.48) 

(9.49) 

(9.50) 

(9.51) 

As before, Equation 9.50 defines the range of the lp2 I integral; I'll let you work out 
the algebra (Problem 9.9): 

With ( I.Al2 ) from Equation 9.42, the lp2I integral becomes 

[P+ ( 2 2 2 2mnlP2I) JP_ lp2I mn - mp - m, - --c- dlp2I =J 

and since 

we conclude that 

dr _ 1 ( gw ) 4 E 
dE - tic2(4n)3 Mwc ]( ) 

where E = cJlp4J2 + m;c2 is the electron energy. 

(9.52) 

(9.53) 

(9.54) 

(9.55) 
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Fig. 9.2 Electron energy distribution from neutron beta de­
cay. (Solid line is the theoretical curve; dots are experimen­
tal data.) (Source: Christensen, C. J. et al. (1972) Physical 
Review, D5, 1628. Figure (9.4).) 

1 .29 

Equation 9.55 is exact (use it, if you like, to rederive Equation 9.33, by setting mn 
➔ mµ, and mp, m, ➔ 0), butj(E) is a rather cumbersome function: 

(9.56) 

It pays to approximate, at this stage, recognizing that there are four small numbers 
here: 

8 = m, = 0.0005, 
mn 

(9.57) 

(The last of these is not independent, of course: ¢ 2 = 1/ - 82 .) Expanding to lowest 
order (Problem 9.9), we obtain 

(9.58) 

So the distribution of electron energies is given by 

(9.59) 

The experimental results are shown in Figure 9.2. The electron energies range 
from m,c2 up to about (mn - mp)c2 (Problem 9.10). Integrating over E, we get the 
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total decay rate (Problem 9.11): 

r - _1 _ ~ m c2 5 ( )
4 

- 4n31l, 2Mwc2 ( , ) 

x [ 1
1
5 (2a4 - 9a2 - 8)/42=1 + a ln(a + J a2 - 1)] (9.60) 

where 

mn-mp 
aeee--­

m, 
(9.61) 

Putting in the numbers, I find (Problem 9.12) 

1 
r = - = 1318 s r (9.62) 

This is in the ball park, as they say: the experimental neutron lifetime* is 885.7 
± 0.8 seconds, and given that weak decays range from 15 minutes down to 10-13 

seconds we should perhaps be satisfied to get the right order of magnitude. But 
why isn't the agreement better? 

The main problem is that we have treated the proton and neutron as though they 
were simple point particles, interacting with the Win exactly the same way leptons 
do. To be honest about it, we should go back to the beginning, admit that we do 
not really know how the W couples to composite structures, draw in a blob on the 
Feynman diagram (to symbolize our ignorance) 

and express the amplitude in terms of various unknown 'form factors', whose 
structure is limited only by Lorentz covariance - just as we did in Chapter 8 for 
the proton-photon vertex. Not until a mature QCD can provide us with the detailed 
structure of the nucleons will we be in a position to perfect the neutron lifetime 
calculation. 

* This number is from the 2006 Particle Physics 
Booklet (PPB). Free neutrons are hard to work 
with, and the 'official' neutron lifetime has 
changed substantially over the years (the first 
PPB listed it as 1040 ± 130 seconds). Note 
also that nuclear physicists tend to quote the 
half-life (1112 = r ln2), and beta-decay special­
ists often quote the 'comparative half-life' -

the so-called 'ft' value - which has certain 
kinematic and Coulombic contributions re­
moved (for the neutron the correction fac-
tor is about 1.7). This is just to warn you that 
the numbers given in the literature for the 
neutron 'lifetime' are all over the map, and it 
pays to read the fine print and check the date. 
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And yet, the Mott formula works well for low-energy electron-proton scattering: 
why does essentially the same procedure give us the right answer in electrodynam­
ics, but not in the weak interactions? In both cases the wavelength of the 'probe' 
(Y or W, as the case may be) is much larger than the diameter of the 'target' 
(porn) (see Problem 9.13); the nucleon's internal structure is not 'resolved', and it 
behaves as a point particle. The crucial question, though, is: what is the net coupling 
strength of this object? Of course, the net charge of the proton is still e - it doesn't 
matter what complicated processes are going on inside - valence quarks emitting 
virtual gluons, gluons producing quark-antiquark pairs, 'sea' quarks recombining, 
and so on - because all this frenzied activity conserves charge. From the perspective 
of a long wavelength photon it just looks like a point, and the net charge of the 
composite nucleon is just the sum of the charges of the valence quarks. But there 
is no a priori reason to suppose that the same applies to the weak coupling; when 
a gluon splits into a quark-antiquark pair, the net contribution of this pair to the 
weak coupling may not be zero - who knows? To account for this, we make the 
following replacement in the n ➔ p + W vertex factor: 

(9.63) 

where cv is the correction to the vector 'weak charge', and cA is the correction 
to the axial vector 'weak charge'. Luckily, the same basic process, n ➔ p + e + v,, 
occurs not only for the free neutron, but also within radioactive nuclei, so we 
have, in principle, many independent opportunities to measure cv and CA.* The 
experimental results are as follows: 

Cy = 1.000, CA = 1.270 ± 0.003 (9.64) 

Surprisingly, the vector weak charge is not modified by the strong interactions within 
the nucleon. Presumably, like electric charge, it is 'protected' by a conservation law; 
we call this the 'Conserved Vector Current' (CVC) hypothesisJ Even the axial term 
is not altered much; evidently it is 'almost' conserved. We call this the 'Partially 
Conserved Axial Current' (PCAC) hypothesis. 

The effect of this substitution (Equation 9.63) on the neutron lifetime is some­
thing you can calculate for yourself, if you have the stamina; to good approximation, 
the decay rate is increased by a factor of 

and the lifetime is decreased in the same ratio: 

1316s 
r = -- =901s 

1.46 

(9.65) 

(9.66) 

* A particular favorite is 140 -+ 14 N, which is known (from the observed spin and parity of the 
initial and final states) to involve only vector coupling. 

t CVC is built into the Standard Model, and nowadays cv is taken to be 1 exactly; the experiments 
are interpreted as measurements of the Cabibbo angle (see below) - or, more precisely, of Vub• 
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This is now within striking distance of the experimental value. Unfortunately, 
the agreement is deceptive, for there is yet another correction to be made. The 
underlying quark process here is d ➔ u + W (with two spectators): 

e 

d u 

d 

(n) ~ (p) 

and this quark vertex carries a factor of cos 0c, where 0c = 13.15° is the 'Cabibbo 
angle'. I'll have more to say about this in Section 9.5, but the essential point for now 
is that our theoretical value for the neutron lifetime, corrected for nonconservation 
of the axial charge and modified by the Cabibbo angle, is 

901 s 
r = -- =950s 

cos2 0c 

Two steps forward, one step back!* 

9.4 
Decay of the Pion 

(9.67) 

According to the quark model, the decay of a charged pion (n- ➔ 1- + vi, where 
I is a muon or an electron) is really a scattering event in which the incident quarks 
happen to be bound together: 

In this sense, it is a weak interaction analog to positronium decay (e+ + e- ➔ y + 
y) or T/c decay (c + c ➔ g + g) - electromagnetic and strong processes, respectively. 
We could analyze it this way, following the methods of Example 7.8 and Section 8.5 
(see Problem 9.14), but in the end we would be stuck with a factor of [if,(0)[ 2 , and at 
this stage we have no idea what the wave function (if,) of the quarks within a pion 

* This isn't the end of the story; there is, for example, a small Coulomb correction, (due to the at­
traction of the electron and proton in the final state). But we are within 7% of the experimental 
result, and it is time to move on. 



3221 9 Weak Interactions 

looks like. Given that such a calculation will carry this undetermined multiplicative 
factor anyway, it is simpler to proceed as follows. 

Redraw the Feynman diagram, with a blob to represent the coupling ofn· - to w-: 

We may not know how the W couples to the pion, but we do know how it couples 
to the leptons, so the amplitude must have the general form 

(9.68) 

where fl' is a 'form factor' describing the n: -+ W blob. It has to be a four-vector, to 
contract with the y µ in the lepton term. But the pion has spin zero; the only vector 
associated with it, out of which we might construct fl', is its momentum, pµ. * (I 
won't bother with a subscript on the pion's momentum: p = p1.) So P must be 
some scalar quantity times pµ :i' 

(9.69) 

In principle,! rr is a function of p2 - the only available scalar - but since the pion 
is on its mass shell (p2 = m; c2),f rr is, for our purposes, a fixed number, the 'pion 
decay constant'.+ 

Summing over the outgoing spins, we get 

(1..411 2) = [~ (i:J 2r PµPv Tr[yµ(l - y 5)/2Y"(l - y 5)(Jh + m1c)] 

= 1 f (i:crr [2(p. pz)(p. p3) - p2(p2 . p3)] (9.70) 

* Notice that we introduce the (weak) pion 
form factor at the level of A, whereas for 
the (electromagnetic) proton form factors we 
waited until the ( 1---«1 2 ) stage. The reason 
is that the proton has a spin, and we would 
have to include that in the roster of available 
vectors; it is only after we have averaged over 
the spins that the list reduces to two, and 
the problem becomes manageable. The pion, 
however, has no spin, so we can afford to in­
troduce the form factor directly in A, where 
it is only a vector quantity, instead of a ten­
sor. 

t For reasons that will appear in the next 
section, it is customary nowadays to factor out 
the appropriate Cabibbo-Kobayashi-Maskawa 
(CKM) matrix element in the definition of 
the meson decay constants: f,, ➔ vd. J,,. To 
avoid cluttered notation I'll use the older 
convention. 

:i= The corresponding factor for other pseu­
doscalar mesons will involve a different value 
of p2, and a different element in the CKM 
matrix (see footnotej"). 
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(the trace was already calculated in Equation 9.8). But p = p2 + p3, so 

p · p2 = p2 · p3, p · p3 = mfc2 + p2 · p3 (9.71) 

and 

so 2p2 · p3 = (m; - mf)c2 (9.72) 

Thus 

(9.73) 

( a constant). 
The decay rate is given by the standard formula (Equation 9.35): 

(9.74) 

and the outgoing momentum is (see Equation 9.34 or Problem 3.19) 

(9.75) 

So 

(9.76) 

Of course, without knowing the decay constant, f", we cannot calculate the pion 
lifetime.* But we are able to determine the ratio of the electron and muon decay 
rates: 

(9.77) 

(The experimental number is 1.230 ± 0.004 x 10-4 .) At first glance, this is a very 
surprising result, for it predicts (correctly) that the pion prefers the muon mode, 
in spite of the fact that the electron is much lighter. Phase space considerations 
favor decays for which the mass decrease is as large as possible, and unless some 
conservation law intervenes, we ordinarily find that the lightest final state is the 
most common one. Pion decay is the notorious exception, and it calls for some 
special dynamical explanation. A clue is suggested by Equation 9.76: notice that if 
the electron were massless, the :n:- -> e- + Ve mode would be forbidden altogether. 

* It is a rather striking fact that if you put inf,= m,c (or, better yet, m,c cos 0c) you come out 
very close to the rr- - µ,- + v,, lifetime, but I know of no persuasive theoretical justification 
for this ansatz, and it doesn't work for the heavier mesons. 
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Can we understand this limiting case? Yes: the pion has spin 0, so the electron and 
the antineutrino must emerge with opposite spins, and hence equal helicities: 

The antineutrino is always right-handed, so the electron must be right-handed as 
well. But if the electron were truly massless, then (like the neutrino) it would only 
exist as a left-handed particle. More precisely, the 1 - y 5 in the weak vertex factor 
would couple only to left-handed electrons, just as it couples only to left-handed 
neutrinos (see Problem 9.15). That's why, if the electron were massless, the decay 
n:- -+ e- + Ve could not occur at all, and why (the physical electron being very close 
to massless) the decay is so heavily suppressed. 

9.5 
Charged Weak Interactions of Quarks 

In the case of leptons, the coupling to w±takes place strictly within a particular 
generation: 

(lepton generations) 

That is, e- -+ Ve + w-, µ- -+ vµ + w-, ,- -+ Vr + w-, but there is no 
cross-generational coupling, of the form e- -+ v µ + w-, for example. The coupling 
of W to quarks is not quite so simple, for although the generation structure is 
similar 

(quark generations) 

the weak interactions do not strictly respect their separate identities. There are, to 
be sure, interactions of the form d -+ u + w- (the process that underlies neutron 
decay, n-+ p + e + Ve), but there exist as well cross-generational couplings, such as 
s-+ u + w- (seen, for example, in the decay /1. -+ p + e + ve), Indeed, if this were 
not the case, we would have three absolute 'flavor-conservation' laws: conservation 
of 'upness-plus-downness', 'charm-plus-strangeness', and 'truth-plus-beauty' -
analogous to the three lepton number conservation laws. The lightest strange 
particle (K-) would be absolutely stable, and so would the B meson (the lightest 
beautiful particle); our world would be a quite different place. 

In 1963 (when u, d, ands were the only quarks known), Cabibbo [l] suggested 
that the d -+ u + w- vertex carries a factor of cos 0c, whereas s -+ u + w-



9.5 Charged Weak Interactions of Quarks 1325 
carries a factor of sin 0 c; apart from that they are identical to the leptonic couplings 
(Equation 9.5): 

-igw " S . --y~(l-y )sm0c 
2,,/2 

(9.78) 

The strangeness-changing process (s-+ u + w-) is conspicuously weaker than the 
strangeness-conserving one (d-+ u + w-), so evidently the 'Cabibbo angle' 0c is 
rather small. Experimentally, 

0c = 13.15° (9.79) 

The weak interactions almost respect quark generations ... but not quite. 

Example 9.2 Leptonic Decays Consider the decay K- -+ 1- + v1, where l is an 
electron or a muon. This is the analog ton- decay (Section 9.4), but now the quark 
vertex is s + u-+ w-, instead of d + u-+ w-. From Equation 9.76 we have 

r = Ii (~)4 m2(m2 - m2)2 nnmi 4Mw I K I 

The coupling strength is presumably about the same, except that where f rr 
contained a factor of cos 0 c ,J K carries a factor of sin 0 c. Accordingly, 

(9.80) 

Putting in the numbers, I get 0.96 for the muon mode (! = µ,) and 0.19 for the 
electron mode (l = e). The observed ratios are 1.34 and 0.26, respectively; these 
decays are pure axial vector, and, as we discovered earlier (Section 9.3), perfect 
agreement is not to be expected. lB 

Processes of the kind considered in Example 9.2 are called leptonic decays. There 
also exist semileptonic decays, such as n- -+ n° + e- + v,, R°-+ n+ + µ,- + vµ. 
(Figure 9.3a), or for that matter the beta decay of the neutron: n -+ p+ + e- + v,. 
Finally, there are nonleptonic weak interactions, such as K- -+ n° + n- or I\. -+ 

p+ + n- (Figure 9.3b). Generally speaking, the latter are the hardest to analyze, 
because there is strong interaction contamination at both ends of the W line [2]. 
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d 

w 

s u s u 
d 

(A) ~ (p) 

(b) 

Fig. 9.3 (a) A typical semileptonic decay (R° ➔ rr+ + µ,- + 
ti,_,). (b) A typical nonleptonic weak decay (A ➔ p+ + rr-). 

Example 9.3 Semileptonic Decays In the case of neutron decay (n-+ p + e + v,), 
the basic quark process is d -+ u + w- (with two spectators). However, there 
are two d quarks in the neutron, and either one could couple to the W; the 
net amplitude for the process is the sum. The simplest way to keep track of 
the numbers is to use the quark wave functions in Section 5.6.1; the flavor 
states ,jr 12 , for instance, give n = (ud - du)d/ ,Ji., from which (with d -+ u) we 
get [(uu - uu)d + (ud - du)u]l ,,/2 = (ud - du)u/ ,Ji. = p. The overall coefficient is 
then simply cos 0 c (as I claimed at the end of Section 9.3). By contrast, in the decay 
:E0 -+ :E+ + e + v,, the quark process is still d-+ u, but here :E0 = [(us - su)d + 
(ds - sd)u]/2-+ [(us - su)u + (us - su)u]/2 = (us - su)u = ,,/2:E+, and hence the 
amplitude carries a factor of ,Ji. cos 0,.• The decay rate is given by Equation 9.60, 
which reduces (in the case a» l) to the form 

where Ll.m is the baryon mass decrease and Xis the Cabibbo factor (cos0c, for 
neutron decay; ,Ji. cos 0c, for :E0 -+ :E+ + e + v,; etc.). I'll let you work out the 
numbers for yourself (Problem 9.17).i" 

Cabibbo's theory was very successful in correlating dozens of decay rates, but 
there remained a disturbing problem: this picture allowed the K0 to decay into a 
µ+µ- pair (see Figure 9.4). The amplitude should be proportional to sin 0c cos 
0c, but the calculated rate was far greater than the experimental limit. A solution 

* Actually, there is a technical difference here: the active quark is bound to the spectator in a spin 
singlet state. Fortunately, this does not affect the lifetime. 

t This procedure includes only the valence quarks, and hence is insensitive to the nonconser­
vation of the axial coupling. As we found in Equation 9.65, PCAC can lead to a correction of 
nearly 50%, so one does not expect fine precision in the lifetimes. Cabibbo's theory included a 
way of calculating the axial couplings, but I shall not go into that here. 
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Fig. 9.4 The decay Ko ----> µ, + + µ,-. 
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s µ, 

K') 

w 

C v,, 

w 
d µ, 

Fig. 9.5 The GIM mechanism. This diagram 
cancels Figure 9.4. Note the virtual c quark 
replacing the u. 

to this dilemma was proposed in 1970 by Glashow, Iliopoulos, and Maiani (GIM) 
[3]. They introduced a fourth quark, c (note that this was four years before the 
'November Revolution' produced the first direct experimental evidence for charm) 
whose couplings to s and d carry factors of cos 0 c and - sin 0 c, respectively: 

w-1 w-1 
~~ 

(9.81) 

In the 'GI M mechanism', the diagram in Figure 9 .4 is canceled by the corresponding 
diagram with c in place of u (Figure 9.5), for this time the amplitude is proportional 
to - sin 0c cos 0c.* 

The Cabibbo-GIM scheme invites a simple and beautiful interpretation: instead 
of the physical quarks d and s, the 'correct' states to use in the weak interactions 
are d! and s', given by 

d! = dcos0c + ssin0c, s' = -dsin0c + scos0c (9.82) 

* The cancellation is not pe,fect, because the 
mass of the c is not the same as the mass 
of the u. However, these virtual particles are 
so far off the mass shell that both propaga­
tors are essentially just i~/ q2• (In calculating 
✓,ff we shall be integrating over the one re• 
maining internal momentum which is not 
fixed by the conservation laws. This is essen• 
tially the momentum 'circulating around the 

loop'. Because of the two W propagators, the 
main contribution will come in the region of 
the W mass, which is so much greater than 
the c or u mass that the latter can, to good ap­
proximation, be neglected. Actually, the de­
cay does occur, it's just extremely slow, and if 
you include the effects of u/c mass difference, 
the calculation is consistent with the observed 
rate.) 

1327 
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or, in matrix form 

(d') ( cos0c sin0c) (d) 
s = - sin 0c cos 0c s 

(9.83) 

The W's couple to the 'Cabibbo-rotated' states 

in exactly the same way that they couple to lepton pairs, ( ~) and ( ~); their 

couplings to the physical particles (states of specific flavor) are then given by 

(9.84) 

That is, d-+ u + w- carries a factor cos 0c, s-+ u + w- carries a factor sin 0c, 
and so on.* 

At the time, the GIM mechanism seemed a little extravagant - introducing a 
new quark just to fix a rather esoteric technical defect in a largely untested theory. 
But the skeptics were silenced by the discovery of the ,fr(cc) in 1974. Meanwhile, 
Kobayashi and Maskawa [4] had generalized the Cabibbo-GIM scheme to handle 
three generations of quarks.t the 'weak interaction generations', 

* It is purely conventional that we 'rotate' d and 
s, rather than u and c; we could accomplish 
the same purpose by introducing u' = u cos 
0c - c sin 0c and c' = u sin 0c + c cos 0c. 
Incidentally, you might be wondering whether 
a similar rotation occurs in the lepton sec-
tor. If all neutrinos were massless, any linear 
combination of them would still be massless, 
and there would be no 'tag' to identify the 
'unrotated' states. But, if neutrinos have mass 
(as we now know they do), there is no rea­
son to suppose that the 'mass eigenstates' are 
the same as the weak interaction states, and 
the same rotation story plays out - only in re­
verse, since the 'familiar' neutrinos are the 
ones paired with the charged leptons in the 

(9.85) 

weak interactions and we need to rotate back 
to get the 'physical' states (see Chapter 11). 

"t It is interesting to note that Kobayashi and 
Maskawa proposed a third quark generation 
before the second was complete, and long be­
fore there was any experimental evidence for 
a third. They were motivated by a desire to 
explain CP violation within the Cabibbo-GIM 
scheme. It turned out that for this purpose 
they needed a complex number in the 'rota­
tion' matrix (Equation 9.83), but such a term 
could always be eliminated by suitable redef­
inition of the quark phases, unless they went 
to a 3 x 3 matrix, and hence to three genera­
tions (Problem 9.18). 
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are related to the physical quark states by the CKM matrix: 

(9.86) 

where V ud, for example, specifies the coupling of u to d (d-, u + w-). 
There are nine (complex) elements in the CKM matrix, but they are not all 

independent (see Problem 9.18); V can be reduced to a kind of'canonical form', in 
which there remain just three 'generalized Cabibbo angles', (0 12 , 023 , 013) and one 
phase factor (8) [SJ : 

S12C13 
io C12Cz3 - S12Sz3S13e 

io 
-C12S23 - S12C23S13e 

S13e-io) 
S23C13 

Cz3C13 

(9.87) 

Here Cij stands for cos 0ij, and Sij for sin 0ij. If023 = 013 = 0, the third generation 
does not mix with the other two, and we recover the Cabibbo-GIM picture, with 
012 = 0c. However, there is compelling evidence (namely, the observed decay of 
the B-(bu) meson) for some third-generation mixing, although it must be fairly 
small in order to account for the success of the original Cabibbo-GIM scheme. 
The Standard Model offers no insight into the CKM matrix (indeed, this is one of 
its most conspicuous weaknesses); for the moment, we simply take the values of 
the matrix elements from experiment. The magnitudes are [6]: 

9.6 

(
0.9738 

I Yijl = 0.2271 
0.0081 

0.2272 
0.9730 
0.0416 

Neutral Weak Interactions 

0.0040) 
0.0422 
0.9991 

(9.88) 

In 1958, Bludman [7] suggested that there might exist neutral weak interactions, 
mediated by an uncharged partner of the W's - the z0 : 

Here f stands for any lepton or any quark. Notice that the same fermion comes 
out as went in (just as in QED and QCD). We do not allow couplings of the form 
µ- -, e- + z0 , for example (this would violate conservation of muon and electron 
number), nor of the forms-, d + z0 (such a strangeness-changing neutral process 
would lead to K0 -, µ+ +µ-,which, as I have already remarked, is strongly 
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Fig. 9.6 The first picture of a neutral weak 
process {vµ + e- ➔ Vµ + e- ). The neutrino 
enters from below (leaving no track) , and 
strikes an electron, which moves off (up­
ward), emitting two photons (which show 

:1-1 Vµ 

I 

up in the figure only when they subsequently 
produce electron-positron pairs) as it slows 
down and spirals inward in the superim­
posed magnetic field (the big circle in the 
lower left is a lamp) . (Source: CERN.) 

suppressed).* In 1961, Glashow [8) published the first paper on unification of weak 
and electromagnetic interactions; his theory required the existence of neutral weak 
processes, and specified their structure (see Section 9.7) . In 1967, Weinberg and 
Salam [9) formulated Glashow's model as a 'spontaneously broken gauge theory', 
and in 1971, 't Hooft [10) demonstrated that the Glashow-Weinberg-Salam(GWS) 
scheme is renormalizable. Thus there were increasingly persuasive theoretical 
reasons for thinking that neutral weak interactions occur in nature, but for a long 
time there were no experimental data to support this hope. Finally, in 1973 [11 ), 

* In the case of neutral processes, it doesn't matter whether you use the physical states (d, s, b) or ::r:: :: : ~ ;~ ::::: ::;:7~:,:::::,, 
~ gives .,I/ ~ ""is = ddsin2 0c +sscos2 0c + (ds+ sd)sin0ccos0c. 

So the sum of the two is .,I/ ~ d' d' + s s = dd + ss. Thus the net amplitude, once both diagrams 
are combined, is the same whichever states we use. (The same argument generalizes to three 
generations, as long as the CKM matrix is unitary.) 
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a bubble chamber photograph at CERN (Figure 9.6) revealed the first convincing 
evidence for the reaction 

suggesting mediation by the z0 : 

The same series of experiments also witnessed the corresponding neutrino-quark 
process, in the form of inclusive neutrino-nucleon scattering: 

vµ +N---,. vµ +X 

vµ + N---,. vµ +x 

Their cross sections were about a third as large as those of the related charged 
events (v1, + N---,. µ,+ + X and vµ + N---,. µ,- + X), indicating that this was indeed 
a new kind of weak interaction, and not simply the higher-order process, 

e e 

w 

µ, 

(which would yield a far smaller cross section). The CERN results came as welcome 
encouragement to electroweak theorists, who had been out on a limb now for 
several years [12]. 

As we have seen, the coupling of quarks and leptons to w± is a universal 'V-A' 

form; the vertex factor is always 

( w± vertex factor) (9.89) 

(It is true that the axial coupling to composite structures, such as the proton, is 
modified, but that is a result of strong interaction contamination - the underlying 
quark process is pure V-A.) The coupling of the Zo is not so simple: 

( z0 vertex factor) (9.90) 
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Table 9.1 Neutral vector and axial vector couplings in the GWS model 

f cv CA 

Ve, Vµ,, Vr 
1 1 
2 2 

e - ,µ ,r -½ + 2sin2 0w 1 
-2 

U, C, t ½ - i sin2 0w 1 
2 

d, s, b -½ + jSin2 0w 1 
-2 

where gz is the neutral coupling constant, and the coefficients 4 and cl depend on 
the particular quark or lepton (f) involved. In the GWS model, all these numbers are 
determined by a single fundamental parameter 0w, called the 'weak mixing angle' 
(or 'Weinberg angle'), as indicated in Table 9.1. The weak and electromagnetic 
coupling constants are related: 

g, 
gz = -si_n_0_w_C_O_S_0_w (9.91) 

where g,, remember, is essentially the charge of the electron (g, = e✓4rr /lie). 
Finally, the w±and z0 masses are related by 

Mw = Mzcos0w (9.92) 

Equations 9.90-9.92 are the basic predictions of the GWS model; you'll see how 
they were obtained in the next section. 

The Standard Model provides no way to calculate 0w itself; like the CKM matrix, 
its value is taken from experiment: 

0w = 28.75° (sin2 0w = 0.2314) (9.93) 

But given the value of0w, we can calculate the Wand Z masses (see Problem 9.20). 
Their discovery by Rubbia at CERN in 1983, at Mw = 82 GeV/ c2 and Mz = 92 GeV/ 
c2 (as predicted) was persuasive evidence for the GWS model [13]. 

Example 9.4 Elastic Neutrino-Electron Scattering In Example 9.1 we calculated the 
cross section for the W-mediated process vµ + e----,. v, +µ,.We now consider the 
related z0-mediated reaction vµ + e----,. vµ + e. 
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The z0 propagator is (Equation 9.3) 

-i(gµ., - qµqv/ M~c2) 

q2 - M~c2 

At low energies (q2 « M~c2) it reduces to 

With this approximation, the amplitude is 

and hence (Problem 9.2) 

{1Atl2) = 2 ( 4;,;zC r Tr(ylL(l - y 5)/1 y"(l - y 5)/3} 

X Tr(yµ{cv - CAY 5)(12 + mc)y.,(cv - CAY 5)(/4 + me)) 

= ~ (..1=._) 4 
{(cv + cA)2(p1 · p2)(p3 · p4) 

2 Mzc 

(9.94) 

(9.95) 

(9.96) 

+ (cv - cA}2(p1 · p4)(p2 · p3) - (mc)2(ct - c;_)(p1 · p3)} (9.97) 

where mis the mass of the electron, and cv and CA are the neutral weak couplings 
for the electron. If we now go to the CM frame, and ignore the electron mass 
(m--+ 0), we find 

(9.98) 

where E is the electron (or neutrino) energy, and 0 is the scattering angle 
(Figure 9.7). The differential scattering cross section (Equation 9.47) is 

da (hc)
2 

( g2 )
4 2 [ 2 2 4 0] dQ = 2 --;; 4Mzc2 E (cv + cA) + (cv - cA) cos 2 (9.99) 

and the total cross section (integrating over all angles) is 

a= l:._(hc)2 (~)
4 

E2(c2 + c2 + c c ) 3;,r 2Mzc2 V A V A 
(9.100) 
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Before 

Fig. 9.7 Elastic neutrino-electron scattering in the CM. 

Putting in the GWS values for cv and cA (from Table 9.1), and comparing the result 
of Example 9.1 (Equation 9.14), we find that for energies substantially above the 
muon mass 

(9.101) 

The current experimental value [14] is 0.11, which, given the 10% uncertainties in 
the measurements, is reasonable agreement. ~ 

You might well ask why it took so long for neutral weak interactions to be detected 
in the laboratory; after all, 15 years separate Bludman's original speculations from 
the definitive experiments at CERN. The reason is that most neutral processes 
are 'masked' by competing electromagnetic ones. For example, e+ + e- --+ µ+ 

+ µ- can occur either by a virtual z0 or by a virtual y (Figure 9.8); at low 
energies the photon mechanism overwhelmingly dominates.* That's why neutrino 
scattering was originally used to confirm the existence of neutral weak interactions; 
neutrinos have no electromagnetic coupling, so the weak effects are not obscured. 
But neutrino experiments are notoriously difficult - hence the long delay. An 
alternative is to work at high energy - specifically, in the neighborhood of the 
z0 mass, where the denominator of the z0 propagator is small, and the 'weak' 
interaction is correspondingly large. In the early days it was hard to estimate 0w, 

and hence the z0 mass was quite uncertain. But by the late seventies, a variety of 
experimental data pointed to 0w;,::; 29°, and hence to Mz = 90 GeV /c2 (see Problem 
9.20). This prediction was stunningly confirmed in 1983 [13], and inspired the 

e 

e 

Fig. 9.8 Weak and electromagnetic contributions toe+ + e- ➔ µ,+ + µ,-. 

* In principle, there is weak contamination in 
every electromagnetic process, since the zo 
couples to everything the y does (and then 
some). For example, the Coulomb potential 
binding the electrons to the nucleus in an 
atom is slightly modified by z0 exchange, 

and this is observable in atomic spectra. 
Similarly, there is a weak contribution to 
electron-proton scattering. Although these 
effects are minute, they leave a tell-tale 
fingerprint: parity violation [15]. 
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Fig. 9.9 Electron-positron scattering near the z0 pole. 

construction of electron-positron colliders designed to operate at the z0 peak: SLC 
at SLAC, and LEP at CERN. 

Example 9.5 Electron-Positron Scattering Near the z! Pole Consider the process e+ 
+ e- ➔ f + }(Figure 9.9), wheref is any quark orlepton.* This time we shall not use 
the approximate form of the Zo propagator (Equation 9.95), for we are interested 
precisely in the regime q2 ""(M2 c) 2 • The amplitude is 

2 

.d = - [ 2 gz 2) [u(4)y/L(c(, - lr5)v(3)] 
4 q - (Mzc) 

X (gµv - (:;zqtj2 ) [v(2)yv(ci - cpy 5)u(l)] (9.102) 

where q = PI +pi= p3 + p4. Since we are working in the vicinity of90 GeV, we can 
afford to ignore the lepton and quark masses.°' In this case the second term in the 
propagator contributes nothing, for qµ contracts with yJL to give 

but }I= f3 + f4 and u(4)p4 = 0 (Equation 9.96 with m = 0), and 

fJ(Cv - CAY 5)v(3) = (cv + CAY 5)p3v(3) = 0 

for the same reason. Thus 

and it follows that 

(lv#112) = [8(q2 _gf Mzc)2J Tr{ylL(dv -lrs)f3Yv(dv -lrs)f4) 

X Tr{yµ(ci - cAy 5)fIYv(ci - cAy 5)p2} 

* Not an electron, however, for then we would have to include the rotated diagram. 

(9.104) 

°I I assume mf « Mz, which excludes the top quark. But the t cannot be produced anyway, at 
these energies. 
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Now, the first trace is (Problem 9.2) 

and there is the corresponding expression for the second trace, so 

(IAl2} = ~ L2 - ~~zc)2 r {[(c(,.)2 + (c~J2][(c~)2 + (c~)2] 

X [(p1 · p3)(p2 · p4) + (p1 · p4)(p2 · p3)] 

+ 4c(,c~Ac~[(p1 · p3)(p2 · p4) - (p1 · p4)(p2 · p3)]} 

In the CM frame this reduces to 

(9.105) 

(9.106) 

(9.107) 

where Eis the energy of each particle and 0 is the angle between pr and p3. The 

differential scattering cross section (Equation 9.47) is, therefore, 

dcr ( ficg;E ) 2 

dQ = 16H[(2E)2 - (M2 c2)2] 

(9.108) 

and the total cross section is 

(9.109) 

As it stands, er blows up at the z0 pole - that is, when the total energy (2E) hits 
the value M2 c2 (just right to put the z0 on its mass shell). The problem is that we 
have treated the z0 as a stable particle, which it is not. Its lifetime is finite, and this 
has the effect of 'smearing out' its mass. We can account for this by modifying the 
propagator [16] 

(9.110) 
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where r 2 is the decay rate (experimentally, r 2 = 3.791 ± 0.003 x 1024 /s). With this 
adjustment, the cross section becomes 

O" = (ticg;E) 2 [(dv)2 + (d,:.)2][(ct)2 + (c~)2] 
48n [(2£)2 - (Mzc2)2]2 + (tiMzc2 rz)2 

(9.111) 

Because nr2 « M2 c2 , the correction for finite z0 lifetime is negligible except 
in the immediate vicinity of the z0 pole, where it has the effect of softening the 
infinite spike. 

In Chapter 8 we calculated the cross section for the same process when mediated 
by a photon (Equation 8.6): 

( ticg; )2 ( QI/ 
0"=----

48n E2 
(9.112) 

(where Q' is the charge of J, in units of e). Thus the ratio of weak to electromagnetic 
rates in (for example) muon production, is 

O"(e+e--+ zo-+ µ.,+µ.,-) = { [½-2sin2 0w+4sin4 0wJ2} 
O"(e+e--+ y-+ µ.,+µ.,-) (sin0wcos0w)4 

E4 
(9.113) 

The factor in curly brackets is approximately 2. Substantially below the zo pole (2E 
« Mzc2), then, 

(9.114) 

and the electromagnetic route dominates (at 2E = ½M2 c2, for instance, the weak 
contribution is less than 1 %). But right on the z0 pole (2E = M2 c2), 

(9.115) 

At the z0 pole, therefore, the weak mechanism is favored, by a factor of around 200 
(Figure 9.10).* m 
* Equally interesting is the electromagnetic­

weak 'interference' that occurs when the two 
amplitudes are combined: IAl y + Al zl2 -

1Alrl2 + 1Alzl2 + 2 Re(Aly Alz). We have 
calculated IAl zl2 and (in Chapter 8) IAl y 12, 

but the cross term provides a sensitive test 
of the GWS theo1y, even at energies substan­
tially below the zo pole. (See Halzen and 

Martin, ref. (11], Section 13.6, and ref. (15].) 
Indeed, it was the success of the electroweak 
interference experiments in 1978 that con­
vinced most theorists that the GWS model 
is correct. For a contemporary account, see 
Physics Today, September 1978, p. 17. 
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Fig. 9.10 Electron-positron scattering in the neighborhood of the Zo pole. 

9.7 
Electroweak Unification 

9.7.1 
Chiral Fermion States 

All the cards are now on the table;* it remains only to explain where the GWS 
parameters in Table 9 .1 and Equations 9. 90-9. 92 come from. Glashow's original aim 
was to unify the weak and electromagnetic interactions - to combine them into a 
single theoretical system, in which they would appear not as unrelated phenomena, 
but rather as different manifestations of one fundamental 'electroweak' interaction. 
This was a bold proposition, in 1961 [17]. In the first place, there was the enormous 
disparity in strength between weak and electromagnetic forces. However, as 
Glashow and others recognized, this could be accounted for if the weak interactions 
were mediated by extremely massive particles. Of course, this immediately begs the 
second question: ifit's really all one basic interaction, how come the electromagnetic 
mediator (y) is massless, when the weak mediators (W± and Z0) are so heavy? 
Glashow had no particularly good answer ('It is a stumbling block we must overlook', 
he said coyly). The solution was provided by Weinberg and Salam, in 1967 (see refs. 
[8] and [9]) in the form of the 'Higgs mechanism' (Chapter 10). Finally, there is a 
structural difference between the electromagnetic and weak vertex factors, which 
at first glance would seem to preclude any possibility of unification: the former are 
purely vectorial (yll.), whereas the latter contain vector and axial vector parts. In 
particular, the w±coupling is 'maximally' mixed V-A in character: yll.(l - y 5). 

* I have not discussed the couplings of W's and z0 •s to one another (or of W's to the photon). 
The rules are similar to those for gluon-gluon coupling in QCD, and are listed in Appendix D. 
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This last difficulty is overcome by the ingenious device of absorbing the matrix 

(1 - y 5) into the particle spinor itself. Specifically, we define 

(9.116) 

The subscript (l) stands for 'left-handed', and is supposed to make you think 
'helicity -1'. However, this is seriously misleading, since uL is not, in general, a 
helicity eigenstate. In fact, for solutions to the Dirac equation, 

c(p ~ u)) u(p) 

E-mc2 

(9.117) 

(Problem 9.26). If the particle in question is massless, then E = lplc, and 

(9.118) 

where 

(9.119) 

as before. Remember that (h/2) :I: is the spin matrix for a Dirac particle, and hence 
(P • :I:) is the helicity, with eigenvalues± 1. Accordingly 

1 s { 0, -(1 - y )u(p) = 
2 u(p), 

if u(p) carries helicity + 1} 
if u(p) carries helicity - 1 

(form= 0) (9.120) 

(If u(p) is not a helicity eigenstate, ½ (1 - y 5) functions as a 'projection operator', 
picking out the helicity -1 component.) On the other hand, if the particle is 
not massless, it is only in the ultrarelativistic regime (E » mc2) that Equation 
9.118 holds (approximately), and hence only in this limit that UL (as defined by 
Equation 9.116 carries helicity -1. Nevertheless, everybody calls UL a 'left-handed' 
state, and I shall stick to the customary language.* 

Meanwhile, for antiparticles we definei" 

(9.121) 

• Please understand: Equation 9.116 is the definition of ui - nobody's arguing about that. I'm 
only warning you that the name is misleading: 'left-handed' does not mean 'helicity -1', except 
in contexts where the particle's mass is negligible. 

t If the sign of y 5 seems strange, refer to the footnote following Equation 7.30. 
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Table 9.2 Chiral spinors 

Particles Antiparticles 

R and L correspond to helicity + 1 
and -1 if m - 0, and approximately 
so if E » mc2 . 

The corresponding 'right-handed' spinors are 

(9.122) 

As for the adjoint spinors, since y 5 is Hermitian (y 5t = y5), and it anticommutes 
with y/L (y1Ly 5 = -y5y1L), 

(9.123) 

Similarly 

(9.124) 

We call these various spinors (summarized in Table 9.2) 'chiral' fermion states 
(from the Greek word for 'hand' - same root as 'chiropractor'). 

I emphasize that this is nothing but notation; it is usefal because it allows us 
to recast the weak and electromagnetic interactions in a form that facilitates their 
unification. Consider, to begin with, the coupling of an electron and a neutrino to 
the w- (as it occurs, say, in inverse beta decay, Example 9.1): 
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The contribution to .d from this vertex is given by 

(9.125) 

(here e and v stand for the particle spinors; for a while we need to keep careful 
track of the different particle species, and Ue, uu,, etc. just gets too cumbersome). 
This quantity is called the weak 'current'; as we shall see, it plays a role analogous 
to the electric current in QED. Now 

1-y 1 5 52 1-y ( 5 )2 ( 5) -2- = 4[l- 2y +(y) ]= -2- (9.126) 

and 

(9.127) 

so 

(~)=(~) (~) Yµ, 2 2 Yµ, 2 (9.128) 

This may not look like much of an improvement, but it enables us to write 
Equation 9.125 more neatly, in terms of the chiral spinors: 

(9.129) 

The weak vertex factor is now purely vectorial - but it couples left-handed electrons 
to left-handed neutrinos. In this sense it is still structurally different from the funda­
mental vertex in QED; however, we can play a similar game there, too. Notice that 

( 1-ys) (l+ys) 
U = - 2- U + - 2- U = UL+ UR (9.130) 

(similarly, u = uL + uR), so the electromagnetic analog can itselfbe written in terms 
of chiral spinors: 

(9.131) 

(For future purposes, it is best to build in a factor of -1, to account for the negative 
charge of the electron). Observe that the 'cross terms' vanish: 

_ -(l+ys) (l+ys) _ (1-ys)(l+ys) eLyµ,eR = e -2- Yµ, -2- e = eyµ, -2- -2- e (9.132) 
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but 

(9.133) 

Equations 9.129 and 9.131 are beginning to look like the stuff of which one might 
build a unified theory. It is true that the weak current only couples left-handed 
states, whereas the electromagnetic current couples both types, but apart from 
that they are strikingly similar. So attractive is this formulation that physicists 
have come to regard left- and right-handed fermions almost as different particles.* 
In this view, the factor (1 - y 5)/2 in the charged weak vertex characterizes the 
participating particles, rather than the interaction itself; the latter is vectorial in all 
cases - strong, electromagnetic, and weak alike. 

9.7.2 
Weak lsospin and Hypercharge 

In addition to the (negatively charged) weak current 

w-1 

~ 
describing the process e- ➔ v, + w-, there is also, of course, a positively charged 
current 

w+1 

~ 
* There is a danger in carrying this too far. You 

may find yourself wondering, for example, 
whether the left-handed electron necessarily 
has the same mass as the right-handed elec­
tron; or, noting that no vector interaction can 
couple a left-handed particle to a right-handed 
one (see Equations 9.132 and 9.133), you 
may ask how the two 'worlds' communicate 
at all. Both questions are based on a mis­
understanding of UL and uR. The problem 
is that, useful as it is in describing particle 
interactions, handedness is not conse,ved in the 

propagation of a free particle (unless its mass 
is zero). Formally, y 5 does not commute 
with the free-particle Hamiltonian. In fact, 
UL and uR do not satisfy the Dirac equation 
(see Problem 9.26). A particle that starts out 
left-handed will soon evolve a right-handed 
component. (By contrast, helicity is conserved 
in free-particle propagation.) Only for massless 
fermions can left- and right-handed species be 
considered distinct particles in the full sense 
of the word. 
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representing the process v, ----'? e- + w+. We can express them both in a more 
compact notation by introducing the left-handed doublet 

(9.134) 

and the 2 x 2 matrices 

(9.135) 

so that 

(9.136) 

The matrices ,±are linear combinations of the first two Pauli spin matrices 
(Equation 4.26): 

(9.137) 

(I use the letter , here, instead of o-, to avoid any possible confusion with ordinary 
spin.) This is all very reminiscent of isospin: in Section 4.5, we put the proton and 
neutron into a doublet similar to Equation 9.134. Indeed, we could contemplate a 
full 'weak isospin" symmetry, if only there were a third weak current, corresponding 

to!,3=!(1 o)· 
2 2 0 -1 . 

(9.138) 

'Perfect!' (I hear you exclaim), 'There's the neutral weak current!' Not so fast. This 
current only couples left-handed particles; in the older language, it is pure V-A, 
whereas the neutral weak interaction involves right-handed components as well. 
But hang on - we're almost there. 

Building on the parallel with isospin, we are led to consider a weak analog of 
hypercharge (Y),* which is related to electric charge (Q, in units of e) and the third 
component of isospin (13), by the Gell-Mann-Nishijima formula (Equation 4.37): 

Q = 13 + ½Y (9.139) 

We introduce, then, the 'weak hypercharge' current 

(9.140) 

• You have probably forgotten this word, but hypercharge is essentially the same as strangeness, 
only shifted, in the case of baryons, so that the center row of Eightfold Way diagrams will al­
ways carry Y - 0. Specifically, Y - S + A, where A is the baryon number. 
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This is an invariant construct, as far as weak isospin is concerned, for the latter 
does not touch right-handed components at all, and the combination 

is itselfinvariant.* The underlying symmetry group is called SU(2)r ® U(l); SU(2)L 
refers to the weak isospin (with a subscript to remind us that it involves left-handed 
states only), and U(l) refers to weak hypercharge (involving both chiralities). 

I have developed all this in terms of the electron and its neutrino, but it is a 
simple matter to extend it to the other leptons and quarks. From the left-handed 
doublets (Cabibbo-rotated, in the case of the quarks) 

we construct three weak isospin currents 

and a weak hypercharge current 

where j~m is the electric current: 

2 

J:m = L Q/(uiLYµUiL + u,RYµUiR) 
i=l 

(9.141) 

(9.142) 

(9.143) 

(9.144) 

(summed over the particles in the doublet, with Qi the electric charge)) 

* If you care to think of it this way, what 
we have done is to combine two weak 
isospin doublets to make an isotriplet, 
iheL, (vLVL - eLeL), 'L"L (analogous to 
Equation 5.38), and an isosinglet (vLvL + eLeL) 
(analogous to Equation 5.39). The first three 
go to make the weak isospin currents j±and 
j3; the last, together with a right-handed piece, 
makes the weak hypercharge current, JY. 

t You might ask what the difference is between 
weak isospin (and hypercharge) and their or­
dinary ('strong') counterparts. The question 
is particularly pertinent when you come to 
the light quarks: the weak isospin doublet is 

(;) L' whereas the strong isospin doublet 

is ( ~ )- Pretty similar ... is there anything 

to this? Nope. After all, (i) weak isospin ap­
plies to leptons as well as quarks (and to all 
three quark generations); (ii) weak isospin 
involves only the left-handed chiralities, (all 
right-handed states are singlets - that is, in­
variant - as far as weak isospin is concerned); 
(iii) weak isodoublets are Cabibbo-rotated. To 
put it plainly, strong isospin and weak isospin 
have nothing to do with one another, save for 
a common mathematical structure (which, for 
that matter, they share with many other sys­
tems, such as ordinary spin ½) and the (per­
haps unfortunate) similarity in their names. 
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9.7.3 
Electroweak Mixing 

Now, the GWS model asserts that the three weak isospin currents couple, with 
strength gw, to a weak isotriplet of vector bosons, W, whereas the weak hypercharge 
current couples with strength g' /2 to an isosinglet, B: 

(9.145) 

(These four particles correspond, ultimately, to the weak and electromagnetic me­
diators: w±, z0, and y - but with a twist, as we shall soon see.) I use bold face 
here to denote a three-vector in weak isospin space; the dot product can be written 
out explicitly: 

iµ,•Wµ, = J~ wµ,1 + Jt wµ,2 + J! wµ,3 (9.146) 

or, in terms of the charged currents,)!= j~ ± ijt: 

(9.147) 

where 

(9.148) 

are the wave functions representing the w± particles. 
The couplings to w± can be read off immediately, from the coefficients of 

W; in Equation 9.147 For example, in the process e- ➔ v, + w- we have 
J; = ihyµ,eL = vyµ,[(l - y 5)/2]e, giving a term 

(9.149) 

The vertex factor is 

(9.150) 

which is exactly what we started with (Equation 9.5). 

But the two neutral states (W3 and B) 'mix', in Glashow's theory, producing one 
massless linear combination (the photon), and an orthogonal massive combination 
(the z0): 

Aµ, = Bµ, cos 0w + wt sin 0w 

Zµ, = -Bµ, sin0w + wt cos0w (9.151) 
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(You see why 0w is called the 'weak mixing angle'.) In terms of the physical fields 
(A'-' and Zf-L), the neutral portion of the electroweak interaction (Equation 9.145) 
reads as follows: 

[ 0 ·3 g' . 0 ·Y] Zf-L} + gwCOS w)µ - 2 Slll w)µ (9.152) 

Of course, we know the electromagnetic coupling; in the present language it is 

(9.153) 

Meanwhile, from Equation 9.143, j~m = J! + ½Jf. Consistency of the unified elec­
troweak theory with ordinary QED requires 

(9.154) 

Evidently the weak and electromagnetic coupling constants are not independent. 
There remain the weak couplings to the z0. Using Equations 9.143, 9.152, and 

9.154, we obtain 

(9.155) 

where 

(9.156) 

From Equation 9.155 we can pick out the neutral weak couplings. For example, 
the process Ve ---+ Ve + zo comes exclusively from the J! term; referring back to 
Equation 9.138, we have 

(9.157) 

and hence the vector and axial vector couplings (Equation 9.90) are Cy= cl= ½­
I'll leave it for you to work out the other entries in Table 9.1 (Problem 9.28).* 

All this raises some obvious questions: by what mechanism is the underlying 
SU(2)1 © U(l) symmetry of the electroweak interactions 'broken'? Why do the B 
and W3 states 'mix' to form the zo and the photon? If weak and electromagnetic 
interactions are, deep down, both manifestations of a single electroweak force, how 
come the weak mediators (W±and Zo) are so heavy, while the electromagnetic 
mediator (y) is massless? I'll address these questions in the next chapter. 

* Since the weak mixing angle is undetermined in the GWS model, there remain, in effect, two 
independent coupling constants (g, and gw, say, or g, and gz); in this sense, it is not a com­
pletely unified theory, but rather an integrated theory of weak and electromagnetic interactions. 



References 

1 Cabibbo, N. (1963) Physical Review 
Letters, 10, 531. 

2 For more detailed calculations in 
weak interaction theory consult 
the classic treatise by Marshak, 
R. E., Riazuddin and Ryan, C. P. 
(1969) Theory of Weak Interactions in 
Particle Physics, John Wiley & Sons, 
New York; or the briefer account 
by (a) Commins, E. D. (1973) Weak 
Interactions, McGraw-Hill, New York. 
For a comprehensive review of weak 
interactions in the quark model, see 
(b) Donoghue, J. F., Golowich, E. and 
Holstein, B. (1986) Physics Reports, 
131, 319; or (c) Commins, E. D. 
and Bucksbaum, P. H. (1983) Weak 
Interactions of Leptons and Quarks, 
Cambridge University Press, Cam­
bridge. 

3 Glashow, S. L., Iliopoulos, J. and 
Maiani, L. (1970) Physical Review, 
D2, 1585. This and the other fun­
damental papers on weak interac­
tion theory are reprinted in (a) Lai, 
C. H. (ed) (1981) Gauge Theory of 
Weak and Electromagnetic Interac­
tions, World Scientific, Singapore. 

4 Kobayashi, M. and Maskawa, K. 
(1973) Progress in Theoretical Physics, 
49, 652. 

5 Different authors use different pa­
rameterizations; I follow the Re­
view of Particle Physics convention. 

6 Particle Physics Booklet (2006). 
For a useful discussion of the 
CKM matrix, see Cheng, T. -P. 
and Li, L. -F. (1984) Gauge The­
ory of Elementary Particle Physics, 
Oxford, New York. Sect. 12.2. 

7 Bludman, S. A. (1958) Nuovo Ci­
mento, 9, 443. 

8 Glashow, S. L. (1961) Nuclear 
Physics, 22, 579. Reprinted in (a) Lai, 
C. H. (ed) (1981) Gauge Theory of 
Weak and Electromagnetic Interac­
tions, World Scientific, Singapore. 

9 Weinberg, S. (1967) Physical Re­
view Letters, 19, 1264; (a) Salam, 
A. (1968) Elementary Particle The­
ory, (eds N. Svartholm), Almquist 
and Wiksell, Stockholm, reprinted 

9.7 Electroweak Unification 1347 

in Lai, C. H. (ed) (1981) Gauge 
Theo,y of Weak and Electromag-
netic Interactions, World Scien-
tific, Singapore. See also (b) Wein­
berg's Nobel Prize lecture, reprinted 
in (1980) Science, 210, 1212. 

10 't Hooft, G. (1971) Nuclear Physics, 
B33, 173; and (1971) B35, 167. 
Reprinted in (a) Lai, C. H. (ed) 
(1981) Gauge Theo,y of Weak 
and Electromagnetic Interactions, 
World Scientific, Singapore. 

11 Haser!, F. J. et al. (1973) Physics Let­
ters, 45B, 138; (1974) Nuclear Physics, 
B73, l. 

12 Meanwhile a series of deep inelas­
tic neutrino-proton scattering ex­
periments (also at CERN) not only 
supported the basic structure of 
charged and neutral weak interac­
tions but also helped to confirm 
the quark model itself. See, for 
example, Perkins, D. H. (2000) In­
troduction to High Energy Physics, 
4th edn, Cambridge University 
Press, Cambridge, UK. Sect. 8.7; 
(a) Halzen, F. and Martin, A. D. 
(1984) Quarks and Leptons, John Wi­
ley & Sons, New York. Sects. 12.7 
and 12.10; (b) Close, F. E. (1979) 
An Introduction to Quarks and Par­
tons, Academic, London. Sect. 11.3. 

13 Amison, G. et al. (1983) Physics 
Letters, 122B, 103; and (1983) 
126B, 398. For a review of these 
discoveries, see (a) Radermacher, 
E. (1985) Progress in Particle 
and Nuclear Physics, 14, 231. 

14 Data on vµ + e- ➔ v, + µ,- are 
from Vilain, P. et al. (1995) Physics 
Letters B, 364, 121; data on vµ + e­
➔ Vµ + e- are from (a) Ahrens, 
L. A. et al. (1990) Physical Review D, 
41, 3297. Earlier data by (b) Alibran, 
P. et al. (1978) Physics Letters, 74B, 
422; which were inconsistent with 
the GWS model, turned out to be 
wrong, although they caused some 
consternation at the time; they were 
corrected by (c) Armenise, N. et al. 
(1979) Physics Letters, 86B, 225. 



3481 9 Weak Interactions 

15 Fortson, E. N. and Wilets, L. (1980) 
Advances in Atomic and Molecu-
lar Physics, 16, 319; (a) Prescott, 
C. Y. et al. (1978) Physics Letters, 
77B, 347; and (1979) 84B, 524; 
(b) Wu, S. L. (1984) Physical Re­
ports, 107, 229; (c) Wood, C. S. 
et al. (1997) Science, 275, 1759. 

16 See, for example, Frauenfelder, H. 
and Henley, E. M. (1991) Subatomic 

Problems 

Physics, 2nd edn, Prentice-Hall, 
Englewood Cliffs, N.J. Sect. 5.7. 

17 Even bolder in 1957, when 
Schwinger laid the essential ground­
work for such a theory: Schwinger, 
J. (1957) Annals of Physics (New 
York), 2, 407. Reprinted in (a) Lai, 
C. H. (ed) (1981) Gauge Theory of 
Weak and Electromagnetic Interac­
tions, World Scientific, Singapore. 

9.1 Derive the completeness relation for a massive particle of spin 1 (see Problem 9.27 for 
the massless analog). [ Hint: Let the z axis point along p. First construct three mutually 
orthogonal polarization vectors (E~11 , E,~21 , Ef1) that satisfy pl'Eµ = 0 and EµEµ = -1.] 

[Answer: '°' E(s)E(s)* = -g + PµPv ] 
L µ v µv (Mc)2 

S=l,2,3 
(9.158) 

9.2 Calculate the trace 

for arbitrary (real) numbers cv and cA. 

[ Answer : 4(ct + c,i)[pj'p~ + p~p'{ - Pl · p2 gµv] 

(9.159) 

9.3 (a) Calculate ( IAZ'1 2 ) for vµ + e- -> µ- + v, using the more general coupling yll 

(1 + E y 5). Check that your answer reduces to Equation 9.11 in the case E = -1. 

[ 1 ( gw ) 4 
2 2 Answer : - -- [(1 - E ) (p1 · p4)(p2 · p3) 

4 Mwc 

(b) Let m, = mµ = 0, and calculate the CM differential scattering cross section. Also, find 
the total cross section. 

(c) If you had accurate experimental data on this reaction, how could you determine E? 
9.4 Show that Equation 9.30 is equivalent to Equation 9.29. 
9.5 By making the appropriate changes in Equation 9.35, determine the lifetime of the , 

lepton, pretending the decay is purely leptonic. (Assume also that the muon mass can 
be neglected, in comparison with m,.) Compare the experimental value. 

9.6 Suppose the weak interaction were pure vector (no y 5 in Equation 9.5). Would you still 
get the same shape for the graph in Figure 9.1? 
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9.7 What is the average value of the electron energy in muon decay? 

[Answer : (7 /20)mµc 2] 

9.8 Using the coupling yl' (1 + E y 5) for n ➔ p + W, but yl' (1 - y 5) for the leptons, calculate 
the spin-averaged amplitude for neutron beta decay. Show that your result reduces to 
Equation 9.41 when E = -1. 

[ Answer: (l.d'l2) = ~ (~)4 
[(p1 · p2)(p3 · p4)(l - E)2 

2 Mwc 

+(p1 · p4)(p2 · p3)(l + E)2 - (1 - E2)mpmnc2(p2 · p4)]] 

9.9 (a) Derive Equation 9.52. (b) Derive Equation 9.58. 
9.10 In the text, I said that electron energies in neutron decay range up to about (mn - mp)c2 • 

Tbis is not exact, since it ignores the kinetic energy of the proton and the neutrino. 
What kinematic configuration gives the maximum electron energy? Apply conservation 
of energy and momentum to determine the exact maximum electron energy. 

[Answer: (m~ - m; + m;)c2 /2mn.] 

How far off is the approximate answer (give the percent error)? 
9.11 (a) Integrate Equation 9.59 to get Equation 9.60. 

(b) Approximate as suitable form, « I:,. m = (mn - mp)- Note that m, now drops out. 
9.12 Obtain Equation 9.62. 
9.13 Find the minimum de Broglie wavelength (A = h/p) of the W in neutron decay, 

and compare it with the diameter of the neutron (~ 10-13 cm). [Answer: maximum 
IPI = 1.18 MeV/c, occurring when p and e emerge back to back, so the minimum )c = 
10-10 cm] 

9.14 Analyze rr- decay as a scattering process, using the methods of Example 7.8 and Section 
8.5. Calculate the decay rate, and, by comparing your answer with the one in the text, 
obtain the formula for f,, in terms of 11/1(0)1 2. Take the quarks to be massless. 

Answer :J; = - " 2 1 cos2 0cl1/r(O)1 2 [ 
2/l,3 (2m2 + m2) ] 

3c mrr m1 

9.15 Show that if mc2 « E 

where u is a particle spinor satisfying the Dirac equation: 

(Eqs. 7.35 and 7.41). Show therefore that the projection matrix 
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picks out the helicity ± 1 component of u: 

9.16 Calculate the ratio of the decay rates K---> e- + v, and K---> µ- + v,,. Compare the 
observed branching ratios. 

9.17 Calculate decay rates for the following processes: (a) bo --> b+ + e + v,, (b) b- --> 

A+ e + v,, (c) 3- --> 8° + e + v,, (d) A --> p + e + v,, (e) b- --> n + e + v,; (f) 8° --> 

b+ + e + v,. Assume the coupling is always yµ(l - y 5) - that is, ignore the strong 
interaction corrections to the axial coupling - but do not forget the Cabibbo factor. 
Compare the experimental data. 

9.18 (a) Show that as long as the CKM matrix is unitary* (V- 1 = V"f), the GIM mechanism 
for eliminating K0 --> µ+µ- works for three (or any number of) generations. [Note: 
u --> d + w+ carries a CKM factor V ud; d--> u + w- carries a factor v:d. 

(b) How many independent real parameters are there in the general 3 x 3 unitary matrix? 
How about n x n? [ Hint: It helps to know that any unitary matrix ( U) can be written 
in the form U = e•H, where H is a hermitian matrix. So an equivalent question is, 
how many independent real parameters are there in the general hennitian matrix?] 
We are free to change the phase of each quark wave function (normalization of u 
really only determines INl2 ; see Problem 7.3), so 2n of these parameters are arbitrary 
- or rather, (2n - 1), since changing the phase of all quark wave functions by the 
same amount has no effect on V. Question: Can we thus reduce the CKM matrix to a 
real matrix (if it is real and unitary, then it is orthogonal: v-1 = V). 

(c) How many independent real parameters are there in the general 3 x 3 (real) 
orthogonal matrix? How about n x n? 

(d) So, what is the answer? Can you reduce the CKM matrix to real form? How about for 
only two generations (n = 2)? 

9.19 Show that the CKM matrix (Equation 9.87) is unitary for any (real) numbers 012 , 023 , 

ell, and 8. 
9.20 Using the experimental values of the Fermi constant CF (Equation 9.38) and the weak 

mixing angle 0w (Equation 9.93). 'predict' the mass of the w±and the z0, in GWS 
theory. Compare the experimental values. 

9.21 In Example 9.4 I used muon neutrinos, rather than electron neutrinos. As a matter of 
fact, vµ and Vµ beams are easier to produce than v, and v,, but there is also a theoretical 
reason why v µ + e- --> v µ + e- is simpler than v, + e- --> v, + e- or v, + e- --> v, + e-. 
Explain. 

9.22 (a) Calculate the differential and total cross section for vµ + e- --> vµ + e- in the GWS 
model. [Answer: Same as Equation 9.100, only with the sign of cAcv reversed.] 

(b) Find the ratio cr(vµ + e- --> vµ + e-)/cr(vµ + e- --> Vµ + e-). Assume the energy is 
high enough that you can set m, = 0. 

9.23 (a) Calculate the decay rate for z0 --> f +}, where f is any quark or any lepton. Assume 
f is so light (compared to the 2) that its mass can be neglected. (You'll need the 
completeness relation for the z0 - see Problem 9.1.) 

[ g2Mc2 ] 
Answer: r(Zo -+ J + f) = ~ (lc;,12 + Id;/). 

48nfi 

(b) Assuming these are the dominant decay modes, find the branching ratio for each 
species of quark and lepton (remember that the quarks come in three colors). Should 
you include the top quark among the allowed decays? [Answer: 3% each fore, µ, ,; 
7% each for v,, vµ, v,; 12% each for u, c; 15% each ford, s, b.] 

* For experimental confirmation see Problem 9.33. 
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(c) Calculate the lifetime of the z0• Quantitatively, how would it change if there were a 
fourth generation (quarks and leptons)? (Notice that an accurate measurement of the 
z0 lifetime tells us how many quarks and leptons there can be with masses less than 
45 GeV/c2.) 

9.24 Estimate R (the total ratio of quark pair production to muon pair production in e+ e­
scattering), when the process is mediated by Zo. For the sake of argument, pretend the 
top quark is light enough so that Equation 9.109 can be used. Don't forget color. 

9.25 Graph the ratio in Equation 9.113 as a function ofx = 2E/Mzc2• Use rz = 7.3(g;/48n) 
(M2 c2 /Ii) (Problem 9.23). 

9·26 (a) If u(p) satisfies the (momentum space) Dirac equation (Equation 7.49), show that ur 
and UR (Table 9.2) do not (unless m = 0). 

(b) Find the eigenvalues and eigenspinors of the matrices P± = ½ (1 ± y 5). 

(c) Can there exist spinors that are simultaneously eigenstates of P + (say) and of the 
Dirac operator (:/ - me)? 

[Answer: No; these operators do not commute.] 

9.27 Work out the weak isospin currents J! andJ! for the light quark doublet u and d'. 
Also, construct the electromagnetic current (j~m) and the weak hypercharge current (ii). 
(Leave your answers in terms of d'.) 

9.28 From Equation 9.155, determine the vector and axial vector couplings in Table 9.1. 
9.29 In Problem 9.5 you found the decay rater for r ➔ e + v, + v,,andforr ➔ µ + v, + vi' 

(which is essentially the same). How about for the hadronic modes(, ➔ d + v,. + uand 
r ➔ s + v, + u)? Estimate the lifetime of the r (including both leptonic and hadronic 
modes) and the branching ratios for the electron, muon, and hadron modes. Compare 
the experimental values. [ Partial answer: r tot = 5 rJ 

9·30 (a) Estimate the lifetime of the charmed quark. (First decide what modes dominate, and 
then make the appropriate modifications in the muon decay formula, Equation 9.35) 
[ Hint: Refer to Problem (9.29)] 

(b) On the basis of (a), estimate the lifetime of the D meson (D0 = cu and o+ = cd), 
treating the light quark as a spectator. Also estimate the branching ratios for the 
various semileptonic modes and for the hadronic mode. Compare the experimental 
values. 

(c) In the same way, estimate the lifetime of the B meson (B0 = bd and B- = bu). Note 
that more decay modes are available to the b quark. Find the branching ratios, and 
compare the experimental values. 

(d)According to Equation 9.35, the decay rate goes like the.fifth power of the mass. The 
bottom quark is almost four times as massive as the charmed quark. Why, then, 
isn't the lifetime of the D meson 1000 times longer than that of the B? in fact, their 
lifetimes are quite comparable, but this is something of a coincidence. Explain. 

9.31 Calculate the lifetime of the top quark. Note that because m, > mb + mw, the top can 
decay into a real W (t ➔ b + w+), whereas all other quarks must go via a virtual W. 
As a consequence, its lifetime is much shorter, and that's why it does not form bound 
states ('truthful' mesons and baryons). Take the b quark to be massless (compared to t 
and W). [Answer: 4 x 10-25 s] 

9.32 The radical new [your name] theory of weak interactions asserts that the W actually has 
spin O (not 1), and the coupling is 'scalar/pseudo-scalar', instead of'vector/axial-vector'. 
Specifically, in your theory the W propagator is 
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(replacing Equation 9.4), and the vertex factor is 

(replacing Equation 9.5). Consider 'inverse muon decay' (v,, + e---> µ, + v,), in this 
theory: 

(a) Draw the Feynman diagram, and construct the amplitude, J/t. 
(b) Determine the spin-averaged quantity, ( 1...1/1 2). 

(c) Find the differential scattering cross section, in the CM frame, in terms of the electron 
energy E and the scattering angle 0. Assume E » mµ c2 » m,c2, so you can safely 
neglect the masses of both the electron and the muon (and, of course, the neutrinos). 

(d) Calculate the total cross section, under the same conditions. 
(e) By comparing the orthodox predictions for this process, instruct the experimentalists 

how best to confirm your theory (and demolish the Standard Model). [Note: There 
is no reason to suppose that the weak coupling constant (gw) in your theory has the 
same value as it does in the Standard Model, so a test that depends on this number 
is not going to be very persuasive.] 

9.33 The rows (and columns) of a unitary matrix are orthonormal. This suggests a number 
of tests of the CKM model, as the values of the matrix elements are measured with 
increasing precision. For example, orthogonality of the first and third columns implies 
(Equation 9.86) 

or (dividing by the midd.Je term) 

where 

Plotted in the complex plane, the numbers 1, z1, and z2 must add up to form a closed 
loop, called the 'unitarity triangle'. Look up the best current values for the CKM matrix 
elements, and plot 1, z1 , and z2• Does their sum in fact form a closed triangle? 

9.34 Find the threshold v,, energy for inverse muon decay (Example 9.1), assuming the target 
electron is at rest. Why is the answer so huge, when all we're doing is producing a 
muon? 



10 

Gauge Theories 

This chapter introduces the 'gauge theories' that describe all elementary particle interac­
tions. I begin with the Lagrangian formulation of classical mechanics, and proceed to 

Lagrangian field theory, the principle of local gauge invariance, the notion of spontaneous 

symmetry-breaking, and the Higgs mechanism (which accounts for the mass of the W's 
and the Z). This material is quite abstract (in contrast to previous chapters); it concerns 

the fundamental quantum field theories from which the Feynman rules derive. It will not 

help you to calculate any cross sections or lifetimes. On the other hand, the ideas discussed 
here constitute the foundation on which virtually all modem theories are predicated. To 

understand this chapter it will help to have studied some Lagrangian mechanics, but more 
essential is the relativistic notation in Chapter 3, the taste of group theory in Chapter 4, 

the Feynman calculus from Chapter 6, and the Dirac equation from Chapter 7. 

10.l

Lagrangian Formulation of Classical Particle Mechanics 

According to Newton's second law of motion, a particle of mass m, subjected to a 
force F, undergoes an acceleration a given by 

F= ma (10.1) 

If the force is conservative, it can be expressed as the gradient of a scalar potential 
energy function U: 

F=-VU 

and Newton's law reads 

dv 
m-=-VU 

dt 

where v is the velocity [1 ]. 

(10.2) 

(10.3) 

1353 
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An alternative formulation of classical mechanics begins with the 'Lagrangian' 

L= T- U 

where T is the kinetic energy of the particle: 

1 
T= -mv2 

2 

(10.4) 

(10.5) 

The Lagrangian is a function of the coordinates q; (say, q1 = x, q2 = y, q3 = z) and 
their time derivatives iJ.; (iJ.1 = Vx, iJ.2 = Vy, iJ.3 = v2 ). In the Lagrangian formulation, 
the fundamental law of motion is the Euler-Lagrange equation [2]: 

(10.6) 

Thus in Cartesian coordinates we have 

aL aT 
aiJ.1 

= - =mvx avx (10.7) 

aL au 
aq1 ax (10.8) 

and the Euler-Lagrange equation (for 1 = 1) reproduces the x component of 
Newton's law, in the form of Equation 10.3. The Lagrangian formulation is thus 
equivalent to Newton's (at least, for conservative systems), but it has certain theo­
retical advantages, as we shall see in the following sections (see also Problem 10.1). 

10_2 

Lagrangians in Relativistic Field Theory 

A particle, by its nature, is a localized entity; in classical particle mechanics we are typ­
ically interested in calculating its position as a function of time: x(t), y(t), z(t). A field, 
on the other hand, occupies some region of space; in field theory our concern is to 
calculate one or more functions of position and time: ,f>;(x, y, z, t). The field variables 
</>; might be, for example, the temperature at each point in a room, or the electric po­
tential V, or the three components of the magnetic field B. In particle mechanics, we 
introduced a Lagrangian L that was a function of the coordinates, q;, and their time 
derivatives, iJ.;; in field theory we start with a Lagrangian (technically, a Lagrangian 
density).!£, which is a function of the fields </J; and their x, y, z, and t derivatives: 

(10.9) 

In the former case, the left side of the Euler-Lagrange Equation 10.6 involves only 
the time derivative; a relativistic theory must treat space and time coordinates on 
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an equal footing, and the Euler-Lagrange equations generalize in the simplest 
possible way, to: 

(i = 1,2,3, ... ) (10.10) 

Example 10.1 The Klein-Gordon Lagrangian for a Scalar (Spin-0) Field Suppose we 
have a single, scalar field variable</>, and the Lagrangian is 

In this case, 

(If this confuses you, write out the Lagrangian 'longhand': 

In this form, it is clear that 

a.st o -- -ao<1>-a </> a(ao</>) - - ' 

and so on.) Meanwhile 

and hence the Euler-Lagrange formula leads to 

(10.11) 

(10.12) 

(10.13) 

which is the Klein-Gordon equation (Equation 7.9), describing (in quantum field 
theory) a particle of spin O and mass m. li!ll1 

Example 10.2 The Dirac Lagrangian for a Spinor (Spin-½) Field Consider now a 
spinor field ,fl, and the Lagrangian 

(10.14) 



3561 10 Gauge Theories 

We treat 1/f and the adjoint spinor "if as independent field variables.* Applying the 
Euler-Lagrange equation to "if, I find 

so that 

(10.15) 

This is the Dirac equation (Equation 7.20), describing (in quantum field theory) a 
particle of spin½ and mass m. Meanwhile, if we apply the Euler-Lagrange equation 
to 1/1, we obtain 

a2 -,1, - µ. 
a(aµ.1/f) = I c1/fy ' 

a2 2-
- =-me 1/1 at 

and hence 

which is the adjoint of the Dirac equation (see Problem 7.15). Ml 

Example 10. 3 The Proca Lagrangian for a Vector (Spin-1) Field Finally, suppose we 
take a vector field, AJJ., with the Lagrangian 

Here 

(see Problem 10.2) and 

so the Euler-Lagrange equation yields 

• Since ,;, is a complex spinor, there are ac­
tually eight independent fields here (i runs 
from 1 to 8): the real and imaginary parts of 
each of the four components of ,;, . But in 
applying the Euler-Lagrange equations any 

(10.16) 

(10.17) 

(10.18) 

(10.19) 

linear combinations of these eight will do 
just as well, and we choose to use the four 
components of,;, plus the four components 
of,fi. 
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This is called the Proca equation; it describes a particle of spin 1 and mass m. 
Incidentally, since the combination (aµ. A" - av Aµ.) occurs repeatedly in this theory, 
it is useful to introduce the shorthand 

(10.20) 

Then, the Lagrangian reads 

a, 1 µ.v 1 (mc)2 v 
,,z;. = --F F + - - A A 16:Tr µ.v 81r Ii v (10.21) 

and the field equation becomes 

(10.22) 

If the notation is beginning to remind you of electrodynamics, it's no acci­
dent, for the electromagnetic field is precisely a massless vector field; if you 
set m = 0 in Equation 10.22 you're left with Maxwell's equations for empty 
space.* Bl 

The Lagrangians in these examples came out of thin air (or rather, they were 
concocted in such a way as to reproduce the desired field equations). In classical 
particle mechanics, Lis derived (L = T - U), but in relativistic field theory 2' is 
usually taken as axiomatic - you have to start somewhere. The Lagrangian for a 
particular system is not unique; you can always multiply 2' by a constant, or add a 
constant - or for that matter the divergence of an arbitrary vector function (a µ.Mµ., 
where MJJ. is any function of</>; and aµ.</>;); such terms cancel out when you apply the 
Euler-Lagrange equations, so they do not affect the field equations. In this sense, the 
factors of½ in the Klein-Gordon Lagrangian, for example, are purely conventional. °I 
Apart from that, however, what we have here are the Lagrangians for spin 0, spin 
½, and spin 1. So far, however, we are talking only of free fields, with no sources or 
interactions. 

* Notice that in this formulation A" is the fun­
damental quantity and F"" is just convenient 
notation (Equation 10.20) - the reverse of the 
perspective taken in classical electrodynamics, 
where E and B (hence F"") are fundamen-
tal and the potentials are constructs. In par­
ticular, for purposes of the Euler-Lagrange 
equations the 'fields' are the components of 
AJJ-, not P'-v. 

"t The Lagrangian (L) carries units of energy 
(Equation 10.4), and the Lagrangian density 
(2') has the units of energy per unit volume. 
The fields carry dimensions as follows: 

¢ (scalar field): ,./Mi;T 

,fr (spinor field): i-312 

Aµ. (vector field): ,./Mi/T 

These are chosen so that ,fl will go over to the 
Schrodinger wave function (in the nonrela­
tivistic limit) and A" to the Maxwell vector 
potential (in the nonquantum limit). By the 
way, in Heaviside-Lorentz units the Proca 
and Maxwell Lagrangians are conventionally 
multiplied by 4,r. 
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Example 70.4 The Maxwell Lagrangian for a Massless Vector Field with Source Jµ 
Suppose 

(10.23) 

where P" (again) stands for (aµ A" - a" Aµ) and]µ is some specified function. The 
Euler-Lagrange equations yield 

(10.24) 

which (as we found in Section 7.4) is the tensor form of Maxwell's equations, 
describing the electromagnetic fields produced by a current ]µ. Incidentally, it 
follows from Equation 10.24 that 

(10.25) 

That is, the internal consistency of the Maxwell Lagrangian (Equation 10.23) 
requires that the current satisfy the continuity equation (Equation 7.74); you 
can't just put in any old function for y - it's got to respect conservation of 
charge. ilia 

10.3 
Local Gauge Invariance 

Notice that the Dirac Lagrangian 

is invariant under the transformation 

(global phase transformation) (10.26) 

(where 0 is any real number), for then '"f--+ e-wv;, and in the combination lfr,jl 
the exponential factors cancel out. (Already in nonrelativistic quantum mechanics, 
of course, the overall phase of the wave function is arbitrary.) But what if the phase 
factor is different at different space-time points; that is, what if 0 is a function 
ofxµ: 

(local phase transformation) (10.27) 

Is the Lagrangian invariant under such a 'local' phase transformation? The answer 
is no, for now we pick up an extra term from the derivative of 0: 

(10.28) 
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so that 

(10.29) 

For what follows, it is convenient to pull a factor of -(q/lic) out of 0, letting 

lie 
J..(x) = --0(x) 

q 
(10.30) 

where q is the charge of the particle involved. In terms of J.., then, 

(10.31) 

under the local phase transformation 

(10.32) 

So far, there is nothing particularly new or deep about this. The crucial point 
comes when we demand that the complete Lagrangian be invariant under local phase 
transformations.* Since the free Dirac Lagrangian (Equation 10.14) is not locally 
phase invariant, we are obliged to add something, in order to soak up the extra 
term in Equation 10.31. Specifically, suppose 

(10.33) 

where Aµ is some new field, which changes (in coordination with the local phase 
transformation of 1/1) according to the rule 

(10.34) 

This 'new, improved' Lagrangian is now locally invariant - the a µA in 
Equation 10.34 exactly compensates for the 'extra' term in Equation 10.31. The 
price we have to pay is the introduction of a new vector field that couples to 1/1 
through the last term in Equation 10.33 (see Problem 10.6). But Equation 10.33 
isn't the whole story; the fall Lagrangian must include a 'free' term for the field Aµ 

itself. Since it's a vector, we look to the Proca Lagrangian (Equation 10.21) 

2' = -=!._pµv F + _2_ (mAc)2 A" A 
1~ ~ b Ii v 

But there is a problem here, for whereas pµv = (aµ A" - a" Aµ) is invariant under 
Equation 10.34 (as you should check for yourselij, A" A., is not. Evidently the new 
field must be massless (mA = 0), otherwise the invariance will be lost. 

* I know of no compelling physical argument 
for insisting that a global invariance should 
hold locally. If you believe that phase trans­
formations are in some sense 'fundamental', 
then I suppose one should be able to carry 
them out independently at spacelike separated 

points (which are, after all, out of commu­
nication with one another). But I think this 
begs the question. Better, for the moment at 
least, to take the requirement of local phase 
invariance as a new principle of physics in its 
own right. 
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Conclusion: If we start with the Dirac Lagrangian, and demand local phase 
invariance, we are forced to introduce a massless vector field (Aµ), and the 
complete Lagrangian becomes 

(10.35) 

As you will have guessed, Aµ is nothing but the electromagnetic potential; the 
transformation rule for Aµ (Equation 10.34) is precisely the gauge invariance• we 
found back in Chapter 7 (Equation 7.81), and the last two terms in Equation 10.35 
reproduce the Maxwell Lagrangian (Equation 10.23), with the current density 

(10.36) 

Thus the requirement of local phase invariance, applied to the free Dirac La­
grangian, generates all of electrodynamics and specifies the current produced by 
Dirac particles. 

This is a truly breathtaking accomplishment. The critical step was the added 
term in Equation 10.33. How was this obtained? The difference between global 
and local phase transformations arises when we calculate derivatives of the fields 
(Equation 10.28): 

(10.37) 

Instead of a simple phase factor, we pick up an extra piece involving a µA, If in the 
original (free) Lagrangian we replace every derivative (aµ) by the so-called 'covariant 
derivative' 

!»µ =aµ+ ifcAµ (10.38) 

(and every aµ by!»µ) the gauge transformation of Aµ (Equation 10.34) will cancel 
the offending term in Equation 10.37 

(10.39) 

and the invariance of .2 is restored. The substitution of!»µ for aµ, then, is 
a beautifully simple device for converting a globally invariant Lagrangian into 
a locally invariant one; we call it the 'minimal coupling rule'.t But the covariant 

• Because of the connection with gauge invari­
ance in classical electrodynamics, we now call 
Equations 10.34 and 10.26 'gauge transforma­
tions', Aµ is called the 'gauge field', and the 
entire strategy is called 'gauge theory'. 

t The minimal coupling rule is much older 
than the principle oflocal gauge invariance. 
In terms of momentum (pµ <+ iliaµ) it reads 
pµ ➔ Pµ - i(q/c)Aµ, and is a well-known 

trick in classical electrodynamics for obtaining 
the equation of motion for a charged parti-
cle in the presence of electrodynamic fields. It 
amounts, in this sense, to a sophisticated for­
mulation of the Lorentz force law. In modern 
particle theory we prefer to regard local gauge 
invariance as fundamental and minimal cou­
pling as the vehicle for achieving it. 
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derivative introduces a new vector field (Aµ.), which requires its own free Lagrangian; 
if the latter is not to spoil local gauge invariance, we must take the gauge 
field to be massless. This leads to the final expression (Equation 10.35), which 
people in the know would immediately recognize as the Lagrangian for quantum 
electrodynamics - Dirac fields (electrons and positrons) interacting with Maxwell 
fields (photons). 

The idea of local gauge invariance goes back to Hermann Wey! in 1918 [3]. 
However, its power and generality were not fully appreciated until the early 1970s. 
Our starting point (the global phase transformation in Equation 10.26) may be 
thought of as multiplication of 1/f by a unitary 1 x 1 matrix: 

1/1- Ul/1, where uiu= 1 (10.40) 

(here, U = ei8 ). The group of all such matrices is U(l) (see Table 4.2), and 
hence the symmetry involved is called 'U (1) gauge invariance'. This terminology 
is extravagant for the case at hand (a 1 x 1 matrix is a number, so why not leave 
it at that?), but in 1954 Yang and Mills [4] applied the same strategy (insisting 
that a global invariance hold locally) to the group SU(2), and later on the idea was 
extended to color SU(3), producing chromodynamics. In the Standard Model, all 
of the fundamental interactions are generated in this way. 

10.4 
Yang-Mills Theory 

Suppose now that we have two spin-½ fields, 1/11 and 1/12. The Lagrangian, in the 
absence of any interactions, is 

(10.41) 

It's just the sum of the two Dirac Lagrangians. (Apply the Euler-Lagrange equations 
to this £', and you'll find that both 1/11 and 1/12 obey the Dirac equation, with the 
appropriate mass.) But we can write Equation 10.41 more compactly by combining 
1/11 and 1/12 into a two-component column vector: 

(10.42) 

(Of course, 1/11 and 1/12 are themselves four-component Dirac spinors, and you 
might prefer a double-index notation: 1/1 a,i, where a = 1, 2 identifies the particle 
and i = 1, 2, 3, 4 labels the spinor component. However, in the present context we 
are only concerned with the particle index, although the Dirac matrices, of course, 
act on the spinor indices.) The adjoint spinor is 

,ii= (Vii Vi2) (10.43) 
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and the Lagrangian becomes 

(10.44) 

where 

M= (mi O) 
0 m2 

(10.45) 

is the 'mass matrix'. In particular, if the two masses happen to be equal 
Equation 10.44 reduces to 

(10.46) 

This looks just like the one-particle Dirac Lagrangian. However, if, is now a 
two-element column vector, and St' admits a more general global invariance than 
before: 

ifr- Uijr (10.47) 

where U is any 2 x 2 unitary matrix 

(10.48) 

For under the transformation in Equation 10.47, 

(10.49) 

and hence the combination "if ifr is invariant. Now, just as any complex number of 
modulus 1 can be written in the form ei0 , with real 0, so any unitary matrix can be 
written in the form [5] 

(10.50) 

where His Hermitian (Ht = H).* Moreover, the most general Hermitian 2 x 
2 matrix can be expressed in terms of four real numbers, a1 , a2 , a3 , and 0 
(Problem 10.10): 

* In matrix theory the natural generalization of 
complex conjugation (*) is Hermitian conju­
gation (t) - transpose conjugation. Of course, 
there's no distinction in the case of 1 x 1 ma­
trices (complex numbers), but for higher di­
mensions it is the Hermitian conjugate that 

(10.51) 

shares the most useful properties of ordinary 
complex conjugation. In this sense the clos­
est analog to a real number (a = a*) is a Her­
mitian matrix (A = At), and the analog to a 
number of modulus 1 (a*a = 1) is a unitary 
matrix (At A = 1). 
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where 1 is the 2 x 2 unit matrix, r1, r2, ,3 are the Pauli matrices (Equation 4.26), 
and the dot product is a convenient shorthand for r 1a1 + r2a2 + ,3a3. Thus any 
unitary 2 x 2 matrix can be expressed as a product: 

(10.52) 

We have already explored the implications of phase transformations (e;8 ); in this 
section we shall concentrate on transformations of the form 

(global SU(2) transformation) (10.53) 

The matrix eir•a has determinant 1 (see Problem 4.22), and therefore belongs to 
the group SU(2). Generalizing the terminology of Section 10.3, we say that the 
Lagrangian is invariant under global SU(2) gauge transformations.* What Yang 
and Mills did was to promote this global invariance to the status of a local invariance. 

The inspiration and the strategy were similar to Weyl's, but the implementation 
is more subtle; in fact, it's quite remarkable that it works at all. The first step is 
to let the parameters (a) be functions of x'" (as before, I'll let J-.(x) = -(lie/ q)a(x), 
where q is a coupling constant analogous to electric charge): 

ifr--+ Sijr, where S = e-iqT-i,(x)/r.c (local SU(2) transformation) (10.54) 

As it stands, 2 is not invariant under such a transformation, for the derivative 
picks up an extra term: 

(10.55) 

The remedy, again, is to replace the derivative in 2 by a 'covariant derivative', 
modeled on Equation 10.38, but taking into account the structure ofEquation 10.55: 

'»µ, = aµ,+ i!l_, · Aµ, 
lie 

(10.56) 

and assign to the gauge fields Aµ, (it takes three of them this time) a transformation 
rule such that 

(10.57) 

for then the Lagrangian (Equation 10.46) will clearly be invariant. 
It is not a trivial matter to deduce the transformation rule for Aµ, from 

Equation 10.57 [6]. I'll leave it for you to show (Problem 10.11) that Aµ, --+ A~. 
where A~ is given by 

(10.58) 

* It is also invariant under the larger group U(2). But Equation 10.52 shows that any element 
of U(2) can be expressed as an element of SU(2) times an appropriate phase factor (in 
group-theoretical language, U(2) = U(l) ® SU(2)), and since we have already studied U(l) 
invariance, the only thing new here is the S U(2) symmetry. 
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This much is relatively straightforward. But Sand s-1 in the first term cannot be 
brought together, because they do not commute with r • Aµ- Nor is the gradient 
of S simply -i(qr • 8µ1/hc)S, because S does not commute with r • 8µ1, You can 
work out the exact result (using Problems 4.20 and 4.21), if you have the energy, 
but the answer is not particularly illuminating. For our purposes it will suffice to 
know the approximate transformation rule, in the limiting case of very small l"J..I, 

for which we may expand Sand keep only the first-order terms: 

iq s~ 1- -, -1, 
li,c 

s-1 ~ 1 + iq r · A, 
he 

In this approximation Equation 10.58 yields 

~ iq a s=--,-a 1 
µ he µ 

r · A'µ ~ T •Aµ+ iq [r · Aµ, T · "J..] + r • 8µ).. 
li,c 

and hence (using Problem 4.20, to evaluate the commutator) 

Atµ~ Aµ+ 8µ).. + 2q("J.. x Aµ) 
he 

The resulting Lagrangian 

(10.59) 

(10.60) 

(10.61) 

£7 = ihcfyµ!»µ,fr - mc2f,fr = [ihcfyµaµ,fr - mc21fr,fr] - (qfyµr,fr) · Aµ 
(10.62) 

is invariant under local gauge transformations (Equations 10.54 and 10.58), but we 
have been obliged to introduce three new vector fields Aµ = (Ai, Ai', Ai"), and they 
will require their own free Lagrangian: 

CLJ - l µv l µv l µv - l µv 
.LA - - l6Jr F1 Fµvl - 16:rr F2 Fµv2 - 16:rr F3 Fµv3 - - 16:rr F · Fµv 

(10.63) 

(Again, the three-vector notation pertains to the particle indices.) The Proca mass 
term 

2._(mAc)2A"· A 
8Jr Ii, V 

(10.64) 

is excluded by local gauge invariance; as before, the gauge fields must be massless. 
But this time the old association pµv = aµ A" - a" Aµ must itself be modified, for 
with this definition the gauge field Lagrangian (Equation 10.63) is not invariant 
either (see Problem 10.12). Rather, we take* 

* This definition is not as arbitrary as it may 
seem. The point is that with three-vector 
fields there is a second antisymmetric tensor 
form available (Aµ x A"), and the coefficient, 
-2q/fic, is chosen precisely to make 2! A 

(10.65) 

invariant. Notice that when the coupling 
constant q goes to zero we are left with the 
free Dirac Lagrangian for each spinor field 
and the free (massless) Proca Lagrangian for 
each of the three gauge fields. 
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Under infinitesimal local gauge transformations (Equation 10.61), 

(10.66) 

(Problem 10.13), and hence .2 A is invariant. (See Problem 10.14 for a proof that 
the invariance e:i..1:ends to finite gauge transformations.) 

Conclusion: The complete Yang-Mills Lagrangian is 

(10.67) 

with P'" defined by Equation 10.65; it is invariant under local SU(2) gauge 
transformations (Equations 10.54 and 10.58), and describes two equal-mass Dirac 
fields in interaction with three massless vector gauge fields. All this results 
from insisting that the global SU(2) invariance of the original free Lagrangian 
(Equation 10.46) shall hold locally. Borrowing the language of electrodynamics, we 
say that the Dirac fields generate three currents 

(10.68) 

which act as sources for the gauge fields; the Lagrangian for the gauge fields alone 

(10.69) 

is reminiscent of the Maxwell Lagrangian (Equation 10.23), and gives rise to a rich 
and interesting classical field theory [7] (see Problem 10.15). 

Although Yang-Mills theory was inspired by the same idea as Weyl's (namely: a 
global invariance should hold locally), the implementation was more subtle at two 
points: (i) the local transformation rule for gauge fields, and (ii) the expression for 
P" in terms of Aµ. Both complications derive from the fact that the symmetry 
group in question is non-Abelian (2 x 2 matrices do not commute, whereas 1 x 
1 matrices - obviously - do). To emphasize the distinction, we refer to the Weyl 
case as an Abelian gauge theory and Yang-Mills as a non-Abelian gauge theory. 
In contemporary elementary particle physics, many symmetry groups have been 
explored; we shall encounter a few in the remaining sections of this book. However, 
the hard work is over: extending non-Abelian gauge theory to higher symmetry 
groups is a straightforward procedure, once the Yang-Mills model is on the table. 

Curiously, though, Yang-Mills theory in its original form turned out to be of 
little use. After all, it starts from the premise that there exist two elementary spin-½ 
particles of equal mass, and as far as we know there are no such pairs in nature. Yang 
and Mills themselves had the nucleon system (proton and neutron) in mind, and 
thought of their model as a way of implementing Heisenberg's isospin invariance 
in the strong interactions. The small mass difference between proton and neutron, 
1.29 MeV/c2 , would be attributed to electromagnetic symmetry-breaking. For the 
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theory to succeed there had to exist a massless isotriplet of vector (spin-1) particles. 
The only candidates in sight are the p mesons; but they are hardly massless (Mp 
= 770 MeV/c2), and this is not a minor discrepancy that can be plausibly blamed 
on electromagnetic contamination. A number of attempts were made to doctor up 
Yang-Mills theory to accommodate massive gauge bosons, but by the time they 
finally bore fruit (through the Higgs mechanism) it was pretty clear that p, n, and p 
are composite particles anyway, and that isospin is just one component of a larger 
flavor symmetry that is too drastically broken to play any fundamental role in the 
strong interactions. When non-Abelian gauge theory finally came into its own, it 
was in the context of color SU(3) symmetry in the strong interactions and (weak) 
isospin-hypercharge S U(2)1 ® U(l) symmetry in the weak interactions. Meanwhile, 
for more than a decade after 1954the Yang-Mills model languished - a lovely idea 
that nature had evidently chosen not to exploit. 

10.5 
Chromodynamics 

According to the Standard Model, each flavor of quark comes in three colors - red, 
blue, and green. Although the various flavors carry different masses (Table 4.4), the 
three colors of a given flavor are all supposed to weigh the same. Thus the free 
Lagrangian for a particular flavor reads 

.!£ = [i/l,clfrryµ,aµ,,fr, - mc2lfr,,fr,] + [i/l,clfrbyµ,aµ,V'b - mc2lfrbV!b] 

+ [i/l,clfrgYµ,aµ,,frg - mc21frgV'g] 

As before, we can simplify the notation by introducing 

so that 

(10.70) 

(10.71) 

(10.72) 

This looks just like the original Dirac Lagrangian, only ,fr now stands for a 
three-component column vector (each element of which is itself a four-component 
Dirac spinor). Just as the one-particle Dirac Lagrangian (Equation 10.14) has (global) 
U(l) phase invariance, and the (equal mass) two-particle Lagrangian (Equation 
10.41) admits U(2) invariance, so this (equal mass) three-particle Lagrangian ex­
hibits U(3) symmetry. That is to say, it is invariant under transformations of the 
form 

,fr-► U,fr (10.73) 



10.5 Chromodynamics 1367 
where U is any unitary 3 x 3 matrix: 

(10.74) 

But remember (Equation 10.50), any unitary matrix can be written as an 
exponentiated Hermitian matrix: 

(10.75) 

Moreover, any 3 x 3 Hermitian matrix can be expressed in terms of nine real 
numbers, a1 , a2, ... , ag, and 0 (Problem 10.16): 

H=01+1-a (10.76) 

where 1 is the 3 x 3 unit matrix, A1 , A2 , ..• , Ag are the Gell-Mann matrices 
(Equation 8.34), and the dot product now denotes a sum from 1 to 8: 

(10.77) 

Thus, 

(10.78) 

We have already explored phase transformations (ei6 ); what is new is the second 
term. The matrix l>.. ·•has determinant 1 (see Problem 10.17); it belongs to the 
group SU(3).* So what we are interested in is the invariance of the Lagrangian 
(Equation 10.72) under SU(3) transformations, a global symmetry that we now 
propose to make local. 

That is, we modify .2 in such a way as to render it invariant under local SU(3) 
gauge transformations: 

1/1--+ S1/f, where S = e-iql. · <f>(x)/lic (10.79) 

(again, I let</>= -(lic/q)a, with the coupling constant q playing a role analogous to 
electric charge in QED). As always, the trick is to replace the ordinary derivative, 
aµ,, by the 'covariant derivative' IJJ µ,: 

(10.80) 

and assign to the gauge fields Aµ, (there are eight of them, notice) a transformation 
rule such that 

IJJµ, 1/1 --+ S(IJJµ, 1/1) (10.81) 

* In the language of group theory, U(3) = U(l) ® S U(3). 
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Again (see Equation 10.58), this entails 

(10.82) 

which, for the infinitesimal case, yields a formula identical to Equation 10.61: 

However, this time the cross product notation is shorthand for 

8 

(B X C); = LfijkBjCk 

j,k=l 

(10.83) 

(10.84) 

where f ijk are the structure constants of S U(3) (Equation 8.35), analogous to E ijk 

for SU(2) (Problem 10.18). 
The modified Lagrangian 

2' = ill,c,fryµ~µ,fl - mc2,f,jJ = [ill,c,fyµaµ,fl - mc2,f,jJ] - (q,fyWJ..,jf) • Aµ 
(10.85) 

is invariant under local SU(3) gauge transformations (Equations 10.79 and 10.82), 
but as usual the cost is the introduction of gauge fields Aµ (eight of them, this 
time). In particle language, these correspond to the eight gluons, just as the U(l) 
gauge field in Weyl's theory represents the photon.* To finish the job, we must 
adjoin the free gluon Lagrangian 

2'g]uons = __ l_pµv · Fµv 
16n 

where, as in the Yang-Mills case 

(with the SU(3) 'cross product' defined by Equation 10.84). 

Conclusion: The complete Lagrangian for chromodynamics is 

(10.86) 

(10.87) 

(10.88) 

2' is invariant under local SU(3) gauge transformations and describes three 
equal-mass Dirac fields (the three colors of a given quark flavor) in interaction with 
eight massless vector fields (the gluons). It derives from the requirement that the 

* Remember that a 'ninth gluon', coupling universally to all quarks, is excluded by experiment 
(see Problem 8.11). 
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global SU(3) symmetry of the original Lagrangian (Equation 10.70) should hold 
locally. The Dirac fields constitute eight color currents 

(10.89) 

which act as sources for the color fields (A,,), in the same way that the electric current 
acts as the source for electromagnetic fields. The theory described here is very close 
in structure to that of Yang and Mills; in this case, however, we believe it to be 
the correct description of a phenomenon realized in nature: the strong interaction. 
(Of course, we need six replicas of ,fr, in Equation 10.88, each with the appropriate 
mass, to handle the six quark flavors.) 

10.6 
Feynman Rules 

Up to this point, the Lagrangians we have considered might just as well describe 
classical fields as quantum ones; indeed, the Maxwell Lagrangian will be found in 
any textbook on classical electrodynamics. The passage from a classical field theory 
to the corresponding quantum field theory does not involve modification of the 
Lagrangian or the field equations, but rather a reinterpretation of the field variables; 
the fields are 'quantized,' and particles emerge as quanta of the associated fields. 
Thus, the photon is the quantum of the electrodynamic field, A1'; leptons and 
quarks are quanta of Dirac fields; gluons are quanta of the eight SU(3) gauge fields; 
and w± and z0 are quanta of the corresponding Proca fields. The quantization 
procedure itself is recondite, and this is not the place to go into it [8]; for our 
purposes the essential point is that each Lagrangian prescribes a particular set of 
Feynman rules. What we need, then, is a protocol for obtaining the Feynman rules 
dictated by a given Lagrangian. 

To begin with, notice that .£' consists of two kinds of terms: the free La­
grangian for each participating field, plus various interaction terms (.2,"int)- The 
former - Klein-Gordon, for spin O; Dirac, for spin ½; Proca, for spin 1; or 
something more exotic, for a theory with higher spin - determines the propaga­
tor; the latter - obtained by invoking local gauge invariance, or by some other 
means - determine the vertex factors: 

Free Lagrangian =} propagator 
Interaction terms =} vertex factors 

Let us consider the propagators first. 
Application of the Euler-Lagrange equation to the free Lagrangian yields the 

free field equations (Eqs. 10.13, 10.15, and 10.22): 

[ a1'aµ +(~cf]¢= O (Klein-Gordon, for spin 0) 
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[iyl"aµ - ( :c)] ifr = 0 ( Dirac, for spin D 
[aµ(aµN - a" Aµ)+ (:cf A"]= 0 (Proca, for spin 1) 

The corresponding 'momentum-space' equations are obtained by the standard 
prescription pµ ++ il'iaµ: 

[p2 - (mc)2]¢ = 0 (spin 0) 

fl - (mc)]i/1 = 0 ( spin D 
[(-p2 + (mc) 2)gµv + PµPv]A" = 0 (spin 1) 

(10.90) 

(10.91) 

(10.92) 

The propagator is simply (i times) the inverse of the factor in square brackets: 

. i 
Spm-0 propagator: 2 2 p -(me) 

(10.93) 

Spin-! propagator: _i_· - = i (JI+ me) 
2 p - me p2 - (mc)2 

(10.94) 

. . -i [ PµPv] Spm-1 propagator. 2 2 gµv - --2 p -(me) (me) 
(10.95) 

Note that in the second case this factor is a 4 x 4 matrix and we want the matrix 
inverse; in the third case the factor is a second-rank tensor (Tµv) and we want 
the tensor inverse (T- 1 )µv, such that Tµ1-(T- 1i>·" = o; (Problem 10.19). These are 
precisely the propagators we used in Chapters 6, 7, and 9.* Since we obviously 
cannot set m--.. 0 in the Proca propagator (Equation 10.95), we must go back to the 
free field equation (Equation 10.22) to work out the photon propagator: 

(10.96) 

As I have remarked before, this equation does not uniquely determine Al"; if we 
impose the Lorentz condition (Equation 7.82) 

aµAµ = 0 

then (Equation 10.96) reduces to 

a2A" = 0 

* Actually, this procedure only determines the 
propagator up to a multiplicative constant, 
since the field equations can always be mul­
tiplied by such a factor. In the 'canonical' 
form of these equations, the coefficient of 

(10.97) 

me or (mc)2 is taken to be ± 1, with the sign 
matching that of the mass term in .Z. Other 
conventions lead to a slightly different set of 
Feynman rules, but do not, of course, change 
the calculated reaction amplitudes. 



which, in momentum space, can be written as 

(-p2gµv)A" = 0 

So the photon propagator is 

Massless spin-1 propagator: - igµv 
p2 
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(10.98) 

(10.99) 

To get the vertex factors, first write down i .:c'int in momentum space (il'iaµ ➔ pµ) 
and examine the .fields involved; these determine the qualitative structure 
of the interaction. For example, in the case of the QED Lagrangian (Equation 
10.35) 

(10.100) 

there are three fields involved (f, 1/1, and Aµ) and this defines a vertex in which 
three lines are joined - an incoming fermion, an outgoing fermion, and a photon. 
To obtain the vertex factor itself, simply rub out the .field variables: 

(QED vertex factor) (10.101) 

(In the case of the photon, what we actually rub out is ✓fie/ 4rr Aµ; the extra factor 
is due to our use of cgs units which are, for this purpose, a little cumbersome.) The 
same goes for chromodynamics (Equation 10.88): the quark-gluon coupling 

yields a vertex of the form 

with the vertex factor 

.gs µ, 
-i-y A 

2 

(10.102) 

g 

(10.103) 

(The strong coupling constant is traditionally defined with a factor of 2: gs = 
2✓4rr /l'icq, where q is the 'strong charge' appearing in the Lagrangian). However, 
there are also direct gluon-gluon couplings, coming from the fl'" • F1,v term in .:c', 
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since Fµv contains not only the 'free' part, aµ A" - a" Aµ, but also an interaction 
term, -2q/lic(Aµ x A") (Equation 10.87). Squaring it out, we find 

(10.104) 

The first term carries three factors of Aµ, and leads to the three-gluon vertex 
(Equation 8.42); the second term carries four factors of Aµ, and gives the four-gluon 
vertex (Equation 8.43). (For practice in extracting Feynman rules from Lagrangians, 
see Problems 10.20 and 10.21.) 

10.7 
The Mass Term 

The principle of local gauge invariance works beautifully for the strong and 
electromagnetic interactions. In the first place, it gives us a machine for determining 
the couplings (in the 'old days' the construction of .!c'int was a purely ad hoc guess). 
Moreover, as 't Hooft and others proved in the early 1970s, [9] gauge theories are 
renormalizable. But the application to weak interactions was stymied by the fact 
that gauge fields have to be massless. Remember, the mass term in the Proca 
Lagrangian is not locally gauge invariant, and while the photon and the gluons 
are massless, the W's and the z0 certainly are not. So the question arises: can we 
doctor up gauge theory in such a way as to accommodate massive gauge fields? 
The answer is yes, but the procedure - exploiting spontaneous symmetry-breaking 
and the Higgs mechanism - is diabolically subtle, and it pays to begin by thinking 
very carefully about how one identifies the mass term in a Lagrangian. 

Suppose, for instance, you were given the following Lagrangian for a scalar 
field ,P: 

2' = !(aµ<PJW<Pl + e-(a,t,J2 
2 

(10.105) 

where a is some (real) constant. Where is the mass term here? At first glance 
there's no sign of one, and you might conclude that this is a massless field. But that 
is incorrect, for if you expand the exponential, 2' takes the form 

l µ 22 144 166 2' = 2(aµ,P)(a ,P) + 1 - a ,p + 2a ,p - 6a ,p + •·· (10.106) 

The 1 is irrelevant (a constant term in .:c' has no effect on the field equations), but 
the second term looks just like the mass term in the Klein-Gordon Lagrangian 
(Equation 10.11), with a 2 = ½ (mc/!i)2. Evidently, this Lagrangian describes a 
particle of mass 

m= ✓2ali/c (10.107) 
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The higher-order terms represent couplings, of the form 

and so on. This is not supposed to be a realistic theory, of course - I offer it only as 
an example of how the mass term in a Lagrangian may be 'disguised'. To expose it, 
we expand .!c' in powers of ,P and pick out the term proportional to ¢ 2 (in general, 
it's the term of second order in the fields - ,P, ,fr, A'", or whatever). 

But there is a deeper subtlety lurking here, which I illustrate with the following 
Lagrangian: 

(10.108) 

Here µ, and }.. are (real) constants. The second term looks like a mass (and the 
third like an interaction). But wait! The sign is wrong (compare Equation 10.11) - if 
that's a mass term, then m is imaginary, which is nonsense. How, then, should 
we interpret this Lagrangian?* To answer this question, we must understand that 
the Feynman calculus is really a perturbation procedure, in which we start from 
the ground state (the 'vacuum') and treat the fields as fluctuations about that 
state. For the Lagrangians we have considered so far, the ground state - the field 
configuration of minimum energy - has always been the trivial one: ,P = 0. But 
for the Lagrangian in Equation 10.108, ,P = 0 is not the ground state. To determine 
the true ground state, we write .!c' as a 'kinetic' term (½oµ,PiW,P) minus a 'potential' 
term (inspired by the classical Lagrangian, Equation 10.4): 

(10.109) 

and look for the minimum of%'. In the present case, 

* I like to imagine that God has a giant 
computer-controlled factory, which takes 
Lagrangians as input and delivers the uni­
verses they represent as output. Usually God's 
computer has no difficulty - when you feed 
in the Maxwell Lagrangian, Equation 10.35, 
for example, it immediately creates an elec­
tromagnetic universe of interacting electrons, 
positrons, and photons. Sometimes it takes 

(10.110) 

a little longer - the Lagrangian in Equation 
10.105, for instance, confuses it at first, until 
it deciphers the 'hidden' mass term. And 
occasionally it returns an error message: 
'this Lagrangian does not describe a possible 
universe; please check for syntax errors or 
incorrect signs'. That's what it would do, 
for example, if you fed it the Lagrangian in 
Equation 10.108 without the A term. 
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and the minimum occurs at 

¢=±µ/A (10.111) 

(see Figure 10.1). The Feynman calculus must be formulated in terms of deviations 
from one or the other of these ground states. This suggests that we introduce a new 
field variable, 17, defined by 

(10.112) 

In terms of 17, the Lagrangian reads 

(10.113) 

The second quantity is now a mass term with the correct sign, and we discover 
(comparing Equation 10.11) that the mass of the particle is 

m = ✓l.µh/c 

Meanwhile, the third and fourth terms represent couplings of the form 

I 
I 

;_ 
/ ' 

/ ' 
(the last term is a constant, signifying nothing). 

(10.114) 

I emphasize that these Lagrangians (Equations 10.108 and 10.113) represent 
exactly the same physical system; all we have done is to change the notation 
(Equation 10.112). But the first version is not suited to the Feynman calculus 
(technically, a perturbation series in ¢ would not converge, because it is an expan­
sion about an unstable point); only in the second formulation can we read off the 
mass and the vertex factors. 

Fig. 10.l Graph of%'(¢) (Equation 10.110). 
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Conclusion: To identify the mass term in a Lagrangian, we first locate the ground 
state (the field configuration for which '17/(¢) is a minimum) and re-express!£ as 
a function of the deviation, r,, from this minimum. Expanding in powers of r,, we 
obtain the mass from the coefficient of the r, 2 term. 

10.8 
Spontaneous Symmetry-breaking 

The example we have just considered illustrates another phenomenon of impor­
tance: spontaneous symmetry-breaking. The original Lagrangian (Equation 10.108) 
is even in ¢: it is invariant as ¢ -+ -¢. But the reformulated Lagrangian 
(Equation 10.113) is not even in r,; the symmetry has been 'broken'. How did 
this happen? It happened because the 'vacuum' (whichever of the two ground 
states we care to work with) does not share the symmetry of the Lagrangian. (The 
collection of all ground states, of course, does, but to set up the Feynman formalism 
we are obliged to work with one or the other of them, and that spoils the sym­
metry.) We call this 'spontaneous' symmetry-breaking because no external agency 
is responsible (as occurs, for example, when gravity breaks the three-dimensional 
symmetry in this room, making 'up' and 'down' quite different from 'left' and 
'right'). To put it the other way around, the true symmetry of the system is 'con­
cealed' by the arbitrary selection of a particular (asymmetrical) ground state. There 
are examples of spontaneous symmetry-breaking in many branches of physics. 
Take, for instance, a thin plastic strip (say, a short ruler): if you squeeze the ends 
together, it will snap into a curved configuration, but it can just as well buckle to the 
left as to the right - both are ground states for the system, and either one breaks 
the left-right symmetry (Figure 10.2). 

But the spontaneously broken symmetry we have just considered was a discrete 
symmetry, with just two ground states. More interesting things happen when 
we consider continuous symmetries. (Replace the plastic strip in Figure 10.2 with a 

Fig. 10.2 Spontaneous symmetry-breaking in a plastic strip. 
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plastic rod - say, a knitting needle. Then it can buckle in any direction, not just 
left or right.*) It is easy to construct a Lagrangian with spontaneously broken 
continuous symmetry. For example, 

2 = ½(a,.,ct,!)(a'-'¢1) + ½(aµ¢2)W<t>2) + ½J.L2(<t>l +<t>?)- ¼A2(<t>l +<t>?) 2 
(10.115) 

This is identical to Equation 10.108, except that now there are two fields, ¢ 1 and ¢ 2, 

and because 2 involves only the sum of the squares, it is invariant under rotations 
in ¢1, ¢2 space) 

This time the 'potential energy' function is 

(10.116) 

and the minima lie on a circle of radius J.l/A: 

(10.117) 

(Figure 10.3). To apply the Feynman calculus, we have to expand about a particular 
ground state ('the vacuum') - we may as well pick 

(10.118) 

Fig. 10.3 The potential function (Equation 10.116). 

* A more sophisticated example is the ferromagnet: in the ground state all the electron spins are 
aligned, but the direction of alignment is an accident of history. The theory is symmetrical. but 
a given piece of iron has to pick a particular orientation, and that ('spontaneously') breaks the 
symmetry. 

"i" Group theoretically, it is invariant under S0(2): ¢ 1 - ¢ 1 cos 0 + ¢ 2 sin 0; ¢ 2 - -¢1 sin 0 + 
¢2 cos 0, for any 'rotation angle' 0 (see Problem 4.6). 
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As before, we introduce new fields, T/ and s, which are the fluctuations about this 
vacuum state: 

(10.119) 

Rewriting the Lagrangian in terms of these new field variables, we find (Prob­
lem 10.22): 

2 = [~(aµl))(a"17) - µ 2l] + G(aµs)Ws)] 

(10.120) 

The first term is a free Klein-Gordon Lagrangian (Equation 10.11) for the field 17, 

which evidently carries a mass 

(10.121) 

(same as before, Equation 10.114); the second term is a free Lagrangian for the 
fields, which is evidently massless: 

(10.122) 

and the third term defines five couplings: 

(the final constant, of course, is irrelevant). In this form the Lagrangian doesn't 
look symmetrical at all; the symmetry of Equation 10.115 has been broken (or 
rather, 'hidden') by the selection of a particular vacuum state. 

The important thing to notice here is that one of the fields (s) is automatically 
massless. This is no accident. It can be shown (Goldstone's theorem [10]) that 
spontaneous breaking of a continuous global symmetry is always accompanied 
by the appearance of one or more massless scalar (spin-0) particles (we call 
them 'Goldstone bosons').* Well, this is a disaster; we were hoping to use the 
mechanism of spontaneous symmetry-breaking to account for the mass of the 
weak interaction gauge fields, but now we find that this introduces a massless 
scalar boson, and there is no such thing on the roster of known elementary 
particles."! But hold on, for there is one final incredible twist in the story. It comes 

* Intuitively, this is related to the fact that there is no resistance to excitations in the ~ direction. 
Flick the bent knitting needle and it will spin freely about the axis, whereas radial excitations 
encounter a restoring force, and the system oscillates. 

t It is hard to imagine that such a particle could have escaped detection. With heavy particles, this 
is always a possibility - maybe you just didn't have enough energy to produce it - but a mass­
less particle would surely have shown up somewhere, if only in the form of 'missing' energy and 
momentum. 
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when we apply the idea of spontaneous symmetry-breaking to the case of local 
gauge invariance. 

10.9 
The Higgs Mechanism 

The Lagrangian we studied in Section 10.8 can be written more neatly if we 
combine the two real fields, ¢ 1 and ¢ 2, into a single complex field: 

</J = ¢1 + i¢2 (10.123) 

so that 

(10.124) 

In this notation (and it is nothing but notation), the Lagrangian (Equation 10.115) 
reads 

(10.125) 

and the rotational SO(2) symmetry that was spontaneously broken becomes invari­
ance under U(l) phase transformations: 

(10.126) 

This is precisely the kind of symmetry we considered back in Section 10.3, except 
that now we are working with scalar fields instead of with spinors. We can make 
the system invariant under local gauge transformations 

(10.127) 

by the usual device of introducing a massless gauge field A'-', and replacing the 
derivatives in Equation 10.125 with covariant derivatives (Equation 10.38): 

(10.128) 

Thus 

(10.129) 
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Now we simply retrace our steps in Section 10.8, applying them to the locally 

invariant Lagrangian (Equation 10.129). Defining the new fields 

(10.130) 

(compare Equation 10.119), the Lagrangian becomes (Problem 10.25): 

2 = rn(aµ1J)(a"1J)-µ2iJ2] + [~(aµt)Wtl] 

+ [- 1Lrf/L"Fµv + ~ (ic if AµAµ] 

+ { i}7J(a,,t) - t(aµl))]AIL + i (;J 2 1J(AµAµ) 

+ ! (!L)2 (t2 + ,/)(AµAµ) ->..µ(1J3 + 1Jf) - !>..2(1J4 + 21J2f + t4)} 
2 ~ 4 

(10.131) 

The first line is the same as before (Equation 10.120); it represents a scalar particle 
(lJ), of mass .Ji.µli/ c, and a massless Goldstone boson (t). The second line describes 
the free gauge field AJL, but - mirabile dictu! - it has acquired a mass: 

(10,132) 

(compare the Proca Lagrangian, Equation 10.121). The term in curly brackets 
specifies various couplings oft, 1J, and Aµ (Problem 10.26). It is interesting 
to see where the mass of A1' came from: the original Lagrangian (Equation 
10.129) contains a term of the form r/J*r/J AµAJL, which - absent spontaneous 
symmetry-breaking - would represent a coupling: 

But when the ground state moves 'off center', and the field ¢ 1 picks up a constant 
(Equation 10.130), this piece of the Lagrangian emerges as a Proca mass term. 

However, we still have that unwanted Goldstone boson (t). Moreover, there is a 
suspicious-looking quantity in 2: 

(10.133) 
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What are we to make of this? Ifwe read it as an interaction, it leads to a vertex of 
the form 

l A 
-----fl\/VVVVV\ 

in which the ~ turns into an A Any such term, bilinear in two different fields, 
indicates that we have incorrectly identified the fundamental particles in the 
theory (see Problem 10.23). Both difficulties involve the field ~ = ¢2, and both 
can be resolved exploiting the local gauge invariance of 2 (in the original form, 
Equation 10.129) to transform this field away entirely! Writing Equation 10.126 in 
terms of its real and imaginary parts, 

¢ ➔ ¢' = (cos 0 + i sin 0)(¢1 + i¢2) 

= (¢1 cos 0 - ¢2 sin 0) + i(¢1 sin 0 + ¢2 cos 0) (10.134) 

we see that picking 

(10.135) 

will render ¢' real, which is to say that ¢' 2 = 0. The gauge field Aµ will transform 
accordingly (Equation 10.34), but the Lagrangian will take the same form in terms 
of the new field variables as it did in terms of the old ones (that's what it means to 
say that 2 is invariant). The only difference is that~ is now zero. In this particular 
gauge, then, the Lagrangian (Equation 10.131) reduces to 

!£ = [!(aµ7J)W7J) - µ,21)2] + [--1-FµVFµv + ! (!1._!!:.) 2 AµAµ] 
2 16n 2 lie A 

+ { i (;J2 1J(AµAµ) + ~ (;J2 1J2(AµAµ) - A/1,1)3 - i;,_21/4} 

(10.136) 

By an astute choice of gauge, we have eliminated the Goldstone boson and the 
offending term in 2; we are left with a single massive scalar 1J (the 'Higgs' particle) 
and a massive gauge field Aµ. 

Please understand: The Lagrangians in Equations 10.129 and 10.136 describe 
exactly the same physical system; all we have done is to select a convenient gauge 
(Equation 10. 135) and rewrite the fields in terms of fluctuations about a particular 
ground state (Equation 10.130). We have sacrificed manifest symmetry in favor 
of notation that makes the physical content more transparent, and allows us to 
extract the Feynman rules more directly. But it's still the same Lagrangian. There 
is an illuminating way to think about this: a massless vector field carries two degrees 
of freedom (transverse polarizations); when Aµ acquires mass, it picks up a third 
(longitudinal polarization). Where did this extra degree of freedom come from? 
Answer: It came from the Goldstone boson, which meanwhile disappeared from 
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the theory. The gauge field 'ate' the Goldstone boson, thereby acquiring both a 
mass and a third polarization state.* This is the famous Higgs mechanism, the 
remarkable offspring of the marriage of local gauge invariance and spontaneous 
symmetry-breaking [11 ]. 

According to the Standard Model, the Higgs mechanism is responsible for the 
masses of the weak interaction gauge bosons (W± and z0). The details are still 
matters of speculation - the Higgs particle has never been seen in the labora­
tory (presumably it is just too heavy to make with any existing accelerator), and 
the Higgs 'potential', o//(¢), is unknown (I used "lt = -½JL2 (¢*¢) + ¼>..2 (¢*¢)2 

just for the sake of argument).t There may in fact be many Higgs particles, 
or it may be a composite structure, but never mind: the important thing is 
that we have found a way in principle of imparting mass to the gauge fields) 
and that is our license to believe that all the fundamental interactions - weak 
as well as strong and electromagnetic - can be described by local gauge theo­
ries [12]. 
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10.1 One advantage of the Lagrangian formulation is that it does not commit us to any 
particular coordinate system - the q's in Equation 10.6 could be Cartesian coordinates, 
or polar coordinates, or any other variables we might use to designate the particle's 
position. Suppose, for example, we want to analyze the motion of a particle that slides 
frictionlessly on the inside surface of a cone mounted with its axis pointing upward, as 
shown. 

z 

y 

X 

(a) Express T and U in terms of the variables z and</) and the constants a (the opening 
angle of the cone), m (the mass of the particle), and g (the acceleration of gravity). 

(b) Construct the Lagrangian, and apply the Euler-Lagrange equations to obtain differ­
ential equations for z(t) and</) (t). 

(c) Show that L = (m tan2a)z2¢ is a constant of the motion. What is this quantity, 
physically? 
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(d) Use the result in (c) to eliminate </) from the z equation. (You are left with a 

second-order differential equation for z(t); if you want to pursue the problem further, 
it is easiest to invoke conservation of energy, which yields a.first-order equation for z.) 

10.2 Derive Equation 10.17 
10.3 Starting with Equation 10.19, show that BµAµ = 0, and hence that each component of 

Aµ satisfies the Klein-Gordon equation: ON + (me/ ll,)2 N = 0. 
10.4 As it stands, the Dirac Lagrangian (Equation 10.14) treats ,fr and ,f asymmetrically. Some 

people prefer to deal with them on an equal footing, using the modified Lagrangian 

Apply the Euler-Lagrange equations to this !t?, and show that you get the Dirac equation 
(Equation 10.15) and its adjoint. 

10.5 The Klein-Gordon Lagrangian for a complex field would be 

Treating </) and ¢* as independent field variables, deduce the field equations for each, 
and show that these field equations are consistent (i.e. one is the complex conjugate of 
the other). 

10.6 Apply the Euler-Lagrange equations to Equation 10.33 to obtain the Dirac equation 
with electromagnetic coupling. 

10.7 Show that the Dirac current (Equation 10.36) satisfies the continuity equation 
(Equation 10.25). 

10.8 The complex Klein-Gordon Lagrangian (Problem 10.5) is invariant under the global 
gauge transformation </) ➔ eiB </). Impose local gauge invariance to construct the 
complete gauge-invariant Lagrangian, and determine the current density]µ. Using the 
Euler-Lagrange equation for </), show that this current obeys the continuity equation 
(Equation 10.25). [Warning: The current is defined by Equation 10.24, not by Equation 
10.23. It is true that the former follows (ordinarily) from the latter, but not when]µ 
depends explicitly on Aµ. In this (rare) circumstance you cannot just pick off the term 
in !t? that is proportional to Aµ; rather, you must use the Euler-Lagrange equations to 
determine Bµ P', and get the current from that.] 

10.9 (a) Suppose the field variables(¢,) are subjected to an infinitesimal global transformation 
8</);. Show that the Lagrangian .:i'(<j),, Bµ</),) changes by an amount 

In particular, if the Lagrangian is invariant under the transformation in question, 
then 8.:i' = 0, and the term in curly brackets constitutes a conserved current (that is, it 
obeys the continuity equation). More precisely, if the transformation 8¢, is specified 
by a parameter 80, the N oetherian current is 

(up to an overall constant, chosen for convenience in the particular context). This 
is the essence of Noether's theorem [3], relating symmetries of the Lagrangian to 
conservation laws. 
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(b) Apply Noether's theorem to the Dirac Lagrangian (Equation 10.14), to construct the 
conserved current associated with global phase invariance (Equation 10.26). Compare 
the electric current (Equation 10.36). 

(c) Do the same for the complex Klein-Gordon Lagrangian in Problem 10.8 
10.10 Derive Equation 10.51 
10.11 Deduce Equation 10.58 from Equation 10.57, using Equations 10.54-10.56. 
10.12 Suppose we were to define 

in Yang-Mills theory. 
(a) Find the transformation rule for this P", under infinitesimal gauge transformations 

(Equation 10.61). 
(b) Determine the infinitesimal transformation rule for .:t? A (Equation 10.63), in this 

case. Is the Lagrangian invariant? 

[Answers: (a) F'-'"--+ F'"" + Zg[l x F'"" +A'" x a">..-A" x a1"'>..] 
lie 

(b) P". Fµv--+ pv. Fµv + !!(Av X P"). aµ>..] 

10.13 Derive Equation 10.66, starting with Equations 10.61 and 10.65. 
10.14 Prove that gauge field Lagrangian (Equation 10.63) is invariant under finite local gauge 

transformations, as follows: 

(a) Using Equations 10.58 and 10.65, show that 

[Note that a,,(S- 1S) = 0 =} (aµS- 1)5 = -S-1(aµS).] 
(b) Show, therefore, that 

Tr[(-r - P")(-r · Fµv)] 

is invariant. 
(c) Using Problem 4.20(c), show that the trace in (b) is equal to 2P" · Fµv• 

10.15 Apply the Euler-Lagrange equations to the Lagrangian in Equation 10.69. Using the 
standard associations (Equations 7.71, 7.72, and 7.79), obtain 'Maxwell's equations' for 
classical Yang-Mills theory. [Note that there are three charge densities, three current 
densities, three scalar potentials, three vector potentials, three 'electric' fields, and three 
'magnetic' fields, in this theory.] (Unlike electrodynamics, your expressions for the 
divergence and curl of the E's and B's will inevitably involve the potentials.) 

10.16 Show that any Hermitian 3 x 3 matrix can be written as a linear combination of the 
unit matrix and the eight Gell-Mann matrices (Equation 10.76) 

10.17 (a) Show that det(~) = eTr(A), for any matrix A. [Hint: Check it first for a diagonal 
matrix. Then extend the proof to any diagonalizable matrix (S-1 AS= D, where D 
is diagonal, for some matrix S) - show that Tr(A) = Tr(D) and s-1~5 = eD, so 
that det(~) = det(eD). Of course, not all matrices are diagonalizable; however, every 
matrix can be brought into Jordan canonical form (S-1 AS = ], where J is diagonal 
except for some l's immediately below the main diagonal). Take it from there.] 

(b) Show that e•l.•a (in Equation 10.78) has determinant 1. 

10.18 Starting with Equation 10.81, derive Equations 10.82 and 10.83. 
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10.19 Confirm that the Proca propagator (Equation 10.95) is the inverse of the tensor in 

Equation 10.92, in the sense explained in the text. 
10.20 Construct the Lagrangian for ABC theory (Chapter 6). 
10.21 Give a physical interpretation of the Yukawa Lagrangian: 

[ 1 1 (m2c)2 2] -+ -(a </J)(a"·,P) - - - </J - Oly,jnjr,p 2 µ 2 h (10.137) 

What are the spins and masses of the particles? What are their propagators? Draw the 
Feynman diagram for their interaction and determine the vertex factor. 

10.22 Derive Equation 10.120 
10.23 Suppose we took 

,J,1 = (1J + W-✓2 and ,J,2 = (1/ - ~)/-✓2 

as the fundamental fields, instead of Equation 10.119 Express the Lagrangian 
(Equation 10.120) in terms of,tr 1 and ,tr 2 • 

[ Comment: Offhand, it looks as though we have two massive fields here, and thus escape 
Goldstone's theorem. Unfortunately, there is also a term of the form -µ.2 ,tr1 ,tr2 . If you 
interpret this as an interaction, it converts ,tr 1 into ,tr2 , and vice versa, but that means 
neither one exists as an independent free particle. Rather, such an expression should be 
interpreted as an off-diagonal term in the mass matrix (Equation 10.45), indicating that 
we have incorrectly identified the fundamental fields in the theory. Tbe physical fields 
are those for which M is diagonal and for which no direct transitions from one to the 
other can occur. We have encountered this situation once before, in Section 4.4.3: we 
found that K0 +->- R°, and hence that these are not the physical particle states; instead, 
the linear combinations K1 and K2, in terms of which the mass matrix is diagonal, are 
the 'true' particles.] 

10.24 Generalize the argument following Equation 10.115 to three fields (¢1, ¢2, <f,3). What are 
the masses of the three particles? How many Goldstone bosons are there in this case? 

10.25 Starting from Equations 10.129 and 10.130, derive Equation 10.131 
10.26 Draw the primitive vertices for all the interactions in curly brackets in Equation 10.131 

Circle the ones that survive in Equation 10.136 
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Neutrino Oscillations 

Recent experiments have shown that neutrinos can convert from one flavor to another (for 
instance, v, ++ v

µ
}· This means that neutrinos have nonzero mass, and that the lepton 

numbers (electron, muon, and tau) are not separately conserved. Neutrino oscillations 

resolve the solar neutrino problem, and suggest modest changes in the Standard Model. 

The treatment here is largely self-contained, and could even be read immediately after 

Chapter 2. 

11.1 

The Solar Neutrino Problem 

The story begins [l] in the middle of the nineteenth century, when Lord Rayleigh 

undertook to calculate the age of the sun. He assumed (as everyone did, at the 

time) that the source of the sun's energy was gravity - the energy accumulated 

when all that matter 'fell down' from infinity is liberated over time in the form 

of radiation. On the basis of the known rate of solar radiation (which he took to 

be constant), Rayleigh showed that the maximum possible age of the sun was 

substantially shorter than the age of the earth as estimated by geologists, and, more 

to the point, shorter than Darwin's theory of evolution required. This pleased Lord 

Rayleigh, who was opposed to evolution on quaint religious grounds, but it worried 

Darwin, who removed his own estimate from subsequent editions of his book. 

In 1896, Becquerel discovered radioactivity. In subsequent studies he and the 

Curies noted that radioactive substances such as radium give off prodigious 

amounts of heat. This suggested that nuclear fission, not gravity, might be the 

source of the sun's energy, and this would allow for a much longer lifetime. The 

only trouble was that there didn't appear to be any radioactive stuff in the sun, 

which is made almost entirely of hydrogen (plus a small amount oflight elements, 

but certainly not uranium or radium). 

By 1920, Aston completed a series of meticulous measurements of atomic 

weights, and Eddington noticed that four hydrogen atoms weigh slightly more than 

one atom ofhelium-4. This implied (in view of Einstein's E = mc2) that the fusion 
of four hydrogens would be energetically favorable, and would release a 

substantial 

1387 



3881 11 Neutrino Oscillations 

amount of energy. Eddington suggested that this process (nuclear fusion) powers 
the sun, and in essence he was right. Of course, Eddington didn't know what the 
mechanism for binding the hydrogens together might be; this had to await the 
development of nuclear physics in the 1930s - in particular, Chadwick's discovery 
of the neutron and Pauli's invention of the neutrino. 

In 1938, Hans Bethe worked out the details, which turn out to be quite com­
plicated. In heavy stars the dominant mechanism is the CNO (Carbon-Nitrogen 
-Oxygen) cycle, in which the fusion process is 'catalyzed' by small amounts of those 
three elements. But in the sun (and other relatively light stars) the dominant route 
is the so-called pp chain (Figure 11.1). To begin with, a pair of protons (hydrogen 
nuclei) combine to make a deuteron, a positron, and a neutrino. (The deuteron is a 
proton and a neutron, so what really happened here is that a proton converted into 
a neutron, a positron, and a neutrino - the reverse of neutron decay.) Alternatively, 
the outgoing positron could be replaced by an incoming electron. Either way, we 
have produced deuterons (along with some neutrinos) from protons. The deuteron 
soon picks up another proton to make a helium-3 nucleus (two protons and a 
neutron), releasing energy in the form of a photon. Helium-3 has three options: 
it can join with another loose proton to make an alpha particle - the nucleus of 
helium-4 (two protons and two neutrons). Once again, a proton has been converted 
into a neutron (with emission of a positron and a neutrino). Or two helium-3s can 
get together to make an alpha particle and two leftover protons. Or the helium-3 
can combine with an alpha particle (produced in one of the previous reactions) to 
make beryllium-?, with the emission of a photon. Finally, the beryllium can either 

The pp Chain 
Step 1: Two protons make a deuteron 

p+p---> d+e++v, 

p + p + e- _, d + 11, 

Step 2: Deuteron plus proton makes 3He. 

d+ p _, 3He+, 

Step 3: Helium-3 makes alpha particle or 7Be. 

3He + p ---> a+ e+ + 11, 

3He + 3He ---> a + p + p 
3He + o: ---> 7Be +, 

Step 4: Berilliulll !llakcs alpha particles. 

7Be + e·- --, 7Li + 11, 

7Li + p --, o: + o: 
7Be + p --, 8B +, 

8B --, 8Be* + e+ + 11, 

8Be" --, o: + o: 

Fig. 11.l The pp chain: how protons make alpha particles in the sun. 
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absorb an electron, making lithium, which picks up a proton, yielding two alpha 
particles, or else it absorbs a proton, making boron, which goes to an excited state 
ofberyllium-8, and from there to two alpha particles. 

The details are not so important; the point is that it all starts out as hydrogen 
(protons), and it all ends up as a particles (helium-4 nuclei) - precisely Eddington's 
reaction - plus some electrons, positrons, photons ... and neutrinos. But is this 
complicated story really true? How can we tell what is going on inside the sun? 
Photons take athousand years to work their way out from the center to the surface, 
and what we see from earth doesn't tell us much about the interior. But neutrinos -
because they interact so weakly, emerge virtually unscathed by passage through the 
sun. Neutrinos, therefore, are the perfect probes for studying the interior of the sun. 

In the pp chain there are five reactions that yield neutrinos, and for each one the 
neutrinos come out with a characteristic energy spectrum, as shown in Figure 11.2 
The overwhelming majority come from the initial reaction p + p -+ d + e + v,. 
Unfortunately, they carry relatively low energy, and most detectors are insensitive 
in this regime. For that reason, even though the boron-8 neutrinos are far less 
abundant, most experiments actually work with them. 

There are certainly plenty of neutrinos coming from the sun. John Bahcall, who 
was responsible for most of the calculations of solar neutrino abundances, liked to 
say that 100 billion neutrinos pass through your thumbnail every second; and yet 
they are so ethereal that you can look forward to only one or two neutrino-induced 
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Fig. 11.2 The calculated energy spectra for solar neutrinos. 
(Source: J. N. Bahcall, A.M. Serenelli, and S. Basu, Astrophysi­
cal Journal 621, L85 (2005).) 
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reactions in your body during your entire lifetime. In 1968, Ray Davis et al. [2] 
reported the first experiments to measure solar neutrinos, using a huge tank of 
chlorine (actually, cleaning fluid) in the Homestake mine in South Dakota (you have 
to do it deep underground to eliminate background from cosmic rays). Chlorine 
can absorb a neutrino and convert to argon by the reaction Ve+ 37 Cl---+ 37 Ar+ e 
(essentially again Ve + n ---+ p + e). The Davis experiment - for which he was finally 
awarded Nobel Prize in 2002 - collected argon atoms for several months (they were 
produced at a rate of about one atom every two days). The total accumulation was 
only about a third of what Bahcall predicted [3]. Thus was born the famous solar 
neutrino problem. 

11.2 
Oscillations 

At the time, most physicists assumed the experiments were wrong. After all, Davis 
claimed to have flushed a total of33 argon atoms out ofa tank containing 615 metric 
tons of tetrachloroethylene - it was not hard to imagine that he might have missed 
a few. On the theory side, Bahcall's calculations required an audacious confidence 
in the so-called Standard Solar Model of the interior of the sun. But gradually the 
community came to take the solar neutrino problem seriously - especially when 
other experiments, using quite different detection methods, confirmed the deficit. 

In 1968, Bruno Pontecorvo suggested a beautifully simple explanation for the 
solar neutrino problem. He proposed that the electron neutrinos produced by the 
sun are transformed in flight into a different species (muon neutrinos, say, or 
even antineutrinos), to which Davis' experiment was insensitive [4]. This is the 
mechanism we now call neutrino oscillation. The theory is quite simple - it is 
basically the quantum mechanics of mixed states, which itself is almost identical to 
the classical theory of coupled oscillators [S]. Consider the case of just two neutrino 
types - say, Ve and Vw If one can spontaneously convert into the other, it means 
that neither is an eigenfunction of the Hamiltonian. The true stationary states for 
the system are evidently some orthogonal linear combinations: 

v1 = cos0 vµ - sin0 v,; v2 = sine Vµ + cos0 Ve (11.1) 

(Writing the coefficients as sines and cosines is just a cute way of enforcing 
normalization.) 

According to the Schrodinger equation, these eigenstates have the simple time 
dependence e-iE,tfli: 

(11.2) 

Suppose, for example, that the particle starts out as an electron neutrino: 

ve(O)=l, vµ(O)=O, so v!(0)=-sin0, v2(0)=cos0 (11.3) 
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In that case 

(11.4) 

Solving Equation 11.1 for vµ, 

The probability that the electron neutrino has converted into a muon neutrino, 
after a time t, is evidently 

lvµ(t)l2 = (sin0 cos0)2 (e-iEzt/li _ e-iE1t/n) (eiEzt/n _ eiE1t/n) 

= sin;20) ( 1 _ ei(Ez-Ei)t/li _ e-i(Ez-Ei)t/n + 1) 

= --- 2-2cos~--~ = ---4sm ---t sin2(20) ( (E2 - Er)t) sin2(20) . 2 ( E2 - Er ) 
4 /i, 4 2/i, 

or 

(11.6) 

You see why they are called neutrino oscillations: v, will convert to vµ, and then 
back again, sinusoidally, just as coupled oscillators go back and forth between the 
normal modes. In this theory the electron and muon neutrinos themselves do not 
have well-defined energies - or masses; the 'mass eigenstates' are v1 and v2, with 
masses m1 and m2.* What is the energy of a highly relativistic particle of mass m 

and momentum p? Well, £2 - lpl 2c2 = m2c4. so 

Evidently, then,·;· 

(11.7) 

* In particular, it is literally nonsense to speak of the 'mass' of an electron neutrino (for example) 
- it has no mass, any more than a three-note chord has a (single) pitch. 

"i" I follow here the standard derivation, in which p, not E, is held constant. Kayser [6] notes that 
this is 'technically incorrect', but a 'harmless error', since it leads (much more simply) to the 
right answer. 
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and hence* 

(11.8) 

Write the answer, if you prefer, in terms of the distance z "" ct the neutrinos have 
traveled: 

{ . . [(~ - mf)c3 ]}
2 

Pv,➔ vµ = sm(20) sm 4/i,E z (11.9) 

In particular, after a distance 

2nliE 
L= -=----=--c-

(mi - mi)c3 
(11.10) 

the probability of conversion hits a maximum, sin 2 (20), and at 2L they are all back 
to electron neutrinos. 

Notice that two things are necessary, in order for neutrino oscillations to occur: 
There must be mixing (0), and the masses must be unequal - in particular, they 
cannot both be zero. It is sometimes asserted that the Standard Model requires 
that neutrinos be massless, but I don't agree. It's true that some of the calculations 
are easier if you make this assumption, but there is no fundamental reason why 
neutrinos should have zero mass (whereas for the photon this is absolutely essential). 
Cross-generation mixing is a more significant change, though it already happens 
in the quark sector, and in a way it would be more surprising if it did not occur for 
the leptons) 

11.3 

Confirmation 

In 2001, the Super-Kamiokande collaboration presented its results on solar 
neutrinos [9]. Unlike the Davis experiment, SuperK uses water as the detector 
(Figure 11.3), and it is sensitive to muon and tau neutrinos as well as electron 
neutrinos. The process is elastic neutrino-electron scattering: v + e ➔ v + e; the 
outgoing electron is detected by the Cerenkov radiation it emits in water. The 
neutrino can be of any type, but the detection efficiency is 6.5 times greater 

* Exactly the same formalism applies to neu­
tral kaon mixing (Section 4.8.1) - see Prob­
lem 11.2. 

i" For neutrinos passing through matter (as op­
posed to vacuum) there are additional effects, 
due to elastic scattering of electron neutrinos 
(v, + e --,. v, + e, by exchange of a W) and the 
z0-mediated interaction of neutrinos of any 

flavor with e, p, and n. This possibility, first 
noted by Wolfenstein, Mikheyev, and Smirnov 
[7] (hence known originally as the MSW ef­
fect), does not alter the functional form of 
Equation 11.9, but it does modify the effective 
mixing angle and mass splitting in a manner 
that depends on the density of the matter and 
the energy of the beam [8]. 
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Fig. 11 .3 The Super-Kamiokande detector (note the people in the rubber raft). 

for electron neutrinos than for the other two kinds.* They recorded 45% of the 
predicted number .. . assuming all of these neutrinos were still electron neutrinos. 
But remember that their detector is less efficient in counting µ, and -r neutrinos. If 
some of the v,'s had converted to vµ's or v,'s, then the actual flux would be higher 
- but how much higher they could not say, because they had no way of knowing 
what fraction of the neutrinos had in fact converted. You could look back at the 
Homestake data (remember, Homestake counted only electron neutrinos), but the 
conditions were sufficiently different that the comparison was not persuasive. 

Meanwhile, at the Sudbury Neutrino Observatory (SNO) a very similar exper­
iment was under way, using heavy water (D20) instead of ordinary water. The 
virtue of heavy water is that the neutrons present admit two other reactions (in 
addition to elastic scattering off electrons), and these enable one to measure sep­
arately the electron neutrino flux and the total neutrino flux (Figure 11.4). In the 
summer of2001 the SNO collaboration published their first results [10), reporting 
on the neutrino absorption process (which applies only to electron neutrinos). 
They got 35% of the predicted flux. If you compare this with the SuperK data 
(45%) it appears that 10% of the neutrinos detected at SuperK must, in fact, 
have been vµ's or v,'s. But we know that the detector is 6.5 times more efficient 
for electron neutrinos, so if they had been v,'s, they would have accounted for 

* Elastic neutrino-electron scattering can proceed via Zo exchange for all three neutrino species, 
but for electron neutrinos there is an extra diagram, mediated by the W (see Problem 11.3). 
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Detection Methods 
Homestake experiment (1968): 

Ve + 37 Cl ---> 37 Ar + e 

Super-Kamiokande experiment (1998): 

v+e->v+e 

Solar neutrino observatory (2002): 

Ve+ d ---> p+p+ e 
v+d---> n+p+v 
v+e-, v+e 

Fig. 11.4 Detection mechanisms at Homestake, SuperK, and SNO. 

6.5 x 10 = 65%, and 35 + 65 = 100 - right on the money! This was just too perfect 
to be an accident, and many people concluded right then that the solar neutrino 
problem was solved, and neutrino oscillations confirmed. Still, not everyone was 
convinced, because this argument involves an awkward concatenation of data from 
different instruments, taken under different conditions. To nail it down definitively, 
the two measurements - the total flux and the electron-neutrino flux - had to be 
taken under identical conditions.* Those results were finally provided by the SNO 
collaboration in April 2002 [12]. Suffice it to say that they perfectly confirmed the 
tentative conclusions of the previous summer, with 

0sol ~ rr/6, (11.11) 

(for the conversion of electron neutrinos to muon and/or tau neutrinos). 
Of course, the sun is not the only supplier of neutrinos. There are also terrestrial 

sources (radioactive materials, nuclear reactors, and particle accelerators), atmo­
spheric sources (cosmic rays), and astronomical sources (supernovae). In fact, the 
first strong evidence for neutrino oscillations was obtained at Kamiokande [13] 
(predecessor to SuperK) in the early 1990s using atmospheric neutrinos. Atmo­
spheric neutrinos come mainly from the decay of pions and muons produced when 
cosmic rays (high-energy protons from outer space) hit air molecules in the upper 
atmosphere: 

* Incidentally, you may have been wondering 
whether neutrinos don't simply decay -
that would certainly account for the deficit. 
But what could they decay into? Maybe 
some even lighter fermion we never no­
ticed before. This was actually a viable (if 
implausible) option until the SN0 experi­
ments demonstrated conclusively not only 

(11.12) 

that electron neutrinos are missing, but that 
the other flavors are appearing in their place. 
Kayser calls this the 'smoking gun' evidence 
for neutrino oscillations. It may well be 
true that the heaviest neutrino, at least, is 
unstable, but its lifetime is presumably too 
long to affect current experiments [11 ). 
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Evidently, there should be twice as many muon neutrinos (and antineutrinos) as 
electron neutrinos.* In fact, however, Kamiokande found roughly equal numbers 
of electron and muon neutrinos. This suggests that the muon neutrinos are 
converting to a different flavor. Indeed, the Kamiokande detector was able to sense 
the direction from which the neutrinos came; those from directly overhead, which 
had traveled only 10 km or so, arrived in the expected ratio (2: 1), but as the zenith 
angle increased (and with it the distance to the source), the ratio decreased (see 
Problem 11.4). These results were confirmed and improved by SuperK in 1998 [14]. 
It seems that the muon neutrinos convert into tau neutrinos, with 

0atm ""n/4, (11.13) 

The atmospheric neutrino experiments (involving muon neutrino oscillations) tell 
us nothing about the solar neutrino problem (which involves electron neutrinos), 
but it is comforting to see the same phenomenon play out in two different contexts. 

The ideal test of neutrino oscillations would involve a fixed source (a reactor 
or an accelerator) and a movable detector. As the separation increases, one 
would monitor the sinusoidal variation predicted by Equation 11.9. Unfortunately, 
neutrino detectors tend to be huge, and oscillation lengths are typically in the 
range of hundreds of kilometers (while the flux from a point source falls off like 
1/r2). So one must make do with fixed targets and extremely intense sources, 
and study the variation with energy. The KamlAND experiment [15] uses a new 
detector at the SuperK site and looks at neutrinos from several power reactors 
150-200 km away; the MINOS experiment [16] uses a detector in a mine in 
Soudan, Minnesota, to monitor accelerator-generated neutrinos from Fermilab, 
750 km away in Illinois. 

11.4 

Neutrino Masses 

With three neutrinos there are three mass splittings: 

(11.14) 

Only two of them are independent (~31 = ~21 + ~32).i° The oscillation measure­
ments (Equations 11.11 and 11.13) indicate that one splitting is quite small, and 

* Of course, not all pions decay to muons, and 
not all muons decay before reaching ground 
level; moreover, kaons as well as pions are 
produced by cosmic rays. So the factor of two 
is not exact, but it should be pretty close. 

-r The LSND experiment at Los Alamos re­
ported a third mass splitting incompatible 
with this constraint (17], and was for a while 
interpreted as evidence of a fourth neutrino. 

Since, however, it was already established 
(see Section 11.9) that there are exactly three 
light neutrinos participating in the weak 
interactions, the 'extra' neutrino was taken to 
be 'sterile' (noninteracting, except for gravity). 
At any rate, the MiniBooNE experiment at 
Fermilab has pretty decisively repudiated the 
LSND result [18], and with it the notion of 
sterile neutrinos. 
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the others relatively large; we call v1 and v2 the closely-spaced pair (with m2 > m1), 

and v3 the loner. This structure is somewhat reminiscent of the charged leptons (e 
andµ fairly close in mass, r much higher), and the quarks (d ands close, b higher; 
u and c relatively close, t much higher), so it is natural to assume that v3 is heavier 
than the other two - but it is possible that the neutrino spectrum is 'inverted', with 
v3 much lighter than v 1 and v2 (Figure 11.5). 

Unfortunately, oscillations are only sensitive to differences in (the squares of) 
neutrino masses, and one would like to measure the individual neutrino masses 
directly. This is not easy [19]. The standard method is to study the high energy 
cut-off (analogous to 9.2) in the beta-decay spectrum of tritium, but while these 
experiments set upper bounds on the neutrino mass, no measurement to date has 
established an actual mass. Meanwhile, an independent upper bound was provided 
serendipitously by the supernova SNl 987 A: 19 neutrinos, with a range of energies, 
were detected in the burst, which lasted only 10 seconds. For massive particles the 
speed is (of course) a function of energy, and the fact that these arrived so close 
together puts a limit of about 20eV/c2 on the neutrino mass (see Problem 11.5). 
On the other hand, the atmospheric neutrino oscillations (Equation 11.13) imply 
that at least one of the neutrino masses must exceed 0.04eV/c2. From all available 
evidence the best we can say today (2008) is that the heaviest neutrino mass lies 
somewhere between 0.04 eV/c2 and 0.4eV/c2.* 

V3L 
l Am;,m ~ 0.003 

~2 t Am~01 - 0.0001 
I 

v3-----

Normal Inverted 

Fig. 11.5 'Normal' and 'inverted' neutrino mass spectrum. The units are (eV /c2) 2 . 

* Alone among the quarks and leptons, neutri­
nos could conceivably be their own antiparti­
cles - 'Majorana' as opposed to 'Dirac' neu­
trinos (Problem 7.51). In Section 1.5 I men• 
tioned the Davis and Harmer experiment, 
which appears to demonstrate that v, is dis­
tinct from v,. But it could be the helicity of 
the (anti)neutrino that forbids Equation 1. 13. 
The ultimate test is neutrinoless double beta de­
cay, in which a nucleus with atomic number 
Z goes to a nucleus of atomic number Z + 
2, with the emission of two electrons and no 
neutrinos - in effect, the decay of two neu-

trons with annihilation of the accompanying 
neutrinos. This should be possible if v, = 
v,, but it has never been observed. One rea­
son for interest in this scenario is that Majo­
rana neutrinos are required by the so-called 
'See-Saw' mechanism, which accounts for 
the extraordinary smallness of the neutrino 
masses by postulating that they are paired 
with extremely heavy neutrinos in a scheme 
whereby their masses are inversely propor­
tional [20). In any event, neutrino flavor oscil­
lations work the same for Dirac and Majorana 
neutrinos. 
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11.5 
The Mixing Matrix 

In Section 11.2 I discussed oscillations between two neutrino species (v, and Vµ, for 
the sake of argument). Of course, there are actually three kinds, and this complicates 
the algebra a bit.* But the essential point is unchanged: neutrinos interact as flavor 
eigenstates (v, is the particle that goes with the electron, vµ with the muon, and v, 
with the tau), but they propagate as eigenstates of the free-particle Hamiltonian -
the mass eigenstates v1 , v2 , and V3. The flavor eigenstates evolve in a complicated, 
oscillatory manner, because really they carry three different masses that are playing 
off against each other, like the beats of a coupled oscillator. 

The same mixing happens with quarks, except that for them the familiar flavors 
(d, s, and b) are the mass eigenstates, and it is the 'weak eigenstates' (d', s, 
and b', Equation 9.85) that are 'rotated'; they are the ones that correspond to 
the neutrinos.I The CKM matrix (Equation 9.86) relates the weak eigenstates to 
the mass eigenstates in the quark sector; the analogous construct for leptons is 
sometimes called the 'MNS matrix' [22]: 

(11.15) 

As before (Equation 9.87), it can be expressed in terms of three angles (012, 023, 

013) and one phase factor (8): 

S12C13 
i8 

C12C23 - S12S23S13e 
s13ci8

) 
S23C13 (11.16) 

i8 
-C12S23 - s12C23S13e C23C13 

(cu= cos Bu, su = sin Bu)- But whereas the mixing angles for quarks are all rather 
small (so the CKM matrix is not far from diagonal, and the cross-generational 
couplings are suppressed), two of the leptonic mixing angles (012 "'=' Bso! and 023 "'=' 

Batm) are large. Experimentally, Bso! = 34 ± 2° and 0a11n = 45 ± 8°. On the other 
hand, Bu is known [23] to be less than 10°. 

* As it turns out, if one of the three masses is 
substantially different from the others (which 
is in fact the case, as we have seen), then 
'quasi-two-neutrino oscillation' (described 
by Equation 11. 9) remains an excellent 
approximation (21). 

i" There is nothing deep here. Quarks interact 
dominantly by the strong interactions, which 
are agnostic - you could use either set of 

states; for them it is natural to let flavor co­
incide with mass. But neutrinos only interact 
weakly, so for them it seems more natural 
to use the weak eigenstates to define flavor. 
In retrospect, it would be better to speak 
uniformly of 'mass eigenstates' and 'weak 
eigenstates'; the standard flavors coincide 
with mass eigenstates for quarks, but with 
weak eigenstates for leptons. 



3981 11 Neutrino Oscillations 

P, 

Fig. 11.6 Flavor contents of the neutrino mass eigenstates. 
Black is v,, gray is v,.,, white is v,. (The electron-neutrino 
component of v3 is too small to show on this scale). 

Because U is a unitary matrix (U-1 = Ui), it is easy to invert Equation 11.15, 
expressing the mass eigenstates in terms of the flavor states: 

(11.17) 

It appears that v3 is an almost perfect 50-50 blend of v,., and v, (with a tiny 
admixture of v,); v2 is a roughly equal combination of all three flavors; and v1 

is mostly v, (Figure 11.6). But it will be several years before we have accurate 
numbers for the elements of the MNS matrix, and who knows how long before we 
can actually calculate them. 
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11.1 Estimate the lifetime of the sun, assuming (as Lord Kelvin did) that the source of the 
energy radiated is gravity. Look up any empirical numbers (the power radiated by the 
sun, the mass, and radius of the sun). 

ll.2 (a) What is the period of K0 =a R0 oscillations (Section 4.4.3)? [ Hint:The mass eigenstates 
are K£ and Kf. In the neutrino case (Eq. 11.7) the particles were highly relativistic; 
for the K's, assume on the contrary that the kinetic energy is substantially less than 
the rest energy.] 

(b) Compare your result in (a) to the lifetimes of K£ and Kf. Notice that the K£ component 
of the beam dies out - leaving pure Kf - well before significant oscillation can 
occur. 

11.3 Draw the lowest-order diagrams for elastic neutrino-electron scattering, (a) for electron 
neutrinos, (b) for muon neutrinos, (c) for tau neutrinos. 

11.4 (a) Suppose atmospheric neutrinos are produced at an altitude h, and the detector is at 
sea level. Find the distance x from the source to the detector, as a function of the zenith 
angle 0 (directly overhead is 0 = 0, the horizon is 0 = 90°, straight down is 0 = 180°). 
Let R be the radius of the earth. 
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(b) Suppose 95% of the 'upper' neutrinos (overhead to horizon) reach the detector, but 
only 50% of the 'lower' neutrinos (below the horizon) do. Using the oscillation formula 
Equation 11.9 (but this time for muon neutrinos converting to tau neutrinos), determine 
0 and ~m2. Assume h= 10km and E = lGeV. [This problem was posed by Waltham [1]. 
You'll need a computer to get the numerical answer.] 

11.5 (a) Show that the velocity of an ultra-relativistic particle (mass m) with energy E is 
approximately 

(b) Supernova SN1987A occurred in the Large Magellanic Cloud (1.7 x 105 light years 
from Earth). Neutrinos from this explosion, with energies ranging from 20 MeV to 
30 MeV, were detected within a 10 s time interval. What upper bound on the neutrino 
mass does this imply? [Assume the neutrinos all started out at the same instant.) 

11.6 With neutrino oscillations, the individual lepton numbers (L,, L,,, and L,) are no longer 
conserved, and this means that the decay µ -> e + y (the absence of which suggested 
these conservation laws in the first place - see Eq. 1.16) is possible, in principle. 

(a) Draw a Feynman diagram for this process. Note: neutrino oscillations can be 
represented by a blob: 

(b) In this process you must 'borrow' the energy necessary to make the virtual W. 
According to the uncertainty principle (see Problem 1.2), how soon must you 'repay' 
the debt? How far could a neutrino get in this time? Given that neutrino oscillations 
occur over distance scales of many kilometers, does it seem likely that you could 
'borrow' the energy long enough forµ --> e + y to occur? 
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Afterword: What's Next? 

So far, I have talked almost exclusively about established facts'. With the possible 
exception of the Higgs mechanism, any future theory will have to include all of this. 
But the Standard Model is certainly not the last word on the subject. Already there are 
intriguing theoretical speculations and tantalizing experimental indications of what the 
future may hold. Increasingly, the impetus is coming.from observations in astrophysics 
and cosmology, rather than traditional collider experiments.• In this chapter, I'll explore 
some of the directions in which future discoveries seem most likely. I'll start (Section 
12.1) with the hunt for the Higgs, which tops the agenda for the Large Hadron Collider 
( LHC) ( and for the remaining lifetime of the Tevatron ), and may lead to the explanation 

for all particle masses. Next (Section 12.2), I'll discuss Grand Unification, which was 
the 'natural' next step 30 years ago, but hit a brick wall when the predicted decay of 
the proton was not observed; it nevertheless sets the context for all subsequent theoretical 
developments. Then ( Section 12. 3) I'll consider C P violation and its implications for 
the matter/antimatter asymmetry of the universe. Section 12.4 is a scandalously brief 
introduction to supersymmetry, extra dimensions, and string theory, ideas that have 
dominated theoretical particle physics since 1984 and for which the first experimental 
support may come from the LHC. Finally, in Section 12.5 we'll study Dark Matter and 
Dark Energy, which by current estimates account for 95% of the matter in the universe, 
leaving only a paltry 5% for the 'ordinary' particles we encountered in the first 11 chapters. 

12.l

The Higgs Boson

In the Higgs mechanism, a gauge symmetry is spontaneously broken by a 

two-component scalar field </J, whose ground state is not zero (Section 10.9). 

One component of </J is reincarnated as the third (longitudinal) polarization state 

• In retrospect, one might call the period from 
the early 1930s to 1954 the era of cosmic rays, 
and from the Cosmotron to the Large Hadron 
Collider (LHC) - let's say 2010 - the era of
accelerator physics; in this sense, we are now 
entering the era of particle astrophysics (1). 
Part of the reason is simple economics: to 

reach ever higher energies, accelerators have 
become so huge and so expensive that it is 
hard to imagine anything beyond the Interna­
tional Linear Collider (!LC) now on the draw· 
ing boards. Astrophysics offers a relatively in­
expensive window into vastly higher energy 
regimes. 

1401 
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for a now massive gauge field, but the other remains, representing a neutral particle 
of spin 0: the Higgs boson [2]. 

Most particle physicists believe in the Higgs mechanism because it seems to be 
the only way (certainly it is the cleanest way) to account for the mass of the Wand the 
Z, in the context oflocal gauge theory. But if there really is a Higgs field, permeating 
all of space, with a nonzero value even in 'vacuum', it could account as well for 
the masses of the quarks and leptons, whose interaction with the primordial Higgs 
field has been likened to wading through deep water, imparting an effective inertia 
to (almost) everything that moves. In this more exalted vision, the Higgs particle 
becomes the source of all mass.* The quarks and leptons are 'born' massless/ 
but with Yukawa couplings (Problem 10.21) to the ¢: Lint= -a/f{,frJ</J, where 
f denotes the particular quark or lepton. When ¢ is 'shifted' by spontaneous 
symmetry-breaking (Equation 10.130), Lint splits into two pieces, one of which is a 
Yukawa coupling to the physical Higgs field and the other a pure Fermion mass 
term, -mf c21frf/rJ (in the notation of Section 10.9, m.rc2 = (µ/J..)af)· Unfortunately, 
this doesn't help us to calculate the particle masses - it simply trades one unknown 
parameter (mf) for another (a f)- But it does suggest that the strength of the coupling 
to the Higgs is proportional to mass. 

In the simplest theory (the 'Minimal Standard Model', MSM), there are four 
scalar fields to begin with - two charged and two neutral. Three of these are 'eaten' 
by the W ± and z0 (which thereby acquire mass) and the fourth remains as the 
neutral Higgs field. More complicated schemes have been proposed, involving 
multiple or composite Higgs particles,=i but the MSM provides a useful roadmap 
for experimental and theoretical exploration of the Higgs sector. In this model, the 
Higgs (h) interacts with quarks and leptons by the diagram 

I 
I 
lh 
I 

~ 
(vertex factor -imjC2 /v), and with the weak mediators by 

I 
I 
lh 
I 

~ 

I 
I 
lh 
I 

~ 
* Leon Lederman famously called it 'The God Particle' (New York: Delta, 1993). 
'i" In the Standard Model Lagrangian, fermion mass terms (f,t,) are not invariant under the elec­

troweak symmetry SU(2)L x U(l), so the 'starting' masses of the quarks and leptons have to be 
zero, and the physical masses arise only when the symmetry is (spontaneously) broken. 

j: In supersymmetric theories, for example, there are at least five Higgs bosons and in technicolor 
the role of the Higgs is played by a bound state of two fermions. 
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(vertex factor 2iM;,.c2gµ" /(n}v), where the subscript m stands for W or Z). There 
is, as well, a direct Higgs-Higgs coupling* 

I 
I 
lh 
I 

A 
/ ' 

/ ' ,,,"' h h ', 

(vertex factor -3im~c2 /(n.2v)). Here, vis the 'vacuum expectation value' of ¢ 1 (µ(A, 
for the potential in Section 10.8). It can be calculated from the mass of the W (see 
Problem 12.1) 

~ 2Mwc2 
-vncv = -- = 246 GeV 

gw 

The mass of the Higgs itself is not determined by the theory.I 

(12.1) 

It would be nice to know whether this story (or some variation on it) is actually 
true. The Higgs particle is the only element in the Standard Model for which there is 
as yet no compelling experimental evidence. It may have been seen at LEP (CERN), 
in the last months before it shut down (to make way for the LHC) [4], it could 
still be found at the Tevatron (Fermilab), and unless current theories are wildly off 
it will certainly be observed at the LHC. Various constraints - experimental and 
theoretical - suggest that its mass must lie in the range 

114 GeV/c2 < mh < 250 GeV/c2 (12.2) 

with a most probable value around 120 GeV / c2 [5]. The LHC will explore the entire 
region up to 1 TeV and beyond. 

At LEP (an electron-positron collider) the Higgs was sought in the Z-'bremss­
trahlung' reaction e+ + e- --+ Z + h: 

e 

e 

At hadron colliders (the Tevatron and LHC), the dominant production mechanism 
is gluon 'fusion', g + g --+ h via a quark loop (mainly the top, since it's the heaviest, 

* There are also 'four-point' couplings hh-,. ZZ, hh-,. WW, and hh---> hh (3). 
t In Equation 10.121, mq involves onlyµ, not µ.f),., so it is sensitive to the shape of the potential, 

not just the vacuum expectation value of ¢,1• 
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and hence has the strongest coupling to the Higgs): 

but several other modes are expected to contribute, notably W/Z-bremsstrahlung: 

and W / Z fusion: 

(direct quark fusion, q + q--+ h, does not contribute much in the MSM, because 
the only readily available quarks are u's and d's, which, since they are very light, 
couple weakly to the h). 

How do we expect the Higgs to decay? Because Higgs couplings are proportional 
to mass (or mass squared, in the case of the Wand Z), heavy daughters are favored, 
if they are kinematically allowed. The branching ratios depend a lot on the mass 
of the Higgs (see Figure 12.1). If mh is less than about 140 GeV/c2 , the dominant 
mode is h --+ bb, but above that h --+ w+ w- takes over (with a virtual W up to 
160 GeV/c2 and real W's from then on); h--+ ZZ is close behind (especially above 
180 GeV/c2), and in the unlikely event that the Higgs is heavy enough to make two 
tops (mh > 360 GeV/c2) h--+ tt assumes third place. More exotic decays are also 
possible, such as a photon or gluon pair: 

--- < -,- 0 
h~ ~ 

These decay rates have all been calculated in great detail [6] (you can do some of 
them yourself - see Problems 12.2 and 12.3). 
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Fig. 12.l Branching ratios for Higgs decay, as functions 
of the Higgs mass (in GeV/c2). (Source: Gunion, J. F. eta/. 
(1990) The Higgs Hunter's Guide, Addison-Wesley, Redwood 
City, CA.) 

12. 2 Grand Unification 1405 

400 500 

As soon as the Higgs mass is established, one will be able to draw a vertical 
line at the appropriate point in Figure 12.1 and read off the branching ratios. If 
the measurements disagree (as they probably will), then the Higgs sector is more 
interesting than the MSM contemplates. And of course if no Higgs particle is 
found at all, then we have a revolution on our hands. 

12.2 
Grand Unification 

With the success of electroweak unification, in the 1960s, the logical next step 
was to include the strong interactions, in a 'Grand Unified Theory' (GUT) that 
would identify all three forces as different manifestations of a single underlying 
interaction. Of course, the strong forces are enormously more powerful than the 
others; but the same could be said of electromagnetic versus weak forces, and 
we now understand that disparity as an artifact of the huge mass of the W and 
Z - their intrinsic strengths are quite similar, but it is only at energies well above 
M wc2 that the unity becomes manifest. 

Moreover, as we saw in Sections 7.9 and 8.6, the coupling 'constants' themselves 
are functions of energy - the strong and weak couplings go down, while the 
electromagnetic coupling goes up. It is irresistible to suppose that they coalesce at 
some point (Figure 12.2); above the grand unification scale ("'=<1016 GeV) there is just 
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Fig. 12.2 Convergence of the coupling constants at the GUT 
scale (a) in the Minimal Standard Model, (b) with super-
symmetry. The horizontal axis is energy, in GeV. 

one universal coupling constant, and the strong, electromagnetic, and weak forces 
are identical in strength.* 

The first (and simplest) GUT was introduced by Georgi and Glashow in 1974 
[7]. It led to a spectacular prediction: the proton is unstable, decaying (for example) 
into a positron and a pion 

(12.3) 

The lifetime is reassuringly long - at least 1030 years, which is 1020 times the 
age of the universe - though (since we have easy access to a lot of protons) not 
beyond the range of measurement. In 30 years of increasingly precise experiments, 
however, proton decay has never been observed [8]. The current lower bound is 

Tproton > 1033 years (12.4) 

(which probably vetoes the Georgi-Glashow model). More elaborate GUTs have 
been proposed, but almost all of them require proton decay at some level. 

Although there is no direct experimental evidence in support of grand unification, 
belief in it is an uncontested article of faith among theorists. In a way, the 'natural' 
evolution of particle physics was rudely interrupted by the failure to detect proton 
decay. Had proton decay been discovered in - say - 1985, one can easily imagine 
that enormous efforts, theoretical and experimental, would have been devoted to 
fleshing out the details of grand unification, just as the previous two decades 
had fleshed out the Standard Model. But that's not what happened, and today 
grand unification simmers, half-cooked, on a back burner.I What are its essential 
features, and why should we take it seriously? [9]. 

* Awkwardly, it is now clear that they do not (quite) meet at a single point, in the MSM; one of 
the attractions of supersymmetry is that it makes perfect convergence possible. 

t Testable predictions of grand unification, at the relatively low energies presently accessible, are 
few and far between. Proton decay, if it exists, is the best probe available, but we are fast ap· 
proaching the practical limit on proton lifetime measurements (see Problem 12.4). 



12.2 Grand Unification 1407 
Table 12.l Fermion States in the SU(S) GUT 

Quintet 

Decuplet 

Grand unification contemplates an overarching symmetry group (SU(S), in the 
Glashow-Georgi version) that contains as subgroups the (color) SU(3) and SU(2)1 
® U(l) symmetries of the Standard Model. The fundamental fermions (quarks 
and leptons) are assigned to representations of this group, much as the Eightfold 
Way assigned baryons and mesons to (octet, nonet, and decuplet) representations 
of (flavor) SU(3). The first generation comprises 15 particle states: u and d, each 
in three colors and two chiralities (land R), e (Land R), and v, (L only*). In the 
SU(S) GUT, theyconstituteaquintetandadecuplef1 (Table 12.1); in the absence of 
symmetry-breaking (presumably by the Higgs mechanism), the states in each mul­
tiplet share the same mass and interact identically. (The same goes, of course, for the 
other two generations.) There are 24 mediators=! (Table 12.2): the 8 gluons, the pho­
ton, w+, w-, and Z, and 12 new ones - the X (charge ±4/3, 3 colors, hence 6 in all) 
and the Y (charge ±1/3, 3 colors, for another 6). They couple leptons to (anti)quarks,I 
and hence are known as leptoquarks. For instance, d ➔ e + X and u ➔ e + Y: 

Table 12.2 Gauge Bosons in the SU(S) GUT 

Charge Mass 

8 gluons 0 0 
1 photon 0 0 
3 W±,Z 1, -1, 0 ~102 GeV/c2 

6X 4/3, -4/3 ~1016 GeV/c2 

6¥ 1/3, -1/3 ~1016 GeV/c2 

* In 1974, it was assumed that the neutrino is massless, and the fact that there was no natural 
place for v R was taken as a virtue of the theory. For massive neutrinos v R must be assigned, 
awkwardly, to a singlet representation of SU(S) - or, in the case of Majorana neutrinos, the 
Higgs sector must be expanded. 

"f The fact that they don't all fit into a single irreducible representation is an unattractive feature 
of the SU(S) model; the SO(10) GUT assigns all 15, plus VR, to a 16-dimensional representation. 

I In general, SU(n) has n2 - 1 mediators (eight gluons for color SU(3), three intermediate vector 
bosons for SU(2)L); U(n) has n (hence one photon). 

I Notice that it is the anti-d that lies in the same multiplet as the electron. 
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(p) 

Fig. 12.3 Proton decay in the SU(5) GUT. 

They also couple quarks to antiquarks (in this context, they are sometimes called 
diquarks), as in u-+ u + X and d-+ u + Y:* 

This larger symmetry is badly broken, obviously (quarks and leptons do not have 
the same mass, and the strong interactions are - well - stronger than the others). 
Just as electroweak symmetry becomes apparent at energies well above the W/ Z 
mass, GUT symmetry prevails at energies above the (huge) grand unification scale. 
That's why it is so difficult to test grand unification in the laboratory - even though 
its implications are, in principle, dramatic. The leptoquark couplings allow for 
nonconservation oflepton and baryon number, and hence license the decay of the 
proton, via diagrams such those in Figure (12.3). But because these mediators are 
so heavy (presumably in the neighborhood of the GUT scale: Mx ~ My ~ 1016 

GeV/c2), the decay rate is extremely small (Problem 12.5). 
Apart from the largely aesthetic attraction of unifying the fundamental forces 

of particle physics, grand unification purports to 'explain' the relation between 
quark and lepton charges (and beyond that the quantization of charge itself). 
For technical reasons the sum of the charges in a multiplet must be zero, and 
putting quarks and leptons into the same multiplet forces (in the case of the SU(5) 
quintet) 

(12.5) 

* Ostensibly these reactions do not conserve color, but remember that the 'cross product' of two 
color states carries a single color (Equation 10.84), and it is such a combination that is implied 
here. 
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Our world would be a radically different place if the electron and proton did not 
have precisely opposite charge, but short of grand unification there is no reason of 
principle why this had to be so.* 

12.3 
Matter/Antimatter Asymmetry 

Everyone assumes that the Big Bang created matter and antimatter in exactly equal 
amounts. If this is the case, how come we are surrounded by electrons, protons, 
and neutrons, with no positrons, antiprotons, or antineutrons in sight? Of course, 
if a positron (for example) does show its face, it doesn't last long: as soon as it 
encounters an electron, they annihilate. But this doesn't explain the preponderance 
of leftover electrons. Perhaps it's a local phenomenon - our matter-dominated 
corner of the universe is balanced by an antimatter region somewhere out there. 
However, there is no evidence for this - on the contrary, astrophysical observations 
indicate that the known universe, at least, is all matter (if there were an antimatter 
zone, the border would be an extremely violent place, and it is hard to imagine that 
the cosmic microwave background would show no sign of the disturbance) [12]. 
Alternatively, some process must have favored matter over antimatter in the course 
of cosmic evolution. What sort of mechanism might do the job? 

In 1967, Sakharov [13] identified the necessary ingredients. Obviously, there 
must be an interaction that violates conservation of baryon and lepton number 
(something grand unification could supply). There must have been a period when 
the universe was substantially out of thermal equilibrium (otherwise any reaction 
i ➔ f would go just as often the other way,f ➔ i, and there would be no net change 
in baryon number). And, crucially, there must be CP violation - some reaction 
i ➔ f whose rate is different from its CP-conjugate, i ➔ J (otherwise, again, there 
would be no net change in baryon number). Conveniently, CP violation had recently 
been discovered by Cronin and Fitch in the K° /J<!l system. 

To this day, the underlying nature of CP violation is not well understood. Parity 
violation was very easy to incorporate into the theory of weak interactions: one 
simply replaced vector couplings, yµ, by vector/axial vector couplings, y 1" (1 - y 5) 

(Section 9.1). But the only known source of CP violation is the residual phase 
8 in the CKM matrix (Equation 9.87), and it is hardly obvious why this breaks 
CP invariance. Consider a process i ➔ f, and the CP-reversed process i ➔ J (for 
instance, if i includes a left-handed electron, i includes a right-handed positron); 
CP violation means that the rate for I ➔ J is not the same as for i ➔ f (for 

* A more problematic implication of grand 
unification is the existence of super heavy 't 
Hooft-Polyakov magnetic monopoles (10), 
which should be present in large numbers 
(left over from the Big Bang), but have never 
been detected in the laboratory (well ... 

maybe once (11)). Inflationary cosmology can 
account for a dilution in the number, but 
the prediction of (unobserved) monopoles 
in grand unification - and for that matter in 
other theories as well - remains a troubling 
problem. 
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Fig. 12.4 Two diagrams for s0 ➔ K+ + ,r-. The second is a 'penguin' (Problem 4.40). 

example, B0 -+ K+ + re- is 13% more common than B0 -+ K- + re+). Now, the 
amplitude, .,,/t, is a complex number, and ordinarily it is the same for i -+ J as for 
i -+ f - except that any CKM element gets conjugated. Thus 

(12.6) 

where 0 is the 'conjugating' phase and </J the 'ordinary' phase.* On the other hand, 
reaction rates are proportional to l.,,/tl 2 , so there is no CP violation, even though 
the amplitudes themselves are different. 

But suppose that the process (i-+ f) can proceed by two different routes (for 
example, B0 can go to K+ + re- in several distinct ways - see Figure 12.4). Then 
.,,/t = .,,/t 1 + .,,/t z, with 

(12.7) 

and Jft = J/t1 + Jftz, with 

(12.8) 

It follows (Problem 12.6) that 

(12.9) 

In this case the rates are not the same, and CP is violated. Notice that there has 
to be a conjugating phase (from the CKM matrix) as well as a nonconjugating 
phase - and these have to be different for the two contributing routes. 

From the experiments, we know that CP violation occurs in the weak interactions 
of quarks, and is attributable to the phase factor in the CKM matrixJ Unfortunately, 
this is nowhere near enough to account for the matter dominance of the universe [15), 

* In the literature, they are sometimes called 'weak' and 'strong' phases, respectively. The distinc­
tion is subtle, but in practice 0 comes exclusively from the CKM matrix element, and ,P typically 
involves strong interaction effects (14). 

t In fact, all such CP violating effects are proportional to the height of the 'unitarity triangle' 
(Problem 9.33). 
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so one is forced to speculate about other mechanisms of CP violation. With 
massive neutrinos and the leptonic analog to the CKM matrix (Section 11.5), 
the same phenomenon should occur in the lepton sector, where it would reveal 
itself, for example, in unequal probabilities for v, --+ \!µ and v,--+ vµ- This has 
not been observed (yet), but it is conceivable that it would provide a mechanism 
(sometimes called leptogenesis*) for the observed matter/antimatter asymmetry. 
Another possibility is CP violation in the strong interactions (in this case the 
'smoking gun' would be a nonzero electric dipole moment for the neutron). CP 
violation has never been observed in strong processes, but there does not seem to 
be any fundamental theoretical prohibition:;· At this point, the matter/antimatter 
asymmetry of the universe remains an uncompleted puzzle; the essential missing 
piece is the nature of the CP violation responsible. It is far from clear how this 
story will resolve itself. 

12.4 
Supersymmetry, Strings, Extra Dimensions 

12.4. l 

Supersymmetry 

The classic symmetries of quantum mechanics involve different states of the same 
system. Rotational invariance, for instance, requires that the theory be unchanged 
when the state ,fr is replaced by its rotated version U(O),fr (Equation 4.27) - or, more 
precisely, the Lagrangian is unchanged (in first order)+ when the wave function 
is incremented by the infinitesimal amount S,fr = (-i/n)[SO • S],fr (Equation 4.28). 
Particle physics long ago generalized the idea to 'internal symmetries' involving 
closely related particles (flavor multiplets, for example). In 1974, Wess and Zumino 
[17] introduced a more radical symmetry that stirred together fermions and bosons. 
For example, a scalar field ¢ could mix with a spinor field ,fr 

(12.10) 

where E is an infinitesimal spinor describing the transformation (analogous to 8() 

for rotations), and E = 1c'i'y 0 is its adjoint. What if we insist that the theory be 

* The terminology is not entirely consistent: baryogenesis is the generic word for the origin of mat­
ter dominance, so leptogenesis is actually one possible mechanism for baryogenesis. 

t Indeed, it is something of a mystery why strong CP violation does not occur. One possible ex­
planation was suggested by Peccei and Quinn (16) in 1977: a neutral spin-0 particle (the axion) 
couples to the quarks in such a way as to cancel dynamically any strong CP violation. Axions 
have not been observed, but they remain among the viable candidates for dark matter. 

+ It is generally simpler to work with infinitesimal transformations, and there is no loss of gener­
ality since a finite transformation can be built up as a sequence of infinitesimal ones (Problem 
12.7). 
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invariant under such a transformation? It is not hard to construct a Lagrangian 
with this property; the combined free Klein-Gordon and Dirac Lagrangians are 
invariant 

(12.11) 

as long as the boson ¢ and its fermion partner ,fl carry the same mass (Problem 
12.8). A similar game can be played joining a particle of spin 1/2 to a particle of 
spin 1 - and in general pairing particles whose spins differ by 1/2. Invariance of 
this kind, linking fermions and bosons, is called 'supersymmetry'. 

Over the past 30 years an enormous amount of work has been done on su­
persymmetry [18], and I think it is fair to say that most particle physicists are 
convinced (without as yet any supporting experimental evidence) that it is a fun­
damental symmetry of nature. Supersymmetry carries the stupendous implication 
that every fermion has a bosonic partner (identified by putting an 's' in front of the 
name - thus 'squark', 'slepton', 'selectron', 'sneutrino', etc.) and every boson has 
a fermionic partner (identified by putting an 'ino' after the name - thus 'photino', 
'gluino', 'wino', 'higgsino', etc.). Where are all these particles? If supersymmetry 
were unbroken, they would share the masses of their 'ordinary' twins - the photino 
would be a massless particle of spin 1/2, and the selectron a spin-0 particle with 
a mass of 0.511 MeV/c2 • This is nonsense, obviously - no such particles exist. 
So the symmetry must be badly broken (perhaps spontaneously, but there are 
other possibilities, especially if gravity is brought into the picture). Presumably 
the supersymmetric particles are much heavier - too heavy to be produced by any 
existing machine, though there are strong indications that at least some of them 
should be accessible to the LH C. 

Hmm .... Why should we take such an outlandish scheme seriously? Super­
symmetry has the potential to solve several thorny problems, among them the 
following: 

1. By introducing a number of new particles, it modifies the 
energy dependence of the three running coupling constants 
(see Equations 7.191 and 8.94), making possible their perfect 
convergence at the GUT scale (Figure 12.2). 

2. It offers a 'natural' solution to the so-called hierarchy 
problem. The Higgs mass is renormalized by various loop 
diagrams (Section 6.3.3), which drive it way out of acceptable 
range unless there are magical cancellations ('fine tuning'). 
But loop corrections are of opposite sign for bosons and 
fermions, so supersymmetry, by pairing particles with 
'sparticles', makes the cancellation exact and automatic. 

3. In most models, the lightest supersymmetric particle is 
colorless, neutral, and stable, making it an attractive 
candidate for Dark Matter (Section 12.5). 
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Fig. 12.5 Unification of the four interactions. 

Moreover, attempts to formulate a quantum theory of gravity seem to require 
supersymmetry. On the other hand, the minimal supersymmetric models involve 
at least 124 independent parameters [19] - five times the (already embarrassing) 
number in the Standard Model - and they do not easily accommodate neutrino 
masses. If supersymmetric particles are discovered* at the LHC, it will be a 
spectacular triumph of inspired audacity. But I wouldn't bet your last dollar on it. 

12.4.2 
Strings 

For decades, a fundamental challenge in theoretical physics has been the for­
mulation of a quantum theory of gravity - the quantized version of General 
Relativity (analogous to QED, the quantized version of electrodynamics). Gener­
ations of physicists have tried, and failed - for point masses the theory seems 
to be incorrigibly nonrenormalizable. While this is embarrassing, it has not, so 
far, been catastrophic for particle physics, where gravity is much too feeble to 
play a significant role. But at extremely close range (which is to say, at very high 
energy - specifically, the Planck scale: 1019 GeV) quantum gravity is bound to 
come into the picture. Moreover, the old dream of unifying the forces of nature 
leads inexorably to a putative 'theory of everything' that would include gravity along 
with the strong, electromagnetic, and weak interactions (Figure 12.5). 

String theory proposes to solve these problems (and more) [22]. In string the­
ory the basic units of matter are not (zero-dimensional) particles, but rather 
one-dimensional 'strings' (or higher-dimensional 'branes'), of which 'particles' 
are various vibrational modes. The theory underwent an extraordinary evolution 
between the 1970s, when a few lonely visionaries took up the cause, and 2000, by 
which time it was well established as the dominant paradigm. Early versions con­
tained only bosons, and consistency required 25 space dimensions. This seemed 
a trifle extravagant, but it was possible to imagine that 22 of them are 'curled up' 

* There was a flurry of excitement in 2001, when discrepancies between the measured and calcu­
lated values of the anomalous magnetic moment of the muon seemed to suggest a contribution 
from supersyrnmetric pa1ticles (20). But it turned out that the calculations were in error - when 
a sign mistake in one term was corrected the disagreement largely evaporated (21). 
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(compactified), and hence irrelevant on the macroscopic scale.* Fermions were later 
incorporated via supersymmetry (hence 'superstrings') and the number of space 
dimensions dropped to 9 or 10. Meanwhile, it was realized that the theory auto­
matically includes the graviton, making it a natural candidate for quantum gravity. 

In the early days, one of the great attractions of superstring theory was that it 
appeared to be uniquely determined - we live, it seemed, in the only mathematically 
possible world. Physics would no longer be a matter of discovering contingent laws 
by experimental observation, but of working out the inescapable implications of 
the one allowed theory. Sadly, this particular hope has turned inside out, and 
'M-theory' now suggests that there is in fact a whole 'landscape' of permissible 
models (10500 of them, by some estimates), and no way (short of the anthropic 
principle"i") to choose the correct one. 

At this point an entire generation of theoretical physicists is way out on a limb. 
Superstring theory still holds out the best hope for ultimate unification of all four 
interactions, and it is probably the most promising candidate for quantum gravity. 
But it has proved diabolically difficult to extract verifiable (or falsifiable) predictions 
about the low-energy world we inhabit. The discovery of supersymmetric particles, 
or indications of extra dimensions [23], would lend some support, but anything 
approaching a confirmation of superstring theory seems, at this point, a very long 
way off [24]. 

12.5 
Dark Matter/Dark Energy 

Persuasive astronomical evidence now indicates that the matter we know about -
described by the Standard Model - represents a measly 5% of the mass/energy 
content of the universe. The rest is Dark Matter (about 20%) and Dark Energy 
(75%). The implications for particle physics are humbling: we have only seen the 
tip of the iceberg. What is all this other stuff, and how has it managed to elude 
us? 

12.5.1 
Dark Matter 

In 1933, Fritz Zwicky measured the velocities of galaxies in the Coma cluster (from 
the Doppler shift of their atomic spectra), and used this information to determine 

* The idea of extra dimensions was not new. T. 
Kaluza first introduced the notion in 1919, in 
an effort to unify electrodynamics and grav­
ity, and in 1926 0. Klein suggested compact­
ification as a device for 'hiding' extra dimen­
sions. (If you want to specify the location of 
an ant on a clothes line, you would probably 
just report its distance z from one end - only 

for much smaller bugs would the azimuthal 
position ,P be of interest or importance.) 

"i" The anthropic principle holds that the laws 
and parameters of physics are what they are 
'because' (if that's the right word) if they were 
different, human life would be impossible 
and we wouldn't be here to discover them. 
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Fig. 12.6 Rotation curve for the galaxy NGC l 560. The solid 
line represents the curve to be expected on the basis of all 
observed matter (stars plus gas). [Source: A. H. Broeils As­
tron. and Astrophys. 256 19 (1992) .] 
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the mass of the cluster. The result was surprising: 400 times larger than the visible 
stars in the cluster. Evidently the galaxies contain a lot of matter that does not 
radiate (and is called, therefore, dark matter) [25]. More recently, rotation curves 
have been measured for a number of galaxies (including our own). These plot the 
(tangential) velocity v as a function of distance r from the galactic center. Newton's 
law of universal gravitation says that for stars well away from the core v should 
decrease as 1/ Jr (Problem 12.10); instead, it typically increases (Figure 12.6). This 
suggests that the dark matter permeates a spherical 'halo' extending well outside 
the galactic nucleus.* Today it is even possible to map out the distribution of dark 
matter, using gravitational lensing (the bending oflight as it passes through). 

So far, though, our only evidence for dark matter comes from its large-scale 
gravitational effects, and it is natural to wonder whether perhaps Newton's laws 
(and also General Relativity) are incorrect on some scale, and there is actually no 
dark matter out there [26]. Short of such a radical alternative, the question remains: 
what is this stuff? Could it be ordinary cold matter - sand and gravel, perhaps, 
the remnants of extinct stars or dead planets. Almost certainly not. Cosmological 
models that are convincingly corroborated by the observed abundances of light 
elements do not allow for anywhere near enough baryons to account for dark 
matter [27]. What about neutrinos? Probably not - even though there are enormous 
numbers of them, they are much too light to contribute more than a small fraction 
of the observed dark matter.t Evidently we are looking for something much more 

* The dark matter discussed here is not to be confused with the 'missing mass' required to 'close' 
the universe. We will talk about that in the next section. 

l' Moreover, neutrinos would constitute 'hot' dark matter - they are by nature highly relativistic, 
and it is hard to imagine that they could be confined to galactic halos (or to the primordial ag­
gregates from which galaxies emerged). 
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massive than neutrinos, but (like neutrinos) weakly interacting; Bahcall called 
them WIMPs (Weakly Interacting Massive Particles).* Their mass is tentatively 
estimated to lie in the range 100-200 GeV / c2; they are certainly neutral (otherwise 
they would radiate) and stable (left over from the Big Bang). No such particle, 
of course, is known to the Standard Model. But supersymmetry does suggest a 
candidate: the lightest supersymmetric particle (probably a mixture of the photino 
and the higgsino - or possibly the Zino - called the 'neutralino' ... obviously, this 
terminology is getting out of hand) is presumably absolutely stable. Large numbers 
might be left over from the Big Bang. Another possibility is the axion - the 
hypothetical particle introduced to account for the absence of strong CP violation. 
But surely the most exciting possibility would be something entirely new and 
unanticipated. 

How is all this going to be decided? Since the late 1980s a number of WIMP 
searches have been under way. They are based on the realization that the solar 
system orbits around the galactic center at 220 km s-1,t and the earth orbits 
the sun at 30 km s-1 , so we face a 'dark matter headwind' - 235 km s-1 in 
(northern) summer and 205 km s-1 in winter. (The seasonal variation is a lucky 
thing, for it should enable experimentalists to filter the signal out of a much 
larger - but constant - background due to natural radioactivity and cosmic rays.) 
Several different detection mechanisms have been tried [27], but it is only recently 
that their greatly improved sensitivity has approached the requisite level. There 
have already been some (questionable) events [28], and convincing evidence may 
well come in the next few years. Meanwhile, the LHC should be in a position to 
create dark matter, and at that point the remaining task will be to demonstrate that 
the three approaches (galactic, terrestrial, and accelerator) are all talking about the 
same particle [29]. 

12.5.2 
Dark Energy 

Before 1998, it was taken for granted that the expansion of the universe is slowing 
down, due to the gravitational attraction of all matter; the only question was 
whether the energy density of the universe is great enough to reverse the expansion 
completely, leading to a 'big crunch' (see Problem 12.10). Visible matter and dark 
matter together amount to about a third of the 'critical density', so for those 
who believed the expansion 'should' reverse:/ there was a second 'missing mass' 
paradox, unrelated to the dark matter problem: where is all that 'extra' energy? 

* In principle, dark matter might interact only gravitationally, but as Cline (27) remarks coyly, 'If 
that is really the case, physicists have no hope of ever detecting it' (that is, as individual parti­
cles). For this reason, at least, it is generally assumed that dark matter participates in the weak 
interaction. 

i" The dark matter halo (since it is only very weakly coupled to matter) does not (one assumes) 
share in the galactic rotation. 

+ The widely accepted inflationary cosmology requires that the total density of the universe have 
exactly the critical value. 
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This problem was turned inside out by the astonishing discovery that the 

expansion of the universe is not slowing down at all, but rather accelerating. 
Evidently Newtonian gravity (universal attraction) is not right on the largest 
scale - either that or there is some new force that is repulsive in nature and 
overwhelms gravity in this case. In General Relativity, there is a (sort of) natural 
place for an extra term that could account for the phenomenon: the cosmological 
constant, A. Einstein's original theory (with no cosmological constant) implied 
that the universe expands - something he regarded as absurd. He was able to 
rescue the theory by introducing an ad hoc source term, whose strength (A) 
could be adjusted to stabilize the universe. (Mathematically, the cosmological 
constant introduces a kind of primordial repulsion, or negative pressure, that 
balances the universal attraction on a cosmic scale.) Later, when Hubble discov­
ered that the universe is in fact expanding, a chagrined Einstein disowned the 
cosmological constant, calling it 'my greatest blunder'. But when the accelerated 
expansion was discovered, the obvious remedy was to resurrect the cosmological 
constant [30]. 

There is, however, a subtle distinction between the original notion of a cosmo­
logical constant and its contemporary reincarnation. Einstein conceived of A as an 
unexplained fundamental constant of nature - analogous to Planck's constant or 
Boltzmann's constant; there were two distinct sources of gravitation: matter (actu­
ally, the stress tensor, incorporating energy, momentum, and stress of all forms), 
and A. In the modern version A is taken to have a dynamical origin, in the form of 
dark energy associated with the vacuum expectation value of some quantum field. 
It is, in effect, a constant term in the stress tensor, pervading all space uniformly,* 
that we choose to peel off and treat separately. But what the nature of this field (or 
fields) might be is at this stage a mystery. Worse than a mystery, because attempts 
to construct model theories tend to yield values of A that are 120 orders of magnitude 
too great![31] Obviously, we have a lot to learn. 

12.6 
Conclusion 

Most particle physicists anticipate that the LHC will produce Higgs bosons. Many 
believe it will create the first supersymmetric particles. Some think it will yield 
evidence of extra dimensions. Perhaps. But there is another possibility that very few 
take seriously: substructure - the idea that quarks and leptons (and maybe also the 
mediators) are composite particles, made of even more elementary constituents. 
This would change everything, just as the quark model changed everything 40 
years ago, and Rutherford's atomic model changed everything a century ago. In 
any event, we almost certainly stand at the threshold of a fundamental revolution 
in elementary particle physics [32]. 

* This is in contrast to dark matter, which is concentrated in galactic halos. 
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12.1 (a) Use Equation 10.132 to determine the mass of the W, in terms of v = µ/). and 
q = gw✓nc/4n. Thus, confirm Equation (12.1) 

(b) Use Problem 10.21 and Equation 10.130 to determine the vertex factor for the 
coupling of the Higgs to a quark or lepton. 

(c) Use Equation 10.136 to determine the vertex factors for the couplings hWW, hZZ, 
and hhh. 

12.2 (a) Calculate the decay rate for h -+ f + J (where f is a quark or lepton), in the MSM. 

(b)If mh = 120 GeV/c2 , what are the branching ratios f(bb)/f(cc) and f(bb)/f(r+r-)? 
[Include a factor of 3, for color, in the case of quarks.] 

12.3 (a) Calculate the decay rates for h-+ w+ + w- and h-+ Z + Z, in the MSM. 

(b)lf m1, = 120 GeV/c2, what is the ratio qw+w-)/f(ZZ)? 
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12.4 Estimate the longest proton lifetime that could be measured in a realistic laboratory 
experiment. [Hint: How many protons could you sample, in a practical experiment 
(Super-K, for instance)? How long would you (or - more to the point - your funding 
agency) be prepared to wait?] 

12.5 Estimate the lifetime of the proton, in the Glashow/Georgi model. 
[ Hint: Don't try to calculate anything here - you don't have anywhere near enough infor­
mation. The real question is how the lifetime formula depends on the various masses. 
Study other decays - the muon, the neutron, the pion - and exploit dimensional 
analysis, if it helps.] 

12.6 Derive Equation (12.9), from Equations (12.7) and (12.8) 
12.7 Consider vectors in the xy plane: 

(a) Show that a (counterclockwise) rotation 0 carries a vector a= (ax, ay) into a' = (a' x, 
a: y) given by 

a~= cos 0 ax - sin0 ay, a~= sin0 ax+ cos0 ay 

(b) Show that the dot product of two vectors is invariant under such a rotation: a' - b' 
=a -b. 

(c) Now consider an infinitesimal rotation d0. Expand the transformation rule in (a) to 
first order in d0. 

(d) Show that the dot product is invariant (to first order) under infinitesimal rotations. 
[Of course, if you already know it's invariant under finite transformations, the proof 
for infinitesimal transformations is redundant. The point is that the infinitesimal 
case is typically much simpler.] 

12.8 The purpose of this problem is to prove that the action described by the Lagrangian in 
Eq. (12.11) is invariant under the supersymmetry transformations in Eq. (12.10). 

(a) Show that 8¢,* = if E and lf = (i/nc)fy"(8,,¢,*). 
(b)Consider first the scalar 'kinetic' term, £ 1 = ½(8"¢*)(8,,¢); show that 8£1 = 

(8"¢)(8,,. t)E + lW</J*)(8,, 1/1)-
(cJ Next treat the spinor 'kinetic' term, £ 2 = inc ,fy"(8,, i/J). Show that 8£2 = -8£1 + 

8,,Q", where Q" = ,f(8"¢,)E + ½fo"'[<f,*(8,1/1) - (8,¢,*)1/1], where er"' is defined in 
Eq. 7.69. 

(d)Now examine the mass terms, £ 3 = -½(mc/n)2¢,*¢, and £ 4 = -mc2 ,fijJ. Show that 
8£3 = -(mc/n)2(,iiE¢, + ¢,*li/1) and 8£4 = i(mc/n)[-ly"(8,,.¢,*)i/J + ,fy"E(8,,.¢)]. 

(e) Finally, invoke the Dirac equation, which follows from the Euler-Lagrange equations 
(Eq. 10.15), to show that 8£4 = -8£3 + 8,,.R", where R" = i(mc/n)[-ly"<f,*1/1 + 
lfry"E</J]. 

Although the full Lagrangian (2' = 2'1 + 2'2 + 2'3 + 2'4) is not invariant, it changes 
only by a total divergence, 82' = 8,,.(Q" + R"), so the action and the equations of 
motion are invariant. Notice, however, that the scalar and the spinor have to carry the 
same mass for this to work. 

12.9 (a) From c, Ii, and G (Newton's constant of universal gravitation), construct a quantity 
lp with the dimensions of length, a quantity tp with the dimensions of time, and a 
quantity mp with the dimensions of mass. These are known as the Planck length, the 
Planck time, and the Planck mass, respectively, after Max Planck, who first published 
them in 1899 - the year before the eponymous constant itself[33]. Work out the actual 
numbers, in meters, seconds, and kilograms. Also calculate the Planck energy (Ep = 
mpc2 ), in GeV. [These quantities set the scale at which quantum gravity is expected 
to be relevant.] 

(b) What is the gravitational analog to the fine structure constant? Find the actual 
number, using (i) the mass of the electron, (ii) the Planck mass. 

12.10 Find the velocity v as a function of orbital radius r, for an object in a circular trajectory 
around a fixed center of mass M (for example, a planet about the sun). 
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12.11 A quick naive way to calculate the critical density is to picture the universe as a uniform 

sphere of radius R, and set the escape velocity for a particle at the surface equal to the 
expansion velocity (from Hubble's law), v =HR.On this basis, show that 

3H2 

Pc= 8nG 

Look up the value of Hubble's constant (H), and determine the critical density, in 
kg/m-3• 





Appendix A 

The Dirac Delta Function 

Introduction to the Dirac delta fanction 

The Dirac delta function, 8(x), is an infinitely high, infinitesimally narrow spike at the origin, with area 1 (Figure A.1). Specifically 
8(x) = { O, 

00, 

if X 7" 0}
ifx = 0 and (A.1) 

Technically, it's not a function at all, since its value is not finite at x = 0. In the mathematical literature it is known as a generalized function, or distribution. It is, if you like, the limit of a sequence offunctions, such as rectangles of height n and width 1/n, or isosceles triangles of height n and base 2/n (Figure A.2), or any other shape you might wish to use. If f (x) is some 'ordinary' function (that is, not another delta function - in fact, just to be on the safe side let's say thatf (x) is continuous) then the product f (x)8(x) is zero everywhere except at x = 0. It follows that 
f(x)8(x) = f(0)8(x) (A.2) 

(This is the most important fact about the delta function, so make sure you understand why it is true. The point is that since the product is zero anyway except at x = 0, we may as well replace f (x) by the value it assumes at the origin.) In particular 
1-:f(x)8(x) dx = f(0) 1-: 8(x) dx = f(0) (A.3) 

Under an integral, the delta function 'picks out' the value of f(x) at x = 0. (Here and below, the integral need not run from -oo to +oo; it is sufficient that the domain extends across the delta function, and -E to +E would do just as well.) 

1423 

1_: 8(x) dx = 1 



4241 A The Dirac Delta Function 

o(X) 

X 

Fig. A.l The Dirac delta function (you must imagine, how­
ever, that the spike is infinitely high and infinitesimally nar­
row). 

Of course, we can move the spike from x = 0 to some other point, x = a: 

8(x-a) = { 
0, 

00, 

if X ," a} 
ifx = a 

and 1_: 8(x - a) dx = 1 

(see Figure A.3). Equation A.2 generalizes to 

f(x)8(x - a) = f(a)8(x - a) 

and Equation A.3 becomes 

1_:f(x)8(x - a) dx = J (a) 

(A.4) 

(A.5) 

(A.6) 

How should we interpret the expression 8(kx), if k is some nonzero (real) 
number? Suppose we multiply by an 'ordinary' functionf(x) and integrate: 

We may change variables, letting y = kx, so that x = y/k, and dx = 1/k dy. If k is 
positive, the integration still runs from -oo to +oo, but if k is negative, then x = oo 

2 ---
R2(X) 

I 

R1(X) 

1/4 1/2 X 1/2 I X 

Fig. A.2 Two sequences of functions whose limit is li(x). 
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o(x-a) 

a X 

Fig. A.3 'Graph' of S(x - a). 

implies y = -oo, and vice versa, so the limits are reversed - restoring the "proper" 
order costs a minus sign. Thus 

100 100 
d -oo f(x)8(kx) dx = ± _

00
f(y/k)8(y) [ 

1 1 
= ±p(O) = lkif(O) (A.7) 

(The lower signs apply when k is negative, and we account for this neatly by putting 
absolute value bars around the k, as indicated.) In this context, then, 8(kx) serves 
the same purpose as (1/lkl)8(x): 

100 
f(x)8(kx) dx = 100 

f(x) [ ~ 8(x)] dx 
-oo -oo I I 

(A.8) 

Because this holds for any f(x), it follows that the delta function expressions are 
equal:* 

(A.9) 

What we have just analyzed is really a special case of the general form 8 (g(x)), 
where g(x) is some function of x. In general, 8(g(x)) has spikes at the zeros, x1, x2, 

x3, ... , of g(x): 

g(x;) = 0 (i = 1, 2, 3, ... , n) 

* You ought to ponder that last step for a mo­
ment. Ordinarily, the equality of two integrals 
certainly does not imply equality of the inte­
grands. The crucial point here is that the inte­
grals are equal for any f(x). Suppose the delta 
function expressions 8(kx) and (1/lkl)8(x) ac­
tually differed, say, in the neighborhood of the 
point x = 17. Then I would pick a function 
f(x) that was sharply peaked about x = 17, 

and the integrals would not be equal. Since, 
on the contrary, the integrals must be equal, 
it follows that the delta function expressions 
are themselves equal. Well, technically they 
might still differ at isolated points, provided 
these contribute nothing to the integral, but 
we can silence this objection by noting that 
both sides of Equation A. 9 are clearly zero ex­
cept at x = 0. 
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In the neighborhood of the ith zero, we may expand g(x) as a Taylor series: 

g(x) = g(x;) + (x - x;)g'(x;) + ½(x - xi)2g"(x;) + ... ~ (x- x;)g'(x;) (A.11) 

In view of Equation A.9, the spike at x; has the form 

1 
8(g(x)) = lg'(x;)l 8(x - x;) (x~x;) (A.12) 

The factor lg' (x;) 1-1 tells us the 'strength' of the delta function at x;. Putting this 
together with the spikes at the other zeros, we conclude that 

n l 
8(g(x)) = '°' --8(x - x;) 

-S,lg'(x;)I 
(A.13) 

Thus, any expression of the form 8 (g(x)) can be reduced to a sum of simple delta 
functions.* 

Example A.1 Simplify the expression 8(x2 + x - 2). 

Solution: Here g(x) = x2 + x - 2 = (x - l)(x + 2); there are two zeros, at x 1 = l 
and x2 = -2. Differentiating, g'(x) = 2x + l, so g'(x1) = 3 and g'(x2) = -3. 
Thus 

The Dirac delta function can be thought of as the derivative of the Heaviside step 
function (Figure A.4):"t 

{o, (x < 0) 
0(x) eeee 

1, (x > 0) 

Obviously, d0 /dx is zero everywhere except at the origin, while 

100 d0 
- dx = 0(00) - 0(-oo) = 1 - 0 = 1 

-oo dx 

so d0 /dx satisfies the defining conditions (Equation A.1) for 8(x). 

(A.14) 

(A.15) 

It is an easy matter to generalize the delta function to three (or more) dimensions: 

83(r) = 8(x)8(y)8(z) (A.16) 

* Equation A.13 is exact, notwithstanding the truncated Taylor series (Equation A.11) I used in its 
derivation. At x,, the 'extra' terms are zero, since they contain powers of (x - x,). 

"f The value at the discontinuity seldom matters, but if it worries you, define 0(0) = 1/2. 
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0(x) 

X 

Fig. A.4 The Heaviside theta ('step') function. 

This three-dimensional delta function is zero everywhere except at the origin, 
where it blows up. The triple integral over 83(r) is 1: 

J 83 (r) d3r = J 8(x)8(y)8(z) dxdydz = 1 (A.17) 

and 

(A.18) 

For example, the charge density (charge per unit volume) of a point charge q located 
at the point ro can be written as 

Problems 

A.1 (a) J; (2x2 + 7x + 3)8(x - 1) dx =? 
(b) J; ln(l + x)8(,r - x) dx =? 

A.2 Use Equation A.13 to simplify the expression 8(.Jxl+1- x - 1). 
A.3 Use Equation A.13 to simplify the expression S(sin x). Sketch this function. 
A.4 Letf(y) = f0

2 8(y - x(2 - x)) dx. Findf(y), and plot it from y = -2 toy= +2. 

A.5 t 1 x4 [f2 8(x-3)] dx=? [Hint: Integrate by parts.] 

A.6 Evaluate the integral (to 5 significant digits) 

15 0(2x - 4)e-Jx dx 
-1 

(A.19) 

A.7 Evaluate Jr• (a - r)83 (r - b) d3r, if a= (1, 2, 3), b = (3, 2, 1), and the integration is 
over a sphere of radius 1.5 centered at (2, 2, 2). 





Appendix B 

Decay Rates and Cross Sections 

Summary of formulas for decay rates and scattering cross sections. 

8.1 

Decays 

Suppose particle 1 decays into particles 2, 3, 4, ... , n: 

l--+2+3+4+···+n 

The decay rate is given by the formula 

dr = 1�12 

2h�
1 
{ [ (;n�:��2

] [ 
(;1r�:��3 ] · · · [ (2:�:��n]}

x(21r)\54(p1 - P2 - p3 - · · · - Pn) (B.1) 

where Pi = (E;/c, P;) is the 4-momentum of the ith particle (which carries mass m;, 

so E; = cJpf + mf c2 ). The decaying particle is presumed to be at rest: p1 = (m1c; O); 

S is a product of statistical factors: 1 /j! for each group of j identical particles in the 

final state. 

B.l.l 

Two-body Decays 

If there are just two particles in the final state, the integrals can be performed

explicitly. The total decay rate is 

where lpl is the magnitude of either outgoing momentum: 

lpl = _c_Jm4 
+ m4 

+ m4 - 2m2 m3 - 2m2m2 - 2m2 m2 

2ml 
l 2 3 l ... L l 3 2 3 

(B.2) 

(B.3) 
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430 I B Decay Rates and Cross Sections 

In particular, if the outgoing particles are massless, then lpl = m1 c/2, and 

B.2 

s 2 
r=--lv#ll 

l61rlim1 

Cross Sections 

Suppose particles 1 and 2 collide, producing particles 3, 4, ... , n: 

1+2---+ 3+4+---+n 

The cross section is given by the formula 

/i2 $ 
do- = lv#1'l 2--;======~ 

4J(p1 · p2)2 - (m1m2c2)2 

X { [ (;Jr~:;~3] [ (;:i:;~4] ... [ (;Jr~:;~n] } 
X (2n)484 (p1 + P2 - p3 - P4 - · · · - Pn) 

(B.4) 

(B.S) 

where (as before) Pi= (Ei/c,p;) is the 4-momentum of particle i (mass mi), 

E; = cJmtc2 +pf, and Sis a statistical factor (1/j! for each group of j identical 
particles in the final state). 

B.2.1 
Two-body Scattering 

If there are just two particles in the final state, the integrals can be performed 
explicitly. 

(a) In the center-of momentum frame 

and 

(B.7) 

where I Pi I is the magnitude of either incoming momentum, 
and IPJ I is the magnitude of either outgoing momentum. In 



B.2 Cross Sections 1431 
particular, for elastic scattering (A+ B---* A+ B), lp;I = IP1I, 
so, letting E = (E1 + E2)/2: 

(B.8) 

(b) In the lab frame (particle 2 at rest) 

(B.9) 

In the case of elastic scattering (A+ B---* A+ B), 

da ( Ii ) 2 pf s1~12 

dn = 8n m2lp11lp31(E1+m2c2)-lpi1E3cos0! 
(B.10) 

If, in particular, the incident particle is massless (m1 = 0), this 
reduces to 

If the target recoil is negligible (m2c2 » £1), then 
Equation B.10 reduces to 

If the outgoing particles are massless (m3 = m4 = 0), 
Equation B.S yields 

(B.11) 

(B.12) 





Appendix C 

Pauli and Dirac Matrices 

Pauli and Dirac matrices. 

C.l
Pauli Matrices 

The Pauli matrices are three Hermitian, unitary, traceless 2 x 2 matrices: 

(0 1) (0 -i) (1 0)ax = 1 0 ' ay = i O ' az = 0 -1 
(C.1) 

(Often we use numerical indices: a1 = ax, a2 = ay, a3 = a2 ; <1 is not part of a 
four-vector, and we do not distinguish upper and lower indices: a 1 = a 1 , a2, = a 2,
a 3=a 3 .) 

(a) Product rules.

(A 2 x 2 unit matrix is implied in the first term, and 
summation over kin the second). Thus, in particular: 

a 2 = a 2 = a 2 = 1 
X y Z 

(C.2) 

(C.3) 

(C.4) 

[ai, aj] = 2iEijkak (commutator) (C.S) 

{ai, aj) = 28ij (anticommutator) (C.6) 

and for any two vectors a and b, 

(a• u)(b · u) =a· b + iiT ·(ax b) (C.7) 
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(b) Exponentials. 

eif!•a = cos0 + i0 · <1 sin0 

C.2 

Dirac Matrices 

The Dirac matrices are four unitary traceless 4 x 4 matrices: 

(C.8) 

(C.9) 

(Here 1 is the 2 x 2 unit matrix, and O is the 2 x 2 matrix of zeros; ai are the Pauli 
matrices. Lowering indices changes the sign of the 'spatial' components: Yo= y 0 , 

Yi= -yi.) We introduce as well the auxiliary matrices 

For any four-vector aµ, we define the 4 x 4 matrix/ as follows: 

(a) Product rules. In terms of the metric 

,,, ~ (l 
0 0 

n -1 0 

0 -1 

0 0 

(note that gµv gµ v = 4), we have: 

YµYv + y"yµ = 2gµv, 

YµYµ = 4 

/}5 + }5/ = 2a · b 

(C.14) 

(C.15) 

(C.16) 

(C.17) 

yµy"y!.yµ = 4g"\ Yµ/}5yµ = 4a · b (C.18) 

Y,,y"y!.yayl' = -2yay!.yv, Yµ/}5¢yµ = -2¢}5/ 

(C.19) 

(C.10) 

(C.11) 

(C.12) 

(C.13) 



C.2 Dirac Matrices 1435 
(b) Trace theorems. The trace of the product of an odd number of 

gamma matrices is zero. 

Tr(l) = 4 

Tr(,';5) = 4a • b 

Tr(,';5¢,J,) = 4 [(a• b)(c • d) - (a• c)(b • d) 

+(a• d)(b • c)] 

(C.20) 

(C.21) 

(C.22) 

Since y 5 is the product of an even number of y matrices, it 
follows that Tr(y 5y 1') = 0 and Tr(y 5 yµyvy!.) = 0. When y 5 is 
multiplied by an even number of y's, we find 

Tr(y 5) = 0 

Tr(y 5yµy ") = 0, 

(C.23) 

(C.24) 

(C.25) 

where €1,v!.u = -1, if µ,vJ...cr is an even permutation of 0123, 
+ 1 for an odd permutation, and O if any two indices are the 
same. Note that 

(C.26) 

(c) Anticommutation relations. 

(C.27) 





Appendix D 

Feynman Rules (Tree Level) 

Feynm an rules for QED, QCD, and weak interactions. 

D.l 

External Lines 

Spin 0: (nothing) l Incoming particle : u
S . 1 . Incoming antiparticle : vpm 2 · Outgoing particle : u Outgoing antiparticle : v 
S . 1 . {incoming: Eµ pm · outgoing : E; 

D.2

Propagators

Spin0: ---­
q2 - (mc)2 

Spin l: �i(�f!_+_m_c_) 
2 q2 - (mc)2 

Massless · __I!!'_ . 
q2 l 

-ig

Spin 1 -i[ - / me 2 Massive: gµv qµqv ( ) ]
q2 - (mc)2 
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4381 0 Feynman Rules (Tree Level) 

D.3 
Vertex Factors 

QED: 

QCD: 

GWS: 

-g,J"flY[gµ.v(q1 -q2}>. +gvi.(q2 -q3),, 
+gi.,,(q3 - q1)v] 

-ig;[fctflryJY8ry(gµ.i.gvp - gµ.pgvi.) 

+J"8ryjilyry(gµ.vg>.p - g,,i.gvp) 
+J"Yryj8flry(gµ.pgv). - gµ.vgi.p)] 

-igw y/J-(1 - y 5) (Here l is any lepton, and 
2,Ji. 

v1 the corresponding neutrino.) 



~ 

0.3 Vertex Factors 1439 

-igwyµ(I -y5)V·· (H e · c ort a dj' d s z.Ji. y er i = u, , , n = , , 

orb; Vis the CKM matrix.) 

-f' yµ(c(, - ly5) Heref is any quark or lepton; 
cv and CA are given in the 
following table: 

f cv CA 

Ve, Vµ, V-r 
I I 
2 2 

e - ,µ, - ,r - -½ + 2sin20w I -5: 

u, c, t ½ - 1sin20w I 
2 

d, s, b -½ + i sin20w I 
-2 

igw COS 0w[gvA (q1 - q2)µ 
+gAµ(q2 - q3)v +gµv(q3 - q1h] 

X - igJ, cos2 0w(2gµvgAa - gµAgva - gµagvA) 
w 

µ, ,. 

wxaw-
ig;,(2gµAgva - gµvgAa - g,,agvA) w w+ 

µ, ,. 
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The weak coupling constants are related to the electromagnetic coupling constant: 

gz = sin 0w COS 0w 

There are also 'mixed' couplings of the photon to the W and Z: 

X). 
w 
w y 

µ (J 

X w 

w 
µ (J 

ig,[gvi.(q1 - q2)µ 
+gi.µ(q2 - q3)v +gµv(q3 - q1)>.] 



Index 

a 

A: see Baryon number 
ABC theory 211-223 
Abelian 118, 365 

- See also Gauge invariance; Groups 
Accelerator 4-7, 401 
Additive quantum number 141 
Adjoint 236, 361 
Allowed 120, 127, 161-162 
a: see Fine structure constant 
a, 173 
aw 308, 315 
a particle 5, 14, 156, 388-389 
Amplitude 132-133, 156, 203-204, 

211-214, 244
Anderson , C. D. 19, 21, 31 
Angular momentum 120-128 

-addition 122-125, 154
-eigenfunctions: see Spherical
harmonics

-eigenvalues 120-121
-matrices: see Spin matrices
-orbital 120-121, 161-163, 182 
-spin 120-121 

Annihilation: see Pair annihilation 
Anomalous magnetic moment 

-electron 18, 165, 167, 246, 266
-muon 413
-proton 168

Anthropic principle 414 
Antibaryon 37, 40 
Anticommutator 155, 228, 237, 252, 435 
Antielectron: see Positron 
Antimatter 21, 23 
Antimeson 37, 41 
Antineutrino 24, 27, 128 
Antineutron 21-22 
Antiparticle 3, 20-23, 37, 39, 61-62, 

230-234

Antiproton 21, 33, 106-107 
Antiquark 39, 49 
Antiscreening 300-301 
Antisymmetric state 122, 125, 183-184 
Antisymmetric tensor 110-111, 253 
Antisymmetrization 245 
Associated Laguerre polynomial 162 
Associated production 34 
Astrophysics 7, 394, 396, 400-401 
Asymptotic freedom 68-70, 83,220, 

298-301
Atmospheric neutrino 394-395, 399-400 
Atomic number 24 
Atomic weight 24, 387 
Axial vector 13 9-141, 308 
Axion 411, 416 
Azimuthal angle 201 

b 

B: see Bottom 
B factory 47, 148 
B meson 47, 148-149 
b quark 47 
Bahcall , J. N. 389-390, 416 
Bare: see Charge; Coupling constant; Mass 
Barn 211 
Baryogenesis 411 
Baryon 19,30, 32,35,40,44, 122-123, 

180-193 
-decuplet 36, 40, 122-123 
-magnetic moment 189-190
-mass 191-193 
-number 22, 33,81, 130,408-409 
-octet 35, 41, 122-123, 188

Beautiful baryon 47 
Beautiful meson 47 
Beauty 47, 49 

- See also Bottom
{J: see Electron; Positron 
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442, Index 

Beta decay 23-29, 47-48, 56, 76, 
136-137, 318 

Bethe, H. A. 166,219,388 
Bevatron 21, 106 
Bhabha scattering 62, 86, 246 
Big Bang 71,409,416 
Bilinear covariant 235-238 
Binding energy 103, 159-160, 194 
Bispinor 229 
Bjerken, J. D. 44, 228, 233 
Blackbody 15 
Bohr, N. 15, 24, 162 
Bohr energies 162 
Bohr magneton 190 
Bohr model 15, 163 
Bohr radius 162 
Boson 122,141,183 
Bottom 47 
Bottomonium 159, 175-177 

- See also Y (upsilon) meson 
Bound state 2, 159-193 
Branching ratio 79, 198, 404-405 
Brane 413 
Breit frame 112 
Bremsstrahlung 403-404 
Brick wall frame: see Breit frame 
Broken symmetry 135-136, 375, 378, 

402,408 
Brookhaven 29,33,44, 71,147 
Bubble chamber 7 

' C: see charm; Charge conjugation 
c quark 44-45 
Cv, CA 320, 331-332 
Cabibbo, N., 77 324-327 
Cabibbo angle 321, 324-325, 329 
Cabibbo theory 324-328 
Camouflage 300 
Casimir's trick 249-254, 270 
Cathode ray 13 
Center of momentum 64, 106-108 
Central potential 161 
Centrifugal barrier 161 
Cerenkov radiation 7, 392 
CERN 6-7, 42, 48, 51, 72, 331-332, 403 
Chadwick, J. 15, 24 
Charge 148, 165, 301 

- bare 69-70 
- conservation: see Conservation laws 
- effective 68-70, 266, 299 
- electric 70, 81, 408-409 
- exchange 132 
- independence 130 

- quark 39 
- renormalization 219-221, 265-267 
-weak 71-72,320 
- See also Coupling constant 

Charge conjugation 142-149 
- conservation 14 3 
- number 143 
- operator 142-143, 269 
- photon 143 
- positronium, 171 
- violation, 143 

Charged weak interaction 72-78, 307-308, 
324-329 

Charm 44-45, 49 
Charmed baryon 45-47 
Charmed meson 45-47 
Charmonium 159, 172-177 

- See also ,;, meson 
Chiral state 340 
Chromodynamics 59-60, 66-71, 366-369 

- See also Quantum chromodynamics 
Circular polarization 241, 260 
CKM matrix 51, 77-78, 81, 148, 328-329, 

350, 397, 409-410 
Clebsch-Gordan coefficients 124-125, 154 
Cloud chamber 7, 30-31 
CM 64, 106-108 
CNO cycle 388 
Coleman-Glashow formula 57 
Colliding beams 5, 108-109 
Collision 87, 100-102 
Color 43-44, 49-50, 66-67, 70, 187-188, 

278-279 
- current 369 
- factor 173, 289-294, 304 
- field 369 
- octet 187, 285 
- sextet 293 
- singlet 187, 285 
- state 284-286 
- SU(3) 187,285, 366-369 

Colorless particle 43, 285 
- See also Color singlet 

Commutator 155 
Compactification 414 
Completeness 230, 234, 242-243, 270, 

308,348 
Composition rule 40 
Compton, A.H. 17 
Compton 

- scattering 17-18, 23, 62, 86, 113, 
246, 249, 271-272 

- wavelength 17, 69 
Confinement 42-44, 71-72, 289 



Conjugating phase 410 
Conservation laws 79-84 

- angular momentum 26, 80, 117, 
119, 122 

- baryon number 33, 79, 81, 85 
-charge 79,81,85, 117,238,270 
- color 67, 81, 85 
- electron number 29, 75, 81 
- energy 24, 64, 80, 87, 100-101, 117, 

213,244 
- flavor 75,82, 324 
- isosopin 130 
- lepton number 28-29, 79, 81, 85 
- mass 2, 100-102 
- momentum 64, 80, 97-101, 117, 

213,244 
- muon number 29, 75, 81 
- parity 73, 141-142, 309 
- quark number 81 
- strangeness 34, 82, 324 
- tau number 75, 81 

Conserved current 238, 270, 358 
Constituent quark 58, 180, 190, 193 
Continuity equation 238, 270, 358 
Continuous symmetry 375-377 
Contraction of indices 96 
Contraction theorems 252-253 
Contravariant 94 
Cosmic ray 4-5, 19, 30-31, 110, 394, 401 
Cosmological constant 417 
Coulomb force 1, 9, 18, 61-62, 73 
Coulomb gauge 240-243, 286, 307 
Coulomb potential 162-163, 202,290, 334 
Coupling constant 67, 84-85, 213, 308 

- bare 220, 265 
- dimensions of 213 
- effective 220, 265 
- electromagnetic 84-85, 244 
- physical 219-220 
- renormalized 219-221, 265-266, 

298-301 
- running 68, 85, 220, 265-266, 

300-301,405-406,412 
- strong 67, 84-85, 283-284 
-weak 84-85, 308,315,320,332,346 
- See also Charge, Fine structure 

constant 
Covariant 94,96,226,268 
Covariant derivative 360, 363, 367, 378 
Cowan, C. L. 27 
CP 144-149, 409-411 

- B0 system 148-149, 409-411 
- eigenstate 146 
- invariance 145-147 

- K0 system 145-149 
- violation 52, 139, 147-149, 328, 

409-411 
Cronin, J. W. 146-149, 409 
Cross product 368, 408 

Index 1443 

Cross section 132-133, 156, 199-203, 209, 
430-431 

- A+ A ➔ B + B 215-216 
- hard sphere 200-202 
- Mott 245-246, 254-255 
- nucleon-nucleon 132 
- pair annihilation (QCD) 298 
- pair annihilation (QED) 261 
- Rutherford 202, 255 
- See also Golden rule, Scattering 

Crossing symmetry 22-23, 62 
Current 

- charged weak 341-346 
- color 369 
- conserved 358 
- electromagnetic 238, 341-344, 

358,360 
- neutral weak 343 
- Noether 383-384 
- weak hypercharge 342-344 
- weak isospin 342-344 
- Yang-Mills 365 

Cutoff 219, 264-265 
eve hypothesis 320 
Cyclotron formula 8 

d 
Dmeson 47 
D, meson 47 
d quark 39 
D' Alembertian 240 
Dark energy 414-417 
Dark matter 414-417 
Davis, R. 27-28, 390, 396 
De Broglie wavelength 6 
Decay 2,65, 75-84,87, 197-198 

- b quark 351 
- c quark 351 
- B0 410 
- f":. 77 
- ry, 298, 306 
- Higgs 404-405, 419 
- kaon 325 
- A 77-78, 324 
- leptonic 325 
- muon 25-29, 75, 310-315, 

394-395, 400 
- neutrino 394 
- neutron 25-29, 76, 80, 315-321, 324 



Index 

Decay (contd.) 
- nonleptonic 325-326 
- n- 77-78 
-</> 83 
- pion (charged) 25-29, 76, 80, 103, 

138,321-324, 349, 394-395 
- pion (neutral) 65, 138, 143, 222 
- positronium 256-261 
- proton 32-33, 85,406, 408, 420 
- 1/1 82-84 
- quarkonium 298 
- semileptonic 325-326 
- tritium 25, 396 
- two-body 24-27, 112, 206-208, 

429-430 
- z0 337, 350-351 
- See also Golden rule; Lifetime 

Decay mode 79, 198 
Decay rate 197-198, 429-4 30 
Decuplet 36, 40, 122-123 
Deep inelastic scattering 42-43, 50, 68 
Degeneracy 163 
Delbruck scattering 86 
t,. baryon 33, 133 
Delta function 

- Dirac 205, 423-427 
- Kronecker 155 

Density of states 203 
- See also Phase space 

DESY 73 
Detailed balance 23, 149 
Detector 7-8, 203 
Deuterium 169 
Deuteron 43, 103, 130-131, 194,388 
Diagram 

- disconnected 218 
- Feynman 60-64, 213 
- higher-order 62-63, 75, 86, 212, 

217-221, 262-267 
- loop 70, 166-167, 217-218, 263, 

288, 298-299 
- penguin 148, 157, 410 
-tree 157,217,265 

Differential cross section 201-203, 223, 
430-431 

- See also Scattering 
Dimensions 

- amplitude 211 
- coupling constant 213 
- cross section 211 
- field 357 

Dipole function 284 
Dipole moment 

- electric 150, 411 

- magnetic 150, 165, 168, 189-190 
Diquark 294, 408 
Dirac, P.A. M. 15, 21,165,219 
Dirac delta function 205, 423-427 
Dirac equation 21, 225-229, 356 

- momentum space 234 
Dirac Lagragnian 355-356 
Dirac matrices 228, 434-435 
Dirac neutrino 28, 396 
Dirac sea 21, 230 
Dirac spinor 229 
Direct CP violation 148 
Disconnected diagram 218 
Discrete symmetry 118, 136-151, 375 
Dot product 95 
Down quark 39 
Downness 49 
Drell, S. D. 228, 233 
Dresden, M. 221 

e 
Effective charge 68-70, 266 
Effective mass 135-136, 180, 220 
Eigenstate 328 
Eigenvalue 126-127, 160 
Eigenvector 126-127 
Eight baryon problem 133 
Eightfold Way 35-37, 39, 133 
Einstein, A. 16, 84,417 
Einstein summation convention 93 
Elastic collision 101-102 
Elastic scattering 101-102, 199 
Electric dipole moment 150,411 
Electric form factor 283-284 
Electrodynamics 59, 84, 238 

- See also Quantum electrodynamics 
Electromagnetic current 238, 341-344, 358, 

360 
Electromagnetic decay 255-261 
Electromagnetic field 239 
Electromagnetic force 59 
Electromagnetic potential 239 
Electron 4-5, 13, 150 
Electron gun 4 
Electron neutrino 29 
Electron number 29, 49 
Electron volt 9 
Electron-electron scattering 246-247, 266, 

271 
Electron-muon scattering 245-246, 

252-255, 265, 271 
Electron-positron scattering 

- elastic 247-248 
- inelastic 256-261, 266, 275-279 



Electron-positron annihilation 256-261 
Electron-proton scattering 255, 279-283 
Electroweak interaction 3, 48, 60, 84, 338 

- See also GWS theory 
Electroweak interference 337 
Electroweak mixing 345-346 
Electroweak unification 338-346 
Elementary particles: see Particles 
Energy 

- conservation of 24, 64, 80, 87, 
100-101, 117,213,244 

- kinetic 99 
- operator 160, 268 
- relativistic 96-100 
- rest 99 

Energy-momentum four-vector 98 
'7 meson 31, 177-179 
,.,, meson 41, 177-179 
'7, meson 298, 306 
Euler-Lagrange equation 354-356 
Event rate 203 
Exchange of particles 18, 61, 183 
Exclusion principle 1, 3, 21, 37, 43-44, 122, 

130, 183-184 
Exclusive 199 
Exotic atom 169 
Exotic particle 41 
Expansion of universe 416-417 
External line 63, 65, 213, 243, 287, 437 
Extra dimensions 413-414 

f 
.f,, (pion decay constant) 322-323 
Faithful representation 119 
Fedeev-Popov ghost 288 
Fermi, E. 24, 60, 133, 204, 315 
Fermi constant (GF) 313-315 
Fermi's Golden Rule 203-211 
Fermi theory of beta decay 24, 47-48, 60 
Fermilab 6,8,47,395,403 
Fermion 121-122, 141, 183 
Feynman,R. P. 21,29,60,65, 166,205,219 
Feynman calculus 64, 197-223, 373 
Feynman diagram 60-64, 213 
Feynman rules 3, 64, 203-204, 369-372, 

437-440 
- ABC theory 211-214 
- GWS theory 307-308, 331 
- QCD 283-288 
- QED 241-245 
- weak interactions 307-308, 331 

Feynman-Sttikelberg interpretation 21, 230 
Field theory 354-358 

- scalar 355, 357 

- spinor 355-357 
- vector 356-359 

Field strength tensor 238 
Fifth force 285 
Fine structure 165-166, 169-170 

Index 1445 

Fine structure constant 10, 64, 162, 165, 266 
Fine tuning 412 
Flavor 39, 43, 49, 57, 70, 82,129-136, 

184-188, 397 
Flavor dynamics 59-60 
Flavor eigenstates 324, 328-329, 397-398 
Force 59-60 

- electromagnetic 59 
- gravity 59 
- strong 18-20, 30, 34, SO, 59 
-weak 34,48, 59 

Form factor 282-284, 303,319,322 
Four-momentum 98 
Four-vector 92-96 

- charge-current 238 
- covariant 94 
- contravariant 94 
- current 238 
- energy-momentum 98 
- lightlike 95 
- position-time 92 
- proper velocity 96 
- spacelike 9 5 
- timelike 95 

Four-velocity 97 
Free Lagrangian 369 
Free quark 41-44, 72 

ft-value 319 
Fundamental representation 119, 179 
Furry's theorem 273 
Fusion 388, 403-404 

g 
G: see G-parity 
Gp: see Fermi constant 
g, 332, 346 
g, 371 
gw 308,315,332,346 
gz 332,346 
Galactic rotation 414-415 
Gamma matrices 228 
Gamma ray 5, 17 

- See also Photon 
y 5 236-237 
Gauge field 360, 364-367, 407 
Gauge invariance 117, 304 

- abelian 365 
- broken 136, 375 
- global 358, 363 



446, Index 

Gauge invariance (contd.) 
- local 3, 358-361, 363, 367 
- nonabelian 365 

Gauge theory 353-381 
Gauge transformation 239, 270, 360 
Gaussian units 9 
Gell-Mann, M. 34-37, 56-57, 60, 82, 133, 

145-147 
Gell-Mann matrices 286-287, 367, 384 
Gell-Mann-Nishijima formula 130-131, 

156,343 
Gell-Mann-Okubo formula 56-57 
Generation 49-51, 75 
Ghost 241, 288, 381 
GIM mechanism 77, 327-329 
Glashow, S. L. 44-48, 60, 77, 84, 327, 330, 

338,406 
Global transformation 358, 363 
Glueball 50, 67 
Gluino 52 
Gluon 50,59-60,67,368 

- octet 285 
Gluon-gluon coupling 67, 70, 286, 288 
Golden Rule 203-211 

- for decays 204-208 
- for scattering 208-211 

Goldstone boson 377-381 
Goldstone's theorem 377 
G-parity 143-144, 157 
Gradient 226, 268 
Grand Unification 33, 52, 84-85, 405-409 
Gravitational lensing 415 
Gravity 18, 49, 59, 86,413 
Graviton 18, 49, 59-60, 414 
Greek index 92-93 
Greenberg, 0. W. 43 
Ground state 373 

- See also Vacuum 
Group 117-118 

- abelian 118 
- continuous 118 
- discrete 118 
- finite 118 
- infinite 118 
- Lie 118 
- Lorentz. 118 
- O(n) 118-119, 153 
- SO(2) 376 
- SO(3) 118-119, 128 
- SO(l0) 407 
- SO(n) 118-119, 153 
- SU(2) 128, 130, 135, 362-363, 365 
- SU(2)L x U(l) 344,346,366,407 
- SU(3) 128, 133, 179, 187,367,407 

- SU(S) 407 
- SU(6) 134 
- SU(n) 118-119, 153 
- U(n) 118-119, 153,361,366 

Group theory 117, 133 
GUT: see Grand Unification 
GUT scale 405-406, 413 
GWS (Glashow/Weinberg/Salam) 3, 48, SO, 

60, 71-79,84,221,332, 337-346 
Gyromagneticratio 165 

h 
Hadron 30 

- See also Baryon; Meson 
Hadronization 275-276 
Half-life 79, 222, 319 
Halo 415-417 
Hamiltonian 160, 268 
Hard-sphere scattering 200-202 
Heaviside-Lorentz units 9, 245 
Heaviside step function 205, 426-427 
Heavy lepton 47 
Heavy neutrino 396 
Heavy quark 159 
Helicity 28, 137-138, 234,241,268,324, 339 
Heisenberg, W. 129 
Heisenberg uncertainty principle 6, 56, 80 
Hermitian conjugate 235, 367 
Hermitian matrix 362-363, 384 
Hierarchy problem 412 
Higgs boson 6, SO, 52, 380-381, 401-405 
Higgs mechanism 84, 338, 372, 378-381, 

401-402 
Higgsino 412, 416 
Higher-order process 62-63, 75, 86, 212, 

217-221, 262-267 
Hole theory 21 
Homestake mine 390, 393-394 
't Hooft, G. 221, 330, 372, 409 
Hot dark matter 415 
Hydrogen 15, 159, 162-168 
Hypercharge 36, 343-344 
Hyperfine splitting 167-168 

- baryons 191 
- hydrogen 167-168 
- mesons 180 
- positronium 169-170 

Hyperon 33 

i 
Identical particles 1, 43, 66, 183-184, 198 
!LC 6,401 
Impact parameter 199-201 
Inclusive 199 



Indeterminacy 3 
Indistinguishable particles 1, 43, 66, 

183-184 
Inelastic scattering 199 
Inertial frame 89 
Intermediate vector boson 47-48, 59-60 

- See also W; Z 
Internal line 63, 243 
Internal momenta 213-214 
Internal quantum number 142 
Internal symmetry 117, 119, 129-130, 411 
Intrinsic angular momentum 120 
Intersecting storage rings 5 
Invariance 117 
Invariant 93-96, 104-107, 110 
Inverse beta decay 27, 309, 388 
Inverse Lorentz transformation 90, 109 
Inversion 139 
Inverted spectrum 396 
Ionization 4, 8 
Irreducible representation 119 
lsospin 129-136, 156, 365 

- weak 342-344 
Isotope 15 
Isotopic spin: see lsospin 

j 
J/1/f meson: see 1/f meson, Charmonium 
)et 50, 276 
) ordan form 3 84 

k 
K meson 31, 34, 145-151 

- K1, K2 146-147 
- KL, Ks 147-149 

Kaon: see K meson 
KEK 43, 47, 148 
Ket 3, 122 
Kinetic energy 99, 101, 373 
Klein-Gordon equation 225-227, 240, 355 
Klein-Nishina formula 272 
KM matrix: see CKM matrix 
Kobayashi-Maskawa matrix: see CKM matrix 
Kronecker delta 15 5 

Lagrangian 3 5 7 
- classical 353-354 
- Dirac 355-356, 383 
- Field theory 354-358 
- Free 369 
- Interaction 369 
- Klein-Gordon 355, 383 
- Maxwell 357-360 

- Proca 356-357 
- QCD 366-368 
- QED 358 
- Relativistic 354-358 
- Supersymmetric 412, 420 
- Yang-Mills 365 
- Yukawa 385 

Lagrangian density 354, 357 
- See also Lagrangian 

Lamb, W. E. 33, 166 

Index 1447 

Lamb shift 18, 166, 170, 194-195, 220,266 
A (cosmological constant) 417 
A (QCD scale) 301 
A baryon 31-34 
A matrix 93 
Ac baryon 46-47 
J.. matrices 286-287 
Landscape 414 
Leading log approximation 299 
Lederman, L. M. 29, 147, 402 
Lee, T. D. 60, 136, 142 
Left-handed 28, 137-138,324,339-342 
Left-handed doublet 343-344 
Leptogenesis 411 
Lepton 3, 19,30,45,47,49, 122 

- generations 30, 49 
- number 28, 81, 408-409 
- table 30, 49 
- weak interactions 307, 310, 329-337 
- See also Electron; Muon; Neutrino; Tau 

Leptonic decay 325 
Leptoquark 407-408 
Levi-Civita symbol 155, 253, 271 
LHC 6, 47, 52,401, 403, 412-413, 416-417 
Lifetime 79-80, 91, 197-198, 222 

- A 214-215 
- charmonium 44 
- kaon 147 
- muon 313-315 
- neutron 319-321 
- n- 57 
- pion 323-324 
- positronium 171, 261, 420 
- proton 32-33, 406, 408, 420 
- sun 387, 399 
- z0 51,337, 350-351 
- See also Decay 

Light quark 159, 176 
Light quark baryon 159, 181-193 
Light quark meson 159, 176-180 
Lightlike 95 
Linear collider 5 
Linear-plus-Coulomb potential 173 
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Localgaugeinvariance 3,358-363 
Local gauge transformation 367 
Localphaseinvariance 360 
Logarithmic divergence 219,263 
Longitudinal polarization 138, 307, 380 
Loop diagram 70, 166-167, 263,288, 

298-299 
Lorentz gauge 240, 286, 307 
Lorentz contraction 91-92 
Lorentz group 118 
Lorentz transformations 89-93 
Lowering operator 156 
Luminosity 202-203, 261 

m 
M theory 414 
Magnetic form factor 283-284 
Magnetic moment 150, 165 

- anomalous 18, 266 
- baryons 89-190, 195-196 
- electron 165 
- proton 168 

Magnetic monopole 409 
Majorana neutrino 28, 273, 396, 407 
Mandelstam vairables 113 
Marshak, R. E. 19 
Mass formulas 

- baryons 191-193, 195-196 
- Coleman-Glashow 57 
- Gell-Mann-Okubo 56-57 
- Higgs 403 
- mesons 179-180, 195 
- pion 56 
- quarkonium 171-176 
- WandZ 332 

Mass 51 
- bare 58, 135-136, 220 
- constituent 58, 135-136, 180, 190, 

193 
- effective 135-136, 180, 220 
- eigenstate 328,391, 397-398 
- Higgs 403, 412 
- matrix 362 
- neutral kaon 147 
- neutrino 395-396 
- nonconservation 101-103 
- origin 381, 402 
- physical 219-220 
- quark 135-136, 180 
- relativistic 99, 101 
- renormalized 67, 220-221, 266 
- running 220 
- shell 65, 213 
- term 372-375 

- virtual particle 65 
-WIMP 416 

Massive gauge field 372, 402 
Massless particle 2, 29-30, 99-100, 

138-139,241, 308,359-361, 377,380,392 
Matrix element 203 
Matter-antimatter asymmetry 21, 23, 51, 

148, 409-411 
Maximal parity violation 137, 148, 309 
Maxwell, J. C. 84 
Maxwell Lagrangian 357-359 
Maxwell's equations 238-239, 357-358 
Mechanics 2 
Mediator 18, 47-48, 59-60, 67, 122, 307, 

315,407 
- See also Gluon; Graviton; Intermediate 

vector boson; Photon; Pion; W; Z 
Meson 15, 18-20, 30-31, 35, 40, 44, 

122-123, 176-180 
- mass 179-180 
- nonet 39-41 
- octet 35-36, 41 

Metric 93-94, 252 
Millikan, R. A 16, 41 
Minimal coupling 360 
Minkowski metric 93-94, 228 
Mirror image 136-137, 144, 148 
Missing mass 415-416 
Mixed tensor 96 
Mixing 

- B0 ;T3° 145, 149 
- K0 /K. 0 391-394, 399 
- matrix 329, 397-398 
- neutrino 391-394 
- neutral mesons 145, 149 

MNS matrix 397-398 
Moller scattering 61, 246 
Momentum 97 

- conservation 64, 80, 97-101, 117, 
213,244 

- four-vector 98 
- operator 226 
- relativistic 96-100 
- space 234, 370 

Mott scattering 245-246, 254-255 
MSM 402-406, 419 
MSW effect 392 
Multiplet 130 
Multiplicative quantum number 141, 143 
Multiplicity 130 
Muon 19, 26-30, 310-315 
Muon decay 25-29, 75, 310-315, 394-395, 

400 
Muon neutrino 29 



Muon number 29, 49 
Muonium 169 

n 
N: see Nucleon 
n: see Neutron 
v: see Neutrino 
Neddermeyer, S. 19 
Ne'eman, Y. 35 
Negative energy state 21, 230 
Neutral weak interaction 72-74, 308, 

329-338, 343 
Neutralino 416 
Neutrino 15, 23-30, 137-139, 389, 415-416 
Neutrino mass 395-396 
Neutrino oscillations 30, 52, 74, 387-398 
Neutrinoless double beta-decay 396 
Neutrino-electron scattering 72-73 
Neutrino-nucleon scattering 73 
Neutron 15, 22, 29, 76, 129-130, 150, 

315-321 
Neutron electric dipole moment 411 
Ninth gluon 285-286, 368 
Noether's theorem 116-117, 383-384 
Nonabelian gauge 365 
Nonet 39-41 
Nonleptonic decay 77, 325-326 
Normalization 

- Dirac spinor 233, 237, 269 
- Pauli spinor 126 
- polarization vector 243, 348 
- wave function 160 

November revolution 44-47 
Nucleon 129-130 

- See also Neutron; Proton 
Nucleon-nucleon scattering 131-132 
Nucleus 14-15, 18, 42, 56, 167 

0 

O(n) 118-119, 153 
Octet 35, 41, 179 

- See also Baryon; Color; Gluon; Meson 
n- baryon 37-38, 57, 88, 111 
w meson 31, 177-179 
Oppenheimer, J. R. 19 
Orthogonal matrix 118-119 
Orthogonal polarizations 242, 348 
Orthogonal spinors 268 
Oscillations 390-392 
OZ! rule 82-84, 88, 174 

p 
P: see Parity 

Index 

Pair annihilation 23, 62, 65, 170-171, 246, 
256-261, 294-298 

Pair production 62, 246 
Pais, A. 33-34, 145-147 
Parity 136-142, 157 

- baryon 141 
- boson 141 
- conservation 73, 141-142, 309 
- fermion 141 
- invariance 136, 139 
- meson 141 
- operator, operator 139-141, 236 
- particle/antiparticle 141 
- photon 141 
- quark 141 
- violation 73, 136-139, 142, 148, 309 

Particle 147 
- et 5, 14, 156 
- antineutrino 24, 27, 128 
- antineutron 21 
- antiproton 21 
- B meson 47, 148-149 
- B, meson 47 
- B, meson 47 
- b (bottom) quark 47 
- {3: see Electron; Positron 
- c (charm) quark 44 
- Dmeson 47 
- D, meson 47 
- d (down) quark 39 
- fl baryon 33, 133 
- deuteron 43, 103, 130-131, 194,388 
- electron 13, 150 
- 1J meson 31, 177-179 
- 1) 1 meson 41, 177-179 
- 1/c meson 298, 306 
- y: see Photon 
- gluon SO 
- graviton 18, 49, 59-60, 414 
- J or J /,fr: see ,fr meson 
- Kmeson 31 

- charged 31 
- neutral 31, 145-149, 151 

- kaon: see K meson 
- A baryon 31-34, 77 
- Ab baryon 47 
- A, baryon 46-47 
- µ, (muon) 19, 26-30, 310-315 
- v (neutrino) 15, 23-30,137-139, 

389, 415-416 
- neutron 15, 76, 129, 150, 315-321 
- nucleon 129-130 
- n- baryon 37-38, 57, 77, 88, 111 
- n, baryon 47 

1449 
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Particle (contd.) 
- w meson 31, 177-179 
- ¢ meson 31, 83, 177-179 
- photon 15-18, 49, 59-60 
- rr meson 19-20, 26-29, 178, 

321-324 
- pion: see rr: meson 
- positron 5, 15, 21-22 
- proton 4, 15, 32-33 
- i/r meson 44, 82-84, 174-175 

- See also Charmonium 
- p meson 31, 178 
- s (strange) quark 39 
- E baryon 33-34 
- Eb baryon 47 
- E, baryon 47 
- t (top) quark 47 
- r lepton 47 
- u (up) quark 39 
- Ymeson 47,88, 175-176, 195 

- See also Bottomonium 
- W 48-49 
- S baryon 33-34 
- Sb baryon 47 
- S, baryon 47 
-Z 48-49,350-351 

Particle Physics Booklet 10-11, 47 
Parton 44 

- See also Gluon; Quark 
Pauli, W. 15, 24, 139, 219, 227 
Pauli (spin) matrices 127, 155, 228, 363, 

433-434 
Pauli (exclusion) principle 1, 3, 21, 37, 

43-44, 122,130, 183-184 
PCAC hypothesis 320, 326 
Penguin diagram 148, 157, 410 
Pentaquark 43 
Perturbation theory 373 
Phase transformation 358-360 
Phase space 203-205, 209, 323-324 
¢ meson 31, 177-179 
Photino 52, 412 
Photoelectric effect 16, 18 
Photon 15-18, 49, 59-60, 238-241 
Pion 19-20, 26-29, 56, 178, 321-324 
Pion decay constant 322-323 
Planck, M. 15-16 
Planck formula 16, 100, 163 
Planck's constant 6, 16 
Planck scale 413, 420 
Plane wave 231, 240 
Point particle 220 
Polar vector 139-141 
Polarization 138, 147, 307 

Polarization vector 240, 242-243, 286, 307 
Pontecorvo, B. 390 
Positron 5, 15, 21-22, 230 
Positronium 169-172, 195-196 
Potential 

- Coulomb 162, 202 
- four-vector 239 
- linear-plus-Coulomb 173, 195 
- quark-quark 173, 289-294 
- vector 239 

Potential energy 159-160, 373 
Powell, C. F. 19-20, 25-26 
pp chain 388-390 
Primitive vertex 60-61, 64-67, 72-75, 

78-80, 212, 308 
Principal quantum number 163 
Proca equation 225, 356-357 
Projection operator 339, 349 
Propagator 213, 369-370, 437 

- electron 244 
- gluon 288 
- modified 263, 336 
- photon 244 
- quark 288 
- spin zero 213, 370 
- spin one-half 244, 370 
- spin one 

- massive 308, 370 
- massless 244, 371 

- unstable particle 336 
- Wand Z 308, 333, 336 

Proper time 96 
Proper velocity 96-97 
Proton 4, 15, 32-33, 129-130 
Pseudoscalar 140-141, 236-237 
Pseudoscalar meson 35-36, 122-123, 177 
Pseudovector 139-141, 237 
i/r meson 44, 174-175 

- See also Charmonium 

q 
Q: see Charge, electric 
QCD (quantum chromodynamics) 3, 66-71, 

173,283-301,366-369 
QED (quantum electrodynamics) 3, 60-66, 

165, 225-273 
Quantum 16, 19,369 
Quantum field theory 2, 10, 17, 20-21, 52, 

122,150,159 
Quantum mechanics 2, 17, 20, 100, 

120,159 
Quark 3, 37, 45, 49, 122 

- b (bottom) 47 
- c (charm) 44-45 



- confinement 42-44, 71-72 
- constituent 58 
- d (down) 39 
- free 41-44, 72 
- masses 51, 58, 135-136 
- model 37-44, 47 
- number 81 
- parity 141 
- sea 320 
- search 41-44 
- s (strange) 39 
- t (top) 47 
- u (up) 39 
- table 49 
- valence 320 
- weak interactions 324-337 
- See also Particles 

Quark-gluon plasma 71 
Quark-quark interaction 289-294 
Quarkonium 169, 171-176 

- See also Bottomonium; Charmonium 
Quasi-bound state 174-175, 195 

r 
R 278-280 
Rabi, I. I. 30, 163 
Radial equation 161 
Radiative correction 166 
Raising operator 156 
Range 18-19,48,56,285 
Rank 95-96 
Reactor 5, 27 
Real particle 63, 65 
Reduced mass 169 
Reflection 139 
Regularization 219 
Relativistic correction 165 
Relativistic energy 98-99 
Relativistic mass 99 
Relativistic mechanics 2 
Relativistic momentum 98 
Relativistic system 159-160 
Relativity 2, 89-113 
Reines, F. 27 
Renormalization 219-221, 262-267, 

298-301 
Representation 119, 128, 199 
Resonance 133,156,279 
Rest energy 99, 102 
Review of Particle Physics 10-11 
p meson 31, 178 
Richter, B. 44 
Right-handed 28, 137-138, 324, 

339-340, 342 

Index 1451 
Rochester, G.D. 30-31 
Rosenbluth formula 283, 303 
Rotation 117-118 
Rotation curve 414-415 
Rotation group 118-119, 128, 154 
Rotation matrix 154-155 
Rubbia, C. 48, 332 
Running coupling constant 68, 84-85, 220, 

265-266, 301,405-406,412 
Running mass 220 
Rutherford, E. 14-15, 42-43 
Rutherford scattering 14-15, 42-43, 202, 

245-246, 254-255 
Rydberg formula 163 

s 
S (strangeness) 34-35, 40-41 
s (strange) quark 39 
Salam, A. 48, 60, 84, 330, 338 
Sakharov, A. D. 409 
Scalar 123, 237 

- See also Invariant 
Scalar product 94-95 
Scattering 2, 197-203, 430-431 

- A+ A-> B + B 215-217 
- Bhabha 62,86,246 
- Compton 17-18, 62, 86,113,246, 

249, 271-272 
- cross section 132-133 
- deep inelastic 42-43 
- Delbruck 86 
- elastic 199 
- electron-electron 246, 266, 271 
- electron-muon 245-246, 252-255, 

265,271 
- electron-positron 246-248, 

256-261, 275-279, 335-337 
- electron-proton 255, 279-283 
- gluon-gluon 306 
- hard sphere 200-202 
- inelastic 199 
- Moller 61, 246 
- Mott 245-246, 254-255 
- neutrino-electron 309-310, 

330-334, 392-393 
- nucleon-nucleon 131-132 
- pion-nucleon 132-133, 156 
- Rutherford 14-15, 42-43, 202, 

245-246, 254-255 
- See also Collisions; Golden Rule 

Scattering amplitude 132-133 
Scattering angle 17, 199-203 
Scattering center 200-201 
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Schrodinger equation 159-162, 
225-227, 230 

Schwinger, J. S. 60, 165-166, 219 
Screening 68-69, 85, 167, 266, 299 
Sea quark 320 
See-saw mechanism 396 
Selectron 52 
Self-energy 217 
Semileptonic decay 75, 325-326, 350 
Separation of variables 160-161 
Sextet 293 
:E baryon 33-34 
SI units 9 

Simultaneity 90-91 
Singlet 39, 41, 125, 131, 168, 178-179, 187 
SLAC 4, 42, 44, 47, 51, 148, 174 
Slash 249, 252-253 
Slepton 52, 412 
SO(n) 118-119, 153 
Solar neutrino 394 
Solar neutrino problem 387-390 
Solar neutrino spectrum 389 
Sneutrino 52,412 
SNO 393-394 
Solid angle 201-203 
Spacelike 95 
Spark chamber 7 
Sparticle 412 
Spectator quark 73 
Spectrum 15, 162-164, 172 
Spherical harmonic 161 
Spin 120-121 
Spin 1/2 125-128 
Spin down 125, 231, 234 
Spin matrix 126-128, 234, 339 
Spin and statistics 122, 183 
Spin up 125, 231, 234 
Spin-averaged amplitude 250 
Spin-orbit coupling 165, 168 
Spin-spin coupling 168, 191 
Spinor 125, 128 

- Dirac 229 
- Pauli 125, 128 

Spontaneous symmetry-breaking 375-378, 
402 

Squark 52, 412 
SSC 6, 52 
Stable particle 32, 79-80 
Standard Model 3, 49-52, 135-136, 

392 
Standard Solar Model 390 
State 3, 122 
Statistical factor 204, 209 

Step function 205, 426-427 
Sterile neutrino 395 
Stevenson, E. C. 19 
Storage ring 5 
Strange particle 30-35 
Strangeness 34-35, 40-41, 49, 130, 131 
Strangeness-changing 325 
Street, J. C. 19 
String theory 52, 413-414 
Strong CP violation 411 
Strong force 18-20, 30, 34, SO, 129 
Strong phase 410 
Structure constant 287, 304, 368 
Stiickelberg, E. C. G. 21, 33 
Subgroup 133 
Subquark: see Substructure 
Substructure SO, 52, 58,417 
SuperKamiokande 392-395 
Supermultiplet 37, 133 
Supernova 394,396,400 
Superstring 52, 85, 413-414 
Supersymmetry 6, 52, 85,402,406, 411-413, 

416,420 
SU(n) 118 
SUSY: see Supersymmetry 
Symmetric state 122, 125, 183-184 
Symmetric tensor 110-111 
Symmetry 115-151 
Synchrotron radiation 5 

t 
T: see Time reversal 
t (top) quark 47 
r lepton 47 
tau number 49 
r-0 puzzle 141-142 
TCP theorem 3, 149-151 
Technicolor 402 
Tensor 95-96,237 
Tevatron 6, 47, 401, 403 
0c: see Cabibbo angle 
0w: see weak mixing angle 
Theory ofEverything 5 2, 413 
Thomson, J. J. 13-14 
Three-body decay 311, 316 
Three-jet event 276 
Threshold 23, 87, 103, 106-107, 111,278 
Time dependence 160,230,390 
Time dilation 91-92, 96 
Time reversal 149-151 
Timelike 95 
Ting, C. C. 44 
Top 47 



Toponium 47 
Total cross section 202 
Trace 251-252 
Trace theorems 252-253, 271, 435 
Transformation 

- charge conjugation 269 
- Dirac spinor 235, 269 
- four-vector 94 
- Lorentz 89-93 
- parity 236 
- tensor 95 

Transition probability 3 
Translation 117-118 
Transpose 118,235 
Transverse polarization 241 
Tree diagram 157, 217, 265 
Triangle function 112 
Triangle group 117-118, 153 
Triplet 125, 131, 168, 178 
Tritium 25, 56, 396 
Truth 47, 49 

- See also Top 
21-cm line 168 
Two-body decay 24-27, 112, 206-208, 

429-430 
Two-body scattering 209-211, 430-431 
Two-jet event 276 
Two-neutrino hypothesis 29 

u 
u (up) quark 39 
U(n) 118 
Ultraviolet catastrophe 15 
Uncertainty principle 6, 56, 80 
Unification 84-85, 413 

- See also Electroweak; GUT; GWS 
Unitarity triangle 352, 410 
Unitary matrix 118-119, 350, 352, 

362-363, 367 
Units 9-10, 211, 357 
Upness 49 
Y meson 47, 88, 175-176, 195 

- See also Bottomonium 

V 

V-A interaction 309, 320, 331 
V-events 31 
Vacuum 167,373-375 
Vacuum expectation value 403, 417 
Vacuum polarization 69-70, 85, 167, 

262-267, 299 
Valence quark 320 
Van der Waals force 70 

Vector 237 
- See also Four vector 

Vector interaction 341 
Vector meson 122-123, 177 
Vector potential 239 
Velocity 

- ordinary 96-97, 105 
- proper 96-97 

Velocity addition 91-92 
Vertex 60,212, 369,371,438-440 

-ABC 213 
- QCD 66, 288-289, 371-372 
- QED 60-61, 244, 371 
-weak 308,325,329, 331-332 

Vertex correction 217 
Vertex factor: see Feynman rules; Vertex 
Virial theorem 15 9 
Virtual particle 63, 65, 213 

w 
W boson 48-49, 59-60, 88, 307-308 
Ward identity 267 
Wave function 3, 160, 162, 181-188, 

195,226 
Weak contamination 334 
Weak coupling constant 308, 315 
Weakcurrent 341-342 
Weak eigenstate 397 

Index 1453 

- See also CKM matrix, MNS matrix 
Weakforce 34,48,71-79 
Weak hypercharge 342-344 
Weak interaction 71-79, 136-137, 307-346 

- charged: see Charged weak interaction 
- neutral: see Neutral weak interaction 

Weak isospin 342-344 
Weak mixing angle 51, 332 
Weak phase 410 
Weinberg, S. 48, 60, 84, 330, 338 
Weinberg angle: see Weak mixing angle 
Wey!, H. 139, 361, 365 
WIMP 416 
Wino 52,412 
Work function 16 
Wu, C. S. 136-137 

X 

X mediator 407-408 
S baryon 33-34 

y 
Y mediator 407-408 
Yang, C. N. 60, 136, 142, 361 
Yang-Mills theory 361-366, 384 
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Yukawa, H. 19, 48-49, 71 
Yukawa coupling 381, 385, 402 
Yukawa meson 15, 19, 56 

z 
Z boson 48-49, 51, 59-60, 72, 

307-308 

Z decay 337, 350-351 
Z factory 335 
Z pole 335-337 
Zino 52,412,416 
Zumino, B. 411 
Zweig, G. 37, 83 
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