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x

P R E F A C E

The printing of this book occurs one year short of 60 years since its first edition, 
which was at that time under the sole authorship of William H. Hayt, Jr. In a sense, 
I grew up with the book, having used the second edition in a basic electromagnetics 
course as a college junior. The reputation of the subject matter precedes itself. The 
prospect of taking the first course in electromagnetics was then, as now, a matter 
of dread to many if not most. One professor of mine at Berkeley put it succinctly 
through the rather negative observation that electromagetics is “a test of your ability 
to bend your mind”. But on entering the course and first opening the book, I was 
surprised and relieved to find the friendly writing style and the measured approach 
to the subject. This for me made it a very readable book, out of which I was able to 
learn with little help from my instructor. I referred to the book often while in grad-
uate school, taught from the fourth and fifth editions as a faculty member, and then 
became coauthor for the sixth edition on the retirement (and subsequent untimely 
death) of Bill Hayt. To this day, the memories of my time as a beginner are vivid, and 
in preparing the sixth and subsequent editions, I have tried to maintain the accessible 
style that I found so encouraging and useful then.

Over the 60-year span, the subject matter has not changed, but emphases have. In 
universities, the trend continues toward reducing electrical engineering core course 
allocations to electromagnetics. This is a matter of economy, rather than any belief in 
diminished relevance. Quite the contrary: A knowledge of electromagnetic field the-
ory is in the present day more important than ever for the electrical engineer. Exam-
ples that demonstrate this include the continuing expansion of high-speed wireless 
and optical fiber communication. Additionally, the need continues for ever-smaller 
and denser microcircuitry, in which a command of field theory is essential for suc-
cessful designs. The more traditional applications of electrical power generation and 
distribution remain as important as ever. 

I have made efforts to further improve the presentation in this new edition. Most 
changes occur in the earlier chapters, in which much of the wording has been short-
ened, and several explanations were improved. Additional introductory material has 
been added in several places to provide perspective. In addition, all chapters are now 
subsectioned, to improve the organization and to make topics easier to locate.

Some 100 new end-of-chapter problems have been added throughout, all of which 
replaced older problems that I considered well-worn. For some of these, I chose par-
ticularly good “classic” problems from the earliest editions. I have retained the previous 
system in which the approximate level of difficulty is indicated beside each problem 
on a three-level scale. The lowest level is considered a fairly straightforward problem, 
requiring little work assuming the material is understood; a level 2 problem is con-
ceptually more difficult, and/or may require more work to solve; a level 3 problem is 
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Preface xi

considered either difficult conceptually, or may require extra effort (including possibly 
the help of a computer) to solve.

As in the previous edition, the transmission lines chapter (10) is stand-alone, 
and can be read or covered in any part of a course, including the beginning. In  
it, transmission lines are treated entirely within the context of circuit theory; wave 
phenomena are introduced and used exclusively in the form of voltages and currents. 
Inductance and capacitance concepts are treated as known parameters, and so there is  
no reliance on any other chapter. Field concepts and parameter computation in trans-
mission lines appear in the early part of the waveguides chapter (13), where they play 
additional roles of helping to introduce waveguiding concepts. The chapters on elec-
tromagnetic waves, 11 and 12, retain their independence of transmission line theory 
in that one can progress from Chapter 9 directly to Chapter 11. By doing this, wave 
phenomena are introduced from first principles but within the context of the uniform 
plane wave. Chapter 11 refers to Chapter 10 in places where the latter may give 
additional perspective, along with a little more detail. Nevertheless, all necessary 
material to learn plane waves without previously studying transmission line waves is 
found in Chapter 11, should the student or instructor wish to proceed in that order. 

The antennas chapter covers radiation concepts, building on the retarded po-
tential discussion in Chapter 9. The discussion focuses on the dipole antenna, indi-
vidually and in simple arrays. The last section covers elementary transmit-receive 
systems, again using the dipole as a vehicle. 

The book is designed optimally for a two-semester course. As is evident, statics 
concepts are emphasized and occur first in the presentation, but again Chapter 10 
(transmission lines) can be read first. In a single course that emphasizes dynamics, 
the transmission lines chapter can be covered initially as mentioned or at any point in 
the course. One way to cover the statics material more rapidly is by deemphasizing 
materials properties (assuming these are covered in other courses) and some of the 
advanced topics. This involves omitting Chapter 1 (assigned to be read as a review), 
and omitting Sections 2.5, 2.6, 4.7, 4.8, 5.5–5.7, 6.3, 6.4, 6.7, 7.6, 7.7, 8.5, 8.6, 8.8, 
8.9, and 9.5. 

A supplement to this edition is web-based material consisting of articles on spe-
cial topics in addition to animated demonstrations and interactive programs devel-
oped by Natalya Nikolova of McMaster University and Vikram Jandhyala of the 
University of Washington. Their excellent contributions are geared to the text, and 
icons appear in the margins whenever an exercise that pertains to the narrative exists. 
In addition, quizzes are provided to aid in further study. 

The theme of the text is the same as it has been since the first edition of 1958. 
An inductive approach is used that is consistent with the historical development. In 
it, the experimental laws are presented as individual concepts that are later unified 
in Maxwell’s equations. After the first chapter on vector analysis, additional math-
ematical tools are introduced in the text on an as-needed basis. Throughout every 
edition, as well as this one, the primary goal has been to enable students to learn 
independently. Numerous examples, drill problems (usually having multiple parts), 
end-of-chapter problems, and material on the web site, are provided to facilitate this.  
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Answers to the drill problems are given below each problem. Answers to 
odd-numbered end-of-chapter problems are found in Appendix F. A solutions man-
ual and a set of PowerPoint slides, containing pertinent figures and equations, are 
available to instructors. These, along with all other material mentioned previously, 
can be accessed on the website: 

www.mhhe.com/haytbuck 

I would like to acknowledge the valuable input of several people who helped to 
make this a better edition. They include: 

Gerald Whitman – New Jersey Institute of Technology
Andrew F. Peterson – Georgia Institute of Technology
M. Chris Wernicki, Ph.D. – NYIT
David Baumann – Lake Superior State University
Jesmin Khan – Tuskegee University
Dr. S. Hossein Mousavinezhad – Idaho State University
Kiyun Han – Wichita State University
Anand Gopinath – University of Minnesota
Donald M. Keller – Point Park University
Argyrios VAronides – University of Scranton
Otsebele Nare – Hampton University
Robert Wayne Scharstein – University of Alabama
Virgil Thomason – University of Tennessee at Chattanooga
Gregory M. Wilkins, Ph.D. – Morgan State University
Mark A. Jerabek – West Virginia University
James Richie – Marquette University
Dean Johnson – Western Michigan
David A. Rogers – North Dakota State University
Tomasz Petelenz – University of Utah
Surendra Singh – The University of Tulsa
Tom Vandervelde – Tufts
John Zwart – Dordt College
Taan ElAli – Embry-Riddle Aeronautical University
R. Clive Woods – Louisiana State University
Jack Adams – Merrimack College

I also acknowledge the feedback and many comments from students, too numerous to 
name, including several who have contacted me from afar. I continue to be open and 
grateful for this feedback and can be reached at john.buck@ece.gatech.edu. Many 
suggestions were made that I considered constructive and actionable. I regret that 
not all could be incorporated because of time restrictions. Creating this book was 
a team effort, involving several outstanding people at McGraw-Hill. These include 
my editors, Raghu Srinivasan and Tomm Scaife, whose vision and encouragement 
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were invaluable. Jenilynn McAtee and Lora Neyens deftly coordinated the production 
phase with excellent ideas and enthusiasm, and Tina Bower, who was my guide and 
conscience from the beginning, providing valuable insights, and jarring me into ac-
tion when necessary. I am, as usual in these projects, grateful to a patient and sup-
portive family.

John A. Buck 
Marietta, Georgia 

May, 2017 
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1

C H A P T E R 

Vector Analysis

V ector analysis is a subject that is better taught by mathematicians than by 
engineers. Most junior and senior engineering students have not had the time 
(or the inclination) to take a course in vector analysis, although it is likely that 

vector concepts and operations were introduced in the calculus courses. These are cov-
ered in this chapter, and the time devoted to them now should depend on past exposure.

The viewpoint here is that of the engineer or physicist and not that of the math-
ematician. Proofs are indicated rather than rigorously expounded, and physical inter-
pretation is stressed. It is easier for engineers to take a more rigorous course in the 
mathematics department after they have been presented with a few physical pictures 
and applications.

Vector analysis is a mathematical shorthand. It has some new symbols and some 
new rules, and it demands concentration and practice. The drill problems, first found 
at the end of Section 1.4, should be considered part of the text and should all be 
worked. They should not prove to be difficult if the material in the accompanying 
section of the text has been thoroughly understood. ■

1.1 SCALARS AND VECTORS
The term scalar refers to a quantity whose value may be represented by a single (pos-
itive or negative) real number. The x, y, and z we use in basic algebra are scalars, as 
are the quantities they represent. If we speak of a body falling a distance L in a time 
t, or the temperature T at any point whose coordinates are x, y, and z, then L, t, T, x,
y, and z are all scalars. Other scalar quantities are mass, density, pressure (but not 
force), volume, volume resistivity, and voltage.

A vector quantity has both a magnitude1 and a direction in space. We are con-
cerned with two- and three-dimensional spaces only, but vectors may be defined in 

1

1 We adopt the convention that magnitude infers absolute value; the magnitude of any quantity is 
 therefore always positive.
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E N G I N E E R I N G  E L E C T R O M AG N E T I C S2

n-dimensional space in more advanced applications. Force, velocity, acceleration, 
and a straight line from the positive to the negative terminal of a storage battery 
are examples of vectors. Each quantity is characterized by both a magnitude and a 
direction.

Our work will mainly concern scalar and vector fields. A field (scalar or vector) 
may be defined mathematically as some function that connects an arbitrary origin to 
a general point in space. We usually associate some physical effect with a field, such 
as the force on a compass needle in the earth’s magnetic field, or the movement of 
smoke particles in the field defined by the vector velocity of air in some region of 
space. Note that the field concept invariably is related to a region. Some quantity is 
defined at every point in a region. Both scalar fields and vector fields exist. The tem-
perature and the density at any point in the earth are examples of scalar fields. The 
gravitational and magnetic fields of the earth, the voltage gradient in a cable, and the 
temperature gradient in a soldering-iron tip are examples of vector fields. The value 
of a field varies in general with both position and time.

In this book, as in most others using vector notation, vectors will be indicated 
by boldface type, for example, A. Scalars are printed in italic type, for example, A. 
When writing longhand, it is customary to draw a line or an arrow over a vector quan-
tity to show its vector character. (CAUTION: This is the first pitfall. Sloppy notation, 
such as the omission of the line or arrow symbol for a vector, is the major cause of 
errors in vector analysis.)

1.2 VECTOR ALGEBRA
In this section, the rules of vector arithmetic, vector algebra, and (later) vector calcu-
lus are defined. Some of the rules will be similar to those of scalar algebra, some will 
differ slightly, and some will be entirely new.

1.2.1 Addition and Subtraction

The addition of vectors follows the parallelogram law. Figure 1.1 shows the sum of 
two vectors, A and B. It is easily seen that A + B = B + A, or that vector addition 
obeys the commutative law. Vector addition also obeys the associative law,

A + (B + C) = (A + B) + C

Note that when a vector is drawn as an arrow of finite length, its location is de-
fined to be at the tail end of the arrow.

Coplanar vectors are vectors lying in a common plane, such as those shown in 
Figure 1.1. Both lie in the plane of the paper and may be added by expressing each 
vector in terms of “horizontal” and “vertical” components and then adding the cor-
responding components.

Vectors in three dimensions may likewise be added by expressing the vectors 
in terms of three components and adding the corresponding components. Examples 
of this process of addition will be given after vector components are discussed in 
Section 1.4.
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C H A P T E R  1  Vector Analysis 3

The rule for the subtraction of vectors follows easily from that for addition, for 
we may always express A − B as A + (−B); the sign, or direction, of the second vec-
tor is reversed, and this vector is then added to the first by the rule for vector addition.

1.2.2 Multiplication and Division

Vectors may be multiplied by scalars. The magnitude of the vector changes, but its 
direction does not when the scalar is positive, although it reverses direction when 
multiplied by a negative scalar. Multiplication of a vector by a scalar also obeys the 
associative and distributive laws of algebra, leading to

(r + s) (A + B) = r(A + B) + s(A + B) = rA + rB + sA + sB

Division of a vector by a scalar is merely multiplication by the reciprocal of that 
scalar. The multiplication of a vector by a vector is discussed in Sections 1.6 and 1.7. 
Two vectors are said to be equal if their difference is zero, or A = B if A − B = 0.

In our use of vector fields we always add and subtract vectors that are defined at 
the same point. For example, the total magnetic field about a small horseshoe magnet 
will be shown to be the sum of the fields produced by the earth and the permanent 
magnet; the total field at any point is the sum of the individual fields at that point.

1.3 THE RECTANGULAR COORDINATE SYSTEM
To describe a vector accurately, some specific lengths, directions, angles, projec-
tions, or components must be given. There are three simple coordinate systems by 
which this is done, and about eight or ten other systems that are useful in very special 
cases. We are going to use only the three simple systems, the simplest of which is the 
rectangular, or rectangular cartesian, coordinate system.

1.3.1 Right-Handed Coordinate Systems

In the rectangular coordinate system we set up three coordinate axes mutually at 
right angles to each other and call them the x, y, and z axes. It is customary to choose 
a right-handed coordinate system, in which a rotation (through the smaller angle) 
of the x axis into the y axis would cause a right-handed screw to progress in the 
direction of the z axis. If the right hand is used, then the thumb, forefinger, and 

B

A + B A + BA

B

A

Figure 1.1  Two vectors may be added graphically either by 
drawing both vectors from a common origin and completing the 
parallelogram or by beginning the second vector from the head of 
the first and completing the triangle; either method is easily extended 
to three or more vectors.
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E N G I N E E R I N G  E L E C T R O M AG N E T I C S4

middle finger may be identified, respectively, as the x, y, and z axes. Figure 1.2a 
shows a right-handed rectangular coordinate system. A point is located by giving 
its x, y, and z coordinates. These are, respectively, the distances from the origin to 
the intersection of perpendicular lines dropped from the point to the x, y, and z axes.

1.3.2 Point Locations as Intersections of Planes

An alternative method of interpreting coordinate values, which must be used in all 
other coordinate systems, is to consider a point as being at the common intersec-
tion of three surfaces. In rectangular coordinates, these are the planes x = constant,  
y = constant, and z = constant, where the constants are the coordinate values of 
the point.

Figure 1.2b shows points P and Q whose coordinates are (1, 2, 3) and (2, −2, 1), 
respectively. Point P is therefore located at the common point of intersection of the 

Figure 1.2  (a) A right-handed rectangular coordinate system. If the curved fingers of the 
right hand indicate the direction through which the x axis is turned into coincidence with the 
y axis, the thumb shows the direction of the z axis. (b) The location of points P(1, 2, 3) and 
Q(2, −2, 1). (c) The differential volume element in rectangular coordinates; dx, dy, and dz 
are, in general, independent differentials.

Origin
y = 0 plane

z = 0 plane

P(1, 2, 3)
P'

Volume = dx dy dz

dx dy

dx dzdy dz

dy
dx

dz

Q(2, –2, 1)

(a)

(b) (c)

x = 0 plane

z

zz

x

x

y

y

y

x
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C H A P T E R  1  Vector Analysis 5

planes x = 1, y = 2, and z = 3, whereas point Q is located at the intersection of the 
planes x = 2, y = −2, and z = 1.

In other coordinate systems, as discussed in Sections 1.8 and 1.9, we expect 
points to be located at the common intersection of three surfaces, not necessarily 
planes, but still mutually perpendicular at the point of intersection.

If we visualize three planes intersecting at the general point P, whose coordinates 
are x, y, and z, we may increase each coordinate value by a differential amount and 
obtain three slightly displaced planes intersecting at point P′, whose coordinates are 
x + dx, y + dy, and z + dz. The six planes define a rectangular parallelepiped whose 
volume is dv = dxdydz; the surfaces have differential areas dS of dxdy, dydz, and 
dzdx. Finally, the distance dL from P to P′ is the diagonal of the parallelepiped and
has a length of  √ 

________________
   (dx)   2  +  (dy)   2  +  (dz)   2   . The volume element is shown in Figure 1.2c;

point P′ is indicated, but point P is located at the only invisible corner.
All this is familiar from trigonometry or solid geometry and as yet involves only sca-

lar quantities. We will describe vectors in terms of a coordinate system in the next section.

1.4  VECTOR COMPONENTS 
AND UNIT VECTORS

To describe a vector in the rectangular coordinate system, first consider a vector r 
extending outward from the origin. A logical way to identify this vector is by giving 
the three component vectors, lying along the three coordinate axes, whose vector 
sum must be the given vector. If the component vectors of the vector r are x, y, and 
z, then r = x + y + z. The component vectors are shown in Figure 1.3a. Instead of 
one vector, we now have three, but this is a step forward because the three vectors 
are of a very simple nature; each is always directed along one of the coordinate axes.

The component vectors in Figure 1.3 have magnitudes that depend on the given 
vector (such as r), but they each have a known and constant direction. This suggests 
the use of unit vectors having unit magnitude by definition; these are parallel to the 
coordinate axes and they point in the direction of increasing coordinate values. We 
reserve the symbol a for a unit vector and identify its direction by an appropriate sub-
script. Thus ax, ay, and az are the unit vectors in the rectangular coordinate system.2 
They are directed along the x, y, and z axes, respectively, as shown in Figure 1.3b.

If the component vector y happens to be two units in magnitude and directed 
toward increasing values of y, we then write y = 2ay. A vector rP pointing from the 
origin to point P(1, 2, 3) is written rP = ax + 2ay + 3az. The vector from P to Q is 
obtained by applying the rule of vector addition. This rule shows that the vector from 
the origin to P plus the vector from P to Q is equal to the vector from the origin to Q. 
The desired vector from P(1, 2, 3) to Q(2, −2, 1) is therefore

RPQ = rQ − rP = (2 − 1) ax + (−2 − 2) ay + (1 − 3) az

= ax − 4 ay − 2 az

The vectors rP, rQ, and RPQ are shown in Figure 1.3c.

2 The symbols i, j, and k are also commonly used for the unit vectors in rectangular coordinates.
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The last vector does not extend outward from the origin, as did the vector r we 
initially considered. However, we have already learned that vectors having the same 
magnitude and pointing in the same direction are equal, so we see that to help our 
visualization processes we are at liberty to slide any vector over to the origin before 
determining its component vectors. Parallelism must, of course, be maintained dur-
ing the sliding process.

In discussing a force vector F, or any vector other than a displacement-type 
vector such as r, the problem arises of providing suitable letters for the three compo-
nent vectors. It would not do to call them x, y, and z, for these are displacements, or 
directed distances, and are measured in meters (abbreviated m) or some other unit of 
length. The problem is most often avoided by using component scalars, simply called 
components, Fx,Fy, and Fz. The components are the signed magnitudes of the com-
ponent vectors. We may then write F = Fxax + Fyay + Fzaz. The component vectors 
are Fxax, Fyay, and Fzaz.

Figure 1.3 (a) The component vectors x, y, and z of vector r. (b) The unit vectors of the 
rectangular coordinate system have unit magnitude and are directed toward increasing val-
ues of their respective variables. (c) The vector RPQ is equal to the vector difference rQ − rP.

z

z

z

y y

y

x
x

x

(a) (b)

(c)

Q(2, –2, 1)

P(1, 2, 3)

rP

ay
ax

az

yr

z

x
r = x + y + z

rQ

RPQ
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C H A P T E R  1  Vector Analysis 7

Any vector B then may be described by B = Bxax + Byay + Bzaz. The magnitude 
of B written |B| or simply B, is given by

 ∣B∣ =  √ 
___________

   B  x  2  +  B  y  2  +  B  z  2  (1)

  Each of the three coordinate systems we discuss will have its three fundamental and 
mutually perpendicular unit vectors that are used to resolve any vector into its com-
ponent vectors. Unit vectors are not limited to this application. It is helpful to write a 
unit vector having a specified direction. This is easily done, for a unit vector in a given 
direction is merely a vector in that direction divided by its magnitude. A unit vector in 
the r direction is r /  √ 

_________
  x   2  +  y   2  +  z   2   , and a unit vector in the direction of the vector B is

 a  B   =   B ___________  
 √ 

___________
   B  x  2  +  B  y  2  +  B  z  2   
=   B _

 |  B | (2)

Specify the unit vector extending from the origin toward the point G(2, −2, −1).
Solution. We first construct the vector extending from the origin to point G,

G = 2ax – 2ay – az

We continue by finding the magnitude of G,

|G | =  √ 
________________

   (2)   2  +  (− 2)   2  +  (− 1)   2    = 3

and finally expressing the desired unit vector as the quotient,

 a  G   =   G ___ 
 |  G |  

   =   2 __ 3    a  x   −   2 __ 3    a  y   −   1 __ 3    a  z   = 0.667  a  x   − 0.667  a  y   − 0.333  a  z
A special symbol is desirable for a unit vector so that its character is immediately 

apparent. Symbols that have been used are uB, aB, 1B, or even b. We will consistently 
use the lowercase a with an appropriate subscript.

[NOTE: Throughout the text, drill problems appear following sections in which a 
new principle is introduced in order to allow students to test their understanding of the 
basic fact itself. The problems are useful in gaining familiarity with new terms and ideas 
and should all be worked. More general problems appear at the ends of the chapters. The 
answers to the drill problems are given in the same order as the parts of the problem.]

EXAMPLE 1 .1

D1.1. Given points M(−1, 2, 1), N(3, −3, 0), and P(−2, −3, −4), find:  
(a) RMN; (b) RMN + RMP; (c) ∣rM∣; (d) aMP; (e) ∣2rP – 3rN∣.

Ans. (a) 4ax – 5ay – az; (b) 3ax – 10ay – 6az; (c) 2.45; (d) –0.14ax – 0.7ay – 0.7az; (e) 15.56

hay28159_ch01_001-025.indd   7 27/11/17   11:29 am



E N G I N E E R I N G  E L E C T R O M AG N E T I C S8

1.5 THE VECTOR FIELD
We have defined a vector field as a vector function of a position vector. In general, 
the magnitude and direction of the function will change as we move throughout the 
region, and the value of the vector function must be determined using the coordinate 
values of the point in question. In the rectangular coordinate system, the vector will 
be a function of the variables x, y, and z.

Again, representing the position vector as r, a vector field G can be expressed in 
functional notation as G(r); a scalar field T is written as T(r).

If we inspect the velocity of the water in the ocean in some region near the surface 
where tides and currents are important, we might decide to represent it by a velocity 
vector that is in any direction, even up or down. If the z axis is taken as upward, the  
x axis in a northerly direction, the y axis to the west, and the origin at the surface, we 
have a right-handed coordinate system and may write the velocity vector as v = vxax + 
vyay + vzaz, or v(r) = vx(r)ax + vy(r)ay + vz(r)az; each of the components vx, vy, and vz 
may be a function of the three variables x, y, and z. If we are in some portion of the Gulf 
Stream where the water is moving only to the north, then vy and vz are zero. Further 
simplifying assumptions might be made if the velocity falls off with depth and changes 
very slowly as we move north, south, east, or west. A suitable expression could be  
v = 2ez /100ax. We have a velocity of 2 m/s (meters per second) at the surface and a 
velocity of 0.368 × 2, or 0.736 m/s, at a depth of 100 m (z = −100). The velocity con-
tinues to decrease with depth while maintaining a constant direction. 

1.6 THE DOT PRODUCT
The dot product (or scalar product) is used to multiply a given vector field by the compo-
nent of another field that is parallel to the first. This gives the same result when the roles 
of the fields are reversed. In that sense, the dot product is a projection operation, which 
can be used to obtain the magnitude of a given field in a specific direction in space.

1.6.1 Geometric Definition

Given two vectors A and B, the dot product is geometrically defined as the product of 
the magnitude of A, the magnitude of B, and the cosine of the smaller angle between 
them, thus projecting one field onto the other:

 A · B =  |  A |   |  B |   cos  θ  AB (3)

D1.2. A vector field S is expressed in rectangular coordinates as S = 
{ 125/[(x − 1)2 + (y − 2)2 + (z + 1)2]}{(x − 1)ax + (y − 2)ay + (z + 1)az}.  
(a) Evaluate S at P(2, 4, 3). (b) Determine a unit vector that gives the  
direction of S at P. (c) Specify the surface f (x, y, z) on which |S| = 1.

Ans. (a) 5.95ax + 11.90ay + 23.8az; (b) 0.218ax + 0.436ay + 0.873az; 
(c)   √ 

______________________
   (x – 1)2 + (y – 2)2 + (z + 1)2    = 125
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C H A P T E R  1  Vector Analysis 9

The dot appears between the two vectors and should be made heavy for emphasis. 
The dot, or scalar, product is a scalar, as one of the names implies, and it obeys the 
commutative law,

 A · B = B · A (4)

for the sign of the angle does not affect the cosine term. The expression A · B is read 
“A dot B.”

A common application of the dot product is in mechanics, where a constant force 
F applied over a straight displacement L does an amount of work FL cos θ, which is 
more easily written F · L. If the force varies along the path, integration is necessary 
to find the total work (as is taken up in Chapter 4), and the result becomes

Work = ∫ F · dL

Another example occurs in magnetic fields. The total flux Φ crossing a surface 
of area S is given by BS if the magnetic flux density B is perpendicular to the surface 
and uniform over it. We define a vector surface S as having area for its magnitude 
and having a direction normal to the surface (avoiding for the moment the problem 
of which of the two possible normals to take). The flux crossing the surface is then  
B · S. This expression is valid for any direction of the uniform magnetic flux density.  
If the flux density is not constant over the surface, the total flux is Φ = ∫  B · d S.
Integrals of this general form appear in Chapter 3  in the context of electric  
flux density.

1.6.2 Operational Definition

Finding the angle between two vectors in three-dimensional space is often a 
job we would prefer to avoid, and for that reason the definition of the dot 
product is usually not used in its basic form. A more helpful result is obtained  
by considering two vectors whose rectangular components are given, such as  
A = Axax + Ayay + Azaz and B = Bxax + Byay + Bzaz. The dot product also 
obeys the distributive law, and, therefore, A · B yields the sum of nine scalar 
terms, each involving the dot product of two unit vectors. Because the an-
gle between two different unit vectors of the rectangular coordinate system is  
90°, we then have

ax · ay = ay · ax = ax · az = az · ax = ay · az = az · ay = 0

The remaining three terms involve the dot product of a unit vector with itself, which 
is unity, giving finally the operational definition:

 A · B =  A  x    B  x   +  A  y    B  y   +  A  z    B  z   (5)

which is an expression involving no angles.
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A vector dotted with itself yields the magnitude squared, or

 A · A =  A   2  =  |  A   |     2  (6)

and any unit vector dotted with itself is unity,

 a  A   ·  a  A   = 1

One of the most important applications of the dot product is that of finding the 
component of a vector in a given direction. Referring to Figure 1.4a, we can obtain 
the component (scalar) of B in the direction specified by the unit vector a as

B · a = |B| |a| cos θBa = |B| cos θBa

The sign of the component is positive if 0 ≤ θBa ≤ 90◦ and negative whenever 90◦ ≤ 
θBa ≤ 180◦.

To obtain the component vector of B in the direction of a, we multiply the com-
ponent (scalar) by a, as illustrated by Figure 1.4b. For example, the component of  
B in the direction of ax is B · ax = Bx, and the component vector is Bxax, or (B · ax)ax. 
Hence, the problem of finding the component of a vector in any direction becomes 
the problem of finding a unit vector in that direction, and that we can do.

The geometrical term projection is also used with the dot product. Thus, B · a is 
the projection of B in the a direction.

(a)

B B

aa

B ∙ a (B ∙ a) a

θBaθBa

(b)

Figure 1.4 (a) The scalar component of B in the direction of the unit vector a is  
B · a. (b) The vector component of B in the direction of the unit vector a is (B · a)a.

EXAMPLE 1 .2

In order to illustrate these definitions and operations, consider the vector field  
G = yax − 2.5xay + 3az and the point Q(4, 5, 2). We wish to find: G at Q; the scalar 
component of G at Q in the direction of  a  N   =   1 __ 3   (2  a  x   +  a  y   − 2  a  z  ); the vector com-
ponent of G at Q in the direction of aN; and finally, the angle θGa between G(rQ) 
and aN.
Solution. Substituting the coordinates of point Q into the expression for G, we have

G(rQ) = 5ax − 10ay + 3az
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1.7 THE CROSS PRODUCT
Here, we introduce the second special vector operation, the cross product (or vector 
product). This operation effectively multiplies one vector field by the component of 
another field that is perpendicular to the first. The result is specified as a third field 
that is normal to both fields at every point. In that sense, the operation is slightly 
more complicated than the dot product in that the result is a vector, rather than a sca-
lar. Many physical phenomena are well described by a cross product of some kind; 
this is particularly true in electromagnetics as we will see.

1.7.1 Geometric Definition

Given two vectors A and B, we now define the cross product, or vector product, of 
A and B, written with a cross between the two vectors as A × B and read “A cross 
B.” The cross product A × B is a vector; the magnitude of A × B is equal to the 
product of the magnitudes of A, B, and the sine of the smaller angle between A and 
B; the direction of A × B is perpendicular to the plane containing A and B and is 
along one of the two possible perpendiculars which is in the direction of advance of 
a right-handed screw as A is turned into B. This direction is illustrated in Figure 1.5. 
Remember that either vector may be moved about at will, maintaining its direction 
constant, until the two vectors have a “common origin.” This determines the plane 
containing both. However, in most of our applications we will be concerned with 
vectors defined at the same point.

D1.3. The three vertices of a triangle are located at A(6, −1, 2), B(−2, 3, −4), 
and C(−3, 1, 5). Find: (a) RAB; (b) RAC; (c) the angle θBAC at vertex A; (d) the  
(vector) projection of RAB on RAC 

.

Ans. (a) −8ax + 4ay − 6az; (b) −9ax + 2ay + 3az; (c) 53.6◦; (d) −5.94ax + 1.319ay + 1.979az

Next we find the scalar component. Using the dot product, we have

G ·  a  N   = (5 a  x   − 10 a  y   + 3 a  z  ) ·   1 __ 3   (2 a  x   +  a  y   − 2  a  z  ) =   1 __ 3   (10 − 10 − 6 ) = −2

The vector component is obtained by multiplying the scalar component by the unit 
vector in the direction of aN,

(G ·  a  N   )  a  N   = −(2)    1 __ 3   (2  a  x   +  a  y   − 2  a  z  ) = −1.333  a  x   − 0.667  a  y   + 1.333  a  z
The angle between G(rQ) and aN is found from

 
G ·  a  N  

 
  =  |  G |  cos  θ  Ga     
=   √ 

__________
  25 + 100 + 9   cos  θ  Ga

and
 θ  Ga   =  cos   −1    − 2 ___ 

 √ 
____

 134  
   =  99.9   ° 

–2
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As an equation we can write

A × B = aN |A| |B| sin θAB
(7)

where an additional statement, such as that given above, is required to explain the 
direction of the unit vector aN. The subscript N stands for “normal.”

Reversing the order of the vectors A and B results in a unit vector in the opposite  
direction, and we see that the cross product is not commutative, for B × A = −(A × B).  
If the definition of the cross product is applied to the unit vectors ax and ay, we 
find ax × ay = az, for each vector has unit magnitude, the two vectors are per-
pendicular, and the rotation of ax into ay indicates the positive z direction by the 
definition of a right-handed coordinate system. In a similar way, ay × az = ax and 
az × ax = ay. Note the alphabetic symmetry. As long as the three vectors ax, ay, 
and az are written in order (and assuming that ax follows az, like three elephants 
in a circle holding tails, so that we could also write ay, az, ax or az, ax, ay), then 
the cross and equal sign may be placed in either of the two vacant spaces. As a 
matter of fact, it is now simpler to define a right-handed rectangular coordinate 
system by saying that ax × ay = az.

A simple example of the use of the cross product may be taken from geometry 
or trigonometry. To find the area of a parallelogram, the product of the lengths of 
two adjacent sides is multiplied by the sine of the angle between them. Using vector 
notation for the two sides, we then may express the (scalar) area as the magnitude of 
A × B, or |A × B|.

The cross product may be used to replace the right-hand rule familiar to all 
electrical engineers. Consider the force on a straight conductor of length L, where 
the direction assigned to L corresponds to the direction of the steady current I, and 

A × B

A

BθAB

Figure 1.5  The direction of A × B is in
the direction of advance of a right-handed 
screw as A is turned into B.
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C H A P T E R  1  Vector Analysis 13

a uniform magnetic field of flux density B is present. Using vector notation, we 
may write the result neatly as F = I L × B. This relationship will be obtained later 
in Chapter 8.

1.7.2 Operational Definition

The evaluation of a cross product by means of its definition turns out to be more work 
than the evaluation of the dot product from its definition, for not only must we find 
the angle between the vectors, but we must also find an expression for the unit vector 
aN. This work may be avoided by using rectangular components for the two vectors 
A and B and expanding the cross product as a sum of nine simpler cross products, 
each involving two unit vectors,

A × B = 
 
 A  x    B  x    a  x   ×  a  x   +  A  x    B  y    a  x   ×  a  y   +  A  x    B  z    a  x   ×  a  z

     +  A  y    B  x    a  y   ×  a  x   +  A  y    B  y    a  y   ×  a  y   +  A  y    B  z    a  y   ×  a  z        
+  A  z    B  x    a  z   ×  a  x   +  A  z    B  y    a  z   ×  a  y   +  A  z    B  z    a  z   ×  a  z  

  

We have already found that ax × ay = az, ay × az = ax, and az × ax = ay. The three 
remaining terms are zero, for the cross product of any vector with itself is zero, since 
the included angle is zero. These results may be combined to give the operational 
definition in rectangular coordinates:

 A × B = ( A  y    B  z   −  A  z    B  y   )  a  x   + ( A  z    B  x   −  A  x    B  z   )  a  y   + ( A  x    B  y   −  A  y    B  x  )  a  z   

This can be written as a determinant in a more easily remembered form:

 A × B =   |       a  x  
  

 a  y  
  

 a  z  
   A  x     A  y     A  z     

 B  x  
  

 B  y  
  

 B  z  
     | (9)

Thus, if A = 2ax − 3ay + az and B = −4ax − 2ay + 5az, we have

A × B
 
 =   |     a  x  

  
 a  y  

  
 a  z  

  2  − 3  1  
− 4

  
− 2

  
5
   |   

 = [(− 3) (5) −  (1(− 2)] a  x   − [(2) (5) −  (1) (− 4)] a  y   + [(2) (− 2) −  (− 3) (− 4)] a  z  
 = − 13  a  x   − 14  a  y   − 16  a  z  

(8)

D1.4. The three vertices of a triangle are located at A(6, −1, 2), B(−2, 3, −4), 
and C(−3, 1, 5). Find: (a) RAB × RAC; (b) the area of the triangle; (c) a unit 
vector perpendicular to the plane in which the triangle is located. 

Ans. (a) 24ax + 78ay + 20az; (b) 42.0; (c) 0.286ax + 0.928ay + 0.238az
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1.8  OTHER COORDINATE SYSTEMS: 
CIRCULAR CYLINDRICAL COORDINATES

The rectangular coordinate system is generally the one in which students prefer to 
work every problem. This often means a lot more work, because many problems 
possess a type of symmetry that pleads for a more logical treatment. It is easier to 
do now, once and for all, the work required to become familiar with cylindrical and 
spherical coordinates, instead of applying an equal or greater effort to every problem 
involving cylindrical or spherical symmetry later. With this in mind, we will take a 
careful and unhurried look at cylindrical and spherical coordinates.

1.8.1 Point Coordinates

The circular cylindrical coordinate system is the three-dimensional version of the polar 
coordinates of analytic geometry. In polar coordinates, a point is located in a plane by giv-
ing both its distance ρ from the origin and the angle ϕ between the line from the point to 
the origin and an arbitrary radial line, taken as ϕ = 0.3 In circular cylindrical coordinates, 
we also specify the distance z of the point from an arbitrary z = 0 reference plane. For 
simplicity, we usually refer to circular cylindrical coordinates simply as cylindrical coor-
dinates. This will not cause any confusion in reading this book, but it is only fair to point 
out that there are such systems as elliptic cylindrical coordinates, hyperbolic cylindrical 
coordinates, parabolic cylindrical coordinates, and others.

We no longer set up three axes as with rectangular coordinates, but we must in-
stead consider any point as the intersection of three mutually perpendicular surfaces. 
These surfaces are a circular cylinder (ρ = constant), a plane (ϕ = constant), and an-
other plane (z = constant). This corresponds to the location of a point in a rectangular 
coordinate system by the intersection of three planes (x = constant, y = constant, and 
z = constant). The three surfaces of circular cylindrical coordinates are shown in 
Figure 1.6a. Note that three such surfaces may be passed through any point, unless it 
lies on the z axis, in which case one plane suffices.

1.8.2 Unit Vectors

Three unit vectors are defined for the cylindrical system, but we may no longer direct 
them along the “coordinate axes,” for such axes exist only in rectangular coordinates. 
Instead, we take a broader view of the unit vectors in rectangular coordinates and real-
ize that they are directed toward increasing coordinate values and are perpendicular to 
the surface on which that coordinate value is constant (i.e., the unit vector ax is normal 
to the plane x = constant and points toward larger values of x). In a corresponding way 
we may now define three unit vectors in cylindrical coordinates, aρ, aϕ, and az.

3 The two variables of polar coordinates are commonly called r and θ. With three coordinates, however, 
it is more common to use ρ for the radius variable of cylindrical coordinates and r for the (different)  
radius variable of spherical coordinates. Also, the angle variable of cylindrical coordinates is custom-
arily called ϕ because everyone uses θ for a different angle in spherical coordinates. The angle ϕ is 
common to both cylindrical and spherical coordinates. See?
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C H A P T E R  1  Vector Analysis 15

The unit vector aρ at a point P(ρ1, ϕ1, z1) is directed radially outward, normal to 
the cylindrical surface ρ = ρ1. It lies in the planes ϕ = ϕ1 and z = z1. The unit vector 
aϕ is normal to the plane ϕ = ϕ1, points in the direction of increasing ϕ, lies in the 
plane z = z1, and is tangent to the cylindrical surface ρ = ρ1. The unit vector az is  
the same as the unit vector az of the rectangular coordinate system. Figure 1.6b shows 
the three vectors in cylindrical coordinates.

In rectangular coordinates, the unit vectors are not functions of the coordinates. 
Two of the unit vectors in cylindrical coordinates, aρ and aϕ, however, do vary with 
the coordinate ϕ, as their directions change. In integration or differentiation with 
respect to ϕ, then, aρ and aϕ must not be treated as constants.

The unit vectors are again mutually perpendicular, for each is normal to one of 
the three mutually perpendicular surfaces, and we may define a right-handed cylin-
drical coordinate system as one in which aρ × aϕ = az, or (for those who have flexible 
fingers) as one in which the thumb, forefinger, and middle finger point in the direc-
tion of increasing ρ, ϕ, and z, respectively.

Figure 1.6 (a) The three mutually perpendicular surfaces of the circular cylindrical co-
ordinate system. (b) The three unit vectors of the circular cylindrical coordinate system. 
(c) The differential volume unit in the circular cylindrical coordinate system; dρ, ρd, and 
dz are all elements of length.

(c)

z + dz z

z

dz

dρ

ρ + dρ
ϕ + dϕ

ρdϕ
ρ

ρ ρ1
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P

ϕ

ϕ

ϕ = a constant
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y y

y

z z
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z
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1.8.3 Differential Area and Volume

A differential volume element in cylindrical coordinates may be obtained by increas-
ing ρ, ϕ, and z by the differential increments dρ, dϕ, and dz. The two cylinders of 
radius ρ and ρ + dρ, the two radial planes at angles ϕ and ϕ + dϕ, and the two “hori-
zontal” planes at “elevations” z and z + dz now enclose a small volume, as shown in 
Figure 1.6c, having the shape of a truncated wedge. As the volume element becomes 
very small, its shape approaches that of a rectangular parallelepiped having sides of 
length dρ, ρdϕ, and dz. Note that dρ and dz are dimensionally lengths, but dϕ is not; 
ρdϕ is the length. The surfaces have areas of ρ dρ dϕ, dρ dz, and ρ dϕ dz, and the 
volume is the product of the three side lengths, or ρ dρ dϕ dz.

1.8.4 Point Transformations

The variables of the rectangular and cylindrical coordinate systems are easily related 
to each other. Referring to Figure 1.7, we see that

 x = ρ cos ϕ
y = ρ sin ϕ
z = z 

From the other viewpoint, we may express the cylindrical variables in terms of x, y, 
and z:

 ρ =  √ 
_____

  x   2  +  y   2     (ρ ≥ 0 )
 ϕ =  tan   −1    y_x
 z = z

(10)

(11)

Figure 1.7 The relationship between 
the rectangular variables x, y, z and the 
cylindrical coordinate variables ρ, , 
z. There is no change in the variable z
between the two systems.

ϕ

ρ sin ϕ
ρ cos ϕ ρ

x

y

z

P

z
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We consider the variable ρ to be positive or zero, thus using only the positive sign for 
the radical in (11). The proper value of the angle ϕ is determined by inspecting the 
signs of x and y. Thus, if x = −3 and y = 4, we find that the point lies in the second 
quadrant so that ρ = 5 and ϕ = 126.9°. For x = 3 and y = −4, we have ϕ = −53.1°  
or 306.9°, whichever is more convenient.

Using (10) or (11), scalar functions given in one coordinate system are easily 
transformed into the other system.

1.8.5 Vector Component Transformations

A vector function in one coordinate system requires two steps in order to transform it 
to another coordinate system, because a different set of component vectors is gener-
ally required. That is, we may be given a rectangular vector

A =  A  x    a  x   +  A  y    a  y   +  A  z    a  z  

where each component is given as a function of x, y, and z, and we need a vector in 
cylindrical coordinates

A =  A  ρ    a  ρ   +  A  ϕ    a  ϕ   +  A  z    a  z  

where each component is given as a function of ρ, ϕ, and z.
To find any desired component of a vector, we recall from the discussion of the 

dot product that a component in a desired direction may be obtained by taking the dot 
product of the vector and a unit vector in the desired direction. Hence,

 A  ρ   = A ·  a  ρ     and    A  ϕ   = A ·  a  ϕ  

In other words, Aρ and Aϕ are the projections of A into the aρ and aϕ directions. Ex-
panding these dot products, we have

  A  ρ   = ( A  x    a  x   +  A  y    a  y   +  A  z    a  z   ) ·  a  ρ   =  A  x    a  x   ·  a  ρ   +  A  y    a  y   ·  a  ρ   
  A  ϕ   = ( A  x    a  x   +  A  y    a  y   +  A  z    a  z  ) ·  a  ϕ   =  A  x    a  x   ·  a  ϕ   +  A  y    a  y   ·  a  ϕ   

and
  A  z   = ( A  x    a  x   +  A  y    a  y   +  A  z    a  z   ) ·  a  z   =  A  z    a  z   ·  a  z   =  A  z   

since az · aρ and az · aϕ are zero.
In order to complete the transformation of the components, it is necessary to 

know the dot products ax · aρ, ay · aρ, ax · aϕ, and ay · aϕ. Applying the definition 
of the dot product, we see that since we are concerned with unit vectors, the re-
sult is merely the cosine of the angle between the two unit vectors in question. 
Referring to Figure 1.7 and thinking mightily, we identify the angle between ax 
and aρ as ϕ, and thus ax · aρ = cos ϕ, but the angle between ay and aρ is 90° − 
ϕ, and ay · aρ = cos (90° − ϕ) = sin ϕ. The remaining dot products of the unit 
vectors are found in a similar manner, and the results are tabulated as functions 
of ϕ in Table 1.1.

(12)
(13)

(14)
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Transforming vectors from rectangular to cylindrical coordinates or vice versa 
is therefore accomplished by using (10) or (11) to change variables, and by using the 
dot products of the unit vectors given in Table 1.1 to change components. The two 
steps may be taken in either order.

Table 1.1  Dot products of unit vectors in cylindrical 
and rectangular coordinate systems

aρ aϕ az

ax · cosϕ −sinϕ 0
ay · sinϕ cosϕ 0
az · 0 0 1

D1.5. (a) Give the rectangular coordinates of the point C (ρ = 4.4, ϕ = −115°,
z = 2). (b) Give the cylindrical coordinates of the point D (x = −3.1, y = 2.6,
z = −3). (c) Specify the distance from C to D. 
Ans. (a) C(x = −1.860, y = −3.99, z = 2); (b) D(ρ = 4.05, ϕ = 140.0◦, z = −3); (c) 8.36

D1.6.  Transform to cylindrical coordinates: (a) F = 10ax − 8ay + 6az at point 
P(10, −8, 6); (b) G = (2x + y)ax − (y − 4x)ay at point Q (ρ, ϕ, z). (c) Give 
the rectangular components of the vector H = 20aρ − 10aϕ + 3az at P(x = 5,
y = 2, z = −1). 
Ans. (a) 12.81aρ + 6az; (b) (2ρ cos2 ϕ − ρ sin2 ϕ + 5ρ sin ϕ cos ϕ)aρ + (4ρ cos2 ϕ −  
ρ sin2 ϕ − 3ρ sin ϕ cos ϕ)aϕ; (c) Hx = 22.3, Hy = −1.857, Hz = 3

1.9 THE SPHERICAL COORDINATE SYSTEM
We have no two-dimensional coordinate system to help us understand the three- 
dimensional spherical coordinate system, as we have for the circular cylindri-
cal coordinate system. In certain respects we can draw on our knowledge of the  

EXAMPLE 1 .3

Transform the vector B = yax − xay + zaz into cylindrical coordinates.
Solution. The new components are

Bρ = B · a! = y(ax · a!) − x(ay · a!)
= y cos ϕ − x sin ϕ = ρ sin ϕ cos ϕ − ρ cos ϕ sin ϕ = 0

 Bϕ = B · a" = y(ax · a") − x(ay · a")
= −y sin ϕ − x cos ϕ = − ρ sin2 ϕ − ρ cos2 ϕ = − ρ

Thus,

B = − ρ  a  ϕ   + z  a  z  
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C H A P T E R  1  Vector Analysis 19

latitude-and-longitude system of locating a place on the surface of the earth, but usually 
we consider only points on the surface and not those below or above ground.

1.9.1 Coordinates of a Point

We begin by building a spherical coordinate system on the three rectangular axes 
(Figure 1.8a). The distance from the origin to any point is defined as r. The surface 
r = constant is a sphere.

The second coordinate is an angle θ between the z axis and the line drawn from 
the origin to the point in question. The surface θ = constant is a cone, and the two 
surfaces, cone and sphere, are everywhere perpendicular along their intersection, 
which is a circle of radius r sin θ. The coordinate θ corresponds to latitude, except 
that latitude is measured from the equator and θ is measured from the “North Pole.”

Figure 1.8 (a) The three spherical coordinates. (b) The three mutually perpendicular 
surfaces of the spherical coordinate system. (c) The three unit vectors of spherical coordi-
nates: ar × aθ = a. (d#) The differential volume element in the spherical coordinate system.

ϕ = a constant
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ϕ
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(sphere)
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(cone)

θ
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dr

r dθ

r sin θ dϕ

r

r

(a) (b)

(c) (d)

z

zz

y y

yy

xx

xx

z
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The third coordinate ϕ is also an angle and is exactly the same as the angle ϕ of 
cylindrical coordinates. It is the angle between the x axis and the projection in the z = 0  
plane of the line drawn from the origin to the point. It corresponds to the angle of 
longitude, but the angle ϕ increases to the “east.” The surface ϕ = constant is a plane 
passing through the θ = 0 line (or the z axis).

We again consider any point as the intersection of three mutually perpendicular 
surfaces—a sphere, a cone, and a plane—each oriented in the manner just described. 
The three surfaces are shown in Figure 1.8b.

1.9.2 Unit Vectors in Spherical Coordinates

Three unit vectors may again be defined at any point. Each unit vector is perpen-
dicular to one of the three mutually perpendicular surfaces and is oriented in that 
direction in which the coordinate increases. The unit vector ar is directed radially 
outward, normal to the sphere r = constant, and lies in the cone θ = constant and 
the plane ϕ = constant. The unit vector aθ is normal to the conical surface, lies in 
the plane, and is tangent to the sphere. It is directed along a line of “longitude” and 
points “south.” The third unit vector aϕ is the same as in cylindrical coordinates, 
being normal to the plane and tangent to both the cone and the sphere. It is directed 
to the “east.”

The three unit vectors are shown in Figure 1.8c. They are, of course, mutually 
perpendicular, and a right-handed coordinate system is defined by causing ar × aθ = 
aϕ. Our system is right-handed, as an inspection of Figure 1.8c will show, on appli-
cation of the definition of the cross product. The right-hand rule identifies the thumb, 
forefinger, and middle finger with the direction of increasing r, θ, and ϕ, respectively. 
(Note that the identification in cylindrical coordinates was with ρ, ϕ, and z, and in 
rectangular coordinates with x, y, and z.) 

1.9.3 Differential Surfaces and Volume

A differential volume element may be constructed in spherical coordinates by in-
creasing r, θ, and ϕ by dr, dθ, and dϕ, as shown in Figure 1.8d. The distance between 
the two spherical surfaces of radius r and r + dr is dr; the distance between the two 
cones having generating angles of θ and θ + dθ is rdθ; and the distance between the 
two radial planes at angles ϕ and ϕ + dϕ is found to be r sin θ dϕ, after a few mo-
ments of trigonometric thought. The surfaces have areas of r dr dθ, r sin θ dr dϕ, and 
r2 sin θ dθ dϕ, and the volume is r2 sin θ dr dθ dϕ.

1.9.4 Point Transformations

The transformation of scalars from the rectangular to the spherical coordinate system 
is easily made by using Figure 1.8a to relate the two sets of variables:

 x = r sin θ cos ϕ 
y = r sin θ sin ϕ
z = r cos θ

(15)
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The transformation in the reverse direction is achieved with the help of

Table 1.2  Dot products of unit vectors in spherical 
and rectangular coordinate systems

ar aθ   aϕ

ax · sin θ cos ϕ cosθ cos ϕ −sin ϕ
ay · sin θ sin ϕ cosθ sin ϕ cos ϕ
az · cosθ −sin θ 0

We illustrate this procedure by transforming the vector field G = (xz/y)ax into spher-
ical components and variables.
Solution. We find the three spherical components by dotting G with the appropriate 
unit vectors, and we change variables during the procedure:

Gr = G · ar =    xz __ y     ax · ar =    xz __ y     sin θ cos ϕ

 = r sin θ cos θ    
 cos2 ϕ______
sin ϕ 

EXAMPLE 1 .4

 r =  √ 
________
 x   2  +  y   2  +  z   2     (r ≥ 0) 

 θ =  cos   −1    z _______  
 √ 

________
  x   2  +  y   2  +  z   2   
          (0° ≤ θ ≤ 180  °) (16)

 ϕ =  tan   −1    y_x
The radius variable r is nonnegative, and θ is restricted to the range from 0° to 180°, inclu-
sive. The angles are placed in the proper quadrants by inspecting the signs of x, y, and z.

1.9.5 Vector Component Transformations

The transformation of vectors requires us to determine the products of the unit vec-
tors in rectangular and spherical coordinates. We work out these products from Fig-
ure 1.8c and a pinch of trigonometry. Because the dot product of any spherical unit 
vector with any rectangular unit vector is the component of the spherical vector in the 
direction of the rectangular vector, the dot products with az are found to be

az · ar = cos θ
az · aθ = − sin θ 
az · aϕ = 0

The dot products involving ax and ay require first the projection of the spherical 
unit vector on the xy plane and then the projection onto the desired axis. For example, 
ar · ax is obtained by projecting ar onto the xy plane, giving sin θ, and then projecting 
sin θ on the x axis, which yields sin θ cos ϕ. The other dot products are found in a like 
manner, and all are shown in Table 1.2.
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CHAPTER 1 PROBLEMS
1.1 If A represents a vector two units in length directed due west, B represents 

a vector three units in length directed due north, and A + B = C − D and 

Gθ = G · a# =    xz __ y     ax · a# =    xz __ y    cos θ cos ϕ

= r cos2 θ    cos2 ϕ______
sin ϕ 

 Gϕ = G · a" =    xz __ y    ax · a" =    xz __ y    (−sin ϕ)
= − r cos θ cos ϕ

Collecting these results, we have

G = r cos θ cos ϕ (sin θ cot ϕ   a  r   + cos θ cot ϕ   a  θ   −  a  ϕ   )

Appendix A describes the general curvilinear coordinate system of which the 
rectangular, circular cylindrical, and spherical coordinate systems are special cases. 
The first section of this appendix could well be scanned now.

D1.7. Given the two points, C(−3, 2, 1) and D(r = 5, θ = 20°, ϕ = −70°), find: 
(a) the spherical coordinates of C; (b) the rectangular coordinates of D; (c) the 
distance from C to D.

Ans. (a) C(r = 3.74, θ = 74.5◦, ϕ = 146.3◦); (b) D(x = 0.585, y = −1.607, z = 4.70); (c) 6.29

D1.8. Transform the following vectors to spherical coordinates at the points 
given: (a) 10ax at P(x = −3, y = 2, z = 4); (b) 10ay at Q(ρ = 5, ϕ = 30°, z = 4); 
(c) 10az at M(r = 4, θ = 110°, ϕ  = 120°). 

Ans. (a) −5.57ar − 6.18aθ − 5.55aϕ; (b) 3.90ar + 3.12aθ + 8.66aϕ; (c) −3.42ar − 9.40aθ
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2B − A = C + D, find the magnitudes and directions of C and D. Take 
north as the positive y direction. 

1.2 Vector A extends from the origin to (1, 2, 3), and vector B extends from the 
origin to (2, 3, −2). Find (a) the unit vector in the direction of (A − B);  
(b) the unit vector in the direction of the line extending from the origin to 
the midpoint of the line joining the ends of A and B.

1.3 The vector from the origin to point A is given as (6, −2, −4), and the unit 
vector directed from the origin toward point B is (2, −2, 1)/3. If points A 
and B are ten units apart, find the coordinates of point B. 

1.4 A circle, centered at the origin with a radius of 2 units, lies in the xy plane. 
Determine the unit vector in rectangular components that lies in the xy plane,
is tangent to the circle at (  √ 

__
 3  , −1, 0), and is in the general direction of

increasing values of x.

1.5 An equilateral triangle lies in the xy plane with its centroid at the origin. 
One vertex lies on the positive y axis. (a) Find unit vectors that are directed 
from the origin to the three vertices. (b) Find unit vectors that are directed 
from the origin to the three sides, intersecting these at right angles. 

1.6 Find the acute angle between the two vectors A = 2ax + ay + 3az and B = ax − 
3ay + 2az by using the definition of (a) the dot product; (b) the cross product.

1.7 Given the field F = x  a  x    + y ay. If F · G = 2xy and  F × G =  (   x   2  –  y   2  )    a  z    find G.
1.8 Demonstrate the ambiguity that results when the cross product is used to find the 

angle between two vectors by finding the angle between A = 3ax − 2ay + 4az and 
B = 2ax + ay − 2az. Does this ambiguity exist when the dot product is used?

1.9 A field is given as G = [25/(x2 + y2)](xax + yay). Find (a) a unit vector in 
the direction of G at P(3, 4, −2); (b) the angle between G and ax at P; 
(c) the value of the following double integral on the plane y = 7. 

 ∫
 0

  4 ∫
 0

  2
    G ·  a  y   dzdx

1.10 By expressing diagonals as vectors and using the definition of the dot 
product, find the smaller angle between any two diagonals of a cube, where 
each diagonal connects diametrically opposite corners and passes through 
the center of the cube.

1.11 Given the points M(0.1, −0.2, −0.1), N(−0.2, 0.1, 0.3), and P(0.4, 0, 0.1), 
find (a) the vector RMN; (b) the dot product RMN · RMP; (c) the scalar 
projection of RMN on RMP; (d) the angle between RMN and RMP . 

1.12 Write an expression in rectangular components for the vector that extends 
from (x1, y1, z1) to (x2, y2, z2) and determine the magnitude of this vector.

1.13 Find (a) the vector component of F = 10ax − 6ay + 5az that is parallel to G = 
0.1ax + 0.2ay + 0.3az; (b) the vector component of F that is perpendicular to 
G; (c) the vector component of G that is perpendicular to F. 
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1.14 Given that A + B + C = 0, where the three vectors represent line segments 
and extend from a common origin, must the three vectors be coplanar? If 
A + B + C + D = 0, are the four vectors coplanar?

1.15 Three vectors extending from the origin are given as r1 = (7, 3, −2), r2 = 
(−2, 7, −3), and r3 = (0, 2, 3). Find (a) a unit vector perpendicular to both 
r1 and r2; (b) a unit vector perpendicular to the vectors r1 − r2 and r2 − r3; 
(c) the area of the triangle defined by r1 and r2; (d) the area of the triangle 
defined by the heads of r1, r2, and r3. 

1.16 In geometrical optics, the path of a light ray can be treated as a vector having 
the usual three components in a rectangular coordinate system. When light 
reflects from a plane surface, the effect is to reverse the vector component 
of the ray that is normal to that surface. This yields a reflection angle that 
is equal to the incidence angle. Using a vector representation in rectangular 
coordinates, demonstrate what happens when a light ray reflects from a 
corner cube reflector, consisting of three mutually orthogonal surfaces 
that occupy, for example, the xy, xz, and yz planes. The ray is incident in an 
arbitrary direction within the first octant of the coordinate system and has 
initially negative x, y, and z components of travel. 

1.17 Point A(−4, 2, 5) and the two vectors, RAM = (20, 18, −10)? and RAN = (−10, 
8, 15), define a triangle. Find (a) a unit vector perpendicular to the triangle;  
(b) a unit vector in the plane of the triangle and perpendicular to RAN; (c) a unit 
vector in the plane of the triangle that bisects the interior angle at A. 

1.18 Given two fields in spherical coordinates, E = (A/r) sin θ aθ and H = 
(B/r) sin θ aϕ (a) evaluate S = E × H and express the result in rectangular 
coordinates. (b) Determine S along the x, y, and z axes.

1.19 Consider the important inverse-square radial field, expressed in spherical 
coordinates: F = Ar−2 ar where A is a constant. (a) Transform the field into 
cylindrical coordinates. (b) Transform the field into rectangular coordinates. 

1.20 If the three sides of a triangle are represented by vectors A, B, and C, all 
directed counterclockwise, show that |C|2 = (A + B) · (A + B) and expand 
the product to obtain the law of cosines.

1.21 Express in cylindrical components: (a) the vector from C(3, 2, −7) to 
D(−1, −4, 2); (b) a unit vector at D directed toward C; (c) a unit vector at 
D directed toward the origin. 

1.22 A sphere of radius a, centered at the origin, rotates about the z axis at 
angular velocity Ω rad/s. The rotation direction is clockwise when one is 
looking in the positive z direction. (a) Using spherical components, write 
an expression for the velocity field, v, that gives the tangential velocity at 
any point on the sphere surface. (b) Derive an expression for the difference 
in velocities between two points on the surface that have different latitudes, 
where the latitude difference is Δθ in radians. Assume Δθ is small. (c) Find 
the difference in velocities one degree on either side of 45° north latitude 
on earth. Take the earth’s radius as 6370 km at 45°.
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1.23 The surfaces ρ = 3, ρ = 5, ϕ = 100°, ϕ = 130°, z = 3, and z = 4.5 define 
a closed surface. Find (a) the enclosed volume; (b) the total area of the 
enclosing surface; (c) the total length of the 12 edges of the surfaces;  
(d) the length of the longest straight line that lies entirely within the volume. 

1.24 Two unit vectors, a1 and a2, lie in the xy plane and pass through the origin. 
They make angles ϕ1 and ϕ2, respectively, with the x axis (a) Express each 
vector in rectangular components; (b) take the dot product and verify the 
trigonometric identity, cos(ϕ1 − ϕ2) = cos ϕ1 cos ϕ2 + sin ϕ1 sin ϕ2;  
(c) take the cross product and verify the trigonometric identity sin(ϕ2 − ϕ1) =  
sin ϕ2 cos ϕ1 − cos ϕ2 sin ϕ1.

1.25 Convert the vector field H = A(x2+ y2)−1 [xay − yax] into cylindrical 
coordinates. A is a constant. 

1.26 Express the uniform vector field F = 10ay in (a) cylindrical components; 
(b) spherical components.

1.27 The important dipole field (to be addressed in Chapter 4) is expressed in 
spherical coordinates as

E =    A __ 
r3    (2 cos θ ar + sin θ aθ)

where A is a constant, and where r > 0. See Figure 4.9 for a sketch.  
(a) Identify the surface on which the field is entirely perpendicular to the xy 
plane and express the field on that surface in cylindrical coordinates.  
(b) Identify the coordinate axis on which the field is entirely perpendicular 
to the xy plane and express the field there in cylindrical coordinates.  
(c) Specify the surface on which the field is entirely parallel to the xy plane. 

1.28 State whether or not A = B and, if not, what conditions are imposed on 
A and B when (a) A · ax = B · ax; (b) A × ax = B × ax; (c) A · ax = B · ax 
and A × ax = B × ax; (d) A · C = B · C and A × C = B × C where C is 
any vector except C = 0.

1.29 A vector field is expressed as F = Az az where A is a constant. Evaluate the 
components of this field that are (a) normal and (b) tangent to a spherical surface 
of radius a. Express all results in spherical coordinates and components. 

1.30 Consider a problem analogous to the varying wind velocities encountered by 
transcontinental aircraft. We assume a constant altitude, a plane earth, a flight 
along the x axis from 0 to 10 units, no vertical velocity component, and no 
change in wind velocity with time. Assume ax to be directed to the east and ay 
to the north. The wind velocity at the operating altitude is assumed to be:

v(x, y ) =   
(0.01  x   2  − 0.08x + 0.66 )  a  x   − (0.05x − 0.4 )  a  y      ____________________________   

1 + 0.5  y   2 
  

Determine the location and magnitude of (a) the maximum tailwind 
encountered; (b) repeat for headwind; (c) repeat for crosswind; (d) Would 
more favorable tailwinds be available at some other latitude? If so, where?
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2 C H A P T E R

Coulomb’s Law and Electric 
Field Intensity

In this chapter, we introduce Coulomb’s electrostatic force law and then formulate 
this in a general way using field theory. The tools that will be developed can be 
used to solve any problem in which forces between static charges are to be evalu-

ated or to determine the electric field that is associated with any charge distribution. 
Initially, we will restrict the study to fields in vacuum or free space; this would apply 
to media such as air and other gases. Other materials are introduced in Chapter 5 and 
time-varying fields are introduced in Chapter 9. ■

2.1 THE EXPERIMENTAL LAW OF COULOMB
Records from at least 600 B.C. show evidence of the knowledge of static electricity. 
The Greeks were responsible for the term electricity, derived from their word for 
amber, and they spent many leisure hours rubbing a small piece of amber on their 
sleeves and observing how it would then attract pieces of fluff and stuff. However, 
their main interest lay in philosophy and logic, not in experimental science, and it 
was many centuries before the attracting effect was considered to be anything other 
than magic or a “life force.”

Dr. Gilbert, physician to Her Majesty the Queen of England, was the first to 
do any true experimental work with this effect, and in 1600 he stated that glass, 
sulfur, amber, and other materials, which he named, would “not only draw to 
themselves straws and chaff, but all metals, wood, leaves, stone, earths, even water 
and oil.”

Shortly thereafter, an officer in the French Army Engineers, Colonel Charles 
Coulomb, performed an elaborate series of experiments using a delicate torsion bal-
ance, invented by himself, to determine quantitatively the force exerted between two 
objects, each having a static charge of electricity. His published result is very similar 
to Newton’s gravitational law (discovered about a hundred years earlier). Coulomb 
stated that the force between two very small objects separated in a vacuum or free 
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space by a distance, which is large compared to their size, is proportional to the charge 
on each and inversely proportional to the square of the distance between them, or

F = k    Q  1    Q  2  ____
 R   2 

 

where Q1 and Q2 are the positive or negative quantities of charge, R is the separation, 
and k is a proportionality constant. If the International System of Units1 (SI) is used, 
Q is measured in coulombs (C), R is in meters (m), and the force should be newtons 
(N). This will be achieved if the constant of proportionality k is written as

k =   1 ____
4π  ϵ  0  

  

The new constant ϵ0 is called the permittivity of free space and has magnitude, mea-
sured in farads per meter (F/m),

  ϵ  0   = 8.854 ×  10   −12   =   ˙     1 _ 36π
    10   −9   F/m (1)

The quantity ϵ0 is not dimensionless, for Coulomb’s law shows that it has the 
label C2/N · m2. We will later define the farad and show that it has the dimensions 
C2/N · m; we have anticipated this definition by using the unit F/m in Eq. (1).

Coulomb’s law is now

 F =    Q  1    Q  2   _ 
4π  ϵ  0    R   2 

   (2)

The coulomb is an extremely large unit of charge, for the smallest known 
quantity of charge is that of the electron (negative) or proton (positive), given in SI 
units as 1.602 × 10−19 C; hence a negative charge of one coulomb represents about 
6 × 1018 electrons.2 Coulomb’s law shows that the force between two charges of one 
coulomb each, separated by one meter, is 9 × 109 N, or about one million tons. The 
electron has a rest mass of 9.109 × 10−31 kg and has a radius on the order of magni-
tude of 3.8 × 10−15 m. This does not mean that the electron is spherical, but it merely 
describes the size of the region in which a slowly moving electron has the greatest 
probability of being found. All other known charged particles, including the proton, 
have larger masses and larger radii, and they occupy a probabilistic volume larger 
than does the electron.

In order to write the vector form of (2), we need the additional fact (furnished 
also by Colonel Coulomb) that the force acts along the line joining the two charges 
and is repulsive if the charges are alike in sign or attractive if they are of opposite 
sign. Let the vector r1 locate Q1, whereas r2 locates Q2. Then the vector R12 = r2 − 
r1 represents the directed line segment from Q1 to Q2, as shown in Figure 2.1. The 

1 The International System of Units (an mks system) is described in Appendix B. Abbreviations for the 
units are given in Table B.1. Conversions to other systems of units are given in Table B.2, while the 
prefixes designating powers of ten in SI appear in Table B.3.
2 The charge and mass of an electron and other physical constants are tabulated in Table C.4 of Appendix C.
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vector F2 is the force on Q2 and is shown for the case where Q1 and Q2 have the same 
sign. The vector form of Coulomb’s law is

  F  2   =    Q  1    Q  2   ______ 
4π  ϵ  0    R  12  2  

    a  12    (3)

where a12 = a unit vector in the direction of R12, or

 a  12   =    R  12   ____  |    R  12   |     =    R  12   ___  R  12  
   =    r  2   −  r  1  _____

 |    r  2   −  r  1   |  (4)

Figure 2.1 If Q1 and Q2 have like 
signs, the vector force F2 on Q2 is in 
the same direction as the vector R12.

Q1

Q2R12

a12

F2
R12 = r2 – r1

r1

r2

Origin

EXAMPLE 2.1

We illustrate the use of the vector form of Coulomb’s law by locating a charge of 
Q1 = 3 × 10−4 C at M(1, 2, 3) and a charge of Q2 = −10−4 C at N(2, 0, 5) in a vacuum. 
We want to find the force exerted on Q2 by Q1.
Solution. We use (3) and (4) to obtain the vector force. The vector R12 is

 R  12   =  r  2   −  r  1   = (2 − 1 )  a  x   + (0 − 2 )  a  y   + (5 − 3 )  a  z   =  a  x   − 2  a  y   + 2  a  z  
leading to |R12| = 3, and the unit vector,  a  12   =   1 _ 3  ( a  x   − 2  a  y   + 2  a  z   ). Thus,

 F  2   =    3 ×  10   −4 (−  10   −4  )  ______________  
4π(1 / 36π )  10   −9  ×  3   2 

    ( a  x   − 2  a  y   + 2  a  z  ____________ 3  )
    

 =  −30  (    
 a  x   − 2  a  y   + 2  a  z    ____________ 3   )    N

The magnitude of the force is 30 N, and the direction is specified by the unit 
vector, which has been left in parentheses to display the magnitude of the force. The 
force on Q2 may also be considered as three component forces,

 F  2   = − 10  a  x   + 20  a  y   − 20  a  z  
The force expressed by Coulomb’s law is a mutual force, for each of the two charges 
experiences a force of the same magnitude, although of opposite direction. We might 
equally well have written

  F  1   = −  F  2   =    Q  1    Q  2   ______ 
4π  ϵ  0    R  12  2  

    a  21   = −    Q  1    Q  2   ______ 
4π  ϵ  0    R  12  2  

    a  12   (5)
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2.2 ELECTRIC FIELD INTENSITY
Here, we introduce the first of several field quantities that we will use throughout our study. 
The electric field intensity gives the magnitude and direction of electrostatic force that would 
be applied to a point charge of unit magnitude that resides in the field, and as a function of 
its location. Emphasized here is the notion of the force acting at a point, and as such, the 
electric field intensity, like all other field quantities we will encounter, is a point function. 
Forces on larger objects, or charge distributions, must be found by summing contributions 
at all points that make up the object by way of a superposition integral. Such procedures 
are used in every aspect of applied electromagnetics and are introduced in later sections. 

2.2.1 Electric Field Definition for a Point Charge

Consider a single point charge fixed in position, say Q1, and move a second charge 
slowly around. It will be found that there exists everywhere a force on this second 
charge; in other words, this second charge is displaying the existence of a force field 
that is associated with charge Q1. Call this second charge a test charge Qt. The force 
on it is given by Coulomb’s law, expressed by adapting Eq. (3):

 F  t   =    Q  1    Q  t   ______ 
4π  ϵ  0    R  1t  2  

    a  1t  

Writing this force as a force per unit charge gives the electric field intensity E1 aris-
ing from Q1:

  E  1   =    F  t   __  Q  1  
 =    Q  1   ______ 

4π  ϵ  0    R  1t  2  
    a  1t    (6)

E1 is interpreted as the vector force, arising from charge Q1, that acts on a unit posi-
tive test charge. More generally, we write the defining expression:

 E =    F  t   _  Q  t
   (7)

in which E, a vector function, is the electric field intensity evaluated at the test
charge location that arises from all other charges in the vicinity—meaning the elec-
tric field arising from the test charge itself is not included in E.

Coulomb’s law is linear, for if we multiply Q1 by a factor n, the force on Q2 is also 
multiplied by the same factor n. It is also true that the force on a charge in the pres-
ence of several other charges is the sum of the forces on that charge arising from each 
of the other charges acting alone.

D2.1. A charge QA = −20 μC is located at A(−6, 4, 7), and a charge QB =  
50 μC is at B(5, 8, −2) in free space. If distances are given in meters, find:  
(a) RAB; (b) RAB. Determine the vector force exerted on QA by QB if ϵ0 =  
(c) 10−9/(36π) F/m; (d) 8.854 × 10−12 F/m.

Ans. (a) 11ax + 4ay − 9az m; (b) 14.76 m; (c) 30.76ax + 11.184ay − 25.16az mN; 
(d ) 30.72ax + 11.169ay − 25.13az mN
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The units of E would be in force per unit charge (newtons per coulomb). Again 
anticipating a new dimensional quantity, the volt (V), having the label of joules per 
coulomb (J/C), or newton-meters per coulomb (N · m/C), we measure electric field 
intensity in the practical units of volts per meter (V/m).

Most of the subscripts in (6) are now removed, reserving the right to use them 
again any time there is a possibility of misunderstanding. The electric field of a sin-
gle point charge becomes:

 E =   Q _____ 
4π  ϵ  0    R   2 

    a  R    (8)

We remember that R is the magnitude of the vector R, the directed line segment 
from the point at which the point charge Q is located to the point at which E is 
desired, and aR is a unit vector in the R direction.3

We arbitrarily locate Q1 at the center of a spherical coordinate system. The unit 
vector aR then becomes the radial unit vector ar, and R is r. Hence

 E =    Q  1   _ 
4π  ϵ  0    r   2 

    a  r   (9)

The field has a single radial component, and its inverse-square-law relationship is 
quite obvious.

2.2.2 Fields Associated with Charges at General Locations

For a charge that is not at the origin of our coordinate system, the field no longer possess-
es spherical symmetry, and we might as well use rectangular coordinates. For a charge Q 
located at the source point r′ = x′ax + y′ay + z′az, as illustrated in Figure 2.2, the field at 
a general point r = xax + yay + zaz can be found by expressing R as r − r′:

E(r ) =    Q
 __________ 

4π ϵ0 |  r − r′ |  2
       r − r′ ______  |  r − r′ |     =    Q(r − r′)__________

4π ϵ0 |  r − r′ |  3
   

=    
Q [ (x − x′)ax + (y − y′) ay + (z − z′) az ]    ________________________________    
4π ϵ0 [ (x − x′)2 + (y − y′)2 + (z − z′)2 ]3/2  

  (10)

Earlier, we defined a vector field as a vector function of a position vector, and this is 
emphasized by letting E be symbolized in functional notation by E(r).

Because the coulomb forces are linear, the electric field intensity arising from 
two point charges, Q1 at r1 and Q2 at r2, is the sum of the forces on Qt caused by Q1 
and Q2 acting alone, or

E(r ) =    Q  1   ________  
4π  ϵ  0   |  r −  r  1     |     2     a  1   +    Q  2   ________  

4π  ϵ  0   |  r −  r  2     |     2     a  2  

where a1 and a2 are unit vectors in the direction of (r − r1) and (r − r2), respectively. 
The vectors r, r1, r2, r − r1, r − r2, a1, and a2 are shown in Figure 2.3.

3 We firmly intend to avoid confusing r and ar with R and aR. The first two refer specifically to the spherical 
coordinate system, whereas R and aR do not refer to any coordinate system—the choice is still available to us.
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Figure 2.2 The vector r′ locates the point 
charge Q, the vector r identifies the general 
point in space P(x, y, z), and the vector R 
from Q to P(x, y, z) is then R = r − r′.

Origin

r

E

P(x, y, z)

Q
(x', y', z')

r'

R = r – r'

Figure 2.3 The vector addition of the total electric 
field intensity at P due to Q1 and Q2 is made possible 
by the linearity of Coulomb’s law.

z

x

y

Q2

Q1 P

r2

r1

E2

a2

a1 E1

r –  r2

r –  r1

r

E(r)
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If more charges are added at other positions, the field arising from n point 
charges is

E(r ) =   ∑ 
m=1

  
n
       Q  m   ________  

4π  ϵ  0   |  r −  r  m     |     2     a  m   (11)

EXAMPLE 2.2

In order to illustrate the application of (11), we find E at P(1, 1, 1) caused by four 
identical 3-nC (nanocoulomb) charges located at P1(1, 1, 0), P2(−1, 1, 0), P3(−1, −1, 0), 
and P4(1, −1, 0), as shown in Figure 2.4.
Solution. We find that r = ax + ay + az, r1 = ax + ay, and thus r − r1 = az. The
magnitudes are: |r − r1| = 1, |r − r2| = √ 

__
 5  , |r − r3| = 3, and |r − r4| = √ 

__
 5  . Because

Q/4πϵ0 = 3 × 10−9/(4π × 8.854 × 10−12) = 26.96 V · m, we may now use (11) to obtain

E = 26.96  [     a  z   _ 1     1 _
 1   2

  +   2  a  x   +  a  z   _ 
 √ 

_
 5  
     1 ______ 

  (   √ 
_

 5    )     2 
   +   

2  a  x   + 2  a  y   +  a  z    ____________ 3     1 _ 
 3   2

   +   
2  a  y   +  a  z   _ 

 √ 
_

 5  
     1 ______ 

  (   √ 
_

 5    )     2 
   ]   

or
E = 6.82  a  x   + 6.82  a  y   + 32.8  a  z    V/m

D2.2. A charge of −0.3 μC is located at A(25, −30, 15) (in cm), and a second 
charge of 0.5 μC is at B(−10, 8, 12) cm. Find E at: (a) the origin; (b) P(15, 20, 
50) cm.

Ans. (a) 92.3ax − 77.6ay − 94.2az kV/m; (b) 11.9ax − 0.519ay + 12.4az kV/m

Figure 2.4 A symmetrical distribution of four identical 3-nC point 
charges produces a field at P, E = 6.82ax + 6.82ay + 32.8az V/m.

x

y

P1 (1, 1, 0)

P3  (–1, –1, 0) P2  (–1, 1, 0)

P4  (1, –1, 0)

r – r4
r – r1

r – r2

r – r3

P(1, 1, 1)

z
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2.3  FIELD ARISING FROM A CONTINUOUS 
VOLUME CHARGE DISTRIBUTION

If we now visualize a region of space filled with a tremendous number of charges 
separated by minute distances, we see that we can replace this distribution of very 
small particles with a smooth continuous distribution described by a volume charge
density, just as we describe water as having a density of 1 g/cm3 (gram per cubic cen-
timeter) even though it consists of atomic- and molecular-sized particles. This can 
be done only if we are uninterested in the small irregularities (or ripples) in the field 
as we move from electron to electron or if we care little that the mass of the water 
actually increases in small but finite steps as each new molecule is added.

This is really no limitation at all, because the end results for electrical engineers 
are almost always in terms of a current in a receiving antenna, a voltage in an elec-
tronic circuit, or a charge on a capacitor, or in general in terms of some large-scale 
macroscopic phenomenon. It is very seldom that we must know a current electron 
by electron.4

2.3.1 Volume Charge Density Definition

Volume charge density is denoted by ρv, having the units of coulombs per cubic 
meter (C/m3).

The small amount of charge ΔQ in a small volume Δv is

 ΔQ =  ρ  v   Δv  (12)

and ρv may be defined mathematically by using a limiting process on (12),

  ρ  v   =   lim  
Δv→0

     ΔQ_ 
Δv

   (13)

The total charge within some finite volume is obtained by integrating throughout that 
volume,

 Q =  ∫  vol    ρ  v  dv (14)

Only one integral sign is customarily indicated, but the differential dv signifies inte-
gration throughout a volume, and hence a triple integration.

D2.3. Evaluate the sums: (a)    ∑ 
m=0

  
5
      1 +  (− 1 )   m  ______ 

 m   2  + 1
  ; (b)    ∑ 

m=1
  

4
       (0.1 )   m  + 1 _______ 

 (4 +  m   2  )   1.5 
    

Ans. (a) 2.52; (b) 0.176

4 A study of the noise generated by electrons in semiconductors and resistors, however, requires just such 
an examination of the charge through statistical analysis.
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EXAMPLE 2.3

As an example of the evaluation of a volume integral, we find the total charge con-
tained in a 2-cm length of the electron beam shown in Figure 2.5.
Solution. From the illustration, we see that the charge density is

 ρ  v   = − 5 ×  10   −6   e   − 10   5 ρz    C/m   2 

The volume differential in cylindrical coordinates is given in Section 1.8; therefore,

Q =  ∫ 
 0.02

  
  0.04

     ∫ 
 0
  
  2π

     ∫ 
 0
  
  0.01

   −5 ×  10   −6   e   − 10   5 ρz  ρ dρ dϕ dz

We integrate first with respect to ϕ because it is so easy,

Q =  ∫ 
 0.02

  
  0.04

      ∫ 
 0
  
  0.01

   −  10   −5  π  e   − 10   5 ρz  ρ  dρ  dz

and then with respect to z, because this will simplify the last integration with respect 
to ρ,

Q =  ∫ 
 0
  
  0.01

       (    − 10−5 π _______ 
− 105 ρ

    e   − 10   5 ρz  ρ dρ )    
z=0.02

z=0.04

  

=  ∫ 
 0
  
  0.01

   −  10   −5  π( e   −2000ρ  −  e   −4000ρ  ) dρ

Figure 2.5 The total charge contained 
within the right circular cylinder may be 
obtained by evaluating Q =  ∫  vol   ! ρ  v  !dv.

z = 2 cm

z = 4 cm

ρ = 1 cm

ρʋ = –5e–105ρz µC/m3

y

x

z
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Finally,

 
Q

 
 = −  10   −10  π   (     e   −2000ρ  _____ − 2000   −    e   −4000ρ  _____ − 4000   )    

0
  

0.01

   
Q

 
 = −  10   −10  π  (    1 _ 2000   −   1 _ 4000   )    =   − π ___ 40   = 0.0785 pC

where pC indicates picocoulombs.

2.3.2  Electric Field Associated with a Volume 
Charge Distribution

Consider an incremental charge, ΔQ at r′ that represents a small portion of a larger 
charge volume of density ρv, which in general may vary with position. ΔQ lies within 
a small volume Δv, and is thus treated as a point charge, where ΔQ = ρv Δv as before.
The incremental contribution to the electric field intensity at r associated with this 
charge is written, using (10):

ΔE(r) =    ΔQ
 __________ 

4π ϵ0 |  r − r′ |  2
      r − r′ ______  |  r − r′ |     =   ρv Δv __________ 

4π ϵ0 |  r − r′ |  2
     r − r′ ______  |  r − r′ |  

The above gives the field contribution at r for the small volume of charge within the 
larger distribution. To find the total field at r, we sum the contributions at that point 
of all the charges in the distribution. This is done by first letting the volume element 
Δv approach zero. The effect of this is twofold: First, it provides essentially infinite 
spatial resolution (as the volume charge density may vary from point to point); sec-
ond, the summation becomes an integral over the charge volume:

E(r) =  ∫  vol       
ρv(r′) d v′

 __________ 
4π ϵ0 |  r − r′ |  2  

       r − r′ ______  |  r − r′ |    (15)

This is again a triple integral, and (except in Drill Problem 2.4) we will do our best 
to avoid actually performing the integration.

The significance of the various quantities under the integral sign of (15) might 
stand a little review. The vector r from the origin locates the field point where E is 
being determined, whereas the vector r′ extends from the origin to the source point 
where ρv(r′)dv′ is located. The scalar distance between the source point and the field 
point is   |   r − r′  |   , and the fraction (r − r′)/  |   r − r′  |    is a unit vector directed from source
point to field point. The variables of integration are x′, y′, and z′ in rectangular co-
ordinates.

D2.4. Calculate the total charge within each of the indicated volumes: (a) 0.1 ≤  
  |   x  |   ,   |   y  |   ,   |   z  |    ≤ 0.2:  ρ  v   =   1 _____ 

 x   3   y   3   z   3 
  ; (b) 0 ≤ ρ ≤ 0.1, 0 ≤ ϕ ≤ π, 2 ≤ z ≤ 4; ρv = ρ2z2 sin 

0.6ϕ; (c) universe: ρv = e−2r/r2.

Ans. (a) 0; (b) 1.018 mC; (c) 6.28 C
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2.4 FIELD OF A LINE CHARGE
Up to this point we have considered two types of charge distribution, the point charge and 
continuous charge distributed throughout a volume with a density ρv C/m3. We now con-
sider a filamentlike distribution of volume charge density, such as a charged conductor of 
very small radius. It is convenient to treat the charge as a line charge of density ρL C/m.

Consider a straight-line charge extending along the z axis in a cylindrical coor-
dinate system from −∞ to ∞, as shown in Figure 2.6. We will find the electric field 
intensity E at any and every point resulting from a uniform line charge density ρL.

2.4.1 Setting Up the Problem: The Importance of Symmetry

Symmetry should always be considered first in order to determine two specific fac-
tors: (1) with which coordinates the field does not vary, and (2) which components 
of the field are not present. The answers to these questions then tell us which compo-
nents are present and with which coordinates they do vary.

Referring to Figure 2.6, we realize that as we move around the line charge, varying 
ϕ while keeping ρ and z constant, the line charge appears the same from every angle. In 
other words, azimuthal symmetry is present, and no field component may vary with ϕ.

Again, if we maintain ρ and ϕ constant while moving up and down the line 
charge by changing z, the line charge still recedes into infinite distance in both direc-
tions and the problem is unchanged. This is axial symmetry and leads to fields that 
are not functions of z.

Figure 2.6 The contribution dE = dEρ aρ + dEz 
az to the electric field intensity produced by an 
element of charge dQ = ρL dz′ located a distance 
z′ from the origin. The linear charge density is 
uniform and extends along the entire z axis.

(0, 0, z' )

P

ρL

θ

x

y

z

dQ = ρL dz'

dEρ

dEz dE

r

r'

aR

R = r – r'
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If we maintain ϕ and z constant and vary ρ, the problem changes, and Coulomb’s 
law leads us to expect the field to become weaker as ρ increases. Hence, by a process 
of elimination we are led to the fact that the field varies only with ρ.

Now, which components are present? Each incremental length of line charge acts 
as a point charge and produces an incremental contribution to the electric field inten-
sity that is directed away from the bit of charge (assuming a positive line charge). No 
element of charge produces a ϕ component of electric intensity; Eϕ is zero. However, 
each element does produce an Eρ and an Ez component, but the contribution to Ez by 
elements of charge that are equal distances above and below the point at which we 
are determining the field will cancel. Therefore only an Eρ component is expected, 
and this will vary only with ρ. Now to find this component.

We choose a point P(0, y, 0) on the y axis at which to determine the field. This is a 
perfectly general point in view of the lack of variation of the field with ϕ and z. Applying 
(10) to find the incremental field at P due to the incremental charge dQ = ρLdz′, we have

d E =    ρL d z(r − r′)__________
4π ϵ0 |  r − r′ |  3  

where r′ = z′az and r = yay =  ρaρ. The replacement of y with ρ in the last equality 
arises from the symmetry, in that the field in the xy plane will vary only with distance 
from the origin, expressed as the more general ρ direction in cylindrical coordinates. 
We now have

r − r′ = ρ aρ − z′ az

and therefore,

d E =    
ρL d z′(ρ aρ − z′ az)  ______________  
4π ϵ0 ( ρ2 + z′2)3/2   

The differential field contributions to a point in the xy plane are now summed by 
integrating the preceding differential field over the infinite line charge:

 E  ρ   =   ∫ 
−∞

  
  ∞

      
ρL d z′(ρ aρ − z′ az)  ______________  
4π ϵ0 ( ρ2 + z′2)3/2   

At this point we note that the second term in the integral, involving z′az′, integrates to zero 
because it gives equal and opposite contributions that cancel each other as z′ changes sign 
at the origin. This is an example of a function that exhibits odd parity. This result demon-
strates mathematically what was already discussed, that the z contributions to the field 
from the symmetric charge will cancel out. The remaining part of the integral, involving 
aρ, is evaluated by integral tables or by a change of variable, z′ = ρ cot θ, leading to:

 E  ρ   =    ρ  L   ____ 4π  ϵ  0  
   ρ   (     1 __ 

 ρ   2 
      z′      _____ 
 √ 

_____
  ρ   2  +   z′2          
 )

−∞

∞

so that

 E  ρ   =   
 ρ  L  _____

2π  ϵ  0   ρ

hay28159_ch02_026-047.indd   37 25/11/17   11:07 am



E N G I N E E R I N G  E L E C T R O M AG N E T I C S38

or finally,

 E =    ρ  L   _ 2π  ϵ  0   ρ
    a  ρ   (16)

We note that the field falls off inversely with the distance to the charged line, as compared 
with the point charge, where the field decreased with the square of the distance. Moving 
10 times as far from a point charge leads to a field only 1 percent the previous strength, 
but moving 10 times as far from a line charge only reduces the field to 10 percent of its 
former value. An analogy can be drawn with a source of illumination, for the light inten-
sity from a point source of light also falls off inversely as the square of the distance to the 
source. The field of an infinitely long fluorescent tube thus decays inversely as the first 
power of the radial distance to the tube, and we should expect the light intensity about a 
finite-length tube to obey this law near the tube. As our point recedes farther and farther 
from a finite-length tube, however, it eventually looks like a point source, and the field 
obeys the inverse-square relationship.

2.4.2 Field of an Off-Axis Line Charge

Before leaving this introductory look at the field of the infinite line charge, it should 
be recognized that not all line charges are located along the z axis. As an exam-
ple, consider an infinite line charge parallel to the z axis at x = 6, y = 8, shown in 
Figure 2.7. E is to be found at the general field point P(x, y, z).

Figure 2.7 A point P(x, y, z) is identified near an infinite 
uniform line charge located at x = 6, y = 8.

P(x, y, z)

(x, y, 0)
(6, 0, 0)

(6, 8, 0)

(0, 8, 0)

R

R
(6, 8, z)

ρL

x

y

z
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ρ  is replaced in (16) by the radial distance between the line charge and point,
P, R =  √ 

____________
   (x − 6 )   2  +  (y − 8 )   2   , and let aρ be aR. Thus,

E =    ρ  L    ______________   
2π  ϵ  0    √ 

____________
    (  x − 6 )     2  +   (  y − 8 )     2   
    a  R  

where

 a  R   =   R ___  |  R |     = 
(x − 6 )  a  x   + (y − 8 )  a  y    ____________  
 √ 

____________
   (x − 6 )   2  +  (y − 8 )   2   
  

Therefore,

E =    ρ  L   ____ 2π  ϵ  0  
     
 (  x − 6 )    a  x   +  (  y − 8 )    a  y    ____________  

  (  x − 6 )     2  +   (  y − 8 )     2 
  

We again note that the field is not a function of z.
In Section 2.6, we describe how fields may be sketched, and the field of the line 

charge is one example.

D2.5. Infinite uniform line charges of 5 nC/m lie along the (positive and neg-
ative) x and y axes in free space. Find E at: (a) PA(0, 0, 4); (b) PB(0, 3, 4).

Ans. (a) 45az V/m; (b) 10.8ay + 36.9az V/m

2.5 FIELD OF A SHEET OF CHARGE
Another basic charge configuration is the infinite sheet of charge having a uniform 
density of ρS C/m2. Such a charge distribution may often be used to approximate 
that found on the conductors of a strip transmission line or a parallel-plate capacitor. 
As will be seen in Chapter 5, static charge resides on conductor surfaces and not in 
their interiors; for this reason, ρS is commonly known as surface charge density. The 
charge-distribution family now is complete—point, line, surface, and volume, or Q, 
ρL, ρS, and ρv.

2.5.1 Symmetry

Consider an infinite sheet of charge in the yz plane and again be aware of symmetry 
(Figure 2.8). We observe first that the field cannot vary with y or with z, and that 
the y and z components arising from differential elements of charge symmetrically 
located with respect to the point at which we evaluate the field will cancel. Therefore 
only Ex is present, and, as will be demonstrated, will not vary in any direction. We 
are again faced with a choice of many methods by which to evaluate this component, 
and this time we use only one method and leave the others as exercises for a quiet 
Sunday afternoon.
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2.5.2 The Sheet Charge as an Ensemble of Line Charges

The field of the infinite line charge (16) is implemented here by dividing the infinite 
sheet into differential-width strips. One such strip is shown in Figure 2.8. The line 
charge density, or charge per unit length, is ρL = ρS dy′, and the distance from this line 
charge to our general point P on the x axis is R =  √ 

______
  x   2  +  y   ́2   . The contribution to Ex at

P from this differential-width strip is then

d E  x   =    ρ  S   d  y′      ________  
2π  ϵ  0    √ 

______
  x   2  +  y   ́2   
   cos θ =    ρ  S   ____ 2π  ϵ  0  

     xd  y′      _____
 x   2  +  y   ́2

  

Adding the effects of all the strips,

 E  x   =    ρ  S   ___ 2  ϵ  0
  ∫

−∞

  ∞
      x d  y′      _____ 
 x   2  +   y   ′    2 

   =    ρ  S   ____ 2π  ϵ  0  
     tan   −1     y′     __ x   ]    

−∞

∞
=      ρ  S   ____

2π  ϵ  0  
  

If the point P were chosen on the negative x axis, then
 E  x   = −   

 ρ  S   ___
2  ϵ  0

for the field is always directed away from the positive charge. This difficulty in sign 
is usually overcome by specifying a unit vector aN, which is normal to the sheet and 
directed outward, or away from it. Then

 E =    ρ  S   _ 2  ϵ  0  
    a  N   (17)

This is a startling answer, for the field is constant in magnitude and direction. It is 
just as strong a million miles away from the sheet as it is right off the surface. Return-
ing to our light analogy, we see that a uniform source of light on the ceiling of a very 
large room leads to just as much illumination on a square foot on the floor as it does 

Figure 2.8 An infinite sheet of charge in the 
yz plane, a general point P on the x axis, and the 
differential-width line charge used as the element in 
determining the field at P by dE = ρSdy′aR/(2πϵ0R).

y

x

θ

z

dy'

y'

R =   x 2 + y'2
P(x, 0, 0)

ρS
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on a square foot a few inches below the ceiling. If you desire greater illumination 
on this subject, it will do you no good to hold the book closer to such a light source.

2.5.3 Capacitor Model

If a second infinite sheet of charge, having a negative charge density −ρS, is located 
in the plane x = a, the total field may be found by adding the contribution of each 
sheet. In the region x > a,

 E  +   =    ρ  S   ___ 2  ϵ  0  
    a  x      E  −   = −    ρ  S   ___ 2  ϵ  0  

    a  x    E =  E  +   +  E  −   = 0

and for x < 0,
 E  +   = −    ρ  S   ___ 2  ϵ  0  

    a  x      E  −   =    ρ  S   ___ 2  ϵ  0  
    a  x    E =  E  +   +  E  −   = 0

and when 0 < x < a,

 E  +   =    ρ  S   ___ 2  ϵ  0  
    a  x      E  −   =    ρ  S   ___ 2  ϵ  0  

    a  x  

and

 E =  E  +   +  E  −    =    ρ  S   _  ϵ  0      a  x   (18)

This is an important practical answer, for it is the field between the parallel plates of 
an air capacitor, provided the linear dimensions of the plates are very much greater 
than their separation and provided also that we are considering a point well removed 
from the edges. The field outside the capacitor, while not zero, as we found for the 
preceding ideal case, is usually negligible.

D2.6. Three infinite uniform sheets of charge are located in free space as 
follows: 3 nC/m2 at z = −4, 6 nC/m2 at z = 1, and −8 nC/m2 at z = 4. Find E at 
the point: (a) PA(2, 5, −5); (b) PB(4, 2, −3); (c) PC(−1, −5, 2); (d) PD(−2, 4, 5).

Ans. (a) −56.5az; (b) 283az; (c) 961az; (d) 56.5az all V/m

 2.6 STREAMLINES AND SKETCHES OF FIELDS
We now have vector equations for the electric field intensity resulting from several 
different charge configurations, and we have had little difficulty in interpreting the 
magnitude and direction of the field from the equations. Unfortunately, this simplicity 
cannot last much longer, for we have solved most of the simple cases and our new 
charge distributions must lead to more complicated expressions for the fields and more 
difficulty in visualizing the fields through the equations. However, it is true that one 
picture would be worth about a thousand words, if we just knew what picture to draw.

Consider the field about the line charge,

E =    ρ  L   _____ 2π  ϵ  0   ρ
    a  ρ  
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Figure 2.9a shows a cross-sectional view of the line charge and presents what might be 
our first effort at picturing the field—short line segments drawn here and there having 
lengths proportional to the magnitude of E and pointing in the direction of E. The fig-
ure fails to show the symmetry with respect to ϕ, so we try again in Figure 2.9b with a 
symmetrical location of the line segments. The real trouble now appears—the longest 
lines must be drawn in the most crowded region, and this also plagues us if we use 
line segments of equal length but of a thickness that is proportional to E (Figure 2.9c). 
Other schemes include drawing shorter lines to represent stronger fields (inherently 
misleading) and using intensity of color or different colors to represent stronger fields.

For the present, we will show only the direction of E by drawing continuous 
lines, which are everywhere tangent to E, from the charge. Figure 2.9d shows this 
compromise. A symmetrical distribution of lines (one every 45°) indicates azimuthal 
symmetry, and arrowheads are used to show direction.

These lines are usually called streamlines, although other terms such as flux 
lines and direction lines are also used. A small positive test charge placed at any 
point in this field and free to move would accelerate in the direction of the streamline 
passing through that point. If the field represented the velocity of a liquid or a gas 
(which, incidentally, would have to have a source at ρ = 0), small suspended particles 
in the liquid or gas would trace out the streamlines.

Figure 2.9 (a) One very poor sketch, (b) and (c) two fair sketches, and 
(d!) the usual form of a streamline sketch. In the last form, the arrows 
show the direction of the field at every point along the line, and the 
spacing of the lines is inversely proportional to the strength of the field.

(c) (d)

(a) (b)
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We will find out later that a bonus accompanies this streamline sketch, for the 
magnitude of the field can be shown to be inversely proportional to the spacing of 
the streamlines for some important special cases. The closer they are together, the 
stronger is the field. At that time we will also find an easier, more accurate method 
of making that type of streamline sketch.

If we tried to sketch the field of the point charge, the variation of the field into 
and away from the page would cause essentially insurmountable difficulties; for this 
reason sketching is usually limited to two-dimensional fields.

In the case of the two-dimensional field, we may arbitrarily set Ez = 0. The stream-
lines are thus confined to planes for which z is constant, and the sketch is the same for any 
such plane. Several streamlines are shown in Figure 2.10, and the Ex and Ey components 
are indicated at a general point. It is apparent from the geometry that

   
 E  y   _  E  x  

   =   dy_
dx

  (19)

A knowledge of the functional form of Ex and Ey (and the ability to solve the resultant 
differential equation) will enable us to obtain the equations of the streamlines.

As an illustration of this method, consider the field of the uniform line charge 
with ρL = 2πϵ0,

E =   1 __ ρ    a  ρ  
In rectangular coordinates,

E =   x ____ 
 x   2  +  y   2 

    a  x   +   y ____ 
 x   2  +  y   2 

    a  y  

Thus we form the differential equation

  dy __ 
dx

 =   
 E  y   __  E  x  

   =   y _ x     or    dy __ y   =   dx__
x 

Figure 2.10 The equation of a streamline is 
obtained by solving the differential equation  
Ey/Ex = dy/dx.

x

y

Ey

Ex
Δx

Δy

E
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Therefore,
ln y = ln x +  C  1     or   ln y = ln x + ln C

from which the equations of the streamlines are obtained,
y = Cx

If we want to find the equation of one particular streamline, say one passing through 
P(−2, 7, 10), we merely substitute the coordinates of that point into our equation and 
evaluate C. Here, 7 = C(−2), and C = −3.5, so y = −3.5x.

Each streamline is associated with a specific value of C, and the radial lines 
shown in Figure 2.9d are obtained when C = 0, 1, −1, and 1/C = 0.

The equations of streamlines may also be obtained directly in cylindrical or spheri-
cal coordinates. A spherical coordinate example will be examined in Section 4.7.

D2.7. Find the equation of the streamline that passes through the point P(1, 
4, −2) in the field 

E = (a)    − 8x ___ y    a  x   +   4  x   2  ___ 
 y   2 

    a  y  ; (b)  2  e   5x  [ y(5x + 1 )  a  x   + x  a  y   ] . 

Ans. (a) x2 + 2y2 = 33; (b) y2 = 15.7 + 0.4x − 0.08 ln(5x + 1)
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CHAPTER 2 PROBLEMS
2.1 Three point charges of equal magnitude q are located at x = −2, y = +2, 

and y = −  √ 
__

 2   . Find the coordinates of a fourth positive charge, also of
magnitude q, that will yield a zero net electric field at the origin. 

2.2 Point charges of 1 nC and −2 nC are located at (0, 0, 0) and (1, 1, 1), 
respectively, in free space. Determine the vector force acting on each charge.

2.3 Point charges of 50 nC each are located at A(1, 0, 0), B(−1, 0, 0), C(0, 1, 
0), and D(0, −1, 0) in free space. Find the total force on the charge at A. 

2.4 Eight identical point charges of Q C each are located at the corners of a 
cube of side length a, with one charge at the origin, and with the three 
nearest charges at (a, 0, 0), (0, a, 0), and (0, 0, a). Find an expression for 
the total vector force on the charge at P(a, a, a), assuming free space.
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2.5 A point charge of 3 nC is located at the point (1, 1, 1) in free space. What 
charge must be located at (1, 3, 2) to cause the y component of E to be zero 
at the origin? 

2.6  Two point charges of equal magnitude q are positioned at z = ±d/2. 
(a) Find the electric field everywhere on the z axis; (b) find the electric 
field everywhere on the xy plane.

2.7 Two point charges of equal magnitude but of opposite sign are positioned 
with charge +q at z = +d/2 and charge −q at z = −d/2.  The charges in 
this configuration form an electric dipole. (a) Find the electric field 
intensity E everywhere on the z axis. (b) Evaluate your part a result at the origin. 
(c) Find the electric field intensity everywhere on the xy plane, expressing your 
result as a function of radius ρ in cylindrical coordinates. (d) Evaluate your part 
c result at the origin. (e) Simplify your part c result for the case in which ρ >> d. 

2.8 A crude device for measuring charge consists of two small insulating spheres 
of radius a, one of which is fixed in position. The other is movable along the 
x axis and is subject to a restraining force kx, where k is a spring constant. 
The uncharged spheres are centered at x = 0 and x = d, the latter fixed. If the 
spheres are given equal and opposite charges of Q/C, obtain the expression 
by which Q may be found as a function of x. Determine the maximum charge 
that can be measured in terms of ϵ0, k, and d, and state the separation of the 
spheres then. What happens if a larger charge is applied?

2.9 A 100-nC point charge is located at A(−1, 1, 3) in free space. (a) Find the 
locus of all points P(x, y, z) at which Ex = 500 V/m. (b) Find y1 if P(0, y1, 
3) lies on that locus.

2.10 A configuration of point charges consists of a single charge of value −2q 
at the origin, and two charges of value +q at locations z = −d and +d. 
The charges as positioned form an electric quadrupole, equivalent to two 
dipoles of opposite orientation that are separated by distance d along the 
z axis. (a) Find the electric field intensity E everywhere in the xy plane, 
expressing your result as a function of cylindrical radius ρ. (b) Specialize 
your part a result for large distances, ρ >> d.

2.11 A charge Q0 located at the origin in free space produces a field for which Ez =  
1 kV/m at point P(−2, 1, −1). (a) Find Q0. Find E at M(1, 6, 5) in (b) rectangular  
coordinates; (c) cylindrical coordinates; (d) spherical coordinates. 

2.12 Electrons are in random motion in a fixed region in space. During any 1 µs 
interval, the probability of finding an electron in a subregion of volume 
10−15 m2 is 0.27. What volume charge density, appropriate for such time 
durations, should be assigned to that subregion?

2.13 A uniform volume charge density of 0.2 µC/m3 is present throughout the 
spherical shell extending from r = 3 cm to r = 5 cm. If ρv = 0 elsewhere, 
find (a) the total charge present throughout the shell, and (b) r1 if half the 
total charge is located in the region 3 cm < r < r1. 
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2.14 The electron beam in a certain cathode ray tube possesses cylindrical symmetry, 
and the charge density is represented by ρv = −0.1/(ρ2 + 10−8 ) pC/m3 for 0 < 
ρ < 3 × 10−4 m, and ρv = 0 for ρ > 3 × 10−4 m. (a) Find the total charge per 
meter along the length of the beam. (b) If the electron velocity is 5 × 107 m/s, 
and with one ampere defined as 1 C/s, find the beam current.

2.15 A spherical volume having a 2-µm radius contains a uniform volume 
charge density of 105 C/m3. (a) What total charge is enclosed in the 
spherical volume? (b) Now assume that a large region contains one of these 
little spheres at every corner of a cubical grid 3 mm on a side and that 
there is no charge between the spheres. What is the average volume charge 
density throughout this large region? 

2.16 Within a region of free space, charge density is given as  ρ  v   =    ρ  0   rcosθ ______ a    C/m   3 ,
where ρ0 and a are constants. Find the total charge lying within (a) the 
sphere, r ≤ a; (b) the cone, r ≤ a, 0 ≤ θ ≤ 0.1π; (c) the region, r ≤ a, 0 ≤ θ 
≤ 0.1π, 0 ≤ ϕ ≤ 0.2π.

2.17 A length d of line charge lies on the z axis in free space. The charge density 
on the line is ρL = +ρ0  C/m (0 < z < d/2) and ρL = −ρ0 C/m (−d/2 < z < 0)  
where ρ0 is a positive constant. (a) Find the electric field intensity E 
everywhere in the xy plane, expressing your result as a function of 
cylindrical radius ρ.  (b) Simplify your part a result for the case in which 
radius ρ >> d, and express this result in terms of charge q = ρ0 d/2. 

2.18 (a) Find E in the plane z = 0 that is produced by a uniform line charge, 
ρL, extending along the z axis over the range −L < z < L in a cylindrical 
coordinate system. (b) If the finite line charge is approximated by an 
infinite line charge (L → ∞), by what percentage is Eρ in error if ρ = 0.5L? 
(c) Repeat (b) with ρ = 0.1L.

2.19 A line having charge density ρ0 |z| C/m and of length ℓ is oriented along the z 
axis at −ℓ/2 < z < ℓ/2. (a) Find the electric field intensity E everywhere in the 
xy plane, expressing your result in cylindrical coordinates. (b) Evaluate your 
part a result in the limit as L approaches infinity.

2.20 A line charge of uniform charge density ρ0 C/m and of length ℓ is oriented 
along the z axis at −ℓ/2 < z < ℓ/2. (a) Find the electric field strength, E, in 
magnitude and direction at any position along the x axis. (b) With the given 
line charge in position, find the force acting on an identical line charge that 
is oriented along the x axis at ℓ/2 < x < 3ℓ/2.

2.21 A charged filament forms a circle of radius a in the xy plane with its center 
at the origin. The filament carries uniform line charge density +ρ0 C/m
for −π/2 < ϕ < π/2 and −ρ0 C/m for π/2 < ϕ < 3π/2. Find the electric field 
intensity E at the origin. 

2.22 Two identical uniform sheet charges with ρs = 100 nC/m2 are located in free 
space at z = ± 2.0 cm. What force per unit area does each sheet exert on the other?
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2.23 A disk of radius a in the xy plane carries surface charge of density ρs =
ρs0 /ρ  C/m2 where ρs0 is a  constant. Find the electric field intensity E 
everywhere on the z axis.

2.24 (a) Find the electric field on the z axis produced by an annular ring of 
uniform surface charge density ρs in free space. The ring occupies the 
region z = 0, a ≤ ρ ≤ b, 0 ≤ ϕ ≤ 2π in cylindrical coordinates. (b) From 
your part a result, obtain the field of an infinite uniform sheet charge by 
taking appropriate limits.

2.25 A disk of radius a in the xy plane carries surface charge of density 
ρs1 = +ρs0 /ρ  C/m2 for 0 < ϕ < π, and ρs2 = −ρs0 /ρ C/m2 for π < ϕ < 2π,
where ρs0 is a constant. (a) Find the electric field intensity E everywhere on 
the z axis. (b) Specialize your part a result for distances z >> a. 

2.26 (a) Find the electric field intensity on the z axis produced by a cone surface 
that carries charge density ρs(r) = ρ0 /r  C/m2 in free space. The cone has its 
vertex at the origin and occupies the region θ = α, 0 < r < a, and 0 < ϕ < 
2π in spherical coordinates. Differential area for a cone is given in spherical 
coordinates as da = r sin α dr dϕ. (b) Find the total charge on the cone. (c) 
Specialize your result of part a to the case in which α = 90°, at which the 
cone flattens to a disk in the xy plane. Compare this result to the answer 
to problem 2.23. (d) Show that your part a result becomes a point charge 
field when z >> a. (e) Show that your part a result becomes an inverse-z-
dependent E field when z << a.

2.27 Given the electric field E = (4x − 2y)ax − (2x + 4y)ay, find (a) the equation 
of the streamline that passes through the point P(2, 3, −4); (b) a unit vector 
specifying the direction of E at Q(3, −2, 5). 

2.28 An electric dipole (introduced in Problem 2.7, and discussed in detail 
in Section 4.7) consists of two point charges of equal and opposite 
magnitude ±q spaced by distance d. With the charges along the z axis at 
positions z = ±d/2 (with the positive charge at the positive z location), the 
electric field in spherical coordinates is given by E(r, θ) = [qd/(4πϵ0r3)]
[2 cosθ ar + sin θ aθ], where r >> d. Using rectangular coordinates, 
determine expressions for the vector force on a point charge of magnitude 
q (a) at (0, 0, z); (b) at (0, y, 0).

2.29 If E = 20e−5y (cos 5xax − sin 5xay), find (a) |E| at P(π/6, 0.1, 2); (b) a 
unit vector in the direction of E at P; (c) the equation of the direction line 
passing through P. 

2.30 For fields that do not vary with z in cylindrical coordinates, the equations 
of the streamlines are obtained by solving the differential equation Ep/Eϕ = 
dρ/(ρdϕ). Find the equation of the line passing through the point (2, 30°, 0) 
for the field E = ρ cos 2ϕ aρ − ρ sin 2ϕaϕ.
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3
Electric Flux Density, 
Gauss’s Law, and  
Divergence

After drawing the fields described in the previous chapter and becoming fa-
miliar with the concept of the streamlines that show the direction of the force  
  on a test charge at every point, it is appropriate to give these lines a physi-

cal significance and to think of them as flux lines. No physical particle is projected 
radially outward from the point charge, and there are no steel tentacles reaching out 
to attract or repel an unwary test charge, but as soon as the streamlines are drawn on 
paper there seems to be a picture showing “something” is present.

It is very helpful to invent an electric flux that streams away symmetrically from 
a point charge and is coincident with the streamlines and to visualize this flux wher-
ever an electric field is present.

This chapter introduces and uses the concept of electric flux and electric flux den-
sity to again solve several of the problems presented in Chapter 2. The work here turns 
out to be much easier for problems that possess a high degree of spatial symmetry. ■

3.1 ELECTRIC FLUX DENSITY
At this stage, the second basic field quantity in our study is introduced: the electric
flux density, or electric displacement, given the symbol, D. This field can be con-
sidered a companion field to E, the electric field intensity, as it is usually (but not 
always) parallel to E, and in the basic sense, they are both associated with electric 
charge. The two fields are related, but they have totally different meanings: We have 
already defined E in the context of finding forces on charges, but D is defined in 
a more direct way to the charge that is generating E. The two fields are related to 
each other through the properties of the medium in which they exist. This relation 
is a study on its own and will be taken up in detail in Chapter 5. In this section, we 
explain D in a historical context.
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3.1.1 Faraday’s Experiments on Electric Displacement

About 1837, the director of the Royal Society in London, Michael Faraday, became very 
interested in static electric fields and the effect of various insulating materials on these 
fields. This problem had been bothering him during the previous ten years when he was 
experimenting in his now-famous work on induced electromotive force, which we will 
discuss in Chapter 9. With that subject completed, he had a pair of concentric metallic 
spheres constructed, the outer one consisting of two hemispheres that could be firmly 
clamped together. He also prepared shells of insulating material (or dielectric material, or 
simply dielectric) that would occupy the entire volume between the concentric spheres. 

His experiment, then, consisted essentially of the following steps:
1. With the equipment dismantled, the inner sphere was given a known positive charge.
2. The hemispheres were then clamped together around the charged sphere with

about 2 cm of dielectric material between them.
3. The outer sphere was discharged by connecting it momentarily to ground.
4. The outer sphere was separated carefully, using tools made of insulating

material in order not to disturb the induced charge on it, and the negative
induced charge on each hemisphere was measured.
Faraday found that the total charge on the outer sphere was equal in magnitude to

the original charge placed on the inner sphere and that this was true regardless of the 
dielectric material separating the two spheres. He concluded that there was some sort 
of “displacement” from the inner sphere to the outer which was independent of the me-
dium; we now refer to this as displacement, displacement flux, or simply electric flux.

Faraday’s experiments also showed, of course, that a larger positive charge on the in-
ner sphere induced a correspondingly larger negative charge on the outer sphere, leading 
to a direct proportionality between the electric flux and the charge on the inner sphere. 
The constant of proportionality is dependent on the system of units involved, and we are 
fortunate in our use of SI units, because the constant is unity. If electric flux is denoted 
by Ψ (psi) and the total charge on the inner sphere by Q, then for Faraday’s experiment

 Ψ = Q 

and the electric flux Ψ is measured in coulombs.

3.1.2 Electric Flux Density

More quantitative information can be obtained by considering an inner sphere of radius a 
and an outer sphere of radius b, with charges of Q and −Q, respectively (Figure 3.1). The 
paths of electric flux Ψ extending from the inner sphere to the outer sphere are indicated 
by the symmetrically distributed streamlines drawn radially from one sphere to the other.

At the surface of the inner sphere, Ψ coulombs of electric flux are produced by 
the charge Q(= Ψ) coulombs distributed uniformly over a surface having an area of 
4πa2 m2. The density of the flux at this surface is Ψ/4πa2 or Q/4πa2 C/m2, and this is 
an important new quantity.
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Electric flux density, measured in coulombs per square meter (sometimes de-
scribed as “lines per square meter,” for each line is due to one coulomb), is given the 
letter D, which was originally chosen because of the alternate names of displacement
flux density or displacement density. Electric flux density is more descriptive, how-
ever, and we will use the term consistently.

The electric flux density D is a vector field and is a member of the “flux density” 
class of vector fields, as opposed to the “force fields” class, which includes the elec-
tric field intensity E. The direction of D at a point is the direction of the flux lines at 
that point, and the magnitude is given by the number of flux lines crossing a surface 
normal to the lines divided by the surface area.

Referring again to Figure 3.1, the electric flux density is in the radial direction 
and has a value of

D   |r=a
   =   Q ____ 

4π  a   2 
    a  r     (inner sphere) 

   
D   |r=b

   =   Q ____ 
4π  b   2 

    a  r     (outer sphere)

and at a radial distance r, where a ≤ r ≤ b,

 D =   Q
 _ 

4π  r   2 
    a  r   (1)

If we now let the inner sphere become smaller and smaller, while still retaining a 
charge of Q, it becomes a point charge in the limit, but the electric flux density at a 
point r meters from the point charge is still given by (1), for Q lines of flux are sym-
metrically directed outward from the point and pass through an imaginary spherical 
surface of area 4πr2.

Metal
conducting

spheres

r = b

r = a

+Q

–Q Insulating or
dielectric
material

Figure 3.1 The electric flux in the region between 
a pair of charged concentric spheres. The direction 
and magnitude of D are not functions of the dielec-
tric between the spheres.
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This result should be compared with Section 2.2, Eq. (9), the radial electric field 
intensity of a point charge in free space,

 E =   
Q
 _ 

4π  ϵ  0    r   2 
    a  r   

In free space, therefore,

 D =  ϵ  0   E  (free space only) (2)

Although (2) is applicable only to a vacuum, it is not restricted solely to the field of 
a point charge. For a general volume charge distribution in free space, the discussion 
in Section 2.3.2 resulted in

 E =  ∫  vol     
 ρ  v   dv

 _ 
4π  ϵ  0    R   2 

     a  R   (free space only) (3)

This relationship was developed from the field of a single point charge. In a similar 
manner, (1) leads to

 D =  ∫  vol     
 ρ  v   dv_ 
4π   R   2 

      a  R   (4)

and (2) is therefore true for any free-space charge configuration; we will consider (2) 
as defining D in free space.

As a preparation for the study of dielectrics later, it might be well to point out 
now that, for a point charge embedded in an infinite ideal dielectric medium, Fara-
day’s results show that (1) is still applicable, and thus so is (4). Equation (3) is not 
applicable, however, and so the relationship between D and E will be slightly more 
complicated than (2).

Because D is directly proportional to E in free space, it does not seem that it should 
really be necessary to introduce a new symbol. We do so for a few reasons. First, D is as-
sociated with the flux concept, which is an important new idea. Second, the D fields we 
obtain will be a little simpler than the corresponding E fields because ϵ0 does not appear.

D3.1. Given a 60-μC point charge located at the origin, find the total electric 
flux passing through: (a) that portion of the sphere r = 26 cm bounded by 0 <  
θ <   π __ 2   and 0 < ϕ <   π __ 2  ; (b) the closed surface defined by ρ = 26 cm and z = ±26 cm;
(c) the plane z = 26 cm. 

Ans. (a) 7.5 μC; (b) 60 μC; (c) 30 μC
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3.2 GAUSS’S LAW
The results of Faraday’s experiments with the concentric spheres could be summed 
up as an experimental law by stating that the electric flux passing through any im-
aginary spherical surface lying between the two conducting spheres is equal to the 
charge enclosed within that imaginary surface. This enclosed charge is distributed on 
the surface of the inner sphere, or it might be concentrated as a point charge at the 
center of the imaginary sphere. However, because one coulomb of electric flux is 
produced by one coulomb of charge, the inner conductor might just as well have been 
a cube or a brass door key and the total induced charge on the outer sphere would still 
be the same. Certainly the flux density would change from its previous symmetrical 
distribution to some unknown configuration, but +Q coulombs on any inner conduc-
tor would produce an induced charge of −Q coulombs on the surrounding sphere. Go-
ing one step further, we could now replace the two outer hemispheres with an empty 
(but completely closed) soup can. Q coulombs on the brass door key would produce 
Ψ = Q lines of electric flux and would induce −Q coulombs on the soup can.1

These generalizations of Faraday’s experiment lead to the following statement, 
which is known as Gauss’s law:

The electric flux passing through any closed surface is equal to the total charge enclosed 
by that surface.

The contribution of Gauss, one of the greatest mathematicians the world has 
ever produced, was actually not in stating the law as we have, but in providing a 
mathematical form for this statement, which we will now obtain.

Imagine a distribution of charge, shown as a cloud of point charges in Figure 3.2, 
surrounded by a closed surface of any shape. The closed surface may be the surface of 
some real material, but more generally it is any closed surface we wish to visualize. If the 
total charge is Q, then Q coulombs of electric flux will pass through the enclosing surface. 
At every point on the surface the electric-flux-density vector D will have some value DS, 
where the subscript S merely reminds us that D must be evaluated at the surface, and DS 
will in general vary in magnitude and direction from one point on the surface to another.

Now, consider the nature of an incremental element of the surface. An incremen-
tal element of area ΔS is very nearly a portion of a plane surface, and the complete 
description of this surface element requires not only a statement of its magnitude ΔS 
but also of its orientation in space. In other words, the incremental surface element is a 

D3.2. Calculate D in rectangular coordinates at point P(2, −3, 6) produced 
by: (a) a point charge QA = 55 mC at Q(−2, 3, −6); (b) a uniform line charge 
ρLB = 20 mC/m on the x axis; (c) a uniform surface charge density ρSC =  
120 μC/m2 on the plane z = −5 m. 

Ans. (a) 6.38ax − 9.57ay + 19.14az μC/m2; (b) −212ay + 424az μC/m2; (c) 60az μC/m2

1 If it were a perfect insulator, the soup could even be left in the can without any difference in the results.
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vector quantity. The only unique direction that may be associated with ΔS is the direc-
tion of the normal to that plane which is tangent to the surface at the point in question. 
There are, of course, two such normals, and the ambiguity is removed by specifying 
the outward normal whenever the surface is closed; “outward” has a specific meaning.

At any point P, consider an incremental element of surface ΔS and let DS make 
an angle θ with ΔS, as shown in Figure 3.2. The flux crossing ΔS is then the product 
of the normal component of DS and ΔS,

ΔΨ = flux crossing ΔS =  D  S,norm   ΔS =  D  S   cos θ ΔS =  D  S   · ΔS

where we are able to apply the definition of the dot product developed in Chapter 1.
The total flux passing through the closed surface is obtained by adding the dif-

ferential contributions crossing each surface element ΔS,

Ψ = ∫  d Ψ =  ∮    closed 
surface

    D  S   · dS

The resultant integral is a closed surface integral, and since the surface element 
dS always involves the differentials of two coordinates, such as dx dy, ρ dϕ dρ, or r2 
sin θ dθ dϕ, the integral is a double integral. Usually only one integral sign is used 
for brevity, and we will always place an S below the integral sign to indicate a surface 
integral, although this is not actually necessary, as the differential dS is automatically 
the signal for a surface integral. One last convention is to place a small circle on the 
integral sign itself to indicate that the integration is to be performed over a closed 
surface. Such a surface is often called a gaussian surface. We then have the mathe-
matical formulation of Gauss’s law,

 Ψ =  ∮  
S
    D  S   · dS = charge enclosed = Q (5)

The charge enclosed might be several point charges, in which case

Q = ∑  Qn

DS normal

Q
P

θDS

ΔS

ΔS

Figure 3.2 The electric flux density DS at P arising 
from charge Q. The total flux passing through ΔS is 
DS · ΔS.

hay28159_ch03_048-075.indd   53 25/11/17   11:09 am



E N G I N E E R I N G  E L E C T R O M AG N E T I C S54

or a line charge,
Q = ∫   ρ  L   d L

or a surface charge,

Q =  ∫  
S
    ρ  S   dS  (not necessarily a closed surface)

or a volume charge distribution,
Q =  ∫  vol    ρ  v   dv

The last form is usually used, and we should agree now that it represents any or all 
of the other forms. With this understanding, Gauss’s law may be written in terms of 
the charge distribution as

  ∮
S
    D  S   · dS =  ∫  vol    ρ  v   dv (6)

a mathematical statement meaning simply that the total electric flux through any 
closed surface is equal to the charge enclosed.

EXAMPLE 3.1

To illustrate the application of Gauss’s law, let us check the results of Faraday’s ex-
periment by placing a point charge Q at the origin of a spherical coordinate system 
(Figure 3.3) and by choosing our closed surface as a sphere of radius a.
Solution. We have, as before,

D =   Q ____ 
4π  r   2 

    a  r  

At the surface of the sphere,

 D  S   =   Q ____ 
4π  a   2 

    a  r  

The differential element of area on a spherical surface is, in spherical coordinates 
from Chapter 1,

dS =  r   2  sin θ  dθ  dϕ =  a   2  sin θ  dθ  dϕ

or

dS =  a   2  sin θ  dθ  dϕ    a  r  
The integrand is

 D  S   · dS =   Q ____ 
4π  a   2 

    a   2  sin θ  dθ  dϕ  a  r   ·  a  r   =   Q __ 4π
   sin  θ  dθ  dϕ

leading to the closed surface integral

 ∫
ϕ=0
 ϕ=2π  ∫ θ=0  

 θ=π
      Q __ 4π

   sin  θ dθ dϕ
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D3.3. Given the electric flux density, D = 0.3r2ar nC/m2 in free space:  
(a) find E at point P(r = 2, θ = 25°, ϕ = 90°); (b) find the total charge within 
the sphere r = 3; (c) find the total electric flux leaving the sphere r = 4. 

Ans. (a) 135.5ar V/m; (b) 305 nC; (c) 965 nC

D3.4. Calculate the total electric flux leaving the cubical surface formed by 
the six planes x, y, z = ±5 if the charge distribution is: (a) two point charges,  
0.1 μC at (1, −2, 3) and   1 __ 7   μC at (−1, 2, −2); (b) a uniform line charge of π μC/m
at x = −2, y = 3; (c) a uniform surface charge of 0.1 μC/m2 on the plane y = 3x. 

Ans. (a) 0.243 μC; (b) 31.4 μC; (c) 10.54 μC

DS

dS
Q

ϕ

θ r = a

Figure 3.3 Applying Gauss’s law 
to the field of a point charge Q on 
a spherical closed surface of radius 
a. The electric flux density D is
everywhere normal to the spherical 
surface and has a constant magni-
tude at every point on it.

where the limits on the integrals have been chosen so that the integration is carried 
over the entire surface of the sphere once.2 Integrating gives

 ∫
 0

2π
      Q __ 4π

    (− cos θ)  0  
π    dϕ =  ∫ 

 0
  
  2π

           Q __ 2π
   dϕ = Q

and we obtain a result showing that Q coulombs of electric flux are crossing the 
surface, as we should since the enclosed charge is Q coulombs.

2 Note that if θ and ϕ both cover the range from 0 to 2π, the spherical surface is covered twice.
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3.3  APPLICATION OF GAUSS’S LAW: SOME 
SYMMETRICAL CHARGE DISTRIBUTIONS

We now consider how we may use Gauss’s law,

 Q =  ∮  
S
    D  S   · dS

to determine DS if the charge distribution is known. This is an example of an integral 
equation in which the unknown quantity to be determined appears inside the integral.

The solution is easy if we can choose a closed surface which satisfies two 
conditions:
1. DS is everywhere either normal or tangential to the closed surface, so that DS ·

dS becomes either DSdS or zero, respectively.
2. On that portion of the closed surface for which DS · dS is not zero, DS =

constant.
This allows the dot product to be replaced with the product of the scalars DS and

dS, and then DS can be brought outside the integral sign. The remaining integral is 
then ∫S dS over that portion of the closed surface that DS crosses normally, and this is 
simply the area of this section of that surface. Only a knowledge of the symmetry of 
the problem enables us to choose such a closed surface.

3.3.1 Point Charge Field

Consider a point charge Q at the origin of a spherical coordinate system and decide 
on a suitable closed surface that will meet the two requirements previously listed. 
The surface in question is obviously a spherical surface, centered at the origin and of
any radius r. DS is everywhere normal to the surface, and DS has the same value at 
all points on the surface.

Then we have, in order,

Q 

 

=  ∮  
S
    D  S   · dS =  ∮  sph    D  S  dS

    =  D  S    ∮  sph   dS =  D  S    ∫ 
ϕ=0

  ϕ=2π

 ∫
θ=0

  θ=π
     r   2  sin θ dθ dϕ     

= 4π  r   2   D  S  

  

and therefore

 D  S   =   Q ____ 
4π  r   2 

  

Because r may have any value and because DS is directed radially outward,

 D =   Q
 _ 

4π   r   2 
    a  r     E =   Q

 _ 
4π   ϵ  0    r   2 

    a  r   
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which agrees with the results of Chapter 2. The example is a trivial one, and the 
objection could be raised that we had to know that the field was symmetrical and 
directed radially outward before we could obtain an answer. This is true, and that 
leaves the inverse-square-law relationship as the only check obtained from Gauss’s 
law. The example does, however, serve to illustrate a method which can be applied 
to other problems, including several to which Coulomb’s law is almost incapable of 
supplying an answer.

3.3.2 Line Charge Field 

As a second example, consider again the uniform line charge distribution ρL lying 
along the z axis and extending from −∞ to +∞. We must first know the symmetry 
of the field, and this knowledge is complete when the answers to these two questions 
are known:
1. With which coordinates does the field vary (or of what variables is D a function)?
2. Which components of D are present?

In using Gauss’s law, it is not a question of using symmetry to simplify the
solution, for the application of Gauss’s law depends on symmetry, and if we cannot
show that symmetry exists then we cannot use Gauss’s law to obtain a solution. The 
preceding two questions now become “musts.”

From our previous discussion of the uniform line charge, it is evident that only 
the radial component of D is present, or

D =  D  ρ    a  ρ  

and this component is a function of ρ only.

 D  ρ   = f(ρ)

The choice of a closed surface is now simple, for a cylindrical surface is the only 
surface to which Dρ is everywhere normal, and it may be closed by plane surfaces 
normal to the z axis. A closed right circular cylinder of radius ρ extending from z = 
0 to z = L is shown in Figure 3.4.

We apply Gauss’s law,

Q 
 
=  ∮  cyl    D  S   · dS =  D  S    ∫  sides   dS + 0 ∫  top   dS + 0 ∫  bottom   dS

 
=  D  S    ∫ 

z=0

  L
  ∫

ϕ=0
  

  2π
    ρ dϕ dz =  D  S   2πρL

and obtain

 D  S   =  D  ρ   =   Q ____
2πρL

In terms of the charge density ρL, the total charge enclosed is

Q =  ρ  L   L
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giving

 D  ρ   =    ρ  L   ___
2πρ

or

 E  ρ   =    ρ  L   _____
2π   ϵ  0   ρ

Comparing with Section 2.4, Eq. (16), shows that the correct result has been ob-
tained and with much less work. Once the appropriate surface has been chosen, the 
integration usually amounts only to writing down the area of the surface at which D 
is normal.

3.3.3 Coaxial Cable Field

The problem of a coaxial cable is almost identical to that of the line charge and is an 
example that is extremely difficult to solve from the standpoint of Coulomb’s law. 
Suppose that we have two coaxial cylindrical conductors, the inner of radius a and 
the outer of radius b, each infinite in extent (Figure 3.5). We will assume a charge 
distribution of ρS on the outer surface of the inner conductor.

Symmetry considerations show us that only the Dρ component is present and 
that it can be a function only of ρ. A right circular cylinder of length L and radius ρ, 
where a < ρ < b, is necessarily chosen as the gaussian surface, and we quickly have

Q =  D  S   2πρL

Figure 3.4 The gaussian 
surface for an infinite uniform 
line charge is a right circular 
cylinder of length L and radius 
ρ. D is constant in magnitude 
and everywhere perpendicular 
to the cylindrical surface; D is 
parallel to the end faces.

ρL ρ

L

Line charge
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The total charge on a length L of the inner conductor is

Q =  ∫ 
z=0

  L
  ∫

ϕ=0
  

  2π
    ρ  S  a  dϕ  dz = 2π aL  ρ  S  

from which we have

 D  S   =   a  ρ  S___
ρ D =   a  ρ  S   ___ ρ    a  ρ     (a < ρ < b)

This result might be expressed in terms of charge per unit length because the inner 
conductor has 2π aρS coulombs on a meter length, and hence, letting ρL = 2π aρS,

 D =    ρ  L   _ 2πρ
    a  ρ

and the solution has a form identical with that of the infinite line charge.
Because every line of electric flux starting from the charge on the inner cylinder 

must terminate on a negative charge on the inner surface of the outer cylinder, the 
total charge on that surface must be

 Q  outer  cyl   = − 2π aL  ρ  S,inner  cyl  

and the surface charge on the outer cylinder is found as
2π bL  ρ  S,outer  cyl   = − 2π aL  ρ  S,inner  cyl  

or
 ρ  S,outer  cyl   = −a __ 

b
    ρ  S,inner  cyl  

What would happen if we should use a cylinder of radius ρ, ρ > b, for the gaussian 
surface? The total charge enclosed would then be zero, for there are equal and oppo-
site charges on each conducting cylinder. Hence

 0  =  D  S   2πρL  ( ρ > b)    D  S  
  = 0  ( ρ > b) 

Figure 3.5 The two coaxial 
cylindrical conductors forming 
a coaxial cable provide an 
electric flux density within the 
cylinders, given by Dρ = aρS/ρ.

Conducting
cylinders

ρ = a

ρ = b
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An identical result would be obtained for ρ < a. Thus the coaxial cable or capacitor 
has no external field (we have proved that the outer conductor is a “shield”), and 
there is no field within the center conductor.

Our result is also useful for a finite length of coaxial cable, open at both ends, 
provided the length L is many times greater than the radius b so that the nonsymmet-
rical conditions at the two ends do not appreciably affect the solution. Such a device 
is also termed a coaxial capacitor. Both the coaxial cable and the coaxial capacitor 
will appear frequently in the work that follows.

EXAMPLE 3.2

Let us select a 50-cm length of coaxial cable having an inner radius of 1 mm and an 
outer radius of 4 mm. The space between conductors is assumed to be filled with air. 
The total charge on the inner conductor is 30 nC. We wish to know the charge density 
on each conductor, and the E and D fields. 
Solution. We begin by finding the surface charge density on the inner cylinder,

 ρ  S,inner cyl   =   
 Q  inner cyl   ______ 2πaL

   =   30 ×  10   −9  __________  
2π( 10   −3  ) (0.5 )

   = 9.55 μ  C/m   2 

The negative charge density on the inner surface of the outer cylinder is

 ρ  S,outer cyl   =   
 Q  outer cyl   ______ 2πbL

   =   − 30 ×  10   −9   _____________  
2π(4 ×  10   −3  ) (0.5)

   = − 2.39 μ  C/m   2 

The internal fields may therefore be calculated easily:

 D  ρ   =   a  ρ  S   ___ ρ   =    10   −3 (9.55 ×  10   −6  )  _____________ ρ   =   9.55 ____ ρ      nC/m   2 

and

 E  ρ   =   
 D  ρ   ___  ϵ  0     =   9.55 ×  10   −9   ___________  

8.854 ×  10   −12  ρ
   =   1079 ____ ρ    V/m

Both of these expressions apply to the region where 1 < ρ < 4 mm. For ρ < 1 mm or 
ρ > 4 mm, E and D are zero.

D3.5. A point charge of 0.25 μC is located at r = 0, and uniform surface 
charge densities are located as follows: 2 mC/m2 at r = 1 cm, and −0.6 mC/m2 
at r = 1.8 cm. Calculate D at: (a) r = 0.5 cm; (b) r = 1.5 cm; (c) r = 2.5 cm. 
(d) What uniform surface charge density should be established at r = 3 cm to 
cause D = 0 at r = 3.5 cm?

Ans. (a) 796ar μC/m2; (b) 977ar μC/m2; (c) 40.8ar μC/m2; (d) −28.3 μC/m2
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3.4  GAUSS’S LAW IN DIFFERENTIAL 
FORM: DIVERGENCE

We will now apply the methods of Gauss’s law to a slightly different type of problem—
one that may not possess any symmetry at all. At first glance, it might seem that our 
case is hopeless, for without symmetry, a simple gaussian surface cannot be chosen 
such that the normal component of D is constant or zero everywhere on the surface. 
Without such a surface, the integral cannot be evaluated. There is only one way to 
circumvent these difficulties and that is to choose such a very small closed surface 
that D is almost constant over the surface, and the small change in D may be ade-
quately represented by using the first two terms of the Taylor’s-series expansion for 
D. The result will become more nearly correct as the volume enclosed by the gaussian 
surface decreases, and we intend eventually to allow this volume to approach zero.

This example also differs from the preceding ones in that we will not obtain the 
value of D as our answer but will instead receive some extremely valuable informa-
tion about the way D varies in the region of our small surface. This leads directly 
to one of Maxwell’s four equations, which are basic to all electromagnetic theory.

3.4.1 Gauss’s Law Applied to a Differential Volume Element

Consider any point P, shown in Figure 3.6, located by a rectangular coordinate sys-
tem. The value of D at the point P may be expressed in rectangular components, D0 =  
Dx0ax + Dy0ay + Dz0az. We choose as our closed surface the small rectangular box, 
centered at P, having sides of lengths Δx, Δy, and Δz, and apply Gauss’s law,

  ∮  S   D · dS = Q 

In order to evaluate the integral over the closed surface, the integral must be 
broken up into six integrals, one over each face,

 ∮  S   D · dS =  ∫  front     +  ∫  back     +  ∫  left     +  ∫  right     +  ∫  top     +  ∫  bottom

Consider the first of these in detail. Because the surface element is very small, D 
is essentially constant (over this portion of the entire closed surface) and

 ∫  front   
 
 =   ˙    D  front   · Δ  S  front

    =   ˙    D  front   · Δy Δz   a  x     
 =   ˙    D  x,front   Δy Δz

  

where we have only to approximate the value of Dx at this front face. The front face 
is at a distance of Δx/2 from P, and hence

 
 D  x,front  

 
  =   ˙    D  x0   +   Δx ___ 2   × rate of change of    D  x   with  x

      
 =   ˙    D  x0   +   Δx ___ 2      ∂  D  x___

∂x
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where Dx0 is the value of Dx at P, and where a partial derivative must be used to ex-
press the rate of change of Dx with x, as Dx in general also varies with y and z. This 
expression could have been obtained more formally by using the constant term and 
the term involving the first derivative in the Taylor’s-series expansion for Dx in the 
neighborhood of P.

We now have

 ∫  front    =   ˙     (   D  x0   +   Δx _ 2      ∂  D  x   _ ∂ x   )   Δy Δz

Consider now the integral over the back surface,

 ∫  back    
 
 =   ˙    D  back   · Δ  S  back

    =   ˙    D  back   · (− Δy Δz   a  x   )    
 =   ˙   −  D  x,back   Δy Δz

  

and

 D  x,back      =   ˙      D  x0   −   Δx ___ 2      ∂  D  x____
∂ x 

giving

 ∫  back    =   ˙     (  −  D  x0   +   Δx _ 2      ∂  D  x   _ ∂ x   )   Δy Δz

z

x

y

Δy

Δx
Δz

P(x, y, z)
D = D0  =  Dx0  ax + Dy0  ay + Dz0  az

Figure 3.6 A differential-sized gaussian surface 
about the point P is used to investigate the space 
rate of change of D in the neighborhood of P.
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If we combine these two integrals, we have

 ∫  front  + ∫  back    =   ˙      ∂  D  x   ____ ∂ x   Δx Δy Δz

By exactly the same process we find that

 ∫  right  + ∫  left    =̇    
∂  D  y   ____ ∂ y   Δx Δy Δz

and

 ∫  top  + ∫  bottom    =̇    ∂  D  z   ___ ∂ z   Δx Δy Δz

and these results may be collected to yield

 ∮
S
   D · dS = Q   =   ˙      (    ∂  D  x   _ ∂ x   +   

∂  D  y   _ ∂ y   +   ∂  D  z   _ ∂ z   )   Δv (7)

where Δv =  ΔxΔyΔz. The expression is an approximation which becomes better 
as Δv becomes smaller, and in the following section we shall let the volume Δv 
approach zero. For the moment, we have applied Gauss’s law to the closed surface 
surrounding the volume element Δv and have as a result the approximation (7) stat-
ing that

 Charge enclosed in volume Δv   =   ˙      (    
∂  D  x   _ 
∂ x

   +   
∂  D  y  

 _ 
∂ y

   +   
∂  D  z   _ 
∂ z

   )    × volume   Δv (8)

Find an approximate value for the total charge enclosed in an incremental volume of 
10−9 m3 located at the origin, if D = e−x sin y ax − e−x cos y ay + 2zaz C/m2.
Solution. We first evaluate the three partial derivatives in (8):

 

  ∂  D  x   ____ ∂ x   = −  e   −x  sin y

    
∂  D  y   ____ ∂ y   =  e   −x  sin y  

  ∂  D  z   ___ ∂ z   = 2

 

At the origin, the first two expressions are zero, and the last is 2. Thus, we find that 
the charge enclosed in a small volume element there must be approximately 2Δv. If 
Δv is 10−9 m3, then we have enclosed about 2 nC.

EXAMPLE 1 .1 EXAMPLE 3.3
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3.4.2 Divergence

We next obtain an exact relationship from (7), by allowing the volume element Δv to 
shrink to zero. We write this equation as

  (     ∂  D  x   _ ∂ x   +   
∂  D  y   _ ∂ y   +   ∂  D  z   _ ∂ z   )    =   lim  

Δv→0
     
 ∮  S   D · dS

 ______ Δv
   =   lim

Δv→0
     Q ___ Δv

   =  ρ  v (9)

in which the charge density, ρv, is identified in the second equality.
The methods of the previous section could have been used on any vector A to 

find ∮  S   A · dS for a small closed surface, leading to

  (     ∂  A  x   _ ∂ x   +   
∂  A  y   _ ∂ y   +   ∂  A  z   _ ∂ z   )    =   lim  

Δv→0
     
 ∮  S   A · dS______

Δv
   (10)

where A could represent velocity, temperature gradient, force, or any other vector 
field.

The operation in Eq. (10) appeared so many times in physical investigations in 
the nineteenth century that it received a descriptive name, divergence. The diver-
gence of A is defined as

 Divergence of  A = div A =   lim  
Δv→0

     
 ∮  S   A · dS_

Δv
 (11)

and is usually abbreviated div A. The physical interpretation of the divergence of a 
vector is obtained by describing carefully the operations implied by the right-hand 
side of (11), where we shall consider A to be a member of the flux-density family of 
vectors in order to aid the physical interpretation.

The divergence of the vector flux density A is the outflow of flux from a small closed
surface per unit volume as the volume shrinks to zero.

The physical interpretation of divergence afforded by this statement is often useful 
in obtaining qualitative information about the divergence of a vector field without re-
sorting to a mathematical investigation. For instance, let us consider the divergence of 
the velocity of water in a bathtub after the drain has been opened. The net outflow of 
water through any closed surface lying entirely within the water must be zero, for water 

D3.6. In free space, let D = 8xyz4ax + 4x2z4ay + 16x2yz3 az pC/m2. (a) Find 
the total electric flux passing through the rectangular surface z = 2, 0 < x < 
2, 1 < y < 3, in the az direction. (b) Find E at P(2, −1, 3). (c) Find an approxi-
mate value for the total charge contained in an incremental sphere located at P
(2, −1, 3) and having a volume of 10−12 m3. 

Ans.  (a) 1365 pC; (b) −146.4ax + 146.4ay − 195.2az V/m; (c) −2.38 × 10−21 C

hay28159_ch03_048-075.indd   64 25/11/17   11:09 am



C H A P T E R  3  Electric Flux Density, Gauss’s Law, and Divergence 65

is essentially incompressible, and the water entering and leaving different regions of 
the closed surface must be equal. Hence the divergence of this velocity is zero.

If, however, we consider the velocity of the air in a tire that has just been punc-
tured by a nail, we realize that the air is expanding as the pressure drops, and that 
consequently there is a net outflow from any closed surface lying within the tire. The 
divergence of this velocity is therefore greater than zero.

A positive divergence for any vector quantity indicates a source of that vector 
quantity at that point. Similarly, a negative divergence indicates a sink. Because the 
divergence of the water velocity above is zero, no source or sink exists.3 The expand-
ing air, however, produces a positive divergence of the velocity, and each interior 
point may be considered a source.

Writing (9) with our new term, we have

 div  D =   (    ∂  D  x   _ ∂ x   +   
∂  D  y   _ ∂ y   +   ∂  D  z _ ∂ z   )    (rectangular ) (12)

This expression is again of a form that does not involve the charge density. It is the 
result of applying the definition of divergence (11) to a differential volume element 
in rectangular coordinates.

If a differential volume unit ρ dρ dϕ dz in cylindrical coordinates, or r2 sin 
θ dr dθ dϕ in spherical coordinates, had been chosen, expressions for divergence 
involving the components of the vector in the particular coordinate system and in-
volving partial derivatives with respect to the variables of that system would have 
been obtained. These expressions are obtained in Appendix A and are given here for 
convenience:

 div  D =   1 _ ρ      ∂ _ ∂ ρ  (ρ  D  ρ  ) +   1 _ ρ      
∂  D  ϕ  

 _ ∂ ϕ   +   ∂  D  z_
∂ z   (cylindrical) (13)

 div  D =   1 _ 
 r   2 

      ∂ _ ∂ r  ( r   2   D  r  ) +   1 _ 
r sin θ     ∂ _ ∂ θ  (sin θ   D  θ  ) +   1 _

r sin θ 
∂  D  ϕ _ ∂ ϕ    (spherical)  (14)

These relationships are also shown at the end of this book for easy reference.
It should be noted that the divergence is an operation which is performed on a 

vector, but that the result is a scalar. We should recall that, in a somewhat similar way, 
the dot or scalar product was a multiplication of two vectors which yielded a scalar.

For some reason, it is a common mistake on meeting divergence for the first 
time to impart a vector quality to the operation by scattering unit vectors around in 

3 Having chosen a differential element of volume within the water, the gradual decrease in water level 
with time will eventually cause the volume element to lie above the surface of the water. At the instant 
the surface of the water intersects the volume element, the divergence is positive and the small volume is 
a source. This complication is avoided above by specifying an integral point.
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3.4.3 Maxwell’s First Equation: Gauss’s Law in Point Form

Finally, we can combine Eqs. (9) and (12) and form the relation between electric flux 
density and charge density:

 div  D =  ρ  v   (15)

This is the first of Maxwell’s four equations as they apply to electrostatics and 
steady magnetic fields, and it states that the electric flux per unit volume leaving a 
vanishingly small volume unit is exactly equal to the volume charge density there. 
This equation is aptly called the point form of Gauss’s law. Gauss’s law relates the 
flux leaving any closed surface to the charge enclosed, and Maxwell’s first equation 
makes an identical statement on a per-unit-volume basis for a vanishingly small vol-
ume, or at a point. Because the divergence may be expressed as the sum of three par-
tial derivatives, Maxwell’s first equation is also described as the differential-equation 
form of Gauss’s law, and conversely, Gauss’s law is recognized as the integral form 
of Maxwell’s first equation.

EXAMPLE 3.4

Find div D at the origin if D = e−x sin y ax − e−x cos y ay + 2zaz.
Solution. We use (10) to obtain

 div D  =    ∂  D  x   ____ ∂ x   +   
∂  D  y   ____ ∂ y   +   ∂  D  z___

∂ z      
 =  −  e   −x  sin  y +  e   −x  sin  y + 2 = 2

The value is the constant 2, regardless of location.
If the units of D are C/m2, then the units of div D are C/m3. This is a volume 

charge density, a concept discussed in the next section.

D3.7. In each of the following parts, find a numerical value for div D at the 
point specified: (a) D = (2xyz − y2)ax + (x2z − 2xy)ay + x2yaz C/m2 at PA(2,  
3, −1); (b) D = 2ρz2 sin2 ϕ aρ + ρz2 sin 2ϕ aϕ + 2ρ2z sin2 ϕ az C/m2 at PB(ρ = 
2, ϕ = 110°, z = −1); (c) D = 2r sin θ cos ϕ ar + r cos θ cos ϕ aθ − r sin ϕ aϕ 
C/m2 at PC(r = 1.5, θ = 30°, ϕ = 50°). 

Ans. (a) −10.00; (b) 9.06; (c) 1.29

the partial derivatives. Divergence merely tells us how much flux is leaving a small 
volume on a per-unit-volume basis; no direction is associated with it.

We can illustrate the concept of divergence by continuing with the example at 
the end of Section 3.4.
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3.5 DIVERGENCE THEOREM
Gauss’s law for the electric field as we have used it is a specialization of what is 
called the divergence theorem in field theory. This general theorem is applied in other 
ways to different problems in physics, as well as to a few more in electromagnetics.  
In this section, we develop this broader perspective and demonstrate the use of the 
theorem in simplifying some otherwise complicated problems.

3.5.1 The Del Operator

As divergence is an operation on a vector yielding a scalar result, just as the dot prod-
uct of two vectors gives a scalar result, it seems possible that we can find something 
that may be dotted formally with D to yield the scalar

  ∂  D  x   ____ ∂ x   +   
∂  D  y   ____ ∂ y   +   ∂  D  z___

∂ z 

Obviously, this cannot be accomplished by using a dot product; the process must be 
a dot operation.

As a specific illustration, let us consider the divergence of D in the region about 
a point charge Q located at the origin. We have the field

D =   Q ____ 
4π  r   2 

    a  r  

and use (14), the expression for divergence in spherical coordinates:

div D =   1 __ 
 r   2 

      ∂ __ ∂ r   ( r   2   D  r   ) +   1 _____ 
r sin θ    ∂ __ ∂ θ   ( D  θ   sin θ ) +   1 _____ 

r sin θ      
∂  D  ϕ  ____
∂ ϕ 

Because Dθ and Dϕ are zero, we have

div D =   1 __ 
 r   2 

      d __ 
dr

    (   r   2    Q
 _ 

4π   r   2 
   )    = 0  (if  r ≠  0 )

Thus, ρv = 0 everywhere except at the origin, where it is infinite.
The divergence operation is not limited to electric flux density; it can be applied 

to any vector field. We will apply it to several other electromagnetic fields in the 
coming chapters.

D3.8. Determine an expression for the volume charge density associated with 
each D field: (a) D =   4xy ___ z    a  x   +   2  x   2  ___ z    a  y   −   2  x   2  y ____ 

 z   2 
    a  z  ; (b) D = z sin ϕ aρ + z cos ϕ aϕ +

ρ sin ϕ az; (c) D = sin θ sin ϕ ar + cos θ sin ϕ aθ + cos ϕ aϕ. 

Ans.    4y __ z3    (x
2 + z2); 0; 0.
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With this in mind, we define the del operator ∇ as a vector operator,

 ∇ =   ∂ _ ∂ x    a  x   +   ∂ _ ∂ y    a  y   +   ∂ _ ∂ z    a  z (16)

Similar scalar operators appear in several methods of solving differential equa-
tions where we often let D replace d/dx, D2 replace d2/dx2, and so forth.4  ∇ is treated 
in every way as an ordinary vector with the one important exception that partial 
derivatives result instead of products of scalars.

3.5.2 Obtaining Divergence with the Del Operator

Consider the operation ∇ · D, signifying

∇ · D =   (    ∂ _ ∂ x    a  x   +   ∂ _ ∂ y    a  y   +   ∂ _ ∂ z    a  z   )    · ( D  x    a  x   +  D  y    a  y   +  D  z    a  z   )

We first consider the dot products of the unit vectors, discarding the six zero 
terms, and obtain the result that we recognize as the divergence of D:

 ∇ · D =   ∂  D  x   _ ∂ x   +   
∂  D  y   _ ∂ y   +   ∂  D  z   _ ∂ z   = div(D ) 

The use of ∇ · D is much more prevalent than that of div D, although both 
usages have their advantages. Writing ∇ · D allows us to obtain simply and quickly 
the correct partial derivatives, but only in rectangular coordinates, as we will see. 
On the other hand, div D is an excellent reminder of the physical interpretation of 
divergence. We will use the operator notation ∇ · D from now on to indicate the 
divergence operation.

The vector operator ∇ is used not only with divergence, but also with several 
other very important operations that appear later. One of these, the gradient, is ∇u, 
where u is any scalar field, and it leads to

∇u =   (    ∂ _ ∂ x    a  x   +   ∂ _ ∂ y    a  y   +   ∂ _ ∂ z    a  z   )   u =   ∂ u __ ∂ x    a  x   +   ∂ u __ ∂ y    a  y   +   ∂ u __ ∂ z    a  z
The ∇ operator does not have a specific form in other coordinate systems. If we 

are considering D in cylindrical coordinates, then ∇ · D still indicates the divergence 
of D, or

∇ · D =   1 __ ρ      ∂ __ ∂ ρ  (ρ   D  ρ   ) +   1 __ ρ      
∂  D  ϕ  

 ____ ∂ ϕ   +   ∂  D  z___
∂ z 

where this expression has been taken from Section 3.5. We have no form for ∇ itself 
to help us obtain this sum of partial derivatives. This means that ∇u, as yet unnamed 
but easily written in rectangular coordinates, cannot be expressed by us at this time 
in cylindrical coordinates. Such an expression will be obtained when ∇u is defined 
in Chapter 4.

4 This scalar operator D, which will not appear again, is not to be confused with the electric flux density.
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3.5.3 Divergence Theorem

We close the treatment of divergence by presenting a theorem that brings the discus-
sion full circle, the divergence theorem. This theorem applies to any vector field for 
which the appropriate partial derivatives exist, although it is easiest for us to develop 
it for the electric flux density. We have actually obtained it already and now have 
little more to do than point it out and name it, for starting from Gauss’s law, we have

 ∮
S
   D · dS = Q =  ∫  vol    ρ  v    dv =  ∫  vol   ∇ · D dv

The first and last expressions constitute the divergence theorem,

  ∮
S
   D · dS =  ∫  vol   ∇ · D dv (17)

which may be stated as follows:
The integral of the normal component of any vector field over a closed surface is equal 
to the integral of the divergence of this vector field throughout the volume enclosed by 
the closed surface.

The divergence theorem is also known as Gauss’s theorem, and in fact Gauss’s 
law as we have used it is nothing more than an application of the divergence theorem 
to electrostatics. Again, we emphasize that the theorem is true for any vector field, and 
we will have occasion later to apply it to several different fields. Its benefits derive from 
the fact that it relates a triple integration throughout some volume to a double integra-
tion over the surface of that volume. For example, it is much easier to look for leaks in 
a bottle full of some agitated liquid by inspecting the surface than by calculating the 
velocity at every internal point. It should also be pointed out that Eq. (17), as applied to 
the electric flux density, is Maxwell’s first equation in integral form.

The divergence theorem becomes obvious physically if we consider a volume 
v, shown in cross section in Figure 3.7, which is surrounded by a closed surface S. 

Closed surface S

Volume ʋ
Figure 3.7 The divergence theorem states that the 
total flux crossing the closed surface is equal to the 
integral of the divergence of the flux density through-
out the enclosed volume. The volume is shown here in 
cross section.
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Division of the volume into a number of small compartments of differential size and 
consideration of one cell show that the flux diverging from such a cell enters, or con-
verges on, the adjacent cells unless the cell contains a portion of the outer surface. In 
summary, the divergence of the flux density throughout a volume leads, then, to the 
same result as determining the net flux crossing the enclosing surface.

EXAMPLE 3.5

Evaluate both sides of the divergence theorem for the field D = 2xyax + x2ay C/m2 and the 
rectangular parellelepiped formed by the planes x = 0 and 1, y = 0 and 2, and z = 0 and 3.
Solution. Evaluating the surface integral first, we note that D is parallel to the sur-
faces at z = 0 and z = 3, so D · dS = 0 there. For the remaining four surfaces we have

 ∮  
S
 D · dS  =   ∫ 

 0
  
 3
     ∫ 

 0
  
 2
     (D)  x=0   · (− dy  dz    a  x   ) + ∫ 

 0
  
  3

     ∫ 
 0
  
  2

     (D)  x=1   · (dy dz    a  x  )

+ ∫ 
 0
  
 3
     ∫  

0
  
1
     (D)  y=0   · (− dx  dz    a  y   ) + ∫ 

 0
  
 3
     ∫ 

 0
  
 1
     (D)  y=2   · (dx  dz    a  y  )

= −  ∫ 
0
  
    3

     ∫ 
0
  
  2

     ( D  x   )  x=0   dy  dz  +  ∫ 
0
  
  3

     ∫ 
0
  
  2

     ( D  x  )  x=1  dy  dz

−  ∫ 
 0
  
 3
     ∫ 

 0
  
 1
     ( D  y   )  y=0  dx  dz +  ∫ 

0
  
  3

     ∫ 
0
  
 1
     ( D  y   )  y=2  dx  dz

However, (Dx)x=0 = 0, and (Dy)y=0 = (Dy)y=2, which leaves only

 ∮
S
   D · dS

 
 =  ∫ 

 0
  
 3
     ∫ 

0
  
  2

     ( D  x   )  x=1  dy  dz =  ∫ 
0
  
 3
     ∫ 

0
  
  2

    2y  dy  dz
    

=  ∫ 
0
  
  3

    4 dz = 12
 

Since
∇ · D =   ∂ __ ∂ x   (2xy ) +   ∂ __ ∂ y   ( x   2 ) = 2y

the volume integral becomes

 
 ∫  vol   ∇ · D dv

 
 =  ∫ 

 0
  
  3

     ∫ 
 0
  
  2

     ∫ 
 0
  
 1
   2y  dx  dy  dz =  ∫ 

 0
  
 3
     ∫ 

 0
  
 2
    2y  dy  dz

       
=  ∫ 

 0
  
  3

    4dz = 12
 

and the check is accomplished. Remembering Gauss’s law, we see that we have also 
determined that a total charge of 12 C lies within this parallelepiped.

D3.9. Given the field D = 6ρ sin   1 __ 2   ϕ   a  ρ   + 1.5ρ cos   1 __ 2   ϕ   a  ϕ   C/m2, evaluate both
sides of the divergence theorem for the region bounded by ρ = 2, ϕ = 0, ϕ = 
π, z = 0, and z = 5. 

Ans. 225; 225
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CHAPTER 3 PROBLEMS
3.1 Suppose that the Faraday concentric sphere experiment is performed 

in free space using a central charge at the origin, Q1, and with 
hemispheres of radius a. A second charge Q2 (this time a point charge) 
is located at distance R from Q1, where R ≫ a. (a) What is the force 
on the point charge before the hemispheres are assembled around Q1? 
(b) What is the force on the point charge after the hemispheres are 
assembled but before they are discharged? (c) What is the force on the 
point charge after the hemispheres are assembled and after they are 
discharged? (d) Qualitatively, describe what happens as Q2 is moved 
toward the sphere assembly to the extent that the condition R ≫ a is no 
longer valid.  

3.2 An electric field in free space is E = (5z2/ϵ0)    ̂
  
 a  z V/m. Find the total charge 

contained within a cube, centered at the origin, of 4-m side length, in which 
all sides are parallel to coordinate axes (and therefore each side intersects 
an axis at ± 2).

3.3 Consider an electric dipole in free space, consisting of point charge q at 
location z = +d/2, and point charge −q at location z = −d/2.  The electric 
field intensity in the xy plane is (see Problem 2.7):

E =   − qd   a  z    ________________  
4π  ε  0   [ ρ   2  +  (d / 2  )   2 ]     3/2 

  

where ρ is the radius from the origin in cylindrical coordinates.  
(a) Determine the net electric flux associated with this field that penetrates 
the xy plane. (b) Interpret your result as it relates to Gauss’s law. 
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3.4 An electric field in free space is E = (5z3/ϵ0)     ̂
  
 a  z V/m. Find the total charge 

contained within a sphere of 3-m radius, centered at the origin.
3.5 A volume charge distribution in free space is characterized by the density

 ρ  v   =   q ____ 2Ad
   exp (− |z|   / d )

where d is a distance along z, A is the area of a surface parallel to the 
xy plane, and q is a fixed charge quantity. The charge distribution exists 
everywhere. (a) Find the electric field intensity, E, everywhere. (b) What is 
the interpretation of q? 

3.6 In free space, a volume charge of constant density ρv = ρ0 exists within the region 
−∞ < x < ∞, −∞ < y < ∞, and −d/2 < z < d/2. Find D and E everywhere.

3.7 A spherically symmetric charge distribution in free space is characterized 
by the charge density

 ρ  v   =   qb __ 
 r   2 

   exp (−br ) C /  m   3  (0 < r < ∞)

(a) Find the electric field intensity, E(r), everywhere. (b) Find the total 
charge present. 

3.8 Use Gauss’s law in integral form to show that an inverse distance field in 
spherical coordinates, D = Aar /r, where A is a constant, requires every 
spherical shell of 1 m thickness to contain 4πA coulombs of charge. Does 
this indicate a continuous charge distribution? If so, find the charge density 
variation with r.

3.9 A sphere of radius a in free space contains charge of density ρv = ρ0 r/a,
where ρ0 is a constant. (a) Find the electric field intensity, EI, inside the 
sphere. (b) Find the electric field intensity, EII, outside the sphere. (c) A 
spherical shell of radius b is positioned concentrically around the sphere. 
What surface charge density, ρs , must exist on the shell so that the electric 
field at locations r > b is zero? (d) What electrostatic force per unit area is 
exerted by the solid sphere on the spherical shell? 

3.10 An infinitely long cylindrical dielectric of radius b contains charge within 
its volume of density ρv = aρ2, where a is a constant. Find the electric field 
strength, E, both inside and outside the cylinder.

3.11 Consider a cylindrical charge distribution having infinite length in 
z, but which has a radial dependence in charge density given by the 
gaussian, ρv(ρ) = ρ0 exp[−(ρ/b)2 ]. (a) Find the electric field intensity, E, 
at large radii, ρ >> b. This enables the enclosed charge integral in Gauss’s 
law to be approximated using an infinite upper limit in radius. (b) Compare 
your result to the field outside a charged cylinder of radius b containing 
uniform charge density ρ0. 

3.12 The sun radiates a total power of about 3.86 × 1026 watts (W). If we 
imagine the sun’s surface to be marked off in latitude and longitude and 
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assume uniform radiation, (a) what power is radiated by the region lying 
between latitude 50° N and 60° N and longitude 12° W and 27° W?  
(b) What is the power density on a spherical surface 93,000,000 miles  
from the sun in W/m2?

3.13 Spherical surfaces at r = 2, 4, and 6 m carry uniform surface charge 
densities of 20 nC/m2, −4 nC/m2, and ρS0, respectively. (a) Find D at r = 1, 
3, and 5 m. (b) Determine ρS0 such that D = 0 at r = 7 m. 

3.14 A certain light-emitting diode (LED) is centered at the origin with its 
surface in the xy plane. At far distances, the LED appears as a point, but the 
glowing surface geometry produces a far-field radiation pattern that follows 
a raised cosine law: that is, the optical power (flux) density in W/m2 is 
given in spherical coordinates by

 P  d   =  P  0      cos   2  θ _____ 
2π  r   2 

    a  r     W/m   2 

where θ is the angle measured with respect to the direction that is normal 
to the LED surface (in this case, the z axis), and r is the radial distance 
from the origin at which the power is detected. (a) In terms of P0, find the 
total power in watts emitted in the upper half-space by the LED. (b) Find 
the cone angle, θ1, within which half the total power is radiated, that is, 
within the range 0 < θ < θ1. (c) An optical detector, having a 1-mm2 cross-
sectional area, is positioned at r = 1 m and at θ = 45°, such that it faces the 
LED. If one nanowatt is measured by the detector, what (to a very good 
estimate) is the value of P0?

3.15 Volume charge density is located as follows: ρv = 0 for ρ < 1 mm and for 
ρ > 2 mm, ρv = 4ρ μC/m3 for 1 < ρ < 2 mm. (a) Calculate the total charge 
in the region 0 < ρ < ρ1, 0 < z < L, where 1 < ρ1 < 2 mm. (b) Use Gauss’s 
law to determine Dρ at ρ = ρ1. (c) Evaluate Dρ at ρ = 0.8 mm, 1.6 mm, and 
2.4 mm. 

3.16 An electric flux density is given by D = D0 aρ, where D0 is a given 
constant. (a) What charge density generates this field? (b) For the specified 
field, what total charge is contained within a cylinder of radius a and height 
b, where the cylinder axis is the z axis?

3.17 In a region having spherical symmetry, volume charge is distributed 
according to:

 ρ  v   (r) = ρ0   
sin (  π r / a )   _______ 

 r   2 
      C /  m   3 

Find the surfaces on which E = 0. 
3.18 State whether the divergence of the following vector fields is positive, 

negative, or zero: (a) the thermal energy flow in J/(m2 − s) at any point in a 
freezing ice cube; (b) the current density in A/m2 in a bus bar carrying direct 
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current; (c) the mass flow rate in kg/(m2 − s) below the surface of water in a 
basin, in which the water is circulating clockwise as viewed from above.

3.19 A spherical surface of radius 3 mm is centered at P(4, 1, 5) in free space. 
Let D = xax C/m2. Use the results of Section 3.4 to estimate the net electric 
flux leaving the spherical surface. 

3.20 A radial electric field distribution in free space is given in spherical 
coordinates as:

 

 E  1   =   r  ρ  0   ___ 3  ϵ  0  
      a  r     (r ≤ a)

    E  2   =   (2  a   3  −  r   3  )  ρ  0    ________ 
3  ϵ  0    r   2 

   a  r     (a ≤ r ≤ b )    

 E  3   =   (2  a   3  −  b   3  )  ρ  0    ________ 
3  ϵ  0    r   2 

   a  r     (r ≥ b )

  

where ρ0, a, and b are constants. (a) Determine the volume charge density 
in the entire region (0 ≤ r ≤ ∞) by the appropriate use of ∇ · D = ρv. (b) In 
terms of given parameters, find the total charge, Q, within a sphere of 
radius r where r > b.

3.21 In a region exhibiting spherical symmetry, electric flux density is found 
to be D1 = ρ0 r/3 ar (0 < r < a), D2 = 0 (a < r < b), and D3 = (a3ρ0)/(3r2)
ar  (r < b). (a) Find the charge configuration that would produce the given 
field. (b) What total charge is present? 

3.22 (a) A flux density field is given as F1 = 5az. Evaluate the outward flux 
of F1 through the hemispherical surface, r = a, 0 < θ < π/2, 0 < ϕ < 2π. 
(b) What simple observation would have saved a lot of work in part a? 
(c) Now suppose the field is given by F2 = 5zaz. Using the appropriate 
surface integrals, evaluate the net outward flux of F2 through the closed 
surface consisting of the hemisphere of part a and its circular base in the xy 
plane. (d) Repeat part c by using the divergence theorem and an appropriate 
volume integral.

3.23 (a) A point charge Q lies at the origin. Show that div D is zero everywhere 
except at the origin. (b) Replace the point charge with a uniform volume 
charge density ρv0 for 0 < r < a. Relate ρv0 to Q and a so that the total 
charge is the same. Find div D everywhere. 

3.24 In a region in free space, electric flux density is found to be

D =   {    
 ρ  0  (z + 2d )  a  z       C/m   2    (− 2d ≤ z ≤ 0)

    
−  ρ  0  (z − 2d )  a  z       C/m   2    (0 ≤ z ≤ 2d )

  

Everywhere else, D = 0. (a) Using ∇ · D = ρv, find the volume charge 
density as a function of position everywhere. (b) Determine the electric 
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flux that passes through the surface defined by z = 0, −a ≤ x ≤ a, −b ≤ y 
≤ b. (c) Determine the total charge contained within the region −a ≤ x ≤ 
a, −b ≤ y ≤ b, −d ≤ z ≤ d. (d) Determine the total charge contained within 
the region −a ≤ x ≤ a, −b ≤ y ≤ b, 0 ≤ z ≤ 2d.

3.25 Within the spherical shell, 3 < r < 4 m, the electric flux density is given 
as D = 5(r − 3)3 ar C/m2. (a) What is the volume charge density at r = 4? 
(b) What is the electric flux density at r = 4? (c) How much electric flux 
leaves the sphere r = 4? (d) How much charge is contained within the 
sphere r = 4? 

3.26 If we have a perfect gas of mass density ρm kg/m3, and we assign a velocity 
U m/s to each differential element, then the mass flow rate is ρmU kg/ 
(m2 − s). Physical reasoning then leads to the continuity equation, ∇ · 
(ρmU) = −∂ρm/∂t. (a) Explain in words the physical interpretation of this 
equation. (b) Show that  ∮  s    ρ  m  U · dS = − dM / dt, where M is the total mass 
of the gas within the constant closed surface S, and explain the physical 
significance of the equation.

3.27 Consider a slab of material containing a volume charge distribution 
throughout. The slab is of length d in the z direction, and its dimensions in 
x and y represent a cross-sectional area of A. Free space permittivity exists 
throughout. The electric field in the slab is given by

E =    ρ  0   ___  ε  0   α   exp (−αz)     a  z       V / m

where ρ0 is a positive constant. (a) Find the volume charge density ρv in the 
slab. (b) Find the total charge in the slab. (c) Verify your result for part b by 
evaluating the net outward flux of D through the slab surfaces. 

3.28 Repeat Problem 3.8, but use ∇ · D = ρv and take an appropriate volume 
integral.

3.29 In the region of free space that includes the volume 2 < x, y, z < 3, 
D  =   2 _ 

 z   2 
   (  yz  a  x   + xz  a  y   − 2xy  a  z   )    C/m   2  . (a) Evaluate the volume integral side 

of the divergence theorem for the volume defined here. (b) Evaluate the 
surface integral side for the corresponding closed surface. 

3.30 (a) Use Maxwell’s first equation, ∇ · D = ρv, to describe the variation of 
the electric field intensity with x in a region in which no charge density 
exists and in which a nonhomogeneous dielectric has a permittivity 
that increases exponentially with x. The field has an x component only; 
(b) repeat part a, but with a radially directed electric field (spherical 
coordinates) in which again ρv = 0, but in which the permittivity decreases 
exponentially with r.

3.31 Given the flux density  D =   16 _ r   cos (2θ)  a  θ      C/m   2  , use two different methods 
to find the total charge within the region 1 < r < 2 m, 1 < θ < 2 rad, 1 < ϕ 
< 2 rad.

hay28159_ch03_048-075.indd   75 25/11/17   11:09 am



76

4 C H A P T E R

Energy and Potential

In Chapters 2 and 3 we became acquainted with Coulomb’s law and its use in find-
ing the electric field about several simple distributions of charge, and also with 
Gauss’s law and its application in determining the field about some symmetrical 

charge arrangements. The use of Gauss’s law was invariably easier for these highly 
symmetrical distributions because the problem of integration always disappeared 
when the proper closed surface was chosen.

If we had tried to find a more complicated field, such as that of two unlike point 
charges separated by a small distance, it would have been impossible to choose a 
suitable gaussian surface and obtain an answer. Coulomb’s law, however, is more 
powerful and enables us to solve problems for which Gauss’s law is not applicable. 
The application of Coulomb’s law is laborious, detailed, and often quite complex; the 
reason for this is that the electric field intensity, a vector field, must be found directly 
from the charge distribution. Three different integrations are needed in general, one 
for each component, and the resolution of the vector into components usually adds to 
the complexity of the integrals.

It would be desirable if we could find some as-yet-undefined scalar function 
with a single integration and then determine the electric field from this scalar by 
some simple, straightforward procedure, such as differentiation.

This scalar function does exist and is known as the potential or potential field. 
We will find that it has a very real physical interpretation and is more familiar to most 
of us than the electric field it will be used to find.

We should expect, then, to be equipped soon with a third method of finding elec-
tric fields—a single scalar integration, although not always as simple as we might 
wish, followed by a pleasant differentiation. ■
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4.1  ENERGY EXPENDED IN MOVING A POINT 
CHARGE IN AN ELECTRIC FIELD

The electric field intensity was defined as the force on a unit test charge at that point 
at which we wish to find the value of this vector field. If the test charge is moved 
against the electric field, we have to exert a force equal and opposite to that exerted 
by the field, and this requires us to expend energy or do work. If we wish to move the 
charge in the direction of the field, our energy expenditure turns out to be negative; 
we do not do the work, the field does.

Suppose we wish to move a charge Q a distance d L in an electric field E. The 
force on Q arising from the electric field is

  F  E   = QE (1)

where the subscript is a reminder that this force arises from the field. The component 
of this force in the direction dL which must be overcome is

 F  EL   = F ·  a  L   = QE ·  a  L  

where aL = a unit vector in the direction of dL.
The force that must be applied is equal and opposite to the force associated with 

the field,

 F  appl   = − QE ·  a  L  

and the expenditure of energy is the product of the force and distance. That is, the 
differential work done by an external source moving charge Q is dW = −QE · aLdL,

or  dW = − QE · dL (2)

where we have replaced aLdL by the simpler expression dL.
This differential amount of work required may be zero under several conditions 

determined easily from Eq. (2). There are the trivial conditions for which E, Q, or dL 
is zero, and a much more important case in which E and dL are perpendicular. Here 
the charge is moved always in a direction at right angles to the electric field. We can 
draw on a good analogy between the electric field and the gravitational field, where, 
again, energy must be expended to move against the field. Sliding a mass around 
with constant velocity on a frictionless surface is an effortless process if the mass is 
moved along a constant elevation contour; positive or negative work must be done in 
moving it to a higher or lower elevation, respectively.

Returning to the charge in the electric field, the work required to move the charge 
a finite distance must be determined by integrating,

 W = − Q ∫ 
init

  
  final

    E · dL (3)
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where the path must be specified before the integral can be evaluated. The charge is 
assumed to be at rest at both its initial and final positions.

This definite integral is basic to field theory, and we shall devote the following 
section to its interpretation and evaluation.

D4.1. Given the electric field E =   1 __ 
 z   2 

   (8xyz  a  x   + 4  x   2 z a  y   − 4  x   2 y a  z   )V/m, find the 
differential amount of work done in moving a 6-nC charge a distance of 2 μm, 
starting at P(2, −2, 3) and proceeding in the direction aL = (a) −   6 __ 7    a  x   +   3 __ 7    a  y   +
  2 __ 7    a  z  ; (b)   6 __ 7    a  x   −   3 __ 7    a  y   −   2 __ 7    a  z  ; (c)   3 __ 7    a  x   +   6 __ 7    a  y  .

Ans. (a) −149.3 fJ; (b) 149.3 fJ; (c) 0

4.2 THE LINE INTEGRAL
The integral expression for the work done in moving a point charge Q from one po-
sition to another, Eq. (3), is an example of a line integral, which in vector-analysis 
notation always takes the form of the integral along some prescribed path of the dot 
product of a vector field and a differential vector path length dL. Without using vec-
tor analysis we write

W = − Q ∫ 
init

  
  final

     E  L  dL

where EL = component of E along dL.
A line integral is like many other integrals which appear in advanced analysis, 

including the surface integral appearing in Gauss’s law, in that it is essentially de-
scriptive. It tells us to choose a path, break it up into a large number of very small 
segments, multiply the component of the field along each segment by the length of 
the segment, and then add the results for all the segments. This is a summation, of 
course, and the integral is obtained exactly only when the number of segments be-
comes infinite.

This procedure is indicated in Figure 4.1, where a path has been chosen from 
an initial position B to a final position1 A and a uniform electric field is selected 
for simplicity. The path is divided into six segments, ΔL1, ΔL2, . . . , ΔL6, and the 
components of E along each segment are denoted by EL1, EL2, . . . , EL6. The work 
involved in moving a charge Q from B to A is then approximately

W = − Q( E  L1   Δ  L  1   +  E  L2   Δ  L  2   + · · · +  E  L6   Δ  L  6  )

or, using vector notation,

W = − Q( E  1   · Δ  L  1   +  E  2   · Δ  L  2   + · · · +  E  6   · Δ  L  6  )

1 The final position is given the designation A to correspond with the convention for potential difference, 
as discussed in the following section.
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and because we have assumed a uniform field,

  E  1   =  E  2   = · · · =  E  6      W  = − QE ·  (  Δ  L  1   + Δ  L  2   + · · · + Δ  L  6   )   
 

What is this sum of vector segments in the preceding parentheses? Vectors add 
by the parallelogram law, and the sum is just the vector directed from the initial point 
B to the final point A, LBA. Therefore

W = − QE ·  L  BA     (uniform E) (4)

Remembering the summation interpretation of the line integral, this result for 
the uniform field can be obtained rapidly now from the integral expression

 W = − Q ∫ 
B
  
  A

    E ⋅ dL  (5)

as applied to a uniform field

W = − QE ·  ∫ 
B
  
  A

    dL

where the last integral becomes LBA and

W = − QE ·  L  BA     (uniform E)

Initial position
B

EL1

EL2

EL3

EL4

EL5

EL6

AFinal position

E

E

E

E

E

E

ΔL1

ΔL2

ΔL3

ΔL4

ΔL5

ΔL6

Figure 4.1 A graphical interpretation of a line integral in a uniform field. The line 
integral of E between points B and A is independent of the path selected, even in 
a nonuniform field; this result is not, in general, true for time-varying fields.
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For this special case of a uniform electric field intensity, we should note that 
the work involved in moving the charge depends only on Q, E, and LBA, a vector 
drawn from the initial to the final point of the path chosen. It does not depend 
on the path we choose to carry the charge. Whether we proceed from B to A on a 
straight line or via the Old Chisholm Trail, the answer is the same. We show in 
Section 4.5 that an identical statement may be made for any nonuniform (static) 
E field.

A few examples follow that illustrate the mechanics of setting up the line integral 
in Eq. (5).

We are given the nonuniform field

E = y  a  x   + x  a  y   + 2  a  z  
and we are asked to determine the work expended in carrying 2 C from B(1, 0, 1) to 
A(0.8, 0.6, 1) along the shorter arc of the circle

 x   2  +  y   2  = 1 z = 1

Solution. Use W = − Q ∫ 
B
  
  A

    E · dL, where E is not necessarily constant. Working
in rectangular coordinates, the differential path dL is dxax + dyay + dzaz, and the 
integral becomes

W = −Q ∫ 
B
  
  A

    E · dL

    = −2 ∫ 
B
  
  A

    (y  a  x   + x  a  y   + 2  a  z  ) ⋅ (dx    a  x   + dy    a  y   + dz    a  z  )     

= −2 ∫ 
1
  
   0.8

    y dx − 2 ∫ 
 0
  
  0.6

    x dy − 4 ∫ 
1
  
 1
    dz

 

where the limits on the integrals have been chosen to agree with the initial and final 
values of the appropriate variable of integration. Using the equation of the circular 
path (and selecting the sign of the radical which is correct for the quadrant involved), 
we have

W

 

 = − 2 ∫ 
1
  
  0.8

     √ 
_____

 1 −  x   2    dx − 2 ∫ 
0
  
  0.6

     √ 
_____

 1 −  y   2    dy − 0

      = −     [  x  √ 
_____

 1 −  x   2    +  sin   −1  x ]    
1

0.8
−   [  y  √ 

_____
 1 −  y   2    +  sin   −1  y ]    

0

0.6
    

 = − (0.48 + 0.927 − 0 − 1.571 ) − (0.48 + 0.644 − 0 − 0)

    

 = − 0.96 J

 

EXAMPLE 4.1
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Again find the work required to carry 2 C from B to A in the same field, but this time 
use the straight-line path from B to A.
Solution. Begin by determining the equations of the straight line. Any two of the 
following three equations for planes passing through the line are sufficient to define 
the line:

 

y −  y  B  

 

 =     y  A   −  y  B   _____  x  A   −  x  B     (x −  x  B  )

  z −  z  B     =     z  A   −  z  B   _____  y  A   −  y  B     (y −  y  B  )  

x −  x  B  

 

 =     x  A   −  x  B   _____  z  A   −  z  B     (z −  z  B  )

 

From the first equation we have
y = − 3(x − 1)

and from the second we obtain

z = 1
Thus,

W =
  
 − 2 ∫ 

1
  
  0.8

    y dx − 2 ∫ 
0
  
  0.6

    x dy − 4 ∫ 
1
  
  1

    dz

    
=

  
6 ∫ 

1
  
  0.8

    (x − 1) dx − 2 ∫ 
0
  
  0.6

     (  1 −   y _ 3   )    dy
   

 = 

 

− 0.96 J

 

This is the same answer we found using the circular path between the same two 
points, and it again demonstrates the statement (unproved) that the work done is in-
dependent of the path taken in any electrostatic field.

It should be noted that the equations of the straight line show that dy = −3dx and 
dx = −   1 __ 3   dy. These substitutions may be made in the first two integrals, along with
a change in limits, and the answer may be obtained by evaluating the new integrals. 
This method is often simpler if the integrand is a function of only one variable.

Note that the expressions for dL in our three coordinate systems use the dif-
ferential lengths obtained in Chapter 1 (rectangular in Section 1.3, cylindrical in 
Section 1.8, and spherical in Section 1.9):

 dL = dx   a  x   + dy   a  y   + dz   a  z      (  rectangular )     (6)
 dL = dρ   a  ρ   + ρ dϕ  a  ϕ   + dz   a  z     (  cylindrical )    (7)
 dL = dr   a  r   + r dθ   a  θ   + r sin  θ dϕ   a  ϕ                 (  spherical )     (8)

The interrelationships among the several variables in each expression are deter-
mined from the specific equations for the path.

EXAMPLE 1 .1 EXAMPLE 4.2
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As a final illustration, we investigate several paths that we might take near an 
infinite line charge. The field has been obtained several times and is entirely in the 
radial direction,

E =  E  ρ    a  ρ   =    ρ  L   _____ 2π  ϵ  0   ρ
    a  ρ

First we find the work done in carrying the positive charge Q about a circular 
path of radius ρb centered at the line charge, as illustrated in Figure 4.2a. Without lift-
ing a pencil, we see that the work must be nil, for the path is always perpendicular to 
the electric field intensity, or the force on the charge is always exerted at right angles 
to the direction in which we are moving it. For practice, however, we will set up the 
integral and obtain the answer.

The differential element dL is chosen in cylindrical coordinates, and the circular 
path selected demands that dρ and dz be zero, so dL = ρ1 dϕ aϕ. The work is then

 
W

 
 =

 
 − Q ∫ 

init
  

  final
       ρ  L  _____ 2π  ϵ  0    ρ  1  

    a  ρ   ·  ρ  1    dϕ    a  ϕ  
    

=
 
 − Q ∫ 

0
  
  2π

       ρ  L   ____ 2π  ϵ  0  
   dϕ    a  ρ   ·  a  ϕ   = 0

We will now carry the charge from ρ = a to ρ = b along a radial path (Figure 4.2b). 
Here dL = dρ aρ and

W = − Q ∫ 
init

  
  final

       ρ  L   _____ 2π  ϵ  0   ρ
    a  ρ   · dρ    a  ρ   = − Q ∫ 

a
  
  b

       ρ  L   ____ 2π  ϵ  0
  dρ__
ρ 

or

W = −   Q  ρ  L   ____ 2π   ϵ  0  
   ln   b__

a

Because b is larger than a, ln (b/a) is positive, and the work done is negative, 
indicating that the external source that is moving the charge receives energy.

Figure 4.2 (a) A circular path and (b) a radial path along which a charge of Q is 
carried in the field of an infinite line charge. No work is expected in the former case.

(a) (b)

z z

ba

ρL
Infinite line
charge ρL

dL = ρ1  d" a"

dL = dρ aρ

ρ1
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D4.2. Calculate the work done in moving a 4-C charge from B(1, 0, 0) to A(0, 
2, 0) along the path y = 2 − 2x, z = 0 in the field E = (a) 5axV/m; (b) 5xaxV/m; 
(c) 5xax + 5yayV/m.

Ans. (a) 20 J; (b) 10 J; (c) −30 J

D4.3. We will see later that a time-varying E field need not be conservative. 
(If it is not conservative, the work expressed by Eq. (3) may be a function of the 
path used.) Let E = yaxV/m at a certain instant of time, and calculate the work 
required to move a 3-C charge from (1, 3, 5) to (2, 0, 3) along the straight-line 
segments joining: (a) (1, 3, 5) to (2, 3, 5) to (2, 0, 5) to (2, 0, 3); (b) (1, 3, 5) to 
(1, 3, 3) to (1, 0, 3) to (2, 0, 3).

Ans. (a) −9 J; (b) 0

One of the pitfalls in evaluating line integrals is a tendency to use too many 
minus signs when a charge is moved in the direction of a decreasing coordinate val-
ue. This is taken care of completely by the limits on the integral, and no misguided 
attempt should be made to change the sign of dL. Suppose we carry Q from b to a 
(Figure 4.2b). We still have dL = dρ aρ and show the different direction by recogniz-
ing ρ = b as the initial point and ρ = a as the final point,

W = − Q ∫ 
b
  
   a

       ρ  L   ____ 2π   ϵ  0  
   d ρ ___ ρ   =   Q  ρ  L   ____ 2π   ϵ  0  

   ln   b__
a

This is the negative of the previous answer and is obviously correct.

4.3  DEFINITION OF POTENTIAL DIFFERENCE 
AND POTENTIAL

We are now ready to define a new concept from the expression for the work done by 
an external source in moving a charge Q from one point to another in an electric field 
E, “Potential difference and work.”

 W = − Q ∫ 
init

  
  final

    E · dL

In much the same way as we defined the electric field intensity as the force on a unit 
test charge, we now define potential difference V as the work done (by an external source) 
in moving a unit positive charge from one point to another in an electric field,

 Potential difference  = V = −  ∫ 
init

  
  final

    E · dL
(9)
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We have to agree on the direction of movement, and we do this by stating that 
VAB signifies the potential difference between points A and B and is the work done in 
moving the unit charge from B (last named) to A (first named). Thus, in determining 
VAB, B is the initial point and A is the final point. The reason for this somewhat pe-
culiar definition will become clearer shortly, when it is seen that the initial point B is 
often taken at infinity, whereas the final point A represents the fixed position of the 
charge; point A is thus inherently more significant.

Potential difference is measured in joules per coulomb, for which the volt is 
defined as a more common unit, abbreviated as V. Hence the potential difference 
between points A and B is

  V  AB   = −  ∫ 
B
  
  A

    E · dL V (10)

and VAB is positive if work is done in carrying the positive charge from B to A.
From the line-charge example of Section 4.2 we found that the work done in 

taking a charge Q from ρ = b to ρ = a was

W =   Q  ρ  L   ______ 2π   ϵ  0  
   ln   b__

a

Thus, the potential difference between points at ρ = a and ρ = b is

 V  ab   =   W __ 
Q

   =    ρ  L   _____ 2π   ϵ  0
   ln   b__

a (11)

We can try out this definition by finding the potential difference between points 
A and B at radial distances rA and rB from a point charge Q. Choosing an origin at Q,

E =  E  r    a  r   =   Q _______ 
4π   ϵ  0    r   2 

    a  r  

and

dL = dr   a  r  

we have

  V  AB   = −  ∫ 
B
  
  A

    E · dL = −  ∫
 r  B

   r  A  
      Q

 _ 
4π   ϵ  0    r   2 

    dr =   Q
 _ 4π   ϵ  0  

   (     1 _  r  A     −   1 _  r  B     )    (12)

If rB > rA, the potential difference VAB is positive, indicating that energy is ex-
pended by the external source in bringing the positive charge from rB to rA. This 
agrees with the physical picture showing the two like charges repelling each other.

It is often convenient to speak of the potential, or absolute potential, of a point, 
rather than the potential difference between two points, but this means only that we 
agree to measure every potential difference with respect to a specified reference point 
that we consider to have zero potential. Common agreement must be reached on the 
zero reference before a statement of the potential has any significance. A person hav-
ing one hand on the deflection plates of a cathode-ray tube that are “at a potential of 
50 V” and the other hand on the cathode terminal would probably be too shaken up 
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to understand that the cathode is not the zero reference, but that all potentials in that 
circuit are customarily measured with respect to the metallic shield about the tube. 
The cathode may be several thousands of volts negative with respect to the shield.

Perhaps the most universal zero reference point in experimental or physical 
potential measurements is “ground,” by which we mean the potential of the surface 
region of the earth itself. Theoretically, we usually represent this surface by an 
infinite plane at zero potential, although some large-scale problems, such as those 
involving propagation across the Atlantic Ocean, require a spherical surface at zero 
potential.

Another widely used reference “point” is infinity. This usually appears in theo-
retical problems approximating a physical situation in which the earth is relatively far 
removed from the region in which we are interested, such as the static field near the 
wing tip of an airplane that has acquired a charge in flying through a thunderhead, or 
the field inside an atom. Working with the gravitational potential field on earth, the 
zero reference is normally taken at sea level; for an interplanetary mission, however, 
the zero reference is more conveniently selected at infinity.

A cylindrical surface of some definite radius may occasionally be used as a zero 
reference when cylindrical symmetry is present and infinity proves inconvenient. In a 
coaxial cable the outer conductor is selected as the zero reference for potential. And, 
of course, there are many special problems, such as those for which a two-sheeted 
hyperboloid or an oblate spheroid must be selected as the zero-potential reference, 
but these need not concern us immediately.

If the potential at point A is VA and that at B is VB, then

  V  AB   =  V  A   −  V  B   (13)

where we necessarily agree that VA and VB shall have the same zero reference point.

D4.4. An electric field is expressed in rectangular coordinates by E = 6x2ax + 
6yay + 4azV/m. Find: (a) VMN if points M and N are specified by M(2, 6, −1) 
and N(−3, −3, 2); (b) VM if V = 0 at Q(4, −2, −35); (c) VN if V = 2 at P(1, 2, −4). 

Ans. (a) −139.0 V; (b) −120.0 V; (c) 19.0 V

4.4  THE POTENTIAL FIELD 
OF A POINT CHARGE

In Section 4.3 we found an expression Eq. (12) for the potential difference between 
two points located at r = rA and r = rB in the field of a point charge Q placed at the or-
igin. How might we conveniently define a zero reference for potential? The simplest 
possibility is to let V = 0 at infinity. If we let the point at r = rB recede to infinity, the 
potential at rA becomes

 V  A   =   Q ______
4π   ϵ  0    r  A
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or, as there is no reason to identify this point with the A subscript,

 V =   Q
 _ 4π   ϵ  0   r

  (14)

This expression defines the potential at any point distance  r from a point 
charge Q at the origin, the potential at infinite radius being taken as the zero ref-
erence. Returning to a physical interpretation, we may say that Q/4πϵ0r joules of 
work must be done in carrying a unit charge from infinity to any point r meters 
from the charge Q.

A convenient method to express the potential without selecting a specific zero 
reference entails identifying rA as r once again and letting Q/4πϵ0rB be a constant. 
Then

V =   Q _____ 4π   ϵ  0   r
   +  C  1   (15)

and C1 may be selected so that V = 0 at any desired value of r. We could also select 
the zero reference indirectly by choosing to let V be V0 at r = r0.

It should be noted that the potential difference between two points is not a func-
tion of C1.

Equations (14) and (15) represent the potential field of a point charge. The po-
tential is a scalar field and does not involve any unit vectors.

We now define an equipotential surface as a surface composed of all those 
points having the same value of potential. All field lines would be perpendicular 
to such a surface at the points where they intersect it. Therefore, no work is in-
volved in moving a unit charge around on an equipotential surface. The equipo-
tential surfaces in the potential field of a point charge are spheres centered at the 
point charge.

An inspection of the form of the potential field of a point charge shows that it 
is an inverse-distance field, whereas the electric field intensity was found to be an 
inverse-square-law function. A similar result occurs for the gravitational force field 
of a point mass (inverse-square law) and the gravitational potential field (inverse 
distance). The gravitational force exerted by the earth on an object one million miles 
from it is four times that exerted on the same object two million miles away. The 
kinetic energy given to a freely falling object starting from the end of the universe 
with zero velocity, however, is only twice as much at one million miles as it is at two 
million miles.

D4.5. A 15-nC point charge is at the origin in free space. Calculate V1 if point 
P1 is located at P1(−2, 3, −1) and (a) V = 0 at (6, 5, 4); (b) V = 0 at infinity; 
(c) V = 5 V at (2, 0, 4). 

Ans. (a) 20.67 V; (b) 36.0 V; (c) 10.89 V
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 4.5  THE POTENTIAL FIELD OF A SYSTEM OF 
CHARGES: CONSERVATIVE PROPERTY

The potential at a point has been defined as the work done in bringing a unit positive 
charge from the zero reference to the point, and we have suspected that this work, and 
hence the potential, is independent of the path taken. If it were not, potential would 
not be a very useful concept.

4.5.1 Potential Field of an Ensemble of Point Charges

Consider the potential field of the single point charge for which we showed, in Sec-
tion 4.4, the independence with regard to the path, noting that the field is linear 
with respect to charge so that superposition is applicable. It will then follow that the 
potential of a system of charges has a value at any point which is independent of the 
path taken in carrying the test charge to that point.

Thus the potential field of a single point charge, which we shall identify as Q1 
and locate at r1, involves only the distance   |   r − r1  |    from Q1 to the point at r where we
are establishing the value of the potential. For a zero reference at infinity, we have

V(r) =    Q  1   ________
4π  ϵ  0   |  r −  r  1   |

The potential arising from two charges, Q1 at r1 and Q2 at r2, is a function only 
of   |   r − r1  |    and   |   r − r2  |   , the distances from Q1 and Q2 to the field point, respectively.

V(r) =    Q  1   ________ 4π  ϵ  0   |  r −  r  1   |     +    Q  2   ________ 4π  ϵ  0   |  r −  r  2   |  
Continuing to add charges, we find that the potential arising from n point charges is

V(r) =   ∑ 
m=1

  
n
       Q  m   ________

4π  ϵ  0   |  r −  r  m   | (16)

4.5.2 Potential Field of a Continuous Charge Distribution

If each of the preceding point charges is now represented as a small element of a 
continuous volume charge distribution ρvΔv, then

V(r) =    ρ  v  ( r  1  ) Δ v  1   ___________ 4π   ϵ  0    |   r −  r  1   |     +    ρ  v  ( r  2  ) Δ v  2   ___________ 4π   ϵ  0    |   r −  r  2   |     + · · · +    ρ  v  ( r  n  ) Δ v  n   ___________ 4π   ϵ  0    |   r −  r  n   |  
As the number of elements becomes infinite, we obtain the integral expression

V(r) =  ∫  vol      
ρv(r′) dv′_________

4π ϵ0 |   r − r′ |  (17)

We have come quite a distance from the potential field of the single point charge, 
and it might be helpful to examine Eq. (17) and refresh ourselves as to the meaning of 
each term. The potential V(r) is determined with respect to a zero reference potential 
at infinity and is an exact measure of the work done in bringing a unit charge from 
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infinity to the field point at r where we are finding the potential. The volume charge 
density ρv(r′) and differential volume element dv′ combine to represent a differential 
amount of charge ρv(r′) dv′ located at r′. The distance   |   r − r′  |    is that distance from
the source point to the field point. The integral is a multiple (volume) integral.

If the charge distribution takes the form of a line charge or a surface charge, the 
integration is along the line or over the surface:

V(r) = ∫    ρL(r′) d L′__________ 4π ϵ0  |  r − r′ |    (18)

V(r) =  ∫  
S
      ρS(r′) d S′__________
4π ϵ0  |  r − r′ |  (19)

The most general expression for potential is obtained by combining Eqs. (16)–(19).
These integral expressions for potential in terms of the charge distribution 

should be compared with similar expressions for the electric field intensity, such as 
Eq. (15) in Section 2.3:

E(r) =  ∫  vol      
ρv(r′)  d v′

 ___________  
4π  ϵ0  |   r − r′ |  2        

r − r′ _____  |  r − r′ |     

The potential again is inverse distance, and the electric field intensity, 
inverse-square law. The latter, of course, is also a vector field.

EXAMPLE 4.3

To illustrate the use of one of these potential integrals, we will find V on the z axis 
for a uniform line charge ρL in the form of a ring, ρ = a, in the z = 0 plane, as shown 
in Figure 4.3.
Solution. Working with Eq. (18), we have dL′ = adϕ′, r = zaz, r′ = aaρ, |r − r′ | =
√ 

______
  a   2  +  z   2   , and

V =  ∫ 
0
  
  2π

       ρ  L   a d  ϕ′     ________  
4π   ϵ  0    √ 

______
 a   2  +  z   2  

   =    ρ  L   a _______  
2  ϵ  0    √ 

______
 a   2  +  z   2  

  

4.5.3 The Conservative Nature of the Static Electric Field

For a zero reference at infinity, the potential field has the following attributes:
1. The potential arising from a single point charge is the work done in carrying a

unit positive charge from infinity to the point at which we desire the potential,
and the work is independent of the path chosen between those two points.

2. The potential field in the presence of a number of point charges is the sum of
the individual potential fields arising from each charge.

3. The potential arising from a number of point charges or any continuous charge
distribution may therefore be found by carrying a unit charge from infinity to
the point in question along any path we choose.
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In other words, the expression for potential (zero reference at infinity),

 V  A   = −  ∫ 
∞

  
  A

    E ⋅ dL

or potential difference,

 V  AB   =  V  A   −  V  B   = −  ∫ 
B
  
  A

    E · dL

is not dependent on the path chosen for the line integral, regardless of the source of 
the E field.

This result is often stated concisely by recognizing that no work is done in car-
rying the unit charge around any closed path, or

 ∮   E · dL = 0 (20)

A small circle is placed on the integral sign to indicate the closed nature of the 
path. This symbol also appeared in the formulation of Gauss’s law, where a closed 
surface integral was used.

Equation (20) is true for static fields, but we will see in Chapter 9 that Faraday 
demonstrated it was incomplete when time-varying magnetic fields were present. 
One of Maxwell’s greatest contributions to electromagnetic theory was in showing 
that a time-varying electric field produces a magnetic field, and therefore we should 
expect to find later that Eq. (20) is not correct when either E or the magnetic field 
varies with time.

Restricting our attention to the static case where E does not change with time, 
consider the dc circuit shown in Figure 4.4. Two points, A and B, are marked, and 

z

x

y

ρ = a

ρL

ϕ'
dL' = a dϕ'

r'

r – r' = a2 + z2
r

(0, 0, z)

Figure 4.3 The potential field of a ring of 
uniform line charge density is easily obtained from 
V = ∫ ρL(r′)dL′/ (4πϵ0|r − r′|).
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(20) states that no work is involved in carrying a unit charge from A through R2 and 
R3 to B and back to A through R1, or that the sum of the potential differences around 
any closed path is zero.

Equation (20) is therefore just a more general form of Kirchhoff’s circuital law for 
voltages, more general in that we can apply it to any region where an electric field exists 
and we are not restricted to a conventional circuit composed of wires, resistances, and 
batteries. Equation (20) must be amended before we can apply it to time-varying fields.

Any field that satisfies an equation of the form of Eq. (20), (i.e., where the closed 
line integral of the field is zero) is said to be a conservative field. The name arises 
from the fact that no work is done (or that energy is conserved) around a closed 
path. The gravitational field is also conservative, for any energy expended in moving 
(raising) an object against the field is recovered exactly when the object is returned 
(lowered) to its original position. A nonconservative gravitational field could solve 
our energy problems forever.

Given a nonconservative field, it is of course possible that the line integral may 
be zero for certain closed paths. For example, consider the force field, F = sin πρ aϕ. 
Around a circular path of radius ρ = ρ1, we have dL = ρ dϕ aϕ, and

 ∮  F · dL  =   ∫ 
0
  
  2π

    sinπ  ρ  1    a  ϕ   ·  ρ  1   dϕ    a  ϕ   =  ∫ 
0
  
  2π

     ρ  1   sin π  ρ  1    dϕ       
 =

  
 2π  ρ  1   sin π  ρ  1  

 

The integral is zero if ρ1 = 1, 2, 3, . . . , etc., but it is not zero for other values of ρ1, 
or for most other closed paths, and the given field is not conservative. A conservative 
field must yield a zero value for the line integral around every possible closed path.

Figure 4.4 A simple dc-circuit problem that must 
be solved by applying ∮ E · dL = 0 in the form of
Kirchhoff ’s voltage law.

A

B

R1

R2

R3

D4.6. If we take the zero reference for potential at infinity, find the potential 
at (0, 0, 2) caused by this charge configuration in free space (a) 12 nC/m on the 
line ρ = 2.5 m, z = 0; (b) point charge of 18 nC at (1, 2, −1); (c) 12 nC/m on 
the line y = 2.5, z = 0, −1.0 < x < 1.0.

Ans. (a) 529 V; (b) 43.2 V; (c) 66.3 V
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 4.6 POTENTIAL GRADIENT
We now have two methods of determining potential, one directly from the electric field 
intensity by means of a line integral, and another from the basic charge distribution 
itself by a volume integral. Neither method is very helpful in determining the fields 
in most practical problems, however, for as we will see later, neither the electric field 
intensity nor the charge distribution is very often known. Preliminary information is 
much more apt to consist of a description of two equipotential surfaces, such as the state-
ment that we have two parallel conductors of circular cross section at potentials of 100 
and −100 V. Perhaps we wish to find the capacitance between the conductors, or the 
charge and current distribution on the conductors from which losses may be calculated.

These quantities may be easily obtained from the potential field, and our imme-
diate goal will be to acquire a simple method of finding the electric field intensity 
from the potential.

4.6.1 General Relation Between the Electric and Potential Fields

We already have the general line-integral relationship between these quantities,

 V = − ∫ E · dL (21)

but this is much easier to use in the reverse direction: given E, find V.
However, Eq. (21) may be applied to a very short element of length ΔL along 

which E is essentially constant, leading to an incremental potential difference ΔV,

ΔV ≐ −E · ΔL (22)

Now consider a general region of space, as shown in Figure 4.5, in which E and 
V both change as we move from point to point. Equation (22) tells us to choose an 
incremental vector element of length ΔL = ΔL aL and multiply its magnitude by the 

Figure 4.5 A vector incremental element of 
length ΔL is shown making an angle of θ with 
an E field, indicated by its streamlines. The 
sources of the field are not shown.

ΔL

θ

E
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component of E in the direction of aL (one interpretation of the dot product) to obtain 
the small potential difference between the final and initial points of ΔL.

If we designate the angle between ΔL and E as θ, then

ΔV ≐ − EΔL  cos θ
We now pass to the limit and consider the derivative dV/dL. To do this, we need 

to show that V may be interpreted as a function V(x, y, z). So far, V is merely the result 
of the line integral (21). If we assume a specified starting point or zero reference and 
then let our end point be (x, y, z), we know that the result of the integration is a unique 
function of the end point (x, y, z) because E is a conservative field. Therefore V is a 
single-valued function V(x, y, z). We may then pass to the limit and obtain

  dV ___ 
dL

   = − E cos θ

In which direction should ΔL be placed to obtain a maximum value of ΔV? 
Remember that E is a definite value at the point at which we are working and is inde-
pendent of the direction of ΔL. The magnitude ΔL is also constant, and our variable 
is aL, the unit vector showing the direction of ΔL. It is obvious that the maximum 
positive increment of potential, ΔVmax, will occur when cos θ is −1, or ΔL points in 
the direction opposite to E. For this condition,

   dV ___ 
dL

   |max
   = E

This little exercise shows us two characteristics of the relationship between E 
and V at any point:
1. The magnitude of the electric field intensity is given by the maximum value of

the rate of change of potential with distance.
2. This maximum value is obtained when the direction of the distance increment

is opposite to E or, in other words, the direction of E is opposite to the
direction in which the potential is increasing the most rapidly.

4.6.2 Static Electric Field as the Negative Gradient of Potential

We now illustrate the preceding relationships in terms of potential. Figure 4.6 is in-
tended to show the information we have been given about some potential field. It does 
this by showing the equipotential surfaces (shown as lines in the two-dimensional 
sketch). We want information about the electric field intensity at point P. Starting 
at P, we lay off a small incremental distance ΔL in various directions, hunting for 
that direction in which the potential is changing (increasing) the most rapidly. From 
the sketch, this direction appears to be left and slightly upward. From our second 
characteristic above, the electric field intensity is therefore oppositely directed, or 
to the right and slightly downward at P. Its magnitude is given by dividing the small 
increase in potential by the small element of length.

It seems likely that the direction in which the potential is increasing the most rap-
idly is perpendicular to the equipotentials (in the direction of increasing potential), 
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and this is correct, for if ΔL is directed along an equipotential, ΔV = 0 by our defi-
nition of an equipotential surface. But then

ΔV = − E · ΔL = 0

and as neither E nor ΔL is zero, E must be perpendicular to this ΔL or perpendicular 
to the equipotentials.

Because the potential field information is more likely to be determined first, we 
will describe the direction of ΔL, which leads to a maximum increase in potential 
mathematically in terms of the potential field rather than the electric field intensity. 
We do this by letting aN be a unit vector normal to the equipotential surface and di-
rected toward the higher potentials. The electric field intensity is then expressed in 
terms of the potential,

  E = −   dV ___ 
dL

   |    max
    a  N    (23)

which shows that the magnitude of E is given by the maximum space rate of change 
of V and the direction of E is normal to the equipotential surface (in the direction of 
decreasing potential).

Because dV/dL|max occurs when ΔL is in the direction of aN, we may remind 
ourselves of this fact by letting

   dV ___ 
dL

   |    max
   =   dV ___ 

dN
  

and

 E = −   dV ___ 
dN

    a  N    (24)

Either Eq. (23) or Eq. (24) provides a physical interpretation of the process 
of finding the electric field intensity from the potential. Both are descriptive of a 
general procedure, and we do not intend to use them directly to obtain quantitative 

Figure 4.6 A potential field is shown by its equipo-
tential surfaces. At any point the E field is normal to the 
equipotential surface passing through that point and is 
directed toward the more negative surfaces.

P

V = + 90
+ 80

+ 70
+ 60

+ 50
+ 40 + 30

+ 20

+ 10
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information. This procedure leading from V to E is not unique to this pair of quanti-
ties, however, but has appeared as the relationship between a scalar and a vector field 
in hydraulics, thermodynamics, and magnetics, and indeed in almost every field to 
which vector analysis has been applied.

The operation on V by which −E is obtained is known as the gradient, and the 
gradient of a scalar field T is defined as

 Gradient of T = grad T =   dT_ 
dN

    a  N   (25)

where aN is a unit vector normal to the equipotential surfaces, and that normal is 
chosen which points in the direction of increasing values of T.

Using this new term, we now may write the relationship between V and E as

 E = − grad V (26)

4.6.3 Computation of the Gradient

Because we have shown that V is a unique function of x, y, and z, we may take its 
total differential

dV =   ∂ V ___ ∂ x   dx +   ∂ V ___ ∂ y   dy +   ∂ V ___ ∂ z   dz

But we also have

dV = − E ⋅ dL = −  E  x    dx −  E  y    dy −  E  z    dz

Because both expressions are true for any dx, dy, and dz, then

 

 E  x  

  

=

  

−   ∂ V___
∂ x 

 E  y    =  −   ∂ V___
∂ y 

 E  z  

  

=

  

 −   ∂ V___
∂ z 

These results may be combined vectorially to yield

 E = −  (     ∂ V _ ∂ x    a  x   +   ∂ V _ ∂ y    a  y   +   ∂ V _ ∂ z    a  z   )    (27)

and comparing Eqs. (26) and (27) provides us with an expression which may be used 
to evaluate the gradient in rectangular coordinates,

 grad V =   ∂ V_ 
∂ x

    a  x   +   ∂ V_ 
∂ y

    a  y   +   ∂ V_ 
∂ z

    a  z   (28)

The gradient of a scalar is a vector, and old quizzes show that the unit vectors 
that are often incorrectly added to the divergence expression appear to be those that 
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were incorrectly removed from the gradient. Once the physical interpretation of the 
gradient, expressed by Eq. (25), is grasped as showing the maximum space rate of 
change of a scalar quantity and the direction in which this maximum occurs, the vec-
tor nature of the gradient should be self-evident.

The vector operator

∇ =   ∂ __ ∂ x    a  x   +   ∂ __ ∂ y    a  y   +   ∂ __ ∂ z    a  z
may be used formally as an operator on a scalar, T, ∇T, producing

∇T =   ∂ T ___ ∂ x    a  x   +   ∂ T ___ ∂ y    a  y   +   ∂ T ___ ∂ z    a  z
from which we see that

 ∇T = grad   T 

This allows us to use a very compact expression to relate E and V,

 E = − ∇V (29)

The gradient may be expressed in terms of partial derivatives in other coordinate 
systems through the application of its definition Eq. (25). These expressions are de-
rived in Appendix A and repeated here for convenience when dealing with problems 
having cylindrical or spherical symmetry. They also appear at the end of this book.

 ∇V =   ∂ V _ ∂ x    a  x   +   ∂ V _ ∂ y    a  y   +   ∂ V _ ∂ z    a  z    (rectangular) (30)

 ∇V =   ∂ V _ ∂ ρ    a  ρ   +   1 _ ρ     ∂ V _ ∂ ϕ    a  ϕ   +   ∂ V _ ∂ z    a  z     (cylindrical) (31)

 ∇V =   ∂ V _ ∂ r    a  r   +   1 _ r     ∂ V _ ∂ θ    a  θ   +   1 _ 
r sin θ     ∂ V _ ∂ ϕ    a  ϕ      (spherical) (32)

Note that the denominator of each term has the form of one of the components of dL 
in that coordinate system, except that partial differentials replace ordinary differen-
tials; for example, r sin θ dϕ becomes r sin θ ∂ϕ.

We now illustrate the gradient concept with an example.

Given the potential field, V = 2x2y − 5z, and a point P(−4, 3, 6), we wish to find 
several numerical values at point P: the potential V, the electric field intensity E, the 
direction of E, the electric flux density D, and the volume charge density ρv.
Solution. The potential at P(−4, 5, 6) is

 V  P   = 2  (− 4)   2 (3) − 5(6) = 66 V

EXAMPLE 1 .1 EXAMPLE 4.4
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Next, we may use the gradient operation to obtain the electric field intensity,
E = − ∇V = − 4xy  a  x   − 2  x   2   a  y   + 5  a  z    V/m

The value of E at point P is
 E  P   = 48  a  x   − 32  a  y   + 5  a  z    V/m

and
| E  P   | =  √ 

______________
   48   2  +  (− 32)   2  +  5   2    = 57.9 V/m

The direction of E at P is given by the unit vector

 
 a  E,P  

 
 = 

 
(48  a  x   − 32  a  y   + 5  a  z  ) / 57.9

        =   0.829  a  x   − 0.553  a  y   + 0.086  a  z  
 

If we assume these fields exist in free space, then
D =  ϵ  0   E = − 35.4xy   a  x   − 17.71  x   2     a  y   + 44.3   a  z     pC/m   3 

Finally, we may use the divergence relationship to find the volume charge density 
that is the source of the given potential field,

 ρ  v   = ∇ · D = − 35.4y   pC/m   3 
At P, ρv = −106.2 pC/m3.

D4.7. A portion of a two-dimensional (Ez = 0) potential field is shown in 
Figure 4.7. The grid lines are 1 mm apart in the actual field. Determine approx-
imate values for E in rectangular coordinates at: (a) a; (b) b; (c) c.

Ans. (a) −1075ay V/m; (b) −600ax −700ay V/m; (c) −500ax −650ay V/m

 D4.8. Given the potential field in cylindrical coordinates, V =   100 ____ 
 z   2  + 1

   ρ cos ϕV,  
and point P at ρ = 3 m, ϕ = 60°, z = 2 m, find values at P for (a) V; (b) E;  
(c) E; (d) dV/dN; (e) aN; (f) ρv in free space. 

Ans. (a) 30.0 V; (b) −10.00aρ + 17.3aϕ + 24.0az V/m; (c) 31.2 V/m; (d) 31.2 V/m;  
(e) 0.32aρ − 0.55aϕ − 0.77az; (f ) −234 pC/m3

4.7 THE ELECTRIC DIPOLE
The dipole fields that are developed in this section are quite important because they 
form the basis for the behavior of dielectric materials in electric fields, as discussed 
in Chapter 5. Moreover, this development will serve to illustrate the importance of 
the potential concept presented in this chapter.

An electric dipole, or simply a dipole, is the name given to two point charges of 
equal magnitude and opposite sign, separated by a distance that is small compared to 
the distance to the point P at which we want to know the electric and potential fields. 
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The dipole is shown in Figure 4.8a. The distant point P is described by the spherical 
coordinates r, θ, and ϕ = 90°, in view of the azimuthal symmetry. The positive and 
negative point charges have separation d and rectangular coordinates (0, 0,   1 __ 2   d ) and
(0, 0, −   1 __ 2   d ), respectively.

So much for the geometry. What would we do next? Should we find the total 
electric field intensity by adding the known fields of each point charge? Would it be 
easier to find the total potential field first? In either case, having found one, we will 
find the other from it before calling the problem solved.

If we choose to find E first, we will have two components to keep track of in 
spherical coordinates (symmetry shows Eϕ is zero), and then the only way to find V 
from E is by use of the line integral. This last step includes establishing a suitable 
zero reference for potential, since the line integral gives us only the potential differ-
ence between the two points at the ends of the integral path.

On the other hand, the determination of V first is a much simpler problem. This 
is because we find the potential as a function of position by simply adding the scalar 
potentials from the two charges. The position-dependent vector magnitude and direction 
of E are subsequently evaluated with relative ease by taking the negative gradient of V.

4.7.1 Obtaining the Dipole Potential in the Far Zone

To find the potential field, we let the distances from Q and −Q to P be R1 and R2, 
respectively, and we write the total potential as

 V =   Q
 _ 4π   ϵ  0  

   (     1 _  R  1  
   −   1 _  R  2  

   )   =   Q
 _ 4π  ϵ  0  

       R  2   −  R  1   _  R  1    R  2  
   

Figure 4.7  See Problem D4.7.
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Note that the plane z = 0, midway between the two point charges, is the locus of 
points for which R1 = R2, and is therefore at zero potential, as are all points at infinity.

Consider a point at distance at location r which satisfies the far field approxima-
tion: r >> d, at which the point is said to lie in the far zone. If this is true, then  R  1    =   ˙    R  2  ,  
and the R1R2 product in the denominator may be replaced by r2. The approximation 
may not be made in the numerator, however, without obtaining the trivial answer that 
the potential field approaches zero as we go very far away from the dipole. Coming 
back a little closer to the dipole, we see from Figure 4.8b that R2 − R1 may be approx-
imated very easily if R1 and R2 are parallel, a condition that is a good approximation 
in the far zone

Therefore:

 R  2   −  R  1   ≐ d cos θ

Figure 4.8 (a) The geometry of the problem of 
an electric dipole. The dipole moment p = Qd is 
in the az direction. (b) For a distant point P, R1 is 
essentially parallel to R2, and we find that R2 − R1 = 
d cos θ.
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The final result is then

 V =   Qd cos θ_
4π  ϵ  0    r   2 

       r >> d (33)

Again, we note that the plane z = 0 (θ = 90°) is at zero potential.

4.7.2 Obtaining the Electric Field

Using the gradient relationship in spherical coordinates,

 E = − ∇ V = −  (     ∂ V _ ∂ r    a  r   +   1 _ r      ∂ V _ ∂ θ    a  θ   +   1 _ 
r sin θ    ∂ V _ ∂ ϕ    a  ϕ    )  

and applying this to Eq. (33), we find

  E = −  (   −   Q d cos θ
 _ 

2π   ϵ  0    r   3 
    a  r   −   Q d sin θ

 _ 
4π   ϵ  0    r   3 

    a  θ    )     (34)

or

 E =   Qd
 _ 

4π   ϵ  0    r   3 
   (2 cos θ     a  r   + sin θ     a  θ  ) (35)

These are the desired far zone fields of the dipole, obtained with a very small 
amount of work. Any student who has several hours to spend may try to work the 
problem in the reverse direction—the authors consider the process too long and de-
tailed to include here, even for effect.

To obtain a plot of the potential field, we choose a dipole such that Qd/(4πϵ0) = 
1, and then cos θ = Vr2. The colored lines in Figure 4.9 indicate equipotentials for 
which V = 0, +0.2, +0.4, +0.6, +0.8, and +1, as indicated. The dipole axis is ver-
tical, with the positive charge on the top. The streamlines for the electric field are 
obtained by applying the methods of Section 2.6 in spherical coordinates,

   E  θ   __  E  r  
   =   r dθ ___ 

dr
   =   sin θ _____

2 cos θ
or

  dr __ r   = 2 cot θ dθ

from which we obtain
r =  C  1    sin   2  θ

The black streamlines shown in Figure 4.9 are for C1 = 1, 1.5, 2, and 2.5.

4.7.3 Rewriting the Potential Field

The potential field of the dipole, Eq. (33), may be simplified by making use 
of the dipole moment. We first identify the vector length directed from −Q  
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to +Q as d and then define the dipole moment as Qd and assign it the symbol p. 
Thus

 p = Qd (36)

The units of p are C ⋅ m.
Because d · ar = d cos θ, we then have

V =   p ·  a  r   _____ 
4π   ϵ  0    r   2 

   (37)

This result may be generalized as

V =     1 ___________  
4π  ϵ0  |   r − r′ |  2    p ·    r − r′ ______ 

 |  r − r′ |    (38)

where r locates the field point P, and r′ determines the dipole center. Equation (38) is 
independent of any coordinate system.

Figure 4.9 The electrostatic field of a point dipole with its moment in the az 
direction. Six equipotential surfaces are labeled with relative values of V.
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The dipole moment p will appear again when we discuss dielectric materials. 
Since it is equal to the product of the charge and the separation, neither the dipole 
moment nor the potential will change as Q increases and d decreases, provided the 
product remains constant. The limiting case of a point dipole is achieved when we let 
d approach zero and Q approach infinity such that the product p is finite.

Turning our attention to the resultant fields, it is interesting to note that the po-
tential field is now proportional to the inverse square of the distance, and the electric 
field intensity is proportional to the inverse cube of the distance from the dipole. 
Each field falls off faster than the corresponding field for the point charge, but this 
is no more than we should expect because the opposite charges appear to be closer 
together at greater distances and to act more like a single point charge of zero cou-
lombs.

Symmetrical arrangements of larger numbers of point charges produce fields 
proportional to the inverse of higher and higher powers of r. These charge distribu-
tions are called multipoles, and they are used in infinite series to approximate more 
unwieldy charge configurations.

D4.9. An electric dipole located at the origin in free space has a moment p = 
3ax − 2ay + az nC · m. (a) Find V at PA(2, 3, 4). (b) Find V at r = 2.5, θ = 30°, 
ϕ = 40°. 

Ans. (a) 0.23 V; (b) 1.97 V

D4.10. A dipole of moment p = 6az nC · m is located at the origin in free 
space. (a) Find V at P(r = 4, θ = 20°, ϕ = 0°). (b) Find E at P.

Ans. (a) 3.17 V; (b) 1.58ar + 0.29aθ V/m

4.8 ELECTROSTATIC ENERGY
We have introduced the potential concept by considering the work done, or energy 
expended, in moving a point charge around in an electric field, and now we must tie 
up the loose ends of that discussion by tracing the energy flow one step further.

4.8.1 Stored Energy in a Distribution of Charge

Bringing a positive charge from infinity into the field of another positive charge re-
quires work, the work being done by the external source moving the charge. Imagine 
that the external source carries the charge up to a point near the fixed charge and 
then holds it there. Energy must be conserved, and the energy expended in bringing 
this charge into position now represents potential energy, for if the external source 
released its hold on the charge, it would accelerate away from the fixed charge, ac-
quiring kinetic energy of its own and the capability of doing work.

In order to find the potential energy present in a system of charges, we must find 
the work done by an external source in positioning the charges.
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We may start by visualizing an empty universe. Bringing a charge Q1 from in-
finity to any position requires no work, for there is no field present.2 The positioning 
of Q2 at a point in the field of Q1 requires an amount of work given by the product of 
the charge Q2 and the potential at that point due to Q1. We represent this potential as 
V, where the first subscript indicates the location and the second subscript the source. 
That is, V is the potential at the location of Q2 due to Q1. Then

Work to position   Q  2   =  Q  2    V  2,1  

Similarly, we may express the work required to position each additional charge in the 
field of all those already present:

 
Work to position   Q  3   =  Q  3    V  3,1   +  Q  3    V  3,2       Work to position   Q  4   =  Q  4    V  4,1   +  Q  4    V  4,2   +  Q  4    V  4,3  

 

and so forth. The total work is obtained by adding each contribution:

 
Total positioning work = potential energy of field

          
= 

 
 W  E   =  Q  2    V  2,1   +  Q  3    V  3,1   +  Q  3    V  3,2   +  Q  4    V  4,1         + Q  4    V  4,2   +  Q  4    V  4,3   + · · ·     (39)

Noting the form of a representative term in the preceding equation,

 Q  3    V  3,1   =  Q  3     
 Q  1   ______ 4π  ϵ  0    R  13  

   =  Q  1     
 Q  3   ______ 4π  ϵ  0    R  31  

  

where R13 and R31 each represent the scalar distance between Q1 and Q3, we see that 
it might equally well have been written as Q1V1,3. If each term of the total energy 
expression is replaced by its equal, we have

 W  E   =  Q  1    V  1,2   +  Q  1    V  1,3   +  Q  2    V  2,3   +  Q  1    V  1,4   +  Q  2    V  2,4   +  Q  3    V  3,4   + · · · (40)

Adding the two energy expressions (39) and (40) gives us a chance to simplify 
the result a little:

2  W  E   =

 

  Q  1  ( V  1,2   +  V  1,3   +  V  1,4   + · · ·)

    +   Q  2  ( V  2,1   +  V  2,3   +  V  2,4   + · · ·)    
+   Q  3  ( V  3,1   +  V  3,2   +  V  3,4   + · · ·)

    

+ · · ·

  

Each sum of potentials in parentheses is the combined potential due to all the charges 
except for the charge at the point where this combined potential is being found. In 
other words,

 V  1,2   +  V  1,3   +  V  1,4   + · · · =  V  1  

2 However, somebody in the workshop at infinity had to do an infinite amount of work to create the point 
charge in the first place! How much energy is required to bring two half-charges into coincidence to 
make a unit charge?
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V1 is the potential at the location of Q1 due to the presence of Q2, Q3, . . . . We 
therefore have

 W  E   =    1 _ 2   ( Q  1    V  1   +  Q  2    V  2   +  Q  3    V  3   + · · ·)=    1 _ 2      ∑ 
m=1

  
m=N

    Q  m    V  m   (41)

In order to obtain an expression for the energy stored in a region of continuous 
charge distribution, each charge is replaced by ρvdv, and the summation becomes an 
integral,

  W  E   =   1 _ 2   ∫  vol    ρ  v   V dv  (42)

Equations (41) and (42) allow us to find the total potential energy present in a sys-
tem of point charges or distributed volume charge density. Similar expressions may 
be easily written in terms of line or surface charge density. Usually we prefer to use 
Eq. (42) and let it represent all the various types of charge which may have to be con-
sidered. This may always be done by considering point charges, line charge density, 
or surface charge density to be continuous distributions of volume charge density 
over very small regions. We will illustrate such a procedure with an example shortly.

4.8.2 Stored Energy in the Electric Field

Before we undertake any interpretation of the preceding result, we should consider 
a few lines of more difficult vector analysis and obtain an expression equivalent to 
Eq. (42) but written in terms of E and D.

We begin by making the expression a little bit longer. Using Maxwell’s first 
equation, replace ρv with its equal ∇ · D and make use of a vector identity which is 
true for any scalar function V and any vector function D,

∇ · (VD) ≡ V(∇ · D) + D · (∇V ) (43)
This may be proved readily by expansion in rectangular coordinates. We then have, 
successively,

 W  E    =     1 _ 2     ∫  vol    ρ  v  Vdv =    1 _ 2     ∫  vol   (∇ · D)V dv

=    1 _ 2      ∫  vol   [ ∇ · (VD) − D · (∇V )]dv

Using the divergence theorem from Chapter 3, the first volume integral of the 
last equation is changed into a closed surface integral, where the closed surface sur-
rounds the volume considered. This volume, first appearing in Eq. (42), must contain 
every charge, and there can then be no charges outside of the volume. We may there-
fore consider the volume as infinite in extent if we wish. We have

 W  E   =    1 _ 2     ∮  
S
   (VD) · dS −    1 _ 2     ∫  vol   D · (∇V ) dv

The surface integral is equal to zero, for over this closed surface surrounding 
the universe we see that V is approaching zero at least as rapidly as 1/r (the charges 
look like point charges from there), and D is approaching zero at least as rapidly as 
1/r2. The integrand therefore approaches zero at least as rapidly as 1/r3, while the 
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differential area of the surface, looking more and more like a portion of a sphere, 
is increasing only as r2. Consequently, in the limit as r → ∞, the integrand and the 
integral both approach zero. Substituting E = −∇V in the remaining volume integral, 
we have our answer,

  W  E   =   1 _ 2    ∫  vol   D · E dv =   1 _ 2    ∫  vol    ϵ  0    E   2   dv (44)

4.8.3 Field Energy in a Coaxial Cable

We may now use Eq. (44) to calculate the energy stored in the electrostatic field of 
a section of a coaxial cable or capacitor of length L. We found in Section 3.3 that

 D  ρ   =   a  ρ  S___
ρ 

Hence,

E =   a  ρ  S   ___  ϵ  0   ρ    a  ρ
where ρS is the surface charge density on the inner conductor, whose radius is a. 
Thus,

 W  E   =    1 _ 2     ∫ 
0
  
  L

     ∫ 
0
  
  2π

     ∫ 
a
  
  b

     ϵ  0     
 a   2   ρ  S  2  ____ 
 ϵ  0  2   ρ   2 

   ρ dρ dϕ dz =   π L  a   2   ρ  S  2 ______  ϵ  0    ln    b__
a

This same result may be obtained from Eq. (42). We choose the outer conductor 
as our zero-potential reference, and the potential of the inner cylinder is then

 V  a   = −  ∫ 
b
  
   a

     E  ρ   dρ = −  ∫ 
b
  
   a

      a  ρ  S   ___  ϵ  0   ρ   dρ =   a  ρ  S___ ϵ  0    ln    b__
a

The surface charge density ρS at ρ = a can be interpreted as a volume charge den-
sity ρv = ρS /t, extending from ρ = a −   1 __ 2   t to ρ = a +   1 __ 2   t, where t ≪ a. The integrand
in Eq. (42) is therefore zero everywhere between the cylinders (where the volume 
charge density is zero), as well as at the outer cylinder (where the potential is zero). 
The integration is therefore performed only within the thin cylindrical shell at ρ = a,

 W  E   =    1 _ 2     ∫  vol    ρ  v   V dV =    1 _ 2     ∫ 
0
  
  L

     ∫ 
0
  
  2π

     ∫ 
a−t/2

  
  a+t/2

       ρ  S   __ t    a     ρ  S   __  ϵ  0      ln    b __ a   ρ dρ dϕ dz

from which

 W  E   =    a   2   ρ  S  2  ln (b / a) _________  ϵ  0     πL

once again.
This expression takes on a more familiar form if we recognize the total charge 

on the inner conductor as Q = 2πaLρS. Combining this with the potential difference 
between the cylinders, Va, we see that

 W  E   =    1 __ 2    Q V  a
which should be familiar as the energy stored in a capacitor.
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4.8.4 Electric Field Energy Density

The question of where the energy is stored in an electric field has not yet been an-
swered. Potential energy can never be pinned down precisely in terms of physical lo-
cation. Someone lifts a pencil, and the pencil acquires potential energy. Is the energy 
stored in the molecules of the pencil, in the gravitational field between the pencil and 
the earth, or in some obscure place? Is the energy in a capacitor stored in the charges 
themselves, in the field, or where? No one can offer any proof for his or her own pri-
vate opinion, and the matter of deciding may be left to the philosophers.

Electromagnetic field theory makes it easy to believe that the energy of an elec-
tric field or a charge distribution is stored in the field itself, for if we take Eq. (44), 
an exact and rigorously correct expression,

 W  E   =    1 _ 2     ∫  vol   D · E dv

and write it on a differential basis,
d  W  E   =    1 _ 2    D · E dv

or

   d  W  E   ____ 
dv

     ≡  w  E   =   1 _ 2   D · E J /  m   3   (45)

we obtain a quantity wE =   1 __ 2   D · E, which has the dimensions of an energy density, or
joules per cubic meter. We know that if we integrate this energy density over the en-
tire field-containing volume, the result is truly the total energy present, but we have 
no more justification for saying that the energy stored in each differential volume 
element dv is   1 __ 2   D · E dv than we have for looking at Eq. (42) and saying that the stored
energy is   1 __ 2    ρ  v   Vdv. The interpretation afforded by Eq. (45), however, is a convenient
one, and we will use it until proved wrong.

D4.11. Find the energy stored in free space for the region 2 mm < r < 3 mm, 0 < 
θ < 90°, 0 < ϕ < 90°, given the potential field V = : (a)   200 ___ r   V; (b)   300  cos θ _______ 

 r   2 
   V.

Ans. (a) 46.4 μJ; (b) 36.7 J
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CHAPTER 4 PROBLEMS
4.1 Given E = Exax + Eyay + Ezaz V/m, where Ex, Ey, and Ez are constants, 

determine the incremental work required to move charge q through a 
distance δ: (a) along the positive x axis; (b) in a direction at 45 degrees 
from the x axis in the first quadrant; (c) along a line in the first octant 
having equal x, y, and z components, and moving away from the origin. 

4.2 A positive point charge of magnitude q1 lies at the origin. Derive an expression 
for the incremental work done in moving a second point charge q2 through 
a distance dx from the starting position (x, y, z), in the direction of −ax.

4.3 Given E = Eρaρ + Eϕaϕ + Ezaz V/m, where Eρ, Eϕ, and Ez are constants, 
(a) find the incremental work done in moving charge q through distance δ in 
a direction having equal ρ and ϕ components. (b) If the initial charge in part a
was at radius ρ = b, what change in angle ϕ occurred in moving the charge? 

4.4 An electric field in free space is given by E = xax + yay + zaz V/m. Find 
the work done in moving a 1-μC charge through this field (a) from (1, 1, 1) 
to (0, 0, 0); (b) from (ρ = 2, ϕ = 0) to (ρ = 2, ϕ = 90°); (c) from (r = 10, 
θ = θ0) to (r = 10, θ = θ0 + 180°).

4.5 Consider the vector field G = (A/ρ) aϕ where A is a constant: (a) evaluate 
the line integral of G over a circular path segment of radius b (with center at 
origin), along which the change in ϕ is α. (b) Same as part a, except the path 
is at radius c > b, and the change in ϕ is −α. (c) Evaluate ∮  G · d L over a 
four-segment path that includes those of parts a and b as two of the segments. 

4.6 An electric field in free space is given as E = x âx + 4z ây + 4y âz. Given 
V(1, 1, 1) = 10 V, determine V(3, 3, 3).

4.7 A rectangular waveguide (presented in Chapter 13) is a hollow conducting 
pipe oriented along the z axis, with an interior cross section enclosed by 
conducting planes at x = 0 and a, and y = 0 and b (see Figure 13.7 for an 
illustration). The transverse electric mode field,  TE11, defined for (0 < x < a), 
(0 < y < b), is given by

 E  11   =   E  0       π__
b
   cos (  πx __ a  ) sin (  πy __ 

b
  )  a  x   −  E  0       ( __ a   sin (  πx __ a  ) cos (  (y __ 

b
  )  a  y  

where E0 is a constant. (a) Find the potential difference between (0, 0) 
and the center of the guide (a/2, b/2). (b) Using the given field, provide a 
simple demonstration that the guide walls form an equipotential surface. 

4.8 Given E = −xax + yay, (a) find the work involved in moving a unit positive 
charge on a circular arc, the circle centered at the origin, from x = a to x =
y = a /  √ 

__
 2  ; (b) verify that the work done in moving the charge around the

full circle from x = a is zero.
4.9 An electric field intensity in spherical coordinates is given as 

E =      V  0   ___ a      e   −r/a    a  r       V / m
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where V0 and a are constants, and where the field exists everywhere.  
(a) Find the potential field V(r), using a zero reference at infinity. (b) What 
is the significance of V0? 

4.10 A sphere of radius a carries a surface charge density of ρs0 C/m2. (a) Find 
the absolute potential at the sphere surface. (b) A grounded conducting 
shell of radius b where b > a is now positioned around the charged sphere. 
What is the potential at the inner sphere surface in this case?

4.11 At large distances from a dipole antenna (to be addressed in Chapter 14), 
the electric field amplitude that it radiates assumes the simplified form

E =    A __ r   sin (θ)  a  θ      V / m
where A is a constant. A second dipole antenna, receiving radiation from 
the first, is located at distance r from the first, has length L, and is oriented 
along the aθ direction, thus presenting its full length to the transmitting 
antenna at the origin. The angular position of the receiving antenna is θ =
θ0. As observed from the transmitting antenna, the receiving antenna 
subtends angle Δθ. (a) Find the voltage amplitude across the length of the 
receiving antenna, and express your result in terms of A, θ0, L, and r.  
(b) Specialize your result for the case in which L << r (the usual case). 

4.12 In spherical coordinates, E = 2r/(r2 + a2)2ar V/m. Find the potential at any 
point, using the reference (a) V = 0 at infinity; (b) V = 0 at r = 0; (c) V = 
100 V at r = a.

4.13 Three identical point charges of 4 pC each are located at the corners of an 
equilateral triangle 0.5 mm on a side in free space. How much work must 
be done to move one charge to a point equidistant from the other two and 
on the line joining them? 

4.14 Given the electric field E = (y + 1)ax + (x − 1)ay + 2az find the potential 
difference between the points (a) (2, −2, −1) and (0, 0, 0); (b) (3, 2, −1) 
and (−2, −3, 4).

4.15 Two uniform line charges, 8 nC/m each, are located at x = 1, z = 2, and at 
x = −1, y = 2 in free space. If the potential at the origin is 100 V, find V at 
P(4, 1, 3). 

4.16 A spherically symmetric charge distribution in free space (with a < r < ∞) 
is known to have a potential function V(r) = V0a

2/r2, where V0 and a are 
constants. (a) Find the electric field intensity. (b) Find the volume charge 
density. (c) Find the charge contained inside radius a. (d) Find the total 
energy stored in the charge (or equivalently, in its electric field).

4.17 Uniform surface charge densities of 6 and 2 nC/m2 are present at ρ = 2 and 
6 cm, respectively, in free space. Assume V = 0 at ρ = 4 cm, and calculate 
V at (a) ρ = 5 cm; (b) ρ = 7 cm. 

4.18 Find the potential at the origin produced by a line charge ρL = kx/(x2 + a2) 
extending along the x axis from x = a to +∞, where a > 0. Assume a zero 
reference at infinity.
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4.19 Volume charge density is given as ρv = ρ0 e−r/r C/m3, valid everywhere in 
free space. (a) Find the potential at the origin, using Eq. (17). (b) (Harder) 
Find the potential by first finding E from Gauss’s law, then line-integrating 
that result from infinity to the origin.

4.20 In a certain medium, the electric potential is given by
V(x) =    ρ  0   ___  a!  0     (1 −  e   −ax )

where ρ0 and a are constants. (a) Find the electric field intensity, E.  
(b) Find the potential difference between the points x = d and x = 0. 
(c) If the medium permittivity is given by ϵ(x) = ϵ0e

ax, find the electric flux 
density, D, and the volume charge density, ρv, in the region. (d) Find the 
stored energy in the region (0 < x < d), (0 < y < 1), (0 < z < 1).

4.21 A capacitor is formed in free space from two conducting spherical shells 
with equal and opposite charges, arranged concentrically with their centers 
at the origin; the shell radii are a and b, where b > a.  With the inner shell at 
potential V0 and the outer shell grounded, the potential field (using methods 
to be discussed in Chapter 6) is found to be:

 V (r) =  V  0       
  1 _ r     −     1 _ 

b
 
 _ 

  1 _ a     −     1_
b

        (a  <  r  <  b) 

The charge present is in the form of surface densities ρsa and ρsb on 
the inner and outer sphere surfaces, respectively. (a) Find E between 
spheres. (b) Find E for r < a and for r > b. (c) Find the electric field 
energy density and the stored energy in the system. (d) Knowing that the 
energy can be found through   1 __ 2    ∫  s    ρ  s   V da, use your part c result to find the
charge density ρsa on the inner sphere and thereby determine the relation 
between ρsa and E(r = a). (e) What is the potential at the origin? 

4.22 A line charge of infinite length lies along the z axis and carries a uniform 
linear charge density of ρℓ C/m. A perfectly conducting cylindrical shell, 
whose axis is the z axis, surrounds the line charge. The cylinder (of radius b) 
is at ground potential. Under these conditions, the potential function inside 
the cylinder (ρ < b) is given by

V(ρ) = k −    ρ  ℓ   ____ 2π  ϵ  0  
   ln (ρ)

where k is a constant. (a) Find k in terms of given or known parameters. 
(b) Find the electric field strength, E, for ρ < b. (c) Find the electric field 
strength, E, for ρ > b. (d) Find the stored energy in the electric field per unit
length in the z direction within the volume defined by ρ > a, where a < b.

4.23 In free space, an electric potential is given in cylindrical coordinates by 

 V(ρ) =      a   2   ρ  0   _  ε  0        e   −ρ/a
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(a) Find the electric field intensity, E. (b) Find the volume charge density. 
(c) Using Eq. (42), find the stored energy in the region (0 < ρ < ∞), (0 < ϕ
< 2π), (0 < z < 1). (d) Repeat part c, but use Eq. (44).

4.24 A certain spherically symmetric charge configuration in free space 
produces an electric field given in spherical coordinates by

E(r) =   {    ( ρ  0    r   2 ) / (100  ϵ  0  )    a  r   V/m  (r ≤ 10)    
(100  ρ  0   ) / ( ϵ  0    r   2  )    a  r   V/m  (r ≥ 10)

  

where ρ0 is a constant. (a) Find the charge density as a function of position. 
(b) Find the absolute potential as a function of position in the two regions, 
r ≤ 10 and r ≥ 10. (c) Check your result for part b by using the gradient. 
(d) Find the stored energy in the charge by an integral of the form of Eq. (42). 
(e) Find the stored energy in the field by an integral of the form of Eq. (44).

4.25 Consider an electric field intensity in free space that exhibits a gaussian 
function of radius in spherical coordinates

E =      ρ  0    a ___  ε  0      e   − r   2 / a   2       a  r  

where ρ0 and a are constants, and where the field exists everywhere. 
(a) What charge density would produce this field? (b) What total charge is 
present? (c) What is the potential at the origin? (d) What is the net stored 
energy in the field? 

4.26 Let us assume that we have a very thin, square, imperfectly conducting 
plate 2 m on a side, located in the plane z = 0 with one corner at the origin 
such that it lies entirely within the first quadrant. The potential at any 
point in the plate is given as V = −e−x sin y. (a) An electron enters the 
plate at x = 0, y = π/3 with zero initial velocity; in what direction is its 
initial movement? (b) Because of collisions with the particles in the plate, 
the electron achieves a relatively low velocity and little acceleration (the 
work that the field does on it is converted largely into heat). The electron 
therefore moves approximately along a streamline. Where does it leave the 
plate and in what direction is it moving at the time?

4.27 By performing an appropriate line integral from infinity, show that Eq. (33) 
can be found from Eq. (35). 

4.28 Use the electric field intensity of the dipole [Section 4.7, Eq. (35)] to find 
the difference in potential between points at θa and θb, each point having 
the same r and ϕ coordinates. Under what conditions does the answer agree 
with Eq. (33), for the potential at θa?

4.29 A dipole having a moment p = 3ax − 5ay + 10az nC · m is located at Q(1, 
2, −4) in free space. Find V at P(2, 3, 4). 

4.30 A dipole for which p = 10ϵ0az C · m is located at the origin. What is the 
equation of the surface on which Ez = 0 but E ≠ 0?
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4.31 A potential field in free space is expressed as V = 20/(xyz)V. (a) Find the 
total energy stored within the cube 1 < x, y, z < 2. (b) What value would 
be obtained by assuming a uniform energy density equal to the value at the 
center of the cube? 

4.32 (a) Using Eq. (35), find the energy stored in the dipole field in the region 
r > a. (b) Why can we not let a approach zero as a limit?

4.33 A copper sphere of radius 4 cm carries a uniformly distributed total charge 
of 5 μC in free space. (a) Use Gauss’s law to find D external to the sphere. 
(b) Calculate the total energy stored in the electrostatic field. (c) Use WE = 
Q2/(2C) to calculate the capacitance of the isolated sphere. 

4.34 A sphere of radius a contains volume charge of uniform density ρ0 C/m3. 
Find the total stored energy by applying (a) Eq. (42); (b) Eq. (44).

4.35 Four 0.8 nC point charges are located in free space at the corners of a 
square 4 cm on a side. (a) Find the total potential energy stored. (b) A fifth 
0.8 nC charge is installed at the center of the square. Again find the total 
stored energy. 

4.36 Surface charge of uniform density ρs lies on a spherical shell of radius 
b, centered at the origin in free space. (a) Find the absolute potential 
everywhere, with zero reference at infinity. (b) Find the stored energy in 
the sphere by considering the charge density and the potential in a two-
dimensional version of Eq. (42). (c) Find the stored energy in the electric 
field and show that the results of parts b and c are identical.
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C H A P T E R 

Conductors and Dielectrics

In this chapter, the methods we have learned are applied to some of the ma-
terials with which an engineer must work. In the first part of the chapter, we 
consider conducting materials by describing the parameters that relate cur-

rent to an applied electric field. This leads to a general definition of Ohm’s law. 
We then develop methods of evaluating resistances of conductors in a few sim-
ple geometric forms. Conditions that must be met at a conducting boundary are 
obtained next, and this knowledge leads to a discussion of the method of images. 
The properties of semiconductors are described to conclude the discussion of 
conducting media.

In the second part of the chapter, we consider insulating materials, or die-
lectrics. Such materials differ from conductors in that ideally, there is no free 
charge that can be transported within them to produce conduction current. In-
stead, all charge is confined to molecular or lattice sites by coulomb forces. An 
applied electric field has the effect of displacing the charges slightly, leading to 
the formation of ensembles of electric dipoles. The extent to which this occurs is 
measured by the relative permittivity, or dielectric constant. Polarization of the 
medium may modify the electric field, whose magnitude and direction may differ 
from the values it would have in a different medium or in free space. Boundary 
conditions for the fields at interfaces between dielectrics are developed to evaluate 
these differences.

It should be noted that most materials will possess both dielectric and con-
ductive properties; that is, a material considered a dielectric may be slightly 
conductive, and a material that is mostly conductive may be slightly polarizable. 
These departures from the ideal cases lead to some interesting behavior, par-
ticularly as to the effects on electromagnetic wave propagation, as we will see 
later. ■

5
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1 Current is not a vector, for it is easy to visualize a problem in which a total current I in a conductor 
of nonuniform cross section (such as a sphere) may have a different direction at each point of a given 
cross section. Current in an exceedingly fine wire, or a filamentary current, is occasionally defined as a 
vector, but we usually prefer to be consistent and give the direction to the filament, or path, and not to 
the current.

5.1 CURRENT AND CURRENT DENSITY
Electric charges in motion constitute a current, which we treat as a flux quantity. The 
unit of current is the ampere (A), defined as a rate of movement of charge passing a 
given reference point (or crossing a given reference plane) of one coulomb per sec-
ond. Current is symbolized by I, and therefore

I =   dQ___
dt

 (1)

Current is thus defined as the motion of positive charges, even though conduction in 
metals takes place through the motion of electrons, as we will see shortly.

In field theory, we are usually interested in events occurring at a point rather 
than within a large region, and we find the concept of current density, measured in 
amperes per square meter (A/m2), more useful. Current density is a vector flux den-
sity1 represented by J.

The increment of current ΔI crossing an incremental surface ΔS normal to the 
current density is

ΔI =  J  N   ΔS

and in the case where the current density is not perpendicular to the surface,

ΔI = J · ΔS

If ΔS is of differential scale, the total current is obtained by integrating,

 I =  ∫  
S
    J · dS (2)

Current density may be related to the velocity of volume charge density at a point. 
Consider the element of charge ΔQ = ρvΔv = ρv ΔS ΔL, as shown in Figure 5.1a. To 
simplify the explanation, assume that the charge element is oriented with its edges par-
allel to the coordinate axes and that it has only an x component of velocity. In the time 
interval Δt, the element of charge has moved a distance Δx, as indicated in Figure 5.1b. 
We have therefore moved a charge ΔQ = ρv ΔS Δx through a reference plane perpen-
dicular to the direction of motion in a time increment Δt, and the resulting current is

ΔI =   ΔQ ___ Δt
   =  ρ  v    ΔS   Δx___

Δt
 

As we take the limit with respect to time, we have

ΔI =  ρ  v        ΔS       v  x  
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2 The lowercase v is used both for volume and velocity. Note, however, that velocity always appears as a 
vector v, a component vx, or a magnitude |v|, whereas volume appears only in differential form as dv or Δv.

where vx represents the x component of the velocity v.2 In terms of current density, we find

 J  x   =  ρ  v    v  x  

and in general

 J =  ρ  v   v (3)

This last result shows clearly that charge in motion constitutes a current. We call 
this type of current a convection current, and J or ρvv is the convection current den-
sity. Note that the convection current density is related linearly to charge density as 
well as to velocity. The mass rate of flow of cars (cars per square foot per second) in 
the Holland Tunnel could be increased either by raising the density of cars per cubic 
foot or by going to higher speeds, if the drivers were capable of doing so.

D5.1. Given the vector current density J = 10ρ2zaρ − 4ρ cos2 ϕ aϕ mA/m2:  
(a) find the current density at P(ρ = 3, ϕ = 30°, z = 2); (b) determine the total 
current flowing outward through the circular band ρ = 3, 0 < ϕ < 2π, 2 < z < 2.8. 

Ans. (a) 180aρ − 9aϕ mA/m2; (b) 3.26 A

(a)

ΔL
ΔL

Δx

ΔQ = ρʋΔʋ
ΔQ = ρʋΔʋ

ΔS
ΔS

(b)x
x

y y

zz

Figure 5.1 An increment of charge, ΔQ = ρv"ΔS ΔL, which moves a distance Δ x 
in a time Δt, produces a component of current density in the limit of Jx = ρvvx.

5.2 CONTINUITY OF CURRENT
The introduction of the concept of current is logically followed by a discussion of the 
conservation of charge and the continuity equation. The principle of conservation of 
charge states simply that charges can be neither created nor destroyed, although equal 
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amounts of positive and negative charge may be simultaneously created, obtained by 
separation, or lost by recombination.

The continuity equation follows from this principle when we consider any re-
gion bounded by a closed surface. The current through the closed surface is

I =  ∮  
S
    J · dS

and this outward flow of positive charge must be balanced by a decrease of positive 
charge (or perhaps an increase of negative charge) within the closed surface. If the 
charge inside the closed surface is denoted by Qi, then the rate of decrease is −dQi/dt 
and the principle of conservation of charge requires

I =  ∮  
S
    J · dS = −   d  Q  i___

dt
 (4)

It might be well to answer here an often-asked question. “Isn’t there a sign error? 
I thought I = dQ/dt.” The presence or absence of a negative sign depends on what 
current and charge we consider. In circuit theory we usually associate the current 
flow into one terminal of a capacitor with the time rate of increase of charge on that 
plate. The current of (4), however, is an outward-flowing current.

Equation (4) is the integral form of the continuity equation; the differential, or 
point, form is obtained by using the divergence theorem to change the surface inte-
gral into a volume integral:

 ∮
S
 J · dS =  ∫  vol   (∇ · J)dv

We next represent the enclosed charge Qi by the volume integral of the charge density,

 ∫  vol   (∇ · J)dv = −   d __ 
dt

    ∫  vol    ρ  v     dv

If we agree to keep the surface constant, the derivative becomes a partial deriv-
ative and may appear within the integral,

 ∫  vol   (∇ · J)dv =  ∫  vol   −   ∂  ρ  v   ___ ∂ t   dv

from which we have our point form of the continuity equation,

 (∇ · J) = −   ∂  ρ  v_
∂ t (5)

Remembering the physical interpretation of divergence, this equation indicates 
that the current, or charge per second, diverging from a small volume per unit volume 
is equal to the time rate of decrease of charge per unit volume at every point.

As a numerical example illustrating some of the concepts from the last two sec-
tions, let us consider a current density that is directed radially outward and decreases 
exponentially with time,

J =   1 __ r    e   −t   a  r            A/m   2
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Selecting an instant of time t = 1 s, we may calculate the total outward current at  
r = 5 m:

 I =  J  r   S =  (    1 _ 5    e   −1  )  (4π  5   2  ) = 23.1 A

At the same instant, but for a slightly larger radius, r = 6 m, we have

 I =  J  r   S =  (    1 _ 6    e   −1  )   (  4π  6   2  )   = 27.7    A

Thus, the total current is larger at r = 6 than it is at r = 5.
To see why this happens, we need to look at the volume charge density and the 

velocity. We use the continuity equation first:

 −   ∂  ρ  v   _ ∂ t   = ∇ · J = ∇ ·  (     1 _ r    e   −t   a  r   )   =   1 _ 
 r   2 

      ∂ _ ∂ r   (    r   2    1 _ r    e   −t  )   =   1 _ 
 r   2 

    e   −t

The volume charge density is then found by integrating with respect to t. Because ρv 
is given by a partial derivative with respect to time, the “constant” of integration may 
be a function of r:

 ρ  v   = − ∫    1 __ 
 r   2 

    e   −t       dt + K (r) =   1 __ 
 r   2 

    e   −t  + K (r)

If we assume that ρv → 0 as t → ∞, then K(r) = 0, and

 ρ  v   =   1 __ 
 r   2 

    e   −t      C/m   3

We may now use J = ρvv to find the velocity,

 v  r   =    J  r   __  ρ  v     =     
1 __ r    e   −t  ____ 
  1 __ 
 r   2 

    e   −t 
   = r        m/s

The velocity is greater at r = 6 than it is at r = 5, and therefore some (unspecified) 
force is accelerating the charge density in an outward direction.

In summary, we have a current density that is inversely proportional to r, a 
charge density that is inversely proportional to r2, and a velocity and total current 
that are proportional to r. All quantities vary as e−t.

D5.2. Current density is given in cylindrical coordinates as J = −106z1.5az  
A/m2 in the region 0 ≤ ρ ≤ 20 μm; for ρ ≥ 20 μm, J = 0. (a) Find the total cur-
rent crossing the surface z = 0.1 m in the az direction. (b) If the charge velocity 
is 2 × 106 m/s at z = 0.1 m, find ρv there. (c) If the volume charge density at  
z = 0.15 m is −2000 C/m3, find the charge velocity there. 

Ans. (a) −39.7μA; (b) −15.8 mC/m3; (c) 29.0 m/s
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5.3 METALLIC CONDUCTORS
Physicists describe the behavior of the electrons surrounding the positive atomic nucleus 
in terms of the total energy of the electron with respect to a zero reference level for an elec-
tron at an infinite distance from the nucleus. The total energy is the sum of the kinetic and 
potential energies, and because energy must be given to an electron to pull it away from the 
nucleus, the energy of every electron in the atom is a negative quantity. Even though this 
picture has some limitations, it is convenient to associate these energy values with orbits 
surrounding the nucleus, the more negative energies corresponding to orbits of smaller 
radius. According to the quantum theory, only certain discrete energy levels, or energy 
states, are permissible in a given atom, and an electron must therefore absorb or emit dis-
crete amounts of energy, or quanta, in passing from one level to another. A normal atom at 
absolute zero temperature has an electron occupying every one of the lower energy shells, 
starting outward from the nucleus and continuing until the supply of electrons is exhausted.

5.3.1 Influence of Material Properties on Current

In a crystalline solid, such as a metal or a diamond, atoms are packed closely together, 
many more electrons are present, and many more permissible energy levels are availa-
ble because of the interaction forces between adjacent atoms. We find that the allowed 
energies of electrons are grouped into broad ranges, or “bands,” each band consisting 
of very numerous, closely spaced, discrete levels. At a temperature of absolute zero, 
the normal solid also has every level occupied, starting with the lowest and proceeding 
in order until all the electrons are located. The electrons with the highest (least nega-
tive) energy levels, the valence electrons, are located in the valence band. If there are 
permissible higher-energy levels in the valence band, or if the valence band merges 
smoothly into a conduction band, then additional kinetic energy may be given to the 
valence electrons by an external field, resulting in an electron flow. The solid is called 
a metallic conductor. The filled valence band and the unfilled conduction band for a 
conductor at absolute zero temperature are suggested by the sketch in Figure 5.2a.

If, however, the electron with the greatest energy occupies the top level in the va-
lence band and a gap exists between the valence band and the conduction band, then the 
electron cannot accept additional energy in small amounts, and the material is an insula-
tor. This band structure is indicated in Figure 5.2b. Note that if a relatively large amount 
of energy can be transferred to the electron, it may be sufficiently excited to jump the gap 
into the next band where conduction can occur easily. Here the insulator breaks down.

An intermediate condition occurs when only a small “forbidden region” sep-
arates the two bands, as illustrated by Figure 5.2c. Small amounts of energy in the 
form of heat, light, or an electric field may raise the energy of the electrons at the top 
of the filled band and provide the basis for conduction. These materials are insulators 
which display many of the properties of conductors and are called semiconductors.

Let us first consider the conductor. Here the valence electrons, or conduction, 
or free, electrons, move under the influence of an electric field. With a field E, an 
electron having a charge Q = −e will experience a force

F = − eE
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In free space, the electron would accelerate and continuously increase its velocity 
(and energy); in the crystalline material, the progress of the electron is impeded by 
continual collisions with the thermally excited crystalline lattice structure, and a con-
stant average velocity is soon attained. This velocity vd is termed the drift velocity, 
and it is linearly related to the electric field intensity by the mobility of the electron 
in the given material. We designate mobility by the symbol μ (mu), so that

 v  d   = −  μ  e   E (6)
where μe is the mobility of an electron and is positive by definition. Note that the 
electron velocity is in a direction opposite to the direction of E. Equation (6) also 
shows that mobility is measured in the units of square meters per volt-second; typical 
values3 are 0.0012 for aluminum, 0.0032 for copper, and 0.0056 for silver.

For these good conductors, a drift velocity of a few centimeters per second is 
sufficient to produce a noticeable temperature rise and can cause the wire to melt if 
the heat cannot be quickly removed by thermal conduction or radiation.

Substituting (6) into Eq. (3) of Section 5.1, we obtain

 J = −  ρ  e    μ  e   E (7)

where ρe is the free-electron charge density, a negative value. The total charge den-
sity ρv is zero because equal positive and negative charges are present in the neutral 
material. The negative value of ρe and the minus sign lead to a current density J that 
is in the same direction as the electric field intensity E.

5.3.2 Conductivity and Ohm’s Law

The relationship between J and E for a metallic conductor, however, is also specified 
by the conductivity σ (sigma),

 J = σ E  (8)

Figure 5.2 The energy-band structure in three different types of materials 
at 0 K. (a) The conductor exhibits no energy gap between the valence and  
conduction bands. (b) The insulator shows a large energy gap. (c) The semi-
conductor has only a small energy gap.
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3 Wert and Thomson, p. 238, listed in the References at the end of this chapter.
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where σ is measured in siemens4 per meter (S/m). One siemens (1 S) is the basic unit of 
conductance in the SI system and is defined as one ampere per volt. Formerly, the unit of 
conductance was called the mho and was symbolized by an inverted Ω. Just as the sie-
mens honors the Siemens brothers, the reciprocal unit of resistance that we call the ohm 
(1 Ω is one volt per ampere) honors Georg Simon Ohm, a German physicist who first 
described the current-voltage relationship implied by Eq. (8). We call this equation the 
point form of Ohm’s law; we will look at the more common form of Ohm’s law shortly.

First it is informative to note the conductivity of several metallic conductors; typ-
ical values (in siemens per meter) are 3.82 × 107 for aluminum, 5.80 × 107 for copper, 
and 6.17 × 107 for silver. Data for other conductors may be found in Appendix C. 
On seeing data such as these, it is natural to assume that we are being presented with 
constant values; this is essentially true. Metallic conductors obey Ohm’s law quite 
faithfully, and it is a linear relationship; the conductivity is constant over wide ranges 
of current density and electric field intensity. Ohm’s law and the metallic conductors 
are also described as isotropic, or having the same properties in every direction. 

The conductivity is a function of temperature, however. The resistivity, which 
is the reciprocal of the conductivity, varies almost linearly with temperature in the 
region of room temperature, and for aluminum, copper, and silver it increases about 
0.4 percent for a 1-degree Kelvin rise in temperature.5 For several metals the resis-
tivity drops abruptly to zero at a temperature of a few kelvin; this property is termed 
superconductivity. Copper and silver are not superconductors, although aluminum is 
(for temperatures below 1.14 K).

If we now combine Equations (7) and (8), conductivity may be expressed in 
terms of the charge density and the electron mobility,

 σ = −  ρ  e    μ  e   (9)

From the definition of mobility (6), it is now satisfying to note that a higher temper-
ature infers a greater crystalline lattice vibration, more impeded electron progress for 
a given electric field strength, lower drift velocity, lower mobility, lower conductivity 
from Eq. (9), and higher resistivity as stated.

5.3.3 Resistance

The application of Ohm’s law in point form to a macroscopic (visible to the naked 
eye) region leads to a more familiar form. Initially, assume that J and E are uniform, 
as they are in the cylindrical region shown in Figure 5.3. Because they are uniform,

I =  ∫  
S
    J · dS = J S (10)

4 This is the family name of two German-born brothers, Karl Wilhelm and Werner von Siemens, who were 
famous engineer-inventors in the nineteenth century. Karl became a British subject and was knighted, 
becoming Sir William Siemens.
5 Copious temperature data for conducting materials are available in the Standard Handbook for Electrical 
Engineers, listed among the References at the end of this chapter.
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and

  V  ab    =  −  ∫ 
b
  
   a

    E · dL = −E ·  ∫ 
b
  
   a

    dL = −E ·  L  ba    
 
  
 =

  
 E ·  L  ab  

 (11)

or

V = EL

Thus

J =   I __ 
S
   = σ E = σ   V__

L
 

or

V =   L ___ 
σS

   I

The ratio of the potential difference between the two ends of the cylinder to the 
current entering the more positive end, however, is recognized from elementary cir-
cuit theory as the resistance of the cylinder, and therefore

 V = IR (12)

where

 R =   L _
σS

(13)

Equation (12) is, of course, known as Ohm’s law, and Eq. (13) enables us to com-
pute the resistance R, measured in ohms (abbreviated as Ω), of conducting objects 
which possess uniform fields. If the fields are not uniform, the resistance may still 
be defined as the ratio of V to I, where V is the potential difference between two 
specified equipotential surfaces in the material and I is the total current crossing the 
more positive surface into the material. From the general integral relationships in 

I = JS

L

V
LE =

Area = S
Conductivity σ

Figure 5.3 Uniform current density J and electric 
field intensity E in a cylindrical region of length L and 
cross-sectional area S. Here V = IR, where R = L/σ S.
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Eqs. (10) and (11), and using (8), we may write this general expression for resistance 
when the fields are nonuniform,

R =    V  ab   ___ 
I
   =   

−   ∫ 
b
  
   a

    E · dL
________
 ∫  

S

   σE · dS
   (14)

The line integral is taken between two equipotential surfaces in the conductor, and 
the surface integral is evaluated over the more positive of these two equipotentials.

EXAMPLE 5.1

As an example of the determination of the resistance of a cylinder, we find the re-
sistance of a 1-mile length of #16 copper wire, which has a diameter of 0.0508 in.
Solution. The diameter of the wire is 0.0508 × 0.0254 = 1.291 × 10−3 m, the area of 
the cross section is π(1.291 × 10−3/2)2 = 1.308 × 10−6 m2, and the length is 1609 m. 
Using a conductivity of 5.80 × 107 S/m, the resistance of the wire is, therefore,

R =   1609  ___________________   
(5.80 ×  10   7  ) (1.308 ×  10   −6  )

   = 21.2    Ω

This wire can safely carry about 10 A dc, corresponding to a current density of 10/
(1.308 × 10−6) = 7.65 × 106 A/m2, or 7.65 A/mm2. With this current, the potential 
difference between the two ends of the wire is 212 V, the electric field intensity is 
0.312 V/m, the drift velocity is 0.000 422 m/s, or a little more than one furlong a 
week, and the free-electron charge density is −1.81 × 1010 C/m3, or about one elec-
tron within a cube two angstroms on a side.

D5.3. Find the magnitude of the current density in a sample of silver for 
which σ = 6.17 × 107 S/m and μe = 0.0056 m2/V · s if (a) the drift velocity is 
1.5 μm/s; (b) the electric field intensity is 1 mV/m; (c) the sample is a cube 
2.5 mm on a side having a voltage of 0.4 mV between opposite faces; (d ) the 
sample is a cube 2.5 mm on a side carrying a total current of 0.5 A. 

Ans.  (a) 16.5 kA/m2; (b) 61.7 kA/m2; (c) 9.9 MA/m2; (d ) 80.0 kA/m2

D5.4. A copper conductor has a diameter of 0.6 in. and it is 1200 ft long. 
Assume that it carries a total dc current of 50 A. (a) Find the total resistance of 
the conductor. (b) What current density exists in it? (c) What is the dc voltage 
between the conductor ends? (d ) How much power is dissipated in the wire? 

Ans.  (a) 0.035 Ω; (b) 2.74 × 105 A/m2; (c) 1.73 V; (d ) 86.4 W
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5.4  CONDUCTOR PROPERTIES 
AND BOUNDARY CONDITIONS

Once again, we must temporarily depart from our assumed static conditions and let 
time vary for a few microseconds to see what happens when the charge distribution 
is suddenly unbalanced within a conducting material. Suppose, for the sake of argu-
ment, that there suddenly appear a number of electrons in the interior of a conductor. 
The electric fields set up by these electrons are not counteracted by any positive 
charges, and the electrons therefore begin to accelerate away from each other. This 
continues until the electrons reach the surface of the conductor or until a number of 
electrons equal to the number injected have reached the surface.

Here, the outward progress of the electrons is stopped, for the material surround-
ing the conductor is an insulator not possessing a convenient conduction band. No 
charge may remain within the conductor. If it did, the resulting electric field would 
force the charges to the surface.

Hence the final result within a conductor is zero charge density, and a surface 
charge density resides on the exterior surface. This is one of the two characteristics 
of a good conductor.

The other characteristic, stated for static conditions in which no current may 
flow, follows directly from Ohm’s law: the electric field intensity within the conduc-
tor is zero. Physically, we see that if an electric field were present, the conduction 
electrons would move and produce a current, thus leading to a nonstatic condition.

Summarizing for electrostatics, no charge and no electric field may exist at any 
point within a conducting material. Charge may, however, appear on the surface as a 
surface charge density, and our next investigation concerns the fields external to the 
conductor.

We wish to relate these external fields to the charge on the surface of the con-
ductor. The problem is a simple one, and we may first talk our way to the solution 
with a little mathematics.

If the external electric field intensity is decomposed into two components, one 
tangential and one normal to the conductor surface, the tangential component is seen 
to be zero. If it were not zero, a tangential force would be applied to the elements 
of the surface charge, resulting in their motion and nonstatic conditions. Because 
static conditions are assumed, the tangential electric field intensity and electric flux 
density are zero.

Gauss’s law answers our questions concerning the normal component. The 
electric flux leaving a small increment of surface must be equal to the charge resid-
ing on that incremental surface. The flux cannot penetrate into the conductor, for the 
total field there is zero. It must then leave the surface normally. Quantitatively, we 
may say that the electric flux density in coulombs per square meter leaving the sur-
face normally is equal to the surface charge density in coulombs per square meter, or  
DN = ρS.

If we use some of our previously derived results in making a more careful anal-
ysis (and incidentally introducing a general method which we must use later), we 
should set up a boundary between a conductor and free space (Figure 5.4) showing 
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tangential and normal components of D and E on the free-space side of the boundary. 
Both fields are zero in the conductor. The tangential field may be determined by 
applying Section 4.5, Eq. (21),

∮   E · dL = 0

around the small closed path abcda. The integral must be broken up into four parts

 ∫
a

  b
   +  ∫ 

b
  
   c

   +  ∫ 
c
  
   d

   +  ∫ 
d
  
   a

    = 0

Remembering that E = 0 within the conductor, we let the length from a to b or c to d 
be Δw and from b to c or d to a be Δh, and we obtain

 E  t   Δw −  E  N,at   b     1 __ 2   Δh +  E  N,at   a     1 __ 2   Δh = 0

As we allow Δh to approach zero, keeping Δw small but finite, it makes no 
difference whether or not the normal fields are equal at a and b, for Δh causes 
these products to become negligibly small. Hence, EtΔw = 0 and, therefore, 
Et = 0.

The condition on the normal field is found most readily by considering DN rather 
than EN and choosing a small cylinder as the gaussian surface. Let the height be Δh 
and the area of the top and bottom faces be ΔS. Again, we let Δh approach zero. 
Using Gauss’s law,

 ∮
S
    D · dS = Q

we integrate over the three distinct surfaces

 ∫  top   +  ∫  bottom   +  ∫  sides   = Q

and find that the last two are zero (for different reasons). Then

 D  N   ΔS = Q =  ρ  S   ΔS

Conductor

Free space
D

Dt

DN

EN

Et

E

n

Δw

ΔhΔh
Δh

ΔS
a

d c

bΔw

Figure 5.4 An appropriate closed path and gaussian surface are used to 
determine boundary conditions at a boundary between a conductor and 
free space; Et = 0 and DN = ρS.
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or
 D  N   =  ρ  S  

These are the desired boundary conditions for the conductor-to-free-space 
boundary in electrostatics,

 D  t   =  E  t   = 0 (15)
 D  N   =  ϵ  0    E  N   =  ρ  S   (16)

The electric flux leaves the conductor in a direction normal to the surface, and the 
value of the electric flux density is numerically equal to the surface charge density. 
Equations (15) and (16) can be more formally expressed using the vector fields

 E × n   |    s   = 0 (17)

 D · n   |    s   =  ρ  s (18)
where n is the unit normal vector at the surface that points away from the conductor, 
as shown in Figure 5.4, and where both operations are evaluated at the conductor 
surface, s. Taking the cross product or the dot product of either field quantity with n 
gives the tangential or the normal component of the field, respectively.

An immediate and important consequence of a zero tangential electric field inten-
sity is the fact that a conductor surface is an equipotential surface. The evaluation of 
the potential difference between any two points on the surface by the line integral leads 
to a zero result, because the path may be chosen on the surface itself where E · dL = 0.

To summarize the principles which apply to conductors in electrostatic fields, 
we may state that
1. The static electric field intensity inside a conductor is zero.
2. The static electric field intensity at the surface of a conductor is everywhere

directed normal to that surface.
3. The conductor surface is an equipotential surface.

Using these three principles, there are a number of quantities that may be calcu-
lated at a conductor boundary, given a knowledge of the potential field.

Given the potential,

V = 100( x   2  −  y   2  )
and a point P(2, −1, 3) that is stipulated to lie on a conductor-to-free-space boundary, 
find V, E, D, and ρS at P, and also the equation of the conductor surface.
Solution. The potential at point P is

 V  P   = 100[ 2   2  −  (− 1)   2  ] = 300 V

EXAMPLE 1 .1 EXAMPLE 5.2
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Because the conductor is an equipotential surface, the potential at the entire surface 
must be 300 V. Moreover, if the conductor is a solid object, then the potential every-
where in and on the conductor is 300 V, for E = 0 within the conductor.

The equation representing the locus of all points having a potential of 300 V is
300 = 100( x   2  −  y   2  )

or
 x   2  −  y   2  = 3

This is therefore the equation of the conductor surface; it happens to be a hyperbolic 
cylinder, as shown in Figure 5.5. Let us assume arbitrarily that the solid conductor 
lies above and to the right of the equipotential surface at point P, whereas free space 
is down and to the left.

Next, we find E by the gradient operation,
E = − 100∇( x   2  −  y   2  ) = − 200x a  x   + 200y a  y  

At point P,

 E  p   = − 400 a  x   − 200 a  y      V/m

P(2, – 1, 3)

xy = – 2

–3

–2

–1

0

1

1 2 3

x2 – y2 = 3
V = 300 V

z = 3 plane

y

x

Figure 5.5 Given point P(2, −1, 3) and the 
potential field, V = 100(x2 − y2), we find the 
equipotential surface through P is x2 − y2 = 3, 
and the streamline through P is xy = −2.
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Because D = ϵ0E, we have

 D  P   = 8.854 ×  10   −12   E  P   = − 3.54 a  x   − 1.771 a  y    nC/m   2 

The field is directed downward and to the left at P; it is normal to the equipotential 
surface. Therefore,

 D  N   = | D  P   | = 3.96  nC/m   2

Thus, the surface charge density at P is

 ρ  S,  P   =  D  N   = 3.96  nC/m   2 

Note that if we had taken the region to the left of the equipotential surface as the 
conductor, the E field would terminate on the surface charge and we would let  
ρS = −3.96 nC/m2.

Finally, let us determine the equation of the streamline passing through P.
Solution. 
We see that

  
 E  y   __  E  x  

   =   200y _____ − 200x
   = −   y __ x   = dy__

dx

Thus,

  dy __ y   +   dx __ x   = 0

and
ln y + ln  x =  C  1  

Therefore,
x y =  C  2  

The line (or surface) through P is obtained when C2 = (2)(−1) = −2. Thus, the 
streamline is the trace of another hyperbolic cylinder,

x y = − 2
This is also shown on Figure 5.5.

EXAMPLE 5.3

D5.5. Given the potential field in free space, V = 100 sinh 5x sin 5y V, and 
a point P(0.1, 0.2, 0.3), find at P: (a) V; (b) E; (c) |E|; (d) |ρS| if it is known that
P lies on a conductor surface. 

Ans.  (a) 43.8 V; (b) −474ax − 140.8ay V/m; (c) 495 V/m; (d ) 4.38 nC/m2
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5.5 THE METHOD OF IMAGES
One important characteristic of the dipole field that we developed in Chapter 4 is the 
infinite plane at zero potential that exists midway between the two charges. Such a 
plane may be represented by a vanishingly thin conducting plane that is infinite in 
extent. The conductor is an equipotential surface at a potential V = 0, and the electric 
field intensity is therefore normal to the surface. Thus, if we replace the dipole con-
figuration shown in Figure 5.6a with the single charge and conducting plane shown 
in Figure 5.6b, the fields in the upper half of each figure are the same. Below the 
conducting plane, all fields are zero, as we have not provided any charges in that re-
gion. Of course, we might also substitute a single negative charge below a conducting 
plane for the dipole arrangement and obtain equivalence for the fields in the lower 
half of each region.

If we approach this equivalence from the opposite point of view, we begin with a 
single charge above a perfectly conducting plane and then see that we may maintain 
the same fields above the plane by removing the plane and locating a negative charge 
at a symmetrical location below the plane. This charge is called the image of the 
original charge, and it is the negative of that value.

If we can do this once, linearity allows us to do it again and again, and thus 
any charge configuration above an infinite ground plane may be replaced by an ar-
rangement composed of the given charge configuration, its image, and no conducting 
plane. This is suggested by the two illustrations of Figure 5.7. In many cases, the 
potential field of the new system is much easier to find since it does not contain the 
conducting plane with its unknown surface charge distribution.

As an example of the use of images, we find the surface charge density at P(2, 5, 
0) on the conducting plane z = 0 if there is a line charge of 30 nC/m located at x = 0,
z = 3, as shown in Figure 5.8a. We remove the plane and install an image line charge 
of −30 nC/m at x = 0, z = −3, as illustrated in Figure 5.8b. The field at P may now be 
obtained by superposition of the known fields of the line charges. The radial vector 

(a)

Equipotential surface, V = 0 Conducting plane, V = 0

(b)

+Q ̭+Q ̭

+Q ̭ +Q ̭

–Q ̭

–Q ̭

Figure 5.6 (a) Two equal but opposite charges may be replaced by (b) a single 
charge and a conducting plane without affecting the fields above the V = 0 surface.
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from the positive line charge to P is R+ = 2ax − 3az, while R− = 2ax + 3az. Thus, the 
individual fields are

 E  +   =    ρ  L   ______ 2π  ϵ  0    R  +      a  R+   =   30 ×  10   −9  _______ 
2π  ϵ  0    √ 

___
13 

  2 a  x   − 3 a  z______
 √ 

___
 13  
 

and

 E  −   =   30 ×  10   −9  _______ 
2π  ϵ  0    √ 

___
13 

   2 a  x   + 3 a  z______
 √ 

___
 13  
 

Adding these results, we have

E =   − 180 ×  10   −9  a  z    ___________ 2π  ϵ  0  (13 )   = − 249 a  z      V/m

This then is the field at (or just above) P in both the configurations of Figure 5.8, and 
it is certainly satisfying to note that the field is normal to the conducting plane, as 
it must be. Thus, D = ϵ0E = −2.20az nC/m2, and because this is directed toward the 
conducting plane, ρS is negative and has a value of −2.20 nC/m2 at P.

(a) (b)

–ρL

ρLρL

��̭

+1 ̭+1 ̭

̞�̭

–4 ̭ –4 ̭

Equipotential surface, V = 0Conducting plane, V = 0

Figure 5.7 (a) A given charge configuration above an infinite conducting plane 
may be replaced by (b) the given charge configuration plus the image configura-
tion, without the conducting plane.

Figure 5.8 (a) A line charge above a conducting plane. (b) The conductor is 
removed, and the image of the line charge is added.

(a)

30 nC/m 30 nC/m

–30 nC/m
P(2, 5, 0)

R+

R–

y
P

y

xx

z z

(b)

Conducting plane
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5.6 SEMICONDUCTORS
If we now turn our attention to an intrinsic semiconductor material, such as pure 
germanium or silicon, two types of current carriers are present, electrons and holes. 
The electrons are those from the top of the filled valence band that have received 
sufficient energy (usually thermal) to cross the relatively small forbidden band into 
the conduction band. The forbidden-band energy gap in typical semiconductors is of 
the order of one electronvolt. The vacancies left by these electrons represent unfilled 
energy states in the valence band which may also move from atom to atom in the 
crystal. The vacancy is called a hole, and many semiconductor properties may be 
described by treating the hole as if it had a positive charge of e, a mobility, μh, and an 
effective mass comparable to that of the electron. Both carriers move in an electric 
field, and they move in opposite directions; hence each contributes a component of 
the total current which is in the same direction as that provided by the other. The 
conductivity is therefore a function of both hole and electron concentrations and 
mobilities,

 σ = −  ρ  e    μ  e   +  ρ  h    μ  h   (19)

For pure, or intrinsic, silicon, the electron and hole mobilities are 0.12 and 0.025, 
respectively, whereas for germanium, the mobilities are, respectively, 0.36 and 0.17. 
These values are given in square meters per volt-second and range from 10 to 100 
times as large as those for aluminum, copper, silver, and other metallic conductors.6 
These mobilities are given for a temperature of 300 K.

The electron and hole concentrations depend strongly on temperature. At 300 
K the electron and hole volume charge densities are both 0.0024 C/m3 in magnitude 
in intrinsic silicon and 3.0 C/m3 in intrinsic germanium. These values lead to con-
ductivities of 0.000 35 S/m in silicon and 1.6 S/m in germanium. As temperature 
increases, the mobilities decrease, but the charge densities increase very rapidly. As 
a result, the conductivity of silicon increases by a factor of 10 as the temperature 
increases from 300 to about 330 K and decreases by a factor of 10 as the temperature 
drops from 300 to about 275 K. Note that the conductivity of the intrinsic semicon-
ductor increases with temperature, whereas that of a metallic conductor decreases 
with temperature; this is one of the characteristic differences between the metallic 
conductors and the intrinsic semiconductors.

D5.6. A perfectly conducting plane is located in free space at x = 4, and a uni-
form infinite line charge of 40 nC/m lies along the line x = 6, y = 3. Let V = 0 
at the conducting plane. At P(7, −1, 5) find: (a) V; (b) E. 

Ans.  (a) 317 V; (b) −45.3ax − 99.2ay V/m

6 Mobility values for semiconductors are given in References 2, 3, and 5 listed at the end of this chapter.
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Intrinsic semiconductors also satisfy the point form of Ohm’s law; that is, the 
conductivity is reasonably constant with current density and with the direction of the 
current density.

The number of charge carriers and the conductivity may both be increased dramat-
ically by adding very small amounts of impurities. Donor materials provide additional 
electrons and form n-type semiconductors, whereas acceptors furnish extra holes and 
form p-type materials. The process is known as doping, and a donor concentration in 
silicon as low as one part in 107 causes an increase in conductivity by a factor of 105.

The range of value of the conductivity is extreme as we go from the best insu-
lating materials to semiconductors and the finest conductors. In siemens per meter, 
σ ranges from 10−17 for fused quartz, 10−7 for poor plastic insulators, and roughly 
unity for semiconductors to almost 108 for metallic conductors at room temperature. 
These values cover the remarkably large range of some 25 orders of magnitude.

D5.7. Using the values given in this section for the electron and hole mobilities in 
silicon at 300 K, and assuming hole and electron charge densities are 0.0029 C/m3 
and −0.0029 C/m3, respectively, find: (a) the component of the conductivity due to 
holes; (b) the component of the conductivity due to electrons; (c) the conductivity. 

Ans. (a) 72.5 μS/m; (b) 348 μS/m; (c) 421 μS/m

5.7 THE NATURE OF DIELECTRIC MATERIALS
A dielectric in an electric field can be viewed as a free-space arrangement of micro-
scopic electric dipoles, each of which is composed of a positive and a negative charge 
whose centers do not quite coincide. These are not free charges, and they cannot 
contribute to the conduction process. Rather, they are bound in place by atomic and 
molecular forces and can only shift positions slightly in response to external fields. 
They are called bound charges, in contrast to the free charges that determine conduc-
tivity. The bound charges can be treated as any other sources of the electrostatic field. 
Therefore, we would not need to introduce the dielectric constant as a new parameter 
or to deal with permittivities different from the permittivity of free space; however, 
the alternative would be to consider every charge within a piece of dielectric material. 
This is too great a price to pay for using all our previous equations in an unmodified 
form, and we shall therefore spend some time theorizing about dielectrics in a quali-
tative way; introducing polarization P, permittivity ϵ, and relative permittivity ϵr; and 
developing some quantitative relationships involving these new parameters.

5.7.1 Bound Charge and the Polarization Field

The characteristic that all dielectric materials have in common, whether they are 
solid, liquid, or gas, and whether or not they are crystalline in nature, is their ability 
to store electric energy. This storage takes place by means of a shift in the relative 
positions of the internal, bound positive and negative charges against the normal 
molecular and atomic forces.
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This displacement against a restraining force is analogous to lifting a weight or 
stretching a spring, and it represents potential energy. The source of the energy is 
the external field, the motion of the shifting charges resulting perhaps in a transient 
current through a battery that is producing the field.

The actual mechanism of the charge displacement differs in the various dielectric 
materials. Some molecules, termed polar molecules, have a permanent displacement 
existing between the centers of “gravity” of the positive and negative charges, and each 
pair of charges acts as a dipole. Normally the dipoles are oriented in a random way 
throughout the interior of the material, and the action of the external field is to align 
these molecules, to some extent, in the same direction. A sufficiently strong field may 
even produce an additional displacement between the positive and negative charges.

A nonpolar molecule does not have this dipole arrangement until after a field is 
applied. The negative and positive charges shift in opposite directions against their 
mutual attraction and produce a dipole that is aligned with the electric field.

Either type of dipole may be described by its dipole moment p, as developed in 
Section 4.7, Eq. (36),

p = Qd (20)

where Q is the positive one of the two bound charges composing the dipole, and d is 
the vector from the negative to the positive charge. We note again that the units of p 
are coulomb-meters.

If there are n dipoles per unit volume and we deal with a volume Δv, then there 
are n Δv dipoles, and the total dipole moment is obtained by the vector sum,

 p  total   =   ∑ 
i=1

  
n  Δv

    p  i  

If the dipoles are aligned in the same general direction, ptotal may have a significant 
value. However, a random orientation may cause ptotal to be essentially zero.

We now define the polarization field, P (a flux density), as the dipole moment 
per unit volume,

P =   lim  
Δv→0

     1 ___ Δv
     ∑ 

i=1
  

n  Δv

    p  i   (21)

with units of coulombs per square meter. We will treat P as a typical continuous field, 
even though it is obvious that it is essentially undefined at points within an atom or 
molecule. Instead, we should think of its value at any point as an average value taken 
over a sample volume Δv—large enough to contain many molecules (n Δv in num-
ber), but yet sufficiently small to be considered incremental in concept.

Our immediate goal is to show that the bound-volume charge density acts like 
the free-volume charge density in producing an external field; we will obtain a result 
similar to Gauss’s law.

To be specific, assume that we have a dielectric containing nonpolar molecules. 
No molecule has a dipole moment, and P = 0 throughout the material. Somewhere in 
the interior of the dielectric we select an incremental surface element ΔS, as shown in 
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Figure 5.9a, and apply an electric field E. The electric field produces a moment p = Qd 
in each molecule, such that p and d make an angle θ with ΔS, as indicated in Figure 5.9b.

The bound charges will now move across ΔS. Each of the charges associated 
with the creation of a dipole must have moved a distance   1 __ 2   d cos θ in the direction
perpendicular to ΔS. Thus, any positive charges initially lying below the surface ΔS 
and within the distance   1 __ 2   d cos θ of the surface must have crossed ΔS going upward.
Also, any negative charges initially lying above the surface and within that distance 
(  1 __ 2   d cos θ ) from ΔS must have crossed ΔS going downward. Therefore, because there
are n molecules/m3, the net total charge that crosses the elemental surface in an up-
ward direction is equal to nQd cosθΔS, or

Δ  Q  b   = n    Qd · ΔS

where the subscript on Qb reminds us that we are dealing with a bound charge and 
not a free charge. In terms of the polarization, we have

Δ  Q  b   = P · ΔS

If we interpret ΔS as an element of a closed surface inside the dielectric material, 
then the direction of ΔS is outward, and the net increase in the bound charge within 
the closed surface is obtained through the integral

 Q  b   = −   ∮  
S
   P · dS (22)

(a)

ΔS

ΔS E

ΔS

+ + +
+

+

+

1
2

1
2

+

–
d

d cos θ

d cos θ

θ

–

–

–

–
–

–
––

–

–
– –

+

Dielectric
material

++
+

+

+

(b)

Figure 5.9 (a) An incremental surface element ΔS is shown in the interior of a die-
lectric in which an electric field E is present. (b) The nonpolar molecules form dipole 
moments p and a polarization P. There is a net transfer of bound charge across ΔS.
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5.7.2 Electric Flux Density

Eq. (22) has some resemblance to Gauss’s law, and we may now generalize our defi-
nition of electric flux density so that it applies to media other than free space. We first 
write Gauss’s law in terms of ϵ0E and QT, the total enclosed charge, bound plus free:

 Q  T   =  ∮  S    ϵ  0  E · dS (23)

where
 Q  T   =  Q  b   + Q

and Q is the total free charge enclosed by the surface S. Note that the free charge 
appears without a subscript because it is the most important type of charge and will 
appear in Maxwell’s equations.

Combining these last three equations, we obtain an expression for the free charge 
enclosed,

Q =  Q  T   −  Q  b   =  ∮  
S
   ( ϵ  0   E + P) · dS (24)

Electric flux density, D, is now defined in more general terms than was done in 
Chapter 3,

 D =  ϵ  0   E + P (25)

There is thus an added term to D that appears when polarizable material is present. Thus,

Q =  ∮  
S
    D · dS (26)

where Q is the free charge enclosed.
Utilizing the several volume charge densities, we have

Qb = ∫
v
  ρb dv

Q = ∫
v
  ρv dv

QT = ∫
v
  ρT  dv

With the help of the divergence theorem, we may therefore transform Eqs. (22), (23), 
and (26) into the equivalent divergence relationships,

  ∇ · P  =  −  ρ  b  ∇ ·  ϵ  0   E  =   ρ  T   

 ∇ · D =  ρ  v   (27)

We will emphasize only Eq. (26) and (27), the two expressions involving the free 
charge, in the work that follows.
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5.7.3 Material Susceptibility and Dielectric Constant

In order to make any real use of these new concepts, it is necessary to know the rela-
tionship between the electric field intensity E and the polarization P that results. This 
relationship will, of course, be a function of the type of material, and we will essentially 
limit our discussion to those isotropic materials for which E and P are linearly related. In 
an isotropic material, the vectors E and P are always parallel, regardless of the orienta-
tion of the field. Although most engineering dielectrics are linear for moderate-to-large 
field strengths and are also isotropic, single crystals may be anisotropic. The periodic 
nature of crystalline materials causes dipole moments to be formed most easily along 
the crystal axes, and not necessarily in the direction of the applied field.

In ferroelectric materials, the relationship between P and E not only is nonlinear, 
but also shows hysteresis effects; that is, the polarization produced by a given electric 
field intensity depends on the past history of the sample. Important examples of this 
type of dielectric are barium titanate, often used in ceramic capacitors, and Rochelle salt.

The linear relationship between P and E is

 P =  χ  e    ϵ  0   E (28)

where χe (chi) is a dimensionless quantity called the electric susceptibility of the 
material.

Using this relationship in Eq. (25), we have

D =  ϵ  0   E +  χ  e    ϵ  0   E = (  χ  e   + 1)  ϵ  0   E

The expression within the parentheses is now defined as

 ϵ  r   =  χ  e   + 1 (29)
This is another dimensionless quantity, and it is known as the relative permittivity, or 
dielectric constant of the material. Thus,

D =  ϵ  0    ϵ  r   E = ϵE (30)

where

 ϵ =  ϵ  0    ϵ  r   (31)

and ϵ is the permittivity. The dielectric constants are given for some representative 
materials in Appendix C.

Anisotropic dielectric materials cannot be described in terms of a simple suscep-
tibility or permittivity parameter. Instead, we find that each component of D may be 
a function of every component of E, and D = ϵE becomes a matrix equation where 
D and E are each 3 × 1 column matrices and ϵ is a 3 × 3 square matrix. Expanding 
the matrix equation gives

 
 D  x  

  
=

 
  ϵ  xx    E  x   +  ϵ  xy    E  y   +  ϵ  xz    E  z  

     D  y    =   ϵ  yx    E  x   +  ϵ  yy    E  y   +  ϵ  yz    E  z      
 D  z   

 
=

 
  ϵ  zx    E  x   +  ϵ  zy    E  y   +  ϵ  zz    E  z  
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Note that the elements of the matrix depend on the selection of the coordinate 
axes in the anisotropic material. Certain choices of axis directions lead to simpler 
matrices.7

D and E (and P) are no longer parallel, and although D = ϵ0E + P remains 
a valid equation for anisotropic materials, we may continue to use D = ϵE only 
by interpreting it as a matrix equation. We will concentrate our attention on linear 
isotropic materials and reserve the general case for a more advanced text.

In summary, then, we now have a relationship between D and E that depends on 
the dielectric material present,

 D = ϵE (30)

where

 ϵ =  ϵ  0    ϵ  r    (31)

This electric flux density is still related to the free charge by either the point or inte-
gral form of Gauss’s law:

 ∇ · D =  ρ  v   (27)

 ∮
S
    D · dS = Q (26)

Use of the relative permittivity, as indicated by Eq. (31), makes consideration 
of the polarization, dipole moments, and bound charge unnecessary. However, when 
anisotropic or nonlinear materials must be considered, the relative permittivity, in the 
simple scalar form that we have discussed, is no longer applicable.

EXAMPLE 5.4

We locate a slab of Teflon in the region 0 ≤ x ≤ a, and assume free space where  
x < 0 and x > a. Outside the Teflon there is a uniform field Eout = E0ax V/m. We seek 
values for D, E, and P everywhere.
Solution. The dielectric constant of the Teflon is 2.1, and thus the electric suscep-
tibility is 1.1.

Outside the slab, we have immediately Dout = ϵ0E0ax. Also, as there is no dielec-
tric material there, Pout = 0. Now, any of the last four or five equations will enable us 
to relate the several fields inside the material to each other. Thus

  D  in     =  2.1  ϵ  0    E  in         (0 ≤ x ≤ a)     P  in  
  =  1.1  ϵ  0    E  in  

       (0 ≤ x ≤ a)

7 A more complete discussion of this matrix may be found in the Ramo, Whinnery, and Van Duzer refer-
ence listed at the end of this chapter.
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5.8  BOUNDARY CONDITIONS FOR PERFECT 
DIELECTRIC MATERIALS

How do we attack a problem in which there are two different dielectrics, or a dielectric 
and a conductor? This is another example of a boundary condition, such as the condi-
tion at the surface of a conductor whereby the tangential fields are zero and the nor-
mal electric flux density is equal to the surface charge density on the conductor. Now 
we take the first step in solving a two-dielectric problem, or a dielectric-conductor 
problem, by determining the behavior of the fields at the dielectric interface.

5.8.1 Tangential Electric Field at a Boundary

We first consider the interface between two dielectrics having permittivities ϵ1 and 
ϵ2 and occupying regions 1 and 2, as shown in Figure 5.10. We first examine the 
tangential components by using

∮  E · dL = 0

around the small closed path on the left, obtaining

 E  tan 1   Δw −  E  tan 2   Δw = 0

The small contribution to the line integral by the normal component of E along 
the sections of length Δh becomes negligible as Δh decreases and the closed path 
crowds the surface. Immediately, then,

  E  tan 1   =  E  tan 2   (32)

Evidently, Kirchhoff’s voltage law is still applicable to this case. Certainly we have 
shown that the potential difference between any two points on the boundary that are 
separated by a distance Δw is the same immediately above or below the boundary.

As soon as we establish a value for any of these three fields within the dielectric, the 
other two can be found immediately. The difficulty lies in crossing over the boundary 
from the known fields external to the dielectric to the unknown ones within it. To do 
this we need a boundary condition, and this is the subject of the next section. We will 
complete this example then.

In the remainder of this text we will describe polarizable materials in terms of D 
and ϵ rather than P and χe. We will limit our discussion to isotropic materials.

D5.8. A slab of dielectric material has a relative dielectric constant of 3.8 and 
contains a uniform electric flux density of 8 nC/m2. If the material is lossless, 
find: (a) E; (b) P; (c) the average number of dipoles per cubic meter if the av-
erage dipole moment is 10−29 C · m. 

Ans.  (a) 238 V/m; (b) 5.89 nC/m2; (c) 5.89 × 1020 m−3
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If the tangential electric field intensity is continuous across the boundary, then 
tangential D is discontinuous, for

   D  tan 1   ____  ϵ  1     =  E  tan 1   =  E  tan 2   =    D  tan 2____ ϵ  2   
or

  
 D  tan 1  ____
 D  tan 2

=   
 ϵ  1   __
 ϵ  2 (33)

5.8.2 Normal Electric Flux Density at a Boundary

The boundary conditions on the normal components are found by applying Gauss’s 
law to the small “pillbox” shown at the right in Figure 5.10. The sides are again very 
short, and the flux leaving the top and bottom surfaces is the difference

 D  N1   ΔS −  D  N2   ΔS = Δ Q =  ρ  S   ΔS

from which

  D  N1   −  D  N2   =  ρ  S   (34)

What is this surface charge density? It cannot be a bound surface charge density, 
because we are taking the polarization of the dielectric into effect by using a dielec-
tric constant different from unity; that is, instead of considering bound charges in free 
space, we are using an increased permittivity. Also, it is extremely unlikely that any 
free charge is on the interface, for no free charge is available in the perfect dielectrics 
we are considering. This charge must then have been placed there deliberately, thus 
unbalancing the total charge in and on this dielectric body. Except for this special 
case, then, we may assume ρS is zero on the interface and

  D  N1   =  D  N2   (35)

Figure 5.10 The boundary between perfect dielectrics of permittivi-
ties ϵ1 and ϵ2. The continuity of DN is shown by the gaussian surface on 
the right, and the continuity of Etan is shown by the line integral about 
the closed path at the left.
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or the normal component of D is continuous. It follows that
 ϵ  1    E  N1   =  ϵ  2    E  N2   (36)

and normal E is discontinuous.

5.8.3 General Boundary Conditions and an Application

Equations (32) and (34) can be written in terms of field vectors in any direction, 
along with the unit normal to the surface as shown in Figure 5.10. Formally stated, 
the boundary conditions for the electric flux density and the electric field strength at 
the surface of a perfect dielectric are

 ( D  1   −  D  2  ) · n =  ρ  s   (37)

which is the general statement of Eq. (32), and

 ( E  1   −  E  2  ) × n = 0 (38)

generally states Eq. (34). This construction was used previously in Eqs. (17) and (18) 
for a conducting surface, in which the normal or tangential components of the fields 
are obtained through the dot product or cross product with the normal, respectively.

These conditions may be used to show the change in the vectors D and E at the 
surface. Let D1 (and E1) make an angle θ1 with a normal to the surface (Figure 5.11). 
Because the normal components of D are continuous,

 D  N1   =  D  1   cos  θ  1   =  D  2   cos  θ  2   =  D  N2   (39)

The ratio of the tangential components is given by (33) as

   D  tan 1____
 D  tan 2

=    D  1   sin  θ  1 _______  D  2   sin  θ  2  
   =    ϵ  1__ ϵ  2

Figure 5.11 The refraction of D at a 
dielectric interface. For the case shown, 
ϵ1 > ϵ2; E1 and E2 are directed along D1 and 
D2, with D1 > D2 and E1 < E2.
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or

 ϵ  2    D  1   sin  θ  1   =  ϵ  1    D  2   sin  θ  2   (40)

and the division of this equation by (39) gives

  tan  θ  1 _____ tan  θ  2
=    ϵ  1__ ϵ  2 (41)

In Figure 5.11 we have assumed that ϵ1 > ϵ2, and therefore θ1 > θ2.
The direction of E on each side of the boundary is identical with the direction 

of D, because D = ϵE.
The magnitude of D in region 2 may be found from Eq. (39) and (40),

 D  2   =  D  1    √ 
_________________

   cos   2       θ  1   +   (     ϵ  2   __  ϵ  1     )     
2
   sin   2       θ  1 (42)

and the magnitude of E2 is

 E  2   =  E  1    √ 
_________________

   sin   2       θ  1   +   (     ϵ  1   __  ϵ  2     )     
2
   cos   2       θ  1 (43)

An inspection of these equations shows that D is larger in the region of larger per-
mittivity (unless θ1 = θ2 = 0° where the magnitude is unchanged) and that E is larger 
in the region of smaller permittivity (unless θ1 = θ2 = 90°, where its magnitude is 
unchanged).

EXAMPLE 5.5

Complete Example 5.4 by finding the fields within the Teflon (ϵr = 2.1), given the 
uniform external field Eout = E0ax in free space.
Solution. We recall that we had a slab of Teflon extending from x = 0 to x = a, as 
shown in Figure 5.12, with free space on both sides of it and an external field Eout = 
E0ax. We also have Dout = ϵ0E0ax and Pout = 0.

Inside, the continuity of DN at the boundary allows us to find that Din = Dout = 
ϵ0E0ax. This gives us Ein = Din/ϵ = ϵ0E0ax/(ϵr ϵ0) = 0.476E0ax. To get the polarization 
field in the dielectric, we use D = ϵ0E + P and obtain

 P  in   =  D  in   −  ϵ  0    E  in   =  ϵ  0    E  0   a  x   − 0.476 ϵ  0    E  0    a  x   = 0.524 ϵ  0    E  0    a  x  

Summarizing then gives

 
 D  in   

 
=

 
  ϵ  0    E  0    a  x  

  
(0 ≤ x ≤ a)

     E  in     =  0.476 E  0    a  x    (0 ≤ x ≤ a)    
 P  in   

  
=

 
 0.524 ϵ  0    E  0    a  x      (0 ≤ x ≤ a)

 

A practical problem most often does not provide us with a direct knowledge of the 
field on either side of the boundary. The boundary conditions must be used to help us 
determine the fields on both sides of the boundary from the other information that is given.
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CHAPTER 5 PROBLEMS
5.1 Given the current density J = −104[sin(2x)e−2yax + cos(2x)e−2yay] kA/m2 

(a) Find the total current crossing the plane y = 1 in the ay direction in the 
region 0 < x < 1, 0 < z < 2. (b) Find the total current leaving the region 
0 < x, y < 1, 2 < z < 3 by integrating J · dS over the surface of the cube. 
(c) Repeat part b, but use the divergence theorem. 

5.2 Given J = −10−4(yax + xay) A/m2, find the current crossing the y = 0 plane 
in the −ay direction between z = 0 and 1, and x = 0 and 2.

5.3 A solid sphere of radius b contains charge Q, uniformly distributed 
throughout the sphere volume. The sphere rotates about the z axis at 
angular velocity Ω rad/s. What total current is flowing? 

5.4 If volume charge density is given as ρv = (cos ωt)/r2 C/m3 in spherical 
coordinates, find J. It is reasonable to assume that J is not a function of θ or ϕ.

5.5 Consider the following time-varying current density, which is in the form 
of a propagating wave at frequency f, traveling at velocity v (more about 
this in Chapter 10): 

 J (  z, t )   =  J  0   cos (ωt − βz)   a  z   A /  m   2  

where J0 is a constant amplitude, ω = 2πf is the radian frequency, and β is 
a constant to be found. Determine β as a function of ω and v such that the 
given waveform satisfies both Eqs. (3) and (5). Begin with Eq. (5).  

5.6 In spherical coordinates, a current density J = −k/(r sin θ) aθ A/m2 exists 
in a conducting medium, where k is a constant. Determine the total current 
in the az direction that crosses a circular disk of radius R, centered on the z 
axis and located at (a) z = 0; (b) z = h.

5.7 Assuming that there is no transformation of mass to energy or vice versa, 
it is possible to write a continuity equation for mass. (a) If we use the 
continuity equation for charge as our model, what quantities correspond to 
J and ρv? (b) Given a cube 1 cm on a side, experimental data show that the 
rates at which mass is leaving each of the six faces are 10.25, −9.85, 1.75, 
−2.00, −4.05, and 4.45 mg/s. If we assume that the cube is an incremental 
volume element, determine an approximate value for the time rate of 
change of density at its center. 
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5.8 A truncated cone has a height of 16 cm. The circular faces on the top and 
bottom have radii of 2 mm and 0.1 mm, respectively. If the material from 
which this solid cone is constructed has a conductivity of 2 × 106 S/m, use 
some good approximations to determine the resistance between the two 
circular faces.

5.9 (a) Using data tabulated in Appendix C, calculate the required diameter for 
a 2-m-long nichrome wire that will dissipate an average power of 450 W 
when 120 V rms at 60 Hz is applied to it. (b) Calculate the rms current 
density in the wire. 

5.10 A large brass washer has a 2-cm inside diameter, a 5-cm outside diameter, 
and is 0.5 cm thick. Its conductivity is σ = 1.5 × 107 S/m. The washer 
is cut in half along a diameter, and a voltage is applied between the two 
rectangular faces of one part. The resultant electric field in the interior of 
the half-washer is E = (0.5/ρ) aϕ V/m in cylindrical coordinates, where the 
z axis is the axis of the washer. (a) What potential difference exists between 
the two rectangular faces? (b) What total current is flowing? (c) What is the 
resistance between the two faces?

5.11 Two perfectly conducting cylindrical surfaces of length ℓ are located at 
ρ = 3 and ρ = 5 cm. The total current passing radially outward through 
the medium between the cylinders is 3 A dc. (a) Find the voltage and 
resistance between the cylinders, and E in the region between the cylinders, 
if a conducting material having σ = 0.05 S/m is present for 3 < ρ < 5 cm. 
(b) Show that integrating the power dissipated per unit volume over the 
volume gives the total dissipated power. 

5.12 Two identical conducting plates, each having area A, are located at z = 0 
and z = d. The region between plates is filled with a material having 
z-dependent conductivity, σ (z) = σ0e

−z/d, where σ0 is a constant. Voltage V0 
is applied to the plate at z = d; the plate at z = 0 is at zero potential. Find, 
in terms of the given parameters, (a) the resistance of the material; (b) the 
total current flowing between plates; (c) the electric field intensity E within 
the material.

5.13 A hollow cylindrical tube with a rectangular cross section has external 
dimensions of 0.5 in. by 1 in. and a wall thickness of 0.05 in. Assume 
that the material is brass, for which σ = 1.5 × 107 S/m. A current of 
200 A dc is flowing down the tube. (a) What voltage drop is present 
across a 1 m length of the tube? (b) Find the voltage drop if the 
interior of the tube is filled with a conducting material for which  
σ = 1.5 × 105 S/m. 

5.14 A rectangular conducting plate lies in the xy plane, occupying the region 
0 < x < a, 0 < y < b. An identical conducting plate is positioned directly 
above and parallel to the first, at z = d. The region between plates is filled 
with material having conductivity σ (x) = σ 0e

−x/a, where σ0 is a constant. 
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Voltage V0 is applied to the plate at z = d; the plate at z = 0 is at zero 
potential. Find, in terms of the given parameters, (a) the electric field 
intensity E within the material; (b) the total current flowing between plates; 
(c) the resistance of the material.

5.15 A conducting medium is in the shape of a hemispherical shell, having inner 
and outer radii, a and b, respectively. The conductivity varies radially as  
 σ  (  r )   =  σ   0    a / r  S/m, where σ 0 is a constant. The surfaces at r = a and b are 
coated with silver (essentially infinite conductivity for this problem). The 
inner surface is raised to potential V0; the outer surface is grounded. A 
radial current, I0, flows between surfaces. (a) Find the current density, J, in 
terms of I0. (b) Find E between surfaces in terms of I0. (c) Find V0 in terms 
of I0. (d ) Find the resistance R. 

5.16 A coaxial transmission line has inner and outer conductor radii a and 
b. Between conductors (a < ρ < b) lies a conductive medium whose
conductivity is σ (ρ) = σ 0/ρ, where σ 0 is a constant. The inner conductor is 
charged to potential V0, and the outer conductor is grounded. (a) Assuming 
dc radial current I per unit length in z, determine the radial current density 
field J in A/m2. (b) Determine the electric field intensity E in terms of I 
and other parameters, given or known. (c) By taking an appropriate line 
integral of E as found in part b, find an expression that relates V0 to I. 
(d ) Find an expression for the conductance of the line per unit length, G.

5.17 Consider the setup as in Problem 5.15, except find R by considering the 
medium as made up of a stack of hemispherical shells, each of thickness dr, 
and where the resistance of each shell will be of the form of Eq. (13). The 
overall resistance will be the series combination of the shell resistances. 

5.18 Two parallel circular plates of radius a are located at z = 0 and z = d. The 
top plate (z = d ) is raised to potential V0; the bottom plate is grounded. 
Between the plates is a conducting material having radial-dependent 
conductivity, σ (ρ) = σ 0ρ, where σ0 is a constant. (a) Find the ρ-independent 
electric field strength, E, between plates. (b) Find the current density, J 
between plates. (c) Find the total current, I, in the structure. (d ) Find the 
resistance between plates.

5.19 Consider the setup as in Problem 5.18, except find R by considering the 
medium as made up of concentric cylindrical shells, each of thickness dρ.
The resistance will be the parallel combination of the shell resistances. 

5.20 Consider the basic image problem of a point charge q at z = d, suspended 
over an infinite conducting plane at z = 0. (a) Apply Eq. (10) in Chapter 2 
to find E and D everywhere at the conductor surface as functions of 
cylindrical radius ρ. (b) Use your result from part a to find the charge 
density, ρs, and the total induced charge on the conductor. 

5.21 Let the surface y = 0 be a perfect conductor in free space. Two uniform 
infinite line charges of 30 nC/m each are located at x = 0, y = 1, and x = 0, 
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y = 2. (a) Let V = 0 at the plane y = 0, and find V at P(1, 2, 0). (b) Find 
E at P. 

5.22 The line segment x = 0, −1 ≤ y ≤ 1, z = 1, carries a linear charge density 
ρL = π|y| μC/m. Let z = 0 be a conducting plane, and determine the surface 
charge density at: (a) (0, 0, 0); (b) (0, 1, 0).

5.23 A dipole with p = 0.1az μC · m is located at A(1, 0, 0) in free space, and 
the x = 0 plane is perfectly conducting. (a) Find V at P(2, 0, 1). (b) Find the 
equation of the 200 V equipotential surface in rectangular coordinates. 

5.24 At a certain temperature, the electron and hole mobilities in intrinsic 
germanium are given as 0.43 and 0.21 m2/V · s, respectively. If the electron 
and hole concentrations are both 2.3 × 1019 m−3, find the conductivity at 
this temperature.

5.25 Electron and hole concentrations increase with temperature. For pure 
silicon, suitable expressions are ρh = −ρe = 6200T1.5e−7000/T C/m3. The 
functional dependence of the mobilities on temperature is given by μh = 
2.3 × 105T −2.7 m2/V · s and μe = 2.1 × 105T −2.5 m2/V · s, where the 
temperature, T, is in degrees Kelvin. Find σ at: (a) 0°C; (b) 40°C; (c) 80°C. 

5.26 A semiconductor sample has a rectangular cross section 1.5 by 2.0 mm, 
and a length of 11.0 mm. The material has electron and hole densities of 
1.8 × 1018 and 3.0 × 1015 m−3, respectively. If μe = 0.082 m2/V · s and μh = 
0.0021 m2/ V · s, find the resistance offered between the end faces of the 
sample.

5.27 Atomic hydrogen contains 5.5 × 1025 atoms/m3 at a certain temperature 
and pressure. When an electric field of 4 kV/m is applied, each dipole 
formed by the electron and positive nucleus has an effective length of 7.1 × 
10−19 m. (a) Find P. (b) Find ϵr. 

5.28 Find the dielectric constant of a material in which the electric flux density 
is four times the polarization.

5.29 A coaxial conductor has radii a = 0.8 mm and b = 3 mm and a polystyrene 
dielectric for which ϵr = 2.56. If P = (2/ρ)aρ nC/m2 in the dielectric, find 
(a) D and E as functions of ρ; (b) Vab and χe. (c) If there are 4 × 1019 
molecules per cubic meter in the dielectric, find p(ρ). 

5.30 Consider a composite material made up of two species, having number 
densities N1 and N2 molecules/m3, respectively. The two materials are 
uniformly mixed, yielding a total number density of N = N1 + N2. The 
presence of an electric field E induces molecular dipole moments p1 and 
p2 within the individual species, whether mixed or not. Show that the 
dielectric constant of the composite material is given by ϵr = fϵr1 + (1 − f  )
ϵr2, where f is the number fraction of species 1 dipoles in the composite, 
and where ϵr1 and ϵr2 are the dielectric constants that the unmixed species 
would have if each had number density N.
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5.31 A circular cylinder of radius a and dielectric constant ϵr is positioned with 
its axis on the z axis. An electric field E = E0 ax is incident from free 
space onto the cylinder surface. E0 is a constant. (a) Find the electric field 
in the cylinder interior, and express the result in rectangular components. 
(b) Consider a field line incident at ϕ = 135°. Find ϵr so that the interior 
field line will be oriented at 22.5° from the x axis. 

5.32 Two equal but opposite-sign point charges of 3 μC are held x meters apart 
by a spring that provides a repulsive force given by Fsp = 12(0.5 − x) N. 
Without any force of attraction, the spring would be fully extended to 
0.5 m. (a) Determine the charge separation. (b) What is the dipole moment?

5.33 Two perfect dielectrics have relative permittivities ϵr1 = 2 and ϵr2 = 8. The 
planar interface between them is the surface x − y + 2z = 5. The origin lies 
in region 1. If E1 = 100ax + 200ay − 50az V/m, find E2. 

5.34 A sphere of radius b and dielectric constant ϵr is centered at the origin in 
free space. An electric field E = E0 ax is incident from free space onto the 
sphere surface. E0 is a constant. (a) Find the electric field in the sphere 
interior and express the result in rectangular components. (b) Specialize 
your result from part a for the case in which ϕ = π. (c) Specialize your 
result from part a for the case in which θ = π/2. Compare both results (parts 
b and c) to the answer to Problem 5.31.

5.35 Let the cylindrical surfaces ρ = 4 cm and ρ = 9 cm enclose two wedges of 
perfect dielectrics, ϵr1 = 2 for 0 < ϕ < π/2 and ϵr2 = 5 for π/2 < ϕ < 2π. If 
E1 = (2000/ρ)aρ V/m, find (a) E2; (b) the total electrostatic energy stored in 
a 1 m length of each region.
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C H A P T E R 

Capacitance

Capacitance measures the capability of energy storage in electrical devices. 
It can be designed for a specific purpose, or it may exist as an unavoidable 
by-product of the device structure that one must live with. Understanding 

capacitance and its impact on device or system operation is critical in every aspect 
of electrical engineering.

A capacitor is a device that stores energy; energy thus stored can either be as-
sociated with accumulated charge or it can be related to the stored electric field, 
as was discussed in Section 4.8. In fact, one can think of a capacitor as a device 
that stores electric flux, in a similar way that an inductor—an analogous device—
stores magnetic flux (or ultimately magnetic field energy). We will explore this in 
Chapter 8. A primary goal in this chapter is to present the methods for calculating 
capacitance for a number of cases, including transmission line geometries, and to be 
able to make judgments on how capacitance will be altered by changes in materials 
or their configuration. ■

6.1 CAPACITANCE DEFINED
Consider two conductors embedded in a homogeneous dielectric (Figure 6.1). 
Conductor M2 carries a total positive charge Q, and  M1 carries an equal nega-
tive charge. There are no other charges present, and the total charge of the system 
is zero.

We now know that the charge is carried on the surface as a surface charge 
density and also that the electric field is normal to the conductor surface. Each 
conductor is, moreover, an equipotential surface. Because M2 carries the positive 
charge, the electric flux is directed from M2 to M1, and M2 is at the more positive 
potential. In other words, work must be done to carry a positive charge from M1 
to M2.

We designate the potential difference between M2 and M1 as V0. The capacitance 
of this two-conductor system is defined as the ratio of the magnitude of the total 

6
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charge on either conductor to the magnitude of the potential difference between 
conductors,

 C =   Q _  V  0  
   (1)

In general terms, we determine Q by a surface integral over the positive conductors, 
and we find V0 by carrying a unit positive charge from the negative to the positive 
surface,

C =   
 ∮  S   ϵE · d S_______

−  ∫ 
 −

  
  +

    E · d L
(2)

The capacitance is independent of the potential and total charge, for their ratio 
is constant. If the charge density is increased by a factor of N, Gauss’s law indi-
cates that the electric flux density or electric field intensity also increases by N, 
as does the potential difference. The capacitance is a function only of the physical 
dimensions of the system of conductors and of the permittivity of the homogeneous 
dielectric.

Capacitance is measured in farads (F), where a farad is defined as one coulomb 
per volt. Common values of capacitance are apt to be very small fractions of a farad, 
and consequently more practical units are the microfarad (μF), the nanofarad (nF), 
and the picofarad (pF).

Figure 6.1 Two oppositely charged 
conductors M1 and M2 surrounded by a 
uniform dielectric. The ratio of the magnitude 
of the charge on either conductor to the mag-
nitude of the potential difference between 
them is the capacitance C.

ε
dielectric

M2

M1
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6.2 PARALLEL-PLATE CAPACITOR
We can apply the definition of capacitance to a simple two-conductor system in which 
the conductors are identical, infinite parallel planes with separation d (Figure 6.2). 
Choosing the lower conducting plane at z = 0 and the upper one at z = d, a uniform 
sheet of surface charge ±ρS on each conductor leads to the uniform field [Section 2.5, 
Eq. (18)]

E =    ρ  S   __ ϵ    a  z
where the permittivity of the homogeneous dielectric is ϵ, and

D =  ρ  S    a  z  

Note that this result could be obtained by applying the boundary condition at a 
conducting surface (Eq. (18), Chapter 5) at either one of the plate surfaces. Referring 
to the surfaces and their unit normal vectors in Fig. 6.2, where nℓ = az and nu = −az, 
we find on the lower plane:

D ·  n  ℓ     |    z=0   = D ·  a  z   = ρs ⇒ D =  ρ  s    a  z
On the upper plane, we get the same result

D ·  n  u     |    z=d   = D · (−  a  z   ) = −  ρ  s   ⇒ D =  ρ  s    a  z
This is a key advantage of the conductor boundary condition, in that we need to ap-
ply it only to a single boundary to obtain the total field there (arising from all other 
sources).

The potential difference between lower and upper planes is

 V  0   = −    ∫ 
 upper

  lower
    E · d  L = −    ∫ 

 d
  
  0

       ρ  S   __ ϵ  dz =    ρ  S   __ ϵ   d

Since the total charge on either plane is infinite, the capacitance is infinite. A more 
practical answer is obtained by considering planes, each of area S, whose linear di-
mensions are much greater than their separation d. The electric field and charge 

Figure 6.2 The problem of the parallel-plate 
capacitor. The capacitance per square meter 
of surface area is ϵ/d.

–ρS

nu

nl

Conductor surface

Uniform surface
charge density

+ρS z = 0

z = d

E

Conductor surface
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distribution are then almost uniform at all points not adjacent to the edges, and this 
latter region contributes only a small percentage of the total capacitance, allowing us 
to write the familiar result

 
 Q =  ρ  S   S
 V  0   =    ρ  S   __ ϵ   d

 C =   Q _  V  0  
   =   ϵS_

d
 (3)

More rigorously, we might consider Eq. (3) as the capacitance of a portion of the 
infinite-plane arrangement having a surface area S. Methods of calculating the effect 
of the unknown and nonuniform distribution near the edges must wait until we are 
able to solve more complicated potential problems.

EXAMPLE 6.1

Calculate the capacitance of a parallel-plate capacitor having a mica dielectric, ϵr = 
6, a plate area of 10 in.2, and a separation of 0.01 in.
Solution. We find that

 S = 10  ×    0.0254   2  = 6.45 ×  10   −3     m   2     
d = 0.01  ×  0.0254 = 2.54 ×  10   −4   m

  

and therefore

C =   6 × 8.854 ×  10   −12  × 6.45 ×  10   −3    _______________________  
2.54 ×  10   −4 

   = 1.349 nF

A large plate area is obtained in capacitors of small physical dimensions by 
stacking smaller plates in 50- or 100-decker sandwiches, or by rolling up foil plates 
separated by a flexible dielectric.

Table C.1 in Appendix C also indicates that materials are available having die-
lectric constants greater than 1000.

Finally, the total energy stored in the capacitor is

 W  E   =    1 __ 2     ∫  vol   ϵ  E   2      dv =    1 __ 2     ∫ 
 0
  
  S

     ∫ 
 0
  
  d

       ϵ  ρ  S  2  ____ 
ϵ2    dz      dS =    1 __ 2       ρ  S  2  __ ϵ   Sd =    1 __ 2      ϵS__ 

d
       ρ  S  2  d2_____

ϵ2 

or

  W  E   =   1 _ 2  C         V      0  2   =   1 _ 2  Q         V  0   =   1 _ 2     
 Q   2_
C

 (4)

which are all familiar expressions. Equation (4) also indicates that the energy stored 
in a capacitor with a fixed potential difference across it increases as the dielectric 
constant of the medium increases.
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6.3 SEVERAL CAPACITANCE EXAMPLES
The methods just presented can be applied without much difficulty to other geome-
tries in the other coordinate systems. A few examples follow.

6.3.1 Coaxial Cable

As a first brief example, we choose a coaxial cable or coaxial capacitor of inner 
radius a, outer radius b, and length L. No great derivational struggle is required, 
because the potential difference is given as Eq. (11) in Section 4.3, and we find the 
capacitance very simply by dividing this by the total charge ρLL in the length L. Thus,

 C =   2π ϵL _
ln(b∕a ) (5)

6.3.2 Spherical Capacitor

Next we consider a spherical capacitor formed of two concentric spherical conduct-
ing shells of radius a and b, b > a. The expression for the electric field was obtained 
previously by Gauss’s law,

 E  r   =   Q ______ 
4π ϵ r   2 

  

where the region between the spheres is a dielectric with permittivity ϵ. The expres-
sion for potential difference was found from this by the line integral [Section 4.3, 
Eq. (12)]. Thus,

 V  ab   =   Q _____ 4π ϵ      (    1 _ a   −   1 _ 
b

   )
Here Q represents the total charge on the inner sphere, and the capacitance becomes

 C =   Q _  V  ab  
   =   4πϵ _

  1 _ a   − 1_
b

(6)

If we allow the outer sphere to become infinitely large, we obtain the capaci-
tance of an isolated spherical conductor,

 C = 4π ϵa (7)
For a diameter of 1 cm, or a sphere about the size of a marble, C = 0.556 pF in free space.

D6.1. Find the relative permittivity of the dielectric material present in a 
parallel-plate capacitor if: (a) S = 0.12 m2, d = 80 μm, V0 = 12 V, and the capaci-
tor contains 1 μJ of energy; (b) the stored energy density is 100 J/m3, V0 = 200 V,  
and d = 45 μm; (c) E = 200 kV/m and ρS = 20 μC/m2. 

Ans. (a) 1.05; (b) 1.14; (c) 11.3
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6.3.3 Capacitors with Multiple Dielectrics

Suppose the sphere in the previous example were to be coated with a different die-
lectric layer, for which ϵ = ϵ1, extending from r = a to r = r1. As the charge is still Q, 
the electric flux density is unaffected by the dielectric layer, but the electric field will 
evaluate differently in the two media. We have:

 D  r    =     Q
 _ 

4π  r   2 
            (a <  r <  ∞) 

Er =    Q
 _ 

4π   ϵ  1    r   2 
     (a <  r <   r  1  ) 

=    Q
 _ 

4π   ϵ  0    r   2 
     (  r  1   <  r) 

The potential difference between the conductor and infinity is now:

 V  0   =  V  a   −  V  ∞   = −  ∫ 
  r  1  

  
   a

        Q   dr _______ 
4π   ϵ  1    r   2 

   −  ∫ 
∞

  
   r  1  

        Q   dr _______ 
4π   ϵ  0    r   2 

  
   

=   Q __ 4π
      [    1 _  ϵ  1        (    1 _ a   −   1 _  r  1     )    +   1 _  ϵ  0    r  1     ]   

 

Therefore, the capacitance is

 C =   Q ___  V  0  
   =    4π __________ 

  1 __  ϵ  1      (     1 _ a   −   1 _  r  1     )    +   1 ___ ϵ  0    r  1
(8)

In order to look at the problem of multiple dielectrics a little more thoroughly, 
consider a parallel-plate capacitor of area S and spacing d, with the usual assumption 
that d is small compared to the linear dimensions of the plates. The capacitance is 
ϵ1S/d, using a dielectric of permittivity ϵ1. Now replace a part of this dielectric with 
another of permittivity ϵ2, placing the boundary between the two dielectrics parallel 
to the plates (Figure 6.3).

Some of us may immediately suspect that this combination is effectively two 
capacitors in series, yielding a total capacitance of

C =   1 _____
  1 __  C  1  

   +   1 __  C  2  
  

ε2

ε1S ε2S

ε1 d1

d2

d1 d2

d

Area, S

Conducting
plates

C = 1

+

Figure 6.3 A parallel-plate capacitor containing two dielectrics 
with the dielectric interface parallel to the conducting plates.
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where C1 = ϵ1 S/d1 and C2 = ϵ2 S/d2. This is the correct result, but we can obtain it 
using less intuition and a more basic approach.

Because the capacitance definition, C = Q/V0, involves a charge and a voltage, 
we may assume either and then find the other in terms of it. The capacitance is not a 
function of either, but only of the dielectrics and the geometry. Suppose we assume 
a potential difference V0 between the plates. The electric field intensities in the two 
regions, E2 and E1, are both uniform, and V0 = E1d1 + E2d2. At the dielectric inter-
face, E is normal, and our boundary condition, Eq. (35) in Chapter 5, tells us that 
DN1 = DN2, or ϵ1E1 = ϵ2E2. This assumes (correctly) that there is no surface charge at 
the interface. Eliminating E2 in our V0 relation, we have

 E  1   =    V  0   __________   d  1   +  d  2  ( ϵ  1   ∕  ϵ  2  )
  

and the surface charge density on the lower plate therefore has the magnitude

 ρ  S1   =  D  1   =  ϵ  1    E  1   =    V  0   _____
   d  1   __  ϵ  1     +    d  2__ ϵ  2   

Because D1 = D2, the magnitude of the surface charge is the same on each plate. 
The capacitance is then

C =   Q ___
 V  0

=    ρ  S   S___
 V  0  

 =   1 ______ 
   d  1   ___  ϵ  1   S

   +    d  2   ___
 ϵ  2   S

=   1 _____
  1 __  C  1  

   +   1 __  C  2  
  

As an alternate (and slightly simpler) solution, we might assume a charge Q on 
one plate, leading to a charge density Q/S and a value of D that is also Q/S. This is 
true in both regions, as DN1 = DN2 and D is normal. Then E1 = D/ϵ1 = Q/(ϵ1S), E2 = 
D/ϵ2 = Q/(ϵ2S), and the potential differences across the regions are V1 = E1d1 = Qd1/
(ϵ1S), and V2 = E2d2 = Qd2/(ϵ2S). The capacitance is

 C =   Q ___  V  0  
   =   Q _____  V  1   +  V  2  

   =   1 ______ 
   d  1   ___  ϵ  1   S

   +    d  2   ___
 ϵ  2   S

    (9)

How would the method of solution or the answer change if there were a third 
conducting plane along the interface? We would expect to find surface charge on 
each side of this conductor, and the magnitudes of these charges should be equal. 
In other words, we think of the electric lines not as passing directly from one outer 
plate to the other, but as terminating on one side of this interior plane and then 
continuing on the other side. The capacitance is unchanged, provided, of course, 
that the added conductor is of negligible thickness. The addition of a thick con-
ducting plate will increase the capacitance if the separation of the outer plates is 
kept constant, and this is an example of a more general theorem which states that 
the replacement of any portion of the dielectric by a conducting body will cause an 
increase in the capacitance.
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If the dielectric boundary were placed normal to the two conducting plates and 
the dielectrics occupied areas of S1 and S2, then an assumed potential difference 
V0 would produce field strengths E1 = E2 = V0/d. These are tangential fields at the 
interface, and they must be equal. Then we may find in succession D1, D2, ρS1, ρS2, 
and Q, obtaining a capacitance

 C =    ϵ  1    S  1   +  ϵ  2    S  2   ________ 
d
   =  C  1   +  C  2    (10)

as we expect.

D6.2. Determine the capacitance of: (a) a 1-ft length of 35B/U coaxial cable, 
which has an inner conductor 0.1045 in. in diameter, a polyethylene dielectric 
(ϵr = 2.26 from Table C.1), and an outer conductor that has an inner diameter 
of 0.680 in.; (b) a conducting sphere of radius 2.5 mm, covered with a polyeth-
ylene layer 2 mm thick, surrounded by a conducting sphere of radius 4.5 mm; 
(c) two rectangular conducting plates, 1 cm by 4 cm, with negligible thickness, 
between which are three sheets of dielectric, each 1 cm by 4 cm, and 0.1 mm 
thick, having dielectric constants of 1.5, 2.5, and 6.

Ans. (a) 20.5 pF; (b) 1.41 pF; (c) 28.7 pF

6.4 CAPACITANCE OF A TWO-WIRE LINE
We next consider the problem of the two-wire line. The configuration consists of 
two parallel conducting cylinders, each of circular cross section, and we will find 
complete information about the electric field intensity, the potential field, the 
surface-charge-density distribution, and the capacitance. This arrangement is an im-
portant type of transmission line, as is the coaxial cable.

We begin by investigating the potential field of two infinite line charges. Figure 6.4 
shows a positive line charge in the xz plane at x = a and a negative line charge at x = −a. 
The potential of a single line charge with zero reference at a radius of R0 is

V =    ρ  L   _____
2π ϵ  ln    R  0__

R
 

We now write the expression for the combined potential field in terms of the radial 
distances from the positive and negative lines, R1 and R2, respectively,

V =    ρ  L   _____ 2π ϵ      (  ln    R  10_
 R  1  

 − ln    R  20   _  R  2  
   )    =    ρ  L   _____ 2π ϵ   ln    R  10    R  2   _____  R  20    R  1  

  

We choose R10 = R20, thus placing the zero reference at equal distances from each 
line. This surface is the x = 0 plane. Expressing R1 and R2 in terms of x and y,

V =    ρ  L   ____ 2π ϵ   ln  √ 
________

     (x + a)   2  +  y   2   ________  
 (x − a)   2  +  y   2 

     =    ρ  L   ____ 4π ϵ   ln    (x + a)   2  +  y   2  ________  
 (x − a)   2  +  y   2 

   (11) 
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In order to recognize the equipotential surfaces and adequately understand the 
problem we are going to solve, some algebraic manipulations are necessary. Choos-
ing an equipotential surface V = V1, we define K1 as a dimensionless parameter that 
is a function of the potential V1,

  K  1   =  e   4πϵ V  1  ∕ ρ  L   (12)

so that

 K  1   =    (x + a)   2  +  y   2  ________  
 (x − a)   2  +  y   2 

   

After multiplying and collecting like powers, we obtain

 x   2  − 2ax    K  1   + 1 _____  K  1   − 1   +  y   2  +  a   2  = 0

We next work through a couple of lines of algebra and complete the square,

  (  x − a    K  1   + 1 _____  K  1   − 1   )     
2

+  y   2  =   (    2a  √ 
___
 K  1    _____  K  1   − 1   )     

2

This shows that the V = V1 equipotential surface is independent of z (or is a cylinder) 
and intersects the xy plane in a circle of radius b,

b =   2a  √ 
___
 K  1   _____

 K  1   − 1 

Figure 6.4 Two parallel infinite line charges carrying 
opposite charge. The positive line is at x = a, y = 0, and the 
negative line is at x = −a, y = 0. A general point P!(x, y, 0) 
in the xy plane is radially distant R1 and R2 from the positive 
and negative lines, respectively. The equipotential surfaces 
are circular cylinders.

(–a, 0, 0)

–ρL +ρLz

(a, 0, 0)

P(x, y, 0)

2a

R2

R1

y

x
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which is centered at x = h, y = 0, where

h = a    K  1   + 1 _____  K  1   − 1  

Now consider a zero-potential conducting plane located at x = 0, and a conduct-
ing cylinder of radius b and potential V0 with its axis located a distance h from the 
plane. We solve the last two equations for a and K1 in terms of the dimensions b and h,

 a =  √ 
______

  h   2  −  b   2     (13)

and
  √ 

___
  K  1     =   h +  √ 

______
  h   2  −  b   2     _______ 

b
  (14)

But the potential of the cylinder is V0, so Eq. (12) leads to

 √ 
___

  K  1     =  e   2π ϵ V  0  ∕ ρ  L 

Therefore,
  ρ  L   =   4π ϵ  V  0______

ln  K  1  
   (15)

Thus, given h, b, and V0, we may determine a, ρL, and the parameter K1. The ca-
pacitance between the cylinder and plane is now available. For a length L in the z 
direction, we have

C =    ρ  L   L___
 V  0  

 =   4π ϵ L ________ ln  K  1  
   =   2π ϵ L ________

ln  √ 
___
 K  1   or

 C =   2π ϵ L  ____________  
ln [(h +  √ 

______
  h   2  −  b   2   )∕b ]

   =   2π ϵ L _________ 
 cosh   −1 (h ∕ b)

    (16)

The solid line in Figure 6.5 shows the cross section of a cylinder of 5 m radius 
at a potential of 100 V in free space, with its axis 13 m distant from a plane at zero 
potential. Thus, b = 5, h = 13, V0 = 100, and we rapidly find the location of the 
equivalent line charge from Eq. (13),

a =  √ 
______

  h   2  −  b   2    =  √ 
_______

  13   2  −  5   2    = 12 m

the value of the potential parameter K1 from Eq. (14),

 √ 
___

  K  1     =   h +  √ 
______

  h   2  −  b   2     _______ 
b
   =   13 + 12 _____ 5   = 5    K  1   = 25

the strength of the equivalent line charge from Eq. (15),

 ρ  L   =   4π ϵ  V  0 _______ ln  K  1  
 =   4π × 8.854 ×  10   −12  × 100  __________________  ln 25   = 3.46 nC/m

and the capacitance between cylinder and plane from Eq. (16),

C =   2π ϵ _________ 
 cosh   −1 (h / b )

   =   2π × 8.854 ×  10   −12   ______________  
 cosh   −1 (13 ∕ 5 )

   = 34.6 pF/m
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We may also identify the cylinder representing the 50 V equipotential surface by 
finding new values for K1, h, and b. We first use Eq. (12) to obtain

 K  1   =  e   4π ϵ V  1  ∕ ρ  L    =  e   4π×8.854× 10   −12 ×50/3.46× 10   −9   = 5.00

Then the new radius is

b =   2a  √ 
___

  K  1     _____  K  1   − 1   =   2 × 12  √ 
__

 5   ______ 5 − 1   = 13.42  m

and the corresponding value of h becomes

h = a    K  1   + 1 _____  K  1   − 1   = 12   5 + 1 ____ 5 − 1   = 18  m

This cylinder is shown in color in Figure 6.5.
The electric field intensity can be found by taking the gradient of the potential 

field, as given by Eq. (11),

E = − ∇    [     ρ  L   _ 4π ϵ   ln    (x + a)   2  +  y   2  ___________  
 (x − a)   2  +  y   2 

   ]   

Thus,

E = −    ρ  L   _____ 4π ϵ      [    
2(x + a)  a  x   + 2y  a  y    _____________  

 (x + a)   2  +  y    2 
   −   

2(x − a)  a  x   + 2y  a  y  _____________  
 (x − a)   2  +  y   2 

   ]   

and

D = ϵE = −    ρ  L   __ 2π
      [    

(x + a)  a  x   + y  a  y  ___________  
 (x + a)   2  +  y   2 

   −   
(x − a)  a  x   + y  a  y  ___________  

 (x − a)   2  +  y   2 
   ]   

Figure 6.5 A numerical example of the 
capacitance, linear charge density, position of 
an equivalent line charge, and characteristics 
of the mid-equipotential surface for a cylindrical 
conductor of 5 m radius at a potential of 100 V, 
parallel to and 13 m from a conducting plane at 
zero potential.

y

x

V = 0

h = 13 b = 5

Equivalent
line charge

Center, x = 13,
y = 0, V = 100

Center, x = 18, y = 0
radius = 13.42

V = 50
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If we evaluate Dx at x = h − b, y = 0, we may obtain ρS,max

 ρ  S,max   = −  D  x,x=h−b,y=0   =    ρ  L   __ 2π
      [    h − b + a___________ 

 (h − b + a)   2 
   −   h − b − a ___________ 

 (h − b − a)   2 
   ]   

For our example,

 ρ  S,max   =   3.46 ×  10   −9  _________ 2π
    [    13 − 5 + 12  ___________  

 (13 − 5 + 12)   2 
   −   13 − 5 − 12  ___________  

 (13 − 5 − 12)   2 
   ]    = 0.165    nC/m   2 

Similarly, ρS,min = Dx,x=h+b,y=0, and

 ρ  S,min   =   3.46 ×  10   −9  _________ 2π
    [    13 + 5 + 12 _ 

 30   2 
 −   13 + 5 − 12 _ 

 6   2 
   ]    = 0.073    nC/m   2

Thus,
 ρ  S,max   = 2.25  ρ  S,min  

If we apply Eq. (16) to the case of a conductor for which b ≪ h, then

ln [  (   h +   √ 
______

 h2 − b2   )    / b] ≐ ln [(h + h)/ b] ≐ ln(2h∕ b)

and
 C =   2π ϵ L ______ ln(2h ∕ b)     (b ≪ h)  (17)

The capacitance between two circular conductors separated by a distance 2h is 
one-half the capacitance given by Eqs. (16) or (17). This last answer is of interest 
because it gives us an expression for the capacitance of a section of two-wire trans-
mission line, one of the types of transmission lines studied later in Chapter 13.

D6.3. A conducting cylinder with a radius of 1 cm and at a potential of 20 V 
is parallel to a conducting plane which is at zero potential. The plane is 5 cm 
distant from the cylinder axis. If the conductors are embedded in a perfect 
dielectric for which ϵr = 4.5, find: (a) the capacitance per unit length between 
cylinder and plane; (b) ρS,max on the cylinder.

Ans. (a) 109.2 pF/m; (b) 42.6 nC/m2

6.5  USING FIELD SKETCHES TO ESTIMATE 
CAPACITANCE IN TWO-DIMENSIONAL 
PROBLEMS

In capacitance problems in which the conductor configurations cannot be easily de-
scribed using a single coordinate system, other analysis techniques are usually ap-
plied. Such methods typically involve a numerical determination of field or potential 
values over a grid within the region of interest. In this section, another approach is 
described that involves making sketches of field lines and equipotential surfaces in a 
manner that follows a few simple rules. This approach, although lacking the accuracy 
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of more elegant methods, allows fairly quick estimates of capacitance while provid-
ing a useful visualization of the field configuration.

The method, requiring only pencil and paper, is capable of yielding good accu-
racy if used skillfully and patiently. Fair accuracy (5 to 10 percent on a capacitance 
determination) may be obtained by a beginner who does no more than follow the few 
rules and hints of the art. The method to be described is applicable only to fields in 
which no variation exists in the direction normal to the plane of the sketch. The pro-
cedure is based on several facts that we have already demonstrated:
1. A conductor boundary is an equipotential surface.
2. The electric field intensity and electric flux density are both perpendicular to

the equipotential surfaces.
3. E and D are therefore perpendicular to the conductor boundaries and possess

zero tangential values.
4. The lines of electric flux, or streamlines, begin and terminate on charge and

hence, in a charge-free, homogeneous dielectric, begin and terminate only on
the conductor boundaries.
We consider the implications of these statements by drawing the streamlines

on a sketch that already shows the equipotential surfaces. In Figure 6.6a, two con-
ductor boundaries are shown, and equipotentials are drawn with a constant potential 
difference between lines. We should remember that these lines are only the cross 
sections of the equipotential surfaces, which are cylinders (although not circular). 
No variation in the direction normal to the surface of the paper is permitted. We 
arbitrarily choose to begin a streamline, or flux line, at A on the surface of the more 
positive conductor. It leaves the surface normally and must cross at right angles the 
undrawn but very real equipotential surfaces between the conductor and the first 
surface shown. The line is continued to the other conductor, obeying the single rule 
that the intersection with each equipotential must be square.

In a similar manner, we may start at B and sketch another streamline ending at 
B′. We need to understand the meaning of this pair of streamlines. The streamline, by 

Conductor
boundary Conductor

boundary
(a)

A

(b)

A'
B'

B
A A1

ΔLN

ΔLt

Equipotentials

Figure 6.6 (a) Sketch of the equipotential surfaces between two conductors. 
The increment of potential between each of the two adjacent equipotentials is the 
same. (b) One flux line has been drawn from A to A′, and a second from B to B′.
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definition, is everywhere tangent to the electric field intensity or to the electric flux 
density. Because the streamline is tangent to the electric flux density, the flux density 
is tangent to the streamline, and no electric flux may cross any streamline. In other 
words, if there is a charge of 5 μC on the surface between A and B (and extending 
1 m into the paper), then 5 μC of flux begins in this region, and all must terminate 
between A′ and B′. Such a pair of lines is sometimes called a flux tube because it 
physically seems to carry flux from one conductor to another without losing any.

We next construct a third streamline, and both the mathematical and visual in-
terpretations we may make from the sketch will be greatly simplified if we draw this 
line starting from some point C chosen so that the same amount of flux is carried in 
the tube BC as is contained in AB. How do we choose the position of C?

The electric field intensity at the midpoint of the line joining A to B may be 
found approximately by assuming a value for the flux in the tube AB, say ΔΨ, which 
allows us to express the electric flux density by ΔΨ/ΔLt, where the depth of the tube 
into the paper is 1 m and ΔLt is the length of the line joining A to B. The magnitude 
of E is then

E =    1 __ 
ϵ
      ΔΨ___
Δ  L  t

We may also find the magnitude of the electric field intensity by dividing the 
potential difference between points A and A1, lying on two adjacent equipotential 
surfaces, by the distance from A to A1. If this distance is designated ΔLN and an in-
crement of potential between equipotentials of ΔV is assumed, then

E =   ΔV ____
Δ  L  N

This value applies most accurately to the point at the middle of the line segment 
from A to A1, while the previous value was most accurate at the midpoint of the line 
segment from A to B. If, however, the equipotentials are close together (ΔV small) 
and the two streamlines are close together (ΔΨ small), the two values found for the 
electric field intensity must be approximately equal,

   1 __ 
ϵ
      ΔΨ ___ Δ  L  t  

   =   ΔV ____
Δ  L  N

(18)

Throughout our sketch we have assumed a homogeneous medium (ϵ constant), 
a constant increment of potential between equipotentials (ΔV constant), and a con-
stant amount of flux per tube (ΔΨ constant). To satisfy all these conditions, Eq. (18) 
shows that

   Δ  L  t   _ Δ  L  N     = constant =   1__
ϵ

  ΔΨ_
ΔV (19)

A similar argument might be made at any point in our sketch, and we are there-
fore led to the conclusion that a constant ratio must be maintained between the dis-
tance between streamlines as measured along an equipotential, and the distance be-
tween equipotentials as measured along a streamline. It is this ratio that must have 
the same value at every point, not the individual lengths. Each length must decrease 
in regions of greater field strength, because ΔV is constant.
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The simplest ratio we can use is unity, and the streamline from B to B′ shown in 
Figure 6.6b was started at a point for which ΔLt = ΔLN. Because the ratio of these dis-
tances is kept at unity, the streamlines and equipotentials divide the field-containing 
region into curvilinear squares, a term implying a planar geometric figure that differs 
from a true square in having slightly curved and slightly unequal sides but which 
approaches a square as its dimensions decrease. Those incremental surface elements 
in our three coordinate systems which are planar may also be drawn as curvilinear 
squares.

We may now sketch in the remainder of the streamlines by keeping each small 
box as square as possible. One streamline is begun, an equipotential line is roughed 
in, another streamline is added, forming a curvilinear square, and the map is gradually 
extended throughout the desired region. The complete sketch is shown in Figure 6.7.

The construction of a useful field map is an art; the science merely furnishes 
the rules. Proficiency in any art requires practice. A good problem for beginners 
is the coaxial cable or coaxial capacitor, since all the equipotentials are circles while 
the flux lines are straight lines. The next sketch attempted should be two parallel 
circular conductors, where the equipotentials are again circles but with different 
centers. Each of these is given as a problem at the end of the chapter.

Figure 6.8 shows a completed map for a cable containing a square inner conduc-
tor surrounded by a circular conductor. The capacitance is found from C = Q/V0 by 
replacing Q with NQ ΔQ = NQΔΨ, where NQ is the number of flux tubes joining the 
two conductors, and letting V0 = NV ΔV, where NV is the number of potential incre-
ments between conductors,

C =   
 N  Q   ΔQ

 _____  N  V   ΔV
  

and then using Eq. (19),

 C =   
 N  Q  

 _  N  V     ϵ   Δ  L  t   _ 
Δ  L  N     = ϵ   

 N  Q _  N  V     (20)

Figure 6.7 The remaining 
streamlines have been added to 
Fig. 6.6b by beginning each new 
line normally to the conductor and 
maintaining curvilinear squares 
throughout the sketch.
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since ΔLt∕ΔLN = 1. The determination of the capacitance from a flux plot merely 
consists of counting squares in two directions, between conductors and around either 
conductor. From Figure 6.8 we obtain

C =  ϵ  0     8 × 3.25 ______ 4   = 57.6 pF/m

Ramo, Whinnery, and Van Duzer have an excellent discussion with examples 
of the construction of field maps by curvilinear squares. They offer the following 
suggestions:1

1. Plan on making a number of rough sketches, taking only a minute or so apiece,
before starting any plot to be made with care. The use of transparent paper over
the basic boundary will speed up this preliminary sketching.

2. Divide the known potential difference between electrodes into an equal
number of divisions, say four or eight to begin with.

3. Begin the sketch of equipotentials in the region where the field is known best,
for example, in some region where it approaches a uniform field. Extend the
equipotentials according to your best guess throughout the plot. Note that they
should tend to hug acute angles of the conducting boundary and be spread out
in the vicinity of obtuse angles of the boundary.

Figure 6.8 An example of a curvilinear-square 
field map. The side of the square is two-thirds the 
radius of the circle. NV = 4 and NQ = 8 × 3.25 = 26, 
and therefore C = ε0 NQ/NV = 57.6 pF/m.

Conductor
boundary

Conductor
boundary

Repeats

Repeats

1 By permission from S. Ramo, J. R. Whinnery, and T. Van Duzer, pp. 51–52. See References at the end 
of this chapter. Curvilinear maps are discussed on pp. 50–52.
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4. Draw in the orthogonal set of field lines. As these are started, they should form
curvilinear squares, but as they are extended the condition of orthogonality
should be kept paramount, even though this will result in some rectangles with
ratios other than unity.

5. Look at the regions with poor side ratios and try to see what was wrong with
the first guess of equipotentials. Correct them and repeat the procedure until
reasonable curvilinear squares exist throughout the plot.

6. In regions of low field intensity, there will be large figures, often of five or
six sides. To judge the correctness of the plot in this region, these large units
should be subdivided. The subdivisions should be started back away from the
region needing subdivision, and each time a flux tube is divided in half, the
potential divisions in this region must be divided by the same factor.

D6.4. Figure 6.9 shows the cross section of two circular cylinders at potentials of
0 and 60 V. The axes are parallel and the region between the cylinders is air-filled.
Equipotentials at 20 V and 40 V are also shown. Prepare a curvilinear-square
map on the figure and use it to establish suitable values for: (a) the capacitance
per meter length; (b) E at the left side of the 60 V conductor if its true radius is
2 mm; (c) ρS at that point.

Ans. (a) 69 pF/m; (b) 60 kV/m; (c) 550 nC/m2

Figure 6.9 See Problem D6.4.

V = 0 V = 60 V
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 6.6 POISSON’S AND LAPLACE’S EQUATIONS
In preceding sections, we have found capacitance by first assuming a known charge 
distribution on the conductors and then finding the potential difference in terms 
of the assumed charge. An alternate approach would be to start with known po-
tentials on each conductor, and then work backward to find the charge in terms 
of the known potential difference. The capacitance in either case is found by the 
ratio Q/V.

The first objective in the latter approach is thus to find the potential function 
between conductors, given values of potential on the boundaries, along with possible 
volume charge densities in the region of interest. The mathematical tools that enable 
this to happen are Poisson’s and Laplace’s equations, to be explored in the remainder 
of this chapter. Problems involving one to three dimensions can be solved either ana-
lytically or numerically. Laplace’s and Poisson’s equations, when compared to other 
methods, are probably the most widely useful because many problems in engineering 
practice involve devices in which applied potential differences are known, and in 
which constant potentials occur at the boundaries.

Obtaining Poisson’s equation is exceedingly simple, for from the point form of 
Gauss’s law,

∇ · D =  ρ  v   (21)

the definition of D,

D = ϵE (22)

and the gradient relationship,

E = − ∇V (23)

by substitution we have

∇ · D = ∇ · (ϵE) = − ∇ · (ϵ∇V) =  ρ  v  

or

∇ · ∇V = −    ρ  v__
ϵ (24)

for a homogeneous region in which ϵ is constant.
Equation (24) is Poisson’s equation, but the “double ∇” operation must be inter-

preted and expanded, at least in rectangular coordinates, before the equation can be 
useful. In rectangular coordinates,

∇ · A =   ∂    A  x   _____ ∂ x   +   
∂    A  y   _____ ∂ y   +   ∂    A  z_____

∂ z 

∇V =   ∂  V _____ ∂ x    a  x   +   ∂  V _____ ∂ y    a  y   +   ∂  V _____ ∂ z    a  z
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and therefore

∇ · ∇ V =
 
    ∂ _ ∂ x   (     ∂  V _ ∂ x   )   +   ∂ _ ∂ y   (     ∂  V _ ∂ y   )   +   ∂ _ ∂ z   (     ∂  V _ ∂ z   )

  
=

 
    ∂   2  V ___ 
∂  x   2 

   +    ∂   2  V ___ 
∂  y   2 

   +    ∂   2  V ___ 
∂  z   2 

  (25)

Usually the operation ∇ · ∇ is abbreviated ∇2 (and pronounced “del squared”), a 
good reminder of the second-order partial derivatives appearing in Eq. (25), and so 
Poisson’s equation becomes

  ∇   2  V =    ∂   2  V_ 
∂  x   2 

   +    ∂   2  V_ 
∂  y   2 

   +    ∂   2  V_ 
∂  z   2 

   = −     ρv__
ϵ
 (26)

in rectangular coordinates.
If ρv = 0, indicating zero volume charge density, but allowing point charges, 

line charge, and surface charge density to exist at singular locations as sources of the 
field, then

  ∇   2  V = 0 (27)

which is Laplace’s equation. The ∇2 operation is called the Laplacian of V.
In rectangular coordinates Laplace’s equation is

  ∇   2  V =    ∂   2  V _ 
∂  x   2 

   +    ∂   2  V _ 
∂  y   2 

   +    ∂   2  V _ 
∂  z   2 

   = 0    (rectangular) (28)

and the form of ∇2 V in cylindrical and spherical coordinates may be obtained by 
using the expressions for the divergence and gradient already obtained in those coor-
dinate systems. For reference, the Laplacian in cylindrical coordinates is

  ∇   2  V =   1 _ ρ     ∂ _ ∂ ρ   (  ρ   ∂ V _ ∂ ρ   )   +   1 _ 
 ρ   2 

   (      ∂   2  V _ 
∂  ϕ   2 

   )   +    ∂   2  V_ 
∂  z   2 

       (cylindrical) (29)

and in spherical coordinates is

  ∇   2  V =   1 _ 
 r   2 

     ∂ _ ∂ r   (   r   2    ∂ V _ ∂ r   )   +   1 _ 
 r   2  sin θ

     ∂ _ ∂ θ   (  sin θ   ∂ V _ ∂ θ   )   +   1 _ 
 r   2   sin   2  θ

     ∂   2  V_ 
∂  ϕ   2 

       (spherical) 

(30)
These equations may be expanded by taking the indicated partial derivatives, but it is 
usually more helpful to have them in the forms just given; furthermore, it is much easier 
to expand them later if necessary than it is to put the broken pieces back together again.

Laplace’s equation is all-embracing, for, applying as it does wherever volume 
charge density is zero, it states that every conceivable configuration of electrodes or 
conductors produces a field for which ∇2 V = 0. All these fields are different, with 
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different potential values and different spatial rates of change, yet for each of them 
∇2 V = 0. Because every field (if ρv = 0) satisfies Laplace’s equation, how can we 
expect to reverse the procedure and use Laplace’s equation to find one specific field in 
which we happen to have an interest? Obviously, more information is required, and we 
will find that Laplace’s equation must be solved subject to certain boundary conditions.

Every physical problem must contain at least one conducting boundary and usu-
ally contains two or more. The potentials on these boundaries are assigned values, 
perhaps V0, V1, . . . , or perhaps numerical values. These definite equipotential sur-
faces will provide the boundary conditions for the type of problem to be solved. In 
other types of problems, the boundary conditions take the form of specified values 
of E (alternatively, a surface charge density, ρS) on an enclosing surface, or a mixture 
of known values of V and E.

Before using Laplace’s equation or Poisson’s equation in several examples, it 
must be stated that if our answer satisfies Laplace’s equation and also satisfies the 
boundary conditions, then it is the only possible answer. This is a statement of the 
Uniqueness Theorem, the proof of which is presented in Appendix D.

D6.5. Calculate numerical values for V and ρv at point P in free space if: 
(a) V =    4yz

 ____ 
x2 + 1   , at P(1, 2, 3); (b) V = 5ρ2 cos 2ϕ, at P(ρ = 3, ϕ =    π _ 3   , z = 2);  

(c) V =    2 cos ϕ
 _____ 

r 2
   , at P(r = 0.5, θ = 45°, ϕ = 60°).

Ans. (a) 12 V, −106.2 pC/m3; (b) −22.5 V, 0; (c) 4 V, 0

6.7  EXAMPLES OF THE SOLUTION 
OF LAPLACE’S EQUATION

Several methods have been developed for solving Laplace’s equation. The simplest method 
is that of direct integration. We will use this technique to work several examples involving 
one-dimensional potential variation in various coordinate systems in this section.

The method of direct integration is applicable only to problems that are 
“one-dimensional,” or in which the potential field is a function of only one of the 
three coordinates. Since we are working with only three coordinate systems, it might 
seem, then, that there are nine problems to be solved, but a little reflection will show 
that a field that varies only with x is fundamentally the same as a field that varies only 
with y. Rotating the physical problem a quarter turn is no change. Actually, there are 
only five problems to be solved, one in rectangular coordinates, two in cylindrical, 
and two in spherical. We will solve them all.

First, let us assume that V is a function only of x and worry later about which 
physical problem we are solving when we have a need for boundary conditions. 
Laplace’s equation reduces to

   ∂   2  V ____ 
∂  x   2 

   = 0
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and the partial derivative may be replaced by an ordinary derivative, since V is not a 
function of y or z,

   d   2  V ___ 
d  x    2 

   = 0
We integrate twice, obtaining

  dV ___ 
dx

   = A

and

V = Ax + B (31)
where A and B are constants of integration. Equation (31) contains two such con-
stants, as we would expect for a second-order differential equation. These constants 
can be determined only from the boundary conditions.

Since the field varies only with x and is not a function of y and z, then V is a 
constant if x is a constant or, in other words, the equipotential surfaces are parallel 
planes normal to the x axis. The field is thus that of a parallel-plate capacitor, and as 
soon as we specify the potential on any two planes, we may evaluate our constants 
of integration.

Start with the potential function, Eq. (31), and find the capacitance of a parallel-plate 
capacitor of plate area S, plate separation d, and potential difference V0 between 
plates.
Solution. Take V = 0 at x = 0 and V = V0 at x = d. Then from Eq. (31),

A =    V  0___
d
 B = 0

and

 V =    V  0   x_
d
 (32)

We still need the total charge on either plate before the capacitance can be found. 
We should remember that when we first solved this capacitor problem, the sheet of 
charge provided our starting point. We did not have to work very hard to find the 
charge, for all the fields were expressed in terms of it. The work then was spent in 
finding potential difference. Now the problem is reversed (and simplified).

The necessary steps are these, after the choice of boundary conditions has been 
made:
1. Given V, use E = −∇V to find E.
2. Use D = ϵE to find D.
3. Evaluate D at either capacitor plate, D = DS = DN aN.
4. Recognize that ρS = DN.
5. Find Q by a surface integration over the capacitor plate, Q = ∫S ρS dS.

EXAMPLE 1 .1 EXAMPLE 6.2
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Here we have
 V = V0    x __

d
   

E = −    V0 ___ 
d
    ax

 D = − ϵ    V0 ___ 
d
    ax

DS = D  |   x=0 = − ϵ    V0 ___ 
d
    ax

aN = ax

DN = − ϵ    V0 ___ 
d
  = ρS

 Q = ∫
S
    − ϵ V0 _____ 

d
    d S = − ϵ    V0 S____

d
 

and the capacitance is

 C =    |  Q |   _  V  0  
   =   ϵS_ 

d
   (33)

We will use this procedure several times in the examples to follow.

EXAMPLE 6.3

Because no new problems are solved by choosing fields which vary only with y or 
with z in rectangular coordinates, we pass on to cylindrical coordinates for our next 
example. Variations with respect to z are again nothing new, and we next assume 
variation with respect to ρ only. Laplace’s equation becomes

   1 _ ρ     ∂ _ ∂ ρ   (  ρ   ∂ V _ ∂ ρ   )   = 0 

Noting the ρ in the denominator, we exclude ρ = 0 from our solution and then mul-
tiply by ρ and integrate,

ρ   dV ___ 
dρ

   = A

where a total derivative replaces the partial derivative because V varies only with ρ. 
Next, rearrange, and integrate again,

 V = A ln ρ + B  (34)

The equipotential surfaces are given by ρ = constant and are cylinders, and the 
problem is that of the coaxial capacitor or coaxial transmission line. We choose 
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a potential difference of V0 by letting V = V0 at ρ = a, V = 0 at ρ = b, b > a, and 
obtain

 V =  V  0     
ln (b ∕ ρ)_
ln (b ∕ a) (35)

from which
E =    V  0   ___ ρ     1 ______ ln (b ∕ a)    a  ρ

 D  N(ρ=a)   =   ϵ  V  0   _______ 
a ln (b / a)  

Q =   ϵ  V  0   2π a L __________ 
a ln (b / a)  

 C =   2π ϵ L _
ln (b / a) (36)

which agrees with our result in Section 6.3 (Eq. (5)).

EXAMPLE 1 .1 EXAMPLE 6.4

Now assume that V is a function only of ϕ in cylindrical coordinates. We might look 
at the physical problem first for a change and see that equipotential surfaces are given 
by ϕ = constant. These are radial planes. Boundary conditions might be V = 0 at 
ϕ = 0 and V = V0 at ϕ = α, leading to the physical problem detailed in Figure 6.10.

Figure 6.10 Two infinite radial planes with an 
interior angle α. An infinitesimal insulating gap 
exists at ρ = 0. The potential field may be found 
by applying Laplace’s equation in cylindrical 
coordinates.

V = 0
ϕ = 0

V = V0
ϕ = α

ϕ

α

z

Insulating
gap
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Laplace’s equation is now

  1 __ 
 ρ   2 

      ∂   2  V ____ 
∂  ϕ   2 

   = 0

We exclude ρ = 0 and have

   d   2  V ___ 
d  ϕ   2 

   = 0

The solution is

V = Aϕ + B

The boundary conditions determine A and B, and

 V =  V  0     
ϕ_
α (37)

Taking the gradient of Eq. (37) produces the electric field intensity,

 E = −  
 V  0    a  ϕ_

αρ (38)

and it is interesting to note that E is a function of ρ and not of ϕ. This does not con-
tradict our original assumptions, which were restrictions only on the potential field. 
Note, however, that the vector field E is in the ϕ direction.

A problem involving the capacitance of these two radial planes is included at the 
end of the chapter.

EXAMPLE 6.5

We now turn to spherical coordinates, dispose immediately of variations with respect 
to ϕ only as having just been solved, and treat first V = V(r).

The details are left for a problem later, but the final potential field is given by

 V =  V  0     
  1 _ r   −   1 _ 

b
 
 _ 

  1 _ 
a

  −   1_
b

   (39)

where the boundary conditions are evidently V = 0 at r = b and V = V0 at r = a,  
b > a. The problem is that of concentric spheres. The capacitance was found 
previously in Section 6.3 (by a somewhat different method) and is

 C =     4π ϵ _
  1 _ a   − 1_

b
(40)
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The equipotential surfaces of Eq. (41) are cones. Figure 6.11 illustrates the case 
where V = 0 at θ = π/2 and V = V0 at θ = α, α < π/2. We obtain

 V =  V  0      
ln   (  tan   θ _ 2   )  _
ln   (  tan   α _ 2   )

(42)

In spherical coordinates we now restrict the potential function to V = V(θ), obtaining

   1 _ 
 r   2  sin θ

     d _ 
d θ

   (  sin θ   dV _ 
dθ

   )   = 0

We exclude r = 0 and θ = 0 or π and have

sin θ    dV ___ 
dθ

   = A

The second integral is then
V = ∫     A    dθ ____ sin θ   + B

which is not as obvious as the previous ones. From integral tables (or a good mem-
ory) we have

 V = A ln   (  tan   θ _ 2   )   + B (41)

EXAMPLE 1 .1 EXAMPLE 6.6

Figure 6.11 For the cone θ = α at V0 and the 
plane θ = π∕2 at V = 0, the potential field is 
given by V = V0[ln(tan θ∕2)]/[ln(tan α∕2)].

α

Gap

V = V0

V = 0
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In order to find the capacitance between a conducting cone with its vertex sepa-
rated from a conducting plane by an infinitesimal insulating gap and its axis normal 
to the plane, we first find the field strength:

E = − ∇V =   − 1 ___ r     ∂  V _____ ∂ θ    a  θ   = −    V  0   ______________  
r sin θ ln   (  tan   α __ 2   )  

    a  θ

The surface charge density on the cone is then

 ρ  S   =   − ϵ  V  0   _____________  
r sin α ln   (  tan   α __ 2    )  

  

producing a total charge Q,

Q 

 

= 

 

  − ϵ  V  0   ____________  
sin α ln   (  tan   α __ 2   )  

    ∫ 
 0

  ∞
 ∫

 0
  
  2π

      r sin α    dϕ    dr________
r 

  
=

  
  − 2π   ϵ  0    V  0   _________ 
ln   (  tan   α __ 2   )  

    ∫ 
 0

  ∞
dr

 

This leads to an infinite value of charge and capacitance, and it becomes necessary to 
consider a cone of finite size. Our answer will now be only an approximation because 
the theoretical equipotential surface is θ = α, a conical surface extending from r = 0 
to r = ∞, whereas our physical conical surface extends only from r = 0 to, say, r = r1. 
The approximate capacitance is

C ≐   2π ϵ  r  1   ________
ln   (  cot   α _ 2    )  

  (43)

If we desire a more accurate answer, we may make an estimate of the capaci-
tance of the base of the cone to the zero-potential plane and add this amount to our 
answer. Fringing, or nonuniform, fields in this region have been neglected and intro-
duce an additional source of error.

D6.6. Find |E| at P(3, 1, 2) in rectangular coordinates for the field of: (a) two 
coaxial conducting cylinders, V = 50 V at ρ = 2 m, and V = 20 V at ρ = 3 m; 
(b) two radial conducting planes, V = 50 V at ϕ = 10°, and V = 20 V at ϕ = 30°.

Ans. (a) 23.4 V/m; (b) 27.2 V/m
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6.8  EXAMPLE OF THE SOLUTION OF POISSON’S 
EQUATION: THE P-N JUNCTION 
CAPACITANCE

To select a reasonably simple problem that might illustrate the application of 
Poisson’s equation, we must assume that the volume charge density is specified. This 
is not usually the case, however; in fact, it is often the quantity about which we are 
seeking further information. The type of problem which we might encounter later 
would begin with a knowledge only of the boundary values of the potential, the 
electric field intensity, and the current density. From these we would have to apply 
Poisson’s equation, the continuity equation, and some relationship expressing the 
forces on the charged particles, such as the Lorentz force equation or the diffusion 
equation, and solve the whole system of equations simultaneously. Such an ordeal 
is beyond the scope of this text, and we will therefore assume a reasonably large 
amount of information.

As an example, consider a pn junction between two halves of a semiconductor 
bar extending in the x direction. We will assume that the region for x < 0 is doped 
p type and that the region for x > 0 is n type. The degree of doping is identical on 
each side of the junction. To review some of the facts about the semiconductor junc-
tion, we note that initially there are excess holes to the left of the junction and excess 
electrons to the right. Each diffuses across the junction until an electric field is built 
up in such a direction that the diffusion current drops to zero. Thus, to prevent more 
holes from moving to the right, the electric field in the neighborhood of the junction 
must be directed to the left; Ex is negative there. This field must be produced by a net 
positive charge to the right of the junction and a net negative charge to the left. Note 
that the layer of positive charge consists of two parts—the holes which have crossed 
the junction and the positive donor ions from which the electrons have departed. 
The negative layer of charge is constituted in the opposite manner by electrons and 
negative acceptor ions.

The type of charge distribution that results is shown in Figure 6.12a, and the 
negative field which it produces is shown in Figure 6.12b. After looking at these two 
figures, one might profitably read the previous paragraph again.

A charge distribution of this form may be approximated by many different ex-
pressions. One of the simpler expressions is

  ρ  v   = 2  ρ  v0   sech   x _ a   tanh    x _
a  (44)

which has a maximum charge density ρv,max = ρv0 that occurs at x = 0.881a. The max-
imum charge density ρv0 is related to the acceptor and donor concentrations Na and 
Nd by noting that all the donor and acceptor ions in this region (the depletion layer) 
have been stripped of an electron or a hole, and thus

 ρ  v0   = e  N  a   = e  N  d  
We now solve Poisson’s equation,

 ∇   2  V = −    ρ  v__
ϵ 
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Figure 6.12 (a) The charge density, (b) the electric field intensity, 
and (c) the potential are plotted for a pn junction as functions of 
distance from the center of the junction. The p-type material is on the 
left, and the n-type is on the right.
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subject to the charge distribution assumed above,

   d   2  V ___ 
d  x   2 

   = −   2  ρ  v0   ____ ϵ   sech   x __ a   tanh   x __
a

in this one-dimensional problem in which variations with y and z are not present. We 
integrate once,

  dV ___ 
dx

   =   2  ρ  v0   a ____ ϵ   sech   x __ a   +  C  1
and obtain the electric field intensity,

 E  x   = −   2  ρ  v0   a ____ ϵ   sech   x __ a   −  C  1
To evaluate the constant of integration C1, we note that no net charge density and 
no fields can exist far from the junction. Thus, as x → ±∞, Ex must approach zero. 
Therefore C1 = 0, and

  E  x   = −   2  ρ  v0   a ____ ϵ   sech   x _
a  (45)

Integrating again,

V =   4  ρ  v0    a   2  _____ ϵ    tan   −1       e   x /a  +  C  2
The zero reference of potential is arbitrarily set at the center of the junction, x = 0,

0 =   4  ρ  v0    a   2  _____ ϵ     π __ 4   +  C  2

and finally,

 V =   4  ρ  v0    a   2  _____ ϵ      ( tan   −1       e   x/a  −   π __ 4   )   (46)

Figure 6.12 shows the charge distribution (a), electric field intensity (b), and the 
potential (c), as given by Eqs. (44), (45), and (46), respectively.

The potential is constant once we are a distance of about 4a or 5a from the junc-
tion. The total potential difference V0 across the junction is obtained from Eq. (46),

  V  0   =  V  x→∞   −  V  x→−∞   =   2π  ρ  v0    a   2______
ϵ   (47)

This expression suggests the possibility of determining the total charge on one side of 
the junction and then using Eq. (47) to find a junction capacitance. The total positive 
charge is

Q = S ∫ 
 0
  
  ∞

    2  ρ  v0   sech   x __ a   tanh   x __ a   dx = 2  ρ  v0   aS

where S is the area of the junction cross section. If we make use of Eq. (47) to elim-
inate the distance parameter a, the charge becomes

 Q = S  √ 
______

  2  ρ  v0   ϵ  V  0______
π   (48)
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Because the total charge is a function of the potential difference, we have to be care-
ful in defining a capacitance. Thinking in “circuit” terms for a moment,

I =   dQ___
dt

 = C   d  V  0___
dt

 

and thus
C =   dQ___

d  V  0  
By differentiating Eq. (48), we therefore have the capacitance

 C =  √ 
_____

    ρ  v0   ϵ _____ 2π   V  0  
     S =   ϵS ____

2π a  (49)

The first form of Eq. (49) shows that the capacitance varies inversely as the square 
root of the voltage. That is, a higher voltage causes a greater separation of the charge 
layers and a smaller capacitance. The second form is interesting in that it indicates 
that we may think of the junction as a parallel-plate capacitor with a “plate” separa-
tion of 2πa. In view of the dimensions of the region in which the charge is concen-
trated, this is a logical result.

D6.7. In the neighborhood of a certain semiconductor junction, the volume 
charge density is given by ρv = 750 sech 106πx tanh 106πx C/m3. The 
dielectric constant of the semiconductor material is 10 and the junction area is 
2 × 10−7 m2. Find: (a) V0; (b) C; (c) E at the junction.

Ans. (a) 2.70 V; (b) 8.85 pF; (c) 2.70 MV/m

D6.8. Given the volume charge density  ρ  v   = − 2 ×  10   7   ϵ  0    √ __ x   C/m3 in free
space, let V = 0 at x = 0 and let V = 2 V at x = 2.5 mm. At x = 1 mm, find:  
(a) V; (b) Ex. 

Ans. (a) 0.302 V; (b) −555 V/m
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CHAPTER 6 PROBLEMS
6.1 Consider a coaxial capacitor having inner radius a, outer radius b, unit 

length, and filled with a material with dielectric constant, ϵr. Compare 
this to a parallel-plate capacitor having plate width w, plate separation d, 
filled with the same dielectric, and having unit length. Express the ratio b/a 
in terms of the ratio d/w, such that the two structures will store the same 
energy for a given applied voltage. 

6.2 Let S = 100 mm2, d = 3 mm, and ϵr = 12 for a parallel-plate capacitor. 
(a) Calculate the capacitance. (b) After connecting a 6-V battery across 
the capacitor, calculate E, D, Q, and the total stored electrostatic energy. 
(c) With the source still connected, the dielectric is carefully withdrawn 
from between the plates. With the dielectric gone, recalculate E, D, Q, 
and the energy stored in the capacitor. (d) If the charge and energy found 
in part c are less than the values found in part b (which you should have 
discovered), what became of the missing charge and energy? Assume in 
both cases that the dielectric itself carries no charge on removal.

6.3 Capacitors tend to be more expensive as their capacitance and maximum 
voltage Vmax increase. The voltage Vmax is limited by the field strength at 
which the dielectric breaks down, EBD. Which of these dielectrics will give the 
largest CVmax product for equal plate areas? (a) Air: ϵr = 1, EBD = 3 MV/m.  
(b) Barium titanate: ϵr = 1200, EBD = 3 MV/m. (c) Silicon dioxide: ϵr = 
3.78, EBD = 16 MV/m. (d) Polyethylene: ϵr = 2.26, EBD = 4.7 MV/m. 

6.4 An air-filled parallel-plate capacitor with plate separation d and plate 
area A is connected to a battery that applies a voltage V0 between plates. 
With the battery left connected, the plates are moved apart to a distance 
of 10d. Determine by what factor each of the following quantities 
changes: (a) V0; (b) C; (c) E; (d) D; (e) Q; (f ) ρS; (g) WE. Repeat the 
exercise for the case in which the battery is disconnected before the 
plates are separated. 

6.5 A parallel-plate capacitor having plate area A and plate spacing d is 
partially filled with dielectric of relative permittivity ϵr . The material fills 
the capacitor volume from the lower plate (at z = 0) up to location z = b, 
where b < d. The remaining volume is free space. The dielectric has the 
effect of increasing the capacitance by a certain factor over the value found 
when the capacitor is completely air-filled. Find this factor in terms of b, ϵr ,
and other known parameters. 
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6.6 A parallel-plate capacitor is made using two circular plates of radius a, 
with the bottom plate on the xy plane, centered at the origin. The top plate 
is located at z = d, with its center on the z axis. Charge Q is on the top 
plate; −Q is on the bottom plate. Dielectric having z-dependent permittivity 
fills the region between plates. The permittivity is given by ϵ(z) = ϵ0(1 + 
z2/d2). Find (a) D; (b) E; (c) V0; (d) C.

6.7 For the capacitor of Problem 6.6, consider the dielectric as made up of 
a stack of layers, each having differential thickness dz, and where each 
layer (at location z) has dielectric constant ϵr = (1 + z2/d2). Evaluate the 
capacitance by considering the structure as a series combination of the 
layer capacitances and evaluating an appropriate integral. 

6.8 A parallel-plate capacitor is made using two circular plates of radius a, 
with the bottom plate on the xy plane, centered at the origin. The top plate 
is located at z = d, with its center on the z axis. Potential V0 is on the top 
plate; the bottom plate is grounded. Dielectric having radially dependent 
permittivity fills the region between plates. The permittivity is given by 
ϵ(ρ) = ϵ0(1 + ρ2/a2). Find (a) E; (b) D; (c) Q; (d) C.

6.9 For the capacitor of Problem 6.8, consider the dielectric as made up of 
concentric cylindrical shells, each of thickness dρ, and where the dielectric 
constant of each shell (at radius ρ) is ϵr = (1 + ρ2/a2). Evaluate the 
capacitance by considering the structure as a parallel combination of the 
shell capacitances and by evaluating an appropriate integral. 

6.10 A coaxial cable has conductor dimensions of a = 1.0 mm and b = 2.7 mm. 
The inner conductor is supported by dielectric spacers (ϵr = 5) in the form 
of washers with a hole radius of 1 mm and an outer radius of 2.7 mm, and 
with a thickness of 3.0 mm. The spacers are located every 2 cm down the 
cable. (a) By what factor do the spacers increase the capacitance per unit 
length? (b) If 100 V is maintained across the cable, find E at all points.

6.11 A coaxial transmission line has inner and outer conductors of radii a and 
b. The volume between conductors is filled with two dielectrics having
relative permittivities ϵr1 (a < ρ < c) and ϵr2 (c < ρ < b). (a) If c =
(a + b)/2, find the ratio of ϵr1 to ϵr2 such that the maximum electric field 
intensities in the two regions are equal. (b) Find the capacitance per unit 
length under the condition of part a. 

6.12 (a) Determine the capacitance of an isolated conducting sphere of radius a in 
free space (consider an outer conductor existing at r → ∞). (b) The sphere is 
to be covered with a dielectric layer of thickness d and dielectric contant ϵr. If 
ϵr = 3, find d in terms of a such that the capacitance is twice that of part a.

6.13 With reference to Figure 6.5, let b = 6 m, h = 15 m, and the conductor 
potential be 250 V. Take ϵ = ϵ0. Find values for K1, ρL, a, and C. 

6.14 Two #16 copper conductors (1.29 mm diameter) are parallel with a 
separation d between axes. Determine d so that the capacitance between 
wires in air is 30 pF/m.
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6.15 A 2-cm-diameter conductor is suspended in air with its axis 5 cm from a 
conducting plane. Let the potential of the cylinder be 100 V and that of the 
plane be 0 V. (a) Find the surface charge density on the cylinder at a point 
nearest the plane. (b) Find the surface charge density on the plane at a point 
nearest the cylinder. (c) Find the capacitance per unit length. 

6.16 Consider an arrangement of two isolated conducting surfaces of any shape 
that form a capacitor. Use the definitions of capacitance (Eq. (2) in this 
chapter) and resistance (Eq. (14) in Chapter 5) to show that when the 
region between the conductors is filled with either conductive material 
(conductivity σ) or a perfect dielectric (permittivity ϵ), the resulting 
resistance and capacitance of the structures are related through the simple 
formula RC = ϵ/σ. What basic properties must be true about both the 
dielectric and the conducting medium for this condition to hold for certain?

6.17 Construct a curvilinear-square map for a coaxial capacitor of 3 cm inner 
radius and 8 cm outer radius. These dimensions are suitable for the drawing. 
(a) Use your sketch to calculate the capacitance per meter length, assuming 
ϵr = 1. (b) Calculate an exact value for the capacitance per unit length. 

6.18 Construct a curvilinear-square map of the potential field about two parallel 
circular cylinders, each of 2.5 cm radius, separated by a center-to-center 
distance of 13 cm. These dimensions are suitable for the actual sketch if 
symmetry is considered. As a check, compute the capacitance per meter 
both from your sketch and from the exact formula. Assume ϵr = 1.

6.19 Construct a curvilinear-square map of the potential field between two 
parallel circular cylinders, one of 4 cm radius inside another of 8 cm radius. 
The two axes are displaced by 2.5 cm. These dimensions are suitable for 
the drawing. As a check on the accuracy, compute the capacitance per 
meter from the sketch and from the exact expression:

C =   2π ϵ  ____________________   
 cosh   −1  [( a   2  +  b   2  −  D   2  ) / (2ab )]

  

where a and b are the conductor radii and D is the axis separation. 
6.20 A solid conducting cylinder of 4 cm radius is centered within a rectangular 

conducting cylinder with a 12 cm by 20 cm cross section. (a) Make a 
full-size sketch of one quadrant of this configuration and construct a 
curvilinear-square map for its interior. (b) Assume ϵ = ϵ0 and estimate C 
per meter length.

6.21 The inner conductor of the transmission line shown in Figure 6.13 has a 
square cross section 2a × 2a, whereas the outer square is 4a × 5a. The 
axes are displaced as shown. (a) Construct a good-sized drawing of this 
transmission line, say with a = 2.5 cm, and then prepare a curvilinear-
square plot of the electrostatic field between the conductors. (b) Use the 
map to calculate the capacitance per meter length if ϵ = 1.6ϵ0. (c) How 
would your result to part b change if a = 0.6 cm? 
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6.22 A parallel-plate capacitor is air filled and has plate area A and plate 
separation d. Sufficient dielectric material of relative permittivity ϵr

is available to fill half the capacitor volume. How should the material be 
used to maximize the capacitance, and by what factor will the capacitance 
increase over the air-filled case?

6.23 A two-wire transmission line consists of two parallel perfectly conducting 
cylinders, each having a radius of 0.2 mm, separated by a center-to-center 
distance of 2 mm. The medium surrounding the wires has ϵr = 3 and σ = 
1.5 mS/m. A 100-V battery is connected between the wires. (a) Calculate 
the magnitude of the charge per meter length on each wire. (b) Using the 
result of Problem 6.16, find the battery current. 

6.24 A potential field in free space is given in spherical coordinates as

V(r ) =   {   [ ρ  0   / (6  ϵ  0  )][3 a   2  −  r   2 ]    (r ≤ a)   
( a   3   ρ  0  ) / (3 ϵ  0   r)    (r ≥  a)

   

where ρ0 and a are constants. (a) Use Poisson’s equation to find the 
volume charge density everywhere. (b) Find the total charge present.

Figure 6.13 See Problem 6.21.

εr = 1.6

a

a a2a

2a

2a
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6.25 A capacitor is formed from concentric spherical conductors having radii 
a and b, where b > a. The inner conductor is raised to potential V0; the 
outer conductor is grounded. Under these conditions, derive Eq. (39) using 
Laplace’s equation. 

6.26 Given the spherically symmetric potential field in free space, V = V0e
−r/a, 

find. (a) ρv at r = a; (b) the electric field at r = a; (c) the total charge.
6.27 Let V(x, y) = 4e2x + f(x) − 3y2 in a region of free space where ρv = 0. It is 

known that both Ex and V are zero at the origin. Find f(x) and V(x, y). 
6.28 Show that in a homogeneous medium of conductivity σ, the potential field 

V satisfies Laplace’s equation if any volume charge density present does 
not vary with time.

6.29 What total charge must be located within a unit sphere centered at the origin 
in free space in order to produce the potential field V(r) = −6r5/ϵ0 for r ≤ 1? 

6.30 A parallel-plate capacitor has plates located at z = 0 and z = d. The region 
between plates is filled with a material that contains volume charge of 
uniform density ρ0 C/m3 and has permittivity ϵ. Both plates are held at ground 
potential. (a) Determine the potential field between plates. (b) Determine the 
electric field intensity E between plates. (c) Repeat parts a and b for the case 
of the plate at z = d raised to potential V0, with the z = 0 plate grounded.

6.31 For the parallel-plate capacitor shown in Figure 6.3, find the potential field 
in the interior if the upper plate (at z = d) is raised to potential V0, while the 
lower plate (at z = 0) is grounded. Do this by solving Laplace’s equation 
separately in each of the two dielectrics. These solutions, as well as the 
electric flux density, must be continuous across the dielectric interface. 
Take the interface to lie at z = b. 

6.32 A uniform volume charge has constant density ρv = ρ0 C/m3 and fills the 
region r < a, in which permittivity ϵ is assumed. A conducting spherical 
shell is located at r = a and is held at ground potential. Find (a) the 
potential everywhere; (b) the electric field intensity, E, everywhere.

6.33 The functions V1(ρ, ϕ, z) and V2(ρ, ϕ, z) both satisfy Laplace’s equation in 
the region a < ρ < b, 0 ≤ ϕ < 2π, −L < z < L; each is zero on the surfaces 
ρ = b for −L < z < L; z = −L for a < ρ < b; and z = L for a < ρ < b; 
and each is 100 V on the surface ρ = a for −L < z < L. (a) In the region 
specified, is Laplace’s equation satisfied by the functions V1 + V2, V1 − V2, 
V1 + 3, and V1 V2? (b) On the boundary surfaces specified, are the potential 
values given in this problem obtained from the functions V1 + V2, V1 − V2, 
V1 + 3, and V1V2? (c) Are the functions V1 + V2, V1 − V2, V1 + 3, and V1 V2 
identical with V1? 

6.34 Consider the parallel-plate capacitor of Problem 6.30, but this time the 
charged dielectric exists only between z = 0 and z = b, where b < d. Free 
space fills the region b < z < d. Both plates are at ground potential. By 
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solving Laplace’s and Poisson’s equations, find (a) V(z) for 0 < z < d;  
(b) the electric field intensity for 0 < z < d. No surface charge exists at 
z = b, so both V and D are continuous there.

6.35 In spherical coordinates, a potential is known to be a function of θ only. 
(a) Find the function V(θ) if V = 10 V at θ = 90° and E = −500 aθ V/m 
at θ = 30°, r = 0.4 m; (b) find the electric field intensity in rectangular 
coordinates at θ = 90°, r = 1 m.  

6.36 The derivation of Laplace’s and Poisson’s equations assumed constant 
permittivity, but there are cases of spatially varying permittivity in which 
the equations will still apply. Consider the vector identity, ∇ · (ψ G) = G · 
∇ψ + ψ ∇ · G, where ψ and G are scalar and vector functions, respectively. 
Determine a general rule on the allowed directions in which ϵ may vary 
with respect to the local electric field.

6.37 Coaxial conducting cylinders are located at ρ = 0.5 cm and ρ = 1.2 cm. 
The region between the cylinders is filled with a homogeneous perfect 
dielectric. If the inner cylinder is at 100 V and the outer at 0 V, find (a) the 
location of the 20 V equipotential surface; (b) Eρ max; (c) ϵr if the charge per 
meter length on the inner cylinder is 20 nC/m. 

6.38 Repeat Problem 6.37, but with the dielectric only partially filling the 
volume, within 0 < ϕ < π, and with free space in the remaining volume.

6.39 The two conducting planes illustrated in Figure 6.14 are defined by 0.001 <  
ρ < 0.120 m, 0 < z < 0.1 m, ϕ = 0.179 and 0.188 rad. The medium 
surrounding the planes is air. For Region 1, 0.179 < ϕ < 0.188; neglect 
fringing and find (a) V(ϕ); (b) E (ρ); (c) D (ρ); (d) ρs on the upper 
surface of the lower plane; (e) Q on the upper surface of the lower plane. 
( f  ) Repeat parts a through c for Region 2 by letting the location of the 
upper plane be ϕ = .188 − 2π, and then find ρs and Q on the lower surface 
of the lower plane. (g) Find the total charge on the lower plane and the 
capacitance between the planes. 

Figure 6.14 See Problem 6.39.

Gap

Region 1

Region 2

10 cm

ρ = 12 cm

ρ = 1 mm

ϕ = 0.188, V = 20 V

ϕ = 0.179, V = 200 V
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6.40 A parallel-plate capacitor is made using two circular plates of radius a, 
with the bottom plate on the xy plane, centered at the origin. The top plate 
is located at z = d, with its center on the z axis. Potential V0 is on the top 
plate; the bottom plate is grounded. Dielectric having radially dependent 
permittivity fills the region between plates. The permittivity is given by 
ϵ(ρ) = ϵ0 (1 + ρ2/a2). Find (a) V(z); (b) E; (c) Q; (d) C. This is a reprise of 
Problem 6.8, but it starts with Laplace’s equation.

6.41 Concentric conducting spheres are located at r = 5 mm and r = 20 mm. 
The region between the spheres is filled with a perfect dielectric. If the 
inner sphere is at 100 V and the outer sphere is at 0 V, (a) find the location 
of the 20 V equipotential surface. (b) Find Er,max. (c) Find ϵr if the surface 
charge density on the inner sphere is 1.0 μC/m2. 

6.42 The hemisphere 0 < r < a, 0 < θ < π/2, is composed of homogeneous 
conducting material of conductivity σ. The flat side of the hemisphere 
rests on a perfectly conducting plane. Now, the material within the conical 
region 0 < θ < α, 0 < r < a is drilled out and replaced with material that is 
perfectly conducting. An air gap is maintained between the r = 0 tip of this 
new material and the plane. What resistance is measured between the two 
perfect conductors? Neglect fringing fields.

6.43 Two concentric spherical conducting surfaces exist at r = a and r = b, 
where a < b. Between conductors are two dielectrics having relative 
permittivities ϵr1 (a < r < c) and ϵr2  (c < r < b). The inner conductor is 
raised to potential V0; the outer conductor is grounded. Solve Laplace’s 
equation for the potential everywhere between conductors. This is the 
spherical coordinate version of Problem 6.31, and the procedure is the 
same. As a test of your final result, the potential should reduce to that given 
in Eq. (39) when ϵr1 = ϵr2. 

6.44 A potential field in free space is given as V = 100 ln tan(θ/2) + 50 V. 
(a) Find the maximum value of |Eθ| on the surface θ = 40° for 0.1 < r < 
0.8 m, 60° < ϕ < 90°. (b) Describe the surface V = 80 V.

6.45 In free space, let ρv = 200ϵ0/r2.4. (a) Use Poisson’s equation to find V(r) if 
it is assumed that r2Er → 0 when r → 0, and also that V → 0 as r → ∞. 
(b) Now find V(r) by using Gauss’s law and a line integral. 

6.46 By appropriate solution of Laplace’s and Poisson’s equations, determine 
the absolute potential at the center of a sphere of radius a, containing 
uniform volume charge of density ρ0. Assume permittivity ϵ0 everywhere. 
HINT: What must be true about the potential and the electric field at r = 0 
and at r = a?
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7 C H A P T E R

The Steady Magnetic Field

At this point, the concept of a field should be a familiar one. Since we first 
accepted the experimental law of forces existing between two point charges  
  and defined electric field intensity as the force per unit charge on a test 

charge in the presence of a second charge, we have discussed numerous fields. These 
fields possess no real physical basis, for physical measurements must always be in 
terms of the forces on the charges in the detection equipment. Those charges that are 
the source cause measurable forces to be exerted on other charges, which we may 
think of as detector charges. The fact that we attribute a field to the source charges 
and then determine the effect of this field on the detector charges amounts merely to 
a division of the basic problem into two parts for convenience.

We will begin our study of the magnetic field with a definition of the magnetic field 
itself and show how it arises from a current distribution. The effect of this field on other 
currents, or the second half of the physical problem, will be discussed in Chapter 8. As 
we did with the electric field, we confine our initial discussion to free-space conditions, 
and the effect of material media will also be saved for discussion in Chapter 8.

The relation of the steady magnetic field to its source is more complicated 
than is the relation of the electrostatic field to its source. We will find it necessary 
to accept several laws temporarily on faith alone. Their derivations are presented in 
Sec. 7.7. ■

7.1 BIOT-SAVART LAW
The source of the steady magnetic field may be a permanent magnet, an electric field 
changing linearly with time, or a direct current. We will largely ignore the permanent 
magnet and save the time-varying electric field for a later discussion. Our present study 
will concern the magnetic field produced by a differential dc element in free space.

7.1.1  Differential Form of the Biot-Savart Law

We may think of a differential current element as a vanishingly small section of a current- 
carrying filamentary conductor, where a filamentary conductor is the limiting 
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case of a cylindrical conductor of circular cross section as the radius approaches zero. 
We assume a current I flowing in a differential vector length of the filament d L. The 
law of Biot-Savart1 then states that at any point P the magnitude of the magnetic 
field intensity produced by the differential element is proportional to the product of 
the current, the magnitude of the differential length, and the sine of the angle lying 
between the filament and a line connecting the filament to the point P at which the 
field is desired; also, the magnitude of the magnetic field intensity is inversely pro-
portional to the square of the distance from the differential element to the point P. 
The direction of the magnetic field intensity is normal to the plane containing the dif-
ferential filament and the line drawn from the filament to the point P. Of the two pos-
sible normals, that one to be chosen is the one which is in the direction of progress of 
a right-handed screw turned from d L through the smaller angle to the line from the 
filament to P. Using rationalized mks units, the constant of proportionality is 1/4π.

The Biot-Savart law, just described in some 150 words, may be written concisely  
using vector notation as

d H =   Id L ×  a  R ______ 
4π R   2 

 =   Id L × R______
4π R   3 

 (1)

The units of the magnetic field intensity H are evidently amperes per meter (A/m). 
The geometry is illustrated in Figure 7.1. Subscripts may be used to indicate the 
point to which each of the quantities in (1) refers. If we locate the current element at 
point 1 and describe the point P at which the field is to be determined as point 2, then

 d  H  2   =    I  1   d  L  1   ×  a  R12  ___________
4π R  12  2  

 (2)

Figure 7.1 The law of Biot-Savart 
expresses the magnetic field inten-
sity d!H2 produced by a differential 
current element I1d!L1. The direction 
of d!H2 is into the page.

R12

aR12

4 πR12
2I1

I1 d L1 × aR12

d L1

d H2 =

P
(Point 2)

(Point 1)

Free space

1 Biot and Savart were colleagues of Ampère, and all three were professors of physics at the Collège de 
France at one time or another. The Biot-Savart law was proposed in 1820.
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The law of Biot-Savart is sometimes called Ampère’s law for the current element, 
but we will retain the former name because of possible confusion with Ampère’s 
circuital law, to be discussed later.

In some aspects, the Biot-Savart law is reminiscent of Coulomb’s law when that 
law is written for a differential element of charge,

d  E  2   =   d Q  1    a  R12 ______ 
4π ϵ  0  

 
  R  12  2  

  

Both show an inverse-square-law dependence on distance, and both show a linear  
relationship between source and field. The chief difference appears in the direction 
of the field.

7.1.2 Integral Form of the Biot-Savart Law

It is impossible to check experimentally the law of Biot-Savart as expressed by (1) 
or (2) because the differential current element cannot be isolated. We have restricted 
our attention to direct currents only, so the charge density is not a function of time. 
The continuity equation in Section 5.2, Eq. (5),

∇ · J = −   ∂  ρ  v___
∂ t 

therefore shows that
∇ · J = 0

or upon applying the divergence theorem,

 ∮  
s
   J · dS = 0

The total current crossing any closed surface is zero, and this condition may be 
satisfied only by assuming a current flow around a closed path. It is this current 
flowing in a closed circuit that must be our experimental source, not the differential 
element.

It follows that only the integral form of the Biot-Savart law can be verified ex-
perimentally,

 H = ∮    Id L ×  a  R_
4π  R   2 

 (3)

Equation (1) or (2), of course, leads directly to the integral form (3), but other 
differential expressions also yield the same integral formulation. Any term may be 
added to (1) whose integral around a closed path is zero. That is, any conservative 
field could be added to (1). The gradient of any scalar field always yields a con-
servative field, and we could therefore add a term ∇G to (1), where G is a general 
scalar field, without changing (3) in the slightest. This qualification on (1) or (2) is 
mentioned to show that if we later ask some foolish questions, not subject to any 
experimental check, concerning the force exerted by one differential current element 
on another, we should expect foolish answers.
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The Biot-Savart law may also be expressed in terms of distributed sources, such 
as current density J and surface current density K. Surface current flows in a sheet 
of vanishingly small thickness, and the current density J, measured in amperes per 
square meter, is therefore infinite. Surface current density, however, is measured in 
amperes per meter width and designated by K. If the surface current density is uni-
form, the total current I in any width b is

I = Kb

where we assume that the width b is measured perpendicularly to the direction in 
which the current is flowing. The geometry is illustrated by Figure 7.2. For a nonu-
niform surface current density, integration is necessary:

 I = ∫   K d N (4)

where dN is a differential element of the path across which the current is flowing. 
Thus the differential current element I d L, where d L is in the direction of the cur-
rent, may be expressed in terms of surface current density K or current density J,

 I d L = K d S = J dv  (5)

and alternate forms of the Biot-Savart law obtained,

 H =  ∫  
s
     K ×  a  R   dS_

4π  R   2 
 (6)

and

 H =  ∫  vol     
J ×  a  R   dv_

4π  R   2 
 (7)

Figure 7.2 The total current I within a 
transverse width b, in which there is a 
uniform surface current density K, is Kb.

b

K

I
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7.1.3 Magnetic Field of a Current Filament

We illustrate an application of the Biot-Savart law by considering an infinitely long 
straight filament. We apply (2) first and then integrate. This, of course, is the same as 
using the integral form (3) in the first place.2

Referring to Figure 7.3, we should recognize the symmetry of this field. No 
variation with z or with ϕ can exist. Point 2, at which we will determine the field, is 
therefore chosen in the z = 0 plane. The field point r is therefore r = ρaρ. The source 
point r′ is given by r′ = z′az, and therefore

R12 = r − r′ = ρaρ − z′az

so that
aR12 =    

ρaρ − z′az
 _________

 √ 
______

 ρ2 + z′2  
We take d L = dz′az and (2) becomes

d  H  2   =     
I dz′az × (ρaρ − z′az)  __________________  

4π (ρ2 + z′2)3∕2   

Because the current is directed toward increasing values of z′, the limits are −∞ and 
∞ on the integral, and we have

 H  2   
 
=

  
 ∫ 
−∞

  
  ∞

      
I dz′az × (ρaρ − z′az)  __________________  

4π (ρ2 + z′2)3∕2  
   

= 
 
  I __ 4π

    ∫ 
−∞

  
   ∞

     
ρdz′aϕ

 ___________ 
( ρ2 + z′2)3∕2   

 

2 The closed path for the current may be considered to include a return filament parallel to the first 
filament and infinitely far removed. An outer coaxial conductor of infinite radius is another theoretical 
possibility. Practically, the problem is an impossible one, but we should realize that our answer will be 
quite accurate near a very long, straight wire having a distant return path for the current.

x

y

z

I

R

aR

z'az

ρaρ

dL

(Point 2)

Free space(Point 1)

Figure 7.3 An infinitely long, straight 
filament carrying a direct current I. The field 
at point 2 is H = (I/2πρ)aϕ.
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At this point the unit vector aϕ under the integral sign should be investigated, for  
it is not always a constant, as are the unit vectors of the rectangular coordinate system. 
A vector is constant when its magnitude and direction are both constant. The unit vector  
certainly has constant magnitude, but its direction may change. Here aϕ changes  
with the coordinate ϕ but not with ρ or z. Fortunately, the integration here is with 
respect to z′, and aϕ is a constant and may be removed from under the integral sign,

 H  2   = 
 
  
Iρ a  ϕ  

 ____ 4π
    ∫ 

−∞
  

  ∞
      dz′ ___________ 
(ρ2 + z′2)3∕2  

   
 =

  
  
Iρ a  ϕ  

 ____ 4π
     z′ ___________

ρ2  √ 
_______

 ρ2 + z′2  
    |    −∞

∞

and

  H  2   =   I _ 2πρ
    a  ϕ (8)

The magnitude of the field is not a function of ϕ or z, and it varies inversely with 
the distance from the filament. The direction of the magnetic-field-intensity vector is 
circumferential. The streamlines are therefore circles about the filament, and the field 
may be mapped in cross section as in Figure 7.4.

The separation of the streamlines is proportional to the radius, or inversely pro-
portional to the magnitude of H. To be specific, the streamlines have been drawn 
with curvilinear squares in mind. As yet, we have no name for the family of lines3 
that are perpendicular to these circular streamlines, but the spacing of the streamlines 

Figure 7.4 The streamlines of 
the magnetic field intensity about 
an infinitely long straight filament 
carrying a direct current I. The 
direction of I is into the page.

3 If you can’t wait, see Section 7.6.
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has been adjusted so that the addition of this second set of lines will produce an array 
of curvilinear squares.

A comparison of Figure 7.4 with the map of the electric field about an infinite 
line charge shows that the streamlines of the magnetic field correspond exactly to the 
equipotentials of the electric field, and the unnamed (and undrawn) perpendicular 
family of lines in the magnetic field corresponds to the streamlines of the electric 
field. This correspondence is not an accident, but there are several other concepts 
which must be mastered before the analogy between electric and magnetic fields can 
be explored more thoroughly.

Using the Biot-Savart law to find H is in many respects similar to the use of 
Coulomb’s law to find E. Each requires the determination of a moderately compli-
cated integrand containing vector quantities, followed by an integration. When we 
were concerned with Coulomb’s law we solved a number of examples, including the 
fields of the point charge, line charge, and sheet of charge. The law of Biot-Savart can 
be used to solve analogous problems in magnetic fields, and some of these problems 
appear as exercises at the end of the chapter rather than as examples here.

One useful result is the field of the finite-length current element, shown in 
Figure 7.5. It turns out (see Problem 7.8 at the end of the chapter) that H is most eas-
ily expressed in terms of the angles α1 and α2, as identified in the figure. The result is

 H =   I ___ 4πρ
   (sin  α  2   − sin  α  1  )  a  ϕ  (9)

If one or both ends are below point 2, then α1 is or both α1 and α2 are negative.

x

y

z

ρ

α2
α1 Point 2

I

Figure 7.5 The magnetic field intensity 
caused by a finite-length current filament 
on the z axis is (I/4πρ)(sin α2 − sin α1)aϕ.
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Equation (9) may be used to find the magnetic field intensity caused by current 
filaments arranged as a sequence of straight-line segments.

As a numerical example illustrating the use of (9), we determine H at P2(0.4, 0.3, 0) 
in the field of an 8-ampere filamentary current. The current is directed inward from 
infinity to the origin on the positive x axis, and then outward to infinity along the 
y axis. This arrangement is shown in Figure 7.6.
Solution. We first consider the semi-infinite current on the x axis, identifying the 
two angles, α1x = −90° and α2x = tan−1 (0.4/0.3) = 53.1°. The radial distance ρ is 
measured from the x axis, and we have ρx = 0.3. Thus, this contribution to H2 is

 H  2(x)   =   8 ______ 4π(0.3)  (sin  53.1°    + 1)  a  ϕ   =   2 ____ 0.3π
   (1.8)  a  ϕ   =   12 __ π    a  ϕ

The unit vector aϕ must also be referred to the x axis. We see that it becomes −az. 
Therefore,

 H  2(x)   = −   12 __ π    a  z    A /m

For the current on the y axis, we have α1y = −tan−1(0.3/0.4) = −36.9°, α2y = 90°, and 
ρy = 0.4. It follows that

 H  2(y)   =   8 ______ 4π(0.4)   (1 + sin  36.9    °) (−  a  z  ) = −   8 __ π    a  z    A /m

Adding these results, we have

 H  2   =  H  2(x)   +  H  2(y)   = −   20 __ π   a  z   = − 6.37 a  z   A /m

EXAMPLE 1 .1 EXAMPLE 7.1

Figure 7.6 The individual fields of two semi-infinite 
current segments are found by (9) and added to obtain 
H2 at P2.

8 A

P2 (0.4, 0.3, 0)

8 A

α1 x

α2 x

α1 y
α2 y

x

y

z
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D7.2. A current filament carrying 15 A in the az direction lies along the entire
z axis. Find H in rectangular coordinates at: (a)  P  A  ( √ 

___
 20  , 0, 4); (b) PB(2, −4, 4).

Ans. (a) 0.534ay A/m; (b) 0.477ax + 0.239ay A/m

7.2 AMPÈRE’S CIRCUITAL LAW
After solving a number of simple electrostatic problems with Coulomb’s law, we 
found that the same problems could be solved much more easily by using Gauss’s law 
whenever a high degree of symmetry was present. Again, an analogous procedure 
exists in magnetic fields. Here, the law that helps us solve problems more easily is 
known as Ampère’s circuital4 law, sometimes called Ampère’s work law. This law 
may be derived from the Biot-Savart law (see Section 7.7).

7.2.1 Definition of Ampere’s Law

Ampère’s circuital law states that the line integral of H about any closed path is 
exactly equal to the direct current enclosed by that path,

∮  H · d L = I (10)

We define positive current as flowing in the direction of advance of a right-handed 
screw turned in the direction in which the closed path is traversed.

Referring to Figure 7.7, which shows a circular wire carrying a direct current I, 
the line integral of H about the closed paths lettered a and b results in an answer of I; 
the integral about the closed path c which passes through the conductor gives an an-
swer less than I and is exactly that portion of the total current that is enclosed by the 
path c. Although paths a and b give the same answer, the integrands are, of course, 
different. The line integral directs us to multiply the component of H in the direction 
of the path by a small increment of path length at one point of the path, move along 
the path to the next incremental length, and repeat the process, continuing until the 
path is completely traversed. Because H will generally vary from point to point, and 
because paths a and b are not alike, the contributions to the integral made by, say, 
each micrometer of path length are quite different. Only the final answers are the 
same.

D7.1. Given the following values for P1, P2, and I1ΔL1, calculate ΔH2:  
(a) P1(0, 0, 2), P2(4, 2, 0), 2π az   μA · m; (b) P1(0, 2, 0), P2(4, 2, 3), 2π az   μA · m; 
(c) P1(1, 2, 3), P2(−3, −1, 2), 2π(−ax + ay + 2az)μA · m.

Ans. (a) −8.51ax + 17.01ay nA/m; (b) 16ay nA/m; (c) 18.9ax −33.9ay + 26.4az nA/m

4 The preferred pronunciation puts the accent on “circ-.”
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We should also consider exactly what is meant by the expression “current en-
closed by the path.” Suppose we solder a circuit together after passing the conductor 
once through a rubber band, which we use to represent the closed path. Some strange 
and formidable paths can be constructed by twisting and knotting the rubber band, 
but if neither the rubber band nor the conducting circuit is broken, the current en-
closed by the path is that carried by the conductor. Now replace the rubber band with 
a circular ring of spring steel across which is stretched a rubber sheet. The steel loop 
forms the closed path, and the current-carrying conductor must pierce the rubber 
sheet if the current is to be enclosed by the path. Again, we may twist the steel loop, 
and we may also deform the rubber sheet by pushing our fist into it or folding it in 
any way we wish. A single current-carrying conductor still pierces the sheet once, 
and this is the true measure of the current enclosed by the path. If we should thread 
the conductor once through the sheet from front to back and once from back to front, 
the total current enclosed by the path is the algebraic sum, which is zero.

In more general language, given a closed path, we recognize this path as the 
perimeter of an infinite number of surfaces (not closed surfaces). Any current- 
carrying conductor enclosed by the path must pass through every one of these surfaces 
once. Certainly some of the surfaces may be chosen in such a way that the conductor 
pierces them twice in one direction and once in the other direction, but the algebraic 
total current is still the same.

We will find that the nature of the closed path is usually extremely simple and 
can be drawn on a plane. The simplest surface is, then, that portion of the plane en-
closed by the path. We need merely find the total current passing through this region 
of the plane.

The application of Gauss’s law involves finding the total charge enclosed by a 
closed surface; the application of Ampère’s circuital law involves finding the total 
current enclosed by a closed path.

a

b

c

I

Figure 7.7 A conductor has a total current I. The 
line integral of H about the closed paths a and b 
is equal to I, and the integral around path c is less 
than I, since the entire current is not enclosed by 
the path.

hay28159_ch07_182-231.indd   191 25/11/17   11:42 am



E N G I N E E R I N G  E L E C T R O M AG N E T I C S192

7.2.2 Application of Ampere’s Law to a Filament Current

Here we again find the magnetic field intensity produced by an infinitely long 
filament carrying a current I. The filament lies on the z axis in free space (as in 
Figure 7.3), and the current flows in the direction given by az. Symmetry inspection 
comes first, showing that there is no variation with z or ϕ. Next we determine which 
components of H are present by using the Biot-Savart law. Without specifically using 
the cross product, we may say that the direction of d H is perpendicular to the plane 
conaining d L and R and therefore is in the direction of aϕ. Hence the only compo-
nent of H is Hϕ, and it is a function only of ρ.

We therefore choose a path, to any section of which H is either perpendicular 
or tangential, and along which H is constant. The first requirement (perpendicularity 
or tangency) allows us to replace the dot product of Ampère’s circuital law with the 
product of the scalar magnitudes, except along that portion of the path where H is 
normal to the path and the dot product is zero; the second requirement (constancy) 
then permits us to remove the magnetic field intensity from the integral sign. The 
integration required is usually trivial and consists of finding the length of that portion 
of the path to which H is parallel.

In our example, the path must be a circle of radius ρ, and Ampère’s circuital law 
becomes

∮ H · d L =  ∫ 
0
  
  2π

     H  ϕ  ρdϕ =  H  ϕ   ρ ∫ 
0
  
  2π

    dϕ =  H  ϕ   2πρ = I

or

 H  ϕ   =   I ___
2πρ

as before.

7.2.3 Magnetic Field Within a Coaxial Cable

As a second example of the application of Ampère’s circuital law, consider an 
infinitely long coaxial transmission line carrying a uniformly distributed total cur-
rent I in the center conductor and −I in the outer conductor. The line is shown 
in Figure 7.8a. Symmetry shows that H is not a function of ϕ or z. In order to 
determine the components present, we may use the results of the previous exam-
ple by considering the solid conductors as being composed of a large number of 
filaments. No filament has a z component of H. Furthermore, the Hρ component 
at ϕ = 0°, produced by one filament located at ρ = ρ1, ϕ = ϕ1, is canceled by the 
Hρ component produced by a symmetrically located filament at ρ = ρ1, ϕ = −ϕ1. 
This symmetry is illustrated by Figure 7.8b. Again we find only an Hϕ component 
which varies with ρ.

A circular path of radius ρ, where ρ is larger than the radius of the inner conduc-
tor but less than the inner radius of the outer conductor, then leads immediately to

 H  ϕ   =   I ___ 2πρ
    (a < ρ < b)
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If we choose ρ smaller than the radius of the inner conductor, the current 
enclosed is

 I  encl   = I    ρ   2 __ 
 a   2 

  
and

2πρ  H  ϕ   = I    ρ   2 __ 
 a   2 

  

or
 H  ϕ   =   Iρ ______ 

2π   a   2 
    ( ρ < a)

If the radius ρ is larger than the outer radius of the outer conductor, no current 
is enclosed and

 H  ϕ   = 0 ( ρ > c)

Finally, if the path lies within the outer conductor, we have

2πρ H  ϕ    =   I − I (      ρ   2  −  b   2 _ 
 c   2  −  b   2 

   )   

 H  ϕ   =   I ___ 2πρ
       c   2  −  ρ   2 _____ 
 c   2  −  b   2 

   (b < ρ < c)

The magnetic-field-strength variation with radius is shown in Figure 7.9 for a 
coaxial cable in which b = 3a, c = 4a. It should be noted that the magnetic field 
intensity H is continuous at all the conductor boundaries. In other words, a slight 
increase in the radius of the closed path does not result in the enclosure of a tremen-
dously different current. The value of Hϕ shows no sudden jumps.

Figure 7.8 (a) Cross section of a coaxial cable carrying a uniformly 
distributed current I in the inner conductor and −I in the outer conductor. The 
magnetic field at any point is most easily determined by applying Ampère’s 
circuital law about a circular path. (b) Current filaments at ρ = ρ1, ϕ = ± ϕ1, 
produces Hρ components which cancel. For the total field, H = Hϕaϕ. 

(a)

ρ = ρ1 ρ = ρ1
ϕ = – ϕ1 ϕ = ϕ1

Hϕ only

I

I a

b

c

z

(b)
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The external field is zero. This, we see, results from equal positive and negative 
currents enclosed by the path. Each produces an external field of magnitude I/2πρ, 
but complete cancellation occurs. This is another example of “shielding”; such a 
coaxial cable carrying large currents would, in principle, not produce any noticeable 
effect in an adjacent circuit.

7.2.4 Magnetic Field of a Surface Current

As a final example, consider a sheet of current flowing in the positive y direction and 
located in the z = 0 plane. We may think of the return current as equally divided between 
two distant sheets on either side of the sheet we are considering. A sheet of uniform sur-
face current density K = Ky ay is shown in Figure 7.10. H cannot vary with x or y. If the 
sheet is subdivided into a number of filaments, it is evident that no filament can produce 
an Hy component. Moreover, the Biot-Savart law shows that the contributions to Hz pro-
duced by a symmetrically located pair of filaments cancel. Thus, Hz is zero also; only an 
Hx component is present. We therefore choose the path 1-1′-2′-2-1 composed of straight-
line segments that are either parallel or perpendicular to Hx. Ampère’s circuital law gives

 H  x1   L +  H  x2    (− L) =  K  y   L

Figure 7.9 The magnetic field intensity as a 
function of radius in an infinitely long coaxial 
transmission line with the dimensions shown.

a

I

I

0 0 2a

4a4πa

2πa

3a

3a = b 4a = c

3
1

2
K = Kyay

2'L

x

y

z

1'
3'

Figure 7.10 A uniform sheet of surface current K = Ky#ay 
in the z = 0 plane. H may be found by applying Ampère’s 
circuital law about the paths 1-1′-2′-2-1 and 3-3′-2′-2-3.
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or
 H  x1   −  H  x2   =  K  y  

If the path 3-3′-2′-2-3 is now chosen, the same current is enclosed, and
 H  x3   −  H  x2   =  K  y  

and therefore
 H  x3   =  H  x1  

It follows that Hx is the same for all positive z. Similarly, Hx is the same for all nega-
tive z. Because of the symmetry, then, the magnetic field intensity on one side of the 
current sheet is the negative of that on the other. Above the sheet,

 H  x   =    1 _ 2     K  y    (z > 0)
while below it

 H  x   = −    1 _ 2     K  y    (z < 0)
Letting aN be a unit vector normal (outward) to the current sheet, the result may be 
written in a form correct for all z as

H =    1 _ 2   K × aN (11)

If a second sheet of current flowing in the opposite direction, K = −Kyay, is 
placed at z = h, (11) shows that the field in the region between the current sheets is

 H = K ×  a  N    (0 < z < h ) (12)

and is zero elsewhere,

 H = 0 (z < 0, z > h ) (13)

The most difficult part of the application of Ampère’s circuital law is the deter-
mination of the components of the field that are present. The surest method is the 
logical application of the Biot-Savart law and a knowledge of the magnetic fields of 
simple form.

7.2.5 Magnetic Fields Within Solenoids and Toroids

Problem 7.13 at the end of this chapter outlines the steps involved in applying 
Ampère’s circuital law to an infinitely long solenoid of radius a and uniform current 
density Ka aϕ, as shown in Figure 7.11a. For reference, the result is

H = Ka az  ( ρ < a) (14a)
 H  =  0  ( ρ > a)  (14b)
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If the solenoid has a finite length d and consists of N closely wound turns of a 
filament that carries a current I (Figure 7.11b), then the field at points well within the 
solenoid is given closely by

 H =   NI ___ 
d
    a  z        (well within the solenoid) (15)

The approximation is useful if it is not applied closer than two radii to the open ends, 
nor closer to the solenoid surface than twice the separation between turns.

For the toroids shown in Figure 7.12, it can be shown that the magnetic field 
intensity for the ideal case, Figure 7.12a, is

H =   K  a     
 ρ  0   − a ____ ρ    a  ϕ        (inside toroid ) (16a)

H =  0   (outside)  (16b)

For the N-turn toroid of Figure 7.12b, we have the good approximations,

H =   NI ___ 2πρ
     a  ϕ     (inside toroid) (17a)

H = 0    (outside) (17b)

as long as we consider points removed from the toroidal surface by several times the 
separation between turns.

Toroids having rectangular cross sections are also treated quite readily, as you 
can see for yourself by trying Problem 7.14.

Accurate formulas for solenoids, toroids, and coils of other shapes are available 
in Section 2 of the Standard Handbook for Electrical Engineers (see References for 
Chapter 5).

Figure 7.11 (a) An ideal solenoid of infinite length with a circular 
current sheet K = Kaaϕ. (b) An N-turn solenoid of finite length d.

(a)

K = Kaaϕ

H = Kaaz, ρ < a
H = 0, ρ > a

az

(b)

ρ = aρ = a

N turns

d

z

I

NI

(well inside coil)
dH = 
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7.3 CURL
We completed our study of Gauss’s law by applying it to a differential volume ele-
ment and were led to the concept of divergence. We now apply Ampère’s circuital 
law to the perimeter of a differential surface element and discuss the third and last of 
the special derivatives of vector analysis, the curl. Our objective is to obtain the point 
form of Ampère’s circuital law.

7.3.1 Development and Definition of Curl

Again we choose rectangular coordinates, and an incremental closed path of sides Δx 
and Δy is selected (Figure 7.13). We assume that some current, as yet unspecified, 
produces a reference value for H at the center of this small rectangle,

 H  0   =  H  x0    a  x   +  H  y0    a  y   +  H  z0    a  z  

The closed line integral of H about this path is then approximately the sum of the four 
values of H · ΔL on each side. We choose the direction of traverse as 1-2-3-4-1, which 
corresponds to a current in the az direction, and the first contribution is therefore

 (H · ΔL)  1−2   =  H  y,1−2   Δy

Figure 7.12 (a) An ideal toroid carrying a surface current K in 
the direction shown. (b) An N-turn toroid carrying a filamentary 
current I.

H = 0
H = Ka

K = Ka az at ρ = ρ0  –  a, z = 0

aϕ

ρ0

ρ0  –  a
ρ

ρ0

I

(b)

(inside toroid)
(outside)

a a

z axis z axis

N turns

(a)

aϕ
NI

2 πρ (inside toroid)H = 

D7.3. Express the value of H in rectangular components at P(0, 0.2, 0) in the 
field of: (a) a current filament, 2.5 A in the az direction at x = 0.1, y = 0.3;  
(b) a coax, centered on the z axis, with a = 0.3, b = 0.5, c = 0.6, I = 2.5 A in 
the az direction in the center conductor; (c) three current sheets, 2.7ax A/m at 
y = 0.1, −1.4ax A/m at y = 0.15, and −1.3ax A/m at y = 0.25.

Ans. (a) 1.989ax − 1.989ay A/m; (b) −0.884ax A/m; (c) 1.300az A/m
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The value of Hy on this section of the path may be given in terms of the reference val-
ue Hy0 at the center of the rectangle, the rate of change of Hy with x, and the distance 
Δx/2 from the center to the midpoint of side 1–2:

  H  y,1−2   ≐  H  y0   +
∂  H  y _ ∂ x (     1 _ 2   Δx )

Thus
  (H · ΔL)  1−2   ≐  (    H  y0   +   1 _ 2     

∂  H  y   _ ∂ x   Δx )  Δy

Along the next section of the path we have

  (H · ΔL)  2−3   ≐  H  x,2−3  (− Δx) ≐ −  (    H  x0   +   1 _ 2     ∂  H  x   _ ∂ y   Δy )  Δx

Continuing for the remaining two segments and adding the results,

 ∮  H · d L ≐  (     
∂  H  y   _ ∂ x   −   ∂  H  x   _ ∂ y   )  ΔxΔy 

By Ampère’s circuital law, this result must be equal to the current enclosed by the 
path, or the current crossing any surface bounded by the path. If we assume a general 
current density J, the enclosed current is then ΔI ≐ JzΔxΔy, and

 ∮  H · d L ≐  (     
∂  H  y   _ ∂ x   −   ∂  H  x   _ ∂ y   )  ΔxΔy ≐  J  z   ΔxΔy 

or
  
∮  H · d L

 _______ ΔxΔy
   ≐   

∂  H  y   ____ ∂ x   −   ∂  H  x   ____ ∂ y   ≐  J  z

As we cause the closed path to shrink, the preceding expression becomes more nearly 
exact, and in the limit we have the equality

  lim  
Δx,Δy→0

     
∮  H · dL

 ______ ΔxΔy
   =   

∂  H  y   ____ ∂ x   −   ∂  H  x   ____ ∂ y   =  J  z  (18)

Figure 7.13 An incremental closed path 
in rectangular coordinates is selected for 
the application of Ampère’s circuital law to 
determine the spatial rate of change of H.

H = H0 = Hx0 ax + Hy0 ay + Hz0 azz

x

y
Δy

Δx

1 2

34
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After beginning with Ampère’s circuital law equating the closed line integral of 
H to the current enclosed, we have now arrived at a relationship involving the closed 
line integral of H per unit area enclosed and the current per unit area enclosed, or 
current density. We performed a similar analysis in passing from the integral form of 
Gauss’s law, involving flux through a closed surface and charge enclosed, to the point 
form, relating flux through a closed surface per unit volume enclosed and charge per
unit volume enclosed, or volume charge density. In each case a limit is necessary to 
produce an equality.

If we choose closed paths that are oriented perpendicularly to each of the re-
maining two coordinate axes, analogous processes lead to expressions for the x and y 
components of the current density,

  lim  
Δy,Δz→0

     
∮  H · d L

 ______ ΔyΔz
   =   ∂  H  z   ____ ∂ y   −   

∂  H  y   ____ ∂ z   =  J  x  (19)

and

  lim  
Δz,Δx→0

     
∮   H · d L

 ______ ΔzΔx
   =   ∂  H  x   ____ ∂ z   −   ∂  H  z   ____ ∂ x   =  J  y  (20)

Comparing (18)–(20), we see that a component of the current density is given 
by the limit of the quotient of the closed line integral of H about a small path in 
a plane normal to that component and of the area enclosed as the path shrinks to 
zero. This limit has its counterpart in other fields of science and long ago received 
the name of curl. The curl of any vector is a vector, and any component of the curl 
is given by the limit of the quotient of the closed line integral of the vector about 
a small path in a plane normal to that component desired and the area enclosed, 
as the path shrinks to zero. It should be noted that this definition of curl does not 
refer specifically to a particular coordinate system. The mathematical form of the 
definition is

  (curl  H)  N   =   lim  
Δ S  N  →0

     
∮  H · d L_

Δ  S  N   
(21)

where ΔSN is the planar area enclosed by the closed line integral. The N subscript 
indicates that the component of the curl is that component which is normal to the 
surface enclosed by the closed path. It may represent any component in any coordi-
nate system.

In rectangular coordinates, the definition (21) shows that the x, y, and z compo-
nents of the curl H are given by (18)–(20), and therefore

 curl  H =  (     ∂  H  z   _ ∂ y   −   
∂  H  y   _ ∂ z   )   a  x   +  (     ∂  H  x   _ ∂ z   −   ∂  H  z   _ ∂ x   )   a  y   +  (     

∂  H  y   _ ∂ x   −   ∂  H  x   _ ∂ y   )   a  z   (22)
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This result may be written in the form of a determinant,

 curl H =   |      a  x  

  

 a  y  

  

 a  z  

   ∂ _ ∂ x      ∂ _ ∂ y      ∂ _ ∂ z   
 H  x  

  
 H  y  

  
 H  z  

    | (23)

and may also be written in terms of the vector operator,

 curl  H = ∇ × H (24)

Equation (22) is the result of applying the definition (21) to the rectangular 
coordinate system. We obtained the z component of this expression by evaluating 
Ampère’s circuital law about an incremental path of sides Δx and Δy, and we could 
have obtained the other two components just as easily by choosing the appropriate 
paths. Equation (23) is a neat method of storing the rectangular coordinate expres-
sion for curl; the form is symmetrical and easily remembered. Equation (24) is even 
more concise and leads to (22) upon applying the definitions of the cross product and 
vector operator.

∇ × H =
  
  (     1 _ ρ     ∂   H  z   _ ∂ ϕ   −   

∂  H  ϕ  
 _ ∂ z   )    a  ρ   +  (     

∂   H  ρ   _ ∂ z   −   ∂  H  z   _ ∂ ρ   )    a  ϕ   
     

 + (     1 _ ρ     
∂ (  ρ H  ϕ   )  

 _ ∂ ρ   −   1 _ ρ     
∂ H  ρ   _ ∂ ϕ   )   a  z    (cylindrical)

(25)

∇ × H =    1 _ 
r sin θ   (     

∂  (   H  ϕ   sin θ )  
 _ ∂ θ   −   ∂  H  θ   _ ∂ ϕ   )   a  r   +   1 _ r   (     1 _ sin θ     ∂  H  r   _ ∂ ϕ   −   

∂  (  r  H  ϕ   )  
 _ ∂ r   )   a  θ

 +   1 _ r   (     ∂  (  r  H  θ   )   _ ∂ r   −   ∂  H  r   _ ∂ θ   )   a  ϕ   (spherical)
(26)

7.3.2 Physical Meaning of Curl

Although we have described curl as a line integral per unit area, this does not 
provide everyone with a satisfactory physical picture of the nature of the curl 
operation, for the closed line integral itself requires physical interpretation. This 
integral was first met in the electrostatic field, where we saw that ∮ E · d  L = 0. 
Inasmuch as the integral was zero, we did not belabor the physical picture. More 
recently we have discussed the closed line integral of H, ∮ H · d  L = I. Either of 
these closed line integrals is also known by the name of circulation, a term bor-
rowed from the field of fluid dynamics.
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The circulation of H, or ∮ H · d  L, is obtained by multiplying the component of 
H parallel to the specified closed path at each point along it by the differential path 
length and summing the results as the differential lengths approach zero and as their 
number becomes infinite. We do not require a vanishingly small path. Ampère’s cir-
cuital law tells us that if H does possess circulation about a given path, then current 
passes through this path. In electrostatics we see that the circulation of E is zero 
about every path, a direct consequence of the fact that zero work is required to carry 
a charge around a closed path.

We may describe curl as circulation per unit area. The closed path is vanishingly 
small, and curl is defined at a point. The curl of E must be zero, for the circulation 
is zero. The curl of H is not zero, however; the circulation of H per unit area is the 
current density by Ampère’s circuital law [or (18), (19), and (20)].

Skilling5 suggests the use of a very small paddle wheel as a “curl meter.” Our 
vector quantity, then, must be thought of as capable of applying a force to each blade 
of the paddle wheel, the force being proportional to the component of the field nor-
mal to the surface of that blade. To test a field for curl, we dip our paddle wheel into 
the field, with the axis of the paddle wheel lined up with the direction of the compo-
nent of curl desired, and note the action of the field on the paddle. No rotation means 
no curl; larger angular velocities mean greater values of the curl; a reversal in the 
direction of spin means a reversal in the sign of the curl. To find the direction of the 
vector curl and not merely to establish the presence of any particular component, we 
should place our paddle wheel in the field and hunt around for the orientation which 
produces the greatest torque. The direction of the curl is then along the axis of the 
paddle wheel, as given by the right-hand rule.

As an example, consider the flow of water in a river. Figure 7.14a shows the lon-
gitudinal section of a wide river taken at the middle of the river. The water velocity 
is zero at the bottom and increases linearly as the surface is approached. A paddle 
wheel placed in the position shown, with its axis perpendicular to the paper, will 
turn in a clockwise direction, showing the presence of a component of curl in the 

(a) (b)

Current
into pag e

H

Velocity

River bed

Figure 7.14 (a) The curl meter shows a component of the curl of the water veloc-
ity into the page. (b) The curl of the magnetic field intensity about an infinitely long 
filament is shown.

5 See the References at the end of the chapter.
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direction of an inward normal to the surface of the page. If the velocity of water does 
not change as we go up- or downstream and also shows no variation as we go across 
the river (or even if it decreases in the same fashion toward either bank), then this 
component is the only component present at the center of the stream, and the curl of 
the water velocity has a direction into the page.

In Figure 7.14b, the streamlines of the magnetic field intensity about an in-
finitely long filamentary conductor are shown. The curl meter placed in this field of 
curved lines shows that a larger number of blades have a clockwise force exerted on  
them but that this force is in general smaller than the counterclockwise force exerted  
on the smaller number of blades closer to the wire. It seems possible that if the 
curvature of the streamlines is correct and also if the variation of the field strength 
is just right, the net torque on the paddle wheel may be zero. Actually, the paddle 
wheel does not rotate in this case, for since H = (I/2πρ)aϕ, we may substitute into 
(25) obtaining

curl  H = −   
∂   H  ϕ  

 _____ ∂ z    a  ρ   +   1 __ ρ      
∂ (ρ H  ϕ  )

 ______ ∂ ρ    a  z   = 0

EXAMPLE 7.2

As an example of the evaluation of curl H from the definition and of the evaluation 
of another line integral, suppose that H = 0.2z2ax for z > 0, and H = 0 elsewhere, as 
shown in Figure 7.15. Calculate ∮ H · d  L about a square path with side d, centered at 
(0, 0, z1) in the y = 0 plane where z1 > d/2.

Figure 7.15 A square path of side d with its center on 
the z axis at z = z1 is used to evaluate ∮ H · d L and find
curl H.

(0, 0, z1 )

H = 0

H = 0.2 z2  a x

x

y

z

d

d
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Solution. We evaluate the line integral of H along the four segments, beginning at 
the top:

  ∮  H · d  L 
 
= 

 
0.2  ( z  1   +   1 _ 2   d )   2  d + 0 − 0.2   (   z  1   −   1 _ 2   d )     2  d + 0

       
=

  
0.4  z  1    d   2 

 

In the limit as the area approaches zero, we find

 (∇ × H )  y   =   lim  
d→0

     
∮  H · d L

 _______ 
 d   2 

   =   lim 
d→0

     0.4  z  1    d   2  ______ 
 d   2 

   = 0.4  z  1

The other components are zero, so ∇ × H = 0.4z1ay.
To evaluate the curl without trying to illustrate the definition or the evaluation of 

a line integral, we simply take the partial derivative indicated by (23):

∇ × H =   |  a  x  

  

 a  y  

  

 a  z  

    ∂ _ ∂ x      ∂ _ ∂ y      ∂ _ ∂ z     

0.2  z   2
  

0

  

0

    | =   ∂ __ ∂ z   (0.2  z   2 )  a  y   = 0.4z  a  y

which checks with the preceding result when z = z1.

Returning now to complete our original examination of the application of 
Ampère’s circuital law to a differential-sized path, we may combine (18)–(20), (22), 
and (24),

curl  H = ∇ × H =   (     ∂   H  z   _ ∂ y   −   
∂  H  y   _ ∂ z   )    a  x   +  (     ∂ H  x   _ ∂ z   −   ∂ H  z   _ ∂ x   )   a  y   

     
 + (     

∂ H  y   _ ∂ x   −   ∂ H  x   _ ∂ y   )    a  z   = J (27)

and write the point form of Ampère’s circuital law,

 ∇ × H = J (28)

This is the second of Maxwell’s four equations as they apply to non-time-varying 
conditions. We may also write the third of these equations at this time; it is the point 
form of ∮ E · d L = 0, or

∇ × E = 0 (29)

The fourth equation appears in Section 7.5.
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7.4 STOKES’ THEOREM
Although Section 7.3 was devoted primarily to a discussion of the curl operation, 
the contribution to the subject of magnetic fields should not be overlooked. From 
Ampère’s circuital law we derived one of Maxwell’s equations, ∇ × H = J. This 
latter equation should be considered the point form of Ampère’s circuital law and 
applies on a “per-unit-area” basis. In this section we shall again devote a major share 
of the material to the mathematical theorem known as Stokes’ theorem, but in the 
process we will show that we may obtain Ampère’s circuital law from ∇ × H = J. In 
other words, we are then prepared to obtain the integral form from the point form or 
to obtain the point form from the integral form.

Consider the surface S of Figure 7.16, which is broken up into incremental sur-
faces of area ΔS. If we apply the definition of the curl to one of these incremental 
surfaces, then

  
∮  H · d  L  ΔS   ________ ΔS

   ≐  (∇ × H)  N

where the N subscript again indicates the right-hand normal to the surface. The sub-
script on d LΔS indicates that the closed path is the perimeter of an incremental area 
ΔS. This result may also be written

  
∮   H · d  L  ΔS   ________ ΔS

   ≐ (∇ × H) ·  a  N

or

∮  H · d  L  ΔS   ≐ (∇ × H) ·  a  N   ΔS = (∇ × H) · ΔS

where aN is a unit vector in the direction of the right-hand normal to ΔS.
Now let us determine this circulation for every ΔS comprising S and sum the 

results. As we evaluate the closed line integral for each ΔS, some cancellation 

D7.4. (a) Evaluate the closed line integral of H about the rectangular path 
P1(2, 3, 4) to P2(4, 3, 4) to P3(4, 3, 1) to P4(2, 3, 1) to P1, given H = 3zax − 
2x3az A/m. (b) Determine the quotient of the closed line integral and the area 
enclosed by the path as an approximation to (∇ × H)y. (c) Determine (∇ × H)y 
at the center of the area.

Ans. (a) 354 A; (b) 59 A/m2; (c) 57 A/m2

D7.5. Calculate the value of the vector current density: (a) in rectangular co-
ordinates at PA(2, 3, 4) if H = x2zay − y2xaz; (b) in cylindrical coordinates at 
PB(1.5, 90°, 0.5) if H =   2 __ ρ   (cos  0.2ϕ)  a  ρ  ; (c) in spherical coordinates at PC (2,
30°, 20°) if H =   1 ____ sin  θ    a  θ  .

Ans. (a) −16ax + 9ay + 16az A/m2; (b) 0.055az A/m2; (c) aϕ A/m2
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will occur because every interior wall is covered once in each direction. The only 
boundaries on which cancellation cannot occur form the outside boundary, the path 
enclosing S. Therefore we have

 ∮   H · d L ≡  ∫  
S
   (∇ × H) · d S (30)

where d L is taken only on the perimeter of S.
Equation (30) is an identity, holding for any vector field, and is known as Stokes’

theorem.

Figure 7.16 The sum of the closed line integrals 
about the perimeter of every ΔS is the same as 
the closed line integral about the perimeter of S 
because of cancellation on every interior path.

Surface S

aN

ΔS
ΔS

ΔS

ΔS

EXAMPLE 1 .1 EXAMPLE 7.3

A numerical example may help to illustrate the geometry involved in Stokes’ theo-
rem. Consider the portion of a sphere shown in Figure 7.17. The surface is specified 
by r = 4, 0 ≤ θ ≤ 0.1π, 0 ≤ ϕ ≤ 0.3π, and the closed path forming its perimeter is 
composed of three circular arcs. We are given the field H = 6r sin ϕar + 18r sin θ 
cos ϕaϕ and are asked to evaluate each side of Stokes’ theorem.
Solution. The first path segment is described in spherical coordinates by r = 4, 0 ≤ 
θ ≤ 0.1π, ϕ = 0; the second one by r = 4, θ = 0.1π, 0 ≤ ϕ ≤ 0.3π; and the third by 
r = 4, 0 ≤ θ ≤ 0.1π, ϕ = 0.3π. The differential path element d L is the vector sum 
of the three differential lengths of the spherical coordinate system first discussed in 
Section 1.9,

d L = dr  a  r   + r dθ  a  θ   + r sin θ dϕ  a  ϕ  
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Figure 7.17 A portion of a spherical cap 
is used as a surface and a closed path to 
illustrate Stokes’ theorem.

0.3π

0.1π

y

x

z

r = 4
1

2

3

The first term is zero on all three segments of the path since r = 4 and dr = 0, the 
second is zero on segment 2 as θ is constant, and the third term is zero on both seg-
ments 1 and 3. Thus,

∮   H · d L =  ∫  1    H  θ  r dθ +  ∫  2    H  ϕ  r  sin θ dϕ +  ∫  3    H  θ  r dθ

Because Hθ = 0, we have only the second integral to evaluate,

 ∮   H · d L  =   ∫ 
 0
  
  0.3π

    [18(4) sin 0.1π  cosϕ] 4 sin 0.1π dϕ      
= 

 
 288 sin   2   0.1π  sin 0.3π = 22.2  A

 

We next attack the surface integral. First, we use (26) to find

 ∇ × H =   1 _ 
r sin  θ   (36r sin θ cos θ cos ϕ )  a  r   +   1 _ r   (     1 _ sin  θ   6r cos ϕ − 36r sin θ cos ϕ )   a  θ

Because d S = r2 sin θ dθ dϕ ar, the integral is

 ∫
S
   (∇ × H) · dS =

  

 ∫ 
0
  
   0.3π

       ∫ 
 0
  
   0.1π

    (36 cos θ cos ϕ)16 sin θ dθ dϕ

   =   ∫ 
0
  
   0.3π

    576  (    1 __ 2    sin   2  θ )     |    0  0.1π
  cos ϕ dϕ

   

 = 

 

288   sin   2  0.1π sin 0.3π = 22.2  A
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Next, let us see how easy it is to obtain Ampère’s circuital law from ∇ × H = J. 
We merely have to dot each side by d S, integrate each side over the same (open) 
surface S, and apply Stokes’ theorem:

 ∫
S
   (∇ × H) · d S =  ∫  

S
    J · d S = ∮ H · d L

The integral of the current density over the surface S is the total current I passing 
through the surface, and therefore

∮  H · d L = I

This short derivation shows clearly that the current I, described as being “en-
closed by the closed path,“ is also the current passing through any of the infinite 
number of surfaces that have the closed path as a perimeter.

Stokes’ theorem relates a surface integral to a closed line integral. It should 
be recalled that the divergence theorem relates a volume integral to a closed 
surface integral. Both theorems find their greatest use in general vector proofs. 
As an example, let us find another expression for ∇ · ∇ × A, where A represents 
any vector field. The result must be a scalar (why?), and we may let this scalar 
be T, or

∇ · ∇ × A = T

Multiplying by dv and integrating throughout any volume v,

 ∫  vol   (∇ · ∇ × A) dv =  ∫  vol   T dv

we first apply the divergence theorem to the left side, obtaining

 ∮
S
   (∇ × A) · d S =  ∫  vol   T dv

The left side is the surface integral of the curl of A over the closed surface sur-
rounding the volume v. Stokes’ theorem relates the surface integral of the curl of A 
over the open surface enclosed by a given closed path. If we think of the path as the 
opening of a laundry bag and the open surface as the surface of the bag itself, we 
see that as we gradually approach a closed surface by pulling on the drawstrings, the 
closed path becomes smaller and smaller and finally disappears as the surface be-
comes closed. Hence, the application of Stokes’ theorem to a closed surface produces 
a zero result, and we have

 ∫  vol   T dv = 0

Thus, the results check Stokes’ theorem, and we note in passing that a current of 
22.2 A is flowing upward through this section of a spherical cap.
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Because this is true for any volume, it is true for the differential volume dv,

T dv = 0

and therefore

T = 0

or

 ∇ · ∇ × A ≡ 0 (31)

Equation (31) is a useful identity of vector calculus.6 Of course, it may also be 
proven easily by direct expansion in rectangular coordinates.

We next apply the identity to the non-time-varying magnetic field for which

∇ × H = J

This shows quickly that

∇ · J = 0

which is the same result we obtained earlier in the chapter by using the continuity 
equation.

Before introducing several new magnetic field quantities in the following sec-
tion, we may review our accomplishments at this point. We initially accepted the 
Biot-Savart law as an experimental result,

H = ∮    I d L ×  a  R_______
4π  R   2 

 

and tentatively accepted Ampère’s circuital law, subject to later proof,

∮  H · d L = I

From Ampère’s circuital law the definition of curl led to the point form of this 
same law,

∇ × H = J

We now see that Stokes’ theorem enables us to obtain the integral form of Ampère’s 
circuital law from the point form.

6 This and other vector identities are tabulated in Appendix A.3.

D7.6. Evaluate both sides of Stokes’ theorem for the field H = 6xyax − 3y2ay 
A/m and the rectangular path around the region, 2 ≤ x ≤ 5, −1 ≤ y ≤ 1, z = 0. 
Let the positive direction of d S be az.

Ans. −126 A; −126 A
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7.5  MAGNETIC FLUX AND MAGNETIC 
FLUX DENSITY

In free space, we define the magnetic flux density B as

 B =  μ  0   H  (free space only) (32)

where B is measured in webers per square meter (Wb/m2) or in a newer unit adopted 
in the International System of Units, tesla (T). An older unit that is often used for 
magnetic flux density is the gauss (G), where 1 T or 1Wb/m2 is the same as 10,000 G.  
The constant μ0 is not dimensionless and has the defined value for free space, in 
henrys per meter (H/m), of

  μ  0   = 4π ×  10   −7   H/m (33)

The name given to μ0 is the permeability of free space.
We should note that since H is measured in amperes per meter, the weber is 

dimensionally equal to the product of henrys and amperes. Considering the henry as 
a new unit, the weber is merely a convenient abbreviation for the product of henrys 
and amperes. When time-varying fields are introduced, it will be shown that a weber 
is also equivalent to the product of volts and seconds.

The magnetic-flux-density vector B, as the name weber per square meter im-
plies, is a member of the flux-density family of vector fields. One of the possible 
analogies between electric and magnetic fields7 compares the laws of Biot-Savart 
and Coulomb, thus establishing an analogy between H and E. The relations B = 
μ0H and D = ϵ0E then lead to an analogy between B and D. If B is measured in 
teslas or webers per square meter, then magnetic flux should be measured in webers. 
Magnetic flux is represented by Φ, where Φ is defined as the flux passing through 
any designated area,

 Φ =  ∫  
S
   B · d S  Wb (34)

Our analogy should now remind us of the electric flux Ψ, measured in cou-
lombs, and of Gauss’s law, which states that the total flux passing through any closed 
surface is equal to the charge enclosed,

Ψ =  ∮  
S
   D · d S = Q

The charge Q is the source of the lines of electric flux, and these lines begin and 
terminate on positive and negative charges, respectively.

7 An alternate analogy is presented in Section 9.2.
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No such source has ever been discovered for the lines of magnetic flux. In the 
example of the infinitely long straight filament carrying a direct current I, the H field 
formed concentric circles about the filament. Because B = μ0H, the B field is of the 
same form. The magnetic flux lines are closed and do not terminate on a “magnetic 
charge.“ For this reason Gauss’s law for the magnetic field is

  ∮
S
   B · d S = 0 (35)

and application of the divergence theorem shows us that

 ∇ · B = 0 (36)

Equation (36) is the last of Maxwell’s four equations as they apply to static elec-
tric fields and steady magnetic fields. Collecting these equations, we then have for 
static electric fields and steady magnetic fields

   
∇ ·  D

  
 = 

 
 ρ  v  

∇ × E  =  0
∇ × H  =  

J
∇ · B

  

=

  

0
(37)

To these equations we may add the two expressions relating D to E and B to H 
in free space,

 D =  ϵ  0   E (38)

 B =  μ  0   H (39)

We have also found it helpful to define an electrostatic potential,

E = − ∇V (40)

and we will discuss a potential for the steady magnetic field in Section 7.6. In addi-
tion, we extended our coverage of electric fields to include conducting materials and 
dielectrics, and we introduced the polarization P. A similar treatment will be applied 
to magnetic fields in Chapter 8.

Returning to (37), it may be noted that these four equations specify the diver-
gence and curl of an electric and a magnetic field. The corresponding set of four 
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integral equations that apply to static electric fields and steady magnetic fields is

 ∮
S

 D · d S  =  Q =  ∫  vol    ρ  v   dv

   ∮  E · d L  = 0

 ∮  H · d L  =  I =  ∫  
S
   J · d S

 ∮  B · d S  = 0

(41)

Our study of electric and magnetic fields would have been much simpler if we 
could have begun with either set of equations, (37) or (41). With a good knowledge 
of vector analysis, such as we should now have, either set may be readily obtained 
from the other by applying the divergence theorem or Stokes’ theorem. The various 
experimental laws can be obtained easily from these equations.

As an example of the use of flux and flux density in magnetic fields, let us find 
the flux between the conductors of the coaxial line of Figure 7.8a. The magnetic field 
intensity was found to be

 H  ϕ   =   I ___ 2πρ
    (a < ρ < b)

and therefore

B =  μ  0   H =    μ  0   I ___ 2πρ
    a  ϕ

The magnetic flux contained between the conductors in a length d is the flux 
crossing any radial plane extending from ρ = a to ρ = b and from, say, z = 0 to z = d

Φ =  ∫  
S
   B · d S =  ∫ 

0
  
  d

       ∫ 
a
  
  b

       μ  0   I ___ 2πρ
    a  ϕ   · dρ dz  a  ϕ

or

 Φ =    μ  0   I d _____ 2π
   ln   b__

a  (42)

This expression will be used later to obtain the inductance of the coaxial trans-
mission line.

D7.7. A solid conductor of circular cross section is made of a homogeneous 
nonmagnetic material. If the radius a = 1 mm, the conductor axis lies on the 
z axis, and the total current in the az direction is 20 A, find: (a) Hϕ at ρ =  
0.5 mm; (b) Bϕ at ρ = 0.8 mm; (c) the total magnetic flux per unit length inside 
the conductor; (d ) the total flux for ρ < 0.5 mm; (e) the total magnetic flux 
outside the conductor.

Ans. (a) 1592 A/m; (b) 3.2 mT; (c) 2 μWb/m; (d ) 0.5μWb; (e) ∞
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7.6  THE SCALAR AND VECTOR MAGNETIC 
POTENTIALS

The solution of electrostatic field problems is greatly simplified by the use of the 
scalar electrostatic potential V. Although this potential possesses a very real physical 
significance for us, it is mathematically no more than a stepping-stone which allows 
us to solve a problem by several smaller steps. Given a charge configuration, we may 
first find the potential and then from it the electric field intensity.

We should question whether or not such assistance is available in magnetic 
fields. Can we define a potential function which may be found from the current dis-
tribution and from which the magnetic fields may be easily determined? Can a scalar 
magnetic potential be defined, similar to the scalar electrostatic potential? We will 
show in the next few pages that the answer to the first question is yes, but the second 
must be answered “sometimes.” 

7.6.1 Scalar Potential

We begin by assuming the existence of a scalar magnetic potential, which we desig-
nate Vm, whose negative gradient gives the magnetic field intensity

H = − ∇ V  m  
The selection of the negative gradient provides a closer analogy to the electric poten-
tial and to problems which we have already solved.

This definition must not conflict with our previous results for the magnetic field, 
and therefore

∇ × H = J = ∇ × (−∇ V  m  )
However, the curl of the gradient of any scalar is identically zero, a vector identity 
the proof of which is left for a leisure moment. Therefore, we see that if H is to be 
defined as the gradient of a scalar magnetic potential, then current density must be 
zero throughout the region in which the scalar magnetic potential is so defined. We 
then have

 H = − ∇ V  m    (J = 0) (43)

Because many magnetic problems involve geometries in which the current- 
carrying conductors occupy a relatively small fraction of the total region of interest, it is 
evident that a scalar magnetic potential can be useful. The scalar magnetic potential 
is also applicable in the case of permanent magnets. The dimensions of Vm are obvi-
ously amperes.

This scalar potential also satisfies Laplace’s equation. In free space,

∇ · B =  μ  0   ∇ · H = 0

and hence

 μ  0   ∇ · (− ∇ V  m  ) = 0
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or

  ∇   2   V  m   = 0 (J = 0) (44)

We will see later that Vm continues to satisfy Laplace’s equation in homogeneous 
magnetic materials; it is not defined in any region in which current density is present.

Although we will consider the scalar magnetic potential to a much greater ex-
tent in Chapter 8, when we introduce magnetic materials and discuss the magnetic 
circuit, one difference between V and Vm should be pointed out now: Vm is not a 
single-valued function of position. The electric potential V is single-valued; once a 
zero reference is assigned, there is only one value of V associated with each point 
in space. Such is not the case with Vm. Consider the cross section of the coaxial line 
shown in Figure 7.18. In the region a < ρ < b, J = 0, and we may establish a scalar 
magnetic potential. The value of H is

H =   I ___ 2πρ
    a  ϕ

where I is the total current flowing in the az direction in the inner conductor. We find 
Vm by integrating the appropriate component of the gradient. Applying (43),

  I ___ 2πρ
   = − ∇ V  m     |    ϕ   = −   1 __ ρ     ∂  V  m______

∂ ϕ 

or

  ∂ V  m   ______ ∂ ϕ   = −   I __
2π

Figure 7.18 The scalar magnetic potential Vm is 
a multivalued function of ϕ in the region a < ρ < b. 
The electrostatic potential is always single valued.

x

ϕ

y

ρ = c

ρ = a

P(ρ, π/4, 0)

Iout

ρ = b
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Thus,

 V  m   = −   I __ 2π
   ϕ

where the constant of integration has been set equal to zero. What value of poten-
tial do we associate with point P, where ϕ = π/4? If we let Vm be zero at ϕ = 0 and 
proceed counterclockwise around the circle, the magnetic potential goes negative 
linearly. When we have made one circuit, the potential is −I, but that was the point 
at which we said the potential was zero a moment ago. At P, then, ϕ = π/4, 9π/4, 
17π/4, . . . , or −7π/4, −15π/4, −23π/4, . . . , or

 V  m P   =   I __ 2π
     (   2n −    1 _ 4     )   π (n = 0, ±1, ±2, . . .)

or

 V  m P   = I  (   n −    1 _ 8     )    (n = 0, ±1, ±2, . . . )

The reason for this multivaluedness may be shown by a comparison with the 
electrostatic case. There, we know that

    ∇ × E   =  0∮  E · d L  =  0

and therefore the line integral

 V  ab   = −  ∫ 
b
  
   a

    E · d L

is independent of the path. In the magnetostatic case, however,

∇ × H = 0 (wherever  J = 0)

but

∮  H · d L = I

even if J is zero along the path of integration. Every time we make another complete 
lap around the current, the result of the integration increases by I. If no current I 
is enclosed by the path, then a single-valued potential function may be defined. In 
general, however,

  V  m,ab   = −  ∫ 
b
  
   a

    H · d L  (specified  path) (45)

where a specific path or type of path must be selected. We should remember that the 
electrostatic potential V arises from a conservative E field; the magnetic field H  
is generally not conservative. In our coaxial problem, let us erect a barrier8 at  

8 This corresponds to the more precise mathematical term “branch cut.”
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ϕ = π; we agree not to select a path that crosses this plane. Therefore, we cannot 
encircle I, and a single-valued potential is possible. The result is seen to be

 V  m   = −   I __ 2π
   ϕ (− π < ϕ < π)

and

  V  m P   = −   I _
8  (  ϕ =   π _ 4   )

The scalar magnetic potential is evidently the quantity whose equipotential sur-
faces will form curvilinear squares with the streamlines of H in Figure 7.4. This is 
one more facet of the analogy between electric and magnetic fields about which we 
will have more to say in Chapter 8.

7.6.2 Vector Potential

We now temporarily leave the scalar magnetic potential and investigate a vector mag-
netic potential. This vector field is one which is extremely useful in studying radia-
tion from antennas (as we will find in Chapter 14) as well as radiation leakage from 
transmission lines, waveguides, and microwave ovens. The vector magnetic potential 
may be used in regions where the current density is zero or nonzero, and we will also 
be able to extend it to the time-varying case later.

Our choice of a vector magnetic potential is indicated by noting that

∇ · B = 0

Next, a vector identity that we proved in Section 7.4 shows that the divergence of the 
curl of any vector field is zero. Therefore, we select

 B = ∇ × A (46)

where A signifies a vector magnetic potential, and we automatically satisfy the con-
dition that the magnetic flux density shall have zero divergence. The H field is

H =   1 __  μ  0     ∇ × A

and

∇ × H = J =   1 __  μ  0     ∇ × ∇ × A

The curl of the curl of a vector field is not zero and is given by a fairly complicated 
expression,9 which we need not know now in general form. In specific cases for 
which the form of A is known, the curl operation may be applied twice to determine 
the current density.

9 ∇ × ∇ × A ≡ ∇ (∇ · A) − ∇2A. In rectangular coordinates, it may be shown that ∇2A ≡ ∇2Axax + 
∇2Ayay + ∇2Azaz. In other coordinate systems, ∇2A may be found by evaluating the second-order partial 
derivatives in ∇2A = ∇(∇ · A) − ∇ × ∇ × A.
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Equation (46) serves as a useful definition of the vector magnetic potential A. 
Because the curl operation implies differentiation with respect to a length, the units 
of A are webers per meter.

As yet we have seen only that the definition for A does not conflict with any 
previous results. It still remains to show that this particular definition can help us 
to determine magnetic fields more easily. We certainly cannot identify A with any 
easily measured quantity or history-making experiment.

We will show in Section 7.7 that, given the Biot-Savart law, the definition of B, 
and the definition of A, A may be determined from the differential current elements by

 A = ∮     μ  0   I d L_
4π R (47)

The significance of the terms in (47) is the same as in the Biot-Savart law; a direct 
current I flows along a filamentary conductor of which any differential length d L is 
at distance R from the point at which A is to be found. Because we have defined A only 
through specification of its curl, it is possible to add the gradient of any scalar field to 
(47) without changing B or H, for the curl of the gradient is identically zero. In steady 
magnetic fields, it is customary to set this added term equal to zero.

The fact that A is a vector magnetic potential is more apparent when (47) is 
compared with the similar expression for the electrostatic potential,

V = ∫     ρ  L   d L______
4π  ϵ  0   R

Each expression is the integral along a line source, in one case line charge and in the 
other case line current; each integrand is inversely proportional to the distance from 
the source to the point of interest; and each involves a characteristic of the medium 
(here free space), the permeability or the permittivity.

Equation (47) may be written in differential form,

d A =    μ  0   I d L_____
4πR

 (48)

if we again agree not to attribute any physical significance to any magnetic fields we 
obtain from (48) until the entire closed path in which the current flows is considered.

With this reservation, let us go right ahead and consider the vector magnetic 
potential field about a differential filament. We locate the filament at the origin in 
free space, as shown in Figure 7.19, and allow it to extend in the positive z direction 
so that d L = dz az. We use cylindrical coordinates to find dA at the point ( ρ, ϕ, z):

dA =    μ  0   I dz   a  z   ________
4π   √ 

______
 ρ   2  +  z   2  

or

 d A  z   =    μ  0   I dz _______ 
4π   √ 

_____
 ρ   2  +  z   2  

    d   A  ϕ   = 0 d   A  ρ   = 0  (49)
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We note that the direction of dA is the same as that of I d L. Each small section 
of a current-carrying conductor produces a contribution to the total vector magnetic 
potential which is in the same direction as the current flow in the conductor. The 
magnitude of the vector magnetic potential varies inversely with the distance to the 
current element, being strongest in the neighborhood of the current and gradually 
falling off to zero at distant points. Skilling10 describes the vector magnetic potential 
field as “like the current distribution but fuzzy around the edges, or like a picture of 
the current out of focus.”

In order to find the magnetic field intensity, we must take the curl of (49) in 
cylindrical coordinates, leading to

 d H =   1 _  μ  0     ∇ × dA =   1 _  μ  0     (  −     ∂ d  A  z   _ ∂ ρ   )   a  ϕ
or

d H =   I dz ___ 4π
     ρ ________ 
 ( ρ   2  +  z   2 )   3/2 

     a  ϕ  

which is easily shown to be the same as the value given by the Biot-Savart law.
Expressions for the vector magnetic potential A can also be obtained for a cur-

rent source which is distributed. For a current sheet K, the differential current ele-
ment becomes

I d L = K d  S
In the case of current flow throughout a volume with a density J, we have

I d L = J dv

Figure 7.19 The differential current 
element I dzaz at the origin establishes the 
differential vector magnetic potential field, 

dA =    
μ0#∕dz#az __________ 

4π# √ ______
ρ2 + % 2  

    at P( ρ, ϕ, z).

ρ
ϕ

z

y

x

z

P(ρ, ϕ, z)ρ2  + z2R =

IdL = Idz az

Free space

10 See the References at the end of the chapter.
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In each of these two expressions the vector character is given to the current. For the 
filamentary element it is customary, although not necessary, to use I d L instead of 
I dL. Since the magnitude of the filamentary element is constant, we have chosen 
the form which allows us to remove one quantity from the integral. The alternative 
expressions for A are then

 A =  ∫  
S
      μ  0   K d S_

4π R (50)

and

 A =  ∫  vol     
 μ  0   J dv_

4π R (51)

Equations (47), (50), and (51) express the vector magnetic potential as an inte-
gration over all of its sources. From a comparison of the form of these integrals with 
those which yield the electrostatic potential, it is evident that once again the zero ref-
erence for A is at infinity, for no finite current element can produce any contribution 
as R → ∞. We should remember that we very seldom used the similar expressions 
for V; too often our theoretical problems included charge distributions that extended 
to infinity, and the result would be an infinite potential everywhere. Actually, we cal-
culated very few potential fields until the differential form of the potential equation 
was obtained, ∇2V = −ρv  /ϵ, or better yet, ∇2V = 0. We were then at liberty to select 
our own zero reference.

The analogous expressions for A will be derived in the next section, and an 
example of the calculation of a vector magnetic potential field will be completed.

D7.8. A current sheet, K = 2.4az A/m, is present at the surface ρ = 1.2 in 
free space. (a) Find H for ρ > 1.2. Find Vm at P(ρ = 1.5, ϕ = 0.6π, z = 1) if:  
(b) Vm = 0 at ϕ = 0 and there is a barrier at ϕ = π; (c) Vm = 0 at ϕ = 0 and 
there is a barrier at ϕ = π/2; (d  ) Vm = 0 at ϕ = π and there is a barrier at ϕ = 0;  
(e) Vm = 5 V at ϕ = π and there is a barrier at ϕ = 0.8 π.

Ans. (a)    2.88 ____ ρ    aϕ; (b) −5.43 V; (c) 12.7 V; (d) 3.62 V; (e) −9.48 V

D7.9. The value of A within a solid nonmagnetic conductor of radius a 
carrying a total current I in the az direction may be found easily. Using the 
known value of H or B for ρ < a, then (46) may be solved for A. Select A = ( μ0I 
ln 5)/2π at ρ = a (to correspond with an example in the next section) and find 
A at ρ =: (a) 0; (b) 0.25a; (c) 0.75a; (d  ) a.

Ans. (a) 0.422I  az    μWb/m; (b) 0.416I  az    μWb/m; (c) 0.366I  az    μWb/m; (d ) 0.322I  az    μWb/m
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7.7  DERIVATION OF THE STEADY-MAGNETIC-
FIELD LAWS

We will now supply the promised proofs of the several relationships between the 
magnetic field quantities. All these relationships may be obtained from the defini-
tions of H,

 H = ∮    I d L ×  a  R_______
4π  R   2 

   (3)

of B (in free space),
B =  μ  0   H (32)

and of A,

B = ∇ × A (46)
We first assume that we may express A by the last equation of Section 7.6,

 A =  ∫  vol     
 μ  0   J dv_____

4π R   (51)

and then demonstrate the correctness of (51) by showing that (3) follows. First, we 
should add subscripts to indicate the point at which the current element is located (x1, 
y1, z1) and the point at which A is given (x2, y2, z2). The differential volume element 
dv is then written dv1 and in rectangular coordinates would be dx1 dy1 dz1. The vari-
ables of integration are x1, y1, and z1. Using these subscripts, then,

  A  2   =  ∫  vol     
 μ  0    J  1   d  v  1______

4π   R  12  
 (52)

From (32) and (46) we have

H =   B __  μ  0     =   ∇ × A_____ μ  0   (53)

To show that (3) follows from (52), it is necessary to substitute (52) into (53). This 
step involves taking the curl of A2, a quantity expressed in terms of the variables x2, 
y2, and z2, and the curl therefore involves partial derivatives with respect to x2, y2, and 
z2. We do this, placing a subscript on the del operator to remind us of the variables 
involved in the partial differentiation process,

 H  2   =    ∇  2   ×  A  2   ______  μ  0     =   1 __  μ  0      ∇  2   ×  ∫  vol     
 μ  0    J  1   d v  1______
4π   R  12  

 

The order of partial differentiation and integration is immaterial, and μ0/4π is 
constant, allowing us to write

 H  2   =   1 __ 4π
    ∫  vol    ∇  2   ×   J1 d  v  1____

 R  12  
 

The curl operation within the integrand represents partial differentiation with 
respect to x2, y2, and z2. The differential volume element dv1 is a scalar and a function 
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only of x1, y1, and z1. Consequently, it may be factored out of the curl operation as 
any other constant, leaving

  H  2   =   1 _ 4π
       ∫  vol     (  ∇  2   ×    J  1   _  R  12  

   )  d v  1  (54)

The curl of the product of a scalar and a vector is given by an identity which may 
be checked by expansion in rectangular coordinates or obtained from Appendix A.3,

∇ × (S V) ≡ (∇S ) × V + S(∇ × V) (55)
This identity is used to expand the integrand of (54),

 H  2   =   1 _ 4π
    ∫vol   [ ( ∇  2     1 _  R  12  

  )  ×  J  1   +   1 _  R  12  
   ( ∇  2   ×  J  1  )]    d v  1  (56)

The second term of this integrand is zero because ∇2 × J1 indicates partial deriv-
atives of a function of x1, y1, and z1, taken with respect to the variables x2, y2, and z2; 
the first set of variables is not a function of the second set, and all partial derivatives 
are zero.

The first term of the integrand may be determined by expressing R12 in terms of 
the coordinate values,

 R  12   =  √ 
_________________________

    ( x  2   −  x  1  )   2  +  (  y  2   −  y  1  )   2  +  ( z  2   −  z  1  )   2

and taking the gradient of its reciprocal. Problem 7.42 shows that the result is

 ∇  2     1 ___
 R  12

= −    R  12   ___ 
 R  12  3  

   = −    a  R12 ____
 R  12  2  

 

Substituting this result into (56), we have

 H  2   = −   1 __ 4π
    ∫  vol     

 a  R12   ×  J  1 _______ 
 R  12  2  

   d v  1  

or

 H  2   =  ∫  vol     
 J  1   ×  a  R12 _______ 

4π  R  12  2  
   d v  1

which is the equivalent of (3) in terms of current density. Replacing J1 dv1 by I1 d  L1, 
we may rewrite the volume integral as a closed line integral,

 H  2   = ∮     I  1   d  L  1   ×  a  R12 _________
4π  R  12  2  

 

Equation (51) is therefore correct and agrees with the three definitions (3), (32), 
and (46).

Next we will prove Ampère’s circuital law in point form,

∇ × H = J (28)
Combining (28), (32), and (46), we obtain

 ∇ × H = ∇ ×   B __  μ  0     =   1 __  μ  0     ∇ × ∇ × A  (57)
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We now need the expansion in rectangular coordinates for ∇ × ∇ × A. Performing 
the indicated partial differentiations and collecting the resulting terms, we may write 
the result as

 ∇ × ∇ × A ≡ ∇(∇ · A) −  ∇   2  A (58)

where

  ∇   2  A ≡  ∇   2   A  x    a  x   +  ∇   2   A  y    a  y   +  ∇   2   A  z    a  z   (59)

Equation (59) is the definition (in rectangular coordinates) of the Laplacian of a
vector.

Substituting (58) into (57), we have

∇ × H =   1 __  μ  0     [∇(∇ · A) −  ∇   2  A] (60)

and now require expressions for the divergence and the Laplacian of A.
We may find the divergence of A by applying the divergence operation to (52),

 ∇  2   ·  A  2   =    μ  0   __ 4π
      ∫  vol    ∇  2   ·   

 J  1   ___  R  12  
   d v  1   (61)

and using the vector identity (44) of Section 4.8,

∇ · (S V) ≡ V · (∇S) + S(∇ · V)

Thus,

  ∇  2   ·  A  2   =    μ  0   _ 4π
      ∫  vol       [ J  1   ·  ( ∇  2     1 _  R  12  

  )  +   1 _  R  12  
   ( ∇  2   ·  J  1  )]   d v  1 (62)

The second part of the integrand is zero because J1 is not a function of x2, y2, 
and z2.

We have already used the result that  ∇  2  (1∕ R  12  ) = −  R  12   ∕  R  12  3  , and it is just as 
easily shown that

 ∇  1     1 ___
 R  12

=    R  12 ___ 
 R  12  3  

  

or that

 ∇  1     1 ___
 R  12

= −  ∇  2     1 ___  R  12  
  

Equation (62) can therefore be written as

  ∇  2   ·  A  2   =    μ  0   _ 4π
      ∫  vol    [  −  J  1   ·  (   ∇  1     1 _  R  12  

   )   ]  d  v  1   

and the vector identity applied again,

  ∇  2   ·  A  2   =    μ  0   _ 4π
       ∫  vol   [    1 _  R  12  

   ( ∇  1   ·  J  1  ) −  ∇  1   ·  (      J  1   _  R  12  
   )   ]   d  v  1 (63)
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Because we are concerned only with steady magnetic fields, the continuity equa-
tion shows that the first term of (63) is zero. Application of the divergence theorem 
to the second term gives

 ∇  2   ·  A  2   = −    μ  0   __ 4π
      ∮   S  1        

 J  1   ___
 R  12

· d  S  1

where the surface S1 encloses the volume throughout which we are integrating. This 
volume must include all the current, for the original integral expression for A was an 
integration such as to include the effect of all the current. Because there is no current 
outside this volume (otherwise we should have had to increase the volume to include 
it), we may integrate over a slightly larger volume or a slightly larger enclosing sur-
face without changing A. On this larger surface the current density J1 must be zero, 
and therefore the closed surface integral is zero, since the integrand is zero. Hence 
the divergence of A is zero.

In order to find the Laplacian of the vector A, let us compare the x component of 
(51) with the similar expression for electrostatic potential,

 A  x   =  ∫  vol     
 μ  0    J  x   dv _____ 4π R   V =  ∫  vol     

 ρ  v   dv _____
4π  ϵ  0   R

We note that one expression can be obtained from the other by a straightforward 
change of variable, Jx for ρv, μ0 for 1/ϵ0, and Ax for V. However, we have derived 
some additional information about the electrostatic potential which we shall not have 
to repeat now for the x component of the vector magnetic potential. This takes the 
form of Poisson’s equation,

 ∇   2  V = −    ρ  v__ ϵ  0
which becomes, after the change of variables,

 ∇   2   A  x   = −  μ  0    J  x  

Similarly, we have
 ∇   2   A  y   = −  μ  0    J  y  

and
 ∇   2   A  z   = −  μ  0    J  z  

or

  ∇   2  A = −  μ  0   J  (64)

Returning to (60), we can now substitute for the divergence and Laplacian of A 
and obtain the desired answer,

∇ × H = J (28)
We have already shown the use of Stokes’ theorem in obtaining the integral form of 
Ampère’s circuital law from (28) and need not repeat that labor here.

hay28159_ch07_182-231.indd   222 25/11/17   11:42 am



C H A P T E R  7  The Steady Magnetic Field 223

We thus have succeeded in showing that every result we have essentially pulled 
from thin air11 for magnetic fields follows from the basic definitions of H, B, and 
A. The derivations are not simple, but they should be understandable on a step-
by-step basis.

Finally, let us return to (64) and make use of this formidable second-order vec-
tor partial differential equation to find the vector magnetic potential in one simple 
example. We select the field between conductors of a coaxial cable, with radii of a 
and b as usual, and current I in the az direction in the inner conductor. Between the 
conductors, J = 0, and therefore

 ∇   2  A = 0
We have already been told (and Problem 7.44 gives us the opportunity to check the 
results for ourselves) that the vector Laplacian may be expanded as the vector sum of 
the scalar Laplacians of the three components in rectangular coordinates,

 ∇   2  A =  ∇   2   A  x    a  x   +  ∇   2   A  y    a  y   +  ∇   2   A  z    a  z  

but such a relatively simple result is not possible in other coordinate systems. That is, 
in cylindrical coordinates, for example,

 ∇   2  A ≠  ∇   2   A  ρ    a  ρ   +  ∇   2   A  ϕ    a  ϕ   +  ∇   2   A  z    a  z  

However, it is not difficult to show for cylindrical coordinates that the z component 
of the vector Laplacian is the scalar Laplacian of the z component of A, or

  ∇   2  A   |    z   =  ∇   2   A  z  (65)
and because the current is entirely in the z direction in this problem, A has only a z 
component. Therefore,

 ∇   2   A  z   = 0
or

   1 _ ρ     ∂ _ ∂ ρ   (  ρ   ∂  A  z   _ ∂ ρ   )   +   1 _ 
 ρ   2 

      ∂   2   A  z _ 
∂  ϕ   2 

   +    ∂   2   A  z   _ 
∂  z   2 

   = 0 

Thinking symmetrical thoughts about (51) shows us that Az is a function only of ρ, 
and thus

   1 _ ρ     d _ 
dρ

   (  ρ   d  A  z   _ 
dρ

   )   = 0

We have solved this equation before, and the result is

 A  z   =  C  1   ln  ρ +  C  2  

If we choose a zero reference at ρ = b, then

 A  z   =  C  1   ln
ρ__
b

11 Free space.
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In order to relate C1 to the sources in our problem, we may take the curl of A,

∇ × A = −   ∂  A  z   ___ ∂ ρ    a  ϕ   = −    C  1   __ ρ    a  ϕ   = B

obtain H,

H = −    C  1   ___  μ  0   ρ    a  ϕ
and evaluate the line integral,

∮   H · d L = I =  ∫ 
0
  
  2π

   −    C  1   ___  μ  0   ρ    a  ϕ   · ρ    d   ϕ      a  ϕ   = −   2π  C  1____ μ  0   

Thus

 C  1   = −    μ  0   I___
2π

 

or

  A  z   =    μ  0   I ___ 2π
    ln    b__

ρ  (66)

and

 H  ϕ   =   I ___
2πρ

as before. A plot of Az versus ρ for b = 5a is shown in Figure 7.20; the decrease of  
  |   A  |    with distance from the concentrated current source that the inner conductor rep-
resents is evident. The results of Problem D7.9 have also been added to Figure 7.20. 
The extension of the curve into the outer conductor is left as Problem 7.43.

It is also possible to find Az between conductors by applying a process some of 
us informally call “uncurling.” That is, we know H or B for the coax, and we may 

Figure 7.20 The vector magnetic potential is shown 
within the inner conductor and in the region between 
conductors for a coaxial cable with b = 5a carrying I in 
the az direction. Az = 0 is arbitrarily selected at ρ = b.

ρ/a

µ 0 I
π

µ 0 I
2 πA z

 (W
b/m

)

0
0

1 2 3 4 5
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therefore select the ϕ component of ∇ × A = B and integrate to obtain Az. Try it, 
you’ll like it!

D7.10. Equation (66) is obviously also applicable to the exterior of any 
conductor of circular cross section carrying a current I in the az direction in 
free space. The zero reference is arbitrarily set at ρ = b. Now consider two 
conductors, each of 1 cm radius, parallel to the z axis with their axes lying 
in the x = 0 plane. One conductor whose axis is at (0, 4 cm, z) carries 12 A 
in the az direction; the other axis is at (0, −4 cm, z) and carries 12 A in the 
−az direction. Each current has its zero reference for A located 4 cm from 
its axis. Find the total A field at: (a) (0, 0, z); (b) (0, 8 cm, z); (c) (4 cm, 
4 cm, z); (d) (2 cm, 4 cm, z).

Ans. (a) 0; (b) 2.64 μWb/m; (c) 1.93 μWb/m; (d) 3.40 μWb/m
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CHAPTER 7 PROBLEMS
7.1 (a) Find H in rectangular components at P(2, 3, 4) if there is a current 

filament on the z axis carrying 8 mA in the az direction. (b) Repeat if the 
filament is located at x = −1, y = 2. (c) Find H if both filaments are present.

7.2 A filamentary conductor is formed into an equilateral triangle with sides of 
length ℓ carrying current I. Find the magnetic field intensity at the center 
of the triangle.

7.3 A circular current filament lies in the xy plane with its center at the origin. 
The loop carries current I in the positive aϕ direction and is of radius a. 
Find H everywhere on the z axis. 

7.4 Two circular current loops are centered on the z axis at z = ±h. Each loop 
has radius a and carries current I in the aϕ direction. (a) Find H on the z 
axis over the range −h < z < h. Take I = 1 A and plot |H| as a function of 
z/a if (b) h = a/4; (c) h = a/2; (d) h = a. Which choice for h gives the most 
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uniform field? These are called Helmholtz coils (of a single turn each in 
this case) and are used in providing uniform fields.

7.5 The parallel filamentary conductors shown in Figure 7.21 lie in free space. 
Plot |H| versus y, −4 < y < 4, along the line x = 0, z = 2. 

7.6 A disk of radius a lies in the xy plane, with the z axis through its 
center. Surface charge of uniform density ρs lies on the disk, which rotates 
about the z axis at angular velocity Ω rad/s. Find H at any point on the 
z axis.

7.7 A filamentary conductor carrying current I in the az direction extends along 
the entire negative z axis. At z = 0 it connects to a copper sheet that fills 
the x > 0, y > 0 quadrant of the xy plane. (a) Set up the Biot-Savart law and 
find H everywhere on the z axis; (b) repeat part (a), but with the copper 
sheet occupying the entire xy plane (Hint: express aϕ in terms of ax and ay 
and angle ϕ in the integral).

7.8 For the finite-length current element on the z axis, as shown in Figure 7.5, 
use the Biot-Savart law to derive Eq. (9) of Section 7.1.

7.9 A uniform surface charge of density ρs = ρ0 C/m2 is in the shape of a 
sphere of radius a. The sphere rotates about the z axis at angular velocity 
Ω rad/s. Find (a) the total current flowing, and (b) H at the origin. Make 
appropriate use of Eq. (6).

7.10 A uniform volume charge of density ρv = ρ0 C/m3 is in the shape of a 
sphere of radius a. The sphere rotates about the z axis at angular velocity Ω 
rad/s. Find a) the total current flowing, and b) H at the origin. Make 
appropriate use of Eq. (7).

x

1 A
1 A

(0, 1, 0)
(0, –1, 0)

y

z

Figure 7.21 See Problem 7.5.
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7.11 A solenoid of radius a and of length L is oriented with its axis along the z axis 
over the range −d/2 < z < d/2. The coil is tightly wound with wire having 
density n turns per meter of length, where each turn carries current I. (a) Find 
H at the origin. Begin with the current loop field (solution to Problem 7.3) 
modified by replacing the current in that result with Is = nI dz. Is is the current 
in a circular band of length dz on the coil; the solenoid is made up of these 
bands of current over the entire length. (b) Show that the midpoint field of 
part a reduces to nI az as the solenoid length approaches infinity.

7.12 In Figure 7.22, let the regions 0 < z < 0.3 m and 0.7 < z < 1.0 m be conducting 
slabs carrying uniform current densities of 10 A/m2 in opposite directions as 
shown. Find H at z =: (a) −0.2; (b) 0.2; (c) 0.4; (d  ) 0.75; (e) 1.2 m.

7.13 A hollow cylindrical shell of radius a is centered on the z axis and carries 
a uniform surface current density of Ka aϕ. Using Ampere’s circuital law: 
(a) Show that H is not a function of ϕ or z. (b) Show that Hϕ and Hρ are 
everywhere zero. (c) Show that Hz = 0 for ρ > a. (d  ) Show that Hz = Ka for 
ρ < a. (e) A second shell, ρ = b, carries a current Kb aϕ. Find H everywhere. 

7.14 A toroid having a cross section of rectangular shape is defined by the 
following surfaces: the cylinders ρ = 2 and ρ = 3 cm, and the planes z = 1 
and z = 2.5 cm. The toroid carries a surface current density of −50az A/m 
on the surface ρ = 3 cm. Find H at the point P(ρ, ϕ, z): (a) PA(1.5 cm, 0, 
2 cm); (b) PB(2.1 cm, 0, 2 cm); (c) PC(2.7 cm, π/2, 2 cm); (d  ) PD (3.5 cm, 
π/2, 2 cm).

7.15 A hollow spherical conducting shell of radius a has filamentary connections 
made at the top (r = a, θ = 0) and bottom (r = a, θ = π). A direct current 
I flows down the upper filament, down the spherical surface, and out the 

Figure 7.22 See Problem 7.12.

z

y
0Air

Air

Air

0.3

0.7

1.0

10 A/m2

10 A/m2
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lower filament. Find H in spherical coordinates (a) inside and (b) outside 
the sphere.

7.16 A current filament carrying I in the −az direction lies along the entire 
positive z axis. At the origin, it connects to a conducting sheet that forms 
the xy plane. (a) Find K in the conducting sheet. (b) Use Ampere’s circuital 
law to find H everywhere for z > 0. (c) Find H for z < 0.

7.17 A solid cylindrical wire of radius a carries current I in the positive z 
direction. The wire conductivity is radially dependent and is given by σ (ρ) =  
σ0 ρ S/m, where σ0 is a constant. The electric field intensity, constant 
throughout the wire volume, is given by E = E0 az V/m. (a) Find J in terms 
of E0, σ0, and ρ. (b) Find E0 in terms of I. (c) Express J in terms of I and 
other parameters, excluding E0. (d ) Using your part c result, find H inside 
and outside the wire. (e) Verify your part d result by applying ∇ × H = J.

7.18 A wire of 3 mm radius is made up of an inner material (0 < ρ < 2 mm) for 
which σ = 107 S/m, and an outer material (2 mm < ρ < 3 mm) for which 
σ = 4 × 107 S/m. If the wire carries a total current of 100 mA dc, determine 
H everywhere as a function of ρ.

7.19 In spherical coordinates, the surface of a solid conducting cone is described by 
θ = π/4 and a conducting plane by θ = π/2. Each carries a total current I. The 
current flows as a surface current radially inward on the plane to the vertex 
of the cone, and then flows radially outward throughout the cross section of 
the conical conductor. (a) Express the surface current density as a function of 
r. (b) Express the volume current density inside the cone as a function of r.
(c) Determine H as a function of r and θ in the region between the cone and 
the plane. (d  ) Determine H as a function of r and θ inside the cone. 

7.20 A solid conductor of circular cross section with a radius of 5 mm has a 
conductivity that varies with radius. The conductor is 20 m long, and 
there is a potential difference of 0.1 V dc between its two ends. Within the 
conductor, H = 105 ρ2 aϕ A/m. (a) Find σ as a function of ρ. (b) What is the 
resistance between the two ends?

7.21 A cylindrical wire of radius a is oriented with the z axis down its center line.  
The wire carries a nonuniform current down its length of density J = bρ  
az A/m2 where b is a constant. (a) What total current flows in the wire?  
(b) Find Hin (0 < ρ < a) as a function of ρ; (c) find Hout ( ρ > a), as a function 
of ρ; (d ) verify your results of parts (b) and (c) by using ∇ × H = J. 

7.22 A solid cylinder of radius a and length L, where L ≫ a, contains volume 
charge of uniform density ρ0 C/m3. The cylinder rotates about its axis (the 
z axis) at angular velocity Ω rad/s. (a) Determine the current density J as a 
function of position within the rotating cylinder. (b) Determine H on-axis by 
applying the results of Problem 7.6. (c) Determine the magnetic field intensity 
H inside and outside. (d ) Check your result for part c by taking the curl of H.
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7.23 A solid conductor is in the shape of a circular cylinder with its axis along 
the z axis. A uniform electric field E = E0 az V/m is applied, resulting in a 
uniform magnetic field inside the conductor, H = H0 aϕ, where E0 and H0 
are constants. (a) Using the cylindrical coordinate form of ∇ × H = J, 
determine the required functional form of the medium conductivity, σ, in 
order for the preceding condition to be met. (b) Repeat part a, but use the 
spherical coordinate form of ∇ × H = J.

7.24 Infinitely long filamentary conductors are located in the y = 0 plane at x = 
n meters where n = 0, ±1, ±2, . . . Each carries 1 A in the az direction. (a) 
Find H on the y axis. As a help,

  ∑ 
n=1

  
∞

      y _____ 
 y   2  +  n   2 

   =   π __ 2   −   1 __ 2y
   +   π _____

 e   2πy  − 1

(b) Compare your result for part a to that obtained if the filaments are 
replaced by a current sheet in the y = 0 plane that carries surface current 
density K = 1az A/m.

7.25 When x, y, and z are positive and less than 5, a certain magnetic field 
intensity may be expressed as H = [x2yz/(y + 1)]ax + 3x2 z2 ay − [xyz2/(y + 
1)]az. Find the total current in the ax direction that crosses the strip x = 2, 
1 ≤ y ≤ 4, 3 ≤ z ≤ 4, by a method utilizing: (a) a surface integral; (b) a 
closed line integral. 

7.26 Consider a sphere of radius r = 4 centered at (0, 0, 3). Let S1 be that portion 
of the spherical surface that lies above the xy plane. Find ∫S1

 (∇ × H) · d S
if H = 3ρ aϕ in cylindrical coordinates.

7.27 The magnetic field intensity is given in a certain region of space as H = 
[(x + 2y)/z2]ay + (2/z)az A/m. (a) Find ∇ × H. (b) Find J. (c) Use J to find 
the total current passing through the surface z = 4, 1 ≤ x ≤ 2, 3 ≤ z ≤ 5, in 
the az direction. (d  ) Show that the same result is obtained using the other 
side of Stokes’ theorem.

7.28 Given H = (3r2/sin θ)aθ + 54r cos θaϕ A/m in free space: (a) Find the total 
current in the aθ direction through the conical surface θ = 20°, 0 ≤ ϕ ≤ 2π, 
0 ≤ r ≤ 5, by whatever side of Stokes’ theorem you like the best. (b) Check 
the result by using the other side of Stokes’ theorem.

7.29 A long, straight, nonmagnetic conductor of 0.2 mm radius carries a 
uniformly distributed current of 2 A dc. (a) Find J within the conductor.  
(b) Use Ampère’s circuital law to find H and B within the conductor.  
(c) Show that ∇ × H = J within the conductor. (d) Find H and B outside 
the conductor. (e) Show that ∇ × H = J outside the conductor.

7.30 (An inversion of Problem 7.20.) A solid, nonmagnetic conductor of circular 
cross section has a radius of 2 mm. The conductor is inhomogeneous, 
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with σ = 106 (1 + 106 ρ2) S/m. If the conductor is 1 m in length and has a 
voltage of 1 mV between its ends, find: (a) H inside; (b) the total magnetic 
flux inside the conductor.

7.31 The cylindrical shell defined by 1 cm < ρ < 1.4 cm consists of a nonmagnetic 
conducting material and carries a total current of 50 A in the az direction. 
Find the total magnetic flux crossing the plane ϕ = 0, 0 < z < 1: (a) 0 < 
ρ < 1.2 cm; (b) 1.0 cm < ρ < 1.4 cm; (c) 1.4 cm < ρ < 20 cm. 

7.32 The free space region defined by 1 < z < 4 cm and 2 < ρ < 3 cm is a toroid 
of rectangular cross section. Let the surface at ρ = 3 cm carry a surface 
current K = 2az kA/m. (a) Specify the current densities on the surfaces at  
ρ = 2 cm, z = 1 cm, and z = 4 cm. (b) Find H everywhere. (c) Calculate the 
total flux within the toroid.

7.33 Use an expansion in rectangular coordinates to show that the curl of the 
gradient of any scalar field G is identically equal to zero.

7.34 A filamentary conductor on the z axis carries a current of 16 A in the az 
direction, a conducting shell at ρ = 6 carries a total current of 12 A in the  
−az direction, and another shell at ρ = 10 carries a total current of 4 A in 
the −az direction. (a) Find H for 0 < ρ < 12. (b) Plot Hϕ versus ρ. (c) Find 
the total flux Φ crossing the surface 1 < ρ < 7, 0 < z < 1, at fixed ϕ.

7.35 A current sheet, K = 20 az A/m, is located at ρ = 2, and a second sheet, 
K = −10az A/m, is located at ρ = 4. (a) Let Vm = 0 at P(  ρ = 3, ϕ = 0,  
z = 5) and place a barrier at ϕ = π. Find Vm(ρ, ϕ, z) for −π < ϕ < π. (b) Let 
A = 0 at P and find A(  ρ, ϕ, z) for 2 < ρ < 4.

7.36 Let A = (3y − z) ax + 2xz ay Wb/m in a certain region of free space. (a) Show 
that ∇ · A = 0. (b) At P(2, −1, 3), find A, B, H, and J.

7.37 Let N = 1000, I = 0.8 A, ρ0 = 2 cm, and a = 0.8 cm for the toroid shown in 
Figure 7.12b. Find Vm in the interior of the toroid if Vm = 0 at ρ = 2.5 cm, 
ϕ = 0.3π. Keep ϕ within the range 0 < ϕ < 2π.

7.38 A square filamentary differential current loop, dL on a side, is centered at 
the origin in the z = 0 plane in free space. The current I flows generally in 
the aϕ direction. (a) Assuming that r ≫ dL, and following a method similar 
to that in Section 4.7, show that

dA =    μ  0   I  (dL)   2  sin θ  __________ 
4π r   2 

    a  ϕ  
(b) Show that

d H =   I   (  dL )     2  _____ 
4π  r   3 

  (2 cos θ  ar + sin θ  aθ)

The square loop is one form of a magnetic dipole.
7.39 Planar current sheets of K = 30az A/m and −30az A/m are located in free 

space at x = 0.2 and x = −0.2, respectively. For the region −0.2 < x < 0.2 
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(a) find H; (b) obtain an expression for Vm if Vm = 0 at P(0.1, 0.2, 0.3); 
(c) find B; (d) obtain an expression for A if A = 0 at P. 

7.40 Show that the line integral of the vector potential A about any closed path 
is equal to the magnetic flux enclosed by the path, or ∮ A · d L = ∫ B · d S.

7.41 (a) Demonstrate the principle of Problem 7.40 using the vector potential in 
a coaxial cable, as given in Eq. (66). (b) Use the principle to find the vector 
magnetic potential in a long solenoid of radius a, having n turns per meter 
of length, in which each turn carries current I. Assume a long coil so that 
B is approximately μ0 nI az  Wb/m2, uniform over the coil cross section. 

7.42 Show that ∇  2  (1 /  R  12  ) = −  ∇  1  (1 /  R  12  ) =  R  21   /  R  12  3  .
7.43 Compute the vector magnetic potential within the outer conductor for the 

coaxial line whose vector magnetic potential is shown in Figure 7.20 if the 
outer radius of the outer conductor is 7a. Select the proper zero reference 
and sketch the results on the figure. 

7.44 By expanding Eq. (58), Section 7.7 in rectangular coordinates, show that 
(59) is correct.
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8 C H A P T E R

Magnetic Forces, 
Materials, and  
Inductance

W!!e are now ready to undertake the second half of the magnetic field prob-
lem, that of determining the forces and torques exerted by magnetic fields 
on other charges. An electric field causes a force to be exerted on a charge 

that may be either stationary or in motion; we will see that a steady magnetic field is 
capable of exerting a force only on a moving charge. This result appears reasonable; a 
magnetic field may be produced by moving charges and may exert forces on moving 
charges; a magnetic field cannot arise from stationary charges and cannot exert any 
force on a stationary charge.

This chapter initially considers the forces and torques on current-carrying con-
ductors that may either be of a filamentary nature or possess a finite cross section 
with a known current density distribution. The problems associated with the motion 
of particles in a vacuum are largely avoided.

With an understanding of the fundamental effects produced by the magnetic 
field, we may then consider the varied types of magnetic materials, the analysis of 
elementary magnetic circuits, the forces on magnetic materials, and finally, the im-
portant electrical circuit concepts of self-inductance and mutual inductance. ■

8.1 FORCE ON A MOVING CHARGE
In an electric field, the definition of the electric field intensity shows us that the force 
on a charged particle is

 F = QE (1)

hay28159_ch08_232-278.indd   232 25/11/17   3:11 pm



C H A P T E R  8  Magnetic Forces, Materials, and Inductance 233

The force is in the same direction as the electric field intensity (for a positive charge) 
and is directly proportional to both E and Q. If the charge is in motion, the force at 
any point in its trajectory is then given by (1).

A charged particle in motion in a magnetic field of flux density B is found ex-
perimentally to experience a force whose magnitude is proportional to the product of 
the magnitudes of the charge Q, its velocity v, and the flux density B, and to the sine 
of the angle between the vectors v and B. The direction of the force is perpendicular 
to both v and B and is given by a unit vector in the direction of v × B. The force may 
therefore be expressed as

 F = Qv × B (2)

A fundamental difference in the effect of the electric and magnetic fields on 
charged particles is now apparent, for a force which is always applied in a direc-
tion at right angles to the direction in which the particle is proceeding can never 
change the magnitude of the particle velocity. In other words, the acceleration 
vector is always normal to the velocity vector. The kinetic energy of the particle 
remains unchanged, and it follows that the steady magnetic field is incapable of 
transferring energy to the moving charge. The electric field, on the other hand, 
exerts a force on the particle which is independent of the direction in which the 
particle is progressing and therefore effects an energy transfer between field and 
particle in general.

The first two problems at the end of this chapter illustrate the different effects 
of electric and magnetic fields on the kinetic energy of a charged particle moving in 
free space.

The force on a moving particle arising from combined electric and magnetic 
fields is obtained easily by superposition,

 F = Q(E + v × B) (3)

This equation is known as the Lorentz force equation, and its solution is required 
in determining electron orbits in the magnetron, proton paths in the cyclotron, plasma  
characteristics in a magnetohydrodynamic (MHD) generator, or, in general, charged- 
particle motion in combined electric and magnetic fields.

D8.1. The point charge Q = 18 nC has a velocity of 5 × 106 m/s in the direction 
av = 0.60ax + 0.75ay + 0.30az. Calculate the magnitude of the force exerted on 
the charge by the field: (a) B = −3ax + 4ay + 6az mT; (b) E = −3ax + 4ay + 6az 
kV/m; (c) B and E acting together.

Ans. (a) 660 μN; (b) 140 μN; (c) 670 μN
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8.2  FORCE ON A DIFFERENTIAL 
CURRENT ELEMENT

The force on a charged particle moving through a steady magnetic field may be writ-
ten as the differential force exerted on a differential element of charge,

d F = dQ v × B (4)
Physically, the differential element of charge consists of a large number of very 

small, discrete charges occupying a volume which, although small, is much larger 
than the average separation between the charges. The differential force expressed by 
(4) is thus merely the sum of the forces on the individual charges. This sum, or re-
sultant force, is not a force applied to a single object. In an analogous way, we might 
consider the differential gravitational force experienced by a small volume taken in 
a shower of falling sand. The small volume contains a large number of sand grains, 
and the differential force is the sum of the forces on the individual grains within the 
small volume.

If our charges are electrons in motion in a conductor, however, we can show 
that the force is transferred to the conductor and that the sum of this extremely  
large number of extremely small forces is of practical importance. Within the 
conductor, electrons are in motion throughout a region of immobile positive ions 
which form a crystalline array, giving the conductor its solid properties. A magnetic  
field which exerts forces on the electrons tends to cause them to shift position 
slightly and produces a small displacement between the centers of “gravity” of the 
positive and negative charges. The Coulomb forces between electrons and positive 
ions, however, tend to resist such a displacement. Any attempt to move the elec-
trons, therefore, results in an attractive force between electrons and the positive 
ions of the crystalline lattice. The magnetic force is thus transferred to the crys-
talline lattice, or to the conductor itself. The Coulomb forces are so much greater 
than the magnetic forces in good conductors that the actual displacement of the 
electrons is almost immeasurable. The charge separation that does result, however, 
is disclosed by the presence of a slight potential difference across the conductor 
sample in a direction perpendicular to both the magnetic field and the velocity of 
the charges. The voltage is known as the Hall voltage, and the effect itself is called 
the Hall effect.

Figure 8.1 illustrates the direction of the Hall voltage for both positive and neg-
ative charges in motion. In Figure 8.1a, v is in the −ax direction, v × B is in the ay 
direction, and Q is positive, causing FQ to be in the ay direction; thus, the positive 
charges move to the right. In Figure 8.1b, v is now in the +ax direction, B is still in 
the az direction, v × B is in the −ay direction, and Q is negative; thus, FQ is again in 
the ay direction. Hence, the negative charges end up at the right edge. Equal currents 
provided by holes and electrons in semiconductors can therefore be differentiated by 
their Hall voltages. This is one method of determining whether a given semiconduc-
tor is n-type or p-type.

Devices employ the Hall effect to measure the magnetic flux density and, in 
some applications where the current through the device can be made proportional 
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Figure 8.1 Equal currents directed into the material are provided by positive charges 
moving inward in (a) and negative charges moving outward in (b). The two cases can be 
distinguished by oppositely directed Hall voltages, as shown.

(a) (b)
II

x

z

y

B B

FQ FQ

to the magnetic field across it, to serve as electronic wattmeters, squaring elements, 
and so forth.

Returning to (4), we may therefore say that if we are considering an element 
of moving charge in an electron beam, the force is merely the sum of the forces on 
the individual electrons in that small volume element, but if we are considering an 
element of moving charge within a conductor, the total force is applied to the solid 
conductor itself. We will now limit our attention to the forces on current-carrying 
conductors.

In Chapter 5 we defined convection current density in terms of the velocity of 
the volume charge density,

 J =  ρ  v   v 

The differential element of charge in (4) may also be expressed in terms of volume 
charge density,1

d Q =  ρ  v   dv

Thus

d F =  ρ  v   dv v × B

or

 d F = J × B dv  (5)

We saw in Chapter 7 that J dv may be interpreted as a differential current element; 
that is,

J dv = K d S = I d L

1 Remember that dv is a differential volume element and not a differential increase in velocity.
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and thus the Lorentz force equation may be applied to surface current density,

 d F = K × B d S (6)

or to a differential current filament,

 d F = I d L × B (7)

Integrating (5), (6), or (7) over a volume, a surface which may be either open or 
closed (why?), or a closed path, respectively, leads to the integral formulations

F =  ∫  vol   J × B dv (8)

F =  ∫  
S
   K × B d S (9)

and

 F = ∮   I d L × B = − I  ∮   B × d L  (10)

One simple result is obtained by applying (7) or (10) to a straight conductor in a 
uniform magnetic field,

 F = I L × B (11)

The magnitude of the force is given by the familiar equation

F = BIL sin θ (12)

where θ is the angle between the vectors representing the direction of the current 
flow and the direction of the magnetic flux density. Equation (11) or (12) applies 
only to a portion of the closed circuit, and the remainder of the circuit must be con-
sidered in any practical problem.

EXAMPLE 8.1

As a numerical example of these equations, consider Figure 8.2. We have a square 
loop of wire in the z = 0 plane carrying 2 mA in the field of an infinite filament on 
the y axis, as shown. We wish to find the total force on the loop.
Solution. The field produced in the plane of the loop by the straight filament is

H =   I _____ 2π x    a  z   =   15 _____ 2π x    a  z    A∕m

Therefore,
B =  μ  0   H = 4π ×  10   −7  H =   3 ×  10   −6  _______ x    a  z    T

hay28159_ch08_232-278.indd   236 25/11/17   3:11 pm



C H A P T E R  8  Magnetic Forces, Materials, and Inductance 237

Figure 8.2 A square loop of wire in the xy plane carrying 
2 mA is subjected to a nonuniform B field.

z

x

y

2 mA

15 A

Free space

(1, 2, 0)(1, 0, 0)

(3, 0, 0)

We use the integral form (10),

F = − I  ∮    B × d L

Let us assume a rigid loop so that the total force is the sum of the forces on the four 
sides. Beginning with the left side:

F = − 2 ×  10   −3  × 3 ×  10   −6   [   ∫ 
x=1

  
  3

       a  z   _ x   × dx  a  x   +  ∫ 
y=0

  
  2

       a  z   _ 3   × dy  a  y

+  ∫ 
x=3

  
  1

       a  z   _ x   × dx   a  x   +  ∫ 
y=2

  
  0

       a  z   _ 1   × dy  a  y   ]
= − 6 × 10−9  [   ln x    |    13 ay +    1 __ 3    y  

  |    0  2  (− ax) + ln x    |    3  1   ay + y    |    2  0  (− ax)  ]  
= − 6 ×  10   −9   [  (ln 3)  a  y   −   2 _ 3    a  x   +   (  ln   1 _ 3   )    a  y   + 2 a  x   ]
= − 8 a  x    nN 

Thus, the net force on the loop is in the −ax direction.

D8.2. The field B = −2ax + 3ay + 4az mT is present in free space. Find the 
vector force exerted on a straight wire carrying 12 A in the aAB direction, given 
A(1, 1, 1) and: (a) B(2, 1, 1); (b) B(3, 5, 6).

Ans. (a) −48ay + 36az mN; (b) 12ax −216ay + 168az mN
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8.3  FORCE BETWEEN DIFFERENTIAL 
CURRENT ELEMENTS

The concept of the magnetic field was introduced to break into two parts the problem 
of finding the interaction of one current distribution on a second current distribution. 
It is possible to express the force on one current element directly in terms of a second 
current element without finding the magnetic field. Because we claimed that the 
magnetic-field concept simplifies our work, it then behooves us to show that avoid-
ance of this intermediate step leads to more complicated expressions.

The magnetic field at point 2 due to a current element at point 1 was found to be

d  H  2   =    I  1   d  L  1   ×  a  R12_________
4π   R  12  2  

 

Now, the differential force on a differential current element is

d F = I d L × B

and we apply this to our problem by letting B be d B2 (the differential flux density at 
point 2 caused by current element 1), by identifying I d L as I2d L2, and by symboliz-
ing the differential amount of our differential force on element 2 as d(d F2):

d(d  F  2  ) =  I  2   d  L  2   × d  B  2  

Because d B2 = μ0d H2, we obtain the force between two differential current elements,

 d(d  F  2  ) =  μ  0     
 I  1    I  2   ______ 

4π   R  12  2  
   d  L  2   × (d  L  1   ×  a  R12  )  (13)

D8.3. The semiconductor sample shown in Figure 8.1 is n-type silicon, having 
a rectangular cross section of 0.9 mm by 1.1 cm and a length of 1.3 cm. Assume 
the electron and hole mobilities are 0.13 and 0.03 m2/V · s, respectively, at 
the operating temperature. Let B = 0.07 T and the electric field intensity in the 
direction of the current flow be 800 V/m. Find the magnitude of: (a) the voltage 
across the sample length; (b) the drift velocity; (c) the transverse force per cou-
lomb of moving charge caused by B; (d ) the transverse electric field intensity; 
(e) the Hall voltage. 

Ans. (a) 10.40 V; (b) 104.0 m/s; (c) 7.28 N/C; (d ) 7.28 V/m; (e) 80.1 mV

EXAMPLE 8.2

As an example that illustrates the use (and misuse) of these results, consider the 
two differential current elements shown in Figure 8.3. We seek the differential force 
on d L2.
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Solution. We have I1d L1 = −3ayA · m at P1(5, 2, 1), and I2d L2 = −4azA · m at 
P2(1, 8, 5). Thus, R12 = −4ax + 6ay + 4az, and we may substitute these data into (13),

 
d(d  F  2  ) 

 =
 
   4π   10   −7  ______ 4π

     
(− 4 a  z  ) × [(− 3 a  y  ) × (− 4 a  x   + 6 a  y   + 4 a  z  )]    __________________________   

 (16 + 36 + 16)   1.5 
  

       
 =

 
 8.56 a  y   nN

 

Figure 8.3 Given P1(5, 2, 1), P2(1, 8, 5), I1 d!L1 = −3ay 
A · m, and I2 d!L2 = −4az A · m, the force on I2 d!L2 is 
8.56 nN in the ay direction.

z

x

y

Point 2

Point 1
I1dL1

I2dL2

d(dF2)

R12
Free space

Many chapters ago, when we discussed the force exerted by one point charge on 
another point charge, we found that the force on the first charge was the negative of that 
on the second. That is, the total force on the system was zero. This is not the case with 
the differential current elements, and d(d F1) = −12.84az nN in Example 8.2. The rea-
son for this different behavior lies with the nonphysical nature of the current element. 
Whereas point charges may be approximated quite well by small charges, the conti-
nuity of current demands that a complete circuit be considered. This we shall now do.

The total force between two filamentary circuits is obtained by integrating twice:

 F  2   =  μ  0     
 I  1    I  2   ___ 4π

    ∮     [  d  L  2   × ∮     d  L  1   ×  a  R12 _ 
 R  12  2  

   ]   
  

 =  μ  0     
 I  1    I  2   ___ 4π

    ∮     [  ∮      a  R12   × d  L  1   _ 
 R  12  2  

   ]    × d  L  2
   (14)

Equation (14) is quite formidable, but the familiarity gained in Chapter 7 with 
the magnetic field should enable us to recognize the inner integral as the integral 
necessary to find the magnetic field at point 2 due to the current element at point 1.

Although we shall only give the result, it is not very difficult to use (14) to 
find the force of repulsion between two infinitely long, straight, parallel, filamentary 
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conductors with separation d, and carrying equal but opposite currents I, as shown 
in Figure 8.4. The integrations are simple, and most errors are made in determining 
suitable expressions for aR12, d L1, and d L2. However, since the magnetic field in-
tensity at either wire caused by the other is already known to be I∕(2πd), it is readily 
apparent that the answer is a force of μ0I

2∕(2πd) newtons per meter length.

Figure 8.4 Two infinite parallel 
filaments with separation d and 
equal but opposite currents I 
experience a repulsive force of 
μ0I2/(2πd) N/m.

F F

I

d

I

D8.4. Two differential current elements, I1ΔL1 = 3 × 10−6ay A · m at P1(1, 
0, 0) and I2ΔL2 = 3 × 10−6 (−0.5ax + 0.4ay + 0.3az) A · m at P2(2, 2, 2), are 
located in free space. Find the vector force exerted on: (a) I2ΔL2 by I1ΔL1;  
(b) I1ΔL1 by I2ΔL2. 

Ans. (a) (−1.333ax + 0.333ay − 2.67az) 10−20 N; (b) (4.67ax + 0.667az)10−20 N

 8.4 FORCE AND TORQUE ON A CLOSED CIRCUIT
We have already obtained general expressions for the forces exerted on current sys-
tems. One special case is easily disposed of, for if we take our relationship for the 
force on a filamentary closed circuit, as given by Eq. (10), Section 8.2,

F = − I ∮   B × d L

and assume a uniform magnetic flux density, then B may be removed from the integral:

F = − I B × ∮   d L

However, we discovered during our investigation of closed line integrals in an elec-
trostatic potential field that ∮ d L = 0, and therefore the force on a closed filamentary 
circuit in a uniform magnetic field is zero.

If the field is not uniform, the total force need not be zero.
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This result for uniform fields does not have to be restricted to filamentary circuits 
only. The circuit may contain surface currents or volume current density as well. If 
the total current is divided into filaments, the force on each one is zero, as we have 
shown, and the total force is again zero. Therefore, any real closed circuit carrying 
direct currents experiences a total vector force of zero in a uniform magnetic field.

Although the force is zero, the torque is generally not equal to zero.
In defining the torque, or moment, of a force, it is necessary to consider both 

an origin at or about which the torque is to be calculated, and the point at which the 
force is applied. In Figure 8.5a, we apply a force F at point P, and we establish an 
origin at O with a rigid lever arm R extending from O to P. The torque about point 
O is a vector whose magnitude is the product of the magnitudes of R, of F, and of 
the sine of the angle between these two vectors. The direction of the vector torque T 
is normal to both the force F and the lever arm R and is in the direction of progress 
of a right-handed screw as the lever arm is rotated into the force vector through the 
smaller angle. The torque is expressible as a cross product,

T = R × F

Now assume that two forces, F1 at P1 and F2 at P2, having lever arms R1 and R2 
extending from a common origin O, as shown in Figure 8.5b, are applied to an object 
of fixed shape and that the object does not undergo any translation. Then the torque 
about the origin is

T =  R  1   ×  F  1   +  R  2   ×  F  2  

where

 F  1   +  F  2   = 0

Figure 8.5 (a) Given a lever arm R extending from an origin O to a point P 
where force F is applied, the torque about O is T = R × F. (b) If F2 = −F1, then the 
torque T = R21 × F1 is independent of the choice of origin for R1 and R2.

T

R R1 F1

F2 = –F1

F
R2

P2

P1P
R21

T

OO

(a) (b)
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and therefore

T = ( R  1   −  R  2  ) ×  F  1   =  R  21   ×  F  1  

The vector R21 = R1 − R2 joins the point of application of F2 to that of F1 and is in-
dependent of the choice of origin for the two vectors R1 and R2. Therefore, the torque 
is also independent of the choice of origin, provided that the total force is zero. This 
may be extended to any number of forces.

Consider the application of a vertically upward force at the end of a horizontal 
crank handle on an elderly automobile. This cannot be the only applied force, for if it 
were, the entire handle would be accelerated in an upward direction. A second force, 
equal in magnitude to that exerted at the end of the handle, is applied in a downward 
direction by the bearing surface at the axis of rotation. For a 40-N force on a crank 
handle 0.3 m in length, the torque is 12 N · m. This figure is obtained regardless of 
whether the origin is considered to be on the axis of rotation (leading to 12 N · m plus 
0 N · m), at the midpoint of the handle (leading to 6 N · m plus 6 N · m), or at some 
point not even on the handle or an extension of the handle.

We may therefore choose the most convenient origin, and this is usually on the 
axis of rotation and in the plane containing the applied forces if the several forces 
are coplanar.

With this introduction to the concept of torque, we now consider the torque 
on a differential current loop in a magnetic field B. The loop lies in the xy plane 
(Figure 8.6); the sides of the loop are parallel to the x and y axes and are of length dx 
and dy. The value of the magnetic field at the center of the loop is taken as B0. 

Figure 8.6 A differential current loop in a magnetic field B. 
The torque on the loop is d!T = I(dx dyaz) × B0 = I d!!S × B.

dy

x

y

dx

O

1

3

2
4
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Since the loop is of differential size, the value of B at all points on the loop may be 
taken as B0. (Why was this not possible in the discussion of curl and divergence?) 
The total force on the loop is therefore zero, and we are free to choose the origin for 
the torque at the center of the loop.

The vector force on side 1 is

d  F  1   = I dx  a  x   ×  B  0  

or
d  F  1   = I dx( B  0y    a  z   −  B  0z    a  y  )

For this side of the loop the lever arm R extends from the origin to the midpoint 
of the side,  R  1   = −    1 _ 2    dy  a  y  , and the contribution to the total torque is

d  T  1  
 
 = 

 
 R  1   × d  F  1  

    =  −    1 _ 2  dy  a  y   × I dx( B  0y    a  z   −  B  0z    a  y  )    
  =

  
−   1 _ 2  dx dy I  B  0y    a  x  

   

The torque contribution on side 3 is found to be the same,

  
d  T  3    

= 
 
 R  3   × d  F  3   =   1 _ 2  dy  a  y   × (− I dx  a  x   ×  B  0  )       

=
  
−   1 _ 2  dx dy I   B  0y    a  x   = d  T  1  

   

and
d  T  1   + d  T  3   = − dx dy I   B  0y    a  x  

Evaluating the torque on sides 2 and 4, we find
d  T  2   + d  T  4   = dx dy I   B  0x    a  y  

and the total torque is then

d T = I dx dy( B  0x    a  y   −  B  0y    a  x  )

The quantity within the parentheses may be represented by a cross product,

d T = I dx dy( a  z   ×  B  0  )

or

 d T = I d S × B (15)

where d S is the vector area of the differential current loop and the subscript on B0 
has been dropped.

We now define the product of the loop current and the vector area of the loop as 
the differential magnetic dipole moment dm, with units of A · m2. Thus

 d m = I d S (16)
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and

 d T = d m × B (17)

If we extend the results we obtained in Section 4.7 for the differential electric 
dipole by determining the torque produced on it by an electric field, we see a similar 
result,

d T = d p × E

Equations (15) and (17) are general results that hold for differential loops of any 
shape, not just rectangular ones. The torque on a circular or triangular loop is also 
given in terms of the vector surface or the moment by (15) or (17).

Because we selected a differential current loop so that we might assume B was 
constant throughout it, it follows that the torque on a planar loop of any size or shape 
in a uniform magnetic field is given by the same expression,

T = IS × B = m × B (18)

We should note that the torque on the current loop always tends to turn the loop 
so as to align the magnetic field produced by the loop with the applied magnetic field 
that is causing the torque. This is perhaps the easiest way to determine the direction 
of the torque.

EXAMPLE 8.3

To illustrate some force and torque calculations, consider the rectangular loop shown 
in Figure 8.7. Calculate the torque by using T = IS × B.
Solution. The loop has dimensions of 1 m by 2 m and lies in the uniform field 
B0 = −0.6ay + 0.8azT. The loop current is 4 mA, a value that is sufficiently small to 
avoid causing any magnetic field that might affect B0.

We have
T = 4 ×  10   −3  [(1) (2) a  z   ] × (− 0.6 a  y   + 0.8 a  z  ) = 4.8 a  x    mN · m

Thus, the loop tends to rotate about an axis parallel to the positive x axis. The small 
magnetic field produced by the 4 mA loop current tends to line up with B0.

EXAMPLE 8.4

Now let us find the torque once more, this time by calculating the total force and 
torque contribution for each side.
Solution. On side 1 we have

 
 F  1    

=
  
I  L  1   ×  B  0   = 4 ×  10   −3 (1 a  x  ) × (− 0.6 a  y   + 0.8 a  z  )       

= 
 
− 3.2 a  y   − 2.4 a  z    mN
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Figure 8.7 A rectangular loop is located in a uniform 
magnetic flux density B0.

y

B0 = –0.6 ay + 0.8 az T

x

4 mA (1, 2, 0)

1 2

4

3

z

On side 3 we obtain the negative of this result,

 F  3   = 3.2 a  y   + 2.4 a  z    mN
Next, we attack side 2:

  F  2    =  I  L  2   ×  B  0   = 4 ×  10   −3 (2 a  y  ) × (− 0.6 a  y   + 0.8 a  z  )       
 =

 
 6.4  a  x    mN

  

with side 4 again providing the negative of this result,

 F  4   = − 6.4 a  x    mN
Because these forces are distributed uniformly along each of the sides, we treat 

each force as if it were applied at the center of the side. The origin for the torque may 
be established anywhere since the sum of the forces is zero, and we choose the center 
of the loop. Thus,

T =   T  1   +  T  2   +  T  3   +  T  4   =  R  1   ×  F  1   +  R  2   ×  F  2   +  R  3   ×  F  3   +  R  4   ×  F  4  
= (− 1 a  y  ) × (− 3.2 a  y   − 2.4 a  z  ) + (0.5 a  x  ) × (6.4 a  x  )

+(1 a  y  ) × (3.2 a  y   + 2.4 a  z  ) + (− 0.5 a  x  ) × (− 6.4 a  x  )
= 2.4 a  x   + 2.4 a  x   = 4.8 a  x    mN · m

Crossing the loop moment with the magnetic flux density is certainly easier.
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8.5 THE NATURE OF MAGNETIC MATERIALS
We are now in a position to combine our knowledge of the action of a magnetic field 
on a current loop with a simple model of an atom and obtain some appreciation of the 
difference in behavior of various types of materials in magnetic fields.

Although accurate quantitative results can only be predicted through the use 
of quantum theory, the simple atomic model, which assumes that there is a central 
positive nucleus surrounded by electrons in various circular orbits, yields reasonable 
quantitative results and provides a satisfactory qualitative theory. An electron in an 
orbit is analogous to a small current loop (in which the current is directed oppositely 
to the direction of electron travel) and, as such, experiences a torque in an exter-
nal magnetic field, the torque tending to align the magnetic field produced by the 
orbiting electron with the external magnetic field. If there were no other magnetic 
moments to consider, we would then conclude that all the orbiting electrons in the 
material would shift in such a way as to add their magnetic fields to the applied field, 
and thus that the resultant magnetic field at any point in the material would be greater 
than it would be at that point if the material were not present.

A second moment, however, is attributed to electron spin. Although it is tempt-
ing to model this phenomenon by considering the electron to be spinning about its 
own axis and thus generating a magnetic dipole moment, satisfactory quantitative 
results are not obtained from such a theory. Instead, it is necessary to digest the 
mathematics of relativistic quantum theory to show that an electron may have a spin 
magnetic moment of about ±9 × 10−24 A · m2; the plus and minus signs indicate 
that alignment aiding or opposing an external magnetic field is possible. In an atom 
with many electrons present, only the spins of those electrons in shells which are not 
completely filled will contribute to a magnetic moment for the atom.

A third contribution to the moment of an atom is caused by nuclear spin. 
Although this factor has a negligible effect on the overall magnetic properties of 
materials, it is the basis of the nuclear magnetic resonance imaging (MRI) procedure 
provided by many of the larger hospitals.

Thus each atom contains many different component moments, and their com-
bination determines the magnetic characteristics of the material and provides its 
general magnetic classification. We describe briefly six different types of material:  
diamagnetic, paramagnetic, ferromagnetic, antiferromagnetic, ferrimagnetic, and 
superparamagnetic.

D8.5. A conducting filamentary triangle joins points A(3, 1, 1), B(5, 4, 2), and 
C(1, 2, 4). The segment AB carries a current of 0.2 A in the aAB direction. There 
is present a magnetic field B = 0.2ax − 0.1ay + 0.3az T. Find: (a) the force on 
segment BC; (b) the force on the triangular loop; (c) the torque on the loop 
about an origin at A; (d) the torque on the loop about an origin at C. 

Ans. (a) −0.08ax + 0.32ay + 0.16az N; (b) 0; (c) −0.16ax − 0.08ay + 0.08az N · m;  
(d) −0.16ax − 0.08ay + 0.08az N · m
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First we consider atoms in which the small magnetic fields produced by the mo-
tion of the electrons in their orbits and those produced by the electron spin combine 
to produce a net field of zero. Note that we are considering here the fields produced 
by the electron motion itself in the absence of any external magnetic field; we might 
also describe this material as one in which the permanent magnetic moment m0 of 
each atom is zero. Such a material is termed diamagnetic. It would seem, therefore, 
that an external magnetic field would produce no torque on the atom, no realignment 
of the dipole fields, and consequently an internal magnetic field that is the same as 
the applied field. With an error that only amounts to about one part in a hundred 
thousand, this is correct.

Consider an orbiting electron whose moment m is in the same direction as the 
applied field B0 (Figure 8.8). The magnetic field produces an outward force on the 
orbiting electron. Since the orbital radius is quantized and cannot change, the inward 
Coulomb force of attraction is also unchanged. The force imbalance created by the 
outward magnetic force must therefore be compensated for by a reduced orbital ve-
locity. Hence, the orbital moment decreases, and a smaller internal field results.

If we had selected an atom for which m and B0 were opposed, the magnetic 
force would be inward, the velocity would increase, the orbital moment would in-
crease, and greater cancellation of B0 would occur. Again a smaller internal field 
would result.

Metallic bismuth shows a greater diamagnetic effect than most other diamag-
netic materials, among which are hydrogen, helium, the other “inert” gases, sodium 
chloride, copper, gold, silicon, germanium, graphite, and sulfur. We should also re-
alize that the diamagnetic effect is present in all materials, because it arises from an 
interaction of the external magnetic field with every orbiting electron; however, it is 
overshadowed by other effects in the materials we shall consider next.

Now consider an atom in which the effects of the electron spin and orbital mo-
tion do not quite cancel. The atom as a whole has a small magnetic moment, but 
the random orientation of the atoms in a larger sample produces an average mag-
netic moment of zero. The material shows no magnetic effects in the absence of an 

Figure 8.8 An orbiting electron is shown 
having a magnetic moment m in the same 
direction as an applied field B0.

m

v

B0 B0
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external field. When an external field is applied, however, there is a small torque 
on each atomic moment, and these moments tend to become aligned with the ex-
ternal field. This alignment acts to increase the value of B within the material over 
the external value. However, the diamagnetic effect is still operating on the orbiting 
electrons and may counteract the increase. If the net result is a decrease in B, the ma-
terial is still called diamagnetic. However, if there is an increase in B, the material is 
termed paramagnetic. Potassium, oxygen, tungsten, and the rare earth elements and 
many of their salts, such as erbium chloride, neodymium oxide, and yttrium oxide, 
one of the materials used in masers, are examples of paramagnetic substances.

The remaining four classes of material, ferromagnetic, antiferromagnetic, fer-
rimagnetic, and superparamagnetic, all have strong atomic moments. Moreover, the 
interaction of adjacent atoms causes an alignment of the magnetic moments of the 
atoms in either an aiding or exactly opposing manner.

In ferromagnetic materials, each atom has a relatively large dipole moment, caused 
primarily by uncompensated electron spin moments. Interatomic forces cause these mo-
ments to line up in a parallel fashion over regions containing a large number of atoms. 
These regions are called domains, and they may have a variety of shapes and sizes rang-
ing from one micrometer to several centimeters, depending on the size, shape, material, 
and magnetic history of the sample. Virgin ferromagnetic materials will have domains 
which each have a strong magnetic moment; the domain moments, however, vary in 
direction from domain to domain. The overall effect is therefore one of cancellation, 
and the material as a whole has no magnetic moment. Upon application of an exter-
nal magnetic field, however, those domains which have moments in the direction of 
the applied field increase their size at the expense of their neighbors, and the internal 
magnetic field increases greatly over that of the external field alone. When the external 
field is removed, a completely random domain alignment is not usually attained, and a 
residual, or remnant, dipole field remains in the macroscopic structure. The fact that the 
magnetic moment of the material is different after the field has been removed, or that the 
magnetic state of the material is a function of its magnetic history, is called hysteresis, a 
subject which will be discussed again when magnetic circuits are studied in Section 8.8.

Ferromagnetic materials are not isotropic in single crystals, and we will there-
fore limit our discussion to polycrystalline materials, except for mentioning that one 
of the characteristics of anisotropic magnetic materials is magnetostriction, or the 
change in dimensions of the crystal when a magnetic field is impressed on it.

The only elements that are ferromagnetic at room temperature are iron, nickel, 
and cobalt, and they lose all their ferromagnetic characteristics above a temperature 
called the Curie temperature, which is 1043 K (770°C) for iron. Some alloys of these 
metals with each other and with other metals are also ferromagnetic, as for example 
alnico, an aluminum-nickel-cobalt alloy with a small amount of copper. At lower 
temperatures some of the rare earth elements, such as gadolinium and dysprosium, 
are ferromagnetic. It is also interesting that some alloys of nonferromagnetic metals 
are ferromagnetic, such as bismuth-manganese and copper-manganese-tin.

In antiferromagnetic materials, the forces between adjacent atoms cause the atomic 
moments to line up in an antiparallel fashion. The net magnetic moment is zero, and 
antiferromagnetic materials are affected only slightly by the presence of an external 

hay28159_ch08_232-278.indd   248 25/11/17   3:11 pm



C H A P T E R  8  Magnetic Forces, Materials, and Inductance 249

magnetic field. This effect was first discovered in manganese oxide, but several hundred 
antiferromagnetic materials have been identified since then. Many oxides, sulfides, and 
chlorides are included, such as nickel oxide (NiO), ferrous sulfide (FeS), and cobalt 
chloride (CoCl2). Antiferromagnetism is only present at relatively low temperatures, of-
ten well below room temperature. The effect is not of engineering importance at present.

The ferrimagnetic substances also show an antiparallel alignment of adjacent 
atomic moments, but the moments are not equal. A large response to an external 
magnetic field therefore occurs, although not as large as that in ferromagnetic mate-
rials. The most important group of ferrimagnetic materials are the ferrites, in which 
the conductivity is low, several orders of magnitude less than that of semiconductors. 
The fact that these substances have greater resistance than the ferromagnetic materi-
als results in much smaller induced currents in the material when alternating fields 
are applied, as for example in transformer cores that operate at the higher frequencies. 
The reduced currents (eddy currents) lead to lower ohmic losses in the transformer 
core. The iron oxide magnetite (Fe3O4), a nickel-zinc ferrite (Ni1/2Zn1/2Fe2O4), and a 
nickel ferrite (NiFe2O4) are examples of this class of materials. Ferrimagnetism also 
disappears above the Curie temperature.

Superparamagnetic materials are composed of an assembly of ferromagnetic 
particles in a nonferromagnetic matrix. Although domains exist within the individual 
particles, the domain walls cannot penetrate the intervening matrix material to the 
adjacent particle. An important example is the magnetic tape used in audiotape or 
videotape recorders.

Table 8.1 summarizes the characteristics of the six types of magnetic materials 
we have discussed.

8.6 MAGNETIZATION AND PERMEABILITY
To place our description of magnetic materials on a more quantitative basis, we will 
now devote a page or so to showing how the magnetic dipoles act as a distributed 
source for the magnetic field. Our result will be an equation that looks very much like 
Ampère’s circuital law, ∮ H · d L = I. The current, however, will be the movement 
of bound charges (orbital electrons, electron spin, and nuclear spin), and the field, 

Classification Magnetic Moments B Values Comments

Diamagnetic morb + mspin = 0 Bint < Bappl Bint ≐ Bappl

Paramagnetic morb + mspin = small Bint > Bappl Bint ≐ Bappl

Ferromagnetic   |   mspin  |    ≫   |   morb  |  Bint ≫ Bappl Domains
Antiferromagnetic   |   mspin  |    ≫   |   morb  |  Bint ≐ Bappl Adjacent moments oppose
Ferrimagnetic   |   mspin  |    ≫   |   morb  |   Bint > Bappl Unequal adjacent moments 

oppose; low σ
Superparamagnetic   |   mspin  |    ≫   |   morb  |  Bint > Bappl Nonmagnetic matrix; 

recording tapes

Table 8.1 Characteristics of magnetic materials
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which has the dimensions of H, will be called the magnetization M. The current pro-
duced by the bound charges is called a bound current or Amperian current.

We begin by defining the magnetization M in terms of the magnetic dipole mo-
ment m. The bound current Ib circulates about a path enclosing a differential area d S, 
establishing a dipole moment (A · m2),

m =  I  b   dS
If there are n magnetic dipoles per unit volume and we consider a volume Δv, then 
the total magnetic dipole moment is found by the vector sum

  m  total   =   ∑ 
i=1

  
nΔv

    m  i   

Each of the mi may be different. Next, we define the magnetization M as the magnetic
dipole moment per unit volume,

 M =   lim  
Δv→0

     1 _ 
Δv

     ∑ 
i=1

  
nΔv

    m  i   = nm   (  identical dipoles )    (19)

and see that its units must be the same as for H, amperes per meter. The second equality 
(not the first) in Eq. (19) applies to the special case in which all dipoles are identical.

Now consider the effect of some alignment of the magnetic dipoles as the result 
of the application of a magnetic field. We will investigate this alignment along a 
closed path, a short portion along the lower edge of which is shown in Figure 8.9. 
The figure shows several identical magnetic moments m that make an angle θ with 
the element of path d L; each moment consists of a bound current Ib circulating about 
an area dS. Therefore, over the path segment d L, we are considering a small volume, 
dS cos θdL, or dS · d L, within which there are ndS · d L magnetic dipoles. In chang-
ing from a random orientation to this partial alignment, the bound current crossing 
the surface enclosed by the path (the plane of the page that lies above the path in 
Figure 8.9) has increased by Ib for each of the ndS · d L dipoles. Thus the differential 
change in the net bound current IB over the segment d L will be

d  I  B   = n I  b   dS · d L = M · d L (20)
and within an entire closed contour,

  I  B   = ∮   M · d L  (21)

Figure 8.9 A section d!L of a closed path along which magnetic dipoles have been 
partially aligned by some external magnetic field. The alignment has caused the bound 
current crossing the surface defined by the closed path to increase by nIbdS · d L A.

dL

dSIb

θ

Surface defined
by closed path

m = IbdS
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Equation (21) merely says that if we go around a closed path and find dipole mo-
ments going our way more often than not, there will be a corresponding current 
composed of, for example, orbiting electrons crossing the interior surface.

This last expression has some resemblance to Ampère’s circuital law, and we 
may now generalize the relationship between B and H so that it applies to media 
other than free space. Our present discussion is based on the forces and torques on 
differential current loops in a B field, and we therefore take B as our fundamental 
quantity and seek an improved definition of H. We thus write Ampère’s circuital law 
in terms of the total current, bound plus free,

 ∮     B __  μ  0     · d L =  I  T  (22)

where

 I  T   =  I  B   + I

and I is the total free current enclosed by the closed path. Note that the free current 
appears without subscript since it is the most important type of current and will be 
the only current appearing in Maxwell’s equations.

Combining these last three equations, we obtain an expression for the free cur-
rent enclosed,

I =  I  T   −  I  B   =  ∮    (    B _  μ  0     − M )    · d L (23)

We may now define H in terms of B and M,

 H =   B __  μ  0     − M  (24)

and we see that B = μ0H in free space where the magnetization is zero. This relation-
ship is usually written in a form that avoids fractions and minus signs:

 B =  μ  0  (H + M) (25)

We may now use our newly defined H field in (23),

I = ∮   H · d L (26)

obtaining Ampère’s circuital law in terms of the free currents.
Using the several current densities, we have

 

 I  B   

 

=

 

 ∫  
S
     J  B   · d S

   I  T    =  ∫  
S
     J  T   · d S  

I

  

=

 

 ∫  
S
    J · d S
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With the help of Stokes’ theorem, we may therefore transform (21), (26), and (22) 
into the equivalent curl relationships:

 
∇ × M = 

 
 J  B  

  ∇ ×   B __  μ  0    
  =   J  T    

 ∇ × H = J (27)

We will emphasize only (26) and (27), the two expressions involving the free 
charge, in the work that follows.

The relationship between B, H, and M expressed by (25) may be simplified for 
linear isotropic media where a magnetic susceptibility χm can be defined:

 M =  χ  m   H (28)

Thus we have
B =   μ  0  (H +  χ  m   H)  =   μ  0    μ  r   H

 

where
  μ  r   = 1 +  χ  m    (29)

is defined as the relative permeability μr. We next define the permeability μ:

 μ =  μ  0    μ  r   (30)

and this enables us to write the simple relationship between B and H,

 B = μH  (31)

EXAMPLE 8.5

Given a ferrite material that we shall specify to be operating in a linear mode with 
B = 0.05 T, let us assume μr = 50, and calculate values for χm, M, and H.
Solution. Because μr = 1 + χm, we have

 χ  m   =  μ  r   − 1 = 49
Also,

B =  μ  r    μ  0   H
and

H =   0.05 ___________  
50 × 4π ×  10   −7 

   = 796 A∕m
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The first two laws that we investigated for magnetic fields were the Biot-Savart 
law and Ampère’s circuital law. Both were restricted to free space in their applica-
tion. We may now extend their use to any homogeneous, linear, isotropic magnetic 
material that may be described in terms of a relative permeability μr.

Just as we found for anisotropic dielectric materials, the permeability of an 
anisotropic magnetic material must be given as a 3 × 3 matrix, and B and H are both 
3 × 1 matrices. We have

 

 B  x   

 

= 

 

 μ  xx    H  x   +  μ  xy    H  y   +  μ  xz    H  z  

     B  y    =   μ  yx    H  x   +  μ  yy    H  y   +  μ  yz    H  z      
 B  z  

  
=

  
 μ  zx    H  x   +  μ  zy    H  y   +  μ  zz    H  z  

  

For anisotropic materials, then, B = μH is a matrix equation; however, B = μ0(H + 
M) remains valid, although B, H, and M are no longer parallel in general. The most
common anisotropic magnetic material is a single ferromagnetic crystal, although 
thin magnetic films also exhibit anisotropy. Most applications of ferromagnetic ma-
terials, however, involve polycrystalline arrays that are much easier to make.

Our definitions of susceptibility and permeability also depend on the assumption 
of linearity. Unfortunately, this is true only in the less interesting paramagnetic and 
diamagnetic materials for which the relative permeability rarely differs from unity  
by more than one part in a thousand. Some typical values of the susceptibility for 
diamagnetic materials are hydrogen, −2 × 10−5; copper, −0.9 × 10−5; germanium, 
−0.8 × 10−5; silicon, −0.3 × 10−5; and graphite,−12 × 10−5. Several representative 
paramagnetic susceptibilities are oxygen, 2 × 10−6; tungsten, 6.8 × 10−5; ferric oxide 
(Fe2O3), 1.4 × 10−3; and yttrium oxide (Y2O3), 0.53 × 10−6. If we simply take the 
ratio of B to μ0H as the relative permeability of a ferromagnetic material, typical 

The magnetization is M = χmH, or 39,000 A/m. The alternate ways of relating B and 
H are, first,

B =  μ  0  (H + M )
or

0.05 = 4π  ×  10   −7 (796 + 39,000)
showing that Amperian currents produce 49 times the magnetic field intensity that 
the free charges do; and second,

B =  μ  r    μ  0   H
or

0.05 = 50 × 4π ×  10   −7  × 796
where we use a relative permeability of 50 and let this quantity account completely 
for the motion of the bound charges. We shall emphasize the latter interpretation in 
the chapters that follow.
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values of μr would range from 10 to 100,000. Diamagnetic, paramagnetic, and anti-
ferromagnetic materials are commonly said to be nonmagnetic.

D8.6. Find the magnetization in a magnetic material where: (a) μ = 1.8 × 10−5 
H/m and H = 120 A/m; (b) μr = 22, there are 8.3 × 1028 atoms/m3, and each 
atom has a dipole moment of 4.5 × 10−27 A · m2; (c) B = 300 μT and χm = 15.

Ans. (a) 1599 A/m; (b) 374 A/m; (c) 224 A/m

D8.7. The magnetization in a magnetic material for which χm = 8 is given in 
a certain region as 150z2ax A/m. At z = 4 cm, find the magnitude of: (a) JT;  
(b) J; (c) JB. 

Ans. (a) 13.5 A/m2; (b) 1.5 A/m2; (c) 12 A/m2

8.7 MAGNETIC BOUNDARY CONDITIONS
We should have no difficulty in arriving at the proper boundary conditions to apply 
to B, H, and M at the interface between two different magnetic materials, for we have 
solved similar problems for both conducting materials and dielectrics. We need no 
new techniques.

Figure 8.10 shows a boundary between two isotropic homogeneous linear 
materials with permeabilities μ1 and μ2. The boundary condition on the normal 

Figure 8.10 A gaussian surface and a closed path are 
constructed at the boundary between media 1 and 2, having per-
meabilities of μ1 and μ2, respectively. From this we determine the 
boundary conditions BN1 = BN2 and Ht1 − Ht2 = K, the component 
of the surface current density directed into the page.

BN2

Ht2ΔL

Area ΔS

Ht1

aN12

µ2

µ1BN1
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components is determined by allowing the surface to cut a small cylindrical gaussian 
surface. Applying Gauss’s law for the magnetic field from Section 7.5,

∮S   B · d S = 0

we find that

 B  N1   ΔS −  B  N2   ΔS = 0

or the normal component of B is continuous across the boundary (BN2 = BN1). A 
more formal statement of this is 

   (   B  2   −  B  1   )   ·  a  N12   = 0     (32)

where aN12 is the unit normal at the boundary directed from region 1 to region 2.
The normal component of B is continuous, and therefore the normal component 

of H is discontinuous by the ratio μ1/μ2.

  H  N2   =   
 μ  1   __  μ  2      H  N1  (33)

The relationship between the normal components of M, of course, is fixed once the 
relationship between the normal components of H is known. For linear magnetic 
materials, the result is written simply as

  M  N2   =  χ  m2     
 μ  1   __  μ  2      H  N1   =    χ  m2    μ  1   _____  χ  m1    μ  2      M  N1  (34)

Next, Ampère’s circuital law

∮   H · d L = I

is applied about a small closed path in a plane normal to the boundary surface, as 
shown to the right in Figure 8.10. Taking a clockwise trip around the path, we find 
that

 H  t1   ΔL −  H  t2   ΔL = KΔL

where we assume that the boundary may carry a surface current K whose component 
normal to the plane of the closed path is K. Thus

 H  t1   −  H  t2   = K
The directions are specified more exactly by using the cross product to identify the 
tangential components,

 ( H  1   −  H  2  )  ×  a  N12   = K   (35)

An equivalent formulation in terms of the vector tangential components may be more 
convenient for H:

 H  t1   −  H  t2   =  a  N12   × K
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For tangential B, we have

    B  t1   ___  μ  1     −    B  t2   ___  μ  2     = K  (36)

The boundary condition on the tangential component of the magnetization for linear 
materials is therefore

  M  t2   =    χ  m2   ___  χ  m1      M  t1   −  χ  m2   K  (37)

The last three boundary conditions on the tangential components are much sim-
pler, of course, if the surface current density is zero. This is a free current density, and 
it must be zero if neither material is a conductor.

EXAMPLE 8.6

To illustrate these relationships with an example, let us assume that μ = μ1 = 4 μH/m 
in region 1 where z > 0, whereas μ2 = 7 μH/m in region 2 wherever z < 0. Moreover, 
let K = 80ax A/m on the surface z = 0. We establish a field, B1 = 2ax − 3ay + az mT, 
in region 1 and seek the value of B2.
Solution. The normal component of B1 is

 B  N1   = ( B  1   ·  a  N12  )  a  N12   = [(2 a  x   − 3 a  y   +  a  z  ) · (−  a  z  )](−  a  z  ) =  a  z    mT

Thus,
 B  N2   =  B  N1   =  a  z    mT

We next determine the tangential components:

 B  t1   =  B  1   −  B  N1   = 2 a  x   − 3ay mT

and

 H  t1   =    B  t1   ___  μ  1     =   
(2 a  x   − 3 a  y  )  10   −3

  ___________ 
4 ×  10   −6 

   = 500 a  x   − 750 a  y    A∕m

Thus,

 
 H  t2   

 =
 
  H  t1   −  a  N12   × K = 500 a  x   − 750 a  y   − (−  a  z  ) × 80 a  x            =  500 a  x   − 750 a  y   + 80 a  y   = 500 a  x   − 670 a  y    A∕m  

and

 B  t2   =  μ  2    H  t2   = 7 ×  10   −6 (500 a  x   − 670 a  y  ) = 3.5 a  x   − 4.69 a  y   mT

Therefore,

 B  2   =  B  N2   +  B  t2   = 3.5 a  x   − 4.69 a  y   +  a  z   mT
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8.8 THE MAGNETIC CIRCUIT
In this section, we digress briefly to discuss the fundamental techniques involved in 
solving a class of magnetic problems known as magnetic circuits. As we will see shortly,  
the name arises from the great similarity to the dc-resistive-circuit analysis with 
which it is assumed we are all familiar. The only important difference lies in the non-
linear nature of the ferromagnetic portions of the magnetic circuit; the methods which 
must be adopted are similar to those required in nonlinear electric circuits which con-
tain diodes, thermistors, incandescent filaments, and other nonlinear elements.

As a convenient starting point, we identify those field equations on which resis-
tive circuit analysis is based. At the same time we will point out or derive the analo-
gous equations for the magnetic circuit. We begin with the electrostatic potential and 
its relationship to electric field intensity,

E = − ∇V (38a)

The scalar magnetic potential has already been defined, and its analogous relation to 
the magnetic field intensity is

 H = − ∇ V  m   (38b)

In dealing with magnetic circuits, it is convenient to call Vm the magnetomotive force, 
or mmf, and we will acknowledge the analogy to the electromotive force, or emf, by 
doing so. The units of the mmf are, of course, amperes, but it is customary to recog-
nize that coils with many turns are often employed by using the term “ampere-turns.” 
Remember that no current may flow in any region in which Vm is defined.

The electric potential difference between points A and B may be written as

 V  AB   =  ∫ 
A
  
  B

    E · d L (39a)

and the corresponding relationship between the mmf and the magnetic field intensity,

  V  m AB   =  ∫ 
A
  
  B

    H · d L (39b)

was developed in Chapter 7, where we learned that the path selected must not cross 
the chosen barrier surface.

D8.8. Let the permittivity be 5 μH/m in region A where x < 0, and 20 μH/m 
in region B where x > 0. If there is a surface current density K = 150ay − 200az 
A/m at x = 0, and if HA = 300ax − 400ay + 500az A/m, find: (a)   |   HtA  |   ; (b)   |   HNA  |   ;
(c)   |   HtB  |   ; (d)   |   HNB  |   .
Ans. (a) 640 A/m; (b) 300 A/m; (c) 695 A/m; (d) 75 A/m
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Ohm’s law for the electric circuit has the point form
J = σ E (40a)

and we see that the magnetic flux density will be the analog of the current density,

 B = μH (40b)

To find the total current, we must integrate:

 I =  ∫  
S
    J · d S  (41a)

A corresponding operation is necessary to determine the total magnetic flux flowing 
through the cross section of a magnetic circuit:

 Φ =  ∫  
S
    B · d S (41b)

We then defined resistance as the ratio of potential difference and current, or

 V = I R  (42a)
and we shall now define reluctance as the ratio of the magnetomotive force to the 
total flux; thus

  V  m   = Φℜ (42b)

where reluctance is measured in ampere-turns per weber (A · t / Wb). In resistors that 
are made of a linear isotropic homogeneous material of conductivity σ and have a 
uniform cross section of area S and length d, the total resistance is

 R =   d ___
σ S  (43a)

If we are fortunate enough to have such a linear isotropic homogeneous magnetic 
material of length d and uniform cross section S, then the total reluctance is

 ℜ =   d _
μS (43b)

The only such material to which we shall commonly apply this relationship is air.
Finally, let us consider the analog of the source voltage in an electric circuit. We 

know that the closed line integral of E is zero,

∮   E · d L = 0

In other words, Kirchhoff’s voltage law states that the rise in potential through the 
source is exactly equal to the fall in potential through the load. The expression for 
magnetic phenomena takes on a slightly different form,

∮   H · d L =  I  total
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for the closed line integral is not zero. Because the total current linked by the path 
is usually obtained by allowing a current I to flow through an N-turn coil, we may 
express this result as

 ∮   H · d L = N I (44)

In an electric circuit, the voltage source is a part of the closed path; in the magnetic 
circuit, the current-carrying coil will surround or link the magnetic circuit. In tracing 
a magnetic circuit, we will not be able to identify a pair of terminals at which the 
magnetomotive force is applied. The analogy is closer here to a pair of coupled cir-
cuits in which induced voltages exist (and in which we will see in Chapter 9 that the 
closed line integral of E is also not zero).

We will try out some of these ideas on a simple magnetic circuit. In order to 
avoid the complications of ferromagnetic materials at this time, we will assume that 
we have an air-core toroid with 500 turns, a cross-sectional area of 6 cm2, a mean 
radius of 15 cm, and a coil current of 4 A. As we already know, the magnetic field is 
confined to the interior of the toroid, and if we consider the closed path of our mag-
netic circuit along the mean radius, we link 2000 A · t,

 V  m, source   = 2000 A · t

Although the field in the toroid is not quite uniform, we may assume that it is, for all 
practical purposes, and calculate the total reluctance of the circuit as

ℜ =   d ___ 
μS

    =   2π(0.15)  _____________  
4π 10   −7  × 6  ×  10   −4 

   = 1.25 ×  10   9   A · t ∕Wb

Thus

Φ =    V  m,S   ____ ℜ   =   2000 ________ 
1.25 ×  10   9 

   = 1.6  ×  10   −6   Wb

This value of the total flux is in error by less than    1 _ 4    percent, in comparison with the 
value obtained when the exact distribution of flux over the cross section is used.

Hence

B =   Φ __ 
S
   =   1.6 ×  10   −6  ________ 

6 ×  10   −4 
   = 2.67 ×  10   −3  T

and finally,

H =   B __ μ   =   2.67 ×  10   −3  _________ 
4π  10   −7 

   = 2120  A · t∕m

As a check, we may apply Ampère’s circuital law directly in this symmetrical problem,

 H  ϕ   2πr = N I
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and obtain

 H  ϕ   =   N I _____ 2π r   =   500 × 4 ________ 6.28 × 0.15   = 2120 A∕m

at the mean radius.
Our magnetic circuit in this example does not give us any opportunity to find the 

mmf across different elements in the circuit, for there is only one type of material. 
The analogous electric circuit is, of course, a single source and a single resistor. We 
could make it look just as long as the preceding analysis, however, if we found the 
current density, the electric field intensity, the total current, the resistance, and the 
source voltage.

More interesting and more practical problems arise when ferromagnetic materi-
als are present in the circuit. We begin by considering the relationship between B and 
H in such a material. We may assume that we are establishing a curve of B versus 
H for a sample of ferromagnetic material which is completely demagnetized; both B 
and H are zero. As we begin to apply an mmf, the flux density also rises, but not lin-
early, as the experimental data of Figure 8.11 show near the origin. After H reaches a 
value of about 100 A · t/m, the flux density rises more slowly and begins to saturate 
when H is several hundred A · t/m. Having reached partial saturation, we now turn 
to Figure 8.12, where we may continue our experiment at point x by reducing H. As 
we do so, the effects of hysteresis begin to show, and we do not retrace our original 
curve. Even after H is zero, B = Br, the remnant flux density. As H is reversed, then 
brought back to zero, and the complete cycle traced several times, the hysteresis loop 
of Figure 8.12 is obtained. The mmf required to reduce the flux density to zero is 
identified as Hc, the coercive “force.” For smaller maximum values of H, smaller 

0
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Figure 8.11 Magnetization curve of a sample of silicon sheet 
steel.
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hysteresis loops are obtained, and the locus of the tips is about the same as the virgin 
magnetization curve of Figure 8.11.

B

x

H
Hx

Bx

Br

Hc–Hc–Hx

–Br

–Bx

Figure 8.12 A hysteresis loop for silicon steel. 
The coercive force Hc and remnant flux density Br 
are indicated.

We may use the magnetization curve for silicon steel to solve a magnetic circuit 
problem that is slightly different from our previous example. We use a steel core 
in the toroid, except for an air gap of 2 mm. Magnetic circuits with air gaps occur 
because gaps are deliberately introduced in some devices, such as inductors, which 
must carry large direct currents, because they are unavoidable in other devices such 
as rotating machines, or because of unavoidable problems in assembly. There are still 
500 turns about the toroid, and we ask what current is required to establish a flux 
density of 1 T everywhere in the core.
Solution. This magnetic circuit is analogous to an electric circuit containing a volt-
age source and two resistors, one of which is nonlinear. Because we are given the 
“current,” it is easy to find the “voltage” across each series element, and hence the 
total “emf.” In the air gap,

 ℜ  air   =    d  air   ___ 
μS

   =   2 ×  10   −3   _______________  
4π  10   −7  × 6 ×  10   −4 

   = 2.65 ×  10   6   A · t∕Wb

Knowing the total flux,

Φ = B S = 1(6 ×  10   −4 ) = 6 ×  10   −4   Wb

EXAMPLE 1 .1 EXAMPLE 8.7
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We have made several approximations in obtaining this answer. We have already 
mentioned the lack of a completely uniform cross section, or cylindrical symmetry; 
the path of every flux line is not of the same length. The choice of a “mean” path 
length can help compensate for this error in problems in which it may be more im-
portant than it is in our example. Fringing flux in the air gap is another source of 
error, and formulas are available by which we may calculate an effective length and 
cross-sectional area for the gap which will yield more accurate results. There is also 
a leakage flux between the turns of wire, and in devices containing coils concentrated 
on one section of the core, a few flux lines bridge the interior of the toroid. Fringing 
and leakage are problems that seldom arise in the electric circuit because the ratio 
of the conductivities of air and the conductive or resistive materials used is so high. 
In contrast, the magnetization curve for silicon steel shows that the ratio of H to B 
in the steel is about 200 up to the “knee” of the magnetization curve; this compares 
with a ratio in air of about 800,000. Thus, although flux prefers steel to air by the 
commanding ratio of 4000 to 1, this is not very close to the ratio of conductivities of, 
say, 1015 for a good conductor and a fair insulator.

which is the same in both steel and air, we may find the mmf required for the gap,
 V  m,air   = (6 ×  10   −4 ) (2.65 ×  10   6 ) = 1590 A · t

Referring to Figure 8.11, a magnetic field strength of 200 A · t/m is required to pro-
duce a flux density of 1 T in the steel. Thus,

 
  H  steel  

 
 =

  
200 A · t

    V  m,steel     =   H  steel    d  steel   = 200 × 0.30π      

 =

  

188 A · t

  

The total mmf is therefore 1778 A · t, and a coil current of 3.56 A is required.

EXAMPLE 8.8

As a last example, let us consider the reverse problem. Given a coil current of 4 A in 
the magnetic circuit of Example 8.7, what will the flux density be?
Solution. First let us try to linearize the magnetization curve by a straight line from 
the origin to B = 1, H = 200. We then have B = H/200 in steel and B = μ0H in air. 
The two reluctances are found to be 0.314 × 106 for the steel path and 2.65 × 106 
for the air gap, or 2.96 × 106A · t/Wb total. Since Vm is 2000 A · t, the flux is 6.76 × 
10−4 Wb, and B = 1.13 T. A more accurate solution may be obtained by assuming 
several values of B and calculating the necessary mmf. Plotting the results enables 
us to determine the true value of B by interpolation. With this method we obtain B = 
1.10 T. The good accuracy of the linear model results from the fact that the reluc-
tance of the air gap in a magnetic circuit is often much greater than the reluctance of 
the ferromagnetic portion of the circuit. A relatively poor approximation for the iron 
or steel can thus be tolerated.
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8.9  POTENTIAL ENERGY AND FORCES ON 
MAGNETIC MATERIALS

In the electrostatic field we first introduced the point charge and the experimental law 
of force between point charges. After defining electric field intensity, electric flux 
density, and electric potential, we were able to find an expression for the energy in an 
electrostatic field by establishing the work necessary to bring the prerequisite point 
charges from infinity to their final resting places. The general expression for energy is

  W  E   =   1 _ 2    ∫  vol    D · E dv  (45)

where a linear relationship between D and E is assumed.
This is not as easily done for the steady magnetic field. It would seem that we 

might assume two simple sources, perhaps two current sheets, find the force on one 

D8.9. Given the magnetic circuit of Figure 8.13, assume B = 0.6 T at the mid-
point of the left leg and find: (a) Vm,air; (b) Vm,steel; (c) the current required in a 
1300-turn coil linking the left leg.

Ans. (a) 3980 A · t; (b) 72 A · t; (c) 3.12 A

D8.10. The magnetization curve for material X under normal operating con-
ditions may be approximated by the expression B = (H/160)(0.25 + e−H/320), 
where H is in A/m and B is in T. If a magnetic circuit contains a 12 cm length 
of material X, as well as a 0.25-mm air gap, assume a uniform cross section 
of 2.5 cm2 and find the total mmf required to produce a flux of (a) 10 μWb;  
(b) 100 μWb.

Ans. (a) 8.58 A · t; (b) 86.7 A · t

L2

L2

L1

S1 = 5 cm2
S2 = 3 cm2

L2 = 16 cm
L1 = 8 cm

Material: silicon steel

0.5 cm

Figure 8.13 See Problem D8.9.
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due to the other, move the sheet a differential distance against this force, and equate 
the necessary work to the change in energy. If we did, we would be wrong, because 
Faraday’s law (coming up in Chapter 9) shows that there will be a voltage induced 
in the moving current sheet against which the current must be maintained. Whatever 
source is supplying the current sheet turns out to receive half the energy we are put-
ting into the circuit by moving it.

In other words, energy density in the magnetic field may be determined more 
easily after time-varying fields are discussed. We will develop the appropriate ex-
pression in discussing Poynting’s theorem in Chapter 11.

An alternate approach would be possible at this time, however, for we might de-
fine a magnetostatic field based on assumed magnetic poles (or “magnetic charges”). 
Using the scalar magnetic potential, we could then develop an energy expression 
by methods similar to those used in obtaining the electrostatic energy relationship. 
These new magnetostatic quantities we would have to introduce would be too great a 
price to pay for one simple result, and we will therefore merely present the result at 
this time and show that the same expression arises in the Poynting theorem later. The 
total energy stored in a steady magnetic field in which B is linearly related to H is

  W  H   =   1 _ 2    ∫  vol   B · H dv (46)

Letting B = μH, we have the equivalent formulations

 W  H   =   1 _ 2    ∫  vol   μ  H   2  dv (47)

or

 W  H   =   1 _ 2    ∫  vol     
 B   2  __ μ   dv (48)

It is again convenient to think of this energy as being distributed throughout the 
volume with an energy density of    1 _ 2    B · H  J/m   3   , although we have no mathematical 
justification for such a statement.

In spite of the fact that these results are valid only for linear media, we may use 
them to calculate the forces on nonlinear magnetic materials if we focus our attention 
on the linear media (usually air) which may surround them. For example, suppose 
that we have a long solenoid with a silicon-steel core. A coil containing n turns/m 
with a current I surrounds it. The magnetic field intensity in the core is therefore 
nI A · t/m, and the magnetic flux density can be obtained from the magnetization 
curve for silicon steel. Let us call this value Bst. Suppose that the core is composed of 
two semi-infinite cylinders2 that are just touching. We now apply a mechanical force 
to separate these two sections of the core while keeping the flux density constant. 

2 A semi-infinite cylinder is a cylinder of infinite length having one end located in finite space.
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We apply a force F over a distance dL, thus doing work F dL. Faraday’s law does 
not apply here, for the fields in the core have not changed, and we can therefore use 
the principle of virtual work to determine that the work we have done in moving one 
core appears as stored energy in the air gap we have created. By (48), this increase is

d  W  H   = F d L =   1 __ 2      B  st
2  ___  μ  0     S d L

where S is the core cross-sectional area. Thus

F =    B  st  2   S____
2  μ  0  

 

If, for example, the magnetic field intensity is sufficient to produce saturation in the 
steel, approximately 1.4 T, the force is

F = 7.80 ×  10   5  S  N
or about 113 lbf / in2.

D8.11. (a) What force is being exerted on the pole faces of the circuit de-
scribed in Problem D8.9 and Figure 8.13? (b) Is the force trying to open or 
close the air gap? 

Ans. (a) 1194 N; (b) As Wilhelm Eduard Weber would put it, “schliessen.”

8.10 INDUCTANCE AND MUTUAL INDUCTANCE
Inductance is the last of the three familiar parameters from circuit theory that we are 
defining in more general terms. Resistance was defined in Chapter 5 as the ratio of 
the potential difference between two equipotential surfaces of a conducting material 
to the total current crossing either equipotential surface. The resistance is a function 
of conductor geometry and conductivity only. Capacitance was defined in the same 
chapter as the ratio of the total charge on either of two equipotential conducting sur-
faces to the potential difference between the surfaces. Capacitance is a function only 
of the geometry of the two conducting surfaces and the permittivity of the dielectric 
medium between or surrounding them.

8.10.1 Flux Linkage and Self-Inductance

As a prelude to defining inductance, we first need to introduce the concept of flux 
linkage. Consider a toroid of N turns in which a current I produces a total flux Φ. 
We assume first that this flux links or encircles each of the N turns, and we also see 
that each of the N turns links the total flux Φ. The flux linkage NΦ is defined as the 
product of the number of turns N and the flux Φ linking each of them.3 For a coil 
having a single turn, the flux linkage is equal to the total flux.

3 The symbol λ is commonly used for flux linkages. We will only occasionally use this concept, however, 
and we will continue to write it as NΦ.
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We now define inductance (or self-inductance) as the ratio of the total flux link-
ages to the current which they link,

 L =   NΦ_
I
 (49)

The current I flowing in the N-turn coil produces the total flux Φ and NΦ flux 
linkages, where we assume for the moment that the flux Φ links each turn. This 
definition is applicable only to magnetic media which are linear, so that the flux is 
proportional to the current. If ferromagnetic materials are present, there is no single 
definition of inductance which is useful in all cases, and we shall restrict our atten-
tion to linear materials.

The unit of inductance is the henry (H), equivalent to one weber-turn per 
ampere.

Let us apply (49) in a straightforward way to calculate the inductance per meter 
length of a coaxial cable of inner radius a and outer radius b. We may take the ex-
pression for total flux developed as Eq. (42) in Chapter 7,

Φ =    μ  0   I d _____ 2π
   ln   b__

a

and obtain the inductance rapidly for a length d,

L =    μ  0   d ___ 2π
   ln   b __ a     H

or, on a per-meter basis,

 L =    μ  0   __ 2π
   ln   b __ a     H/m  (50)

In this case, N = 1 turn, and all the flux links all the current.
In the problem of a toroidal coil of N turns and a current I, as shown in 

Figure 7.12b, we have
 B  ϕ   =    μ  0   N I______

2πρ
 

If the dimensions of the cross section are small compared with the mean radius of the 
toroid ρ0, then the total flux is

Φ =    μ  0   NIS_____
2π ρ  0  

 

where S is the cross-sectional area. Multiplying the total flux by N, we have the flux 
linkages, and dividing by I, we have the inductance

 L =    μ  0    N   2  S_____
2π ρ  0  

   (51)

Once again we have assumed that all the flux links all the turns, and this is a 
good assumption for a toroidal coil of many turns packed closely together. Suppose, 
however, that our toroid has an appreciable spacing between turns, a short part of 
which might look like Figure 8.14. The flux linkages are no longer the product of the 
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flux at the mean radius times the total number of turns. In order to obtain the total 
flux linkages we must look at the coil on a turn-by-turn basis.

 (NΦ)  total  
 
 = 

 
 Φ  1   +  Φ  2   + · · · +  Φ  i   + · · · +  Φ  N  

     =    ∑ 
i=1

  
N
     Φ  i  

 

where Φi is the flux linking the ith turn. Rather than doing this, we usually rely on 
experience and empirical quantities called winding factors and pitch factors to adjust 
the basic formula to apply to the real physical world.

8.10.2 Vector Potential and Inductance

An equivalent definition for inductance may be made using an energy point of view,

 L =   2 W  H_
 I   2 

 (52)

where I is the total current flowing in the closed path and WH is the energy in the 
magnetic field produced by the current. After using (52) to obtain several other gen-
eral expressions for inductance, we will show that it is equivalent to (49). We first 
express the potential energy WH in terms of the magnetic fields,

 L =   
 ∫  vol   B · H dv________

 I   2 
 (53)

and then replace B with ∇ × A,
L =   1 __ 

 I   2 
    ∫  vol   H · (∇ × A) dv

Figure 8.14 A portion of a coil showing partial flux 
linkages. The total flux linkages are obtained by 
adding the fluxes linking each turn.
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The vector identity
∇ · (A × H) ≡ H · (∇ × A) − A · (∇ × H) (54)

may be proved by expansion in rectangular coordinates. The inductance is then

L =   1 __ 
 I   2 

     [ ∫  vol   ∇ · (A × H)  dv +  ∫  vol   A · (∇ × H)  dv]  (55)

After applying the divergence theorem to the first integral and letting ∇ × H = J in 
the second integral, we have

L =   1 __ 
 I   2 

    [   ∮  
S
   (A × H) · d S +  ∫  vol   A · J dv ]

The surface integral is zero, as the surface encloses the volume containing all the 
magnetic energy, and this requires that A and H be zero on the bounding surface. The 
inductance may therefore be written as

 L =   1 __ 
 I   2 

    ∫  vol   A · J dv  (56)

Equation (56) expresses the inductance in terms of an integral of the values of 
A and J at every point. Because current density exists only within the conductor, the 
integrand is zero at all points outside the conductor, and the vector magnetic potential 
need not be determined there. The vector potential is that which arises from the cur-
rent J, and any other current source contributing a vector potential field in the region 
of the original current density is to be ignored for the present. Later we will see that 
this leads to a mutual inductance.

The vector magnetic potential A due to J is given by Eq. (51), Chapter 7,

A =  ∫  vol     
μJ _____ 4π R   dv

and the inductance may therefore be expressed more basically as a rather formidable 
double volume integral,

L =   1 __ 
 I   2 

    ∫  vol    (   ∫  vol     
μJ

 _ 4π R   dv )    · J dv (57)

A slightly simpler integral expression is obtained by restricting our attention to 
current filaments of small cross section for which J dv may be replaced by I d L and 
the volume integral by a closed line integral along the axis of the filament,

L = 
 
  1 __ 
 I   2 

   ∮   (  ∮     μI d L
 _ 4π R   )    · I d L
  

=
  

  μ __ 4π
   ∮   (  ∮     d L _ 

R
   )    · d L

 (58)

Our only present interest in Eqs. (57) and (58) lies in their implication that the 
inductance is a function of the distribution of the current in space or the geometry of 
the conductor configuration.

To obtain our original definition of inductance (49), let us hypothesize a uniform 
current distribution in a filamentary conductor of small cross section so that J dv 
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in (56) becomes I d L,
 L =   1 _ 

I
   ∮   A · d L  (59)

For a small cross section, dL may be taken along the center of the filament. We now 
apply Stokes’ theorem and obtain

L =   1__ 
I
    ∫

S
   (∇ × A) · d S

or

L =   1__ 
I
    ∫

S
   B · d S

or

 L =   Φ__
I
 (60)

Retracing the steps by which (60) is obtained, we should see that the flux Φ is 
that portion of the total flux that passes through any and every open surface whose 
perimeter is the filamentary current path.

If we now let the filament make N identical turns about the total flux, an ideali-
zation that may be closely realized in some types of inductors, the closed line integral 
must consist of N laps about this common path, and (60) becomes

 L =   NΦ___
I
   (61)

The flux Φ is now the flux crossing any surface whose perimeter is the path occupied 
by any one of the N turns. The inductance of an N-turn coil may still be obtained 
from (60), however, if we realize that the flux is that which crosses the complicated 
surface4 whose perimeter consists of all N turns.

Use of any of the inductance expressions for a true filamentary conductor (hav-
ing zero radius) leads to an infinite value of inductance, regardless of the configu-
ration of the filament. Near the conductor, Ampère’s circuital law shows that the 
magnetic field intensity varies inversely with the distance from the conductor, and 
a simple integration soon shows that an infinite amount of energy and an infinite 
amount of flux are contained within any finite cylinder about the filament. This dif-
ficulty is eliminated by specifying a small but finite filamentary radius.

The interior of any conductor also contains magnetic flux, and this flux links a 
variable fraction of the total current, depending on its location. These flux linkages 
lead to an internal inductance, which must be combined with the external inductance 
to obtain the total inductance. The internal inductance of a long, straight wire of cir-
cular cross section, radius a, and uniform current distribution is

  L  a,int   =   μ _ 8π
    H∕m (62)

a result requested in Problem 8.43 at the end of this chapter.
4 Somewhat like a spiral ramp.
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In Chapter 11, we will see that the current distribution in a conductor at high fre-
quencies tends to be concentrated near the surface. The internal flux is reduced, and 
it is usually sufficient to consider only the external inductance. At lower frequencies, 
however, internal inductance may become an appreciable part of the total inductance.

8.10.3 Mutual Inductance

We conclude by defining the mutual inductance between circuits 1 and 2, M12, in 
terms of mutual flux linkages,

  M  12   =    N  2    Φ  12_
 I  1  

 (63)

where Φ12 signifies the flux produced by I1 which links the path of the filamentary 
current I2, and N2 is the number of turns in circuit 2. The mutual inductance, there-
fore, depends on the magnetic interaction between two currents. With either current 
alone, the total energy stored in the magnetic field can be found in terms of a single 
inductance, or self-inductance; with both currents having nonzero values, the total 
energy is a function of the two self-inductances and the mutual inductance. In terms 
of a mutual energy, it can be shown that (63) is equivalent to

  M  12   =   1 ___  I  1    I  2  
    ∫  vol   ( B  1   ·  H  2  )dv  (64)

or

  M  12   =   1 ___  I  1    I  2  
    ∫  vol   (μ  H  1   ·  H  2  )dv  (65)

where B1 is the field resulting from I1 (with I2 = 0) and H2 is the field arising from 
I2 (with I1 = 0). Interchange of the subscripts does not change the right-hand side of 
(65), and therefore

  M  12   =  M  21    (66)

Mutual inductance is also measured in henrys, and we rely on the context to 
allow us to differentiate it from magnetization, also represented by M.

EXAMPLE 8.9

Calculate the self-inductances of and the mutual inductances between two coaxial 
solenoids of radius R1 and R2, R2 > R1, carrying currents I1 and I2 with n1 and n2 
turns/m, respectively.
Solution. We first attack the mutual inductances. From Eq. (15), Chapter 7, we let 
n1 = N/d, and obtain

 
 H  1    

=
  
 n  1    I  1    a  z    (0 < ρ <   R  1  )      =  0 (ρ >  R  1  )
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We see, therefore, that there are many methods available for the calculation of 
self-inductance and mutual inductance. Unfortunately, even problems possessing a 
high degree of symmetry present very challenging integrals for evaluation, and only 
a few problems are available for us to try our skill on.

Inductance will be discussed in circuit terms in Chapter 10.

and
 
 H  2    

= 
 
 n  2    I  2    a  z    (0 < ρ <   R  2  )      =  0 ( ρ >  R  2  )

  
Thus, for this uniform field

 Φ  12   =  μ  0    n  1    I  1   π   R  1  2 
and

 M  12   =  μ  0    n  1    n  2   π   R  1  2 
Similarly,

  Φ  21     =   μ  0    n  2    I  2   π   R  1  2    
 M  21  

 
 =

  
 μ  0    n  1    n  2   π   R  1  2  =  M  12  

If n1 = 50 turns/cm, n2 = 80 turns/cm, R1 = 2 cm, and R2 = 3 cm, then

 M  12   =  M  21   = 4π ×  10   −7 (5000) (8000) π( 0.02   2 ) = 63.2 mH/m

The self-inductances are easily found. The flux produced in coil 1 by I1 is
 Φ  11   =  μ  0    n  1    I  1   π   R  1  2 

and thus
 L  1   =  μ  0    n  1  2   S  1   d   H

The inductance per unit length is therefore
 L  1   =  μ  0    n  1  2   S  1      H/m

or
 L  1   = 39.5    mH/m

Similarly,
 L  2   =  μ  0    n  2  2   S  2   = 22.7    mH∕m

D8.12. Calculate the self-inductance of: (a) 3.5 m of coaxial cable with a = 
0.8 mm and b = 4 mm, filled with a material for which μr = 50; (b) a toroidal 
coil of 500 turns, wound on a fiberglass form having a 2.5 × 2.5 cm square 
cross section and an inner radius of 2 cm; (c) a solenoid having 500 turns about 
a cylindrical core of 2 cm radius in which μr = 50 for 0 < ρ < 0.5 cm and μr = 
1 for 0.5 < ρ < 2 cm; the length of the solenoid is 50 cm. 

Ans. (a) 56.3 μH; (b) 1.01 mH; (c) 3.2 mH
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CHAPTER 8 PROBLEMS
8.1 A point charge, Q = −0.3 μC and m = 3 × 10−16 kg, is moving through 

the field E = 30az V/m. Use Eq. (1) and Newton’s laws to develop the 
appropriate differential equations and solve them, subject to the initial 
conditions at t = 0, v = 3 × 105ax m/s at the origin. At t = 3 μs, find (a) the 
position P(x, y, z) of the charge; (b) the velocity v; (c) the kinetic energy of 
the charge.

8.2 Compare the magnitudes of the electric and magnetic forces on an electron 
that has attained a velocity of 107 m/s. Assume an electric field intensity 
of 105 V/m, and a magnetic flux density associated with that of the Earth’s 
magnetic field in temperate latitudes, 0.5 gauss.

8.3 A point charge for which Q = 2 × 10−16 C and m = 5 × 10−26 kg is moving 
in the combined fields E = 100ax − 200ay + 300az V/m and B = −3ax + 
2ay − az mT. If the charge velocity at t = 0 is v(0) = (2ax − 3ay − 4az)105 
m/s (a) give the unit vector showing the direction in which the charge is 
accelerating at t = 0; (b) find the kinetic energy of the charge at t = 0.

8.4 Show that a charged particle in a uniform magnetic field describes a 
circular orbit with an orbital period that is independent of the radius. Find 
the relationship between the angular velocity and magnetic flux density for 
an electron (the cyclotron frequency).

8.5 A cylindrical shell of radius a is oriented along the z axis. The cylinder 
carries surface current of density K = K0 az, where K0 is a constant. 
Magnetic flux density B = −B0 aρ is applied at the surface over length d. 
Find the torque on the cylinder. 

D8.13. A solenoid is 50 cm long, 2 cm in diameter, and contains 1500 turns. 
The cylindrical core has a diameter of 2 cm and a relative permeability of 75. 
This coil is coaxial with a second solenoid, also 50 cm long, but with a 3 cm 
diameter and 1200 turns. Calculate: (a) L for the inner solenoid; (b) L for the 
outer solenoid; (c) M between the two solenoids. 

Ans. (a) 133.2 mH; (b) 192 mH; (c) 106.6 mH
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8.6 Show that the differential work in moving a current element I d L through a 
distance d l in a magnetic field B is the negative of that done in moving the 
element I d l through a distance d L in the same field.

8.7 A conducting strip of infinite length lies in the xy plane with its length 
oriented along the x axis, and where −b/2 < y < b/2 defines its width 
along y. Current I1 flows down the strip in the positive x direction and is 
uniformly distributed over the width. Above the strip and parallel to it at 
z = d is an infinitely long current filament that carries current I2 in the 
positive x direction. Find the force of attraction between the two currents 
per unit length in x. Assume d << b. 

8.8 Two conducting strips, having infinite length in the z direction, lie in the 
xz plane. One occupies the region d/2 < x < b + d/2 and carries surface 
current density K = K0az; the other is situated at −(b + d/2) < x < −d/2 
and carries surface current density −K0az. (a) Find the force per unit length 
in z that tends to separate the two strips. (b) Let b approach zero while 
maintaining constant current, I = K0b, and show that the force per unit 
length approaches μ0I

2/(2πd) N/m.
8.9 A current of −100az A/m flows on the conducting cylinder ρ = 5 mm, 

and +500az A/m is present on the conducting cylinder ρ = 1 mm. Find the 
magnitude of the total force per meter length that is acting to split the outer 
cylinder apart along its length. 

8.10 A planar transmission line consists of two conducting planes of width b 
separated d m in air, carrying equal and opposite currents of I A. If b ≫ d, 
find the force of repulsion per meter of length between the two conductors.

8.11 (a) Use Eq. (14), Section 8.3, to show that the force of attraction per unit 
length between two filamentary conductors in free space with currents I1az 
at x = 0, y = d/2, and I2az at x = 0, y = −d/2, is μ0I1I2/(2πd). (b) Show how 
a simpler method can be used to check your result.

8.12 Two circular wire rings are parallel to each other, share the same axis, 
are of radius a, and are separated by distance d, where d << a. Each ring 
carries current I. Find the approximate force of attraction and indicate the 
relative orientations of the currents.

8.13 An infinitely long current filament is oriented along the x axis and 
carries current I1 in the positive x direction. A second infinite filament is 
positioned at z = z0 and carries current I2 along its orientation in the (ax + 
ay)/  √ 

__
 2    direction. (a) Find the differential magnetic force at any point on I2

arising from I1. (b) Find the net z-directed force acting on I2.
8.14 A solenoid is 25 cm long, 3 cm in diameter, and carries 4 A dc in its 400 

turns. Its axis is perpendicular to a uniform magnetic field of 0.8 Wb/m2 in 
air. Using an origin at the center of the solenoid, calculate the torque acting 
on it.
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8.15 A solid conducting filament extends from x = −b to x = b along the line 
y = 2, z = 0. This filament carries a current of 3 A in the ax direction. An 
infinite filament on the z axis carries 5 A in the az direction. Obtain an 
expression for the torque exerted on the finite conductor about an origin 
located at (0, 2, 0).

8.16 Assume that an electron is describing a circular orbit of radius a about a 
positively charged nucleus. (a) By selecting an appropriate current and 
area, show that the equivalent orbital dipole moment is ea2ω/2, where ω 
is the electron’s angular velocity. (b) Show that the torque produced by a 
magnetic field parallel to the plane of the orbit is ea2ωB/2. (c) By equating 
the Coulomb and centrifugal forces, show that ω is (4πϵ0mea

3/e2)−1/2, 
where me is the electron mass. (d) Find values for the angular velocity, 
torque, and the orbital magnetic moment for a hydrogen atom, where a is 
about 6 × 10−11 m; let B = 0.5 T.

8.17 The hydrogen atom described in Problem 8.16 is now subjected to a 
magnetic field having the same direction as that of the atom. Show that 
the forces caused by B result in a decrease of the angular velocity by eB/
(2me) and a decrease in the orbital moment by e2a2B/(4me). What are 
these decreases for the hydrogen atom in parts per million for an external 
magnetic flux density of 0.5 T?

8.18 Calculate the vector torque on the square loop shown in Figure 8.15 about 
an origin at A in the field B, given (a) A(0, 0, 0) and B = 100ay mT;  
(b) A(0, 0, 0) and B = 200ax + 100ay mT; (c) A(1, 2, 3) and B = 200ax + 100ay 
− 300az mT; (d) A(1, 2, 3) and B = 200ax + 100ay − 300az mT for x ≥ 2 
and B = 0 elsewhere.

8.19 Given a material for which χm = 3.1 and within which B = 0.4yaz T, find 
(a) H; (b) μ; (c) μr; (d ) M; (e) J; ( f ) JB; (g) JT. 

Figure 8.15 See Problem 8.18.
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8.20 Find H in a material where (a) μr = 4.2, there are 2.7 × 1029 atoms/m3, and 
each atom has a dipole moment of 2.6 × 10−30ay A · m2; (b) M = 270az 
A/m and μ = 2 μH/m; (c) χm = 0.7 and B = 2az T. (d) Find M in a material 
where bound surface current densities of 12az A/m and −9az A/m exist at 
ρ = 0.3 m and 0.4 m, respectively.

8.21 Find the magnitude of the magnetization in a material for which (a) the 
magnetic flux density is 0.02 Wb/m2; (b) the magnetic field intensity is 
1200 A/m and the relative permeability is 1.005; (c) there are 7.2 × 1028 
atoms per cubic meter, each having a dipole moment of 4 × 10−30 A · m2 in 
the same direction, and the magnetic susceptibility is 0.003. 

8.22 Under some conditions, it is possible to approximate the effects of 
ferromagnetic materials by assuming linearity in the relationship of B and 
H. Let μr = 1000 for a certain material of which a cylindrical wire of radius 
1 mm is made. If I = 1 A and the current distribution is uniform, find (a) B, 
(b) H, (c) M, (d) J, and (e) JB within the wire.

8.23 Calculate values for Hϕ, Bϕ, and Mϕ at ρ = c for a coaxial cable with 
a = 2.5 mm and b = 6 mm if it carries a current I = 12 A in the center 
conductor, and μ = 3 μH/m for 2.5 mm < ρ < 3.5 mm, μ = 5 μH/m for  
3.5 mm < ρ < 4.5 mm, and μ = 10 μH/m for 4.5 mm < ρ < 6 mm. Use 
c =: (a) 3 mm; (b) 4 mm; (c) 5 mm. 

8.24 Two current sheets, K0ay A/m at z = 0 and −K0ay A/m at z = d, are 
separated by an inhomogeneous material for which μr = az + 1, where a is 
a constant. (a) Find expressions for H and B in the material. (b) Find the 
total flux that crosses a 1 m2 area on the yz plane.

8.25 A conducting filament at z = 0 carries 12 A in the az direction. Let μr = 1 
for ρ < 1 cm, μr = 6 for 1 < ρ < 2 cm, and μr = 1 for ρ > 2 cm. Find: (a) H 
everywhere; (b) B everywhere.

8.26 A long solenoid has a radius of 3 cm, 5000 turns/m, and carries current 
I = 0.25 A. The region 0 < ρ < a within the solenoid has μr = 5, whereas μr = 1  
for a < ρ < 3 cm. Determine a so that (a) a total flux of 10 μWb is present;  
(b) the flux is equally divided between the regions 0 < ρ < a and a < ρ < 3 cm.

8.27 Let μr1 = 2 in region 1, defined by 2x + 3y − 4z > 1, while μr2 = 5 in 
region 2 where 2x + 3y − 4z < 1. In region 1, H1 = 50ax − 30ay + 20az 
A/m. Find (a) HN1; (b) Ht1; (c) Ht2; (d) HN2; (e) θ1, the angle between 
H1 and aN21; ( f ) θ2, the angle between H2 and aN21.

8.28 For values of B below the knee on the magnetization curve for silicon steel, 
approximate the curve by a straight line with μ = 5 mH/m. The core shown 
in Figure 8.16 has areas of 1.6 cm2 and lengths of 10 cm in each outer leg, 
and an area of 2.5 cm2 and a length of 3 cm in the central leg. A coil of 
1200 turns carrying 12 mA is placed around the central leg. Find B in the 
(a) center leg; (b) center leg if a 0.3 mm air gap is present in the center leg.
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8.29 In Problem 8.28, the linear approximation suggested in the statement of the 
problem leads to flux density of 0.666 T in the central leg. Using this value 
of B and the magnetization curve for silicon steel, what current is required 
in the 1200-turn coil? 

8.30 A rectangular core has fixed permeability μr >> 1, a square cross section of 
dimensions a × a, and has centerline dimensions around its perimeter of b 
and d. Coils 1 and 2, having turn numbers N1 and N2, are wound on the core. 
Consider a selected core cross-sectional plane as lying within the xy plane, 
such that the surface is defined by 0 < x < a, 0 < y < a. (a) With current I1 
in coil 1, use Ampere’s circuital law to find the magnetic flux density as a 
function of position over the core cross section. (b) Integrate your result of 
part (a) to determine the total magnetic flux within the core. (c) Find the self-
inductance of coil 1. (d) Find the mutual inductance between coils 1 and 2.

8.31 A toroid is constructed of a magnetic material having a cross-sectional area 
of 2.5 cm2 and an effective length of 8 cm. There is also a short air gap 
of 0.25 mm length and an effective area of 2.8 cm2. An mmf of 200 A · t 
is applied to the magnetic circuit. Calculate the total flux in the toroid if 
the magnetic material: (a) is assumed to have infinite permeability; (b) is 
assumed to be linear with μr = 1000; (c) is silicon steel. 

8.32 (a) Find an expression for the magnetic energy stored per unit length in 
a coaxial transmission line consisting of conducting sleeves of negligible 
thickness, having radii a and b. A medium of relative permeability μr fills 
the region between conductors. Assume current I flows in both conductors 
in opposite directions. (b) Obtain the inductance, L, per unit length of line 
by equating the energy to (1/2)LI2.

8.33 A toroidal core has a square cross section, 2.5 cm < ρ < 3.5 cm, −0.5 cm < 
z < 0.5 cm. The upper half of the toroid, 0 < z < 0.5 cm, is constructed of 
a linear material for which μr = 10, while the lower half, −0.5 cm < z < 0, 
has μr = 20. An mmf of 150 A · t establishes a flux in the aϕ direction. For 
z > 0, find: (a) Hϕ( ρ); (b) Bϕ(ρ); (c) Φz > 0. (d) Repeat for z > 0. (e) Find 
Φtotal.

Figure 8.16 See Problem 8.28.
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8.34 Determine the energy stored per unit length in the internal magnetic field 
of an infinitely long, straight wire of radius a, carrying uniform current I.

8.35 The cones θ = 21° and θ = 159° are conducting surfaces and carry total 
currents of 40 A, as shown in Figure 8.17. The currents return on a 
spherical conducting surface of 0.25 m radius. (a) Find H in the region 0 < 
r < 0.25, 21° < θ < 159°, 0 < ϕ < 2π. (b) How much energy is stored in 
this region? (c) Find the inductance of the cone-sphere configuration. The 
inductance is that offered at the origin between the vertices of the cone.

8.36 The dimensions of the outer conductor of a coaxial cable are b and c, where 
c > b. Assuming μ = μ0, find the magnetic energy stored per unit length in 
the region b < ρ < c for a uniformly distributed total current I flowing in 
opposite directions in the inner and outer conductors.

8.37 A toroid has known reluctance ℜ. Two windings having N1 and N2 turns 
are present. Find (a) the self-inductances of the two coils; (b) the mutual 
inductance between the coils. 

8.38 A toroidal core has a rectangular cross section defined by the surfaces 
ρ = 2 cm, ρ = 3 cm, z = 4 cm, and z = 4.5 cm. The core material has a 
relative permeability of 80. The core is wound with two coils N1 = 1000 
and N2 = 2500 turns of wire. Find (a) the self-inductances of the two coils; 
(b) the mutual inductance between coils.

8.39 Conducting planes in air at z = 0 and z = d carry surface currents of ±K0ax 
A/m. (a) Find the energy stored in the magnetic field per unit length (0 <  
x < 1) in a width w (0 < y < w). (b) Calculate the inductance per unit length  
of this transmission line from  W  H   =    1 _ 2    L   I   2 , where I is the total current in a 
width w in either conductor. (c) Calculate the total flux passing through the 

Figure 8.17 See Problem 8.35.
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rectangle 0 < x < 1, 0 < z < d, in the plane y = 0, and from this result again 
find the inductance per unit length. 

8.40 A coaxial cable has conductor radii a and b, where a < b. Material of 
permeability μr ≠ 1 exists in the region a < ρ < c, whereas the region c < 
ρ < b is air filled. Find an expression for the inductance per unit length.

8.41 A rectangular coil is composed of 150 turns of a filamentary conductor. 
Find the mutual inductance in free space between this coil and an infinite 
straight filament on the z axis if the four corners of the coil are located at: 
(a) (0, 1, 0), (0, 3, 0), (0, 3, 1), and (0, 1, 1); (b) (1, 1, 0), (1, 3, 0), (1, 3, 1), 
and (1, 1, 1). 

8.42 Find the mutual inductance between two filaments forming circular rings 
of radii a and Δa, where Δa ≪ a. The field should be determined by 
approximate methods. The rings are coplanar and concentric.

8.43 (a) Use energy relationships to show that the internal inductance of a 
nonmagnetic cylindrical wire of radius a carrying a uniformly distributed 
current I is μ0/(8π) H/m. (b) Find the internal inductance if the portion of 
the conductor for which ρ < c < a is removed.

8.44 Show that the external inductance per unit length of a two-wire 
transmission line carrying equal and opposite currents is approximately 
(μ/π) ln(d/a) H/m, where a is the radius of each wire and d is the center-to-
center wire spacing. On what basis is the approximation valid?

8.45 (a) Beginning with the definition of the scalar magnetic potential, 
H = −∇Vm, and using Eq. (25), show that in a region having permanent 
magnetization M and zero current, a Poisson equation for magnetic 
potential can be developed:

 ∇   2   V  m   =   − ρ  m___ μ  0   

where  ρ  m    = − μ  0   ∇ · M is an equivalent magnetic charge density. What 
happens when M is uniform? (b) Using the definition of the vector 
magnetic potential, B  = ∇ × A, and Eq. (25), show that when a permanent 
magnetization exists, and with zero current: 

∇ × ∇ × A =  μ  0    J  eq  
where  J  eq   = ∇ × M in analogy to Eq. (57) in Chapter 7.
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C H A P T E R 

Time-Varying Fields 
and Maxwell’s Equations

The basic relationships of the electrostatic field and the steady magnetic field 
were obtained in the previous eight chapters, and we are now ready to dis-
cuss time-varying fields. The discussion will be short, for vector analysis and 

vector calculus should now be more familiar tools; some of the relationships are 
unchanged, and most of the relationships are changed only slightly.

Two new concepts will be introduced: the electric field produced by a changing 
magnetic field and the magnetic field produced by a changing electric field. The first 
of these concepts resulted from experimental research by Michael Faraday and the 
second from the theoretical efforts of James Clerk Maxwell.

Maxwell actually was inspired by Faraday’s experimental work and by the men-
tal picture provided through the “lines of force” that Faraday introduced in develop-
ing his theory of electricity and magnetism. He was 40 years younger than Faraday, 
but they knew each other during the five years Maxwell spent in London as a young 
professor, a few years after Faraday had retired. Maxwell’s theory was developed 
subsequent to his holding this university position while he was working alone at his 
home in Scotland. It occupied him for five years between the ages of 35 and 40.

The four basic equations of electromagnetic theory presented in this chapter bear 
his name. ■

9.1 FARADAY’S LAW
After Oersted1 demonstrated in 1820 that an electric current affected a compass nee-
dle, Faraday professed his belief that if a current could produce a magnetic field, 
then a magnetic field should be able to produce a current. The concept of the “field” 

9

1 Hans Christian Oersted was professor of physics at the University of Copenhagen in Denmark.
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was not available at that time, and Faraday’s goal was to show that a current could be 
produced by “magnetism.”

He worked on this problem intermittently over a period of 10 years, until he 
was finally successful in 1831.2 He wound two separate windings on an iron toroid 
and placed a galvanometer in one circuit and a battery in the other. Upon closing the 
battery circuit, he noted a momentary deflection of the galvanometer; a similar de-
flection in the opposite direction occurred when the battery was disconnected. This, 
of course, was the first experiment he made involving a changing magnetic field, and 
he followed it with a demonstration that either a moving magnetic field or a moving 
coil could also produce a galvanometer deflection.

9.1.1 Faraday’s Law in Point and Integral Forms

In terms of fields, we now say that a time-varying magnetic field produces an elec-
tromotive force (emf) that may establish a current in a suitable closed circuit. An 
electromotive force is merely a voltage that arises from conductors moving in a mag-
netic field or from changing magnetic fields, and we shall define it in this section. 
Faraday’s law is customarily stated as

 emf = −   dΦ _ 
dt

    V (1)

Equation (1) implies a closed path, although not necessarily a closed conducting path; 
the closed path, for example, might include a capacitor, or it might be a purely imaginary 
line in space. The magnetic flux is that flux which passes through any and every surface 
whose perimeter is the closed path, and dΦ/dt is the time rate of change of this flux.

A nonzero value of dΦ/dt may result from any of the following situations:
1. A time-changing flux linking a stationary closed path
2. Relative motion between a steady flux and a closed path
3. A combination of the two

The minus sign is an indication that the emf is in such a direction as to produce
a current whose flux, if added to the original flux, would reduce the magnitude of 
the emf. This statement that the induced voltage acts to produce an opposing flux is 
known as Lenz’s law.3

If the closed path is that taken by an N-turn filamentary conductor, it is often 
sufficiently accurate to consider the turns as coincident and let

 emf = − N   dΦ_
dt

 (2)

where Φ is now interpreted as the flux passing through any one of N coincident paths.

2 Joseph Henry produced similar results at Albany Academy in New York at about the same time.
3 Henri Frederic Emile Lenz was born in Germany but worked in Russia. He published his law in 1834.
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We need to define emf as used in (1) or (2). The emf is obviously a scalar, and 
(perhaps not so obviously) a dimensional check shows that it is measured in volts. 
We define the emf as

 emf = ∮   E · d L (3)

and note that it is the voltage about a specific closed path. If any part of the path is 
changed, generally the emf changes. The departure from static results is clearly shown 
by (3), for an electric field intensity resulting from a static charge distribution must lead 
to zero potential difference about a closed path. In electrostatics, the line integral leads 
to a potential difference; with time-varying fields, the result is an emf or a voltage.

Replacing Φ in (1) with the surface integral of B, we have

 emf = ∮  E · d L = − d_ 
dt

   ∫
S
   B · d S (4)

where the fingers of our right hand indicate the direction of the closed path, and 
our thumb indicates the direction of d S. A flux density B in the direction of d S and 
increasing with time thus produces an average value of E which is opposite to the 
positive direction about the closed path. The right-handed relationship between the 
surface integral and the closed line integral in (4) should always be kept in mind 
during flux integrations and emf determinations.

We will divide our investigation into two parts by first finding the contribution to 
the total emf made by a changing field within a stationary path (transformer emf), and 
then we will consider a moving path within a constant (motional, or generator, emf).

We first consider a stationary path. The magnetic flux is the only time-varying 
quantity on the right side of (4), and a partial derivative may be taken under the 
integral sign,

emf = ∮  E · d L = −    ∫  
S
     ∂ B ___ ∂ t   · d S (5)

Before we apply this simple result to an example, let us obtain the point form of 
this integral equation. Applying Stokes’ theorem to the closed line integral, we have

∫
S
(∇ × E) · d S = −    ∫  

S
     ∂ B___
∂ t · d S

where the surface integrals may be taken over identical surfaces. The surfaces are 
perfectly general and may be chosen as differentials,

(∇ × E) · d S = −   ∂ B ___ ∂ t   · d S

and

 ∇ × E = −   ∂ B_
∂ t (6)
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This is one of Maxwell’s four equations as written in differential, or point, form, 
the form in which they are most generally used. Equation (5) is the integral form of 
this equation and is equivalent to Faraday’s law as applied to a fixed path. If B is not 
a function of time, (5) and (6) evidently reduce to the electrostatic equations

∮ E · d L = 0 (electrostatics)
and

∇ × E = 0 (electrostatics)

9.1.2 EMF Arising from a Time-Varying Magnetic Field

As an example of the interpretation of (5) and (6), assume the existence of a simple mag-
netic field which increases exponentially with time within the cylindrical region ρ < b,

B =  B  0    e   kt   a  z   (7)
where B0 = constant. Choosing the circular path ρ = a, a < b, in the z = 0 plane, 
along which Eϕ must be constant by symmetry, we then have from (5)

emf = 2π a  E  ϕ   = − k  B  0    e   kt  π  a   2 
The emf around this closed path is −kB0e

ktπa2. It is proportional to a2 because the 
magnetic flux density is uniform and the flux passing through the surface at any 
instant is proportional to the area.

If we now replace a with ρ, ρ < b, the electric field intensity at any point is

E = −   1 _ 2   k  B  0    e   kt  ρ a  ϕ (8)

We next try to obtain the same answer from (6), which becomes

 (∇ × E)  z   = − k B  0    e   kt  =   1 __ ρ     
∂ ( ρ  E  ϕ   )_______

∂ ρ 

Multiplying by ρ and integrating from 0 to ρ (treating t as a constant, since the deriv-
ative is a partial derivative),

−   1 __ 2   k B  0    e   kt   ρ   2  = ρ  E  ϕ
or

E = −   1 __ 2   k B  0   e   kt  ρ a  ϕ
once again.

If B0 is considered positive, a filamentary conductor of resistance R would have 
a current flowing in the negative aϕ direction, and this current would establish a flux 
within the circular loop in the negative az direction. Because Eϕ increases exponen-
tially with time, the current and flux do also, and thus they tend to reduce the time rate 
of increase of the applied flux and the resultant emf in accordance with Lenz’s law.

Before leaving this example, it is well to point out that the given field B does 
not satisfy all of Maxwell’s equations. Such fields are often assumed (always in 
ac-circuit problems) and cause no difficulty when they are interpreted properly. They 
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occasionally cause surprise, however. This particular field is discussed further in 
Problem 9.19 at the end of the chapter.

9.1.3 Motional EMF

Now consider the case of a time-constant flux and a moving closed path. Before we de-
rive any special results from Faraday’s law (1), we use the basic law to analyze the specif-
ic problem outlined in Figure 9.1. The closed circuit consists of two parallel conductors 
which are connected at one end by a high-resistance voltmeter of negligible dimensions 
and at the other end by a sliding bar moving at a velocity v. The magnetic flux density 
B is constant (in space and time) and is normal to the plane containing the closed path.

Let the position of the shorting bar be given by y; the flux passing through the 
surface within the closed path at any time t is then

Φ = Byd

From (1), we obtain

emf = −   dΦ___
dt

 = − B   dy __ 
dt

   d = − Bvd (9)

The emf is defined as ∮ E · d L and we have a conducting path, so we may actu-
ally determine E at every point along the closed path. We found in electrostatics that 
the tangential component of E is zero at the surface of a conductor, and we shall show 
in Section 9.4 that the tangential component is zero at the surface of a perfect conduc-
tor (σ = ∞) for all time-varying conditions. This is equivalent to saying that a perfect 
conductor is a “short circuit.” The entire closed path in Figure 9.1 may be considered 
a perfect conductor, with the exception of the voltmeter. The actual computation of 
∮ E · d L then must involve no contribution along the entire moving bar, both rails, 

x

y

z

Voltmeter

B(uniform)

1

2

x = d

V v

Figure 9.1 An example illustrating the application of Far-
aday’s law to the case of a constant magnetic flux density 
B and a moving path. The shorting bar moves to the right 
with a velocity v, and the circuit is completed through the 
two rails and an extremely small high-resistance voltme-
ter. The voltmeter reading is V12 = −Bvd.
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and the voltmeter leads. Because we are integrating in a counterclockwise direction 
(keeping the interior of the positive side of the surface on our left as usual), the 
contribution E ΔL across the voltmeter must be −Bvd, showing that the electric field 
intensity in the instrument is directed from terminal 2 to terminal 1. For an up-scale 
reading, the positive terminal of the voltmeter should therefore be terminal 2.

The direction of the resultant small current flow may be confirmed by noting 
that the enclosed flux is reduced by a clockwise current in accordance with Lenz’s 
law. The voltmeter terminal 2 is again seen to be the positive terminal.

We now consider this example using the concept of motional emf. The force on 
a charge Q moving at a velocity v in a magnetic field B is

 F = Qv × B 

or
  F __ 
Q

   = v × B (10)

The sliding conducting bar is composed of positive and negative charges, and each 
experiences this force. The force per unit charge, as given by (10), is called the 
motional electric field intensity Em,

  E  m   = v × B (11)

If the moving conductor were lifted off the rails, this electric field intensity would 
force electrons to one end of the bar (the far end) until the static field due to these 
charges just balanced the field induced by the motion of the bar. The resultant tan-
gential electric field intensity would then be zero along the length of the bar.

The motional emf produced by the moving conductor is then
emf = ∮   E  m   · d L = ∮  (v × B) · d L (12)

where the last integral may have a nonzero value only along that portion of the path 
which is in motion, or along which v has some nonzero value. Evaluating the right 
side of (12), we obtain

∮ (v × B) · d L =  ∫ 
d
  
   0

    vB dx = − Bvd

as before. This is the total emf, since B is not a function of time.
In the case of a conductor moving in a uniform constant magnetic field, we may 

therefore ascribe a motional electric field intensity Em = v × B to every portion of 
the moving conductor and evaluate the resultant emf by

emf = ∮ E · d L = ∮  E  m   · d L = ∮ (v × B) · d L (13)

If the magnetic flux density is also changing with time, then we must include 
both contributions, the transformer emf (5) and the motional emf (12),

emf = ∮ E · d L = −  ∫  
S
     ∂ B___
∂ t

· d S + ∮ (v × B) · d L (14)
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This expression is equivalent to the simple statement

emf = −   dΦ___
dt

 (1)

and either can be used to determine these induced voltages.
Although (1) appears simple, there are a few contrived examples in which its 

proper application is quite difficult. These usually involve sliding contacts or switches; 
they always involve the substitution of one part of a circuit by a new part.4 As an 
example, consider the simple circuit of Figure 9.2, which contains several perfectly 
conducting wires, an ideal voltmeter, a uniform constant field B, and a switch. When 
the switch is opened, there is obviously more flux enclosed in the voltmeter circuit; 
however, it continues to read zero. The change in flux has not been produced by ei-
ther a time-changing B [first term of (14)] or a conductor moving through a magnetic 
field [second part of (14)]. Instead, a new circuit has been substituted for the old. 
Thus it is necessary to use care in evaluating the change in flux linkages.

The separation of the emf into the two parts indicated by (14), one due to the 
time rate of change of B and the other to the motion of the circuit, is somewhat arbi-
trary in that it depends on the relative velocity of the observer and the system. A field 
that is changing with both time and space may look constant to an observer moving 
with the field. This line of reasoning is developed more fully in applying the special 
theory of relativity to electromagnetic theory.5

B

V

Figure 9.2 An apparent increase in flux linkages 
does not lead to an induced voltage when one 
part of a circuit is simply substituted for another by 
opening the switch. No indication will be observed 
on the voltmeter.

D9.1. Within a certain region, ϵ = 10−11 F/m and μ = 10−5 H/m. If Bx = 2 × 
10−4 cos 105t sin 10−3y T: (a) use ∇ × H = ϵ   ∂ E ___ ∂ t   to find E; (b) find the total
magnetic flux passing through the surface x = 0, 0 < y < 40 m, 0 < z < 2 m,  

4 See Bewley, in References at the end of the chapter, particularly pp. 12–19.
5 This is discussed in several of the references listed in the References at the end of the chapter. See 
Panofsky and Phillips, pp. 142–51; Owen, pp. 231–45; and Harman in several places.
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9.2 DISPLACEMENT CURRENT
Faraday’s experimental law has been used to obtain one of Maxwell’s equations in 
differential form,

∇ × E = −   ∂ B ___ ∂ t   (15)

which shows us that a time-changing magnetic field produces an electric field. 
Remembering the definition of curl, we see that this electric field has the special 
property of circulation; its line integral about a general closed path is not zero. Now 
we turn our attention to the time-changing electric field.

9.2.1 Modifying Ampère’s Law for Time-Varying Fields

We first look at the point form of Ampère’s circuital law as it applies to steady mag-
netic fields,

∇ × H = J (16)

and show its inadequacy for time-varying conditions by taking the divergence of 
each side,

∇ · ∇ × H ≡ 0 = ∇ · J

The divergence of the curl is identically zero, so ∇ · J is also zero. However, the 
equation of continuity,

∇ · J = −   ∂  ρ  v___
∂ t 

then shows us that (16) can be true only if ∂ρv /∂t = 0. This is an unrealistic limitation, 
and (16) must be amended before we can accept it for time-varying fields. Suppose 
we add an unknown term G to (16),

∇ × H = J + G

Again taking the divergence, we have

0 = ∇ · J + ∇ · G

at t = 1 μs; (c) find the value of the closed line integral of E around the perim-
eter of the given surface.

Ans. (a) −20 000 sin 105 t cos 10−3yaz V/m; (b) 0.318 mWb; (c) −3.19 V

D9.2. With reference to the sliding bar shown in Figure 9.1, let d = 7 cm, B = 
0.3az T, and v = 0.1aye

20y m/s. Let y = 0 at t = 0. Find: (a) v (t = 0); (b) y(t = 
0.1); (c) v (t = 0.1); (d) V12 at t = 0.1. 

Ans. (a) 0.1 m/s; (b) 1.12 cm; (c) 0.125 m/s; (d ) −2.63 mV
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Thus

∇ · G =   ∂  ρ  v___
∂ t 

Replacing ρv with ∇ · D,

∇ · G =   ∂ __ ∂ t   (∇ · D) = ∇ ·   ∂ D___
∂ t 

from which we obtain the simplest solution for G,

G =   ∂ D___
∂ t 

Ampère’s circuital law in point form therefore becomes 

 ∇ × H = J +   ∂ D_
∂ t (17)

Equation (17) has not been derived. It is merely a form we have obtained that 
does not disagree with the continuity equation. It is also consistent with all our other 
results, and we accept it as we did each experimental law and the equations derived 
from it. We are building a theory, and we have every right to our equations until they
are proved wrong. This has not yet been done.

We now have a second one of Maxwell’s equations and shall investigate its signif-
icance. The additional term ∂ D/∂t has the dimensions of current density, amperes per 
square meter. Because it results from a time-varying electric flux density (or displacement 
density), Maxwell termed it a displacement current density. We sometimes denote it by Jd:

∇ × H = J +  J  d  

 J  d    =    ∂ D___
∂ t 

This is the third type of current density we have met. Conduction current density,
J = σ E

is the motion of charge (usually electrons) in a region of zero net charge density, and 
convection current density,

J =  ρ  v   v
is the motion of volume charge density. Both are represented by J in (17). Bound 
current density is, of course, included in H. In a nonconducting medium in which no 
volume charge density is present, J = 0, and then

∇ × H =   ∂ D ___ ∂ t    (if J = 0) (18)

Notice the symmetry between (18) and (15):

∇ × E = −   ∂ B ___ ∂ t   (15)

Again, the analogy between the intensity vectors E and H and the flux den-
sity vectors D and B is apparent. We cannot place too much faith in this analogy, 
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however, for it fails when we investigate forces on particles. The force on a charge is 
related to E and to B, and some good arguments may be presented showing an analo-
gy between E and B and between D and H. We omit them, however, and merely say 
that the concept of displacement current was probably suggested to Maxwell by the 
symmetry first mentioned in this paragraph.6

The total displacement current crossing any given surface is expressed by the 
surface integral,

 I  d   =  ∫  
S
    J  d   · d S =  ∫  

S
     ∂ D ___ ∂ t   · d S

and we may obtain the time-varying version of Ampère’s circuital law by integrating 
(17) over the surface S,S,

 ∫
S
   (∇ × H) · d S =  ∫  

S
    J · d S +  ∫  

S
     ∂ D ___ ∂ t   · d S

and applying Stokes’ theorem,

 ∮  H · d L = I +  I  d   = I +  ∫  
S
     ∂ D _ ∂ t   · d S (19)

9.2.2 An Illustration of Displacement Current

What is the nature of displacement current density? Consider the simple circuit of 
Figure 9.3, which contains a filamentary loop and a parallel-plate capacitor. Within 

I

C

k

B

Figure 9.3 A filamentary conductor forms a loop connecting 
the two plates of a parallel-plate capacitor. A time-varying mag-
netic field inside the closed path produces an emf of V0 cos ωt 
around the closed path. The conduction current I is equal to 
the displacement current between the capacitor plates.

6 The analogy that relates B to D and H to E is strongly advocated by Fano, Chu, and Adler (see 
References for Chapter 5); the case for comparing B to E and D to H is presented in Halliday and Resnick 
(see References for this chapter).
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the loop, a magnetic field varying sinusoidally with time is applied to produce an 
emf about the closed path (the filament plus the dashed portion between the capacitor 
plates), which we shall take as

emf =  V  0   cos ωt

Using elementary circuit theory and assuming that the loop has negligible resis-
tance and inductance, we may obtain the current in the loop as

I = − ωC  V  0   sin ωt

= − ω   ϵS __ 
d
    V  0   sin ωt

where the quantities ϵ, S, and d pertain to the capacitor. We now apply Ampère’s cir-
cuital law about the smaller closed circular path k and neglect displacement current 
for the moment:

 ∮
k
   H · d L =  I  k  

The path and the value of H along the path are both definite quantities (although 
difficult to determine), and ∮ k H · d L is a definite quantity. The current Ik is that 
current through every surface whose perimeter is the path k. If we choose a simple 
surface punctured by the filament, such as the plane circular surface defined by 
the circular path k, the current is evidently the conduction current. Suppose now 
we consider the closed path k as the mouth of a paper bag whose bottom passes 
between the capacitor plates. The bag is not pierced by the filament, and the con-
ductor current is zero. Now we need to consider displacement current, for within 
the capacitor

D = ϵ E = ϵ  (     V  0   _ 
d
   cos ωt )   

and therefore

 I  d   =   ∂  D _____ ∂ t   S = − ω   ϵS __ 
d
    V  0   sin ωt

This is the same value as that of the conduction current in the filamentary loop. 
Therefore the application of Ampère’s circuital law, including displacement current 
to the path k, leads to a definite value for the line integral of H. This value must be 
equal to the total current crossing the chosen surface. For some surfaces the current 
is almost entirely conduction current, but for those surfaces passing between the ca-
pacitor plates, the conduction current is zero, and it is the displacement current which 
is now equal to the closed line integral of H.

Physically, we should note that a capacitor stores charge and that the electric 
field between the capacitor plates is much greater than the small leakage fields out-
side. We therefore introduce little error when we neglect displacement current on all 
those surfaces which do not pass between the plates.

Displacement current is associated with time-varying electric fields and there-
fore exists in all imperfect conductors carrying a time-varying conduction current. 
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9.3 MAXWELL’S EQUATIONS IN POINT FORM
We have already obtained two of Maxwell’s equations for time-varying fields,

 ∇ × E = −   ∂ B_
∂ t (20)

and

 ∇ × H = J +   ∂ D_ ∂ t   
(21)

The remaining two equations are unchanged from their non-time-varying form:

 ∇ · D =  ρ  v   (22)

 ∇ · B = 0 (23)

Equation (22) essentially states that charge density is a source (or sink) of electric 
flux lines. Note that we can no longer say that all electric flux begins and terminates 
on charge, because the point form of Faraday’s law (20) shows that E, and hence D, 
may have circulation if a changing magnetic field is present. Thus the lines of electric 
flux may form closed loops. However, the converse is still true, and every coulomb of 
charge must have one coulomb of electric flux diverging from it.

Equation (23) again acknowledges the fact that “magnetic charges,” or poles, are 
not known to exist. Magnetic flux is always found in closed loops and never diverges 
from a point source.

These four equations form the basis of all electromagnetic theory. They are par-
tial differential equations and relate the electric and magnetic fields to each other 

D9.3. Find the amplitude of the displacement current density: (a) adjacent to 
an automobile antenna where the magnetic field intensity of an FM signal is 
Hx = 0.15 cos[3.12(3 × 108t − y)] A/m; (b) in the airspace at a point within 
a large power distribution transformer where B = 0.8 cos[1.257 × 10−6(3 × 
108t − x)]ay T; (c) within a large, oil-filled power capacitor where ϵr = 5 and
E = 0.9 cos[1.257 × 10−6(3 × 108t − z √ 

__
 5  )]ax MV/m; (d ) in a metallic conduc-

tor at 60 Hz, if ϵ = ϵ0, μ = μ0, σ = 5.8 × 107 S/m, and J = sin(377t − 117.1z)ax  
MA/m2. 

Ans. (a) 0.468 A/m2; (b) 0.800 A/m2; (c) 0.0150 A/m2; (d ) 57.6 pA/m2

The last part of the following drill problem indicates the reason why this additional 
current was never discovered experimentally.
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and to their sources, charge, and current density. The auxiliary equations relating D 
and E,

 D = ϵE (24)

relating B and H,

 B = μH (25)

defining conduction current density,

 J = σ E (26)

and defining convection current density in terms of the volume charge density ρv,

 J =  ρ  v   v (27)

are also required to define and relate the quantities appearing in Maxwell’s equations.
The potentials V and A have not been included because they are not strictly 

necessary, although they are extremely useful. They will be discussed at the end of 
this chapter.

If we do not have “nice” materials to work with, then we should replace (24) 
and (25) with the relationships involving the polarization and magnetization fields,

 D =  ϵ  0   E + P (28)

 B =  μ  0  (H + M ) (29)

For linear materials we may relate P to E

P =  χ  e    ϵ  0   E (30)

and M to H

M =  χ  m   H (31)

Finally, because of its fundamental importance we should include the Lorentz 
force equation, written in point form as the force per unit volume,

 f =  ρ  v  (E + v × B) (32)

The chapters that follow are devoted to the application of Maxwell’s equations 
to several simple problems.
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9.4  MAXWELL’S EQUATIONS 
IN INTEGRAL FORM

The integral forms of Maxwell’s equations are usually easier to recognize in terms 
of the experimental laws from which they have been obtained by a generalization 
process. Experiments must treat physical macroscopic quantities, and their results 
therefore are expressed in terms of integral relationships. A differential equation 
always represents a theory. We now collect the integral forms of Maxwell’s equations 
from Section 9.3.

Integrating (20) over a surface and applying Stokes’ theorem, we obtain Fara-
day’s law,

 ∮ E · d L = −  ∫  
S
     ∂ B _ ∂ t   · d S (33)

and the same process applied to (21) yields Ampère’s circuital law,

 ∮ H · d L = I +  ∫  
S
     ∂ D _ ∂ t   · d S (34)

Gauss’s laws for the electric and magnetic fields are obtained by integrating (22) 
and (23) throughout a volume and using the divergence theorem:

  ∮
S
   D · d S =  ∫  vol    ρ  v   dv (35)

  ∮
S
   B · d S = 0 (36)

These four integral equations enable us to find the boundary conditions on B, D, H, 
and E, which are necessary to evaluate the constants obtained in solving Maxwell’s 
equations in partial differential form. These boundary conditions are in general un-
changed from their forms for static or steady fields, and the same methods may be 
used to obtain them. Between any two real physical media (where K must be zero on 
the boundary surface), (33) enables us to relate the tangential E-field components,

  E  t1   =  E  t2    (37)

D9.4. Let μ = 10−5 H/m, ϵ = 4 × 10−9 F/m, σ = 0, and ρv = 0. Find k (in-
cluding units) so that each of the following pairs of fields satisfies Maxwell’s 
equations: (a) D = 6ax − 2yay + 2zaz nC/m2, H = kxax + 10yay − 25zaz A/m; 
(b) E = (20y − kt)ax V/m, H = (y + 2 × 106t)az A/m. 

Ans. (a) 15 A/m2; (b) −2.5 × 108 V/(m · s)
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and from (34),

  H  t1   =  H  t2    (38)

The surface integrals produce the boundary conditions on the normal components,

  D  N1   −  D  N2   =  ρ  S    (39)

and

  B  N1   =  B  N2    (40)

It is often desirable to idealize a physical problem by assuming a perfect conduc-
tor for which σ is infinite but J is finite. From Ohm’s law, then, in a perfect conductor,

E = 0

and it follows from the point form of Faraday’s law that
H = 0

for time-varying fields. The point form of Ampère’s circuital law then shows that the 
finite value of J is

J = 0
and current must be carried on the conductor surface as a surface current K. Thus, if 
region 2 is a perfect conductor, (37) to (40) become, respectively,

   

  E  t1  

  

=

 

 0

    H  t1    =  K      (   H  t1   = K ×  a  N   )       D  N1  
  =   ρ  s  

  

 B  N1  

  

=

 

 0

    

where aN is an outward normal at the conductor surface.
Note that surface charge density is considered a physical possibility for either 

dielectrics, perfect conductors, or imperfect conductors, but that surface current den-
sity is assumed only in conjunction with perfect conductors.

The preceding boundary conditions are a very necessary part of Maxwell’s 
equations. All real physical problems have boundaries and require the solution of 
Maxwell’s equations in two or more regions and the matching of these solutions at 
the boundaries. In the case of perfect conductors, the solution of the equations within 
the conductor is trivial (all time-varying fields are zero), but the application of the 
boundary conditions (41) to (44) may be very difficult.

Certain fundamental properties of wave propagation are evident when Maxwell’s 
equations are solved for an unbounded region. This problem is treated in Chapter 11. 
It represents the simplest application of Maxwell’s equations because it is the only 
problem which does not require the application of any boundary conditions.

(41)
(42)
(43)
(44)
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9.5 THE RETARDED POTENTIALS
The time-varying potentials, usually called retarded potentials for a reason that we 
will see shortly, find their greatest application in radiation problems (to be addressed 
in Chapter 14) in which the distribution of the source is known approximately. We 
should remember that the scalar electric potential V may be expressed in terms of a 
static charge distribution,

V =  ∫  vol     
 ρ  v   dv _____ 4π ϵ R   (static) (45)

and the vector magnetic potential may be found from a current distribution which is 
constant with time,

A =  ∫  vol     
μJ dv ____ 4π R   (dc) (46)

The differential equations satisfied by V,

 ∇   2  V = −    ρ  v   __ ϵ    (static) (47)

and A,

 ∇   2  A = − μJ (dc) (48)

may be regarded as the point forms of the integral equations (45) and (46), respectively.
Having found V and A, the fundamental fields are then simply obtained by using 

the gradient,
E = − ∇V (static) (49)

or the curl,
B = ∇ × A (dc) (50)

We now wish to define suitable time-varying potentials which are consistent with 
the preceding expressions when only static charges and direct currents are involved.

D9.5. The unit vector 0.64ax + 0.6ay − 0.48az is directed from region 2 (ϵr = 
2, μr = 3, σ2 = 0) toward region 1 (ϵr1 = 4, μr1 = 2, σ1 = 0). If B1 = (ax − 2ay + 
3az) sin 300t T at point P in region 1 adjacent to the boundary, find the ampli-
tude at P of: (a) BN1; (b) Bt1; (c) BN2; (d ) B2. 

Ans. (a) 2.00 T; (b) 3.16 T; (c) 2.00 T; (d ) 5.15 T

D9.6. The surface y = 0 is a perfectly conducting plane, whereas the region 
y > 0 has ϵr = 5, μr = 3, and σ = 0. Let E = 20 cos(2 × 108t − 2.58z)ay V/m for 
y > 0, and find at t = 6 ns; (a) ρS at P(2, 0, 0.3); (b) H at P; (c) K at P. 

Ans. (a) 0.81 nC/m2; (b) −62.3ax mA/m; (c) −62.3az mA/m
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Equation (50) apparently is still consistent with Maxwell’s equations. These 
equations state that ∇ · B = 0, and the divergence of (50) leads to the divergence of 
the curl that is identically zero. We will therefore tentatively accept (50) as satisfac-
tory for time-varying fields and turn our attention to (49).

The inadequacy of (49) is obvious because application of the curl operation to 
each side and recognition of the curl of the gradient as being identically zero confront 
us with ∇ × E = 0. However, the point form of Faraday’s law states that ∇ × E is not 
generally zero, so we may effect an improvement by adding an unknown term to (49),

E = − ∇V + N
taking the curl,

∇ × E = 0 + ∇ × N
using the point form of Faraday’s law,

∇ × N = −   ∂ B___
∂ t 

and using (50), giving us
∇ × N = −   ∂ __ ∂ t  (∇ × A)

or
∇ × N = − ∇ ×   ∂ A___

∂ t 
The simplest solution of this equation is

N = −   ∂ A___
∂ t 

and this leads to

 E = − ∇V −   ∂ A_
∂ t 

(51)

We still must check (50) and (51) by substituting them into the remaining two of 
Maxwell’s equations:

∇ × H = J +    ∂ D___
∂ t 

∇ · D = ρv

Doing this, we obtain the more complicated expressions

  1 __ μ   ∇ × ∇ × A = J + ϵ   (  − ∇   ∂  V _ ∂ t   −    ∂   2  A _ 
∂  t   2 

   )
and

ϵ   (  − ∇ · ∇V −   ∂ _ ∂ t   ∇ · A )    =  ρ  v
or

∇(∇ · A) −  ∇   2  A = μJ − μϵ   (  ∇  ∂  V _ ∂ t    +    ∂   2  A _ 
∂  t   2 

   ) (52)
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and

 ∇   2  V +   ∂ __ ∂ t  (∇ · A) = −    ρ  v__
ϵ (53)

There is no apparent inconsistency in (52) and (53). Under static or dc conditions 
∇ · A = 0, and (52) and (53) reduce to (48) and (47), respectively. We will therefore 
assume that the time-varying potentials may be defined in such a way that B and E 
may be obtained from them through (50) and (51). These latter two equations do not 
serve, however, to define A and V completely. They represent necessary, but not suf-
ficient, conditions. Our initial assumption was merely that B = ∇ × A, and a vector 
cannot be defined by giving its curl alone. Suppose, for example, that we have a very 
simple vector potential field in which Ay and Az are zero. Expansion of (50) leads to

 

 B  x   

 

=

 

 0

   B  y    =    
∂  A  x____
∂ z 

 B  z   

  

=

 

 −   ∂  A  x____
∂ y 

and we see that no information is available about the manner in which Ax varies with 
x. This information could be found if we also knew the value of the divergence of A,
for in our example

∇ · A =   ∂  A  x____
∂ x 

Finally, we should note that our information about A is given only as partial deriv-
atives and that a space-constant term might be added. In all physical problems in 
which the region of the solution extends to infinity, this constant term must be zero, 
for there can be no fields at infinity.

Generalizing from this simple example, we may say that a vector field is de-
fined completely when both its curl and divergence are given and when its value is 
known at any one point (including infinity). We are therefore at liberty to specify the 
divergence of A, and we do so with an eye on (52) and (53), seeking the simplest 
expressions. We define

∇ · A = − μϵ   ∂  V____
∂ t (54)

and (52) and (53) become

 ∇   2  A = − μJ + μϵ    ∂   2  A ___
∂  t   2 

 (55)

and

 ∇   2  V = −    ρ  v   __ ϵ   + μϵ    ∂   2  V ___
∂  t   2 

 (56)

These equations are related to the wave equation, which will be discussed in 
Chapters 10 and 11. They show considerable symmetry, and we should be highly 
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pleased with our definitions of V and A,

B = ∇ × A (50)

∇ · A = − μϵ   ∂  V____
∂ t (54)

 E = − ∇V −   ∂  A____
∂ t   (51)

The integral equivalents of (45) and (46) for the time-varying potentials follow 
from the definitions (50), (51), and (54), but we shall merely present the final results 
and indicate their general nature. In Chapter 11, we will find that any electromagnetic 
disturbance will travel at a velocity

v =   1 __
 √ ___

μϵ

through any homogeneous medium described by μ and ϵ. In the case of free space, 
this velocity turns out to be the velocity of light, approximately 3 × 108 m/s. It is logi-
cal, then, to suspect that the potential at any point is due not to the value of the charge 
density at some distant point at the same instant, but to its value at some previous 
time, because the effect propagates at a finite velocity. Thus (45) becomes

 V =  ∫  vol     
[  ρ  v   ] _ 4πϵR

  dv (57)

where [ρv] indicates that every t appearing in the expression for ρv has been replaced 
by a retarded time,

 t   ′  = t −   R__
v 

Thus, if the charge density throughout space were given by
 ρ  v   =  e   −r  cos ωt

then
[  ρ  v   ] =  e   −r  cos   [  ω  (  t −   R _ v   )    ]

where R is the distance between the differential element of charge being considered 
and the point at which the potential is to be determined.

The retarded vector magnetic potential is given by

 A =  ∫  vol     
μ [J ] _ 4π R  dv (58)

The use of a retarded time has resulted in the time-varying potentials being given 
the name of retarded potentials. In Chapter 14 we will apply (58) to the simple situa-
tion of a differential current element in which I is a sinusoidal function of time. Other 
simple applications of (58) are considered in several problems at the end of this chapter.
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CHAPTER 9 PROBLEMS
9.1 In Figure 9.4, let B = 0.2 cos 120πt T, and assume that the conductor 

joining the two ends of the resistor is perfect. It may be assumed that the 
magnetic field produced by I(t) is negligible. Find (a) Vab(t); (b) I(t). 

9.2 In the example described by Figure 9.1, replace the constant magnetic flux 
density with the time-varying quantity B = B0 sin ωt az. Assume that v is 
constant and that the displacement y of the bar is zero at t = 0. Find the emf 
at any time, t.

We may summarize the use of the potentials by stating that a knowledge of the 
distribution of ρv and J throughout space theoretically enables us to determine V and 
A from (57) and (58). The electric and magnetic fields are then obtained by applying 
(50) and (51). If the charge and current distributions are unknown, or reasonable ap-
proximations cannot be made for them, these potentials usually offer no easier path 
toward the solution than does the direct application of Maxwell’s equations.

D9.7. A point charge of 4 cos 108πt μC is located at P+(0, 0, 1.5), whereas 
−4 cos 108πt μC is at P_(0, 0, −1.5), both in free space. Find V at P(r = 450, θ, 
ϕ = 0) at t = 15 ns for θ =: (a) 0°; (b) 90°; (c) 45°. 

Ans. (a) 159.8 V; (b) 0; (c) 143 V
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9.3 Given H = 300az cos(3 × 108t − y) A/m in free space, find the emf 
developed in the general aϕ direction about the closed path having corners 
at (a) (0, 0, 0), (1, 0, 0), (1, 1, 0), and (0, 1, 0); (b) (0, 0, 0) (2π, 0, 0), (2π, 
2π, 0), and (0, 2π, 0). 

9.4 A rectangular loop of wire containing a high-resistance voltmeter has 
corners initially at (a/2, b/2, 0), (−a/2, b/2, 0), (−a/2, −b/2, 0), and (a/2, 
−b/2, 0). The loop begins to rotate about the x axis at constant angular 
velocity ω, with the first-named corner moving in the az direction at t = 0. 
Assume a uniform magnetic flux density B = B0az. Determine the induced 
emf in the rotating loop and specify the direction of the current.

9.5 The location of the sliding bar in Figure 9.5 is given by x = 5t + 2t3, 
and the separation of the two rails is 20 cm. Let B = 0.8x2az T. Find the 
voltmeter reading at (a) t = 0.4 s; (b) x = 0.6 m. 

9.6 Let the wire loop of Problem 9.4 be stationary in its t = 0 position and find 
the induced emf that results from a magnetic flux density given by B(y, t) 
= B0 cos(ωt − βy)az, where ω and β are constants.

Figure 9.4 See Problem 9.1.

Uniform B

250 Ω

ρ = 15 cm

a

b

I(t)

vVM

a

b

z

y

x

B

Figure 9.5 See Problem 9.5.
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9.7 The rails in Figure 9.6 each have a resistance of 2.2 Ω/m. The bar moves to 
the right at a constant speed of 9 m/s in a uniform magnetic field of 0.8 T. 
Find I(t), 0 < t < 1 s, if the bar is at x = 2 m at t = 0 and (a) a 0.3 Ω resistor 
is present across the left end with the right end open-circuited; (b) a 0.3 Ω 
resistor is present across each end. 

9.8 A perfectly conducting filament is formed into a circular ring of radius 
a. At one point, a resistance R is inserted into the circuit, and at another
a battery of voltage V0 is inserted. Assume that the loop current itself 
produces negligible magnetic field. (a) Apply Faraday’s law, Eq. (4), 
evaluating each side of the equation carefully and independently to show 
the equality; (b) repeat part a, assuming the battery is removed, the ring 
is closed again, and a linearly increasing B field is applied in a direction 
normal to the loop surface.

9.9 A square filamentary loop of wire is 25 cm on a side and has a resistance 
of 125 Ω per meter length. The loop lies in the z = 0 plane with its corners 
at (0, 0, 0), (0.25, 0, 0), (0.25, 0.25, 0), and (0, 0.25, 0) at t = 0. The loop 
is moving with a velocity vy = 50 m/s in the field Bz = 8 cos(1.5 × 108t  
− 0.5x) μT. Develop a function of time that expresses the ohmic power 
being delivered to the loop. 

9.10 (a) Show that the ratio of the amplitudes of the conduction current density 
and the displacement current density is σ/ωϵ for the applied field E = Em 
cos ωt. Assume μ = μ0. (b) What is the amplitude ratio if the applied field 
is E = Eme−t/τ, where τ is real?

9.11 Let the internal dimensions of a coaxial capacitor be a = 1.2 cm, b = 
4 cm, and l = 40 cm. The homogeneous material inside the capacitor has 
the parameters ϵ = 10−11 F/m, μ = 10−5 H/m, and σ = 10−5 S/m. If the 
electric field intensity is E = (106/ρ) cos 105taρ V/m, find (a) J; (b) the 

16 m

0.2 m

B B

vI

Figure 9.6 See Problem 9.7.
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total conduction current Ic through the capacitor; (c) the total displacement 
current Id through the capacitor; (d ) the ratio of the amplitude of Id to that 
of Ic, the quality factor of the capacitor. 

9.12 The magnetic flux density B = B0 cos(ωt) cos(k0z) ay Wb/m2 exists in free 
space. B0 and k0 are constants. Find (a) the displacement current density; 
(b) the electric field intensity; (c) k0.

9.13 In free space it is known that E = E0 /r sin θ cos(ωt − k0r)aθ = Eθ aθ . Show 
that a component of H in the aφ direction arises, where Hφ = Eθ (ϵ0 /μ0)1/2. 
Do this by applying Eqs. (20) and (21) and requiring consistency. 

9.14 A voltage source V0 sin ωt is connected between two concentric conducting 
spheres, r = a and r = b, b > a, where the region between them is a 
material for which ϵ = ϵr ϵ0, μ = μ0, and σ = 0. Find the total displacement 
current through the dielectric and compare it with the source current 
as determined from the capacitance (Section 6.3) and circuit-analysis 
methods.

9.15 Use each of Maxwell’s equations in point form to obtain as much 
information as possible about (a) H, if E = 0; (b) E, if H = 0. 

9.16 Derive the continuity equation from Maxwell’s equations.
9.17 The electric field intensity in the region 0 < x < 5, 0 < y < π/12, 0 < z < 

0.06 m in free space is given by E = C sin 12y sin az cos 2 × 1010tax V/m. 
Beginning with the ∇ × E relationship, use Maxwell’s equations to find a 
numerical value for a, if it is known that a is greater than zero. 

9.18 The parallel-plate transmission line shown in Figure 9.7 has dimensions 
b = 4 cm and d = 8 mm, while the medium between the plates is 
characterized by μr = 1, ϵr = 20, and σ = 0. Neglect fields outside the 
dielectric. Given the field H = 5 cos(109t − βz)ay A/m, use Maxwell’s 
equations to help find (a) β, if β > 0; (b) the displacement current density 
at z = 0; (c) the total displacement current crossing the surface x = 0.5d,  
0 < y < b, 0 < z < 0.1 m in the ax direction.

0

d

b
y

z

x

Figure 9.7 See Problem 9.18.
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9.19 In Section 9.1, Faraday’s law was used to show that the field E = −    1 _ 2    k  B  0    e   kt  
ρ a  ϕ   results from the changing magnetic field B = B0e

ktaz. (a) Show that  
these fields do not satisfy Maxwell’s other curl equation. (b) If we let 
B0 = 1 T and k = 106 s−1, we are establishing a fairly large magnetic flux 
density in 1 μs. Use the ∇ × H equation to show that the rate at which Bz 
should (but does not) change with ρ is only about 5 × 10−6 T per meter in 
free space at t = 0.

9.20 Given Maxwell’s equations in point form, assume that all fields vary as est 
and write the equations without explicitly involving time.

9.21 (a) Show that under static field conditions, Eq. (55) reduces to Ampère’s 
circuital law. (b) Verify that Eq. (51) becomes Faraday’s law when we take 
the curl. 

9.22 In a sourceless medium in which J = 0 and ρv = 0, assume a rectangular 
coordinate system in which E and H are functions only of z and t. The 
medium has permittivity ϵ and permeability μ. (a) If E = Exax and H = 
Hyay, begin with Maxwell’s equations and determine the second-order 
partial differential equation that Ex must satisfy. (b) Show that Ex = E0 
cos(ωt − βz) is a solution of that equation for a particular value of β. 
(c) Find β as a function of given parameters.

9.23 Referring to the parallel plate transmission line of Figure 9.7, the electric 
field between plates is given as E(z,t) = −E0 cos(ωt − βz) ay. Find the 
vector potential A(y,z,t) if it is given that A(0,z,t) = 0. Assume b>>d so 
that x variation is negligible. 

9.24 A vector potential is given as A = A0 cos(ωt − kz) ay. (a) Assuming as 
many components as possible are zero, find H, E, and V. (b) Specify k in 
terms of A0, ω, and the constants of the lossless medium, ϵ and μ.

9.25 In a region where μr = ϵr = 1 and σ = 0, the retarded potentials are given by 
V = x(z − ct) V and A = x  (    z _ c   − t )    a  z  Wb/m, where c = 1  √ ____  μ  0    ϵ  0    . (a) Show 
that ∇ · A = − μϵ   ∂ V ___ ∂t

  . (b) Find B, H, E, and D. (c) Show that these results
satisfy Maxwell’s equations if J and ρv are zero. 

9.26 Write Maxwell’s equations in point form in terms of E and H as they 
apply to a sourceless medium, where J and ρv are both zero. Replace ϵ 
with μ, μ with ϵ, E with H, and H with −E, and show that the equations 
are unchanged. This is a more general expression of the duality principle in 
circuit theory.
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C H A P T E R 

Transmission Lines

T!ransmission lines are used to transmit electric energy and signals from one 
point to another, specifically from a source to a load. Examples include the con-
nection between a transmitter and an antenna, connections between computers 

in a network, or connections between a hydroelectric generating plant and a substation 
several hundred miles away. Other familiar examples include the interconnects be-
tween components of a stereo system and the connection between a cable service pro-
vider and your television set. Examples that are less familiar include the connections 
between devices on a circuit board that are designed to operate at high frequencies.

What all of these examples have in common is that the devices to be connected 
are separated by distances on the order of a wavelength or much larger, whereas in 
basic circuit analysis methods, connections between elements are assumed to have 
negligible length. The latter condition enabled us, for example, to take for granted 
that the voltage across a resistor on one side of a circuit was exactly in phase with 
the voltage source on the other side, or, more generally, that the time measured at 
the source location is precisely the same time as measured at all other points in the 
circuit. When distances are sufficiently large between source and receiver, time delay 
effects become appreciable, leading to delay-induced phase differences. In short, we 
deal with wave phenomena on transmission lines in the same manner that we deal 
with point-to-point energy propagation in free space or in dielectrics.

The basic elements in a circuit, such as resistors, capacitors, inductors, and the 
connections between them, are considered lumped elements if the time delay in travers-
ing the elements is negligible. On the other hand, if the elements or interconnections 
are large enough, it may be necessary to consider them as distributed elements. This 
means that their resistive, capacitive, and inductive characteristics must be evaluated 
on a per-unit-distance basis. Transmission lines have this property in general, and thus 
they become circuit elements in themselves, possessing impedances that contribute to 
the circuit problem. The basic rule is that one must consider elements as distributed if 
the propagation delay across the element dimension is on the order of the shortest time 
interval of interest. In the time-harmonic case, this condition would lead to a measura-
ble phase difference between each end of the device in question.

10
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In this chapter, we investigate wave phenomena in transmission lines. Our ob-
jectives include:

(1)  to understand how to treat transmission lines as circuit elements possessing 
complex impedances that are functions of line length and frequency,

(2)  to understand wave propagation on lines, including cases in which losses 
may occur,

(3)  to learn methods of combining different transmission lines to accomplish a 
desired objective, and

(4) to understand transient phenomena on lines. ■

10.1  PHYSICAL DESCRIPTION OF TRANSMISSION 
LINE PROPAGATION

To obtain a feel for the manner in which waves propagate on transmission lines, the fol-
lowing demonstration may be helpful. Consider a lossless line, as shown in Figure 10.1. 
By lossless, we mean that all power that is launched into the line at the input end even-
tually arrives at the output end. A battery having voltage V0 is connected to the input by 
closing switch S1 at time t = 0. When the switch is closed, the effect is to launch volt-
age, V  + = V0. This voltage does not instantaneously appear everywhere on the line, but 
rather begins to travel from the battery toward the load resistor, R, at a certain velocity. 
The wavefront, represented by the vertical dashed line in Figure 10.1, represents the 
instantaneous boundary between the section of the line that has been charged to V0 and 
the remaining section that is yet to be charged. It also represents the boundary between 
the section of the line that carries the charging current, I +, and the remaining section 
that carries no current. Both current and voltage are discontinuous across the wavefront.

As the line charges, the wavefront moves from left to right at velocity v, which 
is to be determined. On reaching the far end, all or a fraction of the wave voltage 
and current will reflect, depending on what the line is attached to. For example, 
if the resistor at the far end is left disconnected (switch S2 is open), then all of the 
wavefront voltage will be reflected. If the resistor is connected, then some fraction 
of the incident voltage will reflect. The details of this will be treated in Section 10.9. 
Of interest at the moment are the factors that determine the wave velocity. The key 

Figure 10.1 Basic transmission line circuit, showing voltage and current 
waves initiated by closing switch S1.

R
V0

V  = V+
0

+

_

S1 S2

+I
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to understanding and quantifying this is to note that the conducting transmission 
line will possess capacitance and inductance that are expressed on a per-unit-length 
basis. We have already derived expressions for these and evaluated them in Chapters 
6 and 8 for certain transmission line geometries. Knowing these line characteristics, 
we can construct a model for the transmission line using lumped capacitors and in-
ductors, as shown in Figure 10.2. The ladder network thus formed is referred to as a 
pulse-forming network, for reasons that will soon become clear.1

Consider now what happens when connecting the same switched voltage source 
to the network. Referring to Figure 10.2, on closing the switch at the battery location, 
current begins to increase in L1, allowing C1 to charge. As C1 approaches full charge, 
current in L2 begins to increase, allowing C2 to charge next. This progressive charg-
ing process continues down the network, until all three capacitors are fully charged. 
In the network, a “wavefront” location can be identified as the point between two ad-
jacent capacitors that exhibit the most difference between their charge levels. As the 
charging process continues, the wavefront moves from left to right. Its speed depends 
on how fast each inductor can reach its full-current state and, simultaneously, by how 
fast each capacitor can charge to full voltage. The wave is faster if the values of Li 
and Ci are lower. We therefore expect the wave velocity to be inversely proportional 
to a function involving the product of inductance and capacitance. In the lossless 
transmission line, it turns out (as will be shown) that the wave velocity is given by
v = 1 /  √ 

___
 LC   ,where L and C are specified per unit length.

Similar behavior is seen in the line and network when either is initially charged. In 
this case, the battery remains connected, and a resistor can be connected (by a switch) 
across the output end, as shown in Figure 10.2. In the case of the ladder network, the 
capacitor nearest the shunted end (C3) will discharge through the resistor first, followed 
by the next-nearest capacitor, and so on. When the network is completely discharged, 
a voltage pulse has been formed across the resistor, and so we see why this ladder 
configuration is called a pulse-forming network. Essentially identical behavior is seen 
in a charged transmission line when connecting a resistor between conductors at the 
output end. The switched voltage exercises, as used in these discussions, are exam-
ples of transient problems on transmission lines. Transients will be treated in detail in 
Section 10.14. In the beginning, line responses to sinusoidal signals are emphasized.

Figure 10.2 Lumped-element model of a transmission line. All inductance 
values are equal, as are all capacitance values.

L1

R
V0

L2 L3 L4

C1 C2 C3

1 Designs and applications of pulse-forming networks are discussed in Reference1.
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Finally, we surmise that the existence of voltage and current across and within 
the transmission line conductors implies the existence of electric and magnetic fields 
in the space around the conductors. Consequently, we have two possible approaches 
to the analysis of transmission lines: (1) We can solve Maxwell’s equations subject to 
the line configuration to obtain the fields, and with these find general expressions for 
the wave power, velocity, and other parameters of interest. (2) Or we can (for now) 
avoid the fields and solve for the voltage and current using an appropriate circuit 
model. It is the latter approach that we use in this chapter; the contribution of field 
theory is solely in the prior (and assumed) evaluation of the inductance and capaci-
tance parameters. We will find, however, that circuit models become inconvenient or 
useless when losses in transmission lines are to be fully characterized, or when ana-
lyzing more complicated wave behavior (i.e., moding) which may occur as frequen-
cies get high. The loss issues will be taken up in Section 10.5. Moding phenomena 
will be considered in Chapter 13.

10.2 THE TRANSMISSION LINE EQUATIONS
Our first goal is to obtain the differential equations, known as the wave equations, 
which the voltage or current must satisfy on a uniform transmission line. To do this, 
we construct a circuit model for an incremental length of line, write two circuit equa-
tions, and use these to obtain the wave equations.

Our circuit model contains the primary constants of the transmission line. These 
include the inductance, L, and capacitance, C, as well as the shunt conductance, G, 
and series resistance, R—all of which have values that are specified per unit length. 
The shunt conductance is used to model leakage current through the dielectric that 
may occur throughout the line length; the assumption is that the dielectric may pos-
sess conductivity, σd, in addition to a dielectric constant, ϵr, where the latter affects 
the capacitance. The series resistance is associated with any finite conductivity, σc, 
in the conductors. Either one of the latter parameters, R and G, will be responsible 
for power loss in transmission. In general, both are functions of frequency. Knowing 
the frequency and the dimensions, we can determine the values of R, G, L, and C by 
using formulas developed in earlier chapters.

We assume propagation in the az direction. Our model consists of a line section 
of length Δz containing resistance RΔz, inductance LΔz, conductance GΔz, and ca-
pacitance CΔz, as indicated in Figure 10.3. Because the section of the line looks the 
same from either end, we divide the series elements in half to produce a symmetrical 
network. We could equally well have placed half the conductance and half the capac-
itance at each end.

Our objective is to determine the manner and extent to which the output voltage 
and current are changed from their input values in the limit as the length approaches 
a very small value. We will consequently obtain a pair of differential equations that 
describe the rates of change of voltage and current with respect to z. In Figure 10.3, 
the input and output voltages and currents differ respectively by quantities ΔV and 
ΔI, which are to be determined. The two equations are obtained by successive appli-
cations of Kirchoff’s voltage law (KVL) and Kirchoff’s current law (KCL).
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First, KVL is applied to the loop that encompasses the entire section length, as 
shown in Figure 10.3:

 
V =   1 _ 2   RIΔz +   1 _ 2   L   ∂ I __ ∂ t   Δz +   1 _ 2   L  (     ∂ I _ ∂ t   +   ∂ ΔI _ ∂ t   )   Δz

     
+   1 _ 2   R  (  I + ΔI  )   Δz +   (  V + ΔV  )  

   (1)

We can solve Eq. (1) for the ratio, ΔV/Δz, obtaining:

   ΔV ___ Δz
   = −   (  RI + L   ∂ I _ ∂ t   +   1 _ 2   L   ∂ ΔI _ ∂ t   +   1 _ 2   RΔI )     (2)

Next, we write:

 ΔI =   ∂ I __ ∂ z   Δz  and  ΔV =   ∂ V ___ ∂ z   Δz  (3)

which are then substituted into (2) to result in

    ∂ V ___ ∂ z   = −    (  1 +   Δz _ 2     ∂ _ ∂ z   )     (  RI + L   ∂ I _ ∂ t   ) (4)

Now, in the limit as Δz approaches zero (or a value small enough to be negligible), 
(4) simplifies to the final form:

    ∂ V _ ∂ z   = −    (  RI + L   ∂ I _ ∂ t   ) (5)

Equation (5) is the first of the two equations that we are looking for. To find the 
second equation, we apply KCL to the upper central node in the circuit of Figure 
10.3, noting from the symmetry that the voltage at the node will be V + ΔV/2:

  
I =  I  g   +  I  c   +   (  I + ΔI  )    = GΔz  (  V +   ΔV _ 2   )   

   
+CΔz   ∂ __ ∂ t    (  V +   ΔV _ 2   )    +   (  I + ΔI  )  

 (6)

Figure 10.3 Lumped-element model of a short transmission line section 
with losses. The length of the section is Δz. Analysis involves applying 
Kirchoff ’s voltage and current laws (KVL and KCL) to the indicated loop 
and node, respectively.
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Then, using (3) and simplifying, we obtain

    ∂ I __ ∂ z   = −    (  1 +   Δz _ 2     ∂ _ ∂ z   )     (  GV + C   ∂ V _ ∂ t   )      (7)

Again, we obtain the final form by allowing Δz to be reduced to a negligible magni-
tude. The result is

    ∂ I _ ∂ z   = −    (  GV + C   ∂ V _ ∂ t   )     (8)

The coupled differential equations, (5) and (8), describe the evolution of current 
and voltage in any transmission line. Historically, they have been referred to as the 
telegraphist’s equations. Their solution leads to the wave equation for the transmis-
sion line, which we now undertake. We begin by differentiating Eq. (5) with respect 
to z and Eq. (8) with respect to t, obtaining:

     ∂   2 V ___ 
∂  z   2 

   = − R   ∂ I __ ∂ z   − L    ∂   2  I ____
∂ t ∂ z     (9)

and

     ∂   2 I ____ ∂ z ∂ t   = − G   ∂ V ___ ∂ t   − C    ∂   2 V___
∂  t   2 

     (10)

Next, Eqs. (8) and (10) are substituted into (9). After rearranging terms, the result is:

     ∂   2 V_ 
∂  z   2 

   = LC    ∂   2 V_ 
∂  t   2 

   +   (  LG + RC  )     ∂ V _ ∂ t   + RG V  (11)

An analogous procedure involves differentiating Eq. (5) with respect to t and Eq. (8) 
with respect to z. Then, Eq. (5) and its derivative are substituted into the derivative 
of (8) to obtain an equation for the current that is in identical form to that of (11):

     ∂   2  I _ 
∂  z   2 

   = LC    ∂   2  I _ 
∂  t   2 

   +   (  LG + RC  )     ∂  I _ ∂ t   + RG I  (12)

Equations (11) and (12) are the general wave equations for the transmission line. 
Their solutions under various conditions form a major part of our study.

10.3 LOSSLESS PROPAGATION
Lossless propagation means that power is not dissipated or otherwise deviated as the 
wave travels down the transmission line; all power at the input end eventually reaches 
the output end. More realistically, any mechanisms that would cause losses to occur 
have negligible effect. In our model, lossless propagation occurs when R = G = 0. 
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Under this condition, only the first term on the right-hand side of either Eq. (11) or 
Eq. (12) survives. Eq. (11), for example, becomes

     ∂   2 V_ 
∂  z   2 

   = LC    ∂   2 V_ 
∂  t   2 

    (13)

In considering the voltage function that will satisfy (13), it is most expedient to 
simply state the solution, and then show that it is correct. The solution of (13) is of 
the form:

  V  (  z, t )    =  f  1    (  t −   z _ v   )    +  f  2    (  t +   z _ v   )    =  V    +  +  V    −  (14)

where v, the wave velocity, is a constant. The expressions (t ± z/v) are the arguments 
of functions f1 and f2. The identities of the functions themselves are not critical to the 
solution of (13). Therefore, f1 and f2 can be any function.

The arguments of f1 and f2 indicate, respectively, travel of the functions in the 
forward and backward z directions. We assign the symbols V + and V − to identify 
the forward and backward voltage wave components. To understand the behavior, 
consider for example the value of f1 (whatever this might be) at the zero value of its 
argument, occurring when z = t = 0. Now, as time increases to positive values (as 
it must), and if we are to keep track of f1(0), then the value of z must also increase 
to keep the argument (t − z/v) equal to zero. The function f1 therefore moves (or 
propagates) in the positive z direction. Using similar reasoning, the function f2 will 
propagate in the negative z direction, as z in the argument (t + z/v) must decrease to 
offset the increase in t. Therefore we associate the argument (t − z/v) with forward z 
propagation, and the argument (t + z/v) with backward z travel. This behavior occurs 
irrespective of what f1 and f2 are. As is evident in the argument forms, the propaga-
tion velocity is v in both cases.

We next verify that functions having the argument forms expressed in (14) are 
solutions to (13). First, we take partial derivatives of f1, for example with respect to z 
and t. Using the chain rule, the z partial derivative is

   ∂  f  1   ___ ∂ z   =   ∂  f  1   _______ ∂   (  t − z ∕ v )        
∂   (  t − z ∕ v )    _______ ∂ z   = −   1 _ v       f  1   ′  (15)

where it is apparent that the primed function,   f  1   ′  , denotes the derivative of f1 with 
respect to its argument. The partial derivative with respect to time is

    ∂  f  1   ___ ∂ t   =   ∂  f  1   _______ ∂   (  t − z ∕ v )        
∂   (  t − z ∕ v )    _______ ∂ t   =     f  1   ′  (16)

Next, the second partial derivatives with respect to z and t can be taken using similar 
reasoning:

    ∂   2   f  1   ___ 
∂  z   2 

   =   1 __ 
 v   2 

     f  1   ″  and     ∂   2   f  1   ___ 
∂  t   2 

   =  f  1   ″   (17)
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where   f  1   ″  is the second derivative of f1 with respect to its argument. The results in (17) 
can now be substituted into (13), obtaining

  1 __ 
v2     f  1  

 ″  = LC  f  1   ″ (18)

We now identify the wave velocity for lossless propagation, which is the condition 
for equality in (18):

  v =   1 _
 √ 
_
LC 

    (19)

Performing the same procedure using f2 (and its argument) leads to the same expres-
sion for v.

The form of v as expressed in Eq. (19) confirms our original expectation that the 
wave velocity would be in some inverse proportion to L and C. The same result will 
be true for current, as Eq. (12) under lossless conditions would lead to a solution of 
the form identical to that of (14), with velocity given by (19). What is not known yet, 
however, is the relation between voltage and current.

We have already found that voltage and current are related through the telegra-
phist’s equations, (5) and (8). These, under lossless conditions (R = G = 0), become

    ∂ V _ ∂ z   = − L   ∂ I _ ∂ t    (20)

    ∂ I _ ∂ z   = − C   ∂ V_
∂ t   (21)

Using the voltage function, we can substitute (14) into (20) and use the methods 
demonstrated in (15) to write

    ∂ I __ ∂ t   = −   1 __ 
L

     ∂ V ___ ∂ z   =   1 __ 
Lv

   (  f  1   ′  −  f  2   ′ )   (22)

We next integrate (22) over time, obtaining the current in terms of its forward and 
backward propagating components:

  I  (  z, t )    =   1 _ 
Lv

    [    f  1    (  t −   z _ v   )    −  f  2    (  t +   z _ v   )    ]    =  I    +  +    I    −  (23)

In performing this integration, all integration constants are set to zero. The reason 
for this, as demonstrated by (20) and (21), is that a time-varying voltage must lead to 
a time-varying current, with the reverse also true. The factor 1/Lv appearing in (23) 
multiplies voltage to obtain current, and so we identify the product Lv as the char-
acteristic impedance, Z0, of the lossless line. Z0 is defined as the ratio of the voltage 
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to the current in a single propagating wave. Using (19), we write the characteristic 
impedance as

   Z  0   = Lv =  √ 
_
  L _
C

     (24)

By inspecting (14) and (23), we now note that

   V   +  =  Z  0    I   +   (25a)

and

   V    −  = −  Z  0    I    −   (25b)

The significance of the preceding relations can be seen in Figure 10.4. The figure 
shows forward- and backward-propagating voltage waves, V + and V −, both of which 
have positive polarity. The currents that are associated with these voltages will flow 
in opposite directions. We define positive current as having a clockwise flow in the 
line, and negative current as having a counterclockwise flow. The minus sign in (25b) 
thus assures that negative current will be associated with a backward-propagating 
wave that has positive polarity. This is a general convention, applying to lines with 
losses also. Propagation with losses is studied by solving (11) under the assumption 
that either R or G (or both) are not zero. We will do this in Section 10.7 under the 
special case of sinusoidal voltages and currents. Sinusoids in lossless transmission 
lines are considered in Section 10.4.

10.4  LOSSLESS PROPAGATION 
OF SINUSOIDAL VOLTAGES

An understanding of sinusoidal waves on transmission lines is important because any 
signal that is transmitted in practice can be decomposed into a discrete or continuous 
summation of sinusoids. This is the basis of frequency domain analysis of signals on 

Figure 10.4 Current directions in waves having positive voltage 
polarity.
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lines. In such studies, the effect of the transmission line on any signal can be deter-
mined by noting the effects on the frequency components. This means that one can 
effectively propagate the spectrum of a given signal, using frequency-dependent line 
parameters, and then reassemble the frequency components into the resultant signal 
in time domain. Our objective in this section is to obtain an understanding of sinu-
soidal propagation and the implications on signal behavior for the lossless line case.

We begin by assigning sinusoidal functions to the voltage functions in Eq. (14). 
Specifically, we consider a specific frequency, f = ω/2π, and write f1 = f2 = V0 cos(ωt +  
ϕ). By convention, the cosine function is chosen; the sine is obtainable, as we know, 
by setting ϕ = −π/2. We next replace t with (t ± z/vp), obtaining

  (z, t) =  |   V  0    |   cos [ω(t ± z ∕  v  p  ) + ϕ] =  |   V  0   |  cos [ωt ± βz + ϕ ]   (26)

where we have assigned a new notation to the velocity, which is now called the phase
velocity, vp. This is applicable to a pure sinusoid (having a single frequency) and will 
be found to depend on frequency in some cases. Choosing, for the moment, ϕ = 0, 
we obtain the two possibilities of forward or backward z travel by choosing the minus 
or plus sign in (26). The two cases are:

 f (z,  t) =  |   V  0   |   cos (ωt − βz)  (forward z propagation) (27a)
and

    b  (z,  t) =  |   V  0   |   cos (ωt + βz)  (backward z propagation) (27b)

where the magnitude factor, |V0|, is the value of  at z = 0, t = 0. We define the phase
constant β, obtained from (26), as

  β ≡    ω _ v  p      (28)

We refer to the solutions expressed in (27a) and (27b) as the real instantaneous 
forms of the transmission-line voltage. They are the mathematical representations of 
what one would experimentally measure. The terms ωt and βz, appearing in these 
equations, have units of angle and are usually expressed in radians. We know that ω 
is the radian time frequency, measuring phase shift per unit time, and it has units of 
rad/s. In a similar way, we see that β will be interpreted as a spatial frequency, which 
in the present case measures the phase shift per unit distance along the z direction. 
Its units are rad/m. If we were to fix the time at t = 0, Eqs. (27a) and (27b) would 
become

     f     (  z, 0 )    =    b    (  z, 0 )    =  |   V  0    |   cos   (   βz )      (29)
which we identify as a simple periodic function that repeats every incremental dis-
tance λ, known as the wavelength. The requirement is that βλ = 2π, and so

  λ =   2π_
β

 =   
 v  p  _
f
   (30)
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We next consider a point (such as a wave crest) on the cosine function of Eq. (27a), 
the occurrence of which requires the argument of the cosine to be an integer multiple 
of 2π. Considering the mth crest of the wave, the condition at t = 0 becomes

 βz = 2mπ 
To keep track of this point on the wave, we require that the entire cosine argument be 
the same multiple of 2π for all time. From (27a) the condition becomes

  ωt − βz = ω(t − z ∕  v  p  ) = 2mπ   (31)
Again, with increasing time, the position z must also increase in order to satisfy (31). 
Consequently the wave crest (and the entire wave) travels in the positive z direction at 
velocity vp. Eq. (27b), having cosine argument (ωt + βz), describes a wave that trav-
els in the negative z direction, since as time increases, z must now decrease to keep 
the argument constant. Similar behavior is found for the wave current, but compli-
cations arise from line-dependent phase differences that occur between current and 
voltage. These issues are best addressed once we are familiar with complex analysis 
of sinusoidal signals.

10.5  COMPLEX ANALYSIS 
OF SINUSOIDAL WAVES

Expressing sinusoidal waves as complex functions is useful (and essentially indis-
pensable) because it greatly eases the evaluation and visualization of phase that will 
be found to accumulate by way of many mechanisms. In addition, we will find many 
cases in which two or more sinusoidal waves must be combined to form a resultant 
wave—a task made much easier if complex analysis is used.

Expressing sinusoidal functions in complex form is based on the Euler identity:
   e   ± jx  = cos   (  x )    ±  j sin   (  x )      (32)

from which we may write the cosine and sine, respectively, as the real and imaginary 
parts of the complex exponent:

  cos(x) = Re[ e   ± jx ] =   1 _ 2    (e   jx  +  e   −jx ) =   1 _ 2    e   jx  + c.c.   (33a)

  sin (x) = ±Im[ e   ± jx ] =   1 _ 2j
    (e   jx  −  e   −jx ) =   1 _ 2j

    e   jx  + c.c.  (33b)

where j ≡   √ 
___

 −1  , and where c.c. denotes the complex conjugate of the preceding term.
The conjugate is formed by changing the sign of j wherever it appears in the complex 
expression.

We may next apply (33a) to our voltage wave function, Eq. (26):

    (  z, t )    =   |  V  0   |    cos   [  ωt ± βz + ϕ ]    =   1 _ 2     ( |  V0  |   e jϕ)   ⏟
 

V0 
   e     ± jβz   e    jωt  + c.c. (34)

Note that we have arranged the phases in (34) such that we identify the complex
amplitude of the wave as V0 = (  |   V0  |   e  jϕ). In future usage, a single symbol (V0 in the
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present example) will usually be used for the voltage or current amplitudes, with the 
understanding that these will generally be complex (having magnitude and phase).

Two additional definitions follow from Eq. (34). First, we define the complex
instantaneous voltage as:

  V  c    (  z, t )    =  V  0    e   ± jβz   e   jωt   (35)

The phasor voltage is then formed by dropping the e jωt factor from the complex 
instantaneous form:

 V  s    (  z )    =  V  0    e   ± jβz (36)

The phasor voltage can be defined provided we have sinusoidal steady-state conditions— 
meaning that V0 is independent of time. This has in fact been our assumption all 
along, because a time-varying amplitude would imply the existence of other frequen-
cy components in our signal. Again, we are treating only a single-frequency wave. 
The significance of the phasor voltage is that we are effectively letting time stand still 
and observing the stationary wave in space at t = 0. The processes of evaluating rela-
tive phases between various line positions and of combining multiple waves is made 
much simpler in phasor form. Again, this works only if all waves under consideration 
have the same frequency. With the definitions in (35) and (36), the real instantaneous 
voltage can be constructed using (34):

    (  z,   t )    =  |  V0 |   cos   [  ωt ± βz + ϕ ]    = Re[ V  c    (  z,   t )    ] =   1 _ 2    V  c   + c.c.  (37a)

Or, in terms of the phasor voltage:

   (z,  t) =  |V  0  | cos[ω t ± β z + ϕ ] = Re[ V  s  (z)  e       jω  t  ] =   1 _ 2    V  s  (z) e       jω  t  + c.c. (37b)

In words, we may obtain our real sinusoidal voltage wave by multiplying the phasor 
voltage by e  jωt (reincorporating the time dependence) and then taking the real part 
of the resulting expression. It is imperative that one becomes familiar with these 
relations and their meaning before proceeding further.

EXAMPLE 10.1

Two voltage waves having equal frequencies and amplitudes propagate in opposite 
directions on a lossless transmission line. Determine the total voltage as a function 
of time and position.
Solution. Because the waves have the same frequency, we can write their combina-
tion using their phasor forms. Assuming phase constant, β, and real amplitude, V0, 
the two wave voltages combine in this way:

  V  sT     (  z )    =  V  0    e   −jβz  +  V  0    e   +jβz  = 2 V  0   cos   (   βz )    
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10.6  TRANSMISSION LINE EQUATIONS AND 
THEIR SOLUTIONS IN PHASOR FORM

We now apply our results of the previous section to the transmission line equations, 
beginning with the general wave equation, (11). This is rewritten as follows, for the 
real instantaneous voltage, (z, t):

     ∂     2  ____ 
∂  z   2 

   = LC    ∂    2  ___
∂ t   2 

 +   (  LG + RC  )      ∂ ___ ∂ t   + RG  (38)

We next substitute (z, t) as given by the far right-hand side of (37b), noting that 
the complex conjugate term (c.c.) will form a separate redundant equation. We also 
use the fact that the operator ∂/∂t, when applied to the complex form, is equivalent 
to multiplying by a factor of jω. After substitution, and after all time derivatives are 
taken, the factor e jωt divides out. We are left with the wave equation in terms of the 
phasor voltage:

     d   2  V  s   ____ 
d z   2 

   = −  ω   2  LC  V  s   + jω  (  LG + RC )    V  s   + RG  V  s     (39)

Rearranging terms leads to the simplified form:

    d   2  V  s   _ 
d z   2 

   =  (R + jωL) 
 
  

Z

   ( G + jωC)   ⏟
 

Y

   Vs =  γ   2   V  s   (40)

where Z and Y, as indicated, are respectively the net series impedance and the net
shunt admittance in the transmission line—both as per-unit-distance measures. The 
propagation constant in the line is defined as

 γ =  √ 
_________________

  (R + jωL) (G + jωC)   =  √ 
_

 ZY   = α + jβ (41)
The significance of the term will be explained in Section 10.7. For our immediate 
purposes, the solution of (40) will be

   V  s    (  z )    =  V  0  +  e   −γz  +  V   0  −   e   +γz   (42a)

In real instantaneous form, this becomes

     (  z,   t )    = Re[2  V  0   cos    ( β z )     e       jω t  ] = 2  V  0   cos    (   β z )   cos    (  ω t )    

We recognize this as a standing wave, in which the amplitude varies, as cos(βz), and 
oscillates in time, as cos(ωt). Zeros in the amplitude (nulls) occur at fixed locations, 
zn = (mπ)/(2β) where m is an odd integer. We extend the concept in Section 10.10, 
where we explore the voltage standing wave ratio as a measurement technique.
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The wave equation for current will be identical in form to (40). We therefore expect 
the phasor current to be in the form:

   I  s    (  z )    =  I  0  +   e   −γz  +  I  0  −   e   γz    (42b)
The relation between the current and voltage waves is now found, as before, 

through the telegraphist’s equations, (5) and (8). In a manner consistent with Eq. 
(37b), we write the sinusoidal current as

(z, t) = |I0| cos(ωt ± βz + ξ ) =    1 __ 2      (|I0|e jξ)   ⏟
 

I0

    e± jβze jωt + c.c. =    1 __ 2    Is (z)e jωt + c.c.

(43)

Substituting the far right-hand sides of (37b) and (43) into (5) and (8) transforms the 
latter equations as follows:

   ∂ ___ ∂  z    = −  (R + L   ∂ ___ ∂ t  )   ⇒    
dVs___ 
dz

  = −(R + jωL)Is = −Z Is (44a)

and

   ∂ ___ ∂  z    = −  (G + C   ∂  ___ ∂ t  )   ⇒    
dIs ___ 
dz

    = −(G + jωC)Vs = −Y Vs  (44b)

We can now substitute (42a) and (42b) into either (44a) or (44b) [we will use (44a)] 
to find: 

 − γ V   0  +   e    −γz  + γ V   0  −   e   γz  = − Z  (    I   0  +   e    −γz  +  I   0  −   e   γz  )     (45)

Next, equating coefficients of e−γz and eγz, we find the general expression for the line 
characteristic impedance:

   Z  0   =    V  0  +  ___  I  0  +    = −    V  0  −  ___  I  0  −    =   Z __ γ   =   Z ___  √ 
___
ZY

  =  √ 
__

   Z__
Y

      (46)

Incorporating the expressions for Z and Y, we find the characteristic impedance in 
terms of our known line parameters:

 Z  0   =  √ 
_

   R + jωL
 _ 

G + jωC
     = | Z  0   |  e   jθ (47)

Note that with the voltage and current as given in (37b) and (43), we would identify 
the phase of the characteristic impedance, θ = ϕ − ξ.

EXAMPLE 10.2

A lossless transmission line is 80 cm long and operates at a frequency of 600 MHz. 
The line parameters are L = 0.25 μH/m and C = 100 pF/m. Find the characteristic 
impedance, the phase constant, and the phase velocity.
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10.7 LOW-LOSS PROPAGATION
Having obtained the phasor forms of voltage and current in a general transmission 
line [Eqs. (42a) and (42b)], we can now look more closely at the significance of these 
results. First we incorporate (41) into (42a) to obtain

   V  s    (  z )    =  V  0  +   e   −αz   e   −jβz  +  V   0  −   e   αz   e   jβz   (48)

Next, multiplying (48) by e  jωt and taking the real part gives the real instantaneous 
voltage:

    (  z,   t )    =  V  0     +   e   − α  z  cos    (  ω t − β z )    +  V  0     −   e     α z  cos    (  ω t + β z )     (49)

In this exercise, we have assigned  V   0  +  and  V   0  −  to be real. Eq. (49) is recognized as de-
scribing forward- and backward-propagating waves that diminish in amplitude with 
distance according to e−αz for the forward wave, and eαz for the backward wave. Both 
waves are said to attenuate with propagation distance at a rate determined by the 
attenuation coefficient, α, expressed in units of nepers/m [Np/m].2

The phase constant, β, found by taking the imaginary part of (41), is likely to 
be a somewhat complicated function, and will in general depend on R and G. Never-
theless, β is still defined as the ratio ω/vp, and the wavelength is still defined as the 
distance that provides a phase shift of 2π rad, so that λ = 2π/β. By inspecting (41), 
we observe that losses in propagation are avoided (or α = 0) only when R = G = 0.
In that case, (41) gives γ = jβ = jω  √ 

___
 LC  , and so  v  p   = 1 ∕  √ 

___
 LC  , as we found before.

Expressions for α and β when losses are small can be readily obtained from (41). 
In the low-loss approximation, we require R ≪ ωL and G ≪ ωC, a condition that is 

Solution. Because the line is lossless, both R and G are zero. The characteristic 
impedance is

  Z  0   =  √ 
__

   L __ 
C

     =  √ 
________

   0.25 × 1 0   −6  ________ 
100 × 1 0   −12 

     = 50 Ω 

Because γ = α + jβ =  √ 
_______________

    (  R + jωL )     (  G + jωC )      = jω √ 
___

 LC  , we see that

 β = ω √ 
___

 LC   = 2π(600 × 1 0   6 )  √ 
_____________________

   (0.25 × 1 0   −6 )(100 × 1 0   −12 )   = 18.85 rad/m

Also,

  v  p   =   ω __ 
β

   =   2π(600 × 1 0   6 )  __________ 18.85   = 2 × 1 0   8  m/s

2 The term neper was selected (by some poor speller) to honor John Napier, a Scottish mathematician 
who first proposed the use of logarithms.
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often true in practice. Before we apply these conditions, Eq. (41) can be written in 
the form:

γ = α + jβ = [  (  R + jωL )     (  G + jωC )    ]   1∕2 
    

= jω √ 
___

 LC    [    (  1 +   R _ 
jωL

   )     
1∕2

    (  1 +   G _ 
jωC

   )     
1∕2

  ]   
   (50)

The low-loss approximation then allows us to use the first three terms in the binomial 
series:

   √ 
____

 1 + x   ≐  1 +   x _ 2   −    x   2  __ 8     (  x ≪ 1 )      (51)

We use (51) to expand the terms in large parentheses in (50), obtaining:

  γ ≐  jω  √ 
___

 LC    [    (  1 +   R _ 
j2ωL

   +    R   2  _ 
8 ω   2   L   2 

   )     (  1 +   G _ 
j2ωC

   +    G   2  _ 
8 ω   2   C   2 

   )    ]      (52)

All products in (52) are then carried out, neglecting the terms involving RG2, R2G, 
and R2G2, as these will be negligible compared to all others. The result is

 γ = α + jβ ≐ jω  √ 
___

 LC    [  1 +   1 _ 
j2ω

    (    R _ 
L

   +   G _ 
C

   )    +   1 _ 
8 ω   2 

    (     R   2  _ 
 L   2 

   −   2RG _ 
LC

   +    G   2  _ 
 C   2 

   )    ]     (53)

Now, separating real and imaginary parts of (53) yields α and β:

  α ≐    1 _ 2    (  R  √ 
_

   C _ 
L

     + G  √ 
_

   L _ 
C

     )     (54a)

and

  β ≐  ω  √ 
_

 LC    [  1 +   1 _ 8     (     G _ 
ωC

   −   R _ 
ωL

   )2
  ]     (54b)

We note that α scales in direct proportion to R and G, as would be expected. We 
also note that the terms in (54b) that involve R and G lead to a phase velocity, vp = 
ω/β, that is frequency-dependent. Moreover, the group velocity, vg = dω/dβ, will 
also depend on frequency, and will lead to signal distortion, as we will explore in 
Chapter 12. Note that with nonzero R and G, phase and group velocities that are con-
stant with frequency can be obtained when R/L = G/C, known as Heaviside’s condi-
tion. In this case, (54b) becomes β ≐  ω  √ 

___
 LC  , and the line is said to be distortionless.

Further complications occur when accounting for possible frequency dependencies 
within R, G, L, and C. Consequently, conditions of low-loss or distortion-free propa-
gation will usually occur over limited frequency ranges. As a rule, loss increases with 
increasing frequency, mostly because of the increase in R with frequency. The nature 
of this latter effect, known as skin effect loss, requires field theory to understand and 
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quantify. We will study this in Chapter 11, and we will apply it to transmission line 
structures in Chapter 13.

Finally, we can apply the low-loss approximation to the characteristic imped-
ance, Eq. (47). Using (51), we find

  Z  0   =  √ 
______

   R + jωL ______ 
G + jωC

     =  √ 

____________

    
jωL  (  1 +   R ___ jωL   )   

  ____________  
jωC  (  1 +   G ___ jωC   )

   ≐   √ 
__

   L __
C 

  
⎡
 ⎢ 

⎣
     
 (  1 +   R ____ j2ωL   +   R2 ____ 8ω2 L2   )  ______________  
 (  1 +   G ____ j2ωC   +   G2 ____ 8ω2C2   )  

   
⎤⎥
⎦
     (55)

Next, we multiply (55) by a factor of 1, in the form of the complex conjugate of 
the denominator of (55) divided by itself. The resulting expression is simplified by 
neglecting all terms on the order of R2G, G2R, and higher. Additionally, the approxi-
mation, 1/(1 + x) ≐ 1 − x, where x ≪ 1 is used. The result is

   Z  0   ≐   √ 
__

   L __ 
C

      {  1 +   1 _ 
2 ω   2 

    [     1 _ 4     (     R _ 
L

   +   G _ 
C

   )     
2
  −    G   2  _ 

 C   2 
   ]    +   j

 _ 2ω
    (     G _ 

C
   −   R _ 

L
   )    }      (56)

Note that when Heaviside’s condition (again, R/L = G/C) holds, Z0 simplifies to just 
√ 

____
 L ∕ C  , as is true when both R and G are zero.

Suppose in a certain transmission line G = 0, but R is finite valued and satisfies the 
low-loss requirement, R ≪ ωL. Use Eq. (56) to write the approximate magnitude and 
phase of Z0.
Solution. With G = 0, the imaginary part of (56) is much greater than the second 
term in the real part [proportional to (R/ωL)2]. Therefore, the characteristic imped-
ance becomes

  Z  0    (  G = 0 )    ≐   √ 
__

   L __ 
C

      (  1 − j   R _ 2ωL
   )    =  |   Z  0    |    e   jθ

where | Z  0   | ≐   √ 
____

 L ∕ C  , and θ = tan−1(−R/2ωL).

EXAMPLE 10.3

D10.1. At an operating radian frequency of 500 Mrad/s, typical circuit values 
for a certain transmission line are: R = 0.2 Ω/m, L = 0.25 μH/m, G = 10 μS/m, 
and C = 100 pF/m. Find: (a) α; (b) β; (c) λ; (d) vp; (e) Z0. 

Ans. (a) 2.25 mNp/m; (b) 2.50 rad/m; (c) 2.51 m; (d) 2 × 108 m/sec; (e) 50.0 − j0.0350 Ω

10.8  POWER TRANSMISSION AND THE USE OF 
DECIBELS IN LOSS CHARACTERIZATION

Having found the sinusoidal voltage and current in a lossy transmission line, we next 
evaluate the power transmitted over a specified distance as a function of voltage and 
current amplitudes. We start with the instantaneous power, given simply as the prod-
uct of the real voltage and current. Consider the forward-propagating term in (49), 
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where again, the amplitude, V  0  +  =   |     V  0    |   , is taken to be real. The current waveform will
be similar, but will generally be shifted in phase. Both current and voltage attenuate 
according to the factor e−αz. The instantaneous power therefore becomes:

   (  z, t )    =   (  z, t )   I  (  z, t )    =  |   V  0   |   |   I  o   |   e   −2αz  cos   (  ωt − βz )    cos   (  ωt − βz + θ )     (57)

Usually, the time-averaged power,〈  〉, is of interest. We find this through:

  〈〉 =   1 __ 
T

    ∫ 
0
  
  T

       |   V  0    |    |   I  0    |    e   −2αz  cos   (  ωt − βz )    cos   (  ωt − βz + θ )    dt  (58)

where T = 2π/ω is the time period for one oscillation cycle. Using a trigonometric 
identity, the product of cosines in the integrand can be written as the sum of individ-
ual cosines at the sum and difference frequencies:

 〈   〉 =   1 __ 
T

    ∫ 
0
  
  T

        1 _ 2    | V  0   | | I  0   |  e   −2αz    [  cos   (  2ωt − 2βz + θ )    + cos   (  θ )    ]    dt  (59)

The first cosine term integrates to zero, leaving the cos θ term. The remaining inte-
gral easily evaluates as

 〈 〉 =   1 _ 2     |   V  0   |   |   I  0    |    e   −2αz  cos θ =   1 _ 2      |   V  0    |     2  ____  |   Z  0   |      e   −2αz cos θ  [W ] (60)

The same result can be obtained directly from the phasor voltage and current. We 
begin with these, expressed as

   V  s    (  z )    =  V  0    e   −αz   e   −jβz    (61)

and

   I  s    (  z )    =  I  0    e   −αz   e   −jβz  =    V  0   __  Z  0
    e   −αz   e   −jβz (62)

where Z0 = |Z0|e jθ. We now note that the time-averaged power as expressed in (60)
can be obtained from the phasor forms through:

 〈 〉 =   1 _ 2   Re { V  s    I  s  * } (63)

where again, the asterisk (*) denotes the complex conjugate (applied in this case to 
the current phasor only). Using (61) and (62) in (63), it is found that

 〈〉 =   1 _ 2     ℛe   {   V  0    e   −αz   e   −jβz     V  0  *  _______ 
 |   Z  0    |    e   −jθ 

    e   −αz   e   +jβz  }
  =   1 _ 2     ℛe   {      V  0    V  0  *  _____  |   Z  0   |      e   −2αz   e   jθ  }    =   1 _ 2      |   V  0     |     2  ____  |   Z  0   |        e   −2αz    cosθ  (64)

which we note is identical to the time-integrated result in (60). Eq. (63) applies to any 
single-frequency wave.
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An important result of the preceding exercise is that power attenuates as e−2αz, or

  〈 (z)〉 = 〈 (0)〉 e   −2αz   (65)

Power drops at twice the exponential rate with distance as either voltage or current.
A convenient measure of power loss is in decibel units. This is based on express-

ing the power decrease as a power of 10. Specifically, we write

   〈  (  z )   〉 ______ 〈  (  0 )   〉   = e−2αz = 1 0   −καz  (66)

where the constant, κ, is to be determined. Setting αz = 1, we find

 e−2= 1 0   −κ  ⇒ κ =  log  10   ( e   2 ) = 0.869  (67)

Now, by definition, the power loss in decibels (dB) is

  Power loss (dB) = 10  log  10    [     〈  (  0 )   〉 _ 〈  (  z )   〉   ]    = 8.69αz  (68)

where we note that inverting the power ratio in the argument of the log function [as 
compared to the ratio in (66)] yields a positive number for the dB loss. Also, noting 
that 〈〉 ∝ | V  0   |   2 , we may write, equivalently:

  Power loss (dB) = 10  log  10    [     〈  (  0 )   〉 _ 〈  (  z )   〉   ]    = 20  log  10    [     | V  0    (  0 )   | _ | V  0    (  z )   |    ] (69)

where |V0(z)| = |V0(0)|e−αz.

A 20-m length of transmission line is known to produce a 2.0-dB drop in power from 
end to end.
   (a) What fraction of the input power reaches the output?
   (b) What fraction of the input power reaches the midpoint of the line?
   (c) What exponential attenuation coefficient, α, does this represent?
Solution. (a) The power fraction will be

   〈  (  20 )   〉 ______ 〈  (  0 )   〉   = 1  0   −0.2  = 0.63

(b)  2 dB in 20 m implies a loss rating of 0.1 dB/m. So, over a 10-m span, the loss 
is 1.0 dB. This represents the power fraction, 10−0.1 = 0.79.

(c) The exponential attenuation coefficient is found through

α =   2.0 dB  ______________  (8.69 dB∕Np)(20 m)   = 0.012 [Np∕m]

A final point addresses the question: Why use decibels? The most compelling 
reason is that when evaluating the accumulated loss for several lines and devices that 

EXAMPLE 10.4
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10.9  WAVE REFLECTION 
AT DISCONTINUITIES

The concept of wave reflection was introduced in Section 10.1. As implied there, 
the need for a reflected wave originates from the necessity to satisfy all voltage 
and current boundary conditions at the ends of transmission lines and at locations 
at which two dissimilar lines are connected to each other. The consequences of 
reflected waves are usually less than desirable, in that some of the power that was 
intended to be transmitted to a load, for example, reflects and propagates back to 
the source. Conditions for achieving no reflected waves are therefore important to 
understand.

The basic reflection problem is illustrated in Figure 10.5. In it, a transmission 
line of characteristic impedance Z0 is terminated by a load having complex imped-
ance, ZL = RL + jXL. If the line is lossy, then we know that Z0 will also be complex. 
For convenience, we assign coordinates such that the load is at location z = 0. There-
fore, the line occupies the region z < 0. A voltage wave is presumed to be incident on 
the load and is expressed in phasor form for all z:

   V  i    (  z )    =  V  0i   e   −αz  e   −jβz    (70a)

When the wave reaches the load, a reflected wave is generated that back-propagates:

  V  r    (  z )    =  V  0r   e   +αz  e   +jβz   (70b)

are all end-to-end connected, the net loss in dB for the entire span is just the sum of 
the dB losses of the individual elements.

D10.2. Two transmission lines are to be joined end to end. Line 1 is 30 m long 
and is rated at 0.1 dB/m. Line 2 is 45 m long and is rated at 0.15 dB/m. The 
joint is not done well and imparts a 3-dB loss. What percentage of the input 
power reaches the output of the combination?

Ans. 5.3%

Figure 10.5 Voltage wave reflection from a complex load 
impedance.

Z  =  R  +  jXL LLZ0

z = 0

Vi

Vr
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The phasor voltage at the load is now the sum of the incident and reflected voltage 
phasors, evaluated at z = 0:

   V  L   =  V  0i   +  V  0r     (71)
Additionally, the current through the load is the sum of the incident and reflected 
currents, also at z = 0:

   I  L   =  I  0i   +  I  0r   =   1 __  Z  0  
     [   V  0i   −  V  0r   ]    =    V  L   __  Z  L     =   1 __  Z  L       [   V  0i   +  V  0r   ]      (72)

We can now solve for the ratio of the reflected voltage amplitude to the incident 
voltage amplitude, defined as the reflection coefficient, Γ:

  Γ ≡     V  0r   _  V  0i  
   =    Z  L   −  Z  0   _  Z  L   +  Z  0  

   = |Γ |  e   j ϕ  r    (73)

where we emphasize the complex nature of Γ—meaning that, in general, a reflected 
wave will experience a reduction in amplitude and a phase shift, relative to the inci-
dent wave.

Now, using (71) with (73), we may write

   V  L   =  V  0i   + Γ   V  0i     (74)
from which we find the transmission coefficient, defined as the ratio of the load volt-
age amplitude to the incident voltage amplitude:

  τ ≡     V  L   _  V  0i
   = 1 + Γ =   2 Z  L   _  Z  0   +  Z  L     = |τ |  e   j ϕ  t    (75)

A point that may at first cause some alarm is that if Γ is a positive real number, then 
τ > 1; the voltage amplitude at the load is thus greater than the incident voltage. Al-
though this would seem counterintuitive, it is not a problem because the load current 
will be lower than that in the incident wave. We will find that this always results in 
an average power at the load that is less than or equal to that in the incident wave. 
An additional point concerns the possibility of loss in the line. The incident wave 
amplitude that is used in (73) and (75) is always the amplitude that occurs at the
load—after loss has occurred in propagating from the input.

Usually, the main objective in transmitting power to a load is to configure the 
line/load combination such that there is no reflection. The load therefore receives 
all the transmitted power. The condition for this is Γ = 0, which means that the load 
impedance must be equal to the line impedance. In such cases the load is said to 
be matched to the line (or vice versa). Various impedance-matching methods exist, 
many of which will be explored later in this chapter.

Finally, the fractions of the incident wave power that are reflected and dissipated 
by the load need to be determined. The incident power is found from (64), where this 
time we position the load at z = L, with the line input at z = 0.

  〈   i  〉 =   1 _ 2   Re   {      V  0    V  0  *  _____  |   Z  0   |      e   −2αL   e   jθ  }    =   1 _ 2      |   V  0    |     2  ____  |   Z  0   |      e   
−2αL  cos θ  (76a)
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The reflected power is then found by substituting the reflected wave voltage into 
(76a), where the latter is obtained by multiplying the incident voltage by Γ:

 〈   r  〉 =   1 _ 2   Re   {       (  Γ  V  0   )   ( Γ   *  V  0  * ) ___________  |   Z  0   |      e   −2αL   e   jθ  }    =   1 _ 2     |Γ  |   2  |  V  0   |   2  _______  |   Z  0   |      e   −2αL  cos θ (76b)

The reflected power fraction at the load is now determined by the ratio of (76b) to 
(76a):

    〈   r  〉 _ 〈   i  〉
   = Γ  Γ   *  = |Γ  |   2  (77a)

The fraction of the incident power that is transmitted into the load (or dissipated by 
it) is therefore

    〈   t  〉 _ 〈   i  〉
   = 1 − |Γ  |   2  (77b)

The reader should be aware that the transmitted power fraction is not |τ|2, as one 
might be tempted to conclude.

In situations involving the connection of two semi-infinite transmission lines 
having different characteristic impedances, reflections will occur at the junction, 
with the second line being treated as the load. For a wave incident from line 1 (Z01) 
to line 2 (Z02), we find

  Γ =    Z  02   −  Z  01   _  Z  02   +  Z  01  
    (78)

The fraction of the power that propagates into the second line is then 1 − |Γ|2.

EXAMPLE 10.6

Two lossy lines are to be joined end to end. The first line is 10 m long and has a loss 
rating of 0.20 dB/m. The second line is 15 m long and has a loss rating of 0.10 dB/m. 
The reflection coefficient at the junction (line 1 to line 2) is Γ = 0.30. The input 

EXAMPLE 10.5

A 50-Ω lossless transmission line is terminated by a load impedance, ZL = 50 −  
j75 Ω. If the incident power is 100 mW, find the power dissipated by the load.
Solution. The reflection coefficient is

 Γ =    Z  L   −  Z  0   _____  Z  L   +  Z  0  
   =   50 − j75 − 50  ________  50 − j75 + 50   = 0.36 − j0.48 = 0.60  e   −j.93

Then
 〈   t  〉 = (1 −  |  Γ  |     2 )〈 P  i  〉 = [1 −   (  0.60 )     2  ]  (  100 )    = 64 mW
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10.10 VOLTAGE STANDING WAVE RATIO
In many instances, characteristics of transmission line performance are amenable to 
measurement. Included in these are measurements of unknown load impedances, or 
input impedances of lines that are terminated by known or unknown load impedances.  
Such techniques rely on the ability to measure voltage amplitudes that occur as  
functions of position within a line, usually designed for this purpose. A typical appa-
ratus consists of a slotted line, which is a lossless coaxial transmission line having a 
longitudinal gap in the outer conductor along its entire length. The line is positioned 
between the sinusoidal voltage source and the impedance that is to be measured. 
Through the gap in the slotted line, a voltage probe may be inserted to measure the 
voltage amplitude between the inner and outer conductors. As the probe is moved 
along the length of the line, the maximum and minimum voltage amplitudes are 
noted, and their ratio, known as the voltage standing wave ratio, or VSWR, is deter-
mined. The significance of this measurement and its utility form the subject of this 
section.

To understand the meaning of the voltage measurements, we consider a few 
special cases. First, if the slotted line is terminated by a matched impedance, then no 
reflected wave occurs; the probe will indicate the same voltage amplitude at every 
point. Of course, the instantaneous voltages that the probe samples will differ in 
phase by β(z2 − z1) rad as the probe is moved from z = z1 to z = z2, but the system is 
insensitive to the phase of the field. The equal-amplitude voltages are characteristic 
of an unattenuated traveling wave.

Second, if the slotted line is terminated by an open or short circuit (or in general 
a purely imaginary load impedance), the total voltage in the line is a standing wave 
and, as was shown in Example 10.1, the voltage probe provides no output when 
it is located at the nodes; these occur periodically with half-wavelength spacing. 
As the probe position is changed, its output varies as |cos(βz + ϕ)|, where z is the 
distance from the load, and where the phase, ϕ, depends on the load impedance. 

power (to line 1) is 100 mW. (a) Determine the total loss of the combination in dB. 
(b) Determine the power transmitted to the output end of line 2.
Solution. (a) The dB loss of the joint is

 L  j   (dB) =  10 log  10    (    1 _ 
1 − |Γ |   2 

   )    = 10  log  10    (    1 _ 1 − 0.09   )    = 0.41 dB

The total loss of the link in dB is now

 L  t  (dB) = (0.20)(10) + 0.41 + (0.10)(15) = 3.91 dB

(b) The output power will be Pout = 100 × 10−0.391 = 41 mW.
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For example, if the load is a short circuit, the requirement of zero voltage at the short 
leads to a null occurring there, and so the voltage in the line will vary as |sin(βz)| 
(where ϕ = ±π/2).

A more complicated situation arises when the reflected voltage is neither 0 nor 
100 percent of the incident voltage. Some energy is absorbed by the load and some 
is reflected. The slotted line, therefore, supports a voltage that is composed of both 
a traveling wave and a standing wave. It is customary to describe this voltage as a 
standing wave, even though a traveling wave is also present. We will see that the volt-
age does not have zero amplitude at any point for all time, and the degree to which 
the voltage is divided between a traveling wave and a true standing wave is expressed 
by the ratio of the maximum amplitude found by the probe to the minimum ampli-
tude (VSWR). This information, along with the positions of the voltage minima or 
maxima with respect to that of the load, enable one to determine the load impedance. 
The VSWR also provides a measure of the quality of the termination. Specifically, a 
perfectly matched load yields a VSWR of exactly 1. A totally reflecting load produc-
es an infinite VSWR.

To derive the specific form of the total voltage, we begin with the forward and 
backward-propagating waves that occur within the slotted line. The load is positioned 
at z = 0, and so all positions within the slotted line occur at negative values of z. 
Taking the input wave amplitude as V0, the total phasor voltage is

   V  sT     (  z )    =  V  0    e   −jβz  + Γ  V  0    e   jβz     (79)

The line, being lossless, has real characteristic impedance, Z0. The load impedance, 
ZL, is in general complex, which leads to a complex reflection coefficient:

  Γ =    Z  L   −  Z  0   _  Z  L   +  Z  0  
   = |Γ |  e   jϕ  (80)

If the load is a short circuit (ZL = 0), ϕ is equal to π; if ZL is real and less than Z0, ϕ is 
also equal to π; and if ZL is real and greater than Z0, ϕ is zero. Using (80), we may 
rewrite (79) in the form:

   V  sT     (  z )    =  V  0    (   e   −jβz  + |Γ |  e    j(βz+ϕ)  )    =  V  0    e    jϕ∕2   (  e−jβz e−jϕ∕2 + |Γ |  e    jβz   e    jϕ∕2  )      (81)

To express (81) in a more useful form, we can apply the algebraic trick of adding and 
subtracting the term V0(1 − |Γ|)e−jβz:

  V  sT     (  z )    =  V  0    (  1 − |Γ |  )   e−jβz +  V  0   | Γ |  e   jϕ∕2   (  e−jβz e−jϕ∕2 +  e   jβz   e    jϕ∕2  )     (82)

The last term in parentheses in (82) becomes a cosine, and we write

   V  sT     (  z )    =  V  0    (  1 − |Γ |  )   e−jβz + 2 V  0   | Γ |  e   jϕ∕2  cos   (  βz + ϕ ∕ 2 )     (83)
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The important characteristics of this result are most easily seen by converting it to 
real instantaneous form:

(z, t) = Re [ V  sT    (z) e      jω  t ] =   V0(1 − |  Γ  | )  cos   (ω t − β z) 
 
   

traveling wave

   

+   2 |Γ  | V0  cos  (  β z + ϕ   ∕2) cos   (ω t + ϕ ∕  2)  
 
    

standing wave

   (84)

Equation (84) is recognized as the sum of a traveling wave of amplitude (1 − |Γ|) V0 
and a standing wave having amplitude 2|Γ|V0. We can visualize events as follows: 
The portion of the incident wave that reflects and back-propagates in the slotted line 
interferes with an equivalent portion of the incident wave to form a standing wave. 
The rest of the incident wave (which does not interfere) is the traveling wave part of 
(84). The maximum amplitude observed in the line is found where the amplitudes 
of the two terms in (84) add directly to give (1 + |Γ|) V0. The minimum amplitude 
is found where the standing wave achieves a null, leaving only the traveling wave 
amplitude of (1 − |Γ|)V0. The fact that the two terms in (84) combine in this way with 
the proper phasing is not immediately apparent, but the following arguments will 
show that this does occur.

To obtain the minimum and maximum voltage amplitudes, we may revisit the 
first part of Eq. (81):

   V  sT     (  z )    =  V  0    (    e   −jβz  + |Γ |  e    j(βz+ϕ)  )      (85)

First, the minimum voltage amplitude is obtained when the two terms in (85) subtract 
directly (having a phase difference of π). This occurs at locations

   z  min   = −   1 _ 2β
  (ϕ + (2m + 1)π)  (m = 0, 1, 2, . . .)  (86)

Note again that all positions within the slotted line occur at negative values of z. 
Substituting (86) into (85) leads to the minimum amplitude:

 V  sT   ( z  min  ) =  V  0  (1 − |Γ|) (87)

The same result is obtained by substituting (86) into the real voltage, (84). This pro-
duces a null in the standing wave part, and we obtain

( z  min  , t) = ±  V  0  (1 − | Γ  | )  sin   (ω t + ϕ∕2) (88)

The voltage oscillates (through zero) in time, with amplitude V0(1 − |Γ|). The plus 
and minus signs in (88) apply to even and odd values of m in (86), respectively.

Next, the maximum voltage amplitude is obtained when the two terms in (85) 
add in-phase. This will occur at locations given by

   z  max   = −   1 _ 2β
   (ϕ + 2mπ)  (m = 0, 1, 2, . . .)  (89)
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On substituting (89) into (85), we obtain

 V  sT   (  z  max  ) =   V  0   (1 + |Γ|) (90)

As before, we may substitute (89) into the real instantaneous voltage (84). The effect 
is to produce a maximum in the standing wave part, which then adds in-phase to the 
running wave. The result is

  ( z  max   , t) = ± V  0  (1 + |  Γ |) cos ( ω t + ϕ / 2)  (91)

where the plus and minus signs apply to positive and negative values of m in (89), 
respectively. Again, the voltage oscillates through zero in time, with amplitude 
V0(1 + |Γ|).

Note that a voltage maximum is located at the load (z = 0) if ϕ = 0; moreover, 
ϕ = 0 when Γ is real and positive. This occurs for real ZL when ZL > Z0. Thus there is 
a voltage maximum at the load when the load impedance is greater than Z0 and both 
impedances are real. With ϕ = 0, maxima also occur at zmax = −mπ/β = −mλ/2. For a 
zero-load impedance, ϕ = π, and the maxima are found at zmax = −π/(2β), −3π/(2β), 
or zmax = −λ/4, −3λ/4, and so forth.

The minima are separated by multiples of one half-wavelength (as are the max-
ima), and for a zero load impedance, the first minimum occurs when −βz = 0, or at 
the load. In general, a voltage minimum is found at z = 0 whenever ϕ = π; this occurs 
if ZL < Z0 where ZL is real. The general results are illustrated in Figure 10.6.

Figure 10.6 Plot of the magnitude of VsT as found from Eq. (85) as a 
function of position, z, in front of the load (at z = 0). The reflection co-
efficient phase is ϕ, which leads to the indicated locations of maximum 
and minimum voltage amplitude, as found from Eqs. (86) and (89).
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Finally, we introduce the symbol s to denote the VSWR. Voltage standing wave 
ratio is defined as:

 s ≡     V  sT   ( z  max  ) _  V  sT   ( z  min  )
   =   1  + |Γ|_

1  − |Γ|   (92)

Since the absolute voltage amplitudes have divided out, our measured VSWR per-
mits the immediate evaluation of |Γ|. The phase of Γ is then found by measuring the 
location of the first maximum or minimum with respect to the load, and then using 
(86) or (89) as appropriate. Once Γ is known, the load impedance can be found, as-
suming Z0 is known.

D10.3. What voltage standing wave ratio results when Γ = ±1/2?

Ans. 3

Slotted line measurements yield a VSWR of 5, a 15-cm spacing between successive 
voltage maxima, and the first maximum at a distance of 7.5 cm in front of the load. 
Determine the load impedance, assuming a 50-Ω impedance for the slotted line.
Solution. The 15-cm spacing between maxima is λ/2, implying a wavelength of 
30 cm. Because the slotted line is air-filled, the frequency is f = c/λ = 1 GHz. The 
first maximum at 7.5 cm is thus at a distance of λ/4 from the load, which means that 
a voltage minimum occurs at the load. Thus Γ will be real and negative. We use (92) 
to write

 |Γ | =   s − 1 ___ 
s + 1   =   5 − 1 ___ 5 + 1   =   2 _ 3   

So

 Γ = −   2 _ 3   =    Z  L   −  Z  0   _____  Z  L   +  Z  0  
   

which we solve for ZL to obtain

  Z  L   =   1 _ 5    Z  0   =   50 __ 5   = 10 Ω

EXAMPLE 10.7

10.11  TRANSMISSION LINES 
OF FINITE LENGTH

A new type of problem emerges when considering the propagation of sinusoidal 
voltages on finite-length lines that have loads that are not impedance matched. In 
such cases, numerous reflections occur at the load and at the generator, setting up a 
multiwave bidirectional voltage distribution in the line. As always, the objective is 
to determine the net power transferred to the load in steady state, but we must now 
include the effect of the numerous forward- and backward-reflected waves.
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Figure 10.7 shows the basic problem. The line, assumed to be lossless, has charac-
teristic impedance Z0 and is of length l. The sinusoidal voltage source at frequency ω 
provides phasor voltage Vs. Associated with the souce is a complex internal impedance, 
Zg, as shown. The load impedance, ZL, is also assumed to be complex and is located at 
z = 0. The line thus exists along the negative z axis. The easiest method of approaching 
the problem is not to attempt to analyze every reflection individually, but rather to rec-
ognize that in steady state, there will exist one net forward wave and one net backward 
wave, representing the superposition of all waves that are incident on the load and all 
waves that are reflected from it. We may thus write the total voltage in the line as

   V  sT     (  z )    =  V  0  +  e   −jβz  +  V   0  −  e    jβz    (93)

in which  V  0  +  and  V  0  −  are complex amplitudes, composed respectively of the sum of all 
individual forward and backward wave amplitudes and phases. In a similar way, we 
may write the total current in the line:

   I  sT     (  z )    =  I  0  +   e   −jβz  +  I   0  −   e    jβz    (94)

We now define the wave impedance, Zw(z), as the ratio of the total phasor voltage to 
the total phasor current. Using (93) and (94), this becomes:

   Z  w    (  z )    ≡     V  sT     (  z )    _  I  sT     (  z )      =    V   0  +  e−jβz +  V   0  −  e    jβz

  ___________  
 I   0  +  e−jβz +  I   0  −  e    jβz 

   (95)

We next use the relations  V   0  −  = Γ  V   0  + ,  I   0  +  =  V   0  +  ∕  Z  0  , and  I   0  −  = −  V   0  − ∕ Z  0  . Eq. (95) 
simplifies to

   Z  w    (  z )    =  Z  0    [      e   
−jβz  + Γ e    jβz  ___________ 

 e   −jβz  − Γ e    jβz 
   ]      (96)

Now, using the Euler identity, (32), and substituting Γ = (ZL − Z0)/(ZL + Z0), 
Eq. (96) becomes

   Z  w    (  z )    =  Z  0    [      Z  L   cos   (   βz )    − j  Z  0   sin   (   βz )     ________________   Z  0   cos   (   βz )    − j  Z  L   sin   (   βz )      ]      (97)

The wave impedance at the line input is now found by evaluating (97) at z = −l, 
obtaining

z = 0z = –l

+

–
Z0

Zg Zg

Vs Vin
+

–
Vin

+

–
VL VsZLZin Zin

Figure 10.7 Finite-length transmission line configuration and its equivalent circuit.
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  Z  in   =  Z  0    [     Z  L   cos ( βl) + j  Z  0   sin ( βl)  ________________   Z  0   cos ( βl) + j  Z  L   sin ( βl)   ] (98)

This is the quantity that we need in order to create the equivalent circuit in Figure 10.7.
One special case is that in which the line length is a half-wavelength, or an inte-

ger multiple thereof. In that case,

 βl =   2π__
λ
   mλ ___ 2   = mπ   (  m = 0, 1, 2, . . .  )   

Using this result in (98), we find

  Z  in   (l = mλ∕2) =   Z  L   (99)

For a half-wave line, the equivalent circuit can be constructed simply by removing 
the line completely and placing the load impedance at the input. This simplifica-
tion works, of course, provided the line length is indeed an integer multiple of a 
half-wavelength. Once the frequency begins to vary, the condition is no longer satis-
fied, and (98) must be used in its general form to find Zin.

Another important special case is that in which the line length is an odd multiple 
of a quarter wavelength:

 βl =   2π __ λ    (  2m + 1 )      λ __ 4   =   (  2m + 1 )      π __ 2     (  m = 0, 1, 2, . . .  )   

Using this result in (98) leads to

  Z  in   (l = λ∕4) =     Z  0  2 _  Z  L     (100)

An immediate application of (100) is to the problem of joining two lines having dif-
ferent characteristic impedances. Suppose the impedances are (from left to right) Z01 
and Z03. At the joint, we may insert an additional line whose characteristic impedance 
is Z02 and whose length is λ/4. We thus have a sequence of joined lines whose imped-
ances progress as Z01, Z02, and Z03, in that order. A voltage wave is now incident from 
line 1 onto the joint between Z01 and Z02. Now the effective load at the far end of line 
2 is Z03. The input impedance to line 2 at any frequency is now

  Z  in   =  Z  02     
 Z  03   cos  β  2   l + j  Z  02   sin  β  2   l  _______________   Z  02   cos  β  2   l + j  Z  03   sin  β  2   l

    (101)

Then, since the length of line 2 is λ/4,

 Z  in  (line 2) =    Z  02  2  ___  Z  03  
   (102)

Reflections at the Z01–Z02 interface will not occur if Zin = Z01. Therefore, we can 
match the junction (allowing complete transmission through the three-line sequence) 
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if Z02 is chosen so that

   Z  02   =  √ 
_
 Z  01    Z  03      (103)

This technique is called quarter-wave matching and again is limited to the frequency 
(or narrow band of frequencies) such that l ≐ (2m + 1)λ/4. We will encounter more 
examples of these techniques when we explore electromagnetic wave reflection in 
Chapter 12. Meanwhile, further examples that involve the use of the input impedance 
and the VSWR are presented in Section 10.12.

10.12  SOME TRANSMISSION LINE 
EXAMPLES

In this section, we apply many of the results that we obtained in the previous sections 
to several typical transmission line problems. We simplify our work by restricting our 
attention to the lossless line.

We begin by assuming a two-wire 300 Ω line (Z0 = 300 Ω), such as the lead-
in wire from the antenna to a television or FM receiver. The circuit is shown in 
Figure 10.8. The line is 2 m long, and the values of L and C are such that the velocity 
on the line is 2.5 × 108 m/s. We will terminate the line with a receiver having an input 
resistance of 300 Ω and represent the antenna by its Thevenin equivalent Z = 300 Ω 
in series with Vs = 60 V at 100 MHz. This antenna voltage is larger by a factor of 
about 105 than it would be in a practical case, but it also provides simpler values to 
work with; in order to think practical thoughts, divide currents or voltages by 105, 
divide powers by 1010, and leave impedances alone.

Because the load impedance is equal to the characteristic impedance, the line is 
matched; the reflection coefficient is zero, and the standing wave ratio is unity. For 
the given velocity and frequency, the wavelength on the line is v/f = 2.5 m, and the 
phase constant is 2π/λ = 0.8π rad/m; the attenuation constant is zero. The electrical 
length of the line is βl = (0.8π)2, or 1.6π rad. This length may also be expressed as 
288°, or 0.8 wavelength.

The input impedance offered to the voltage source is 300 Ω, and since the in-
ternal impedance of the source is 300 Ω, the voltage at the input to the line is half of 
60 V, or 30 V. The source is matched to the line and delivers the maximum available 

Figure 10.8 A transmission line that is matched at both ends produces no 
reflections and thus delivers maximum power to the load.

2 m

Z0 = 300 Ω, v = 2.5 × 108 m/sVs VLVin
+60 V

100 MHz

300 Ω

300 Ω
(Rin of receiver)–

+

–
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power to the line. Because there is no reflection and no attenuation, the voltage at the 
load is 30 V, but it is delayed in phase by 1.6π rad. Thus,

 V  in    = 30 cos(2π  10   8  t) V

whereas
  V  L   = 30 cos (2π 1 0   8  t − 1.6π) V 

The input current is
 I  in   =    V  in   ___ 300   = 0.1 cos (2π  10   8  t)   A

while the load current is
  I  L   = 0.1 cos (2π 1 0   8  t − 1.6π) A 

The average power delivered to the input of the line by the source must all be deliv-
ered to the load by the line,

 P  in   =  P  L   =   1 _ 2   × 30 × 0.1 = 1.5   W

Now let us connect a second receiver, also having an input resistance of 300 Ω, 
across the line in parallel with the first receiver. The load impedance is now 150 Ω, 
the reflection coefficient is

 Γ =   150 − 300 _______ 150 + 300   = −   1_3  

and the standing wave ratio on the line is

s =    
1 +   1 _ 3  _____ 
1 −   1 _ 3  

    = 2

The input impedance is no longer 300 Ω but is now

  Z  in    =   Z  0     
 Z  L   cos βl + j  Z  0   sin βl  _____________   Z  0   cos βl + j  Z  L   sin βl

   = 300   150 cos 288° + j300 sin 288°   __________________   300 cos 288° + j150 sin 288°         
=

 
 510∠− 23.8° = 466 − j206 Ω

 

which is a capacitive impedance. Physically, this means that this length of line stores 
more energy in its electric field than in its magnetic field. The input current phasor 
is thus

  I  s,in   =   60 ___________  300 + 466 − j206   = 0.0756∠15.  0°      A

and the power supplied to the line by the source is

 P  in   =   1 _ 2     ×    (0.0756)   2    ×  466  =  1.333    W

Since there are no losses in the line, 1.333 W must also be delivered to the load. 
Note that this is less than the 1.50 W which we were able to deliver to a matched 
load; moreover, this power must divide equally between two receivers, and thus each 
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receiver now receives only 0.667 W. Because the input impedance of each receiver is 
300 Ω, the voltage across the receiver is easily found as

0.667 =   1 _ 2       |   V  s,L    |     2_____
300 

 |   V  s,L   |    = 20 V

in comparison with the 30 V obtained across the single load.
Before we leave this example, let us ask ourselves several questions about the 

voltages on the transmission line. Where is the voltage a maximum and a minimum, 
and what are these values? Does the phase of the load voltage still differ from the 
input voltage by 288°? Presumably, if we can answer these questions for the voltage, 
we could do the same for the current.

Equation (89) serves to locate the voltage maxima at
  z  max   = −   1 __ 2β

  (ϕ + 2mπ)    (  m = 0, 1, 2, . . . )   

where Γ = |Γ|e jϕ. Thus, with β = 0.8π and ϕ = π, we find
  z  max    =  −0.625  and  − 1.875 m 

while the minima are λ/4 distant from the maxima;
  z  min    = 0  and  − 1.25 m 

and we find that the load voltage (at z = 0) is a voltage minimum. This, of course, 
verifies the general conclusion we reached earlier: a voltage minimum occurs at the 
load if ZL < Z0, and a voltage maximum occurs if ZL > Z0, where both impedances 
are pure resistances.

The minimum voltage on the line is thus the load voltage, 20 V; the maximum 
voltage must be 40 V, since the standing wave ratio is 2. The voltage at the input end 
of the line is

 V  s,in    =   I  s,in      Z  in    = (0.0756∠15.0° )(510∠− 23.8° ) = 38.5∠− 8.8°
The input voltage is almost as large as the maximum voltage anywhere on the line 
because the line is about three-quarters of a wavelength long, a length which would 
place the voltage maximum at the input when ZL < Z0.

Finally, it is of interest to determine the load voltage in magnitude and phase. 
We begin with the total voltage in the line, using (93).

   V  sT   =   (   e   −jβz  + Γ e   jβz  )    V   0  +   (104)
We may use this expression to determine the voltage at any point on the line in terms 
of the voltage at any other point. Because we know the voltage at the input to the 
line, we let z = −l,

   V  s,in   =   (   e   jβl  + Γ  e   −jβl  )    V   0  +  (105)
and solve for  V   0  + ,

 V   0  +  =    V  s,in   _______ 
 e   jβl  + Γe−jβl   =    38.5∠− 8.8°  _________  

 e   j1.6π  −   1 _ 3   e
−j1.6π

    = 30.0∠72.0°  V
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We may now let z = 0 in (104) to find the load voltage,
  V  s,L   =   (  1 + Γ )    V   0  +  = 20∠72° = 20∠− 28 8°     

The amplitude agrees with our previous value. The presence of the reflected wave 
causes Vs,in and Vs,L to differ in phase by about −279° instead of −288°.

In order to provide a slightly more complicated example, let us now place a purely 
capacitive impedance of −j300 Ω in parallel with the two 300 Ω receivers. We are to 
find the input impedance and the power delivered to each receiver.
Solution. The load impedance is now 150 Ω in parallel with −j300 Ω, or

  Z  L   =   150  (  −j300 )    ________ 150 − j300   =   − j300 _____ 1 − j2   = 120 − j60 Ω

We first calculate the reflection coefficient and the VSWR:

Γ = 
 
  120 − j60 − 300  __________  120 − j60 + 300   =   − 180 − j60 _______ 420 − j60   = 0.447∠−153.4°

     
s  = 

 
  1 + 0.447 ______ 1 − 0.447   = 2.62

 

Thus, the VSWR is higher and the mismatch is therefore worse. Let us next calculate 
the input impedance. The electrical length of the line is still 288°, so that

 Z  in   = 300    (120  −  j60)   cos  288°   +  j300  sin  288°   ________________________   300  cos  288° + j(120  −  j60)   sin  288°   = 755  −  j138.5 Ω

This leads to a source current of

 I  s,in   =    V  Th   ______  Z  Th   +  Z  in  
   =   60 _____________  300 + 755 − j138.5   = 0.0564∠7.47°  A

Therefore, the average power delivered to the input of the line is  P  in   =  
   1 _ 2     (0.0564)   2  (755) = 1.200 W. Since the line is lossless, it follows that PL = 1.200 W, 
and each receiver gets only 0.6 W.

EXAMPLE 10.8

As a final example, our line is now terminated with a purely capacitive impedance, 
ZL = −j300 Ω. We seek the reflection coefficient, the VSWR, and the power deliv-
ered to the load.
Solution. Obviously, we cannot deliver any average power to the load since it is a 
pure reactance. As a consequence, the reflection coefficient is

 Γ =   − j300 − 300 ________ − j300 + 300   = − j1 = 1∠− 90°

EXAMPLE 10.9
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Although we could continue to find many other facts and figures for these exam-
ples, much of the work may be done more easily for problems of this type by using 
graphical techniques. We encounter these in Section 10.13.

and the reflected wave is equal in amplitude to the incident wave. Hence, it should 
not surprise us to see that the VSWR is

 s =   1 + | −  j1| _______ 1 − | −  j1|   = ∞

and the input impedance is a pure reactance,

 Z  in   = 300   − j300 cos 288°  + j300 sin 288°   _______________________   300 cos 288°  + j (−j300) sin 288°   = j589

Thus, no average power can be delivered to the input impedance by the source, and 
therefore no average power can be delivered to the load.

D10.4. A 50-ohm lossless line has a length of 0.4λ. The operating frequency 
is 300 MHz. A load ZL = 40 + j30 Ω is connected at z = 0, and the Thevenin- 
equivalent source at z = −l is 12∠0° V in series with ZTh = 50 + j0 Ω. Find: 
(a) Γ; (b) s; (c) Zin.

Ans. (a) 0.333∠90°; (b) 2.00; (c) 25.5 + j 5.90 Ω

D10.5. For the transmission line of Problem D10.4, also find: (a) the phasor 
voltage at z = −l; (b) the phasor voltage at z = 0; (c) the average power deliv-
ered to ZL.

Ans. (a) 4.14∠8.58° V; (b) 6.32∠−125.6° V; (c) 0.320 W

10.13 GRAPHICAL METHODS: THE SMITH CHART
Transmission line problems often involve manipulations with complex numbers, mak-
ing the time and effort required for a solution several times greater than are needed  
for a similar sequence of operations on real numbers. One means of reducing the 
labor without seriously affecting the accuracy is by using transmission-line charts. 
Probably the most widely used one is the Smith chart.3

Basically, this diagram shows curves of constant resistance and constant re-
actance; these may represent either an input impedance or a load impedance. The 
latter, of course, is the input impedance of a zero-length line. An indication of loca-
tion along the line is also provided, usually in terms of the fraction of a wavelength 
from a voltage maximum or minimum. Although they are not specifically shown 
on the chart, the standing-wave ratio and the magnitude and angle of the reflection 
3 P. H. Smith, “Transmission Line Calculator,” Electronics, vol. 12, pp. 29–31, January 1939.
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coefficient are very quickly determined. As a matter of fact, the diagram is constructed  
within a circle of unit radius, using polar coordinates, with radius variable |Γ| and 
counterclockwise angle variable ϕ, where Γ = |Γ| e jϕ. Figure 10.9 shows this circle. 
Since |Γ| < 1, all our information must lie on or within the unit circle. Peculiarly 
enough, the reflection coefficient itself will not be plotted on the final chart, for these 
additional contours would make the chart very difficult to read.

The basic relationship upon which the chart is constructed is

  Γ =    Z  L   −  Z  0   _____  Z  L   +  Z  0  
     (106)

The impedances that we plot on the chart will be normalized with respect to the char-
acteristic impedance. The normalized load impedance, zL, is

   z  L   = r + jx =    Z  L   _  Z  0  
   =    R  L   + j  X  L  _

 Z  0  
   

and thus

  Γ =    z  L   − 1 _  z  L   + 1    

or

   z  L   =   1 + Γ_
1 − Γ    (107)

Figure 10.9 The polar coordinates 
of the Smith chart are the magnitude 
and phase angle of the reflection coef-
ficient; the rectangular coordinates 
are the real and imaginary parts of the 
reflection coefficient. The entire chart 
lies within the circle |Γ| = 1.

ϕ

∣Г∣

∣Г∣ = 1

Гi

Гr
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In polar form, we have used |Γ| and ϕ as the magnitude and angle of Γ. With Γr and 
Γi as the real and imaginary parts of Γ, we write

  Γ =  Γ  r   + j  Γ  i     (108)
Thus

  r + jx =   1 +  Γ  r   + j  Γ  i   _______ 1 −  Γ  r   − j  Γ  i  
     (109)

The real and imaginary parts of this equation are

  r =   1 −  Γ  r  2  −  Γ  i  2   ____________  
  (  1 −  Γ  r   )     2  +  Γ  i  2 

    (110)

  x =   2  Γ  i   ____________  
  (  1 −  Γ  r   )     2  +  Γ  i  2 

    (111)

After several lines of elementary algebra, we may write (110) and (111) in forms 
which readily display the nature of the curves on Γr, Γi axes,

   (   Γ  r   −   r ___ 1 + r   )     
2
  +  Γ  i  2  =   (    1 ___ 1 + r   )     

2
   (112)

  ( Γ  r   − 1)   2  +   (   Γ  i   −   1 _ x   )     
2
  =   (    1 _ x   )     

2
   (113)

The first equation describes a family of circles, where each circle is associated 
with a specific value of resistance r. For example, if r = 0, the radius of this zero- 
resistance circle is seen to be unity, and it is centered at the origin (Γr = 0, Γi = 0). 
This checks, for a pure reactance termination leads to a reflection coefficient of unity 
magnitude. On the other hand, if r = ∞, then zL = ∞ and we have Γ = 1 + j0. The 
circle described by (112) is centered at Γr = 1, Γi = 0 and has zero radius. It is there-
fore the point Γ = 1 + j 0, as we decided it should be. As another example, the circle 
for r = 1 is centered at Γr = 0.5, Γi = 0 and has a radius of 0.5. This circle is shown 
in Figure 10.10, along with circles for r = 0.5 and r = 2. All circles are centered on 
the Γr axis and pass through the point Γ = 1 + j 0.

Equation (113) also represents a family of circles, but each of these circles is 
defined by a particular value of x, rather than r. If x = ∞, then zL = ∞, and Γ = 1 + 
j 0 again. The circle described by (113) is centered at Γ = 1 + j 0 and has zero radius; 
it is therefore the point Γ = 1 + j 0. If x = +1, then the circle is centered at Γ = 1 + 
j1 and has unit radius. Only one-quarter of this circle lies within the boundary curve 
|Γ| = 1, as shown in Figure 10.11. A similar quarter-circle appears below the Γr axis 
for x = −1. The portions of other circles for x = 0.5, −0.5, 2, and −2 are also shown. 
The “circle” representing x = 0 is the Γr axis; this is also labeled in Figure 10.11.

The two families of circles both appear on the Smith chart, as shown in 
Figure 10.12. It is now evident that if we are given ZL, we may divide by Z0 to 
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obtain zL, locate the appropriate r and x circles (interpolating as necessary), and de-
termine Γ by the intersection of the two circles. Because the chart does not have con-
centric circles showing the values of |Γ|, it is necessary to measure the radial distance 
from the origin to the intersection with dividers or a compass and use an auxiliary 
scale to find |Γ|. The graduated line segment below the chart in Figure 10.12 serves 
this purpose. The angle of Γ is ϕ, and it is the counterclockwise angle from the Γr 
axis. Again, radial lines showing the angle would clutter up the chart badly, so the 

Figure 10.10 Constant-r circles are 
shown on the Γr, Γi plane. The radius 
of any circle is 1/(1 + r).

∣Г∣ = 1

r = 0.5

r = 0

r = 2 r = ∞
r = 1

Гi

Гr

Figure 10.11 The portions of the 
circles of constant x lying within |Γ| = 1 
are shown on the Γr, Γi axes. The radius 
of a given circle is 1/|x|.

x = 2
x = 1

x = 0

x = 0.5

x = –0.5
x = –1

x = –2

x = ∞

Гi

Гr
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angle is indicated on the circumference of the circle. A straight line from the origin 
through the intersection may be extended to the perimeter of the chart. As an exam-
ple, if ZL = 25 + j50 Ω on a 50-Ω line, zL = 0.5 + j1, and point A on Figure 10.12 
shows the intersection of the r = 0.5 and x = 1 circles. The reflection coefficient is 
approximately 0.62 at an angle ϕ of 83°.

The Smith chart is completed by adding a second scale on the circumference by 
which distance along the line may be computed. This scale is in wavelength units, but 
the values placed on it are not obvious. To obtain them, we first divide the voltage at 
any point along the line,

  V  s   =  V  0  +  (e−jβz + Γ  e   jβz ) 

by the current

  I  s   =    V  0  +  ___  Z  0  
   (e−jβz − Γ  e   jβz ) 

obtaining the normalized input impedance

 z  in   =    V  s   ___  Z  0    I  s  
   =   e

−jβz + Γ  e   jβz_______
e−jβz − Γ  e   jβz  

Replacing z with −l and dividing numerator and denominator by e jβl, we have the 
general equation relating normalized input impedance, reflection coefficient, and 

Figure 10.12 The Smith chart contains the constant-r circles 
and constant-x circles, an auxiliary radial scale to determine |Γ|, 
and an angular scale on the circumference for measuring ϕ.

x = –2

x = –1

x = –0.5

x = 0

x = 0.5

x = 1
x = 2
r = 2

r = 1
r = 0.5

r = 0

A

Гr

Гi

Г
1

–60°

–30°

±180° 0°

30°

60°
90°

120°

150°

–150°

–120°
–90°

0.50
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line length,

  z  in   =   1 + Γe−j2βl
 _ 

1 − Γe−j2βl   =   1 + | Γ| e   j(ϕ−2βl)
  _____________  

1 − | Γ|  e   j(ϕ−2βl) 
   (114)

Note that when l = 0, we are located at the load, and zin = (1 + Γ)/(l − Γ) = zL, as 
shown by (107).

Equation (114) shows that the input impedance at any point z = −l can be ob-
tained by replacing Γ, the reflection coefficient of the load, with Γ e−j2βl. That is, we 
decrease the angle of Γ by 2βl radians as we move from the load to the line input. 
Only the angle of Γ is changed; the magnitude remains constant.

Thus, as we proceed from the load zL to the input impedance zin, we move toward 
the generator a distance l on the transmission line, but we move through a clockwise 
angle of 2βl on the Smith chart. Since the magnitude of Γ stays constant, the move-
ment toward the source is made along a constant-radius circle. One lap around the 
chart is accomplished whenever βl changes by π rad, or when l changes by one-half 
wavelength. This agrees with our earlier discovery that the input impedance of a 
half-wavelength lossless line is equal to the load impedance.

The Smith chart is thus completed by the addition of a scale showing a change 
of 0.5λ for one circumnavigation of the unit circle. For convenience, two scales are 
usually given, one showing an increase in distance for clockwise movement and 
the other an increase for counterclockwise travel. These two scales are shown in 
Figure 10.13. Note that the one marked “wavelengths toward generator” (wtg) shows 
increasing values of l/λ for clockwise travel, as described previously. The zero point 
of the wtg scale is rather arbitrarily located to the left. This corresponds to input 
impedances having phase angles of 0° and RL < Z0. We have also seen that voltage 
minima are always located here.

The use of the transmission line chart is best shown by example. Again consider a 
load impedance, ZL = 25 + j50 Ω, terminating a 50-Ω line. The line length is 60 cm 
and the operating frequency is such that the wavelength on the line is 2 m. We desire 
the input impedance.
Solution. We have zL = 0.5 + j1, which is marked as A on Figure 10.14, and we 
read Γ = 0.62∠82°. By drawing a straight line from the origin through A to the cir-
cumference, we note a reading of 0.135 on the wtg scale. We have l/λ = 0.6/2 = 0.3, 
and it is, therefore, 0.3λ from the load to the input. We therefore find zin on the |Γ| = 
0.62 circle opposite a wtg reading of 0.135 + 0.300 = 0.435. This construction is 
shown in Figure 10.14, and the point locating the input impedance is marked B. The 
normalized input impedance is read as 0.28 − j0.40, and thus Zin = 14 − j20. A more 
accurate analytical calculation gives Zin = 13.7 − j20.2.

EXAMPLE 10.10

Information concerning the location of the voltage maxima and minima is also 
readily obtained on the Smith chart. We already know that a maximum or minimum 
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must occur at the load when ZL is a pure resistance; if RL > Z0 there is a maximum 
at the load, and if RL < Z0 there is a minimum. We may extend this result now by 
noting that we could cut off the load end of a transmission line at a point where the 
input impedance is a pure resistance and replace that section with a resistance Rin; 
there would be no changes on the generator portion of the line. It follows, then, that 
the location of voltage maxima and minima must be at those points where Zin is a 
pure resistance. Purely resistive input impedances must occur on the x = 0 line (the Γr 
axis) of the Smith chart. Voltage maxima or current minima occur when r > 1, or at 
wtg = 0.25, and voltage minima or current maxima occur when r < 1, or at wtg = 0. 

Figure 10.13 A photographic reduction of one version of a useful Smith chart (Source: Emeloid 
Company, Hillside, NJ.) For accurate work, larger charts are available wherever fine technical 
books are sold.

Source: The Emeloid Company, Hillside, NJ.
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In Example 10.10, then, the maximum at wtg = 0.250 must occur 0.250 − 0.135 = 
0.115 wavelengths toward the generator from the load. This is a distance of 0.115 × 
200, or 23 cm from the load.

We should also note that because the standing wave ratio produced by a resistive 
load RL is either RL/R0 or R0/RL, whichever is greater than unity, the value of s may 
be read directly as the value of r at the intersection of the |Γ| circle and the r axis, 
r > 1. In our example, this intersection is marked point C, and r = 4.2; thus, s = 4.2.

Transmission line charts may also be used for normalized admittances, although 
there are several slight differences in such use. We let yL = YL/Y0 = g + jb and use the 
r circles as g circles and the x circles as b circles. The two differences are, first, the 
line segment where g > 1 and b = 0 corresponds to a voltage minimum; and second, 
180° must be added to the angle of Γ as read from the perimeter of the chart. We will 
use the Smith chart in this way in Section 10.14.

Special charts are also available for non-normalized lines, particularly 50 Ω 
charts and 20 mS charts.

Figure 10.14 Normalized input 
impedance produced by a normalized 
load impedance zL = 0.5 + j!1 on a line 
0.3λ long is zin = 0.28 − j0.40.

r = 0.28

x = –0.4

x = 1r = 0.5

A

B

C

0.435

∣Г∣ = 0.62

0.135

D10.6. A load ZL = 80 − j100 Ω is located at z = 0 on a lossless 50-Ω line. 
The operating frequency is 200 MHz, and the wavelength on the line is 2 m.  
(a) If the line is 0.8 m in length, use the Smith chart to find the input impedance. 
(b) What is s? (c) What is the distance from the load to the nearest voltage 
maximum? (d) What is the distance from the input to the nearest point at which 
the remainder of the line could be replaced by a pure resistance?

Ans. (a) 79 + j99 Ω: (b) 4.50; (c) 0.0397 m; (d) 0.760 m
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We next consider two examples of practical transmission line problems. The first 
is the determination of load impedance from experimental data, and the second is the 
design of a single-stub matching network.

It is assumed that we have made experimental measurements on a 50-Ω slotted 
line that show there is a voltage standing wave ratio of 2.5. This has been determined 
by moving a sliding carriage back and forth along the line to determine maximum 
and minimum voltage readings. A scale provided on the track along which the car-
riage moves indicates that a minimum occurs at a scale reading of 47.0 cm, as shown 
in Figure 10.15. The zero point of the scale is arbitrary and does not correspond to 
the location of the load. The location of the minimum is usually specified instead of 
the maximum because it can be determined more accurately than that of the maxi-
mum; think of the sharper minima on a rectified sine wave. The frequency of opera-
tion is 400 MHz, so the wavelength is 75 cm. In order to pinpoint the location of the 
load, we remove it and replace it with a short circuit; the position of the minimum is 
then determined as 26.0 cm.

We know that the short circuit must be located an integral number of half- 
wavelengths from the minimum; let us arbitrarily locate it one half-wavelength away 
at 26.0 − 37.5 = −11.5 cm on the scale. Since the short circuit has replaced the load, 
the load is also located at −11.5 cm. Our data thus show that the minimum is 47.0 − 
(−11.5) = 58.5 cm from the load, or subtracting one-half wavelength, a minimum is 
21.0 cm from the load. The voltage maximum is thus 21.0 − (37.5/2) = 2.25 cm from 
the load, or 2.25/75 = 0.030 wavelength from the load.

With this information, we can now turn to the Smith chart. At a voltage maxi-
mum, the input impedance is a pure resistance equal to sR0; on a normalized basis, 

Figure 10.15 A sketch of a coaxial slotted line. The distance scale is on the 
slotted line. With the load in place, s = 2.5, and the minimum occurs at a scale 
reading of 47 cm. For a short circuit, the minimum is located at a scale reading 
of 26 cm. The wavelength is 75 cm.
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zin = 2.5. We therefore enter the chart at zin = 2.5 and read 0.250 on the wtg scale. 
Subtracting 0.030 wavelength to reach the load, we find that the intersection of the 
s = 2.5 (or |Γ| = 0.429) circle and the radial line to 0.220 wavelength is at zL = 2.1 +  
j0.8. The construction is sketched on the Smith chart of Figure 10.16. Thus ZL = 
105 + j40 Ω, a value that assumes its location at a scale reading of −11.5 cm, or an 
integral number of half-wavelengths from that position. Of course, we may select the 
“location” of our load at will by placing the short circuit at the point that we wish to 
consider the load location. Since load locations are not well defined, it is important 
to specify the point (or plane) at which the load impedance is determined.

As a final example, let us try to match this load to the 50-Ω line by placing a 
short-circuited stub of length d11 a distance d from the load (see Figure 10.17). The 
stub line has the same characteristic impedance as the main line. The lengths d and 
d11 are to be determined.

Figure 10.16 If zin = 2.5 + j0 on a 
line 0.3 wavelengths long, then zL 
= 2.1 + j0.8.

r = 2.5
s = 2.5

2.5 + j0
0.250

0.220
zL = 2.1 +  j0.8

Figure 10.17 A short-circuited stub of length d1, 
located at a distance d from a load ZL, is used to 
provide a matched load to the left of the stub.

ZL

d

d1
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The input impedance to the stub is a pure reactance; when combined in parallel 
with the input impedance of the length d containing the load, the resultant input 
impedance must be 1 + j0. Because it is much easier to combine admittances in 
parallel than impedances, we can rephrase our goal in admittance language: the input 
admittance of the length d containing the load must be 1 + jbin for the addition of the 
input admittance of the stub jbstub to produce a total admittance of 1 + j0. Hence the 
stub admittance is −jbin. We will therefore use the Smith chart as an admittance chart 
instead of an impedance chart.

The impedance of the load is 2.1 + j0.8, and its location is at −11.5 cm. The 
admittance of the load is therefore 1/(2.1 + j0.8), and this value may be determined 
by adding one-quarter wavelength on the Smith chart, as Zin for a quarter-wavelength 
line is  R  0  2  ∕  Z  L  , or zin = 1/zL, or yin = zL. Entering the chart (Figure 10.18) at zL = 
2.1 + j0.8, we read 0.220 on the wtg scale; we add (or subtract) 0.250 and find the 
admittance 0.41 − j0.16 corresponding to this impedance. This point is still located 
on the s = 2.5 circle. Now, at what point or points on this circle is the real part of 
the admittance equal to unity? There are two answers, 1 + j0.95 at wtg = 0.16, and 
1 − j0.95 at wtg = 0.34, as shown in Figure 10.18. We select the former value since 
this leads to the shorter stub. Hence ystub = −j0.95, and the stub location corresponds 
to wtg = 0.16. Because the load admittance was found at wtg = 0.470, then we must 
move (0.5 − 0.47) + 0.16 = 0.19 wavelength to get to the stub location.

Finally, we may use the chart to determine the necessary length of the short- 
circuited stub. The input conductance is zero for any length of short-circuited stub, so we 
are restricted to the perimeter of the chart. At the short circuit, y = ∞ and wtg = 0.250. 
We find that bin = −0.95 is achieved at wtg = 0.379, as shown in Figure 10.18. The 
stub is therefore 0.379 − 0.250 = 0.129 wavelength, or 9.67 cm long.

Figure 10.18 A normalized load, zL = 2.1 + j0.8, is 
matched by placing a 0.129-wavelength short-circuited 
stub 0.19 wavelengths from the load.
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10.14 TRANSIENT ANALYSIS
Throughout most of this chapter, we have considered the operation of transmission lines 
under steady-state conditions, in which voltage and current were sinusoidal and at a 
single frequency. In this section we move away from the simple time-harmonic case and 
consider transmission line responses to voltage step functions and pulses, grouped under 
the general heading of transients. These situations were briefly considered in Section 
10.2 with regard to switched voltages and currents. Line operation in transient mode is 
important to study because it allows us to understand how lines can be used to store and 
release energy (in pulse-forming applications, for example). Pulse propagation is impor-
tant in general since digital signals, composed of sequences of pulses, are widely used.

10.14.1 Formulation of the Transient Problem

We will confine our discussion to the propagation of transients in lines that are lossless 
and have no dispersion, so that the basic behavior and analysis methods may be learned. 
We must remember, however, that transient signals are necessarily composed of many 
frequencies, as Fourier analysis will show. Consequently, the question of dispersion in the 
line arises, since, as we have found, line propagation constants and reflection coefficients 
at complex loads will be frequency-dependent. So, in general, pulses are likely to broaden 
with propagation distance, and pulse shapes may change when reflecting from a complex 
load. These issues will not be considered in detail here, but they are readily addressed 
when the precise frequency dependences of β and Γ are known. In particular, β(ω) can 
be found by evaluating the imaginary part of γ, as given in Eq. (41), which would in 
general include the frequency dependences of R, C, G, and L arising from various mech-
anisms. For example, the skin effect (which affects both the conductor resistance and the 
internal inductance) will result in frequency-dependent R and L. Once β(ω) is known, 
pulse broadening can be evaluated using the methods to be presented in Chapter 12.

We begin our basic discussion of transients by considering a lossless transmis-
sion line of length l terminated by a matched load, RL = Z0, as shown in Figure 10.19a. 

D10.7. Standing wave measurements on an air-filled lossless 75-Ω line show 
maxima of 18 V and minima of 5 V. The first voltage minimum is located at 
a scale reading of 17 cm; the second minimum occurs at 37 cm. Find: (a) s;  
(b) λ; (c) f; (d) ΓL; (e) ZL.

Ans. (a) 3.60; (b) 0.400 m; (c) 750 MHz; (d) 0.57∠130; (e) 24.2 + j32.6 Ω

D10.8. A normalized load, zL = 2 − j1, is located at z = 0 on a lossless 50-Ω 
line. Let the wavelength be 100 cm. (a) A short-circuited stub is to be located 
at z = −d. What is the shortest suitable value for d? (b) What is the shortest 
possible length of the stub? Find s: (c) on the main line for z < −d; (d) on the 
main line for −d < z < 0; (e) on the stub.

Ans. (a) 12.5 cm; (b) 12.5 cm; (c) 1.00; (d)  2.62; (e) ∞
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At the front end of the line is a battery of voltage V0, which is connected to the line by 
closing a switch. At time t = 0, the switch is closed, and the line voltage at z = 0 be-
comes equal to the battery voltage. This voltage, however, does not appear across the 
load until adequate time has elapsed for the propagation delay. Specifically, at t = 0, 
a voltage wave is initiated in the line at the battery end, which then propagates toward 
the load. The leading edge of the wave, labeled V  + in Figure 10.19, is of value V  + = 
V0. It can be thought of as a propagating step function, because at all points to the left 
of V  +, the line voltage is V0; at all points to the right (not yet reached by the leading 
edge), the line voltage is zero. The wave propagates at velocity v, which in general 
is the group velocity in the line.4 The wave reaches the load at time t = l/v and then 

Figure 10.19 (a) Closing the switch at time t = 0 initiates voltage and current 
waves V  + and I  +. The leading edge of both waves is indicated by the dashed line, 
which propagates in the lossless line toward the load at velocity v. In this case, V  + =
V0; the line voltage is V  + everywhere to the left of the leading edge, where current 
is I  + = V  +/Z0. To the right of the leading edge, voltage and current are both zero. 
Clockwise current, indicated here, is treated as positive and will occur when V  + is 
positive. (b) Voltage across the load resistor as a function of time, showing the one-
way transit time delay, l/v.

0
+

–

(a)

(b)
tl/v

z = lz = 0

t = 0

RL = Z0

VL

Z0
V0

V0

V0

V+

I+

4 Because we have a step function (composed of many frequencies) as opposed to a sinusoid at a single 
frequency, the wave will propagate at the group velocity. In a lossless line with no dispersion as consid-
ered in this section, β = ω  √ 

___
 LC   , where L and C are constant with frequency. In this case, we would find

that the group and phase velocities are equal; that is, dω/dβ = ω/β = v = 1/  √ 
___

 LC   . We will thus write the
velocity as v, knowing it to be both vp and vg.
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does not reflect, as the load is matched. The transient phase is thus over, and the load 
voltage is equal to the battery voltage. A plot of load voltage as a function of time is 
shown in Figure 10.19b, indicating the propagation delay of t = l/v.

Associated with the voltage wave V + is a current wave whose leading edge is 
of value I +. This wave is a propagating step function as well, whose value at all 
points to the left of V + is I  + = V  +/Z0; at all points to the right, current is zero. A 
plot of current through the load as a function of time will thus be identical in form 
to the voltage plot of Figure 10.19b, except that the load current at t = l/v will be 
IL = V  +/Z0 = V0/RL.

We next consider a more general case, in which the load of Figure 10.19a is 
again a resistor but is not matched to the line (RL ≠ Z0). Reflections will thus occur 
at the load, complicating the problem. At t = 0, the switch is closed as before and a 
voltage wave,  V   1  +  =  V  0  , propagates to the right. Upon reaching the load, however, the 
wave will now reflect, producing a back-propagating wave,  V   1  − . The relation between 
V   1  −  and  V   1  +  is through the reflection coefficient at the load:

     V   1  −  ___  V                     1  +    =  Γ  L   =    R  L   −  Z  0   _____  R  L   +  Z  0  
     (115)

As  V   1  −  propagates back toward the battery, it leaves behind its leading edge a total 
voltage of  V   1  +  +  V   1  − . Voltage  V   1  +  exists everywhere ahead of the  V   1  −  wave until it 
reaches the battery, whereupon the entire line now is charged to voltage  V   1  +  +  V   1  − . At 
the battery, the  V   1  −  wave reflects to produce a new forward wave,  V   2  + . The ratio of  V   2  + 
and  V   1  −  is found through the reflection coefficient at the battery:

    V   2  +  ___  V  1  −    =  Γ  g   =   
 Z  g   −  Z  0   _____  Z  g   +  Z  0  

   =   0 −  Z  0   ____ 0 +  Z  0  
   = − 1  (116)

where the impedance at the generator end, Zg, is that of the battery, or zero.
 V   2  +  (equal to −  V   1  − ) now propagates to the load, where it reflects to produce 

backward wave  V   2  −  =  Γ  L    V   2  + . This wave then returns to the battery, where it reflects 
with Γg = −1, and the process repeats. Note that with each round trip the wave volt-
age is reduced in magnitude because |ΓL| < 1. Because of this the propagating wave 
voltages will eventually approach zero, and steady state is reached.

The voltage across the load resistor can be found at any given time by summing 
the voltage waves that have reached the load and have reflected from it up to that 
time. After many round trips, the load voltage will be, in general,

 V  L   
 
=

 
  V   1  +  +  V   1  −  +  V   2  +  +  V   2  −  +  V   3  +  +  V   3  −  + · · ·

     =   V  1  +   (  1 +  Γ  L   +  Γ  g    Γ  L   +  Γ  g    Γ  L  2   +  Γ  g  2   Γ  L  2   +  Γ  g  2   Γ  L  3   + · · · )   

With a simple factoring operation, the preceding equation becomes

  V  L   =  V  1  +   (  1 +  Γ  L   )     (  1 +  Γ  g    Γ  L   +  Γ  g  2   Γ  L  2   + · · · )     (117)
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Allowing time to approach infinity, the second term in parentheses in (117) becomes 
the power series expansion for the expression 1/(1 − ΓgΓL). Thus, in steady state we 
obtain

   V  L   =  V  1  +   (     1 +  Γ  L   _ 1 −  Γ  g    Γ  L     )      (118)

In our present example,  V   1  +  =  V  0   and Γg = −1. Substituting these into (118), we find 
the expected result in steady state: VL = V0.

A more general situation would involve a nonzero impedance at the battery 
location, as shown in Figure 10.20. In this case, a resistor of value Rg is positioned in 
series with the battery. When the switch is closed, the battery voltage appears across 
the series combination of Rg and the line characteristic impedance, Z0. The value of 
the initial voltage wave,  V   1  + , is thus found through simple voltage division, or

   V   1  +  =    V  0    Z  0   _  R  g   +  Z  0  
    (119)

With this initial value, the sequence of reflections and the development of the voltage 
across the load occurs in the same manner as determined by (117), with the steady-
state value determined by (118). The value of the reflection coefficient at the gener-
ator end, determined by (116), is Γg = (Rg − Z0)/(Rg + Z0).

10.14.2 Voltage Reflection Diagram

A useful way of keeping track of the voltage at any point in the line is through a 
voltage reflection diagram. Such a diagram for the line of Figure 10.20 is shown in 
Figure 10.21a. It is a two-dimensional plot in which position on the line, z, is shown 
on the horizontal axis. Time is plotted on the vertical axis and is conveniently ex-
pressed as it relates to position and velocity through t = z/v. A vertical line, located at 
z = l, is drawn, which, together with the ordinate, defines the z axis boundaries of the 
transmission line. With the switch located at the battery position, the initial voltage 

Figure 10.20 With series resistance at the battery location, voltage 
division occurs when the switch is closed, such that  -  0   =  -  ./   +  -   1  + .
Shown is the first reflected wave, which leaves voltage -   1  +  +  -   1  −  be-
hind its leading edge. Associated with the wave is current  0   1  − , which
is − -   1  −  /  1  0  . Counterclockwise current is treated as negative and will
occur when  -   1  −  is positive.

+
+

–

t = 0

z = 0 z = l

Z0
Rg RL

V0

V+
1 V+

1 V–
1

V –
1

I –
1
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wave,  V   1  + , starts at the origin, or lower-left corner of the diagram (z = t = 0). The 
location of the leading edge of  V   1  + as a function of time is shown as the diagonal line 
that joins the origin to the point along the right-hand vertical line that corresponds to 
time t = l/v (the one-way transit time). From there (the load location), the position of 
the leading edge of the reflected wave,  V   1  − , is shown as a “reflected” line that joins 
the t = l/v point on the right boundary to the t = 2l/v point on the ordinate. From there 
(at the battery location), the wave reflects again, forming  V   2  + , shown as a line parallel 
to that for  V   1  + . Subsequent reflected waves are shown, and their values are labeled.

Figure 10.21 (a) Voltage reflection diagram for the line of Figure 10.20. 
A reference line, drawn at z = 3l /4, is used to evaluate the voltage at that 
position as a function of time. (b) The line voltage at z = 3l /4 as determined 
from the reflection diagram of (a). Note that the voltage approaches the 
expected V0RL/(Rg + RL) as time approaches infinity.

21l

19 l

4 v
5 l/v

3l/v

l/v

4 v

13l
4 v

11l
4 v

5 l
4 v

2l

0

(a)

(b)

v

4 l
v

6 l
v

t

V –3   = Γ 2g   Γ 3L   V 1
+

V –2   = Γg   Γ 2L   V 1
+

V +2   = Γg   ΓL  V 1
+

V –1   = ΓL  V 1
+

V 1
+

V +3   = Γ 2g   Γ 2L   V 1
+

3l
4

3l

l z

t

4 v

3l
4 v

5 l
4 v

11l
4 v

13l
4 v

19 l
4 v

21l
4 v

V 1
+   + V –1   + V +2   + V –2  

V 1
+   + V –1   + V +2   V 1

+   + V –1   + V +2   + V –2   + V +3   
+ V –3  

+ V –2   + V +3   V 1
+   + V –1   + V +2   

V 1
+   + V –1  

V 1
+  

V3/4

V0 RL
Rg + RL

hay28159_ch10_303-368.indd   351 27/11/17   11:57 am



E N G I N E E R I N G  E L E C T R O M AG N E T I C S352

The voltage as a function of time at a given position in the line can now be deter-
mined by adding the voltages in the waves as they intersect a vertical line drawn at the 
desired location. This addition is performed starting at the bottom of the diagram (t = 0) 
and progressing upward (in time). Whenever a voltage wave crosses the vertical line, its 
value is added to the total at that time. For example, the voltage at a location three-fourths 
the distance from the battery to the load is plotted in Figure 10.21b. To obtain this plot, 
the line z = (3/4)l is drawn on the diagram. Whenever a wave crosses this line, the volt-
age in the wave is added to the voltage that has accumulated at z = (3/4)l over all earlier 
times. This general procedure enables one to easily determine the voltage at any specific 
time and location. In doing so, the terms in (117) that have occurred up to the chosen 
time are being added, but with information on the time at which each term appears.

10.14.3 Current Reflection Diagram

Line current can be found in a similar way through a current reflection diagram. It is 
easiest to construct the current diagram directly from the voltage diagram by determin-
ing a value for current that is associated with each voltage wave. In dealing with current, 
it is important to keep track of the sign of the current because it relates to the voltage 
waves and their polarities. Referring to Figures 10.19a and 10.20, we use the convention 
in which current associated with a forward-z traveling voltage wave of positive polarity 
is positive. This would result in current that flows in the clockwise direction, as shown in 
Figure 10.19a. Current associated with a backward-z traveling voltage wave of positive 
polarity (thus flowing counterclockwise) is negative. Such a case is illustrated in Figure 
10.20. In our two-dimensional transmission-line drawings, we assign positive polarity 
to voltage waves propagating in either direction if the upper conductor carries a positive 
charge and the lower conductor a negative charge. In Figures 10.19a and 10.20, both 
voltage waves are of positive polarity, so their associated currents will be net positive for 
the forward wave and net negative for the backward wave. In general, we write

   I    +  =    V    +  _  Z  0  
    (120)

and

   I    −  = −     V    −  _  Z  0  
    (121)

Finding the current associated with a backward-propagating voltage wave immedi-
ately requires a minus sign, as (121) indicates.

Figure 10.22a shows the current reflection diagram that is derived from the volt-
age diagram of Figure 10.21a. Note that the current values are labeled in terms of the 
voltage values, with the appropriate sign added as per (120) and (121). Once the cur-
rent diagram is constructed, current at a given location and time can be found in exactly 
the same manner as voltage is found using the voltage diagram. Figure 10.22b shows 
the current as a function of time at the z = (3/4)l position, determined by summing the 
current wave values as they cross the vertical line drawn at that location.
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Figure 10.22 (a) Current reflection diagram for the line of Figure 10.20 
as obtained from the voltage diagram of Figure 10.21a. (b) Current at 
the z = 3l/4 position as determined from the current reflection diagram, 
showing the expected steady-state value of V0/(RL + Rg).
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In Figure 10.20, Rg = Z0 = 50 Ω, RL = 25 Ω, and the battery voltage is V0 = 10 V. 
The switch is closed at time t = 0. Determine the voltage at the load resistor and the 
current in the battery as functions of time.
Solution. Voltage and current reflection diagrams are shown in Figure 10.23a and 
b. At the moment the switch is closed, half the battery voltage appears across the

EXAMPLE 10.11
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50-Ω resistor, with the other half comprising the initial voltage wave. Thus  V   1  +  =  
  (  1 / 2 )    V  0   = 5 V. The wave reaches the 25-Ω load, where it reflects with reflection 
coefficient

  Γ  L   =   25 − 50 _____ 25 + 50   = −   1_3  

So  V   1  −  = −   (  1 / 3 )    V   1  +  = − 5 / 3 V. This wave returns to the battery, where it encounters 
reflection coefficient Γg = 0. Thus, no further waves appear; steady state is reached.

Once the voltage wave values are known, the current reflection diagram can be 
constructed. The values for the two current waves are

  I   1  +  =    V   1  +
 ___

 Z  0  
 =   5 __ 50   =   1 __ 10   A

Figure 10.23 Voltage (a) and current  
(b) reflection diagrams for Example 10.11.
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and

  I   1  −  = −    V   1  −
 ___

 Z  0  
 = −    (  −   5 _ 3   )     (   1 _ 50   )    =   1 __ 30   A

Note that no attempt is made here to derive  I   1  −  from  I   1  + . They are both obtained inde-
pendently from their respective voltages.

The voltage at the load as a function of time is now found by summing the 
voltages along the vertical line at the load position. The resulting plot is shown in 
Figure 10.24a. Current in the battery is found by summing the currents along the 
vertical axis, with the resulting plot shown as Figure 10.24b. Note that in steady 
state, we treat the circuit as lumped, with the battery in series with the 50- and 25-Ω 
resistors. Therefore, we expect to see a steady-state current through the battery (and 
everywhere else) of

  I  B    (  steady state )    =   10 _____ 50 + 25   =   1 ___ 7.5   A

Figure 10.24 Voltage across the load (a) and current in 
the battery (b) as determined from the reflection diagrams 
of Figure 10.23 (Example 10.11).
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10.14.4 Initially Charged Lines

Another type of transient problem involves lines that are initially charged. In these 
cases, the manner in which the line discharges through a load is of interest. Consider 
the situation shown in Figure 10.25, in which a charged line of characteristic im-
pedance Z0 is discharged through a resistor of value Rg when a switch at the resistor 
location is closed.5 We consider the resistor at the z = 0 location; the other end of the 
line is open (as would be necessary) and is located at z = l.

When the switch is closed, current IR begins to flow through the resistor, and 
the line discharge process begins. This current does not immediately flow every-
where in the transmission line but begins at the resistor and establishes its presence 
at more distant parts of the line as time progresses. By analogy, consider a long line 
of automobiles at a red light. When the light turns green, the cars at the front move 
through the intersection first, followed successively by those further toward the rear. 
The point that divides cars in motion and those standing still is, in fact, a wave that 
propagates toward the back of the line. In the transmission line, the flow of charge 
progresses in a similar way. A voltage wave,  V   1  + , is initiated and propagates to the 
right. To the left of its leading edge, charge is in motion; to the right of the leading 
edge, charge is stationary and carries its original density. Accompanying the charge 
in motion to the left of  V   1  +  is a drop in the charge density as the discharge process 
occurs, and so the line voltage to the left of  V   1  +  is partially reduced. This voltage will 
be given by the sum of the initial voltage, V0, and  V   1  + , which means that  V   1  +  must in 

This value is also found from the current reflection diagram for t > 2l/v. Similarly, 
the steady-state load voltage should be

  V  L    (  steady state )    =  V  0     
 R  L   _____  R  g   +  R  L     =     (  10 )     (  25 )    ______ 50 + 25   =   10 __ 3   V

which is found also from the voltage reflection diagram for t > l/v.

Figure 10.25 In an initially charged line, closing the switch as shown initiates a 
voltage wave of opposite polarity to that of the initial voltage. The wave thus de-
pletes the line voltage and will fully discharge the line in one round trip if Rg = Z0.

I 1
+  

V0

Z0

V 1
+  

VR Rg 

+

t = 0

–
IR 

V0   + I 1+  

5 Even though this is a load resistor, we will call it Rg because it is located at the front (generator) end of 
the line.
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fact be negative (or of opposite sign to V0). The line discharge process is analyzed 
by keeping track of  V  1  +  as it propagates and undergoes multiple reflections at the two 
ends. Voltage and current reflection diagrams are used for this purpose in much the 
same way as before.

Referring to Figure 10.25, we see that for positive V0 the current flowing through 
the resistor will be counterclockwise and hence negative. We also know that conti-
nuity requires that the resistor current be equal to the current associated with the 
voltage wave, or

  I  R   =  I   1  +  =    V   1  +
 ___

 Z  0  
 

Now the resistor voltage will be
  V  R   =  V  0   +  V   1  +  = −  I  R    R  g   = −  I   1  +   R  g   = −    V   1  +

 ___  Z  0  
    R  g   

where the minus signs arise from the fact that VR (having positive polarity) is pro-
duced by the negative current, IR. We solve for  V   1  +  to obtain

   V   1  +  =   −  V  0    Z  0   _  Z  0   +  R  g  
    (122)

Having found  V   1  + , we can set up the voltage and current reflection diagrams. The di-
agram for voltage is shown in Figure 10.26. Note that the initial condition of voltage 
V0 everywhere on the line is accounted for by assigning voltage V0 to the horizontal 
axis of the voltage diagram. The diagram is otherwise drawn as before, but with ΓL = 
1 (at the open-circuited load end). Variations in how the line discharges thus depend 
on the resistor value at the switch end, Rg, which determines the reflection coeffi-
cient, Γg, at that location. The current reflection diagram is derived from the voltage 
diagram in the usual way. There is no initial current to consider.

Figure 10.26 Voltage reflection 
diagram for the charged line of Figure 
10.25, showing the initial condition of V0 
everywhere on the line at t = 0.
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A special case of practical importance is that in which the resistor is matched 
to the line, or Rg = Z0. In this case, Eq. (122) gives  V   1  +  = −  V  0   / 2. The line fully dis-
charges in one round trip of  V   1  +  and produces a voltage across the resistor of value 
VR = V0/2, which persists for time T = 2l/v. The resistor voltage as a function of time 
is shown in Figure 10.27. The transmission line in this application is known as a 
pulse-forming line; pulses that are generated in this way are well formed and of low 
noise, provided the switch is sufficiently fast. Commercial units are available that are 
capable of generating high-voltage pulses of widths on the order of a few nanosec-
onds, using thyratron-based switches.

When the resistor is not matched to the line, full discharge still occurs, but does 
so over several reflections, leading to a complicated pulse shape.

2l
v

t

2
V0

VR

Figure 10.27 Voltage across the resistor as a function of time, 
as determined from the reflection diagram of Figure 10.26, in 
which Rg = Z0 (Γ = 0).

EXAMPLE 10.12

In the charged line of Figure 10.25, the characteristic impedance is Z0 = 100 Ω, and 
Rg = 100/3 Ω. The line is charged to an initial voltage, V0 = 160 V, and the switch is 
closed at time t = 0. Determine and plot the voltage and current through the resistor 
for time 0 < t < 8l/v (four round trips).
Solution. With the given values of Rg and Z0, Eq. (47) gives Γg = −1/2. Then, with 
ΓL = 1, and using (122), we find

 V   1  + 

  

=

  

 V   1  − 

  

=

  

− 3 / 4  V  0   = − 120  V

   
 V   2  + 

  
=

  
 V   2  − 

  
=

  
 Γ  g    V   1  −  = +60  V

     V   3  +   =   V   3  −   =   Γ  g    V   2  −  = − 30  V    

 V   4  + 

  

=

  

 V   4  − 

  

=

  

 Γ  g    V   3  −  = +15  V

  

Using these values on the voltage reflection diagram, we evaluate the voltage in 
time at the resistor location by moving up the left-hand vertical axis, adding voltages 
as we progress, and beginning with  V  0   +  V  1  +  at t = 0. Note that when we add voltages 
along the vertical axis, we are encountering the intersection points between incident 
and reflected waves, which occur (in time) at each integer multiple of 2l/v. So, when 
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moving up the axis, we add the voltages of both waves to our total at each occurrence. 
The voltage within each time interval is thus:

 V  R  

  

=

  

 V  0   +  V   1  +  = 40  V

  

(0 < t < 2l ∕ v)

       =   V  0   +  V   1  +  +  V   1  −  +  V   2  +  = − 20  V (2l ∕ v < t < 4l ∕ v)       
=

  
 V  0   +  V   1  +  +  V   1  −  +  V   2  +  +  V   2  −  +  V   3  +  = 10  V (4l ∕ v < t < 6l ∕ v)

       

=

  

 V  0   +  V   1  +  +  V   1  −  +  V   2  +  +  V   2  −  +  V   3  +  +  V   3  −  +  V   4  +  = − 5  V (6l ∕ v < t < 8l ∕ v)

 

The resulting voltage plot over the desired time range is shown in Figure 10.28a.

Figure 10.28 Resistor voltage (a) and current (b) as 
functions of time for the line of Figure 10.25, with values 
as specified in Example 10.12.
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The current through the resistor is most easily obtained by dividing the voltages 
in Figure 10.28a by −Rg. As a demonstration, we can also use the current diagram 
of Figure 10.22a to obtain this result. Using (120) and (121), we evaluate the current 
waves as follows:

 

 I  1  + 

  

=

  

 V   1  +  ∕ Z  0   = − 1.2  A

   
 I   1  − 

  
=

  
−  V   1  −  ∕  Z  0   = +1.2  A

    I   2  +   =  −  I   2  −  =  V  2  +  ∕  Z  0   = +0.6  A    
 I   3  + 

  
=

  
−  I  3  −  =  V   3  +  ∕  Z  0   = − 0.30  A

   

 I   4  + 

  

=

  

−  I   4  −  =  V   4  +  ∕  Z  0   = +0.15  A

Using these values on the current reflection diagram, Figure 10.22a, we add up 
currents in the resistor in time by moving up the left-hand axis, as we did with the 
voltage diagram. The result is shown in Figure 10.28b. As a further check to the cor-
rectness of our diagram construction, we note that current at the open end of the line 
(Z = l) must always be zero. Therefore, summing currents up the right-hand axis 
must give a zero result for all time. The reader is encouraged to verify this.
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CHAPTER 10 PROBLEMS
10.1 The parameters of a certain transmission line operating at ω = 6 × 108 rad/s  

are L = 0.350 μH/m, C = 40 pF/m, G = 0, and R = 15.0 Ω/m. Find α, β, λ, 
and Z0.

10.2 A sinusoidal wave on a transmission line is specified by voltage and current 
in phasor form:

  V  s  (z) =  V  0    e   αz   e   jβz   and   I  s  (z) =  I  0    e   αz   e   jβz   e   jϕ  

where V0 and I0 are both real. (a) In which direction does this wave 
propagate and why? (b) It is found that α = 0, Z0 = 50 Ω, and the wave 
velocity is vp = 2.5 × 108 m/s, with ω = 108 s−1. Evaluate R, G, L, C, λ, 
and ϕ.
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10.3 A voltage pulse propagates within a lossless transmission line of characteristic 
impedance Z0 = 50 Ω. The pulse is gaussian in shape, having a voltage 
envelope given by  V(t) =  V  0    e   − t   2 /2 T   2    where V0 = 10 V and T = 20 ns. The 
pulse is incident on a 100-Ω load at the far end of the line. Determine the 
energy in joules that is dissipated by the load. 

10.4 A sinusoidal voltage wave of amplitude V0, frequency ω, and phase constant 
β propagates in the forward z direction toward the open load end in a lossless 
transmission line of characteristic impedance Z0. At the end, the wave totally 
reflects with zero phase shift, and the reflected wave now interferes with the 
incident wave to yield a standing wave pattern over the line length (as per 
Example 10.1). Determine the standing wave pattern for the current in the 
line. Express the result in real instantaneous form and simplify.

10.5 Two voltage waves of equal amplitude V0 and radian frequency ω propagate 
in the forward z direction in a lossy transmission line having attenuation 
coefficient α, and characteristic impedance  Z  0   =  | Z  0  |   e   jδ . One wave is
shifted from the other by ϕ radians. (a) Find an expression for the net 
voltage wave formed by the superposition of the two voltages. Your result 
should be a single wave function in real instantaneous form. (b) Find an 
expression for the net current in the line, again in the form of a single wave 
function. (c) Find an expression for the average power in the line. 

10.6 A 50-Ω load is attached to a 50-m section of the transmission line of 
Problem 10.1, and a 100-W signal is fed to the input end of the line.  
(a) Evaluate the distributed line loss in dB/m. (b) Evaluate the reflection 
coefficient at the load. (c) Evaluate the power that is dissipated by the 
load resistor. (d) What power drop in dB does the dissipated power in the 
load represent when compared to the original input power? (e) On partial 
reflection from the load, how much power returns to the input and what 
dB drop does this represent when compared to the original 100-W input 
power?

10.7 A transmitter and receiver are connected using a cascaded pair of 
transmission lines. At the operating frequency, line 1 has a measured loss 
of 0.1 dB/m, and line 2 is rated at 0.2 dB/m. The link is composed of 
40 m of line 1 joined to 25 m of line 2. At the joint, a splice loss of 2 dB is 
measured. If the transmitted power is 100 mW, what is the received power?  

10.8 An absolute measure of power is the dBm scale, in which power is 
specified in decibels relative to one milliwatt. Specifically, P(dBm) = 
10log10[P(mW)/1 mW]. Suppose that a receiver is rated as having a 
sensitivity of −20 dBm, indicating the mimimum power that it must receive 
in order to adequately interpret the transmitted electronic data. Suppose this 
receiver is at the load end of a 50-Ω transmission line having 100-m length 
and loss rating of 0.09 dB/m. The receiver impedance is 75 Ω and so is not 
matched to the line. What is the minimum required input power to the line 
in (a) dBm, (b) mW?
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10.9 A 100-m transmission line is used to propagate a signal from a transmitter 
to a receiver whose input impedance is 50 Ω.  The transmitter is capable of 
launching 12 dBm average power at the input end of the line (see Problem 
10.8 for the definition of dBm). The line is lossy, having characteristic 
impedance Z0 = 75 + j10 Ω, and power loss coefficient A = 0.05 dB/m. 
Find the power that enters the receiver in both dBm and in mW.

10.10 Two lossless transmission lines having different characteristic impedances 
are to be joined end to end. The impedances are Z01 = 100 Ω and Z03 = 25 Ω.  
The operating frequency is 1 GHz. (a) Find the required characteristic 
impedance, Z02, of a quarter-wave section to be inserted between the two, 
which will impedance-match the joint, thus allowing total power transmission 
through the three lines. (b) The capacitance per unit length of the 
intermediate line is found to be 100 pF/m. Find the shortest length in meters 
of this line that is needed to satisfy the impedance-matching condition.  
(c) With the three-segment setup as found in parts (a) and (b), the frequency 
is now doubled to 2 GHz. Find the input impedance at the line-1-to-line-2 
junction, seen by waves incident from line 1. (d ) Under the conditions of part 
(c), and with power incident from line 1, evaluate the standing wave ratio that 
will be measured in line 1, and the fraction of the incident power from line 1 
that is reflected and propagates back to the line 1 input.

10.11 Two voltage waves of equal amplitude V0, which have different frequencies 
ω and 3ω (with corresponding phase constants β and 3β), propagate in the 
forward z direction in a lossless transmission line. Find an expression for 
the net voltage wave formed by the superposition of the given voltages. To 
do this, express both waves in complex instantaneous form (retaining the 
time-dependent terms). Combine the two algebraically, and convert the 
result to real instantaneous form to yield a single-term wave function. Plot 
your result as a function of βz at t = 0. 

10.12 In a circuit in which a sinusoidal voltage source drives its internal 
impedance in series with a load impedance, maximum power transfer to 
the load occurs when the source and load impedances form a complex 
conjugate pair. Suppose the source (with its internal impedance) now drives 
a complex load of impedance ZL = RL + jXL that has been moved to the end 
of a lossless transmission line of length ℓ having characteristic impedance 
Z0. If the source impedance is Zg = Rg + jXg, write an equation that can 
be solved for the required line length, ℓ, such that the displaced load will 
receive the maximum power.

10.13 The skin effect mechanism in transmission lines is responsible for the 
increase with frequency of the line resistance per meter, R. Specifically, 
resistance scales as the square root of frequency f according to R = A0 f 1/2 

where A0 is a constant. Consider a low-loss line in which the attenuation 
coefficient is approximated by Eq. (54a), the phase constant by the first term 
in (54b), and the characteristic impedance by Eq. (24). The conductance 
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per unit length, G, is zero. The 50-Ω line has a measured power loss of 
10.0 dB over a 100-m length at f = 100 MHz. (a) Find the value of A0 and 
the line resistance per meter at 100 MHz. (b) At the line input, a 10-W power 
transmitter is attached. At the far end of the line, a 100-Ω load impedance is 
attached. How much power is dissipated by the load at frequency 400 MHz?

10.14 A lossless transmission line having characteristic impedance Z0 = 50 Ω is 
driven by a source at the input end that consists of the series combination 
of a 10-V sinusoidal generator and a 50-Ω resistor. The line is one-quarter 
wavelength long. At the other end of the line, a load impedance ZL = 50 − 
j50 Ω is attached. (a) Evaluate the input impedance to the line seen by the 
voltage source-resistor combination. (b) Evaluate the power that is dissipated 
by the load. (c) Evaluate the voltage amplitude that appears across the load.

10.15 For the transmission line represented in Figure 10.29, find Vs,out if f = (a) 
60 Hz; (b) 500 kHz.

10.16 A 100-Ω lossless transmission line is connected to a second line of 
40-Ω impedance, whose length is λ/4. The other end of the short line is 
terminated by a 25-Ω resistor. A sinusoidal wave (of frequency f) having 
50 W average power is incident from the 100-Ω line. (a) Evaluate the 
input impedance to the quarter-wave line. (b) Determine the steady-state 
power that is dissipated by the resistor. (c) Now suppose that the operating 
frequency is lowered to one-half its original value. Determine the new 
input impedance,  Z′   in     , for this case. (d ) For the new frequency, calculate the 
power in watts that returns to the input end of the line after reflection.

10.17 Determine the average power absorbed by each resistor in Figure 10.30.
10.18 The line shown in Figure 10.31 is lossless. Find s on both sections 1 and 2.

Figure 10.29 See Problem 10.15.

12 Ω

80 Ω120 0° V +
–

Vin Z0 = 50 Ω

80 m

Lossless, v = 2c/3

–

+
Vout

–

+
~

100 Ω 25 Ω
0.5 0° A Z0 = 50 Ω

2.6 λ

Lossless, v = 2c/3

Figure 10.30 See Problem 10.17.
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10.19 A lossless transmission line is 50 cm in length and operates at a frequency 
of 100 MHz. The line parameters are L = 0.2 μH/m and C = 80 pF/m. 
The line is terminated in a short circuit at z = 0, and there is a load ZL = 
50 + j20 Ω across the line at location z = −20 cm. What average power is 
delivered to ZL if the input voltage is 100∠0° V?

10.20 (a) Determine s on the transmission line of Figure 10.32. Note that the 
dielectric is air. (b) Find the input impedance. (c) If ωL = 10 Ω, find Is.  
(d) What value of L will produce a maximum value for |Is| at ω = 1 Grad/s? 
For this value of L, calculate the average power (e) supplied by the source; 
( f ) delivered to ZL = 40 + j30 Ω.

10.21 A lossless line having an air dielectric has a characteristic impedance of  
400 Ω. The line is operating at 200 MHz and Zin = 200 − j200 Ω. Use 
analytic methods or the Smith chart (or both) to find (a) s; (b) ZL, if the line 
is 1 m long; (c) the distance from the load to the nearest voltage maximum.  

10.22 A lossless 50-Ω line is terminated by an unknown load impedance. A VSWR 
of 5.0 is measured, and the first voltage minimum occurs at 0.10 wavelengths 
in front of the load. Using the Smith chart, find (a) the load impedance;  
(b) the magnitude and phase of the reflection coefficient; (c) the shortest 
length of line necessary to achieve an entirely resistive input impedance.

10.23 The normalized load on a lossless transmission line is 2 + j1. Let λ = 20 m 
and make use of the Smith chart to find (a) the shortest distance from the 
load to a point at which zin = rin + j0, where rin > 0; (b) zin at this point.  
(c) The line is cut at this point and the portion containing zL is thrown away. 
A resistor r = rin of part (a) is connected across the line. What is s on the 
remainder of the line? (d) What is the shortest distance from this resistor to 
a point at which zin = 2 + j1?  

Figure 10.31 See Problem 10.18.

100 Ω
50 Ω

–j  100 Ω

Z0 = 50 Ω Z0 = 50 Ω
1 2

0.2 λ

Figure 10.32 See Problem 10.20.

20 Ω 40 Ω

j 30 Ω

L

Is

+
–
~0° V100 Z0 = 50 Ω

2.7 λ

Air, lossless
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10.24 With the aid of the Smith chart, plot a curve of |Zin| versus l for the 
transmission line shown in Figure 10.33. Cover the range 0 < l/λ < 0.25.

10.25 A 300-Ω transmission line is short-circuited at z = 0. A voltage maximum, 
|V |max = 10 V, is found at z = −25 cm, and the minimum voltage, |V |min =
0, is at z = −50 cm. Use the Smith chart to find ZL (with the short circuit 
replaced by the load) if the voltage readings are (a) |V |max = 12 V at z = 
−5 cm, and |V |min = 5 V; (b) |V |max = 17 V at z = −20 cm, and |V |min = 0.

10.26 A 75-Ω lossless line is of length 1.2 λ. It is terminated by an unknown load 
impedance. The input end of the 75-Ω line is attached to the load end of a 
lossless 50-Ω line. A VSWR of 4 is measured on the 75-Ω line, on which 
the first voltage minimum occurs at a distance of 0.15 λ in front of the 
junction between the two lines. Use the Smith chart to find the unknown 
load impedance.

10.27 The characteristic admittance (Y0 = 1/Z0) of a lossless transmission line is 
20 mS. The line is terminated in a load YL = 40 − j20 mS. Use the Smith 
chart to find (a) s; (b) Yin if l = 0.15λ; (c) the distance in wavelengths from 
YL to the nearest voltage maximum.

10.28 The wavelength on a certain lossless line is 10 cm. If the normalized input 
impedance is zin = 1 + j2, use the Smith chart to determine (a) s; (b) zL, if 
the length of the line is 12 cm; (c) xL, if zL = 2 + jxL where xL > 0.

10.29 A standing wave ratio of 2.5 exists on a lossless 60-Ω line. Probe measurements 
locate a voltage minimum on the line whose location is marked by a small 
scratch on the line. When the load is replaced by a short circuit, the minima 
are 25 cm apart, and one minimum is located at a point 7 cm toward the 
source from the scratch. Find ZL.

10.30 A two-wire line constructed of lossless wire of circular cross section is 
gradually flared into a coupling loop that looks like an eggbeater. At the 
point X, indicated by the arrow in Figure 10.34, a short circuit is placed 
across the line. A probe is moved along the line and indicates that the first 
voltage minimum to the left of X is 16 cm from X. With the short circuit 
removed, a voltage minimum is found 5 cm to the left of X, and a voltage 
maximum is located that is 3 times the voltage of the minimum. Use the 
Smith chart to determine (a) f; (b) s; (c) the normalized input impedance of 
the eggbeater as seen looking to the right at point X.

Figure 10.33  See Problem 10.24.

20 Ω

20 Ω

20 ΩZ0 = 50 ΩZ0 = 50 Ω

l

LosslessLossless
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10.31 In order to compare the relative sharpness of the maxima and minima of a 
standing wave, assume a load zL = 4 + j 0 is located at z = 0. Let |V |min = 1 
and λ = 1 m. Determine the width of the (a) minimum where |V | < 1.1;  
(b) maximum where |V | > 4/1.1.

10.32 In Figure 10.17, let ZL = 250 Ω and Z0 = 50 Ω. Find the shortest 
attachment distance d and the shortest length d1 of a short-circuited stub 
line that will provide a perfect match on the main line to the left of the stub. 
Express all answers in wavelengths.

10.33 In Figure 10.17, let ZL = 100 + j150 Ω and Z0 = 100 Ω. Find the shortest 
length d1 of a short-circuited stub and the shortest distance d that it may be 
located from the load to provide a perfect match on the main line to the left 
of the stub. (b) Repeat for an open-circuited stub. Express all answers in 
wavelengths.

10.34 The lossless line shown in Figure 10.35 is operating with λ = 100 cm. If d1 = 
10 cm, d = 25 cm, and the line is matched to the left of the stub, what is ZL?

10.35 A load, ZL = 25 + j75 Ω, is located at z = 0 on a lossless two-wire line for 
which Z0 = 50 Ω and v = c. (a) If f = 300 MHz, find the shortest distance 
d (z = −d) at which the input admittance has a real part equal to 1/Z0 and 
a negative imaginary part. (b) What value of capacitance C should be 
connected across the line at that point to provide unity standing wave ratio 
on the remaining portion of the line?

10.36 The two-wire lines shown in Figure 10.36 are all lossless and have Z0 = 
200 Ω. Find d and the shortest possible value for d1 to provide a matched 
load if λ = 100 cm.

X

Figure 10.34 See Problem 10.30.

Figure 10.35 See Problem 10.34.

ZLZ0 = 300 Ω

Z 0 =
 300 Ω

s.c.

d

d1
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10.37 In the transmission line of Figure 10.20, Rg = Z0 = 50 Ω, and RL = 25 Ω. 
Determine and plot the voltage at the load resistor and the current in the 
battery as functions of time by constructing appropriate voltage and current 
reflection diagrams.

10.38 Repeat Problem 10.37, with Z0 = 50 Ω, and RL = Rg = 25 Ω. Carry out the 
analysis for the time period 0 < t < 8l/v.

10.39 In the transmission line of Figure 10.20, Z0 = 50 Ω, and RL = Rg = 25 Ω. 
The switch is closed at t = 0 and is opened again at time t = l/4v, thus 
creating a rectangular voltage pulse in the line. Construct an appropriate 
voltage reflection diagram for this case, and use it to make a plot of the 
voltage at the load resistor as a function of time for 0 < t < 8l/v (note that 
the effect of opening the switch is to initiate a second voltage wave, whose 
value is such that it leaves a net current of zero in its wake).  

10.40 In the charged line of Figure 10.25, the characteristic impedance is Z0 = 
100 Ω, and Rg = 300 Ω. The line is charged to initial voltage, V0 = 160 V,  
and the switch is closed at t = 0. Determine and plot the voltage and 
current through the resistor for time 0 < t < 8l/v (four round-trips). This 
problem accompanies Example 10.12 as the other special case of the basic 
charged-line problem, in which now Rg > Z0.

10.41 In the transmission line of Figure 10.37, the switch is located midway down 
the line and is closed at t = 0. Construct a voltage reflection diagram for this 
case, where RL = Z0. Plot the load resistor voltage as a function of time.

Matched

s.c.

d

d1

100 Ω

Figure 10.36 See Problem 10.36.

Figure 10.37 See Problem 10.41.

V = 0z = 0 z = l

Z0V0

V = V0

RL

t = 0
V = 0

hay28159_ch10_303-368.indd   367 27/11/17   11:57 am



E N G I N E E R I N G  E L E C T R O M AG N E T I C S368

10.42 A simple frozen wave generator is shown in Figure 10.38. Both switches 
are closed simultaneously at t = 0. Construct an appropriate voltage 
reflection diagram for the case in which RL = Z0. Determine and plot the 
load resistor voltage as a function of time.

10.43 In Figure 10.39, RL = Z0 and Rg = Z0 /3. The switch is closed at t = 0. 
Determine and plot as functions of time (a) the voltage across RL; (b) the 
voltage across Rg; (c) the current through the battery. 

Z0

ll/2 l

V = V0V = –V0

RL

t = 0t = 0
V = 0

Figure 10.38 See Problem 10.42.

V0

Z0

t = 0

RL = Z0

Rg

Figure 10.39 See Problem 10.43.
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C H A P T E R 

The Uniform Plane Wave

This chapter is concerned with the application of Maxwell’s equations to the prob-
lem of electromagnetic wave propagation. The uniform plane wave represents the 
simplest case, and while it is appropriate for an introduction, it is of great practical 
importance. Waves encountered in practice can often be assumed to be of this form. 
In this study, we will explore the basic principles of electromagnetic wave propaga-
tion, and we will come to understand the physical processes that determine the speed 
of propagation and the extent to which attenuation may occur. We will derive and use 
the Poynting theorem to find the power carried by a wave. Finally, we will learn how 
to describe wave polarization. ■

11.1 WAVE PROPAGATION IN FREE SPACE
We begin with a quick study of Maxwell’s equations, in which we look for clues of 
wave phenomena. In Chapter 10, we saw how voltages and currents propagate as 
waves in transmission lines, and we know that the existence of voltages and currents 
implies the existence of electric and magnetic fields. So we can identify a transmis-
sion line as a structure that confines the fields while enabling them to travel along 
its length as waves. It can be argued that it is the fields that generate the voltage and 
current in a transmission line wave, and—if there is no structure on which the volt-
age and current can exist—the fields will exist nevertheless, and will propagate. In 
free space, the fields are not bounded by any confining structure, and so they may 
assume any magnitude and direction, as initially determined by the device (such as 
an antenna) that generates them.

11.1.1 Wave Equation for the Uniform Plane Wave

When considering electromagnetic waves in free space, we note that the medium is 
sourceless, meaning that ρv = J = 0. Under these conditions, Maxwell’s equations 

11

hay28159_ch11_369-408.indd   369 25/11/17   11:54 am



E N G I N E E R I N G  E L E C T R O M AG N E T I C S370

may be written in terms of E and H only as

∇ × H =  ϵ  0     ∂ E_
∂ t   (1)

∇ × E = −  μ  0     ∂ H_
∂ t   (2)

∇ · E = 0 (3)

∇ · H = 0 (4)

It is possible to infer wave motion from these four equations without actually 
solving them. Equation (1) states that if electric field E is changing with time at 
some point, then magnetic field H has curl at that point; therefore H varies spa-
tially in a direction normal to its orientation direction. Also, if E is changing with 
time, then H will in general also change with time, although not necessarily in the 
same way. Next, we see from Eq. (2) that a time-varying H generates E, which, 
having curl, varies spatially in the direction normal to its orientation. We now have 
once more a changing electric field, our original hypothesis, but this field is present 
a small distance away from the point of the original disturbance. We might guess 
(correctly) that the velocity with which the effect moves away from the original point 
is the velocity of light, but this must be checked by a more detailed examination of 
Maxwell’s equations.

We postulate the existence of a uniform plane wave, in which both fields, E 
and H, lie in the transverse plane—that is, the plane whose normal is the direction 
of propagation. Furthermore, and by definition, both fields are of constant mag-
nitude in the transverse plane. For this reason, such a wave is sometimes called 
a transverse electromagnetic (TEM) wave. The required spatial variation of both 
fields in the direction normal to their orientations will therefore occur only in the 
direction of travel—or normal to the transverse plane. Assume, for example, that 
E = Exax, or that the electric field is polarized in the x direction. If we further 
assume that wave travel is in the z direction, we allow spatial variation of E only 
with z. Using Eq. (2), we note that with these restrictions, the curl of E reduces 
to a single term:

 ∇ × E =   ∂  E  x   ___ ∂ z    a  y   = −  μ  0     ∂ H ___ ∂ t   = −  μ  0     
∂  H  y   ___ ∂ t    a  y   (5)

The direction of the curl of E in (5) determines the direction of H, which we observe 
to be along the y direction. Therefore, in a uniform plane wave, the directions of E 
and H and the direction of travel are mutually orthogonal. Using the y-directed mag-
netic field, and the fact that it varies only in z, simplifies Eq. (1) to read

 ∇ × H = −   
∂  H  y   ___ ∂ z    a  x   = ϵ0   ∂E ___ ∂ t   = ϵ0   

∂  E  x   ___ ∂ t    a  x    (6)

hay28159_ch11_369-408.indd   370 25/11/17   11:54 am



C H A P T E R  1 1  The Uniform Plane Wave 371

Equations (5) and (6) can be more succinctly written:

   ∂  E  x   _ ∂ z   = − μ  0     
∂  H  y  _
∂ t    (7)

∂  H  y   _ ∂ z  =  −   ϵ  0     
∂  E  x  _
∂ t    (8)

These equations compare directly with the telegraphist’s equations for the lossless 
transmission line [Eqs. (20) and (21) in Chapter 10]. Further manipulations of (7) 
and (8) proceed in the same manner as was done with the telegraphist’s equations. 
Specifically, we differentiate (7) with respect to z, obtaining:

    ∂   2  E  x   ____ 
∂  z   2 

   = −  μ  0     
 ∂   2  H  y  ____
∂ t ∂ z  (9)

Then, (8) is differentiated with respect to t:

   
 ∂   2  H  y   ____ ∂ z ∂ t   = −  ϵ  0     

 ∂   2  E  x  ____
∂  t   2 

 (10)

Substituting (10) into (9) results in

    ∂   2  E  x   _ 
∂  z   2 

 =  μ  0   ϵ  0    
 ∂   2  E  x  _
∂  t   2 

 (11)

This equation, in direct analogy to Eq. (13) in Chapter 10, we identify as the wave 
equation for our x-polarized TEM electric field in free space. From Eq. (11), we fur-
ther identify the propagation velocity:

 v =   1 _  √ _  μ  0   ϵ  0    
   = 3 ×  10   8  m∕s = c (12)

where c denotes the velocity of light in free space. A similar procedure, involving 
differentiating (7) with t and (8) with z, yields the wave equation for the magnetic 
field; it is identical in form to (11):

   
 ∂   2  H  y   _ 
∂  z   2 

   =  μ  0   ϵ  0     
 ∂   2  H  y  _
∂  t   2 

 (13)

11.1.2 Solutions of the Wave Equation

As was discussed in Chapter 10, the solution to equations of the form of (11) and 
(13) will be forward- and backward-propagating waves having the general form [in 
this case for Eq. (11)]:

  E  x  (z, t) =  f  1  (t − z ∕ v) +  f  2  (t + z ∕ v)  (14)

where again f1 and f2 can be any function whose argument is of the form t ± z/v.
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From here, we immediately specialize to sinusoidal functions of a specified 
frequency and write the solution to (11) in the form of forward- and backward- 
propagating cosines. Because the waves are sinusoidal, we denote their velocity as 
the phase velocity, vp. The waves are written as:

  E  x   (  z, t )   =

  

  ℰ  x   (  z, t )   +  ℰ  x  ′   (  z, t )   

   =    |   E  x 0   |  cos [  ω (  t − z ∕  v  p   )   +  ϕ  1   ]   +  |   E  x 0  ′   |  cos [  ω (  t + z ∕  v  p   )   +  ϕ  2   ]        
=

  
   |   E  x 0   |  cos [  ωt −  k   0   z +  ϕ  1   ]        

forward z travel
   +    |   E  x 0  ′   |  cos [  ωt +  k  0   z +  ϕ  2   ]        

backward z  travel

   
 (15)

In writing the second line of (15), we have used the fact that the waves are traveling 
in free space, in which case the phase velocity vp = c. Additionally, the wavenumber 
in free space is defined as

  k  0   ≡   ω _ c    rad∕m (16)

In a manner consistant with our transmission line studies, we refer to the solu-
tions expressed in (15) as the real instantaneous forms of the electric field. They are 
the mathematical representations of what one would experimentally measure. The 
terms ωt and k0z, appearing in (15), have units of angle and are usually expressed 
in radians. We know that ω is the radian time frequency, measuring phase shift per
unit time; it has units of rad/s. In a similar way, we see that k0 will be interpreted as 
a spatial frequency, which in the present case measures the phase shift per unit dis-
tance along the z direction in rad/m. We note that k0 is the phase constant for lossless 
propagation of uniform plane waves in free space. The wavelength in free space is the 
distance over which the spatial phase shifts by 2π radians, assuming fixed time, or

 k  0  z =  k  0  λ = 2π  →   λ =   2π _  k  0  
    (free space) (17)

The manner in which the waves propagate is the same as we encountered in 
transmission lines. Specifically, suppose we consider some point (such as a wave 
crest) on the forward-propagating cosine function of Eq. (15). For a crest to occur, 
the argument of the cosine must be an integer multiple of 2π. Considering the mth 
crest of the wave, the condition becomes

  k  0   z = 2mπ 
So let us now consider the point on the cosine that we have chosen, and see what 
happens as time is allowed to increase. Our requirement is that the entire cosine 
argument be the same multiple of 2π for all time, in order to keep track of the chosen 
point. Our condition becomes

 ωt −  k  0  z = ω(t − z∕c) = 2mπ  (18)
As time increases, the position z must also increase in order to satisfy (18). The wave 
crest (and the entire wave) moves in the positive z direction at phase velocity c (in 
free space). Using similar reasoning, the wave in Eq. (15) having cosine argument 
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(ωt + k0z) describes a wave that moves in the negative z direction, since as time in-
creases, z must now decrease to keep the argument constant. For simplicity, we will 
restrict our attention in this chapter to only the positive z traveling wave.

As was done for transmission line waves, we express the real instantaneous 
fields of Eq. (15) in terms of their phasor forms. Using the forward-propagating field 
in (15), we write:

  ℰ  x  (z, t) =   1 _ 2      |   E  x 0   |    e   j ϕ  1    
⏟

   
 E  x 0  

     e   −j k  0  z   e   jωt  + c.c. =   1 _ 2    E  xs    e   jωt  + c.c. = ℛe [  E  xs    e   jωt  ]  (19)

where c.c. denotes the complex conjugate, and where we identify the phasor electric
field as   E  xs   =  E  x0   e   −j k  0  z  . As indicated in (19), Ex0 is the complex amplitude (which 
includes the phase, ϕ1).

Let us express  ℰ  y  (z, t) = 100 cos ( 10   8  t − 0.5z + 30°)V/m as a phasor.
Solution. We first go to exponential notation,

  ℰ  y  (z, t) = ℛe[100 e   j( 108t−0.5z+30°)] 

and then drop Re and suppress e j  10     8  t, obtaining the phasor

  E  ys  (z) = 100 e   −j0.5z+j 30°     

EXAMPLE 11 .1

Note that a mixed nomenclature is used for the angle in this case; that is, 0.5z is in 
radians, while 30° is in degrees. Given a scalar component or a vector expressed as a 
phasor, we may easily recover the time-domain expression.

Given the complex amplitude of the electric field of a uniform plane wave,  E  0   =  
100 a  x   + 20∠ 30°      a  y  V/m, construct the phasor and real instantaneous fields if the wave 
is known to propagate in the forward z direction in free space and has frequency of 
10 MHz.
Solution. We begin by constructing the general phasor expression:

  E  s  (z) = [100 a  x   + 20 e   j 30°       a  y  ]  e   −j k  0  z  

where k0 = ω/c = 2π × 107/3 × 108 = 0.21 rad/m. The real instantaneous form is then 
found through the rule expressed in Eq. (19):

ℰ(z, t) =
  
ℛe[100 e   −j 0.21z   e   j2π ×  10   7 t   a  x   + 20 e   j 30°       e   −j0.21z   e   j2π ×  10   7 t   a  y   ]

      =  ℛe[100 e   j(2π× 10   7 t−0.21z)   a  x   + 20 e   j(2π× 10   7 t−0.21z+ 30°     )   a  y   ]      

=

  

100 cos (2π ×  10   7 t − 0.21z) a  x   + 20 cos (2π ×  10   7 t − 0.21z +  30°     ) a  y  

EXAMPLE 11 .2
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11.1.3 Vector Helmholtz Equation in Free Space

It is evident that taking the partial derivative of any field quantity with respect to time 
is equivalent to multiplying the corresponding phasor by jω. As an example, we can 
express Eq. (8) (using sinusoidal fields) as

  
∂  ℋ  y   ___ ∂ z   = −  ϵ  0     

∂  ℰ  x  ___
∂ t (20)

where, in a manner consistent with (19):

 ℰ  x  (z, t) =   1 _ 2    E  xs  (z) e   jωt  + c.c.  and    ℋ  y  (z, t) =   1 _ 2    H  ys  (z) e    jωt  + c.c. (21)

On substituting the fields in (21) into (20), the latter equation simplifies to

   
d H  ys  (z)

 _ 
dz

   = − jω ϵ  0    E  xs  (z) (22)

In obtaining this equation, we note first that the complex conjugate terms in (21) 
produce their own separate equation, redundant with (22); second, the e jωt factors, 
common to both sides, have divided out; third, the partial derivative with z becomes 
the total derivative, since the phasor, Hys, depends only on z.

We next apply this result to Maxwell’s equations, to obtain them in phasor form. 
Substituting the field as expressed in (21) into Eqs. (1) through (4) results in

∇ ×  H  s   = jω ϵ  0    E  s   (23)
 ∇ ×  E  s   = − jω μ  0    H  s   (24)
  ∇ ·  E  s   = 0 (25)
  ∇ ·  H  s   = 0 (26)

It should be noted that (25) and (26) are no longer independent relationships, for they 
can be obtained by taking the divergence of (23) and (24), respectively.

Eqs. (23) through (26) may be used to obtain the sinusoidal steady-state vector 
form of the wave equation in free space. We begin by taking the curl of both sides 
of (24):

∇ × ∇ ×  E  s   = − jω μ  0   ∇ ×  H  s   = ∇(∇ ·  E  s  ) −  ∇   2  E  s   (27)

where the last equality is an identity, which defines the vector Laplacian of Es:

  ∇   2   E  s   = ∇(∇ ·  E  s  ) − ∇ × ∇ ×  E  s   

From (25), we note that ∇ · Es = 0. Using this, and substituting (23) in (27), we 
obtain

  ∇   2   E  s   = −  k  0  2   E  s   (28)
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where again,   k  0   = ω ∕ c = ω  √ ____  μ  0    ϵ  0     . Equation (28) is known as the vector Helmholtz
equation in free space.1 It is fairly formidable when expanded, even in rectangular 
coordinates, for three scalar phasor equations result (one for each vector component), 
and each equation has four terms. The x component of (28) becomes, still using the 
del-operator notation,

  ∇   2 Exs = −  k  0  2  Exs (29)

and the expansion of the operator leads to the second-order partial differential equation

   ∂   2  E  xs   ____ 
∂  x   2 

   +    ∂   2  E  xs   ____ 
∂  y   2 

   +    ∂   2  E  xs   ____ 
∂  z   2 

   = −  k  0  2   E  xs  

Again, assuming a uniform plane wave in which Exs does not vary with x or y, the two 
corresponding derivatives are zero, and we obtain

    d   2  E  xs   _ 
d z   2 

   = −  k  0  2   E  xs   (30)

the solution of which we already know:

  E  xs    (  z )    =  E  x 0    e   −j k  0  z  +  E  x 0  ′     e   j k  0  z  (31)

11.1.4 Relation Between E and H: Intrinsic Impedance

We now return to Maxwell’s equations, (23) through (26), and determine the form of 
the H field. Given Es, Hs is most easily obtained from (24):

∇ ×  E  s   = − jω μ  0   H  s   (24)

which is greatly simplified for a single Exs component varying only with z,

  d E  xs   ___ 
dz

   = − jω μ  0   H  ys  
Using (31) for Exs, we have

 H  ys  = −   1 ____ 
jω  μ  0  

    [    (  − j k   0   )    E  x 0   e   −j k  0  z  +   (   j k  0   )    E  x 0  ′    e   j k  0  z  ]   

=  E  x0    √ 
__

    ϵ  0  __  μ  0    e   
−j k  0  z  −  E  x 0  ′    √ 

__
    ϵ  0   __  μ  0        e   j k  0  z  =  H  y 0    e   −j k  0  z  +  H  y 0  ′    e   j k  0  z 

(32)

In real instantaneous form, this becomes

  H  y  (z, t) =  E  x 0    √ 
_

    ϵ  0   _  μ  0     cos (ωt −  k  0   z)  −   E  x 0  ′    √ 
_

    ϵ  0   _  μ  0       cos (ωt +  k  0   z) (33)

where   E  x 0       and   E  x 0  ′    are assumed real.

1 Hermann Ludwig Ferdinand von Helmholtz (1821–1894) was a professor at the University of Berlin 
working in the fields of physiology, electrodynamics, and optics. Hertz was one of his students.
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In general, we find from (32) that the electric and magnetic field amplitudes of 
the forward-propagating wave in free space are related through

  E  x0   =  √ 
_

    μ  0   _  ϵ  0        H  y 0   =  η  0    H  y 0   (34a)

We also find the backward-propagating wave amplitudes are related through

  E  x0  ′   = −  √ 
_

    μ  0   _  ϵ  0        H  y 0  ′   = −  η  0    H  y 0  ′   (34b)

where the intrinsic impedance of free space is defined as

  η  0   =  √ 
_

    μ  0   _  ϵ  0       = 377 ≐  120π Ω (35)

The dimension of η0 in ohms is immediately evident from its definition as the ratio 
of E (in units of V/m) to H (in units of A/m). It is in direct analogy to the character-
istic impedance, Z0, of a transmission line, where we defined the latter as the ratio of 
voltage to current in a traveling wave. We note that the difference between (34a) and 
(34b) is a minus sign. This is consistent with the transmission line analogy that led to 
Eqs. (25a) and (25b) in Chapter 10. Those equations accounted for the definitions of 
positive and negative current associated with forward and backward voltage waves. 
In a similar way, Eq. (34a) specifies that in a forward-z propagating uniform plane 
wave whose electric field vector lies in the positive x direction at a given point in time 
and space, the magnetic field vector lies in the positive y direction at the same space 
and time coordinates. In the case of a backward-z propagating wave having a positive 
x-directed electric field, the magnetic field vector lies in the negative y direction. The 
physical significance of this has to do with the definition of power flow in the wave, 
as specified through the Poynting vector, S = E × H (in watts/m2). The cross product 
of E with H must give the correct wave propagation direction, and so the need for 
the minus sign in (34b) is apparent. Issues relating to power transmission will be 
addressed in Section 11.3.

Some feeling for the way in which the fields vary in space may be obtained from 
Figures 11.1a and 11.1b. The electric field intensity in Figure 11.1a is shown at t = 
0, and the instantaneous value of the field is depicted along three lines, the z axis and 
arbitrary lines parallel to the z axis in the x = 0 and y = 0 planes. Since the field is 
uniform in planes perpendicular to the z axis, the variation along all three of the lines 
is the same. One complete cycle of the variation occurs in a wavelength, λ. The values 
of Hy at the same time and positions are shown in Figure 11.1b.

A uniform plane wave cannot exist physically, for it extends to infinity in two 
dimensions at least and represents an infinite amount of energy. The distant field of 
a transmitting antenna, however, is essentially a uniform plane wave in some limited 
region; for example, a radar signal impinging on a distant target is closely a uniform 
plane wave.
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Although we have considered only a wave varying sinusoidally in time and 
space, a suitable combination of solutions to the wave equation may be made to 
achieve a wave of any desired form, but which satisfies (14). The summation of an 
infinite number of harmonics through the use of a Fourier series can produce a peri-
odic wave of square or triangular shape in both space and time. Nonperiodic waves 
may be obtained from our basic solution by Fourier integral methods. These topics 
are among those considered in the more advanced books on electromagnetic theory.

Figure 11.1 (a) Arrows represent the instantaneous values of Ex0 cos[ω(t − z/c)] at 
t = 0 along the z axis, along an arbitrary line in the x = 0 plane parallel to the z axis, 
and along an arbitrary line in the y = 0 plane parallel to the z axis. (b) Corresponding 
values of Hy are indicated. Note that Ex and Hy are in phase at any point in time.

x

(a) (b)

x

z z

y

y

λ

Ex

Hy

D11.1. The electric field amplitude of a uniform plane wave propagating in 
the az direction is 250 V/m. If E = Exax and ω = 1.00 Mrad/s, find: (a) the 
frequency; (b) the wavelength; (c) the period; (d) the amplitude of H.

Ans. (a) 159 kHz; (b) 1.88 km; (c) 6.28 μs; (d) 0.663 A/m

D11.2. Let   H  s   = (2∠ −  40°      a  x   − 3∠  20°      a  y  ) e   −j0.07z  A/m for a uniform plane wave 
traveling in free space. Find: (a) ω; (b) Hx at P(1, 2, 3) at t = 31 ns; (c) |H| at 
t = 0 at the origin.

Ans. (a) 21.0 Mrad/s; (b) 1.934 A/m; (c) 3.22 A/m

11.2 WAVE PROPAGATION IN DIELECTRICS
We now extend our analytical treatment of the uniform plane wave to propagation 
in a dielectric of permittivity ϵ and permeability μ. The medium is assumed to be 
homogeneous (having constant μ and ϵ with position) and isotropic (in which μ and 
ϵ are invariant with field orientation). 
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11.2.1 Propagation in Lossy Media

The Helmholtz equation in a homogeneous and isotropic medium is
  ∇   2   E  s   = −  k   2   E  s    (36)

where the wavenumber is a function of the material properties, as described by μ and ϵ:

 k = ω  √ _ μϵ   =  k  0    √ _  μ  r    ϵ  r      (37)

For Exs we have

    d   2   E  xs   _ 
d  z   2 

   = −  k   2   E  xs   (38)

An important feature of wave propagation in a dielectric is that k can be 
complex-valued, and as such it is referred to as the complex propagation constant. k 
becomes complex when loss or gain mechanisms are present in the medium, as will be 
explained. A general solution of (38), in fact, allows the possibility of a complex k, and 
it is customary to write it in terms of its real and imaginary parts in the following way:

 jk = α + jβ (39)

A solution to (38) will be:

  E  xs   =  E  x 0   e−jkz =  E  x 0    e   −αz e−jβz (40)

Multiplying (40) by e jωt and taking the real part yields a form of the field that can be 
more easily visualized:

  E  x   =  E  x 0    e   −αz  cos (ωt − βz) (41)

We recognize this as a uniform plane wave that propagates in the forward z direction 
with phase constant β, but which (for positive α) loses amplitude with increasing 
z according to the factor e−αz. Thus the general effect of a complex-valued k is to 
yield a traveling wave that changes its amplitude with distance. If α is positive, it is 
called the attenuation coefficient. If α is negative, the wave grows in amplitude with 
distance, and α is called the gain coefficient. The latter effect would occur, for ex-
ample, in laser amplifiers. In the present and future discussions in this book, we will 
consider only passive media, in which losses are present, thus producing a positive α.

The attenuation coefficient is measured in nepers per meter (Np/m) so that the 
exponent of e can be measured in the dimensionless units of nepers. Thus, if α = 
0.01 Np/m, the crest amplitude of the wave at z = 50 m will be e−0.5/e−0 = 0.607 of 
its value at z = 0. In traveling a distance 1/α in the +z direction, the amplitude of the 
wave is reduced by the familiar factor of e−1, or 0.368.

The ways in which physical processes in a material can affect the wave electric 
field are described through a complex permittivity of the form

ϵ = ϵ  ′ − jϵ  ″ = ϵ0(ϵr′ − jϵr″) (42)
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Two important mechanisms that give rise to a complex permittivity (and thus 
result in wave losses) are bound electron or ion oscillations and dipole relaxa-
tion, both of which are discussed in Appendix E. An additional mechanism is the 
conduction of free electrons or holes, which we will explore at length in the next 
section.

Losses arising from the response of the medium to the magnetic field can occur 
as well, and these are modeled through a complex permeability, μ = μ ′ − jμ ″ =  μ  0  
(μr′ − jμr″). Examples of such media include ferrimagnetic materials, or ferrites. 
The magnetic response is usually very weak compared to the dielectric response 
in most materials of interest for wave propagation; in such materials μ ≈ μ0. Con-
sequently, our discussion of loss mechanisms will be confined to those described 
through the complex permittivity, and we will assume that μ is entirely real in our 
treatment.

We can substitute (42) into (37), which results in

k = ω  √ 
_________

 μ(ϵ′ − jϵ  ″)    = ω  √ 
___

 μϵ′      √ 
_______

 1 − j   ϵ″ ______ 
ϵ ′      (43)

Note the presence of the second radical factor in (43), which becomes unity (and 
real) as ϵ″ vanishes. With nonzero ϵ″, k is complex, and so losses occur which are 
quantified through the attenuation coefficient, α, in (39). The phase constant, β (and 
consequently the wavelength and phase velocity), will also be affected by ϵ″. α and β 
are found by taking the real and imaginary parts of jk from (43). We obtain:

 α   =   ℛe {  jk }    = ω  √ 
___

   μϵ ′ ___ 2        ( √ 
_________

 1 +  (  ϵ″ __ 
ϵ′  ) 2   − 1)  

1∕2
(44)

   β  =   ℐ! {  jk }     =   ω  √ 
___

   μϵ ′ ___ 2        ( √ 
_________

 1 +  (  ϵ″ __ 
ϵ′  ) 2   + 1)  

1∕2
(45)

We see that a nonzero α (and hence loss) results if the imaginary part of the 
permittivity, ϵ″, is present. We also observe in (44) and (45) the presence of the ratio 
ϵ″∕ϵ′, which is called the loss tangent. The meaning of the term will be demonstrated 
when we investigate the specific case of conductive media. The practical importance 
of the ratio lies in its magnitude compared to unity, which enables simplifications to 
be made in (44) and (45).

Whether or not losses occur, we see from (41) that the wave phase velocity is 
given by

  v  p   =   ω_ 
β

   (46)

The wavelength is the distance required to effect a phase change of 2π radians

 β λ = 2π  
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which leads to the fundamental definition of wavelength,

 λ =   2π_
β
   (47)

Because we have a uniform plane wave, the magnetic field is found through

 H  ys   =    E  x0   ___ η    e   −αz   e   −jβz

where the intrinsic impedance is now a complex quantity,

η =   √ 
_______

   μ
 _______ 

ϵ′ − jϵ″      =   √ 
__

   μ __ 
ϵ′         

1 ____________  
 √ 

__________
 1 − j(ϵ″∕ϵ′)  
   (48)

The electric and magnetic fields are no longer in phase.
A special case is that of a lossless medium, or perfect dielectric, in which ϵ″ = 

0, and so ϵ = ϵ′. From (44), this leads to α = 0, and from (45),

β = ω  √ 
___

 μϵ′      (lossless medium) (49)

With α = 0, the real field assumes the form

  E  x   =  E  x 0   cos (ωt − βz) (50)

We may interpret this as a wave traveling in the +z direction at a phase velocity vp, 
where

  v  p   =   ω_ 
β

   =   1 _ 
 √ 
_

 μϵ′     =     c ______ 
 √ 

____
μr ϵr′  

  

The wavelength is

 λ =   2π__
β

 =   2π ____ 
ω √ 

___
 μϵ′     =   1 ____ 

f  √ 
___

 μϵ′     =   c ____ 
f  √ 

____
  μ  r   ϵr′  
   =    λ  0   ____ 

 √ 
____

  μ  r   ϵr′  
   (lossless medium)  (51)

where λ 0 is the free-space wavelength. Note that   μ  r   ϵr′ > 1 , and therefore the wave-
length is shorter and the velocity is lower in all real media than they are in free space.

Associated with Ex is the magnetic field intensity

  H  y   =    E  x0   _ η   cos (ωt − βz)

where the intrinsic impedance is

 η =  √ 
_
  μ _ ϵ     (52)
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The two fields are once again perpendicular to each other, perpendicular to the 
direction of propagation, and in phase with each other everywhere. Note that when E 
is crossed into H, the resultant vector is in the direction of propagation. We shall see 
the reason for this when we discuss the Poynting vector.

D11.3. A 9.375-GHz uniform plane wave is propagating in polyethylene (see 
Appendix C). If the amplitude of the electric field intensity is 500 V/m and 
the material is assumed to be lossless, find: (a) the phase constant; (b) the 
wavelength in the polyethylene; (c) the velocity of propagation; (d) the intrinsic 
impedance; (e) the amplitude of the magnetic field intensity. 

Ans. (a) 295 rad/m; (b) 2.13 cm; (c) 1.99 × 108 m/s; (d) 251 Ω; (e) 1.99 A/m

Let us apply these results to a 1-MHz plane wave propagating in fresh water. At this 
frequency, losses in water are negligible, which means that we can assume that ϵ″ ≐ 
0. In water, μr = 1 and at 1 MHz, ϵr′ = 81.
Solution. We begin by calculating the phase constant. Using (45) with ϵ″ = 0, we 
have

β = ω √ 
___

 μϵ′   = ω √ ____  μ  0    ϵ  0       √ 
__

 ϵr′    =   
ω  √ 

__
 ϵr′   ______ c   =   2π ×  10   6   √ 

___
 81    ________ 

3.0 ×  10   8 
   = 0.19  rad∕m

Using this result, we can determine the wavelength and phase velocity:

 λ =   2π__
β

 =   2π ___ .19   = 33  m

  v  p   =   ω __ 
β

   =   2π ×  10   6  ______ .19   = 3.3 ×  10   7   m∕s

The wavelength in air would have been 300 m. Continuing our calculations, we find 
the intrinsic impedance using (48) with ϵ″ = 0:

 η =  √ 
__

   μ __ 
ϵ′     =   η0 ____ 

 √ 
__

 ϵr′  
   =   377 ___ 9   = 42 Ω

If we let the electric field intensity have a maximum amplitude of 0.1 V/m, then

  E  x    =  0.1 cos (2π 10   6  t − .19z)  V∕m 

  H  y    =     E  x   __ η    =  (2.4 ×  10   −3 )cos (2π 10   6  t − .19z)  A∕m

EXAMPLE 11 .3
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EXAMPLE 11 .4

We again consider plane wave propagation in water, but at the much higher microwave 
frequency of 2.5 GHz. At frequencies in this range and higher, dipole relaxation and 
resonance phenomena in the water molecules become important.2 Real and imaginary 
parts of the permittivity are present, and both vary with frequency. At frequencies 
below that of visible light, the two mechanisms together produce a value of ϵ″ that 
increases with increasing frequency, reaching a maximum in the vicinity of 1013 Hz. 
ϵ′ decreases with increasing frequency, reaching a minimum also in the vicinity of 
1013 Hz. Reference 3 provides specific details. At 2.5 GHz, dipole relaxation effects 
dominate. The permittivity values are ϵr′ = 78 and ϵr″ = 7. From (44), we have

 α =   (2π × 2.5 ×  10   9 )  √ 
___

 78    _____________  
(3.0 ×  10   8 )  √ 

__
 2  
     (   √ 

_______

 1 +   (    7 __ 78   )     
2
 − 1 )     

1∕2
  = 21 Np ∕ m 

This first calculation demonstrates the operating principle of the microwave oven. 
Almost all foods contain water, and so they can be cooked when incident microwave 
radiation is absorbed and converted into heat. Note that the field will attenuate to 
a value of e−1 times its initial value at a distance of 1/α = 4.8 cm. This distance is 
called the penetration depth of the material, and of course it is frequency-dependent. 
The 4.8-cm depth is reasonable for cooking food, since it would lead to a tempera-
ture rise that is fairly uniform throughout the depth of the material. At much higher 
frequencies, where ϵ″ is larger, the penetration depth decreases, and too much power 
is absorbed at the surface; at lower frequencies, the penetration depth increases, and 
not enough overall absorption occurs. Commercial microwave ovens operate at fre-
quencies in the vicinity of 2.5 GHz.

Using (45), in a calculation very similar to that for α, we find β = 464 rad/m. 
The wavelength is λ = 2π/β = 1.4 cm, whereas in free space this would have been 
λ0 = c/f = 12 cm.

Using (48), the intrinsic impedance is found to be

 η =   377 ___ 
 √ 

___
 78  
     1 _______  
 √ 

_________
 1 − j(7 ∕ 78)  
   = 43 + j1.9 = 43∠  2.6°    Ω 

and Ex leads Hy in time by 2.6° at every point.

11.2.2 Propagation in Conducting Media

We next consider the case of conductive materials, in which currents are formed by 
the motion of free electrons or holes under the influence of an electric field. The 
governing relation is J = σ E, where σ is the material conductivity. With finite con-
ductivity, the wave loses power through resistive heating of the material. We look 
for an interpretation of the complex permittivity as it relates to the conductivity. 

2 These mechanisms and how they produce a complex permittivity are described in Appendix D. 
Additionally, the reader is referred to pp. 73–84 in Reference 1 and pp. 678–82 in Reference 2 for 
general treatments of relaxation and resonance effects on wave propagation. Discussions and data that 
are specific to water are presented in Reference 3, pp. 314–16.
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Consider the Maxwell curl equation (23) which, using (42), becomes:

∇ ×  H  s   = jω(ϵ′ − jϵ″)  E  s   = ωϵ″ E  s   + jωϵ′ E  s   (53)
This equation can be expressed in a more familiar way, in which conduction current 
is included:

 ∇ ×  H  s   =  J  s   + jωϵ E  s    (54)
We next use Js = σ Es, and interpret ϵ in (54) as ϵ′. The latter equation becomes:

 ∇ ×  H  s   = (σ + jωϵ′)  E  s   =  J  , s   +  J  ds   (55)

which we have expressed in terms of conduction current density, Jσs = σ Es, and 
displacement current density, Jds = jωϵ′Es. Comparing Eqs. (53) and (55), we find 
that in a conductive medium:

ϵ″ =    σ __
ω   (56)

We next turn our attention to the case of a dielectric material in which the loss is 
very small. The criterion by which we should judge whether or not the loss is small 
is the magnitude of the loss tangent, ϵ″/ϵ′. This parameter will have a direct influence 
on the attenuation coefficient, α, as seen from Eq. (44). In the case of conducting 
media, to which (56) applies, the loss tangent becomes σ/ωϵ′. By inspecting (55), 
we see that the ratio of conduction current density to displacement current density 
magnitudes is

    J  σs   _  J  ds  
   =   ϵ″ ___ 

jϵ′   =     σ ____
jωϵ′  (57)

That is, these two vectors point in the same direction in space, but they are 90° out of 
phase in time. Displacement current density leads conduction current density by 90°, 
just as the current through a capacitor leads the current through a resistor in parallel 
with it by 90° in an ordinary electric circuit. This phase relationship is shown in 
Figure 11.2. The angle θ (not to be confused with the polar angle in spherical coor-
dinates) may therefore be identified as the angle by which the displacement current 
density leads the total current density, and

 tan  θ =     ϵ″ ___ 
ϵ′   =    σ ____

ωϵ′   (58)

The reasoning behind the term loss tangent is thus evident. Problem 11.16 at the end 
of the chapter indicates that the Q of a capacitor (its quality factor, not its charge) that 
incorporates a lossy dielectric is the reciprocal of the loss tangent.

11.2.3 Good Dielectric Approximation

If the loss tangent is small, then we may obtain useful approximations for the atten-
uation and phase constants, and the intrinsic impedance. The criterion for a small 
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loss tangent is ϵ″/ϵ′ ≪ 1, which we say identifies the medium as a good dielectric. 
Considering a conductive material, for which ϵ″ = σ/ω, (43) becomes

 jk = jω  √ 
___

 μϵ′    √ 
______

 1 − j   σ _____ 
ωϵ′      (59)

We may expand the second radical using the binomial theorem

  (1 + x)   n  = 1 + nx +   n(n − 1) ______ 2 !    x   2  +   n(n − 1) (n − 2)  __________ 3 !    x   3  + · · · 

where |x| ≪ 1. We identify x as −jσ/ωϵ′ and n as 1/2, and thus

 jk = jω √ 
___

 μϵ′     [  1 − j   σ _____ 2ωϵ′   +   1 _ 8     (    σ _____ 
ωϵ′   )     

2
+ · · · ]    = α + jβ

Now, for a good dielectric,

 α = ℛe(jk) ≐  jω  √ 
___

 μϵ′    (  − j   σ _____ 2ωϵ′   )    =   σ _ 2      √ 
__

   μ __ 
ϵ′    (60a)

and

 β = ℐ!(jk) ≐  ω  √ 
___

 μϵ′    [  1 +   1 _ 8     (    σ _____ 
ωϵ′   )     

2
  ]    (60b)

Equations (60a) and (60b) can be compared directly with the transmission line α and 
β under low-loss conditions, as expressed in Eqs. (54a) and (54b) in Chapter 10. In 
this comparison, we associate σ with G, μ with L, and ϵ with C. Note that in plane 
wave propagation in media with no boundaries, there can be no quantity that is anal-
ogous to the transmission line conductor resistance parameter, R. In many cases, 

Figure 11.2 The time-phase relationship 
between Jds, Jσs, Js, and Es. The tangent of θ 
is equal to σ/ωϵ′, and 90° − θ is the common 
power-factor angle, or the angle by which Js 
leads Es.

Es

Jds = jωε'Es

Js = (σ + jωε')Es

θ = tan–1

Jσs = σEs

σ
ωε'
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the second term in (60b) is small enough, so

 β ≐  ω √ 
___
μϵ′   (61)

Applying the binomial expansion to (48), we obtain, for a good dielectric,

 η ≐    √ 
__

   μ __ 
ϵ′      [  1 −   3 _ 8     (    σ _____ 

ωϵ′   )2
+ j   σ _____ 2ωϵ′   ]     (62a)

or

 η ≐   √ 
__

   μ __ 
ϵ′       (  1 + j   σ _____ 2ωϵ′   ) (62b)

The conditions under which these approximations can be used depend on the de-
sired accuracy, measured by how much the results deviate from those given by the 
exact formulas, (44) and (45). Deviations of no more than a few percent occur if 
σ/ωϵ′ < 0.1.

As a comparison, we repeat the computations of Example 11.4, using the approxima-
tion formulas (60a), (61), and (62b).
Solution. First, the loss tangent in this case is ϵ″/ϵ′ = 7/78 = 0.09. Using (60), with 
ϵ″ = σ/ω, we have

α ≐     ωϵ″ ____ 2       √ 
__

   μ __ 
ϵ′      =   1 _ 2  (7 × 8.85 ×  10   12 ) (2π × 2.5 ×  10   9 )   377 ___ 

 √ 
___

 78  
   = 21  cm   −1 

We then have, using (61),

β ≐  (2π × 2.5 ×  10   9 )  √ 
___

 78   ∕ (3 ×  10   8 ) = 464 rad∕m

Finally, with (62b),

η ≐    377 ___ 
 √ 

___
 78  
    (  1 + j   7 _ 2 × 78   )    = 43 + j 1.9

These results are identical (within the accuracy limitations as determined by the giv-
en numbers) to those of Example 11.4. Small deviations will be found, as the reader 
can verify by repeating the calculations of both examples and expressing the results 
to four or five significant figures. As we know, this latter practice would not be mean-
ingful because the given parameters were not specified with such accuracy. Such is 
often the case, since measured values are not always known with high precision. 
Depending on how precise these values are, one can sometimes use a more relaxed 
judgment on when the approximation formulas can be used by allowing loss tangent 
values that can be larger than 0.1 (but still less than 1).

EXAMPLE 1 .1 EXAMPLE 11 .5
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11.3 POYNTING’S THEOREM AND WAVE POWER
In order to find the power flow associated with an electromagnetic wave, it is 
necessary to develop a power theorem for the electromagnetic field known as the 
Poynting theorem. It was originally postulated in 1884 by an English physicist, John 
H. Poynting.

The development begins with one of Maxwell’s curl equations, in which we 
assume that the medium may be conductive:

 ∇ × H = J +   ∂ D___
∂ t (63)

Next, we take the scalar product of both sides of (63) with E,

 E · ∇ × H = E · J + E ·   ∂ D___
∂ t (64)

We then introduce the following vector identity, which may be proved by expansion 
in rectangular coordinates:

∇ · (E × H) = − E · ∇ × H + H · ∇ × E (65)

Using (65) in the left side of (64) results in

H · ∇ × E − ∇ · (E × H) = J · E + E ·   ∂ D___
∂ t (66)

where the curl of the electric field is given by the other Maxwell curl equation:

 ∇ × E = −   ∂ B___
∂ t 

Therefore

− H ·   ∂ B ___ ∂ t   − ∇ · (E × H) = J · E + E ·   ∂ D___
∂ t 

or

 − ∇ · (E × H) = J · E + ϵE ·   ∂ E ___ ∂ t   + μH ·   ∂ H___
∂ t (67)

D11.4. Given a nonmagnetic material having ϵr′ = 3.2 and σ = 1.5 × 10−4 S/m, 
find numerical values at 3 MHz for the (a) loss tangent; (b) attenuation con-
stant; (c) phase constant; (d) intrinsic impedance.

Ans. (a) 0.28; (b) 0.016 Np/m; (c) 0.11 rad/m; (d) 207 ∠7.8° Ω

D11.5. Consider a material for which μr = 1, ϵr′ = 2.5, and the loss tangent is 
0.12. If these three values are constant with frequency in the range 0.5 MHz ≤ 
f ≤ 100 MHz, calculate: (a) σ at 1 and 75 MHz; (b) λ at 1 and 75 MHz; (c) vp 
at 1 and 75 MHz.

Ans. (a) 1.67 × 10−5 and 1.25 × 10−3 S/m; (b) 190 and 2.53 m; (c) 1.90 × 108 m/s twice
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The two time derivatives in (67) can be rearranged as follows:

 ϵE ·   ∂ E ___ ∂ t   =   ∂ __ ∂ t    (    1 _ 2   D · E )     (68a)

and
 μH ·   ∂ H ___ ∂ t   =   ∂ __ ∂ t    (    1 _ 2   B · H )     (68b)

With these, Eq. (67) becomes

 −   ∇ · (E × H) = J · E +   ∂ _ ∂ t    (    1 _ 2   D · E )    +   ∂ _ ∂ t    (    1 _ 2   B · H )    (69)

Finally, we integrate (69) throughout a volume:

 −   ∫  vol   ∇ · (E × H) dv =  ∫  vol   J · E dv +  ∫  vol     
∂ __ ∂ t    (    1 _ 2   D · E )   dv +  ∫  vol     

∂ __ ∂ t    (    1 _ 2   B · H )   dv

The divergence theorem is then applied to the left-hand side, thus converting the 
volume integral there into an integral over the surface that encloses the volume. On 
the right-hand side, the operations of spatial integration and time differentiation are 
interchanged. The final result is

 −   ∮  area   (E × H) · dS =  ∫  vol   J · E dv + d_
dt

 ∫  vol     
1 _ 2   D · E dv +   d _ 

dt
    ∫  vol     

1 _ 2   B · H dv  (70)

Equation (70) is known as Poynting’s theorem. On the right-hand side, the first 
integral is the total (but instantaneous) ohmic power dissipated within the volume. 
The second integral is the total energy stored in the electric field, and the third inte-
gral is the stored energy in the magnetic field.3 Since time derivatives are taken of 
the second and third integrals, those results give the time rates of increase of energy 
stored within the volume, or the instantaneous power going to increase the stored 
energy. The sum of the expressions on the right must therefore be the total power 
flowing into this volume, and so the total power flowing out of the volume is

  ∮  area   (E × H) · dS W (71)

where the integral is over the closed surface surrounding the volume. The cross prod-
uct E × H is known as the Poynting vector, S,

 S = E × H   W∕m   2  (72)

which is interpreted as an instantaneous power density, measured in watts per 
square meter (W/m2). The direction of the vector S indicates the direction of the 

3 This is the expression for magnetic field energy that we have been anticipating since Chapter 8.
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instantaneous power flow at a point, and many of us think of the Poynting vector as 
a “pointing” vector. This homonym, while accidental, is correct.4

Because S is given by the cross product of E and H, the direction of power flow 
at any point is normal to both the E and H vectors. This certainly agrees with our 
experience with the uniform plane wave, for propagation in the +z direction was 
associated with an Ex and Hy component,

  E  x    a  x   ×  H  y    a  y   =  S  z    a  z   

In a perfect dielectric, the E and H field amplitudes are given by

  
 E  x   =  E  x 0   cos (ωt − βz)

   
 H  y   =    E  x 0   ___ η   cos (ωt − βz)

where η is real. The power density amplitude is therefore

  S  z   =    E  x 0  2   ___ η    cos   2 (ωt − βz)  (73)

In the case of a lossy dielectric, Ex and Hy are not in time phase. We have

  E  x   =  E  x 0    e   −αz  cos (ωt − βz) 

If we let

  η =  |  η |  ∠  θ  η    

then we may write the magnetic field intensity as

  H  y   =    E  x0   ___  |  η |      e   −αz cos (ωt − βz −  θ  η  )

Thus,

  S  z   =  E  x    H  y   =    E  x  0  2   ___  |  η |      e   
−2αz  cos (ωt − βz) cos (ωt − βz −  θ  η  )  (74)

Because we are dealing with a sinusoidal signal, the time-average power density, 
⟨Sz⟩ , is the quantity that will ultimately be measured. To find this, we integrate (74) 
over one cycle and divide by the period T = 1/f. Additionally, the identity cos A cos 
B = 1/2 cos(A + B) + 1/2 cos(A − B) is applied to the integrand, and we obtain:

 〈 S  z  〉 =   1 __ 
T

    ∫ 
0
  
  T

      1 _ 2      E  x 0  2   ___  |  η |      e   
−2αz [cos (2ωt − 2βz − 2 θ  η  ) + cos  θ  η   ] dt (75)

4 Note that the vector symbol S is used for the Poynting vector, and is not to be confused with the differ-
ential area vector, dS. The latter, as we know, is the product of the outward normal to the surface and the 
differential area.
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The second-harmonic component of the integrand in (75) integrates to zero, leaving 
only the contribution from the dc component. The result is

 〈 S  z  〉 =   1 _ 2      E  x 0  2   _  |  η |      e   
−2αz  cos  θ  η   (76)

Note that the power density attenuates as e−2αz, whereas Ex and Hy fall off as e−αz.
We may finally observe that the preceding expression can be obtained very easily 

by using the phasor forms of the electric and magnetic fields. In vector form, this is

 〈S〉 =   1 _ 2   ℛe( E  s   ×  H  s  * )    W∕m   2  (77)

In the present case
 E  s   =  E  x 0    e   −jβz   a  x  

and
 H  s  *  =    E  x 0   ___ 

 η   * 
    e   +jβz   a  y   =    E  x 0   ___  |  η |      e   jθ  e   +jβz   a  y  

where Ex 0 has been assumed real. Eq. (77) applies to any sinusoidal electromagnetic 
wave and gives both the magnitude and direction of the time-average power density.

D11.6. At frequencies of 1, 100, and 3000 MHz, the dielectric constant of ice 
made from pure water has values of 4.15, 3.45, and 3.20, respectively, while 
the loss tangent is 0.12, 0.035, and 0.0009, also respectively. If a uniform plane 
wave with an amplitude of 100 V/m at z = 0 is propagating through such ice, 
find the time-average power density at z = 0 and z = 10 m for each frequency.

Ans. 27.1 and 25.7 W/m2; 24.7 and 6.31 W/m2; 23.7 and 8.63 W/m2

11.4 PROPAGATION IN GOOD CONDUCTORS
As an additional study of propagation with loss, we will investigate the behavior of a 
good conductor when a uniform plane wave is established in it. Such a material satis-
fies the general high-loss criterion, in which the loss tangent, ϵ″/ϵ′ ≫ 1. Applying this 
to a good conductor leads to the more specific criterion, σ/(ωϵ′) ≫ 1. As before, we 
have an interest in losses that occur on wave transmission into a good conductor, and 
we will find new approximations for the phase constant, attenuation coefficient, and 
intrinsic impedance. New to us, however, is a modification of the basic problem, ap-
propriate for good conductors. This concerns waves associated with electromagnetic 
fields existing in an external dielectric that adjoins the conductor surface; in this case, 
the waves propagate along the surface. That portion of the overall field that exists 
within the conductor will suffer dissipative loss arising from the conduction currents 
it generates. The overall field therefore attenuates with increasing distance of travel 
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along the surface. This is the mechanism for the resistive transmission line loss that 
we studied in Chapter 10, and which is embodied in the line resistance parameter, R.

11.4.1 Good Conductor Approximations

As implied, a good conductor has a high conductivity and large conduction currents. 
The energy represented by the wave traveling through the material therefore decreases  
as the wave propagates because ohmic losses are continuously present. When we 
discussed the loss tangent, we saw that the ratio of conduction current density to the 
displacement current density in a conducting material is given by σ/ωϵ′. Choosing 
a poor metallic conductor and a very high frequency as a conservative example, 
this ratio5 for nichrome (σ ≐ 106) at 100 MHz is about 2 × 108. We therefore have a 
situation where σ/ωϵ′ ≫ 1, and we should be able to make several very good approx-
imations to find α, β, and η for a good conductor.

The general expression for the propagation constant is, from (59),

jk = jω  √ 
___

 μϵ′    √ 
________
1 − j   σ ____ 

ωϵ′    

which we immediately simplify to obtain

jk = jω  √ 
___

 μϵ′    √ 
________

 − j   σ ____ 
ωϵ′    

or
jk = j  √ 

______
− jωμσ  

But
− j = 1∠ − 90°

and
  √ 

________
 1∠ − 90°    = 1∠ −45° =   1 __ 

 √ 
__

 2  
  (1 − j)

Therefore

jk = j(1 − j)  √ 
____

   ωμσ ____ 2     = (1 + j)  √ 
____

 π fμσ   = α + jβ (78)

Hence

 α = β =  √ 
_
π fμσ   (79)

Regardless of the parameters μ and σ of the conductor or of the frequency of the 
applied field, α and β are equal. If we again assume only an Ex component traveling 
in the +z direction, then

 E  x   =  E  x  0   e   −z √
____

 π fμσ  cos (ωt − z √ 
____
π fμσ  ) (80)

5 It is customary to take ϵ′ = ϵ0 for metallic conductors.
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We may tie this field in the conductor to an external field at the conductor surface. 
We let the region z > 0 be the good conductor and the region z < 0 be a perfect die-
lectric. At the boundary surface z = 0, (80) becomes

  E  x   =  E  x 0  cos ωt  (z = 0) 
We consider this to be the source field that establishes the fields within the conduc-
tor. Since displacement current is negligible,

 J = σ E 
Thus, the conduction current density at any point within the conductor is directly 
related to E:

 J  x   = σ  E  x   = σ  E  x  0   e   −z √ 
____

 π fμσ  cos (ωt − z √ 
____
π fμσ  ) (81)

11.4.2 Skin Effect

Equations (80) and (81) contain a wealth of information. Considering first the neg-
ative exponential term, we find an exponential decrease in the conduction current 
density and electric field intensity with penetration into the conductor (away from the 
source). The exponential factor is unity at z = 0 and decreases to e−1 = 0.368 when

z =   1 ____
 √ 

____
π fμσ

  

This distance is denoted by δ and is termed the depth of penetration, or the skin depth,

δ =   1 _ 
 √ 
_
π fμσ 

  =   1 _ α   =   1_
β

(82)

It is an important parameter in describing conductor behavior in electromagnetic 
fields. To get some idea of the magnitude of the skin depth, let us consider copper, 
σ = 5.8 × 107 S/m, at several different frequencies. We have

  δ  Cu   =   0.066____
 √ 

_
 f  
 

At a power frequency of 60 Hz, δCu = 8.53 mm. Remembering that the power density 
carries an exponential term e−2αz, we see that the power density is multiplied by a 
factor of 0.3682 = 0.135 for every 8.53 mm of distance into the copper.

At a microwave frequency of 10,000 MHz, δ is 6.61 × 10−4 mm. Stated more 
generally, all fields in a good conductor such as copper are essentially zero at distances 
greater than a few skin depths from the surface. Any current density or electric field 
intensity established at the surface of a good conductor decays rapidly as we progress 
into the conductor. Electromagnetic energy is not transmitted in the interior of a con-
ductor; it travels in the region surrounding the conductor, while the conductor merely 
guides the waves. We will consider guided propagation in more detail in Chapter 13.

Suppose we have a copper bus bar in the substation of an electric utility company  
which we wish to have carry large currents, and we therefore select dimensions of  
2 by 4 inches. Then much of the copper is wasted, for the fields are greatly reduced 
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in one skin depth, about 8.5 mm.6 A hollow conductor with a wall thickness of about 
12 mm would be a much better design. Although we are applying the results of an 
analysis for an infinite planar conductor to one of finite dimensions, the fields are 
attenuated in the finite-size conductor in a similar (but not identical) fashion.

The extremely short skin depth at microwave frequencies shows that only the 
surface coating of the guiding conductor is important. A piece of glass with an evap-
orated silver surface 3 μm thick is an excellent conductor at these frequencies.

Expressions for the velocity and wavelength within a good conductor can be 
found. From (82), we already have

α = β =   1 __ 
δ
   =  √ 

____
π fμσ  

Then, as

β =   2π__
λ 

we find the wavelength to be

λ = 2πδ (83)

Also, recalling that

 v  p   =   ω __ 
β

  

we have

  v  p   = ωδ (84)

For copper at 60 Hz, λ = 5.36 cm and vp = 3.22 m/s, or about 7.2 mi/h! A lot of us 
can run faster than that. In free space, of course, a 60 Hz wave has a wavelength of 
3100 mi and travels at the velocity of light.

EXAMPLE 11 .6

We again consider wave propagation in water, but this time, seawater. The primary 
difference between seawater and fresh water is of course the salt content. Sodium 
chloride dissociates in water to form Na+ and Cl− ions, which, being charged, will 
move when forced by an electric field. Seawater is in this manner conductive, and 
so it will attenuate electromagnetic waves by this mechanism. At frequencies in the 
vicinity of 107 Hz and below, the bound charge effects in water discussed earlier are 
negligible, and losses in seawater arise principally from the salt-associated conduc-
tivity. We consider an incident wave of frequency 1 MHz. We wish to find the skin 
depth, wavelength, and phase velocity. In seawater, σ = 4 S/m, and ϵr′ = 81.

6 This utility company operates at 60 Hz.
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11.4.3  Intrinsic Impedance and Power Density 
in Good Conductors

We next turn our attention to finding the magnetic field, Hy, associated with Ex. To do 
so, we need an expression for the intrinsic impedance of a good conductor. We begin 
with Eq. (48), Section 11.2, with ϵ″ = σ/ω,

η =   √ 
________

  jωμ
 _______ 

σ + jωϵ′     

Since σ ≫ ωϵ′, we have

 η =  √ 
___

   jωμ ___ σ     

Solution. We first evaluate the loss tangent, using the given data:

   σ ____ 
ωϵ′    =   4  ___________________   

(2π ×  10   6 ) (81) (8.85 ×  10   −12 )
   = 8.9 ×  10   2  ≫ 1

Seawater is therefore a good conductor at 1 MHz (and at frequencies lower than this). 
The skin depth is

δ =   1 ____ 
 √ 

____
 π fμσ
  = 1  ________________   

 √ 
___________________

  (π ×  10   6 )(4π ×  10   −7 ) (4)  
   = 0.25  m = 25  cm

Now
λ = 2πδ = 1.6  m

and
  v  p   = ωδ =  (  2π ×  10   6  )   (  0.25 )   = 1.6 ×  10   6    m/s

In free space, these values would have been λ = 300 m and of course v = c.
With a 25-cm skin depth, it is obvious that radio frequency communication in

seawater is quite impractical. Notice, however, that δ varies as1 ∕ √ 
_
 f  , so that things

will improve at lower frequencies. For example, if we use a frequency of 10 Hz (in 
the ELF, or extremely low frequency range), the skin depth is increased over that at 
1 MHz by a factor of  √ 

______
  10   6  ∕ 10  , so that

δ(10  Hz) ≐  80  m
The corresponding wavelength is λ = 2πδ ≐ 500 m. Frequencies in the ELF range 
were used for many years in submarine communications. Signals were transmitted 
from gigantic ground-based antennas (required because the free-space wavelength 
associated with 10 Hz is 3 × 107 m). The signals were then received by submarines, 
from which a suspended wire antenna of length shorter than 500 m is sufficient. The 
drawback is that signal data rates at ELF are slow enough that a single word can take 
several minutes to transmit. Typically, ELF signals would be used to tell the subma-
rine to initiate emergency procedures, or to come near the surface in order to receive 
a more detailed message via satellite.
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which may be written as

 η =    √ 
__

 2  ∠ 45° ________ 
σδ

   =   (1 + j)_
σδ

   (85)

Thus, if we write (80) in terms of the skin depth,

  E  x   =  E  x0   e   −z∕δ  cos   (  ωt −   z _ 
δ
   )    (86)

then
  H  y   =   σδ E  x  0   ____ 

 √ 
__

 2  
    e   −z∕δ  cos  (  ωt −   z _ 

δ
   −   π _ 4   )    (87)

and we see that the maximum amplitude of the magnetic field intensity occurs one-eighth 
of a cycle later than the maximum amplitude of the electric field intensity at every point.

From (86) and (87) we may obtain the time-average Poynting vector by 
applying (77),

 〈 S  z  〉 =   1 _ 2     σδ  E  x  0  
2  ____ 

 √ 
__

 2  
    e   −2z∕δ  cos   (    π _ 4   )    

or
 〈 S  z  〉 =   1 _ 4   σδ  E  x 0  2    e   −2z∕δ  

We again note that in a distance of one skin depth the power density is only e−2 = 
0.135 of its value at the surface.

11.4.4 Skin Effect Resistance in Conductors

We are now prepared to address the problem of frequency-dependent resistance in 
conductors, which is an important factor in the operation of transmission lines and 
waveguides. Consider a section of conductor having length L and width b, as shown 
in Figure 11.3, and which forms the entrance cross-section for a plane wave incident 

Figure 11.3 The current density  J  x   =  J  x0  " e   −z∕δ " e   −jz∕δ

decreases in magnitude as the wave propagates 
into the conductor. The average power loss in the 
region 0 < x < L, 0 < y < b, z > 0, is δbL" J  x0   2   ∕4σ watts.

Good
conductor

Perfect
dielectric

L

b δ

0
Jx0

Jxs

x

y

z
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from z < 0. The incident electric field is x-polarized and thus generates current density  
J in that direction, which diminishes with increasing z as the wave attenuates. The 
total average power loss in a width 0 < y < b and length 0 < x < L in the direction 
of the current as shown and at depth z is obtained by finding the power crossing the 
conductor surface within this area,

  P  L   =  ∫  area  〈 S  z  〉da =  ∫ 
0
  
  b

     ∫ 
0
  
  L

      1 _ 4  σδ E  x  0  2   e   −2z∕δ   |    z=0
   dx dy =   1 _ 4   σδbL  E  x  0

2 

In terms of the current density Jx 0 at the surface,
  J  x  0   = σ  E  x  0   

we have

  P  L   =   1 _ 4σ
   δbL  J  x0  2 (88)

Now let us see what power loss would result if the total current in a width b were 
distributed uniformly in one skin depth. To find the total current, we integrate the 
current density over the infinite depth of the conductor,

 I =  ∫ 
0
  
  ∞

     ∫ 
0
  
  b

     J  x   dy dz

where
  J  x   =  J  x0    e   −z∕δ  cos  (  ωt −   z _ 

δ
   )    

or in complex exponential notation to simplify the integration,

  J  xs    =   J  x 0    e   −z/δ   e   −jz∕δ      
=
  

 J  x 0    e   −(1+j)z∕δ 
  

Therefore,
 I  s   =  ∫ 

0
  
  ∞

    ∫ 
0
  
  b

    J  x 0   e   −(1+j)z∕δ    dy dz

=  J  x 0   b e   −(1+j)z∕δ    − δ ___ 1 + j     |    0  ∞

=    J  x 0   bδ ____ 1 + j  

and
I =    J  x

 
0   bδ ____ 

 √ 
__

 2  
   cos   (  ωt −   π _ 4   )   

If this current is distributed with a uniform density J′ throughout the cross section 
0 < y < b, 0 < z < δ, then

  J   ′  =    J  x 0  __ 
 √ 

__
 2  
   cos   (  ωt −   π _ 4   )    

The ohmic power loss per unit volume is J · E, and thus the total instantaneous power 
dissipated in the volume under consideration is

 P  Li  (t) =   1 __ σ   (J′)2 bLδ =    J  x
 
0  2   __ 2σ
   bLδ  cos   2    (  ωt −   π _ 4   )   
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The time-average power loss is easily obtained, since the average value of the 
cosine-squared factor is one-half,

  P  L   =   1 _ 4σ
    J  x 0  2   bLδ (89)

Comparing (88) and (89), we see that they are identical. Thus the average power 
loss in a conductor with skin effect present may be calculated by assuming that the 
total current is distributed uniformly in one skin depth. In terms of resistance, we 
may say that the resistance of a width b and length L of an infinitely thick slab with 
skin effect is the same as the resistance of a rectangular slab of width b, length L, and 
thickness δ without skin effect, or with uniform current distribution.

We may apply this to a conductor of circular cross section with little error, pro-
vided that the radius a is much greater than the skin depth. The resistance at a high 
frequency where there is a well-developed skin effect is therefore found by consider-
ing a slab of width equal to the circumference 2πa and thickness δ. Hence

 R =   L _ 
σS

   =   L _2πaσδ
(90)

A round copper wire of 1 mm radius and 1 km length has a resistance at direct 
current of

  R  dc   =    10   3  ____________  
π 10   −6 (5.8 ×  10   7 )

   = 5.48  Ω 

At 1 MHz, the skin depth is 0.066 mm. Thus δ ≪ a, and the resistance at 1 MHz is 
found by (90),

 R =    10   3   ______________________   
2π 10   −3 (5.8 ×  10   7 )(0.066 ×  10   −3 )

   = 41.5  Ω 

D11.7. A steel pipe is constructed of a material for which μr = 180 and  
σ = 4 × 106 S/m. The two radii are 5 and 7 mm, and the length is 75 m. If the 
total current I(t) carried by the pipe is 8 cos ωt A, where ω = 1200π rad/s, find: 
(a) the skin depth; (b) the effective resistance; (c) the dc resistance; (d) the 
time-average power loss.

Ans. (a) 0.766 mm; (b) 0.557 Ω; (c) 0.249 Ω; (d) 17.82 W

11.5 WAVE POLARIZATION
In the previous sections, we have treated uniform plane waves in which the electric and 
magnetic field vectors were assumed to lie in fixed directions. Specifically, with the wave 
propagating along the z axis, E was taken to lie along x, which then required H to lie along 
y. This orthogonal relationship between E, H, and S is always true for a uniform plane
wave. The directions of E and H within the plane perpendicular to az may change, how-
ever, as functions of time and position, depending on how the wave was generated or on 
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what type of medium it is propagating through. Thus a complete description of an electro-
magnetic wave would not only include parameters such as its wavelength, phase velocity, 
and power, but also a statement of the instantaneous orientation of its field vectors. We 
define the wave polarization as the time-dependent electric field vector orientation at a 
fixed point in space. A more complete characterization of a wave’s polarization would in 
fact include specifying the field orientation at all points because some waves demonstrate 
spatial variations in their polarization. Specifying only the electric field direction is 
sufficient, since magnetic field is readily found from E using Maxwell’s equations.

11.5.1 Linear Polarization

In the waves we have previously studied, E was in a fixed straight orientation for all 
times and positions. Such a wave is said to be linearly polarized. We have taken E 
to lie along the x axis, but the field could be oriented in any fixed direction in the xy 
plane and be linearly polarized. For positive z propagation, the wave would in general 
have its electric field phasor expressed as

  E  s   = ( E  x 0   a  x   +  E  y 0   a  y  ) e   −αz  e   −jβz  (91)

where Ex0 and Ey0 are constant amplitudes along x and y. The magnetic field is readily 
found by determining its x and y components directly from those of Es. Specifically,  
Hs for the wave of Eq. (91) is

   H  s   = [ H  x 0   a  x   +  H  y 0   a  y   ] e   −αz  e   −jβz  =  [  −   
 E  y 0   _ η    a  x   +    E  x 0   _ η    a  y   ]    e   −αz   e   −jβz   (92)

The two fields are sketched in Figure 11.4. The figure demonstrates the reason 
for the minus sign in the term involving Ey0 in Eq. (92). The direction of power flow, 
given by E × H, is in the positive z direction in this case. A component of E in the 

Figure 11.4 Electric and magnetic 
field configuration for a general linearly 
polarized plane wave propagating 
in the forward z direction (out of the 
page). Field components correspond 
to those in Eqs. (91) and (92).

E
Ey0

Ex 0Hx 0

Hy0H

y

x
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positive y direction would require a component of H in the negative x direction—thus 
the minus sign. Using (91) and (92), the power density in the wave is found using (77):

〈 S  z  〉 =   1 _ 2   = ℛe{ E  s   ×  H  s  * }=   1 _ 2   ℛe{ E  x 0   H  y 0  *  ( a  x   ×  a  y  ) +  E  y 0    H  x 0  *  ( a  y   ×  a  x  )} e   −2αz

=   1 _ 2   ℛe   {     E  x 0    E  x 0  *  _ 
 η   * 

 +   
 E  y  0    E  y 0  *  

 _ 
 η   * 

   }    e   −2αz  a  z  

=   1 _ 2   ℛe    {    1 _ 
 η   * 

   }     (     |    E  x 0    |     2  +   |     E  y 0    |     2   )    e   −2αz  a  z     W∕m   2

This result demonstrates the idea that our linearly polarized plane wave can be con-
sidered as two distinct plane waves having x and y polarizations, whose electric fields 
are combining in phase to produce the total E. The same is true for the magnetic field 
components. This is a critical point in understanding wave polarization, in that any
polarization state can be described in terms of mutually perpendicular components 
of the electric field and their relative phasing.

11.5.2  Phase-Displaced Field Components: Elliptical Polarization

We next consider the effect of a phase difference, ϕ, between Ex0 and Ey0, where 
ϕ < π/2. For simplicity, we will consider propagation in a lossless medium. The total 
field in phasor form is

  E  s   = ( E  x 0   a  x   +  E  y 0   e   jϕ  a  y  ) e   −jβz  (93)

Again, to aid in visualization, we convert this wave to real instantaneous form by 
multiplying by e jωt and taking the real part:

 E(z, t) =  E  x 0   cos(ωt − βz) a  x   +  E  y 0   cos (ωt − βz + ϕ) a  y   (94)

where we have assumed that Ex0 and Ey0 are real. Suppose we set t = 0, in which case 
(94) becomes [using cos(−x) = cos(x)]

 E(z, 0) =  E  x 0   cos (βz) a  x   +  E  y 0  cos (βz − ϕ) a  y    (95)
The component magnitudes of E(z, 0) are plotted as functions of z in Figure 11.5. 
Since time is fixed at zero, the wave is frozen in position. An observer can move 
along the z axis, measuring the component magnitudes and thus the orientation of 
the total electric field at each point. Let’s consider a crest of Ex, indicated as point a 
in Figure 11.5. If ϕ were zero, Ey would have a crest at the same location. Since ϕ is 
not zero (and positive), the crest of Ey that would otherwise occur at point a is now 
displaced to point b farther down z. The two points are separated by distance ϕ/β. Ey 
thus lags behind Ex when we consider the spatial dimension.

Now suppose the observer stops at some location on the z axis, and time is 
allowed to move forward. Both fields now move in the positive z direction, as (94) 
indicates. But point b reaches the observer first, followed by point a. So we see that 
Ey leads Ex when we consider the time dimension. In either case (fixed t and varying 
z, or vice versa) the observer notes that the net field rotates about the z axis while 
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its magnitude changes. Considering a starting point in z and t, at which the field has 
a given orientation and magnitude, the wave will return to the same orientation and 
magnitude at a distance of one wavelength in z (for fixed t) or at a time t = 2π/ω later 
(at a fixed z).

For illustration purposes, if we take the length of the field vector as a measure 
of its magnitude, we find that at a fixed position, the tip of the vector traces out the 
shape of an ellipse over time t = 2π/ω. The wave is said to be elliptically polarized. 
Elliptical polarization is in fact the most general polarization state of a wave, since it 
encompasses any magnitude and phase difference between Ex and Ey. Linear polari-
zation is a special case of elliptical polarization in which the phase difference is zero.

11.5.3 Circular Polarization

Another special case of elliptical polarization occurs when Ex0 = Ey0 = E0 and when 
ϕ = ±π/2. The wave in this case exhibits circular polarization. To see this, we incor-
porate these restrictions into Eq. (94) to obtain

E(z, t) =  E  0  [cos (ωt − βz) a  x   + cos(ωt − βz ± π∕2) a  y  ]
=  E  0  [cos (ωt − βz) a  x   ∓ sin (ωt − βz) a  y  ] (96)

If we consider a fixed position along z (such as z = 0) and allow time to vary, (96), 
with ϕ = +π/2, becomes

 E(0, t) =  E  0  [cos (ωt) a  x   − sin (ωt) a  y  ] (97)

If we choose −π/2 in (96), we obtain

 E(0, t) =  E  0  [cos (ωt) a  x   + sin (ωt) a  y  ] (98)

Figure 11.5 Plots of the electric field component magnitudes in Eq. (95) as 
functions of z. Note that the y component lags behind the x component in z. 
As time increases from zero, both waves travel to the right, as per Eq. (94). 
Thus, to an observer at a fixed location, the y component leads in time.

Ex 0

E(z, 0)

Ey0

Wave travel

Observer
location
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b
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ϕ/β
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The field vector of Eq. (98) rotates in the counterclockwise direction in the xy 
plane, while maintaining constant amplitude E0, and so the tip of the vector traces out 
a circle. Figure 11.6 shows this behavior.

Choosing +π/2 leads to (97), whose field vector rotates in the clockwise direction. 
The handedness of the circular polarization is associated with the rotation and propa-
gation directions in the following manner: The wave exhibits left circular polarization 
(l.c.p.) if, when orienting the left hand with the thumb in the direction of propagation, 
the fingers curl in the rotation direction of the field with time. The wave exhibits right
circular polarization (r.c.p.) if, with the right-hand thumb in the propagation direc-
tion, the fingers curl in the field rotation direction.7 Thus, with forward z propagation, 
(97) describes a left circularly polarized wave, and (98) describes a right circularly 
polarized wave. The same convention is applied to elliptical polarization, in which the 
descriptions left elliptical polarization and right elliptical polarization are used.

Using (96), the instantaneous angle of the field from the x direction can be found 
for any position along z through

θ(z, t) =  tan   −1   (    
 E  y   _  E  x  

   )    =  tan   −1   (    ∓sin (ωt − βz)  ___________  cos (ωt − βz)   )    = ∓(ωt − βz) (99)

where again the minus sign (yielding l.c.p. for positive z travel) applies for the choice 
of ϕ = +π/2 in (96); the plus sign (yielding r.c.p. for positive z travel) is used if 

Figure 11.6 Electric field in the xy 
plane of a right circularly polarized 
plane wave, as described by Eq. (98). 
As the wave propagates in the forward 
z direction, the field vector rotates 
counterclockwise in the xy plane.

Ex

Ey
E

x

Field rotation

z,k

ωt

y

7 This convention is reversed by some workers (most notably in optics) who emphasize the importance of the 
spatial field configuration. Note that r.c.p. by our definition is formed by propagating a spatial field that is in 
the shape of a left-handed screw, and for that reason it is sometimes called left circular polarization (see Fig-
ure 11.7). Left circular polarization as we define it results from propagating a spatial field in the shape of a 
right-handed screw, and it is called right circular polarization by the spatial enthusiasts. Caution is obviously 
necessary in interpreting what is meant when polarization handedness is stated in an unfamiliar text.
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ϕ = −π/2. If we choose z = 0, the angle becomes simply ωt, which reaches 2π (one 
complete rotation) at time t = 2π/ω. If we choose t = 0 and allow z to vary, we 
form a corkscrew-like field pattern. One way to visualize this is to consider a spiral 
staircase–shaped pattern, in which the field lines (stairsteps) are perpendicular to the 
z (or staircase) axis. The relationship between this spatial field pattern and the result-
ing time behavior at fixed z as the wave propagates is shown in an artist’s conception 
in Figure 11.7.

The handedness of the polarization is changed by reversing the pitch of the cork-
screw pattern. The spiral staircase model is only a visualization aid. It must be re-
membered that the wave is still a uniform plane wave whose fields at any position 
along z are infinite in extent over the transverse plane.

There are many uses of circularly polarized waves. Perhaps the most obvious 
advantage is that reception of a wave having circular polarization does not depend 
on the antenna orientation in the plane normal to the propagation direction. Dipole 
antennas, for example, are required to be oriented along the electric field direction 
of the signal they receive. If circularly polarized signals are transmitted, the receiver 
orientation requirements are relaxed considerably. In optics, circularly polarized 

Figure 11.7 Representation of a right circularly polarized wave. 
The electric field vector (in white) will rotate toward the y axis as the 
entire wave moves through the xy plane in the direction of k. This 
counterclockwise rotation (when looking toward the wave source) satisfies 
the temporal right-handed rotation convention as described in the text. 
The wave, however, appears as a left-handed screw, and for this reason it 
is called left circular polarization in the other convention.

y

E

x
ωt

k

hay28159_ch11_369-408.indd   401 25/11/17   11:54 am



E N G I N E E R I N G  E L E C T R O M AG N E T I C S402

light can be passed through a polarizer of any orientation, thus yielding linearly 
polarized light in any direction (although one loses half the original power this way). 
Other uses involve treating linearly polarized light as a superposition of circularly 
polarized waves, to be described next.

Circularly polarized light can be generated using an anisotropic medium—a ma-
terial whose permittivity is a function of electric field direction. Many crystals have 
this property. A crystal orientation can be found such that along one direction (say, 
the x axis), the permittivity is lowest, while along the orthogonal direction (y axis), 
the permittivity is highest. The strategy is to input a linearly polarized wave with 
its field vector at 45 degrees to the x and y axes of the crystal. It will thus have 
equal-amplitude x and y components in the crystal, and these will now propagate in 
the z direction at different speeds. A phase difference (or retardation) accumulates 
between the components as they propagate, which can reach π/2 if the crystal is long 
enough. The wave at the output thus becomes circularly polarized. Such a crystal, cut 
to the right length and used in this manner, is called a quarter-wave plate, since it 
introduces a relative phase shift of π/2 between Ex and Ey, which is equivalent to λ /4.

It is useful to express circularly polarized waves in phasor form. To do this, we 
note that (96) can be expressed as

 E(z, t) = ℛe   {   E  0   e   jωt  e   −jβz    [   a  x   +  e   ±  jπ∕2  a  y   ]    }    

Using the fact that e ±  jπ/2 = ±   j, we identify the phasor form as:

  E  s   =  E  0  ( a  x   ± j a  y  )  e   −jβz  (100)

where the plus sign is used for left circular polarization and the minus sign for right 
circular polarization. If the wave propagates in the negative z direction, we have

  E  s   =  E  0  ( a  x   ± j  a  y  ) e   +jβz  (101)

where in this case the positive sign applies to right circular polarization and the mi-
nus sign to left circular polarization. The student is encouraged to verify this.

EXAMPLE 11 .7

Let us consider the result of superimposing left and right circularly polarized fields 
of the same amplitude, frequency, and propagation direction, but where a phase shift 
of δ radians exists between the two.
Solution. Taking the waves to propagate in the +z direction, and introducing a rela-
tive phase, δ, the total phasor field is found, using (100):

 E  sT   =  E  sR   +  E  sL   =  E  0  [ a  x   − j a  y  ] e   −jβz  +  E  0  [ a  x   + j a  y  ] e   −jβz  e   jδ 
Grouping components together, this becomes

  E  sT   =  E  0  [(1 +  e   jδ )  a  x   − j(1 −  e   jδ ) a  y  ] e   −jβz  
Factoring out an overall phase term, e jδ/2, we obtain

  E  sT   =  E  0    e   jδ∕2   [  ( e   −jδ∕2  +  e   jδ∕2 ) a  x   − j( e   −jδ∕2  −  e   jδ∕2 ) a  y   ]    e   −jβz  
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Example 11.7 shows that any linearly polarized wave can be expressed as the 
sum of two circularly polarized waves of opposite handedness, where the linear po-
larization direction is determined by the relative phase difference between the two 
waves. Such a representation is convenient (and necessary) when considering, for 
example, the propagation of linearly polarized light through media which contain 
organic molecules. These often exhibit spiral structures having left- or right-handed 
pitch, and they will thus interact differently with left- or right-hand circular polar-
ization. As a result, the left circular component can propagate at a different speed 
than the right circular component, and so the two waves will accumulate a phase 
difference as they propagate. As a result, the direction of the linearly polarized 
field vector at the output of the material will differ from the direction that it had at 
the input. The extent of this rotation can be used as a measurement tool to aid in 
material studies.

Polarization issues will become extremely important when we consider wave 
reflection in Chapter 12.
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CHAPTER 11 PROBLEMS
11.1 Show that Exs = Ae j(k0z+ϕ) is a solution of the vector Helmholtz equation, 

Eq. (30), for   k  0   = ω √ ____  μ  0    ϵ  0      and any ϕ and A.
11.2 A 20 GHz uniform plane wave propagates in the forward z direction in a 

lossless medium for which ϵr = μr = 3. Find (a) vp; (b) β; (c) λ; (d) Es; 
(e) Hs; (f ) ⟨S⟩. Assume real amplitude E0 and x polarization.

11.3 An H field in free space is given as (x, t) = 10 cos(108t − βx)ay A/m. 
Find (a) β; (b) λ; (c) ε(x, t) at P(0.1, 0.2, 0.3) at t = 1 ns. 

From Euler’s identity, we find that   e   jδ∕2  +  e   −jδ∕2  = 2 cos δ∕2 , and   e    jδ∕2  −  e   −jδ∕2    =  
2j sin δ ∕2 . Using these relations, we obtain

 E  sT   = 2 E  0  [cos (δ ∕ 2) a  x   + sin (δ ∕ 2) a  y   ]  e   −j(βz−δ∕2)  (102)

We recognize (102) as the electric field of a linearly polarized wave, whose field 
vector is oriented at angle δ/2 from the x axis.
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11.4 Small antennas have low efficiencies (as will be seen in Chapter 14), 
and the efficiency increases with size up to the point at which a critical 
dimension of the antenna is an appreciable fraction of a wavelength, say 
λ/8. (a) An antenna that is 12 cm long is operated in air at 1 MHz. What 
fraction of a wavelength long is it? (b) The same antenna is embedded 
in a ferrite material for which ϵr = 20 and μr = 2000. What fraction of a 
wavelength is it now?

11.5 Consider two x-polarized waves that counter-propagate along the z axis. The 
wave traveling in the forward z direction is of frequency ω2 ; the backward 
z propagating wave is at frequency ω1, where ω1 < ω2. Both frequencies 
are very slightly detuned on either side of their mean frequency, ω0, such 
that ω0 − ω1 = ω2 − ω0 << ω0. Using the complex field forms, construct 
the expression for the total electric field, and from this, find the power 
density distribution (proportional to EE*). Your answer should be in the 
form of a "standing wave" that in fact moves slowly along the z axis.  Find 
an expression for the velocity of the wave pattern in terms of given or known 
parameters. Does the pattern move in the forward or backward z direction? 

11.6 A uniform plane wave has electric field Es = (Ey0 ay − Ez0 az)e−αx e−jβx V/m. 
The intrinsic impedance of the medium is given as η = |η| ejϕ, where 
ϕ is a constant phase. (a) Describe the wave polarization and state the 
direction of propagation. (b) Find Hs. (c) Find ε(x, t) and (x, t). (d) Find 
< S > in W/m2. (e) Find the time-average power in watts that is intercepted 
by an antenna of rectangular cross-section, having width w and height h, 
suspended parallel to the yz plane, and at a distance d from the wave source.

11.7 Express in terms of the penetration depth, δ, the distance into a lossy medium 
at which wave power has attenuated by (a) 1 dB; (b) 3 dB; (c) 30 dB. 

11.8 An electric field in free space is given in spherical coordinates as Es(r) = 
E0(r)e−jkr aθ V/m. (a) Find Hs(r) assuming uniform plane wave behavior. 
(b) Find < S >. (c) Express the average outward power in watts through 
a closed spherical shell of radius r, centered at the origin. (d) Establish 
the required functional form of E0(r) that will enable the power flow in 
part c to be independent of radius. With this condition met, the given field 
becomes that of an isotropic radiator in a lossless medium (radiating equal 
power density in all directions).

11.9 An example of a nonuniform plane wave is a surface or evanescent wave, 
an example of which, in phasor form, is shown here, exhibiting diminishing 
amplitude with x while propagating in the forward z direction:

  E  s  (z) =  E  0   e   −αx   e   −jβz   a  y   

Such fields form part of the mode structure in dielectric waveguides, as 
will be explored in Chapter 13. (a) Assuming free-space conditions, use 
Eq. (23) to find the associated magnetic field, Hs(z) (note that there will be 
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two components). (b) Find α as a function of β, ω, ϵ0, and μ0, such that all 
of Maxwell’s equations are satisfied by the electric and magnetic fields.

11.10 In a medium characterized by intrinsic impedance η = |η|e jϕ, a linearly 
polarized plane wave propagates, with magnetic field given as Hs = (H0yay + 
H0zaz)e−αxe−jβx. Find (a) Es; (b) ℰ(x, t); (c) (x, t); (d) ⟨S⟩.

11.11 A uniform plane wave at frequency f = 100 MHz propagates in a material 
having conductivity σ = 3.0 S/m and dielectric constant ϵr′ = 8.00. The 
wave carries electric field amplitude E0 = 100 V/m. (a) Calculate the 
loss tangent and determine whether the medium would qualify as a good 
dielectric or a good conductor. (b) Calculate α, β, and η. (c) Write the 
electric field in phasor form, assuming x polarization and forward z travel. 
(d) Write the magnetic field in phasor form. (e) Write the time-average 
Poynting vector, S. (f ) Find the 6-dB material thickness at which the wave 
power drops to 25% of its value on entry. 

11.12 Repeat Problem 11.11, except the wave now propagates in fresh water, 
having conductivity σ = 10−3 S/m, dielectric constant ϵr′ = 80.0, and 
permeability μ0.

11.13 Let jk = 0.2 + j1.5 m−1 and η = 450 + j60 Ω for a uniform plane propagating 
in the az direction. If ω = 300 Mrad/s, find μ, ϵ′, and ϵ″ for the medium. 

11.14 Describe how the attenuation coefficient of a liquid medium, assumed 
to be a good conductor, could be determined through measurement of 
wavelength in the liquid at a known frequency. What restrictions apply? 
Could this method be used to find the conductivity as well?

11.15 A 10-GHz radar signal may be represented as a uniform plane wave in a 
sufficiently small region. Calculate the wavelength in centimeters and the 
attenuation in nepers per meter if the wave is propagating in a nonmagnetic 
material for which (a) ϵr′ = 1 and ϵr″ = 0; (b) ϵr′ = 1.04 and ϵr″ = 9.00 × 
10−4; (c) ϵr′ = 2.5 and ϵr″ = 7.2.

11.16 Consider the power dissipation term, ∫ E · Jdv, in Poynting’s theorem 
[Eq. (70)]. This gives the power lost to heat within a volume into which 
electromagnetic waves enter. The term pd = E · J is thus the power 
dissipation per unit volume in W/m3. Following the same reasoning that 
resulted in Eq. (77), the time-average power dissipation per volume will 
be <  p  d   > = (1∕ 2) ℛe{  E  s   ·  J  s  * }. (a) Show that in a conducting medium, 
through which a uniform plane wave of amplitude E0 propagates in the 
forward z direction,<   p  d   > = (σ ∕ 2)   |    E  0     |     2   e   −2αz . (b) Confirm this result for
the special case of a good conductor by using the left-hand side of Eq. (70), 
and consider a very small volume.

11.17 Consider a long solid cylindrical wire having uniform conductivity σ.
The wire is oriented along the z axis and has radius a and length L. DC 
voltage V0 is applied between the two ends. (a) Write the electric field 
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intensity, E, in terms of V0 and L. (b) Using Ampere’s circuital law, find 
H inside the wire. (c) Find the Poynting vector, S. (d) Evaluate the left 
side of Poynting’s theorem by integrating the S over the wire surface. 
(e) Evaluate the right side of Poynting’s theorem (specialized for this 
non-time-varying case) and thus verify that the theorem is satisfied for 
this situation. 

11.18 Given a 100-MHz uniform plane wave in a medium known to be a good 
dielectric, the phasor electric field is ℰs = 4e−0.5ze−j20zax V/m. Determine 
(a) ϵ′; (b) ϵ″; (c) η; (d) Hs; (e) ⟨S⟩; (f) the power in watts that is incident on 
a rectangular surface measuring 20 m × 30 m at z = 10 m.

11.19 Perfectly conducting cylinders with radii of 8 mm and 20 mm are coaxial. 
The region between the cylinders is filled with a perfect dielectric for 
which ϵ = 10−9/4π F/m and μr = 1. If ε in this region is (500/ρ) cos(ωt − 
4z)aρ V/m, find (a) ω, with the help of Maxwell’s equations in cylindrical 
coordinates; (b) (ρ, z, t); (c) ⟨S (ρ, z, t)⟩; (d) the average power passing 
through every cross section 8 < ρ < 20 mm, 0 < ϕ < 2π.

11.20 Voltage breakdown in air at standard temperature and pressure occurs at 
an electric field strength of approximately 3 × 106 V/m. This becomes an 
issue in some high-power optical experiments, in which tight focusing of 
light may be necessary. Estimate the lightwave power in watts that can be 
focused into a cylindrical beam of 10 μm radius before breakdown occurs. 
Assume uniform plane wave behavior (although this assumption will 
produce an answer that is higher than the actual number by as much as a 
factor of 2, depending on the actual beam shape).

11.21 The cylindrical shell, 1 cm < ρ < 1.2 cm, is composed of a conducting 
material for which σ = 106 S/m. The external and internal regions are 
nonconducting. Let Hϕ = 2000 A/m at ρ = 1.2 cm. Find (a) H everywhere; 
(b) E everywhere; (c) ⟨S⟩ everywhere.

11.22 The inner and outer dimensions of a coaxial copper transmission line are 
2 and 7 mm, respectively. Both conductors have thicknesses much greater 
than δ. The dielectric is lossless and the operating frequency is 400 MHz. 
Calculate the resistance per meter length of the (a) inner conductor;  
(b) outer conductor; (c) transmission line.

11.23 A hollow tubular conductor is constructed from a type of brass having a 
conductivity of 1.2 × 107 S/m. The inner and outer radii are 9 and 10 mm, 
respectively. Calculate the resistance per meter length at a frequency of (a) 
dc; (b) 20 MHz; (c) 2 GHz. 

11.24 (a) Most microwave ovens operate at 2.45 GHz. Assume that σ = 1.2 × 
106 S/m and μr = 500 for the stainless steel interior, and find the depth 
of penetration. (b) Let Es = 50∠0° V/m at the surface of the conductor, 
and plot a curve of the amplitude of Es versus the angle of Es as the field 
propagates into the stainless steel.
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11.25 A good conductor is planar in form, and it carries a uniform plane 
wave that has a wavelength of 0.3 mm and a velocity of 3 × 105 m/s. 
Assuming the conductor is nonmagnetic, determine the frequency and the 
conductivity. 

11.26 The dimensions of a certain coaxial transmission line are a = 0.8 mm and 
b = 4 mm. The outer conductor thickness is 0.6 mm, and all conductors have 
σ = 1.6 × 107 S/m. (a) Find R, the resistance per unit length at an operating 
frequency of 2.4 GHz. (b) Use information from Sections 6.3 and 8.10 to find 
C and L, the capacitance and inductance per unit length, respectively. The
coax is air-filled. (c) Find α and β if  α + jβ =  √ 

___________
  jωC(R + jωL)   .

11.27 The planar surface z = 0 is a brass–Teflon interface. Use data available 
in Appendix C to evaluate the following ratios for a uniform plane wave 
having ω = 4 × 1010 rad/s: (a) αTef /αbrass; (b) λTef/λbrass; (c) vTef /vbrass. 

11.28 A uniform plane wave in free space has electric field vector given by Es = 
10e−jβxaz + 15e−jβxay V/m. (a) Describe the wave polarization. (b) Find 
Hs. (c) Determine the average power density in the wave in W/m2.

11.29 Consider a left circularly polarized wave in free space that propagates in 
the forward z direction. The electric field is given by the appropriate form 
of Eq. (100). Determine (a) the magnetic field phasor, Hs; (b) an expression 
for the average power density in the wave in W/m2 by direct application of 
Eq. (77). 

11.30 In an anisotropic medium, permittivity varies with electric field direction, 
and is a property seen in most crystals. Consider a uniform plane wave 
propagating in the z direction in such a medium, and which enters the 
material with equal field components along the x and y axes. The field 
phasor will take the form:

Es(z) = E0(ax + ay e jΔβz)e−jβz

where Δβ = βx − βy is the difference in phase constants for waves that 
are linearly polarized in the x and y directions. Find distances into the 
material (in terms of Δβ) at which the field is (a) linearly polarized 
and (b) circularly polarized. (c) Assume intrinsic impedance η that is 
approximately constant with field orientation and find Hs and < S >.

11.31 A linearly polarized uniform plane wave, propagating in the forward z 
direction, is input to a lossless anisotropic material, in which the dielectric 
constant encountered by waves polarized along y(ϵry) differs from that 
seen by waves polarized along x(ϵrx). Suppose ϵrx = 2.15, ϵry = 2.10, and 
the wave electric field at input is polarized at 45° to the positive x and y 
axes. (a) Determine, in terms of the free-space wavelength λ, the shortest 
length of the material, such that the wave, as it emerges from the output, 
is circularly polarized. (b) Will the output wave be right or left circularly 
polarized? Problem 11.30 is good background.
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11.32 Suppose that the length of the medium of Problem 11.31 is made to be 
twice that determined in the problem. Describe the polarization of the 
output wave in this case.

11.33 Given a wave for which Es = 15e−jβzax + 18e−jβze jϕay V/m in a medium 
characterized by complex intrinsic impedance η(a), find Hs. (b) Determine 
the average power density in W/m2. 

11.34 Given a general elliptically polarized wave as per Eq. (93):
  E  s   = [ E  x0    a  x   +  E  y0    e   jϕ   a  y   ]  e   −jβz  

(a) Show, using methods similar to those of Example 11.7, that a linearly 
polarized wave results when superimposing the given field and a phase-
shifted field of the form:

 E  s   = [ E  x0   a  x   +  E  y0   e   −jϕ  a  y   ] e   −jβz  e   jδ 
where δ is a constant. (b) Find δ in terms of ϕ such that the resultant wave 
is linearly polarized along x.
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C H A P T E R 

Plane Wave Reflection 
and Dispersion

In Chapter 11, we learned how to mathematically represent uniform plane waves 
as functions of frequency, medium properties, and electric field orientation. We 
also learned how to calculate the wave velocity, attenuation, and power. In this 
chapter we consider wave reflection and transmission at planar boundaries be-
tween different media. Our study will allow any orientation between the wave and 
boundary and will also include the important cases of multiple boundaries. We 
will also study the practical case of waves that carry power over a finite band of 
frequencies, as would occur, for example, in a modulated carrier. We will consider 
such waves in dispersive media, in which some parameter that affects propagation 
(permittivity for example) varies with frequency. The effect of a dispersive me-
dium on a signal is of great importance because the signal envelope will change 
its shape as it propagates. As a result, detection and faithful representation of the 
original signal at the receiving end become problematic. Consequently, dispersion 
and attenuation must both be evaluated when establishing maximum allowable 
transmission distances. ■

12.1  REFLECTION OF UNIFORM PLANE 
WAVES AT NORMAL INCIDENCE

We first consider the phenomenon of reflection which occurs when a uniform plane 
wave is incident on the boundary between regions composed of two different ma-
terials. The treatment is specialized to the case of normal incidence—in which the 
wave propagation direction is perpendicular to the boundary. In later sections, we 
remove this restriction. Expressions will be found for the wave that is reflected from 
the interface and for that which is transmitted from one region into the other. These 
results are directly related to impedance-matching problems in ordinary transmission 
lines, as we have already encountered in Chapter 10. They are also applicable to 
waveguides, which we will study in Chapter 13.

12
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12.1.1 Reflected and Transmitted Waves at a Boundary

We begin by considering the electric field intensity in a wave that propagates toward 
a boundary between two media. Referring to Figure 12.1, we define region 1 (ϵ1, μ1) 
as the half-space for which z < 0; region 2 (ϵ2, μ2) is the half-space for which z > 0. 
Initially we establish the incident wave in region 1, traveling in the +z direction, and 
linearly polarized along x.

  ℰ  x1  +   (  z, t )   =  E  x10  +   e   − α  1  z  cos (  ωt −  β  1  z )   
In phasor form, this is

  E  xs1  +  (z) =  E  x10  +   e   −jk1z   (1)
where we take  E  x10  +   as real. The subscript 1 identifies the region, and the superscript + 
indicates a positively traveling wave. Associated with  E  xs1  +   (z) is a magnetic field in 
the y direction,

  H  ys1  +  (z) =   1 __  η  1      E  x10  +   e   −j k  1  z   (2)

where k1 and η1 are complex unless ϵ1″ (or σ1) is zero. This uniform plane wave in 
region l that is traveling toward the boundary surface at z = 0 is called the incident 
wave. Since the direction of propagation of the incident wave is perpendicular to the 
boundary plane, we describe it as normal incidence.

We now recognize that energy may be transmitted across the boundary surface 
at z = 0 into region 2 by providing a wave moving in the +z direction in that medium. 
The phasor electric and magnetic fields for this wave are

  E  xs2  +  (z)   =  E  x20  +   e   −j k  2  z   (3)

  H  ys2  +  (z)   =   1 __  η  2     E  x20  +   e   −j k  2  z   (4)

Figure 12.1 A plane wave incident on 
a boundary establishes reflected and 
transmitted waves having the indicated 
propagation directions. All fields are 
parallel to the boundary, with electric fields 
along x and magnetic fields along y.

Region 1
μ1,∊1́ ,∊1̋

Region 2
μ2,∊2́ ,∊2̋

E+
2, H+

2

Transmitted wav e

E+
1, H+

1
Incident wav e

E_ 
1, H_ 

1
Reflected wav e

x

z = 0
z
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This wave, which moves away from the boundary surface into region 2, is called the 
transmitted wave. Note the use of the different propagation constant k2 and intrinsic 
impedance η2.

The boundary conditions at z = 0 must be satisfied with these assumed fields. 
With E polarized along x, the field is tangent to the interface, and therefore the E 
fields in regions l and 2 must be equal at z = 0. Setting z = 0 in (1) and (3) would 
require that  E  x10  +   =  E  x20  +  . H, being y-directed, is also a tangential field, and must be 
continuous across the boundary (no current sheets are present in real media). When 
we let z = 0 in (2) and (4), we find that we must have  E  x10  +   /  η  1   =  E  x20  +   /  η  2  . Since  E  x10  +   =  
E  x20  +  , then η1 = η2. But this is a very special condition that does not fit the facts in 
general, and we are therefore unable to satisfy the boundary conditions with only an 
incident and a transmitted wave. We require a wave traveling away from the boundary 
in region 1, as shown in Figure 12.1; this is the reflected wave,

  E  xs1  −  (z) =  E  x10  −    e   j k  1  z   (5)

  H  xs1  −  (z) = −    E  x10  −  ___  η  1      e   j k  1  z (6)

where  E  x10  −   may be a complex quantity. Because this field is traveling in the −z direc-
tion,  E  xs1  −   = −  η  1    H  ys1  −   for the Poynting vector shows that  E  1  −  ×  H  1  −  must be in the −az 

direction.

12.1.2 Reflection and Transmission Coefficients

With the presence of reflected and transmitted fields, the boundary conditions will 
be satisfied, and in the process the amplitudes of the transmitted and reflected waves 
may be found in terms of  E  x10  +  . The total electric field intensity is continuous at z = 0. 
The boundary conditions for tangential continuity of E and H are used in the follow-
ing manner: First, the electric field must satisfy

 E  xs1   =  E  xs2     (z = 0)
or

 E  xs1  +   +  E  xs1  −   =  E  xs2  +     (z = 0)
Therefore

  E  x10  +   +  E  x10  −   =  E  x20  +   (7) 

Then, magnetic field must satisfy
 H  ys1   =  H  ys2    (z = 0)

or
 H  ys1  +   +  H  ys1  −   =  H  ys2  +    (z = 0)

and therefore

    E  x10
+ _ η  1   −    E  x10

− _ η  1   =    E  x20
+ _ η  2   (8)
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Solving (8) for  E  x20  +   and substituting into (7), we find

 E  x10  +   +  E  x10  −   =    η  2   __  η  1      E  x10  +   −    η  2   __  η  1      E  x10
− 

or

 E  x10  −   =  E  x10  +      η  2   −  η  1   _____  η  2   +  η  1    

The ratio of the amplitudes of the reflected and incident electric fields defines the 
reflection coefficient, designated by Γ,

 Γ =    E  x10  −   _  E  x10  +     =    η  2   −  η  1   _  η  2   +  η  1     =  |  Γ  |    e   jϕr  (9)

It is evident that as η1 or η2 may be complex, Γ will also be complex, and so we in-
clude a reflective phase shift, ϕr. The interpretation of Eq. (9) is identical to that used 
with transmission lines [Eq. (73), Chapter 10].

The relative amplitude of the transmitted electric field intensity is found by com-
bining (9) and (7) to yield the transmission coefficient, τ,

 τ =    E  x20  +   _  E  x10  +     =   2  η  2   _  η  1   +  η  2    = 1 + Γ =  |  τ  |   e   j ϕ  t    (10)

whose form and interpretation are consistent with the usage in transmission lines 
[Eq. (75), Chapter 10].

12.1.3 Total Reflection: Standing Wave Ratio

These results may be applied to a few special cases. We first let region 1 be a perfect 
dielectric and region 2 be a perfect conductor. Then we apply Eq. (48), Chapter 11, 
with ϵ2″ =  σ  2   ∕ ω, obtaining

 η  2   =  √ 
______

   jω μ  2   ______  σ  2   + jωϵ2′
     = 0

in which zero is obtained since σ2 → ∞. Therefore, from (10),
 E  x20  +   = 0

No time-varying fields can exist in the perfect conductor. An alternate way of look-
ing at this is to note that the skin depth is zero.

Because η2 = 0, Eq. (9) shows that
Γ = − 1

and
 E  x10  +   = −  E  x10  −  

The incident and reflected fields are of equal amplitude, and so all the incident 
energy is reflected by the perfect conductor. The fact that the two fields are of opposite 
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sign indicates that at the boundary (or at the moment of reflection), the reflected field 
is shifted in phase by 180° relative to the incident field. The total E field in region 1 is

 
 E  xs1    

=
  
 E  xs1  +   +  E  xs1  −  

     
=

  
 E  x10  +    e   −j β  1  z  −  E  x10  +    e   j β  1  z 

 

where we have let jk1 = 0 + jβ1 in the perfect dielectric. These terms may be com-
bined and simplified,

   E  xs1    =  ( e   −j β  1  z  −  e   j β  1  z )  E  x10  +       
=

  
 − j2 sin (    β  1   z )    E  x10  +   

    (11)

Multiplying (11) by e jωt and taking the real part, we obtain the real instantaneous form:
  ℰ  x1   (  z, t )   = 2  E  x10  +   sin (   β  1   z )  sin (  ωt )    (12)

We recognize this total field in region 1 as a standing wave, obtained by combining 
two waves of equal amplitude traveling in opposite directions. We first encountered 
standing waves in transmission lines, but in the form of counterpropagating voltage 
waves (see Example 10.1).

Again, we compare the form of (12) to that of the incident wave,
  ℰ  x1  (z, t) =  E  x10  +   cos (ωt −  β  1   z)  (13) 

Here we see the term ωt − β1z or ω(t − z/vp1), which characterizes a wave traveling in 
the +z direction at a velocity vp1 = ω/β1. In (12), however, the factors involving time 
and distance are separate trigonometric terms. Whenever ωt = mπ, ℰ x1 is zero at all po-
sitions. On the other hand, spatial nulls in the standing wave pattern occur for all times 
wherever β1z = mπ, which in turn occurs when m = (0, ±1, ±2, . . .). In such cases,

  2π __  λ  1  
   z = mπ

and the null locations occur at

z = m    λ  1  __
2 

Thus Ex1 = 0 at the boundary z = 0 and at every half-wavelength from the boundary 
in region 1, z < 0, as illustrated in Figure 12.2.

Because  E  xs1  +   =  η  1    H  ys1  +   and  E  xs1  −   = −  η  1    H  ys1  −  , the magnetic field is

 H  ys1   =    E  x10  +   ___  η  1    ( e   −j β  1  z  +  e   j β  1  z )

or

  H  y1  (z, t) = 2    E  x10  +  ___  η  1     cos ( β  1   z) cos (ωt)  (14)

This is also a standing wave, but it shows a maximum amplitude at the positions 
where Ex1 = 0. It is also 90° out of time phase with Ex1 everywhere. As a result, the 
average power as determined through the Poynting vector [Eq. (77), Chapter 11] is 
zero in the forward and backward directions.
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12.1.4 Partial Reflection and Power Reflectivity

Now suppose that perfect dielectrics exist in both regions 1 and 2, so that η1 and η2 
are both real positive quantities and α1 = α2 = 0. Equation (9) enables us to calculate 
the reflection coefficient and find  E  x1  −   in terms of the incident field  E  x1  +  . Knowing  E   x1  +   
and  E  x1  −  , we then find  H  y1  +   and  H  y1  −  . In region 2,  E  x2  +   is found from (10), and this then 
determines  H  y2  +  .

Figure 12.2 The instantaneous values of the total field Ex!1 are shown 
at ωt = π/2. Ex!1 = 0 for all time at multiples of one half-wavelength from 
the conducting surface.

Region 1
μ1, ε'1 

Perfect
conductor 

x

z
z = 0z = – z = – 1

2z = – λ1
3
2 λ1 λ1

EXAMPLE 12.1

As a numerical example we select

  
 η  1  

  
=

  
100 Ω

   η  2    =  300 Ω  
 E  x10  +  

  
=

  
100 V∕m

 

and calculate values for the incident, reflected, and transmitted waves.
Solution. The reflection coefficient is

Γ =   300 − 100 _______ 300 + 100   = 0.5
and thus

 E  x10  −   = 50 V∕m
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A general rule on the transfer of power through reflection and transmission can 
be formulated. We consider the same field vector and interface orientations as before, 
but allow for the case of complex impedances. For the incident power density, we 
have

〈 S  1i  〉 =   1 _ 2   ℛe{ E  xs1  +    H  ys1  +*  } =   1 _ 2   ℛe   {   E  x10  +     1 _ 
 η  1  * 

    E  x10  +*   }    =   1 _ 2   ℛe   {    1 _ 
 η  1  * 

   }      |    E  x10  +     |     2

The reflected power density is then

〈 S  1r  〉 = −   1 _ 2   ℛe{ E  xs1  −    H  ys1  −*  }=   1 _ 2   ℛe   {  Γ  E  x10  +     1 _ 
 η  1  * 

    Γ   *   E  x10  +*   }    =   1 _ 2   ℛe   {    1 _ 
 η  1  * 

   }      |    E  x10  +     |     2  | Γ  |   2

We thus find the general relation between the reflected and incident power:

 〈 S  1r  〉 =  |  Γ   |     2 〈 S  1i  〉 (15)

In a similar way, we find the transmitted power density:

〈 S  2  〉 =   1 _ 2   ℛe{ E  xs2  +    H  ys2  +*  } =   1 _ 2   ℛe   {  τ  E  x10  +     1 _ 
 η  2  * 

    τ   *  E  x10  +*   }    =   1 _ 2   ℛe   {    1 _ 
 η  2  * 

   }      |    E  x10  +     |     2    |    τ   |     2

The magnetic field intensities are
 H  y10  +    =    100 ___ 100   = 1.00 A∕m

 H  y10  −    =  −   50 ___ 100   = − 0.50 A∕m

Using Eq. (77) from Chapter 11, we find that the magnitude of the average incident 
power density is

⟨ S  1i  ⟩ =   |    1 _ 2   ℛe { Es ×  H  s  *  } |    =   1 _ 2    E  x10  +    H  y10  +   = 50  W∕m   2

The average reflected power density is
⟨ S  1r  ⟩ = −   1 _ 2    E  x10  −    H  y10  −   = 12.5   W∕m   2

In region 2, using (10),
 E  x20  +   = τ E  x10  +   = 150 V∕m

and
 H  y20  +   =   150 ___ 300   = 0.500 A∕m

Therefore, the average power density that is transmitted through the boundary into 
region 2 is

⟨ S  2  ⟩ =   1 _ 2    E  x20  +    H  y20  +   = 37.5   W∕m   2

We may check and confirm the power conservation requirement:

〈 S  1i  〉 = 〈 S  1r  〉 + 〈 S  2  〉
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and so we see that the incident and transmitted power densities are related through

 〈 S  2  〉 =   
ℛe   {  1 ∕  η  2  *  }   

 _______ 
ℛe   {  1 ∕  η  1  *  }   

   | τ  |   2  〈 S  1i  〉 =   |     η  1   __  η  2     |     2   (     η  2   +  η  2  *  _ 
 η  1   +  η  1  * 

   )    | τ  |   2  〈 S  1i  〉 (16)

Equation (16) is a relatively complicated way to calculate the transmitted power, 
unless the impedances are real. It is easier to take advantage of energy conservation 
by noting that whatever power is not reflected must be transmitted. Eq. (15) can be 
used to find

 〈 S  2  〉 = (1 −  |  Γ   |     2 )〈 S  1i  〉 (17)

As would be expected (and which must be true), Eq. (17) can also be derived from 
Eq. (16).

D12.1. A 1-MHz uniform plane wave is normally incident onto a fresh water 
lake (ϵr′ = 78, ϵr″ = 0, μr = 1). Determine the fraction of the incident power that 
is (a) reflected and (b) transmitted. (c) Determine the amplitude of the electric 
field that is transmitted into the lake.

Ans. (a) 0.63; (b) 0.37; (c) 0.20 V/m

 12.2 STANDING WAVE RATIO

In cases where |Γ| < 1, some energy is transmitted into the second region and some 
is reflected. Region 1 therefore supports a field that is composed of both a traveling 
wave and a standing wave. We encountered this situation previously in transmission 
lines, in which partial reflection occurs at the load. Measurements of the voltage 
standing wave ratio and the locations of voltage minima or maxima enabled the de-
termination of an unknown load impedance or established the extent to which the 
load impedance was matched to that of the line (Section 10.10). Similar measure-
ments can be performed on the field amplitudes in plane wave reflection.

Using the same fields investigated in the previous section, we combine the in-
cident and reflected electric field intensities. Medium 1 is assumed to be a perfect 
dielectric (α1 = 0), but region 2 may be any material. The total electric field phasor 
in region 1 will be

  E  x1T   =  E  x1  +   +  E  x1  −   =  E  x10  +    e   −j β  1  z  + Γ  E  x10  +    e   j β  1  z   (18)

where the reflection coefficient is as expressed in (9):

Γ =    η  2   −  η  1   _____  η  2   +  η  1     =   |   Γ   |     e   jϕ

We allow for the possibility of a complex reflection coefficient by including its phase, 
ϕ. This is necessary because although η1 is real and positive for a lossless medium, η2 
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will in general be complex. Additionally, if region 2 is a perfect conductor, η2 is zero, 
and so ϕ is equal to π; if η2 is real and less than η1, ϕ is also equal to π; and if η2 is 
real and greater than η1, ϕ is zero.

Incorporating the phase of Γ into (18), the total field in region 1 becomes

  E  x1T   =   (    e   −j β  1  z  +  |  Γ |   e   j( β  1  z+ϕ)   )     E  x10
+ (19)

The maximum and minimum field amplitudes in (19) are z-dependent and are sub-
ject to measurement. Their ratio, as found for voltage amplitudes in transmission 
lines (Section 10.10), is the standing wave ratio, denoted by s. We have a maximum 
when each term in the larger parentheses in (19) has the same phase angle; so, for  
E  x10  +   positive and real,

   |    E  x1T     |    max   = (1 +  |  Γ |  ) E  x10
+ (20)

and this occurs where
 −  β  1  z =  β  1  z + ϕ + 2mπ  (m = 0, ±1, ±2, . . .)  (21)

Therefore

  z  max   = −   1 _ 2  β  1  
  (ϕ + 2mπ) (22)

Note that an electric field maximum is located at the boundary plane (z = 0) if ϕ = 
0; moreover, ϕ = 0 when Γ is real and positive. This occurs for real η1 and η2 when 
η2 > η1. Thus there is a field maximum at the boundary surface when the intrinsic 
impedance of region 2 is greater than that of region 1 and both impedances are real. 
With ϕ = 0, maxima also occur at  z  max   = − mπ /  β  1   = − m  λ  1   / 2.

For the perfect conductor ϕ = π, and these maxima are found at  z  max   = − π /  
(2  β  1  ) , − 3π / (2  β  1  ), or  z  max   = −  λ  1   / 4, − 3  λ  1   / 4, and so forth.

The minima must occur where the phase angles of the two terms in the larger 
parentheses in (19) differ by 180°, thus

   |    E  x1T     |    min   = (1 −  |  Γ |  ) E  x10
+ (23)

and this occurs where
−  β  1  z =  β  1  z + ϕ + π + 2mπ  (m = 0, ±1, ±2, . . .) (24)

or

  z  min   = −   1 _ 2  β  1  
  (ϕ + (2m + 1) π) (25)

The minima are separated by multiples of one half-wavelength (as are the maxima), 
and for the perfect conductor the first minimum occurs when −β1z = 0, or at the 
conducting surface. In general, an electric field minimum is found at z = 0 whenever 
ϕ = π; this occurs if η2 < η1 and both are real. The results are mathematically identi-
cal to those found for the transmission line study in Section 10.10. Figure 10.6 in that 
chapter provides a visualization.
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Further insights can be obtained by working with Eq. (19) and rewriting it in real 
instantaneous form. The steps are identical to those taken in Chapter 10, Eqs. (81) 
through (84). We find the total field in region 1 to be

  ℰ  x1T    (  z, t )   =    (  1 −  |  Γ |   )   E  x10  +   cos (  ωt −  β  1  z )        
traveling wave

   

   
+  2 |  Γ |   E  x10  +   cos (   β  1  z + ϕ ∕ 2 )   cos (  ωt + ϕ ∕ 2 )         

standing wave

  
  

(26)

The field expressed in Eq. (26) is the sum of a traveling wave of amplitude 
(1 − |Γ|)  E  x10  +    and a standing wave having amplitude 2|Γ|  E  x10  +   . The portion of the inci-
dent wave that reflects and back-propagates in region 1 interferes with an equivalent 
portion of the incident wave to form a standing wave. The rest of the incident wave 
(that does not interfere) is the traveling wave part of (26). The maximum amplitude 
observed in region 1 is found where the amplitudes of the two terms in (26) add 
directly to give (1 + |Γ|)  E  x10  +   . The minimum amplitude is found where the standing 
wave achieves a null, leaving only the traveling wave amplitude of (1 − |Γ|)   E  x10  +   . The 
fact that the two terms in (26) combine in this way with the proper phasing can be 
confirmed by substituting zmax and zmin, as given by (22) and (25).

EXAMPLE 12.2

To illustrate some of these results, let us consider a 100-V/m, 3-GHz wave that is 
propagating in a material having ϵr1′ = 4, μr1 = 1. The wave is normally incident on 
another perfect dielectric in region 2, z > 0, where ϵr2′  = 9 and μr2 = 1 (Figure 12.3). 
We seek the locations of the maxima and minima of E.

Figure 12.3 An incident wave,  E  xs1  +   =
100 e   −j40πz! V/m, is reflected with a reflection 
coefficient Γ = −0.2. Dielectric 2 is infinitely 
thick.

Dielectric 2
∊ ŕ2 = 9, μr2 = 1, ∊r̋2 = 0

Dielectric 1
∊ ŕ1 = 4, μr1 = 1, ∊r̋1 = 0

z

E
_ 
xs1 = –20e j40πz

E+
xs1 = 100e–j40πz
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Solution. We calculate ω = 6π × 109 rad/s,  β  1   = ω  √ ____  μ  1   ϵ  1     = 40π rad/m, and  β  2   =
ω √ ____  μ  2   ϵ  2     = 60π rad/m. Although the wavelength would be 10 cm in air, we find here 
that λ1 = 2π/β1 = 5 cm, λ2 = 2π/β2 = 3.33 cm, η1 = 60π Ω, η2 = 40π Ω, and Γ =  
(η2 − η1)/(η2 + η1) = − 0.2. Because Γ is real and negative (η2 < η1), there will be a 
minimum of the electric field at the boundary, and it will be repeated at half-wavelength 
(2.5 cm) intervals in dielectric l. From (23), we see that   |   E  x1T     |    min   = 80  V/m.

Maxima of E are found at distances of 1.25, 3.75, 6.25, . . . cm from z = 0. These 
maxima all have amplitudes of 120 V/m, as predicted by (20).

There are no maxima or minima in region 2 because there is no reflected wave 
there.

The ratio of the maximum to minimum amplitudes is the standing wave ratio:

s =     |  Ex1T  |  max ________  |  Ex1T  |  min    =    1 + |Γ| ______ 1 − |Γ|   (27)

Because   |  Γ |    < 1, s is always positive and greater than or equal to unity. For the 
preceding example,

s =   1 +  |    − 0.2 |   ________ 1 −  |    − 0.2 |     =   1.2 ___ 0.8   = 1.5

If   |  Γ |    = 1, the reflected and incident amplitudes are equal, all the incident energy 
is reflected, and s is infinite. Planes separated by multiples of λ1/2 can be found on 
which Ex1 is zero at all times. Midway between these planes, Ex1 has a maximum 
amplitude twice that of the incident wave.

If η2 = η1, then Γ = 0, no energy is reflected, and s = 1; the maximum and min-
imum amplitudes are equal.

If one-half the incident power is reflected,   |  Γ |   2 = 0.5,   |  Γ |    = 0.707, and s = 5.83.

D12.2. What value of s results when Γ = ±1/2? 

Ans. 3

Because the standing wave ratio is a ratio of amplitudes, the relative amplitudes, 
as measured by a probe, permit its use to determine s experimentally.

A uniform plane wave in air partially reflects from the surface of a material whose 
properties are unknown. Measurements of the electric field in the region in front of 
the interface yield a 1.5-m spacing between maxima, with the first maximum occur-
ring 0.75 m from the interface. A standing wave ratio of 5 is measured. Determine 
the intrinsic impedance, ηu, of the unknown material.

EXAMPLE 12.3
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12.3  WAVE REFLECTION FROM 
MULTIPLE INTERFACES

So far we have treated the reflection of waves at the single boundary that occurs be-
tween semi-infinite media. In this section, we consider wave reflection from materi-
als that are finite in extent, such that we must consider the effect of the front and back 
surfaces. Such a two-interface problem would occur, for example, for light incident 
on a flat piece of glass. Additional interfaces are present if the glass is coated with 
one or more layers of dielectric material for the purpose (as we will see) of reducing 
reflections. Such problems in which more than one interface is involved are often 
encountered; single-interface problems are in fact more the exception than the rule.

12.3.1 The Two-Interface Problem

Consider the general situation shown in Figure 12.4, in which a uniform plane wave 
propagating in the forward z direction is normally incident from the left onto the 
interface between regions 1 and 2; these have intrinsic impedances η1 and η2. A third 
region of impedance η3 lies beyond region 2, and so a second interface exists between 
regions 2 and 3. We let the second interface location occur at z = 0, and so all posi-
tions to the left will be described by values of z that are negative. The width of the 
second region is l, so the first interface will occur at position z = −l.

When the incident wave reaches the first interface, events occur as follows: A 
portion of the wave reflects, while the remainder is transmitted, to propagate toward 
the second interface. There, a portion is transmitted into region 3, while the rest 
reflects and returns to the first interface; there it is again partially reflected. This 
reflected wave then combines with additional transmitted energy from region 1, and 
the process repeats. We thus have a complicated sequence of multiple reflections that 
occur within region 2, with partial transmission at each bounce. To analyze the situ-
ation in this way would involve keeping track of a very large number of reflections; 
this would be necessary when studying the transient phase of the process, where the 
incident wave first encounters the interfaces.

If the incident wave is left on for all time, however, a steady-state situation is 
eventually reached, in which (1) an overall fraction of the incident wave is reflected 

Solution. The 1.5 m spacing between maxima is λ /2, which implies that a wave-
length is 3.0 m, or f = 100 MHz. The first maximum at 0.75 m is thus at a distance 
of λ /4 from the interface, which means that a field minimum occurs at the boundary. 
Thus Γ will be real and negative. We use (27) to write

  |  Γ |    =   s − 1 ___ 
s + 1   =   5 − 1 ___ 5 + 1   =   2 _ 3  

So
Γ = −   2 _ 3   =    η  u   −  η  0  _____

 η  u   +  η  0    
which we solve for ηu to obtain

 η  u   =   1 _ 5    η  0   =   377 ___ 5   = 75.4 Ω
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from the two-interface configuration and back-propagates in region 1 with a defi-
nite amplitude and phase; (2) an overall fraction of the incident wave is transmit-
ted through the two interfaces and forward-propagates in the third region; (3) a net 
backward wave exists in region 2, consisting of all reflected waves from the second 
interface; and (4) a net forward wave exists in region 2, which is the superposition 
of the transmitted wave through the first interface and all waves in region 2 that have 
reflected from the first interface and are now forward-propagating. The effect of 
combining many co-propagating waves in this way is to establish a single wave which 
has a definite amplitude and phase, determined through the sums of the amplitudes 
and phases of all the component waves. In steady state, we thus have a total of five 
waves to consider. These are the incident and net reflected waves in region 1, the 
net transmitted wave in region 3, and the two counterpropagating waves in region 2.

12.3.2 Wave Impedance

The two-interface situation is analyzed in the same manner as that used in the analy-
sis of finite-length transmission lines (Section 10.11). We assume that all regions are 
composed of lossless media, and consider the two waves in region 2. If we take these 
as x-polarized, their electric fields combine to yield

  E  xs2   =  E  x20  +   e   −j β  2  z  +  E  x20  −   e   j β  2  z   (28a)
where  β  2   = ω √ ___  ϵ  r2     ∕c, and where the amplitudes,  E  x20  +   and  E  x20  −  , are complex. The
y-polarized magnetic field is similarly written, using complex amplitudes:

  H  ys2   =  H  y20  +   e   −j β  2  z  +  H  y20  −   e   j β  2  z   (28b)
We now note that the forward and backward electric field amplitudes in region 2 are 
related through the reflection coefficient at the second interface, Γ23, where

  Γ  23   =    η  3   −  η  2   _____  η  3   +  η  2      (29)

Figure 12.4 Basic two-interface problem, in 
which the impedances of regions 2 and 3, along 
with the finite thickness of region 2, are accounted 
for in the input impedance at the front surface, ηin.

x

z0

Incident
energy

– l

ƞ1

ƞin

ƞ2 ƞ3
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We thus have
  E  x20  −   =  Γ  23   E  x20  +    (30)

We then write the magnetic field amplitudes in terms of electric field amplitudes 
through

  H  y20  +   =   1 __  η  2     E  x20
+ (31a)

and

  H  y20  −   = −   1 __  η  2     E  x20  −   = −   1 __  η  2      Γ  23   E  x20  +    (31b)

We now define the wave impedance, ηw, as the z-dependent ratio of the total electric 
field to the total magnetic field. In region 2, this becomes, using (28a) and (28b),

 η  w  (z) =    E  xs2   ___  H  ys2  
 =    E  x20  +   e   −j β  2  z  +  E  x20  −   e   j β  2  z   _____________  

 H  y20  +   e   −j β  2  z  +  H  y20  −    e   j β  2  z 
  

Then, using (30), (31a), and (31b), we obtain

 η  w  (z) =  η  2    [     e   
−j β  2  z  +  Γ  23   e   j β  2  z

  _____________  
 e   −j β  2  z  −  Γ  23   e   j β  2  z 

   ]   

Now, using (29) and Euler’s identity, we have

 η  w  (z) =  η  2   ×   ( η  3   +  η  2  )(cos  β  2  z − j sin  β  2  z) + ( η  3   −  η  2  )(cos  β  2  z + j sin  β  2  z)     ____________________________________     ( η  3   +  η  2  )(cos  β  2  z − j sin  β  2  z) − ( η  3   −  η  2  ) (cos  β  2  z + j sin  β  2  z)  

This is easily simplified to yield

 η  w  (z) =  η  2     
 η  3  cos β  2  z − j  η  2   sin  β  2  z  ______________   η  2   cos  β  2  z − j  η  3   sin  β  2  z

   (32)

We now use the wave impedance in region 2 to solve our reflection problem. Of in-
terest to us is the net reflected wave amplitude at the first interface. Since tangential 
E and H are continuous across the boundary, we have

  E  xs1  +   +  E  xs1  −   =  E  xs2     (z = − l)  (33a)
and

  H  ys1  +   +  H  ys1  −   =  H  ys2     (z = − l)  (33b)

Then, in analogy to (7) and (8), we may write

  E  x10  +   +  E  x10  −   =  E  xs2  (z = − l)  (34a)

and
    E  x10

+ ___ η  1   −    E  x10
− ___ η  1   =    E  xs2  (z = − l)_________

 η  w  (− l) (34b)

where  E  x10  +   and  E  x10  −   are the amplitudes of the incident and reflected fields. We call 
ηw(−i) the input impedance, ηin, to the two-interface combination. We now solve (34a) 
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and (34b) together, eliminating Exs2, to obtain

    E  x10
−  _  E  x10  +     = Γ =    η  in   −  η  1  _

 η  in   +  η  1     (35)

To find the input impedance, we evaluate (32) at z = −l, resulting in

  η  in   =  η  2     
 η  3   cos  β  2  l + j  η  2   sin  β  2  l  _______________   η  2   cos  β  2  l + j  η  3   sin  β  2  l

 (36)

Equations (35) and (36) are general results that enable us to calculate the net reflected  
wave amplitude and phase from two parallel interfaces between lossless media.1 Note 
the dependence on the interface spacing, l, and on the wavelength as measured in 
region 2, characterized by β2. Of immediate importance to us is the fraction of the 
incident power that reflects from the dual interface and back-propagates in region 
1. As we found earlier, this fraction will be   |  Γ |   2. Also of interest is the transmitted
power, which propagates away from the second interface in region 3. It is simply the 
remaining power fraction, which is  1 −   |  Γ |   2 . The power in region 2 stays constant in 
steady state; power leaves that region to form the reflected and transmitted waves, 
but is immediately replenished by the incident wave. We have already encountered 
an analogous situation involving cascaded transmission lines, which culminated in 
Eq. (101) in Chapter 10.

12.3.3 Special Cases: Half-Wave and Quarter-Wave Layers

An important result of situations involving two interfaces is that it is possible to 
achieve total transmission in certain cases. From (35), we see that total transmission 
occurs when Γ = 0, or when ηin = η1. In this case, as in transmission lines, we say 
that the input impedance is matched to that of the incident medium. There are a few 
methods of accomplishing this.

As a start, suppose that η3 = η1, and region 2 is of such thickness that β2l = mπ, 
where m is an integer. Now β2 = 2π/λ2, where λ2 is the wavelength as measured in
region 2. Therefore

  2π __  λ  2  
   l = mπ

or
 l = m    λ  2  __

2  (37)

With β2l = mπ, the second region thickness is an integer multiple of half-wavelengths 
as measured in that medium. Equation (36) now reduces to ηin = η3. Thus the general 
effect of a multiple half-wave thickness is to render the second region immaterial to 
1 For convenience, (34a) and (34b) have been written for a specific time at which the incident wave 
amplitude,   E  x10  +   , occurs at z = −l. This establishes a zero-phase reference at the front interface for the 
incident wave, and so it is from this reference that the reflected wave phase is determined. Equivalently, 
we have repositioned the z = 0 point at the front interface. Eq. (36) allows this because it is only a 
function of the interface spacing, l.
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the results on reflection and transmission. Equivalently, we have a single-interface 
problem involving η1 and η3. Now, with η3 = η1, we have a matched input impedance, 
and there is no net reflected wave. This method of choosing the region 2 thickness is 
known as half-wave matching. Its applications include, for example, antenna hous-
ings on airplanes known as radomes, which form a part of the fuselage. The antenna, 
inside the aircraft, can transmit and receive through this layer, which can be shaped 
to enable good aerodynamic characteristics. Note that the half-wave matching condi-
tion no longer applies as we deviate from the wavelength that satisfies it. When this 
is done, the device reflectivity increases (with increased wavelength deviation), so it 
ultimately acts as a bandpass filter.

Often, it is convenient to express the dielectric constant of the medium through 
the refractive index (or just index), n, defined as

 n =  √ _ ϵ  r     (38)

Characterizing materials by their refractive indices is primarily done at optical fre-
quencies (on the order of 1014 Hz), whereas at much lower frequencies, a dielectric 
constant is traditionally specified. Since ϵr is complex in lossy media, the index will 
also be complex. Rather than complicate the situation in this way, we will restrict 
our use of the refractive index to cases involving lossless media, having ℰ r″ = 0, and 
μr = 1. Under lossless conditions, we may write the plane wave phase constant and 
the material intrinsic impedance in terms of the index through

 β = k = ω √ _  μ  0    ϵ  0      √ _  ϵ  r     =   nω_
c   (39)

and

 η =   1 _  √ _  ϵ  r    
    √ 

_
    μ  0   _  ϵ  0       =    η  0  _

n   (40)

Finally, the phase velocity and wavelength in a material of index n are

  v  p   =   c _
n  (41)

and

 λ =   
 v  p  _
f
 =    λ  0  _

n   (42)

where λ0 is the wavelength in free space. It is obviously important not to confuse 
the index n with the similar-appearing Greek η (intrinsic impedance), which has an 
entirely different meaning.

Another application, typically seen in optics, is the Fabry-Perot interferometer. 
This, in its simplest form, consists of a single block of glass or other transparent 

hay28159_ch12_409-455.indd   424 27/11/17   12:06 pm



C H A P T E R  1 2  Plane Wave Reflection and Dispersion 425

material of index n, whose thickness, l, is set to transmit wavelengths which satisfy 
the condition λ = λ0/n = 2l/m. Often we want to transmit only one wavelength, not 
several, as (37) would allow. We would therefore like to assure that adjacent wave-
lengths that are passed through the device are separated as far as possible, so that only 
one will lie within the input power spectrum. In terms of wavelength as measured  
in the material, this separation is in general given by

 λ  m−1   −  λ  m   = Δ λ  f   =   2l ____ 
m − 1   −   2l__

m
  =   2l _______ 

m(m − 1)   ≐    2l ___
 m   2

  

Note that m is the number of half-wavelengths in region 2, or m = 2l/λ = 2nl/λ0, 
where λ0 is the desired free-space wavelength for transmission. Thus

 Δ λ  f   ≐     λ   2  2__
2l

   (43a)

In terms of wavelength measured in free space, this becomes

 Δ  λ  f 0   = nΔ  λ  f   ≐     λ  0  2  ___ 2nl
    (43b)

Δλf 0 is known as the free spectral range of the Fabry-Perot interferometer in terms 
of free-space wavelength separation. The interferometer can be used as a narrow- 
band filter (transmitting a desired wavelength and a narrow spectrum around this 
wavelength) if the spectrum to be filtered is narrower than the free spectral range.

Suppose we wish to filter an optical spectrum of full width Δλs 0 = 50 nm (measured 
in free space), whose center wavelength, λ 0, is in the red part of the visible spectrum 
at 600 nm, where one nm (nanometer) is 10−9 m. A Fabry-Perot filter is to be used, 
consisting of a lossless glass plate in air, having refractive index n = 1.45. We need 
to find the required range of glass thicknesses such that multiple wavelength orders 
will not be transmitted.
Solution. We require that the free spectral range be greater than the optical spectral 
width, or Δλf  0 > Δλs. Using (43b)

l <     λ   0  2  _____ 2nΔ λ  s0  
   

So

l <    600   2  ________ 2(1.45) (50)   = 2.5 ×  10   3  nm = 2.5 μm

where 1 μm (micrometer) = 10−6 m. Fabricating a glass plate of this thickness or less 
is somewhat ridiculous to contemplate. Instead, what is often used is an airspace of 
thickness on this order, between two thick plates whose surfaces on the sides oppo-
site the airspace are antireflection coated. This is in fact a more versatile configu-
ration because the wavelength to be transmitted (and the free spectral range) can be 
adjusted by varying the plate separation.

EXAMPLE 12.4
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Next, we remove the restriction η1 = η3 and look for a way to produce zero re-
flection. Returning to Eq. (36), suppose we set β2l = (2m − 1)π/2, or an odd multiple 
of π/2. This means that

  2π __  λ  2  
   l = (2m − 1)   π __ 2     (m = 1, 2, 3, . . .)

or

 l = (2m − 1)    λ  2  _
4   (44)

The thickness is an odd multiple of a quarter-wavelength as measured in region 2. 
Under this condition, (36) reduces to

 η  in   =    η  2  2__ η  3     (45)

Typically, we choose the second region impedance to allow matching between given 
impedances η1 and η3. To achieve total transmission, we require that ηin = η1, so that 
the required second region impedance becomes

  η  2   =  √ _ η  1    η  3     (46)

With the conditions given by (44) and (46) satisfied, we have performed quarter- 
wave matching. The design of antireflective coatings for optical devices is based on 
this principle.

EXAMPLE 12.5

We wish to coat a glass surface with an appropriate dielectric layer to provide total 
transmission from air to the glass at a free-space wavelength of 570 nm. The glass 
has refractive index n3 = 1.45. Determine the required index for the coating and its 
minimum thickness.
Solution. The known impedances are η1 = 377 Ω and η3 = 377/1.45 = 260 Ω. Using 
(46) we have

 η  2   =  √ 
_________

 (377) (260)   = 313 Ω
The index of region 2 will then be

 n  2   =   (    377 _ 313   )    = 1.20
The wavelength in region 2 will be

 λ  2   =   570 ____ 1.20   = 475 nm

The minimum thickness of the dielectric layer is then

l =    λ  2   __ 4   = 119 nm = 0.119 μm
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12.3.4 The Multilayer Problem: Impedance Transformation

The procedure for evaluating wave reflection from two interfaces has involved calcu-
lating an effective impedance at the first interface, ηin, which is expressed in terms of 
the impedances that lie beyond the front surface. This process of impedance trans-
formation is more apparent when we consider problems involving more than two 
interfaces.

For example, consider the three-interface situation shown in Figure 12.5, where 
a wave is incident from the left in region 1. We wish to determine the fraction of the 
incident power that is reflected and back-propagates in region 1 and the fraction of 
the incident power that is transmitted into region 4. To do this, we need to find the 
input impedance at the front surface (the interface between regions 1 and 2). We 
start by transforming the impedance of region 4 to form the input impedance at the 
boundary between regions 2 and 3. This is shown as ηin,b in Figure 12.5. Using (36), 
we have

  η  in,b   =  η  3     
 η  4   cos  β  3    l  b   + j  η  3   sin  β  3    l  b    _______________   η  3   cos  β  3    l  b   + j  η  4   sin  β  3    l  b  

    (47)

We have now effectively reduced the situation to a two-interface problem in which 
ηin,b is the impedance of all that lies beyond the second interface. The input imped-
ance at the front interface, ηin,a, is now found by transforming ηin,b as follows:

  η  in,a   =  η  2     
 η  in,b   cos  β  2    l  a   + j  η  2   sin  β  2    l  a    ________________   η  2   cos  β  2    l  a   + j  η  in,b   sin  β  2    l  a  

    (48)

The reflected power fraction is now   |  Γ |   2, where

Γ =    η  in,a   −  η  1   ______  η  in,a   +  η  1    

Figure 12.5 A three-interface problem in which input 
impedance ηin,a is transformed back to the front interface 
to form input impedance ηin,b.
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The fraction of the power transmitted into region 4 is, as before, 1−  |  Γ |   2. The 
method of impedance transformation can be applied in this manner to any number of 
interfaces. The process, although tedious, is easily handled by a computer.

The motivation for using multiple layers to reduce reflection is that the resulting 
structure is less sensitive to deviations from the design wavelength if the impedances 
(or refractive indices) are arranged to progressively increase or decrease from layer to 
layer. For multiple layers to antireflection coat a camera lens, for example, the layer 
on the lens surface would be of impedance very close to that of the glass. Subsequent 
layers are given progressively higher impedances. With a large number of layers 
fabricated in this way, the situation begins to approach (but never reaches) the ideal 
case, in which the top layer impedance matches that of air, while the impedances 
of deeper layers continuously decrease until reaching the value of the glass surface. 
With this continuously varying impedance, there is no surface from which to reflect, 
and so light of any wavelength is totally transmitted. Multilayer coatings designed in 
this way produce excellent broadband transmission characteristics.

D12.3. A uniform plane wave in air is normally incident on a dielectric slab of 
thickness λ 2/4 and intrinsic impedance η2 = 260 Ω. Determine the magnitude 
and phase of the reflection coefficient.

Ans. 0.356; 180°

12.4  PLANE WAVE PROPAGATION 
IN GENERAL DIRECTIONS

In this section, we will learn how to mathematically describe uniform plane waves that 
propagate in any direction. Our motivation for doing this is our need to address the 
problem of incident waves on boundaries that are not perpendicular to the propagation 
direction. Such problems of oblique incidence generally occur, with normal incidence 
being a special case. Addressing such problems requires (as always) that we establish an 
appropriate coordinate system. With the boundary positioned in the x, y plane, for exam-
ple, the incident wave will propagate in a direction that could involve all three coordinate 
axes, whereas with normal incidence, we were only concerned with propagation along z. 
We need a mathematical formalism that will allow for the general direction case.

To begin, consider a wave that propagates in a lossless medium, with propagation
constant β = k = ω √ ___ μϵ  . For simplicity, we consider a two-dimensional case, where
the wave travels in a direction between the x and z axes. The first step is to consider the 
propagation constant as a vector, k, indicated in Figure 12.6. The direction of k  
is the propagation direction, which is the same as the direction of the Poynting vector 
in our case.2 The magnitude of k is the phase shift per unit distance along that direc-
tion. Part of the process of characterizing a wave involves specifying its phase at any 
2 We assume here that the wave is in an isotropic medium, where the permittivity and permeability do 
not change with field orientation. In anisotropic media (where ϵ and/or μ depend on field orientation), 
the directions of the Poynting vector and k may differ.
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spatial location. For the waves we have considered that propagate along the z axis, 
this was accomplished by the factor  e   ± jkz  in the phasor form. To specify the phase in 
our two-dimensional problem, we make use of the vector nature of k and consider the 
phase at a general location (x, z) described through the position vector r. The phase 
at that location, referenced to the origin, is given by the projection of k along r times 
the magnitude of r, or just k · r. If the electric field is of magnitude E0, we can thus 
write down the phasor form of the wave in Figure 12.6 as

  E  s   =  E  0   e   −jk·r  (49)

The minus sign in the exponent indicates that the phase along r moves in time in 
the direction of increasing r. Again, the wave power flow in an isotropic medium 
occurs in the direction along which the phase shift per unit distance is maximum—or 
along k. The vector r serves as a means to measure phase at any point using k. This 
construction is easily extended to three dimensions by allowing k and r to each have 
three components.

In our two-dimensional case of Figure 12.6, we can express k in terms of its x 
and z components:

 k =  k  x    a  x   +  k  z    a  z   

Figure 12.6 Representation of a uniform plane wave 
with wavevector k at angle θ to the x axis. The phase 
at point (x, z) is given by k · r. Planes of constant phase 
(shown as lines perpendicular to k) are spaced by 
wavelength λ but have wider spacing when measured 
along the x or z axis.
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The position vector, r, can be similarly expressed:

 r = x a  x   + z a  z   

so that

k · r =  k  x   x +  k  z   z

Equation (49) now becomes

  E  s   =  E  0   e   −j( k  x  x+ k  z  z)   (50)

Whereas Eq. (49) provided the general form of the wave, Eq. (50) is the form that is 
specific to the situation. Given a wave expressed by (50), the angle of propagation 
from the x axis is readily found through

θ =  tan   −1   (     k  z   _  k  x  
   )

The wavelength and phase velocity depend on the direction one is considering. In the 
direction of k, these will be

λ =   2π__
k
 =   2π _______

  (   k  x  2  +  k  z  2  )     1∕2  

and

 v  p   =   ω __ 
k
   =   ω _______

  (   k  x  2  +  k  z  2  )     1∕2  

If, for example, we consider the x direction, these quantities will be

 λ  x   =   2π__
 k  x  

  

and

 v  px   =   ω __
 k  x  

  

Note that both λx and vpx are greater than their counterparts along the direction of k. 
This result, at first surprising, can be understood through the geometry of Figure 12.6. 
The diagram shows a series of phase fronts (planes of constant phase) which intersect 
k at right angles. The phase shift between adjacent fronts is set at 2π in the figure; 
this corresponds to a spatial separation along the k direction of one wavelength, as 
shown. The phase fronts intersect the x axis, and we see that along x the front sepa-
ration is greater than it was along k. λx is the spacing between fronts along x and is 
indicated on the figure. The phase velocity along x is the velocity of the intersection 
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points between the phase fronts and the x axis. Again, from the geometry, we see that 
this velocity must be faster than the velocity along k and will, of course, exceed the 
speed of light in the medium. This does not constitute a violation of special relativity, 
however, since the energy in the wave flows in the direction of k and not along x or 
z. The wave frequency is f = ω/2π and is invariant with direction. Note, for example,
that in the directions we have considered,

f =   
 v  p   __ λ   =   

 v  px   ___  λ  x
   =   ω __ 2π

  

D12.4. For Example 12.6, calculate λx, λy, vpx, and vpy.

Ans. 2.2 m; 3.9 m; 1.1 × 108 m/s; 2.0 × 108 m/s

Consider a 50-MHz uniform plane wave having electric field amplitude 10 V/m. The 
medium is lossless, having  ϵ  r   = ϵr′ = 9.0 and μr = 1.0. The wave propagates in the x, 
y plane at a 30° angle to the x axis and is linearly polarized along z. Write down the 
phasor expression for the electric field.
Solution. The propagation constant magnitude is

k = ω √ ___ μϵ   =   ω  √ __  ϵ  r     ___ c   =   2π × 50 ×  10   6 (3)  ____________ 
3 ×  10   8 

  = 3.2  m   −1 

The vector k is now

k = 3.2(cos 30 a  x   + sin 30 a  y  ) = 2.8 a  x   + 1.6 a  y    m   −1 

Then
r = x  a  x   + y  a  y  

With the electric field directed along z, the phasor form becomes

 E  s   =  E  0   e   −jk · r  a  z   = 10 e   −j(2.8x+1.6y)  a  z  

EXAMPLE 12.6

12.5  PLANE WAVE REFLECTION 
AT OBLIQUE INCIDENCE ANGLES

We now consider the problem of wave reflection from plane interfaces, in which 
the incident wave propagates at some angle to the surface. Our objectives are (1) to 
determine the relation between incident, reflected, and transmitted angles, and  
(2) to derive reflection and transmission coefficients that are functions of the incident  
angle and wave polarization.

We will also show that cases exist in which total reflection or total transmission 
may occur at the interface between two dielectrics if the angle of incidence and the 
polarization are appropriately chosen.
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The situation is illustrated in Figure 12.7, in which the incident wave direction 
and position-dependent phase are characterized by wavevector  k  1  + . The angle of in-
cidence is the angle between  k  1  +  and a line that is normal to the surface (the x axis 
in this case). The incidence angle is shown as θ1. The reflected wave, characterized 
by wavevector  k  1  − , will propagate away from the interface at angle θ1′. Finally, the 
transmitted wave, characterized by k2, will propagate into the second region at angle 
θ2 as shown. One would suspect (from previous experience) that the incident and 
reflected angles are equal ( θ  1   = θ1′), which is correct. We need to show this, however, 
to be complete.

The two media are lossless dielectrics, characterized by intrinsic impedances η1 
and η2. We will assume, as before, that the materials are nonmagnetic, and thus have 
permeability μ0. Consequently, the materials are adequately described by specifying
their dielectric constants, ϵr1 and ϵr2, or their refractive indices,  n  1   =  √ ___  ϵ  r1     and
 n  2   =  √ ___  ϵ  r2    .

In Figure 12.7, two cases are shown that differ by the choice of electric field 
orientation. In Figure 12.7a, the E field is polarized in the plane of the page, with H 
therefore perpendicular to the page and pointing outward. In this illustration, the plane 
of the page is also the plane of incidence, which is more precisely defined as the plane 
spanned by the incident k vector and the normal to the surface. With E lying in the 
plane of incidence, the wave is said to have parallel polarization or to be p-polarized 
(E is parallel to the incidence plane). Note that although H is perpendicular to the 
incidence plane, it lies parallel (or transverse) to the interface. Consequently, another 
name for this type of polarization is transverse magnetic, or TM polarization.

Figure 12.7b shows the situation in which the field directions have been rotated 
by 90°. Now H lies in the plane of incidence, whereas E is perpendicular to the plane. 
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Figure 12.7 Geometries for plane wave incidence at angle θ1 onto an interface 
between dielectrics having intrinsic impedances η1 and η2. The two polarization 
cases are shown: (a) p-polarization (or TM), with E in the plane of incidence; 
(b) s-polarization (or TE), with E perpendicular to the plane of incidence.
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Because E is used to define polarization, the configuration is called perpendicular
polarization, or is said to be s-polarized.3 E is also parallel to the interface, and so the 
case is also called transverse electric, or TE polarization. We will find that the reflec-
tion and transmission coefficients will differ for the two polarization types, but that 
reflection and transmission angles will not depend on polarization. We only need to 
consider s- and p-polarizations because any other field direction can be constructed 
as some combination of s and p waves.

Our desired knowledge of reflection and transmission coefficients, as well as 
how the angles relate, can be found through the field boundary conditions at the 
interface. Specifically, we require that the transverse components of E and H be 
continuous across the interface. These were the conditions we used to find Γ and τ 
for normal incidence (θ1 = 0), which is in fact a special case of our current problem. 
We will consider the case of p-polarization (Figure 12.7a) first. To begin, we write 
down the incident, reflected, and transmitted fields in phasor form, using the notation 
developed in Section 12.4:

  E  s1  +   =  E  10  +    e   −j  k  1  +  · r   (51)

  E  s1  −   =  E  10  −   e   −j  k  1  −   · r   (52)

  E  s2   =  E  20    e   −j  k  2   · r   (53)
where

  k  1  +  =  k  1  (cos  θ  1    a  x   + sin  θ  1    a  z  )  (54)

  k  1  −  =  k  1  (− cos  θ1′ a  x   + sin θ1′  a  z  )  (55)

  k  2   =  k  2  (cos  θ  2    a  x   + sin  θ  2    a  z  )  (56)

and where
 r = x  a  x   + z  a  z    (57)

The wavevector magnitudes are  k  1   = ω √ ___  ϵ  r1     ∕c =  n  1   ω∕c and  k  2   = ω √ ___  ε  r2     ∕c =  n  2   ω∕c.
Now, to evaluate the boundary condition that requires continuous tangential 

electric field, we need to find the components of the electric fields (z components) 
that are parallel to the interface. Projecting all E fields in the z direction, and using 
(51) through (57), we find

  E  zs1  +   =  E  z10  +   e   −j  k  1  +  · r  =  E  10  +    cos  θ  1   e   −j k  1  (x cos  θ  1  +z sin  θ  1  )   (58)

  E  zs1  −   =  E  z10  −   e   −j  k  1  −  · r  =  E  10  −    cos θ1′ e   j k  1  (x cos  θ  1  ′  −z sin  θ  1  ′  )   (59)

  E  zs2   =  E  z20   e   −j k  2   · r  =  E  20    cos  θ  2   e   −j k  2  (x cos  θ  2  +z sin  θ  2  )   (60)

3 The s designation is an abbreviation for the German senkrecht, meaning perpendicular. The p in 
p-polarized is an abbreviation for the German word for parallel, which is parallel.
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The boundary condition for a continuous tangential electric field now reads:
 E  zs1  +   +  E  zs1  −   =  E  zs2    (at x = 0)

We now substitute Eqs. (58) through (60) into (61) and evaluate the result at x = 0 
to obtain

  E  10  +   cos  θ  1    e   −j k  1  z sin  θ  1    +  E  10  −   cos θ1′ e   −j k  1  z sin  θ  1  ′    =  E  20   cos  θ  2   e   −j k   2  z sin  θ  2     (61)

Note that  E  10  +  ,  E  10  −  , and E20 are all constants (independent of z). Further, we require 
that (61) hold for all values of z (everywhere on the interface). For this to occur, it 
must follow that all the phase terms appearing in (61) are equal. Specifically,

 k  1  z sin  θ  1   =  k  1  z sin θ1′ =  k  2   z sin  θ  2  
From this, we see immediately that θ1′ =  θ  1  , or the angle of reflection is equal to the 
angle of incidence. We also find that

  k  1   sin  θ  1   =  k  2   sin  θ  2   (62)

Equation (62) is known as Snell’s law of refraction. Because, in general, k = nω/c, we 
can rewrite (62) in terms of the refractive indices:

  n  1   sin  θ  1   =  n  2   sin  θ  2   (63)

Equation (63) is the form of Snell’s law that is most readily used for our present 
case of nonmagnetic dielectrics. Equation (62) is a more general form which would 
apply, for example, to cases involving materials with different permeabilities as well 
as different permittivities. In general, we would have  k  1   = (ω / c)  √ _____  μ  r1    ϵ  r1     and  k  2   =
(ω / c)  √ _____ μ  r2    ϵ  r2    .

Having found the relations between angles, we next turn to our second objective, 
which is to determine the relations between the amplitudes,  E  10  +  ,  E  10  −  , and E20. To ac-
complish this, we need to consider the other boundary condition, requiring tangential 
continuity of H at x = 0. The magnetic field vectors for the p-polarized wave are all 
negative y-directed. At the boundary, the field amplitudes are related through

  H  10  +   +  H  10  −   =  H  20    (64)

Then, when we use the fact that θ1′ =  θ  1   and invoke Snell’s law, (61) becomes

  E  10  +   cos  θ  1   +  E  10  −   cos  θ  1   =  E  20   cos  θ  2    (65)
Using the medium intrinsic impedances, we know, for example, that  E  10  +   ∕  H  10  +   =  η  1   
and  E  20  +   ∕  H  20  +   =  η  2  . Eq. (64) can be written as follows:

    E  10  +   cos  θ  1   _______  η  1p   −    E  10  −   cos  θ  1   _______  η  1p   =    E  20  +   cos  θ  2  _______ η  2p   (66)

Note the minus sign in front of the second term in (66), which results from the fact 
that  E  10  −   cos  θ  1   is negative (from Figure 12.7a), whereas  H  10  −   is positive (again from 
the figure). When we write Eq. (66), effective impedances, valid for p-polarization, 
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are defined through

  η  1p   =  η  1   cos  θ  1   (67)

and
  η  2p   =  η  2   cos  θ  2   (68)

Using this representation, Eqs. (65) and (66) are now in a form that enables them to 
be solved together for the ratios  E  10  −   ∕  E  10  +   and  E  20   ∕  E  10  +  . Performing analogous proce-
dures to those used in solving (7) and (8), we find the reflection and transmission 
coefficients:

  Γ  p   =    E  10  −   _  E  10  +     =   
 η  2p   −  η  1p   _  η  2p   +  η  1p     (69)

  τ  p   =    E  20   _  E  10  +     =   
2  η  2p   _  η  2p   +  η  1p      (    cos  θ  1   _ cos  θ  2  

   ) (70)

A similar procedure can be carried out for s-polarization, referring to 
Figure 12.7b. The details are left as an exercise; the results are

  Γ  s   =   
 E  y10  −  

 _  E  y10  +     =    η  2s   −  η  1s  _
 η  2s   +  η  1s     (71)

  τ  s   =   
 E  y20   _  E  y10  +     =   2  η  2s   _

 η  2s   +  η  1s     (72)

where the effective impedances for s-polarization are

  η  1s   =  η  1   sec  θ  1   (73)

and
  η  2s   =  η  2   sec  θ  2    (74)

Equations (67) through (74) are what we need to calculate wave reflection and trans-
mission for either polarization, and at any incident angle.

A uniform plane wave is incident from air onto glass at an angle from the normal of 
30°. Determine the fraction of the incident power that is reflected and transmitted for 
(a) p-polarization and (b) s-polarization. Glass has refractive index n2 = 1.45.

EXAMPLE 12.7
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In Example 12.7, reflection coefficient values for the two polarizations were 
found to be negative. The meaning of a negative reflection coefficient is that the  
component of the reflected electric field that is parallel to the interface will be directed  
opposite the incident field component when both are evaluated at the boundary.

This effect is also observed when the second medium is a perfect conductor. In 
this case, we know that the electric field inside the conductor must be zero. Conse-
quently, η2 = E20/H20 = 0, and the reflection coefficients will be Γp = Γs = −1. Total 
reflection occurs, regardless of the incident angle or polarization.

Solution. First, we apply Snell’s law to find the transmission angle. Using n1 = 1 
for air, we use (63) to find

 θ  2   =  sin   −1   (    sin 30 _ 1.45   )    =  20.2°   

Now, for p-polarization:

 
 η  1p   =  η  1   cos 30 = (377) (.866) = 326 Ω

    
 η  2p   =  η  2   cos 20.2 =   377 ____ 1.45  (.938) = 244 Ω

Then, using (69), we find

 Γ  p   =   244 − 326 _______ 244 + 326   = − 0.144

The fraction of the incident power that is reflected is

    P  r   _  P  inc
   =   |  Γp |   2 = .021

The transmitted fraction is then

    P  t   _  P  inc
 = 1 −   |  Γp |   2 = .979

For s-polarization, we have

 
    η  1s   =  η  1   sec 30 = 377 ∕ .866 = 435 Ω

     η  2s   =  η  2   sec 20.2 =   377 ________ 1.45(.938)   = 277 Ω

Then, using (71):

 Γ  s   =   277 − 435 _______ 277 + 435   = − .222

The reflected power fraction is thus

   |  Γs |   2 = .049

The fraction of the incident power that is transmitted is

 1 −   |  Γs |   2 = .951
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12.6  TOTAL REFLECTION AND TOTAL 
TRANSMISSION OF OBLIQUELY 
INCIDENT WAVES

Now that we have methods available to us for solving problems involving oblique inci-
dence reflection and transmission, we can explore the special cases of total reflection 
and total transmission. We look for special combinations of media, incidence angles, 
and polarizations that produce these properties. To begin, we identify the necessary 
condition for total reflection. We want total power reflection, so that   |  Γ |   2 = ΓΓ* = 1, 
where Γ is either Γp or Γs. The fact that this condition involves the possibility of a 
complex Γ allows some flexibility. For the incident medium, we note that η1p and η1s 
will always be real and positive. On the other hand, when we consider the second 
medium, η2p and η2s involve factors of cos θ2 or 1/cos θ2, where

 cos  θ  2   =   [  1 −  sin   2   θ  2   ]     1∕2  =   [  1 −   (     n  1   __  n  2     )     
2
   sin   2   θ  1   ]     

1∕2
(75)

where Snell’s law has been used. We observe that cos θ2, and hence η2p and η2s, be-
come imaginary whenever sin θ1 > n2/n1. Let us consider parallel polarization, for 
example. Under conditions of imaginary η2 p, (69) becomes

 Γ  p   =    
j  |  η2p |   − η1p

 _________ 
j |   η2p |   + η1p

    = −   
η1p − j |   η2p |   _________ 
η1p + j |   η2p |      = −    Z ___ 

Z*   

where Z = η1p − j  |   η2p  |   . We can therefore see that  Γ  p    Γ  p  *   = 1, meaning total power
reflection, whenever η2p is imaginary. The same will be true whenever η2p is zero, 
which will occur when sin θ1 = n2/n1. We thus have our condition for total reflection, 
which is

 sin  θ  1   ≥    n  2  _ n  1     (76)

From this condition arises the critical angle of total reflection, θc, defined through

 sin  θ  c   =    n  2 _  n  1     (77)

The total reflection condition can thus be more succinctly written as

  θ  1   ≥  θ  c              (for total reflection) (78)

Note that for (76) and (77) to make sense, it must be true that n2 < n1, or the wave 
must be incident from a medium of higher refractive index than that of the medium 
beyond the boundary. For this reason, the total reflection condition is sometimes 
called total internal reflection; it is often seen (and applied) in optical devices such 
as beam-steering prisms, where light within the glass structure totally reflects from 
glass–air interfaces.
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EXAMPLE 12.8

A prism is to be used to turn a beam of light by 90°, as shown in Figure 12.8. Light 
enters and exits the prism through two antireflective (AR-coated) surfaces. Total 
reflection is to occur at the back surface, where the incident angle is 45° to the nor-
mal. Determine the minimum required refractive index of the prism material if the 
surrounding region is air.
Solution. Considering the back surface, the medium beyond the interface is air, 
with n2 = 1.00. Because θ1 = 45°, (76) is used to obtain

 n  1   ≥    n  2   _____ sin 45   =  √ 
__

 2   = 1.41

Because fused silica glass has refractive index ng = 1.45, it is a suitable material for 
this application and is in fact widely used.

AR

AR

45°
n1

n2 = 1.00

Figure 12.8 Beam-steering prism for 
Example 12.8.

Another important application of total reflection is in optical waveguides. These, 
in their simplest form, are constructed of three layers of glass, in which the middle 
layer has a slightly higher refractive index than the outer two. Figure 12.9 shows 
the basic structure. Light, propagating from left to right, is confined to the middle 
layer by total reflection at the two interfaces, as shown. Optical fiber waveguides are 
constructed on this principle, in which a cylindrical glass core region of small radius 
is surrounded coaxially by a lower-index cladding glass material of larger radius. 
Basic waveguiding principles as applied to metallic and dielectric structures will be 
presented in Chapter 13.
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We next consider the possibility of total transmission. In this case, the require-
ment is simply that Γ = 0. We investigate this possibility for the two polarizations. 
First, we consider s-polarization. If Γs = 0, then from (71) we require that η2s = η1s, or

 η  2   sec  θ  2   =  η  1   sec  θ  1  

Using Snell’s law to write θ2 in terms of θ1, the preceding equation becomes

 η  2     [  1 −   (     n  1   __  n  2     )     
2
   sin   2   θ  1   ]     

−1∕2
=  η  1     [  1 −  sin   2   θ  1   ]     −1∕2

There is no value of θ1 that will satisfy this, so we turn instead to p-polarization. 
Using (67), (68), and (69), with Snell’s law, we find that the condition for Γp = 0 is

 η  2     [  1 −   (     n  1   __  n  2     )     
2
   sin   2   θ  1   ]     

1∕2
=  η  1     [  1 −  sin   2   θ  1   ]     1∕2

This equation does have a solution, which is

 sin  θ  1   = sin  θ  B   =    n  2   _
 √ 
_

  n  1  2  +  n  2  2   
   (79)

where we have used η1 = η0/n1 and η2 = η0/n2. We call this special angle θB, where 
total transmission occurs, the Brewster angle or polarization angle. The latter name 
comes from the fact that if light having both s- and p-polarization components is 
incident at θ1 = θB, the p component will be totally transmitted, leaving the partially 
reflected light entirely s-polarized. At angles that are slightly off the Brewster angle, 
the reflected light is still predominantly s-polarized. Most reflected light that we see 
originates from horizontal surfaces (such as the surface of the ocean), and so the light 
has mostly horizontal polarization. Polaroid sunglasses take advantage of this fact to 
reduce glare, for they are made to block the transmission of horizontally polarized 
light while passing light that is vertically polarized.

Figure 12.9 A dielectric slab 
waveguide (symmetric case), showing 
light confinement to the center material 
by total reflection.

n2

n2

n1

n1

<
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Many of the results we have seen in this section are summarized in Figure 12.10, 
in which Γp and Γs, from (69) and (71), are plotted as functions of the incident angle, 
θ1. Curves are shown for selected values of the refractive index ratio, n1/n2. For all 
plots in which n1/n2 > 1, Γs and Γp achieve values of ±1 at the critical angle. At 
larger angles, the reflection coefficients become imaginary (and are not shown) 
but nevertheless retain magnitudes of unity. The occurrence of the Brewster angle 
is evident in the curves for Γp (Figure 12.10a) because all curves cross the θ1 axis. 
This behavior is not seen in the Γs functions because Γs is positive for all values of 
θ1 when n1/n2 > 1.

EXAMPLE 12.9

Light is incident from air to glass at Brewster’s angle. Determine the incident and 
transmitted angles.
Solution. Because glass has refractive index n2 = 1.45, the incident angle will be

 θ  1   =  θ  B   =  sin   −1   (     n  2   _ 
 √ 
_

  n  1  2  +  n  2  2   
   )    =  sin   −1   (    1.45 _ 

 √ 
_

  1.45   2  + 1  
   )    =  55.4°   

The transmitted angle is found from Snell’s law, through

 θ  2   =  sin   −1   (     n  1   _  n  2     sin  θ  B   )    =  sin   −1   (     n  1   _ 
 √ 
_

  n  1  2  +  n  2  2   
   )    =  34.6°   

Note from this exercise that sin θ2 = cos θB, which means that the sum of the incident 
and refracted angles at the Brewster condition is always 90°.

D12.5. In Example 12.9, calculate the reflection coefficient for s-polarized 
light.

Ans.  –0.355

12.7  WAVE PROPAGATION 
IN DISPERSIVE MEDIA

In Chapter 11, we encountered situations in which the complex permittivity of the 
medium depends on frequency. This is true in all materials through a number of pos-
sible mechanisms. One of these, mentioned earlier, is that oscillating bound charges 
in a material are in fact harmonic oscillators that have resonant frequencies associated  
with them (see Appendix D). When the frequency of an incoming electromagnetic 
wave is at or near a bound charge resonance, the wave will induce strong oscillations; 
these in turn have the effect of depleting energy from the wave in its original form. 
The wave thus experiences absorption, and it does so to a greater extent than it would 
at a frequency that is detuned from resonance. A related effect is that the real part of 
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Figure 12.10 (a) Plots of Γp [Eq. (69)] as functions of 
the incident angle, θ1, as shown in Figure 12.7a. Curves 
are shown for selected values of the refractive index 
ratio, n1/n2. Both media are lossless and have μr = 1. 
Thus η1 = η0  /n1 and η2 = η0/n2. (b) Plots of Γs [Eq. (71)] 
as functions of the incident angle, θ1, as shown in 
Figure 12.7b. As in Figure 12.10a, the media are 
lossless, and curves are shown for selected n1/n2.
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the dielectric constant will be different at frequencies near resonance than at frequen-
cies far from resonance. In short, resonance effects give rise to values of ϵ′ and ϵ″ 
that will vary continuously with frequency. These in turn will produce a fairly com-
plicated frequency dependence in the attenuation and phase constants as expressed 
in Eqs. (44) and (45) in Chapter 11.

This section concerns the effect of a frequency-varying dielectric constant (or 
refractive index) on a wave as it propagates in an otherwise lossless medium. This 
situation arises quite often because significant refractive index variation can occur 
at frequencies far away from resonance, where absorptive losses are negligible. A 
classic example of this is the separation of white light into its component colors by 
a glass prism. In this case, the frequency-dependent refractive index results in dif-
ferent angles of refraction for the different colors—hence the separation. The color 
separation effect produced by the prism is known as angular dispersion, or more 
specifically, chromatic angular dispersion.

The term dispersion implies a separation of distinguishable components of a 
wave. In the case of the prism, the components are the various colors that have been 
spatially separated. An important point here is that the spectral power has been dis-
persed by the prism. We can illustrate this idea by considering what it would take to 
measure the difference in refracted angles between, for example, blue and red light. 
One would need to use a power detector with a very narrow aperture, as shown in 
Figure 12.11. The detector would be positioned at the locations of the blue and red 
light from the prism, with the narrow aperture allowing essentially one color at a 
time (or light over a very narrow spectral range) to pass through to the detector. The 
detector would then measure the power in what we could call a “spectral packet,” or a 
very narrow slice of the total power spectrum. The smaller the aperture, the narrower 
the spectral width of the packet, and the greater the precision in the measurement.4 

Figure 12.11 The angular dispersion of a prism can be 
measured using a movable device which measures both 
wavelength and power. The device senses light through a 
small aperture, thus improving wavelength resolution.

White light
R

Detector
with aperture

O
Y
G
B

4 To perform this experiment, one would need to measure the wavelength as well. To do this, the detector 
would likely be located at the output of a spectrometer or monochrometer whose input slit performs the 
function of the bandwidth-limiting aperture.
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It is important for us to think of wave power as subdivided into spectral packets in 
this way because it will figure prominently in our interpretation of the main topic of 
this section, which is wave dispersion in time.

We now consider a lossless nonmagnetic medium in which the refractive index 
varies with frequency. The phase constant of a uniform plane wave in this medium 
will assume the form

 β(ω) = k = ω √ 
______

  μ  0   ϵ(ω)   = n(ω) ω__
c (80)

If we take n(ω) to be a monotonically increasing function of frequency (as is usually the 
case), a plot of ω versus β would look something like the curve shown in Figure 12.12. 
Such a plot is known as an ω-β diagram for the medium. Much can be learned about 
how waves propagate in the material by considering the shape of the ω-β curve.

Suppose we have two waves at two frequencies, ωa and ωb, which are co- 
propagating in the material and whose amplitudes are equal. The two frequencies 
are labeled on the curve in Figure 12.12, along with the frequency midway between 
the two, ω0. The corresponding phase constants, βa, βb, and β0, are also labeled. The 
electric fields of the two waves are linearly polarized in the same direction (along x, 
for example), while both waves propagate in the forward z direction. The waves will 
thus interfere with each other, producing a resultant wave whose field function can 
be found simply by adding the E fields of the two waves. This addition is done using 

Figure 12.12  ω-β diagram for a material in 
which the refractive index increases with fre-
quency. The slope of a line tangent to the curve 
at ω0 is the group velocity at that frequency. The 
slope of a line joining the origin to the point on 
the curve at ω0 is the phase velocity at ω0.

ββa βbβ0

ω

ωb

ωa

ω0

Slope = vpe = vg(ω0 )

Slope
= vpc
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the complex fields:

 E  c,net  (z, t) =  E  0  [ e   −j β  a  z   e   j ω  a  t  +  e   −j β  b  z   e   j ω  b  t  ]

Note that we must use the full complex forms (with frequency dependence retained) 
as opposed to the phasor forms, since the waves are at different frequencies. Next, we 
factor out the term  e   −j β  0  z   e   j ω  0  t :

 
  E  c,net   (  z, t )     =  

  E  0   e   −j β  0  z   e   j ω  0  t  [   e   jΔβz  e   −jΔωt  +  e   −jΔβz   e   jΔωt  ]   
      

=
  
2  E  0   e   −j β  0  z   e   j ω  0  t  cos (Δωt  −  Δβz)

 (81)

where
Δω =  ω  0   −  ω  a   =  ω  b   −  ω  0  

and
Δβ =  β  0   −  β  a   =  β  b   −  β  0  

The preceding expression for Δβ is approximately true as long as Δω is small. This 
can be seen from Figure 12.12 by observing how the shape of the curve affects Δβ, 
given uniform frequency spacings.

The real instantaneous form of (81) is found through

    ε  net  (z, t) = ℛe {   E  c,net   }   = 2 E  0   cos(Δωt − Δβz) cos ( ω  0  t −  β  0  z)   (82)

If Δω is fairly small compared to ω0, we recognize (82) as a carrier wave at frequency 
ω0 that is sinusoidally modulated at frequency Δω. The two original waves are thus 
“beating” together to form a slow modulation, as one would hear when the same 
note is played by two slightly out-of-tune musical instruments. The resultant wave is 
shown in Figure 12.13.

Figure 12.13  Plot of the total electric field strength as a function of z 
(with t = 0) of two co-propagating waves having different frequencies, 
ωa and ωb, as per Eq. (81). The rapid oscillations are associated with the 
carrier frequency, ω0 = (ωa + ωb)/2. The slower modulation is associated 
with the envelope or “beat” frequency, Δω = (ωb − ωa)/2.

z

Enet (z, 0)

hay28159_ch12_409-455.indd   444 27/11/17   12:06 pm



C H A P T E R  1 2  Plane Wave Reflection and Dispersion 445

Of interest to us are the phase velocities of the carrier wave and the modulation 
envelope. From (82), we can immediately write these down as:

  v  pc   =    ω  0__
 β  0  

  (carrier velocity)  (83)

  v  pe   =   Δω ___ Δβ
     (envelope velocity) (84)

Referring to the ω-β diagram, Figure 12.12, we recognize the carrier phase velocity 
as the slope of the straight line that joins the origin to the point on the curve whose 
coordinates are ω0 and β0. We recognize the envelope velocity as a quantity that 
approximates the slope of the ω-β curve at the location of an operation point spec-
ified by (ω0, β0). The envelope velocity in this case is thus somewhat less than the 
carrier velocity. As Δω becomes vanishingly small, the envelope velocity is exactly 
the slope of the curve at ω0. We can therefore state the following for our example:

lim  
Δω→0

  Δω _ Δβ
   =    dω _ 

dβ
   |     ω  0  

   =  v  g  ( ω  0  ) (85)

The quantity dω/dβ is called the group velocity function for the material, vg(ω). When 
evaluated at a specified frequency ω0, it represents the velocity of a group of fre-
quencies within a spectral packet of vanishingly small width, centered at frequency 
ω0. In stating this, we have extended our two-frequency example to include waves 
that have a continuous frequency spectrum. Each frequency component (or packet) is 
associated with a group velocity at which the energy in that packet propagates. Since 
the slope of the ω-β curve changes with frequency, group velocity will obviously 
be a function of frequency. The group velocity dispersion of the medium is, to the 
first order, the rate at which the slope of the ω-β curve changes with frequency. It is 
this behavior that is of critical practical importance to the propagation of modulated 
waves within dispersive media and to understanding the extent to which the modula-
tion envelope may degrade with propagation distance.

Consider a medium in which the refractive index varies linearly with frequency over 
a certain range:

n(ω) =  n  0     ω __ ω  0    

Determine the group velocity and the phase velocity of a wave at frequency ω0.
Solution. First, the phase constant will be

β(ω) = n(ω)   ω __ c   =    n  0   ω   2____ ω  0   c 

Now

  dβ ___ 
dω

 =   2 n  0  ω____ ω  0  c 

EXAMPLE 12.10
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12.8 PULSE BROADENING IN DISPERSIVE MEDIA
To see how a dispersive medium affects a modulated wave, let us consider the prop-
agation of an electromagnetic pulse. Pulses are used in digital signals, where the 
presence or absence of a pulse in a given time slot corresponds to a digital “one” or 
“zero.” The effect of the dispersive medium on a pulse is to broaden it in time. To 
see how this happens, we consider the pulse spectrum, which is found through the 
Fourier transform of the pulse in time domain. In particular, suppose the pulse shape 
in time is Gaussian, and has electric field given at position z = 0 by

 E(0, t) =  E  0   e   −  1 _ 2   (t∕T)   2   e   j ω  0  t  (86)

where E0 is a constant, ω0 is the carrier frequency, and T is the characteristic half-
width of the pulse envelope; this is the time at which the pulse intensity, or magni-
tude of the Poynting vector, falls to 1/e of its maximum value (note that intensity is 
proportional to the square of the electric field). The frequency spectrum of the pulse 
is the Fourier transform of (86), which is

 E(0, ω) =    E  0   T _ 
 √ 
_

 2π  
    e   −  1 _ 2   T   2  (ω− ω  0  )   2  (87)

Note from (87) that the frequency displacement from ω0 at which the spectral inten-
sity (proportional to |E(0, ω)|2) falls to 1/e of its maximum is Δω = ω − ω0 = 1/T.

Figure 12.14a shows the Gaussian intensity spectrum of the pulse, centered at 
ω0, where the frequencies corresponding to the 1/e spectral intensity positions, ωa 
and ωb, are indicated. Figure 12.14b shows the same three frequencies marked on 
the ω-β curve for the medium. Three lines are drawn that are tangent to the curve at 
the three frequency locations. The slopes of the lines indicate the group velocities 
at ωa, ωb, and ω0, indicated as vga, vgb, and vg0. We can think of the pulse spreading 
in time as resulting from the differences in propagation times of the spectral energy 
packets that make up the pulse spectrum. Since the pulse spectral energy is highest 
at the center frequency, ω0, we can use this as a reference point about which further 

so that

 v  g   =   dω ___ 
dβ

   =    ω  0  c ____
2  n  0  ω

  

The group velocity at ω0 is

 v  g  ( ω  0  ) =   c ___
2  n  0  

  

The phase velocity at ω0 will be

 v  p  ( ω  0  ) =   ω ____ 
β( ω  0  )

   =   c __ n  0    

hay28159_ch12_409-455.indd   446 27/11/17   12:06 pm



C H A P T E R  1 2  Plane Wave Reflection and Dispersion 447

spreading of the energy will occur. For example, let us consider the difference in 
arrival times (group delays) between the frequency components, ω0 and ωb, after 
propagating through a distance z of the medium:

Δτ = z  (    1 _  v  gb     −   1 _  v  g0     )    = z  ( dβ
 _

dω
   |     ω  b  

  −    dβ
 _

dω
   |     ω  0  

   ) (88)

The essential point is that the medium is acting as what could be called a temporal
prism. Instead of spreading out the spectral energy packets spatially, it is spreading 

Figure 12.14 (a) Normalized power spectrum of a 
Gaussian pulse, as determined from Eq. (86). The spectrum 
is centered at carrier frequency ω0 and has 1/e half-width, 
Δω. Frequencies ωa and ωb correspond to the 1/e posi-
tions on the spectrum. (b) The spectrum of Figure 12.14a 
as shown on the ω-β diagram for the medium. The three 
frequencies specified in Figure 12.14a are associated with 
three different slopes on the curve, resulting in different 
group delays for the spectral components.
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them out in time. In this process, a new temporal pulse envelope is constructed whose 
width is based fundamentally on the spread of propagation delays of the different 
spectral components. By determining the delay difference between the peak spectral 
component and the component at the spectral half-width, we construct an expression 
for the new temporal half-width. This assumes, of course, that the initial pulse width 
is negligible in comparison, but if not, we can account for that also, as will be shown 
later on.

To evaluate (88), we need more information about the ω-β curve. If we assume 
that the curve is smooth and has fairly uniform curvature, we can express β(ω) as the 
first three terms of a Taylor series expansion about the carrier frequency, ω0:

 β(ω) ≐  β( ω  0  ) + (ω −  ω  0  )  β  1   +   1 _ 2    (ω −  ω  0  )   2   β  2   (89)

where

  
 β  0   = β( ω  0  )

 β  1   =    dβ ___
dω

   |     ω  0  

(90)

and

  β  2   =     d   2 β ___ 
d ω   2 

   |     ω  0  
(91)

Note that if the ω-β curve were a straight line, then the first two terms in (89) would 
precisely describe β(ω). It is the third term in (89), involving β2, that describes the 
curvature and ultimately the dispersion.

Noting that β0, β1, and β2 are constants, we take the first derivative of (89) with 
respect to ω to find

   dβ ___ 
dω

 =  β  1   + (ω −  ω  0  )  β  2    (92)

We now substitute (92) into (88) to obtain

 Δτ =   [    β  1   + ( ω  b   −  ω  0  ) β  2   ]    z −   [    β  1   + ( ω  0   −  ω  0  ) β  2   ]    z = Δω β  2  z =    β  2   z_
T

   (93)

where Δω = (ωb − ω0) = 1/T. β2, as defined in Eq. (91), is the dispersion parameter. 
Its units are in general time2/distance, that is, pulse spread in time per unit spectral 
bandwidth, per unit distance. In optical fibers, for example, the units most commonly 
used are picoseconds2/kilometer (psec2/km). β2 can be determined when we know 
how β varies with frequency, or it can be measured.

If the initial pulse width is very short compared to Δτ, then the broadened pulse 
width at location z will be simply Δτ. If the initial pulse width is comparable to Δτ, 
then the pulse width at z can be found through the convolution of the initial Gaussian 
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pulse envelope of width T with a Gaussian envelope whose width is Δτ. Thus, in 
general, the pulse width at location z will be

 T ′ =  √ 
_

  T   2  +  (Δτ)   2     (94)

An optical fiber link is known to have dispersion β2 = 20 ps2/km. A Gaussian light 
pulse at the input of the fiber is of initial width T = 10 ps. Determine the width of the 
pulse at the fiber output if the fiber is 15 km long.
Solution. The pulse spread will be

Δτ =    β  2   z ___ 
T

   =   (20) (15) ______ 10   = 30 ps

So the output pulse width is

 T   ′  =  √ 
__________

   (10)   2  +  (30)   2    = 32 ps

EXAMPLE 12.11

An interesting by-product of pulse broadening through chromatic dispersion is 
that the broadened pulse is chirped. This means that the instantaneous frequency 
of the pulse varies monotonically (either increases or decreases) with time over the 
pulse envelope. This again is just a manifestation of the broadening mechanism, in 
which the spectral components at different frequencies are spread out in time as they 
propagate at different group velocities. We can quantify the effect by calculating the 
group delay, τg, as a function of frequency, using (92). We obtain:

  τ  g   =   z __  v  g     = z dβ ___ 
dω

 =   (   β  1   + (ω −  ω  0  )  β  2   )   z  (95)

This equation tells us that the group delay will be a linear function of frequency 
and that higher frequencies will arrive at later times if β2 is positive. We refer to the 
chirp as positive if the lower frequencies lead the higher frequencies in time [re-
quiring a positive β2 in (95)]; chirp is negative if the higher frequencies lead in time 
(negative β2). Figure 12.15 shows the broadening effect and illustrates the chirping 
phenomenon.

D12.6. For the fiber link of Example 12.11, a 20-ps pulse is input instead of 
the 10-ps pulse in the example. Determine the output pulsewidth.

Ans. 25 ps

 As a final point, we note that the pulse bandwidth, Δω, was found to be 1/T. 
This is true as long as the Fourier transform of the pulse envelope is taken, as was 
done with (86) to obtain (87). In that case, E0 was taken to be a constant, and so the 
only time variation arose from the carrier wave and the Gaussian envelope. Such a 
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Figure 12.15 Gaussian pulse intensities as functions 
of time (smooth curves) before and after propagation 
through a dispersive medium, as exemplified by the 
ω-β diagram of Figure 12.14b. The electric field oscil-
lations are shown under the second trace to demon-
strate the chirping effect as the pulse broadens. Note 
the reduced amplitude of the broadened pulse, which 
occurs because the pulse energy (the area under the 
intensity envelope) is constant.

2T

2T' 

t

pulse, whose frequency spectrum is obtained only from the pulse envelope, is known 
as transform-limited. In general, however, additional frequency bandwidth may be 
present since E0 may vary with time for one reason or another (such as phase noise 
that could be present on the carrier). In these cases, pulse broadening is found from 
the more general expression

 Δτ = Δω β  2  z (96)

where Δω is the net spectral bandwidth arising from all sources. Clearly, transform- 
limited pulses are preferred in order to minimize broadening because these will have 
the smallest spectral width for a given pulse width.
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CHAPTER 12 PROBLEMS
12.1 A uniform plane wave in air,  E  x1  +   =  E  x10  +   cos ( 10   10  t − βz) V/m, is normally 

incident on a copper surface at z = 0. What percentage of the incident 
power density is transmitted into the copper? 

12.2 The plane z = 0 defines the boundary between two dielectrics. For z < 
0, ϵr1 = 9, ϵr1″ = 0, and μ1 = μ0. For z > 0, ϵr2′  = 3, ϵr2″ = 0, and μ2 = μ0. 
Let  E  x1  +   = 10 cos (ωt − 15z)V/m and find (a) ω; (b)〈 S  1  +  〉; (c)〈 S  1  −  〉; (d)〈 S   2  + 〉.

12.3 A uniform plane wave in region 1 is normally incident on the planar 
boundary separating regions 1 and 2. If ϵ1″ = ϵ2″ = 0, while ϵr1′  =  μ  r1  3   and 
ϵr2′  =  μ  r2  3  , find the ratio ϵr2′  / ϵr1′  if 20 percent of the energy in the incident 
wave is reflected at the boundary. There are two possible answers.

12.4 A 10-MHz uniform plane wave having an initial average power density of 
5 W/m2 is normally incident from free space onto the surface of a lossy 
material in which ϵ2″ / ϵ2′ = 0.05, ϵr2′  = 5, and μ2 = μ0. Calculate the distance 
into the lossy medium at which the transmitted wave power density is down 
by 10 dB from the initial 5 W/m2.

12.5 The region z < 0 is characterized by ϵr′ =  μ  r   = 1and ϵr″ = 0. The total 
E field here is given as the sum of two uniform plane waves,  E  s   =  
150 e   −j10z   a  x   + (50∠ 20°) e   j10z   a  x  V/m. (a) What is the operating frequency? 
(b) Specify the intrinsic impedance of the region z > 0 that would provide 
the appropriate reflected wave. (c) At what value of z, −10 cm < z < 0, is 
the total electric field intensity a maximum amplitude? 

12.6 In the beam-steering prism of Example 12.8, suppose the antireflective 
coatings are removed, leaving bare glass-to-air interfaces. Calculate the 
ratio of the prism output power to the input power, assuming a single 
transit.

12.7 The semi-infinite regions z < 0 and z > 1 m are free space. For 0 < z < 1 m, 
ϵr′ = 4, μr = 1, and ϵr″ = 0. A uniform plane wave with ω = 4 × 108 rad/s 
is traveling in the az direction toward the interface at z = 0. (a) Find the 
standing wave ratio in each of the three regions. (b) Find the location of the 
maximum |E| for z < 0 that is nearest to z = 0. 

12.8 A wave starts at point a, propagates 1 m through a lossy dielectric rated at 
0.1 dB/cm, reflects at normal incidence at a boundary at which Γ = 0.3 + 
j0.4, and then returns to point a. Calculate the ratio of the final power to the 
incident power after this round trip, and specify the overall loss in decibels.

12.9 Region 1, z < 0, and region 2, z > 0, are both perfect dielectrics ( μ = μ0, 
ϵ″ = 0). A uniform plane wave traveling in the az direction has a radian 
frequency of 3 × 1010 rad/s. Its wavelengths in the two regions are λ1 =  
5 cm and λ2 = 3 cm. What percentage of the energy incident on the 
boundary is (a) reflected; (b) transmitted? (c) What is the standing wave 
ratio in region 1? 

hay28159_ch12_409-455.indd   451 27/11/17   12:06 pm



E N G I N E E R I N G  E L E C T R O M AG N E T I C S452

12.10 In Figure 12.1, let region 2 be free space, while μr1 = 1, ϵr1″ = 0, and ϵr1′  is 
unknown. Find ϵr1′  if (a) the amplitude of  E  1  −  is one-half that of  E  1  + ; (b) 〈 S  1  − 〉 
is one-half of 〈 S  1  + 〉; (c)   |   E  1     |    min    is one-half of   |   E  1    |    max   .

12.11 A 150-MHz uniform plane wave is normally incident from air onto a 
material whose intrinsic impedance is unknown. Measurements yield a 
standing wave ratio of 3 and the appearance of an electric field minimum at 
0.3 wavelengths in front of the interface. Determine the impedance of the 
unknown material. 

12.12 A 50-MHz uniform plane wave is normally incident from air onto 
the surface of a calm ocean. For seawater, σ = 4 S/m, and ϵr′ = 78.  
(a) Determine the fractions of the incident power that are reflected and 
transmitted. (b) Qualitatively, how (if at all) will these answers change as 
the frequency is increased?

12.13 A right-circularly polarized plane wave is normally incident from air onto 
a semi-infinite slab of plexiglas (ϵr′ = 3.45, ϵr″ = 0). Calculate the fractions 
of the incident power that are reflected and transmitted. Also, describe the 
polarizations of the reflected and transmitted waves. 

12.14 A left-circularly polarized plane wave is normally incident onto the 
surface of a perfect conductor. (a) Construct the superposition of the 
incident and reflected waves in phasor form. (b) Determine the real 
instantaneous form of the result of part a. (c) Describe the wave that is 
formed.

12.15 Sulfur hexafluoride (SF6) is a high-density gas that has refractive index ns = 
1.8 at a specified pressure, temperature, and wavelength. Consider the retro-
reflecting prism shown in Fig. 12.16 that is immersed in SF6. Light enters 
through a quarter-wave antireflective coating and then totally reflects from 
the back surfaces of the glass. In principle, the beam should experience 
zero loss at the design wavelength (Pout = Pin). (a) Determine the minimum 
required value of the glass refractive index, ng, so that the interior beam 
will totally reflect. (b) Knowing ng, find the required refractive index of the 
quarter-wave film, nf. (c) With the SF6 gas evacuated from the chamber, and 
with the glass and film values as previously found, find the ratio Pout/Pin. 

Pout

Pin
n s

λ/4

n f n g

Figure 12.16 See Problem 12.15.
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Assume very slight misalignment so that the long beam path through the 
prism is not retraced by reflected waves. 

12.16 In Figure 12.5, let regions 2 and 3 both be of quarter-wave thickness. 
Region 4 is glass, having refractive index n4 = 1.45; region 1 is air.  
(a) Find ηin,b. (b) Find ηin,a. (c) Specify a relation between the four intrinsic 
impedances that will enable total transmission of waves incident from the 
left into region 4. (d) Specify refractive index values for regions 2 and 3 
that will accomplish the condition of part c. (e) Find the fraction of incident 
power transmitted if the two layers were of half-wave thickness instead of 
quarter-wave.

12.17 A uniform plane wave in free space is normally incident onto a dense 
dielectric plate of thickness λ/4, having refractive index n. Find the required 
value of n such that exactly half the incident power is reflected (and half 
transmitted). Remember that n > 1. 

12.18 A uniform plane wave is normally incident onto a slab of glass (n = 1.45) 
whose back surface is in contact with a perfect conductor. Determine the 
reflective phase shift at the front surface of the glass if the glass thickness 
is (a) λ/2; (b) λ/4; (c) λ/8.

12.19 You are given four slabs of lossless dielectric, all with the same intrinsic 
impedance, η, known to be different from that of free space. The 
thickness of each slab is λ/4, where λ is the wavelength as measured in 
the slab material. The slabs are to be positioned parallel to one another, 
and the combination lies in the path of a uniform plane wave, normally 
incident. The slabs are to be arranged such that the airspaces between 
them are either zero, one-quarter wavelength, or one-half wavelength 
in thickness. Specify an arrangement of slabs and airspaces such that 
(a) the wave is totally transmitted through the stack, and (b) the stack 
presents the highest reflectivity to the incident wave. Several answers 
may exist. 

12.20 The 50-MHz plane wave of Problem 12.12 is incident onto the ocean 
surface at an angle to the normal of 60°. Determine the fractions of the 
incident power that are reflected and transmitted for (a) s-polarization, and 
(b) p-polarization.

12.21 A right-circularly polarized plane wave in air is incident at Brewster’s 
angle onto a semi-infinite slab of plexiglas (ϵr′ = 3.45, ϵr″ = 0). (a) Determine 
the fractions of the incident power that are reflected and transmitted.  
(b) Describe the polarizations of the reflected and transmitted waves. 

12.22 A dielectric waveguide is shown in Figure 12.17 with refractive indices as 
labeled. Incident light enters the guide at angle ϕ from the front surface 
normal as shown. Once inside, the light totally reflects at the upper n1 − n2 
interface, where n1 > n2. All subsequent reflections from the upper and 
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lower boundaries will be total as well, and so the light is confined to the 
guide. Express, in terms of n1 and n2, the maximum value of ϕ such that 
total confinement will occur, with n0 = 1. The quantity sin ϕ is known as 
the numerical aperture of the guide.

12.23 Suppose that ϕ in Figure 12.17 is Brewster’s angle, and that θ1 is the 
critical angle. Find n0 in terms of n1 and n2. 

12.24 A Brewster prism is designed to pass p-polarized light without any 
reflective loss. The prism of Figure 12.18 is made of glass (n = 1.45) and is 
in air. Considering the light path shown, determine the vertex angle α.

12.25 In the Brewster prism of Figure 12.18, determine for s-polarized light the 
fraction of the incident power that is transmitted through the prism, and 
from this specify the dB insertion loss, defined as 10log10 of that number. 

12.26 Show how a single block of glass can be used to turn a p-polarized beam 
of light through 180°, with the light suffering (in principle) zero reflective 
loss. The light is incident from air, and the returning beam (also in air) may 
be displaced sideways from the incident beam. Specify all pertinent angles 
and use n = 1.45 for glass. More than one design is possible here.

12.27 Using Eq. (79) in Chapter 11 as a starting point, determine the ratio of the 
group and phase velocities of an electromagnetic wave in a good conductor. 
Assume conductivity does not vary with frequency. 

12.28 Over a small wavelength range, the refractive index of a certain material 
varies approximately linearly with wavelength as n(λ) ≐ na + nb(λ − λa), 
where na, nb and λa are constants, and where λ is the free-space wavelength. 

Figure 12.17 See Problems 12.22 and 
12.23.

n2

n2

n0

n1

θ1
ϕ1

Figure 12.18 See Problems 
12.24 and 12.25.

n

α
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(a) Show that d/dω = −(2πc/ω2)d/dλ. (b) Using β(λ) = 2πn/λ, determine 
the wavelength-dependent (or independent) group delay over a unit 
distance. (c) Determine β2 from your result of part b. (d) Discuss the 
implications of these results, if any, on pulse broadening.

12.29 A T = 5 ps transform-limited pulse propagates in a dispersive medium for 
which β2 = 10 ps2/km. Over what distance will the pulse spread to twice its 
initial width? 

12.30 A T = 20 ps transform-limited pulse propagates through 10 km of a 
dispersive medium for which β2 = 12 ps2/km. The pulse then propagates 
through a second 10-km medium for which β2 = −12 ps2/km. Describe the 
pulse at the output of the second medium and give a physical explanation 
for what happened.
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13 C H A P T E R

Guided Waves

In this chapter, we investigate several structures for guiding electromagnetic waves, 
and we explore the principles by which these operate. Included are transmission 
lines, which we first explored from the viewpoint of their currents and voltages in 

Chapter 10, and which we now revisit from a fields point of view. We then broaden 
the discussion to include several waveguiding devices. Broadly defined, a waveguide 
is a structure through which electromagnetic waves can be transmitted from point 
to point and within which the fields are confined to a certain extent. A transmission 
line fits this description, but it is a special case that employs two conductors, and it 
propagates a purely TEM field configuration. Waveguides in general depart from 
these restrictions and may employ any number of conductors and dielectrics—or as 
we will see, dielectrics alone and no conductors.

The chapter begins with a presentation of several transmission line structures, 
with emphasis on obtaining expressions for the primary constants, L, C, G, and R, for 
high- and low-frequency operating regimes. Next, we begin our study of waveguides 
by first taking a broad view of waveguide devices to obtain a physical understanding 
of how they work and the conditions under which they are used. We then explore 
the simple parallel-plate structure and distinguish between its operation as a trans-
mission line and as a waveguide. In this device, the concept of waveguide modes 
is developed, as are the conditions under which these will occur. We will study the 
electric and magnetic field configurations of the guided modes using simple plane 
wave models and the wave equation. We will then study more complicated structures, 
including rectangular waveguides, dielectric slab waveguides, and optical fibers. ■

13.1  TRANSMISSION LINE FIELDS 
AND PRIMARY CONSTANTS

We begin by establishing the equivalence between transmission line operations when 
considering voltage and current, from the point of view of the fields within the line.
Consider, for example, the parallel-plate line shown in Figure 13.1. In the line, we 
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assume that the plate spacing, d, is much less than the line width, b (into the page), 
so electric and magnetic fields can be assumed to be uniform within any transverse 
plane. Lossless propagation is also assumed. Figure 13.1 shows the side view, which 
includes the propagation axis z. The fields, along with the voltage and current, are 
shown at an instant in time.

The voltage and current in phasor form are:

 V  s  (z) =  V  0   e   −jβz  (1a)

 I  s  (z) =    V  0   __  Z  0
   e   −jβz (1b)

where  Z  0   =  √ 
____

 L / C  . The electric field in a given transverse plane at location z is just
the parallel-plate capacitor field:

 E  sx  (z) =    V  s  __
d
 =    V  0   __ 

d
   e   −jβz (2a)

The magnetic field is equal to the surface current density, assumed uniform, on either 
plate [Eq. (12), Chapter 7]:

 H  sy  (z) =  K  sz   =    I  s  __
b

=    V  0   ___ 
b Z  0  

   e   −jβz (2b)

The two fields, both uniform, orthogonal, and lying in the transverse plane, are iden-
tical in form to those of a uniform plane wave. As such, they are transverse electro-
magnetic (TEM) fields, also known simply as transmission-line fields. They differ 
from the fields of the uniform plane wave only in that they exist within the interior 
of the line, and nowhere else.

The power flow down the line is found through the time-average Poynting vec-
tor, integrated over the line cross section. Using (2a) and (2b), we find:

 P  z   =  ∫ 
0
  
  b

    ∫ 
0
  
  d

     1 _ 2  ℛe{ E  xs     H  ys  *  }dxdy =   1 _ 2      V  0   __ 
d
      V  0  *  ___ 

b Z  0  * 
   (bd) =   

 |   V  0    |     2 ____ 
2 Z  0  * 

   =   1 _ 2   ℛe{ V  s    I  s  * } (3)

The power transmitted by the line is one of the most important quantities that we 
wish to know from a practical standpoint. Eq. (3) shows that this can be obtained 
consistently through the line fields, or through the voltage and current. As would be 

Figure 13.1 A transmission-line wave represented by voltage and 
current distributions along the length is associated with transverse 
electric and magnetic fields, forming a TEM wave.
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expected, this consistency is maintained when losses are included. The fields picture 
is in fact advantageous, and is generally preferred, since it is easy to incorporate 
dielectric loss mechanisms (other than conductivity) in addition to the disper-
sive properties of the dielectric. The transmission-line fields are also needed to 
produce the primary constants, as we now demonstrate for the parallel-plate line and 
other selected line geometries.

We assume the line is filled with dielectric having permittivity ϵ′, conductivity 
σ, and permeability μ, usually μ0 (Figure 13.2). The upper and lower plate thickness 
is t, which, along with the plate width b and plate conductivity σc, is used to evaluate 
the resistance per unit length parameter R under low-frequency conditions. We will, 
however, consider high-frequency operation, in which the skin effect gives an effec-
tive plate thickness or skin depth δ that is much less than t.

First, the capacitance and conductance per unit length are simply those of the 
parallel-plate structure, assuming static fields. Using Eq. (27) from Chapter 6, we find

C =   ϵ′b___
d
 (4)

The value of permittivity used should be appropriate for the range of operating fre-
quencies considered.

The conductance per unit length may be determined easily from the capacitance 
expression by use of the simple relation between capacitance and resistance [Eq. 
(45), Chapter 6]:

G =   σ ___ 
ϵ′   C =   σb__

d
 (5)

The evaluation of L and R involves the assumption of a well-developed skin 
effect such that δ ≪ t. Consequently, the inductance is primarily external because 
the magnetic flux within either conductor is negligible compared to that between 
conductors. Therefore,

L ≐  L  ext   =   μd__
b
 (6)

Note that  L  ext  C = μϵ′ = 1 /  v  p  2 , and we are therefore able to evaluate the external in-
ductance for any transmission line for which we know the capacitance and insulator 
characteristics.

The last of the four parameters that we need is the resistance R per unit length. 
If the frequency is very high and the skin depth δ is very small, then we obtain an 

Figure 13.2 The geometry of the 
parallel-plate transmission line.

Dielectric
(σ, ϵ′, μ)

d

t

t b

Conductor (σc)
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appropriate expression for R by distributing the total current uniformly throughout 
a depth δ. The skin effect resistance (through both conductors in series over a unit 
length) is

R =   2 ____
 σ  c  δb

  (7)

Finally, it is convenient to include the common expression for the characteristic 
impedance of the line here with the parameter formulas:

 Z  0   =  √ 
___

    L  ext   ___ 
C

     =  √ 
__

   μ __ 
ϵ′      

 d __ 
b

 (8)

If necessary, a more accurate value may be obtained from Eq. (47), Chapter 10. Note 
that when substituting (8) into (2b), and using (2a), we obtain the expected relation 
for a TEM wave,  E  xs   = η H  ys  , where η =  √ 

____
μ ∕ ϵ′  .

D13.1. Parameters for the planar transmission line shown in Figure 13.2 are 
b = 6 mm, d = 0.25 mm, t = 25 mm, σc = 5.5 × 107 S/m, ϵ′ = 25 pF/m, μ = 
μ0, and σ/ωϵ′ = 0.03. If the operating frequency is 750 MHz, calculate: (a) α; 
(b) β; (c) Z0.

Ans. (a) 0.47 Np/m; (b) 26 rad/m; (c) 9.3∠0.7° Ω

13.1.1 Coaxial (High Frequencies)

We next consider a coaxial cable in which the dielectric has an inner radius a and 
outer radius b (Figure 13.3). The capacitance per unit length, obtained as Eq. (5) of 
Section 6.3, is

C =   2πϵ′ ______
ln (b ∕ a)  (9)

Figure 13.3 Coaxial transmission-line 
geometry.

Dielectric
(σ, ϵ′, μ) Conductor (σc)

a

b

c
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Now, using the relation RC = ϵ/σ (see Problem 6.16), the conductance is

G =   2πσ ______
ln (b ∕ a)  (10)

where σ is the conductivity of the dielectric between the conductors at the operating 
frequency.

The inductance per unit length was computed for the coaxial cable as Eq. (50) 
in Section 8.10,

 L   ext   =   μ __ 2π
  ln (b ∕a) (11)

Again, this is an external inductance, for the small skin depth precludes any appreci-
able magnetic flux within the conductors.

For a circular conductor of radius a and conductivity σc, we let Eq. (90) of Sec-
tion 11.4 apply to a unit length, obtaining

 R  inner   =   1 _____
2πaδ σ  c  

  

There is also a resistance for the outer conductor, which has an inner radius b. We 
assume the same conductivity σc and the same value of skin depth δ, leading to

 R  outer   =   1 _____
2πbδ σ  c  

  

Because the line current flows through these two resistances in series, the total re-
sistance is the sum:

 R =   1 _ 2πδ σ  c  
   (    1 _ 

a
   +   1 _ 

b
   )   (12)

Finally, the characteristic impedance, assuming low losses, is

 Z  0   =  √ 
___

    L  ext   ___ 
C

     =   1 __ 2π
   √ 

__
   μ __ 

ϵ′     ln   b__
a  (13)

13.1.2 Coaxial (Low Frequencies)

We now obtain the coaxial line parameter values at very low frequencies where there 
is no appreciable skin effect and the current is assumed to be distributed uniformly 
throughout the conductor cross sections.

We first note that the current distribution in the conductor does not affect either 
the capacitance or conductance per unit length. Therefore,

C =   2πϵ′ _______
ln (b ∕a)  (14)

and

G =   2πσ ______ ln (b ∕ a)   (15)

The resistance per unit length may be calculated by dc methods, R = l/(σcS), where 
l = 1 m and σc is the conductivity of the outer and inner conductors. The area of the 
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center conductor is πa2 and that of the outer is π(c2 − b2). Adding the two resistance 
values, we have

 R =   1 _  σ  c   π   (    1 _ 
 a   2 

   +   1 _ 
 c   2  −  b   2 

   ) (16)

Only one of the four parameter values remains to be found, the inductance per unit 
length. The external inductance that we calculated at high frequencies is the greatest 
part of the total inductance. To it, however, must be added smaller terms representing 
the internal inductances of the inner and outer conductors.

At very low frequencies where the current distribution is uniform, the internal 
inductance of the center conductor is the subject of Problem 43 in Chapter 8; the 
relationship is also given as Eq. (62) in Section 8.10:

 L  a,int   =   μ __
8π

  (17)

The determination of the internal inductance of the outer shell is a more difficult 
problem, and most of the work was requested in Problem 36 in Chapter 8. There, 
we found that the energy stored per unit length in an outer cylindrical shell of inner 
radius b and outer radius c with uniform current distribution is

  W  H   =   μ I   2  ____________  
16π (   c   2  −  b   2  )  

   (   b   2  − 3 c   2  +   4 c   4  _ 
 c   2  −  b   2 

   ln   c _ 
b
   )

Thus the internal inductance of the outer conductor at very low frequencies is

  L  bc,int   =   μ
 ___________ 

8π (   c   2  −  b   2  )  
   (   b   2  − 3 c   2  +   4 c   4  _ 

 c   2  −  b   2 
   ln   c _ 

b
   ) (18)

At low frequencies the total inductance is obtained by adding (11), (17), and (18):

 L =   μ _ 2π
   [  ln  b _ a   +   1 _ 4   +   1 _ 

4 (   c   2  −  b   2  )  
   (   b   2  − 3 c   2  +   4 c   4  _ 

 c   2  −  b   2 
   ln   c _ 

b
   )   ]    (19)

13.1.3 Coaxial (Intermediate Frequencies)

There still remains the frequency interval where the skin depth is neither very much 
larger than nor very much smaller than the radius. In this case, the current distribu-
tion is governed by Bessel functions, and both the resistance and internal inductance 
are complicated expressions. Values are tabulated in the handbooks, and it is nec-
essary to use them for very small conductor sizes at high frequencies and for larger 
conductor sizes used in power transmission at low frequencies.1

1 Bessel functions are discussed within the context of optical fiber in Section 13.7. The current distribu-
tion, internal inductance, and internal resistance of round wires is discussed (with numerical examples) 
in Weeks, pp. 35–44. See the References at the end of this chapter.
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13.1.4 Two-Wire (High Frequencies)

For the two-wire transmission line of Figure 13.4 with conductors of radius a and 
conductivity σc with center-to-center separation d in a medium of permeability μ, 
permittivity ϵ′, and conductivity σc, the capacitance per unit length is found using 
the results of Section 6.4:

C =   πϵ′ ____________  
cosh−1(d ∕ 2a)

   (20)

or
C ≐   πϵ′ _______ ln (d ∕ a)    (a ≪ d)

The external inductance may be found from LextC = μϵ′. It is

 L  ext   =   μ __ π    cosh   −1 (d∕2a) (21)

or
 L  ext   ≐   μ __ π   ln (d ∕ a)  (a ≪ d)

The conductance per unit length may be written immediately from an inspection of 
the capacitance expression, and using the relation RC = ϵ/σ:

G =   πσ __________  
 cosh   −1 (d ∕ 2a)

   (22)

The resistance per unit length is twice that of the center conductor of the coax,

R =   1 _____
πaδ σ  c  

  (23)

D13.2. The dimensions of a coaxial transmission line are a = 4 mm, b = 17.5 mm,  
and c = 20 mm. The conductivity of the inner and outer conductors is 
2 × 107 S/m, and the dielectric properties are  μ  r   = 1, ϵr′ = 3, and σ/ωϵ′ = 0.025. 
Assume that the loss tangent is constant with frequency. Determine: (a) L, C, 
R, G, and Z0 at 150 MHz; (b) L and R at 60 Hz.

Ans. (a) 0.30 μH/m, 113 pF/m, 0.27 Ω/m, 2.7 mS/m, 51 Ω; (b) 0.36 μH/m, 1.16 m Ω/m

Figure 13.4 The geometry of the 
two-wire transmission line.

Dielectric
(σ, ϵ′, μ)

Conductor (σc)

a a

d
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Finally, using the capacitance and the external inductance expressions, we obtain a 
value for the characteristic impedance,

 Z  0   =  √ 
___

    L  ext   ___ 
C

     =   1 __ π   √ 
__

   μ __ ϵ      cosh   −1 (d ∕ 2a) (24)

13.1.5 Two-Wire (Low Frequencies)

At low frequencies where a uniform current distribution may be assumed, we again 
must modify the L and R expressions, but not those for C and G. The latter two are 
again expressed by (20) and (22):

 
C =   π ϵ′      __________  

 cosh   −1 (d ∕ 2a)
  
   

G =   πσ __________  
 cosh   −1 (d ∕ 2a)

  
 

The inductance per unit length must be increased by twice the internal inductance of 
a straight round wire,

 L =   μ _ π   [    1 _ 4   +  cosh   −1 (d∕2a) ]    (25)

The resistance becomes twice the dc resistance of a wire of radius a, conductivity σc, 
and unit length:

R =   2 ____ 
π a   2  σ  c  

   (26)

D13.3. The conductors of a two-wire transmission line each have a radius of 
0.8 mm and a conductivity of 3 × 107 S/m. They are separated by a center-to-
center distance of 0.8 cm in a medium for which ϵr′ = 2.5,  μ  r   = 1, and σ = 4 × 
10−9 S/m. If the line operates at 60 Hz, find: (a) δ; (b) C; (c) G; (d) L; (e) R.

Ans. (a) 1.2 cm; (b) 30 pF/m; (c) 5.5 nS/m; (d) 1.02 μH/m; (e) 0.033 Ω/m

13.1.6 Microstrip Line (Low Frequencies)

Microstrip line is one example of a class of configurations involving planar conduc-
tors of finite widths on or within dielectric substrates; they are usually employed 
as device interconnects for microelectronic circuitry. The microstrip configuration, 
shown in Figure 13.5, consists of a dielectric (assumed lossless) of thickness d and of 
permittivity ϵ′ = ϵr ϵ0, sandwiched between a conducting ground plane and a narrow 
conducting strip of width w. The region above the top strip is air (assumed here) or a 
dielectric of lower permittivity.

The structure approaches the case of the parallel-plate line if w ≫ d. In a mi-
crostrip, such an assumption is generally not valid, and so significant charge densities 
exist on both surfaces of the upper conductor. The resulting electric field, originating 
at the top conductor and terminating on the bottom conductor, will exist within both 
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substrate and air regions. The same is true for the magnetic field, which circulates 
around the top conductor. This electromagnetic field configuration cannot propagate 
as a purely TEM wave because wave velocities within the two media will differ. 
Instead, waves having z components of E and H occur, with the z component magni-
tudes established so that the air and dielectric fields do achieve equal phase velocities 
(the reasoning behind this will be explained in Section 13.6). Analyzing the structure 
while allowing for the special fields is complicated, but it is usually permissible to 
approach the problem under the assumption of negligible z components. This is the 
quasi TEM approximation, in which the static fields (obtainable through numeri-
cal solution of Laplace’s equation, for example) are used to evaluate the primary 
constants. Accurate results are obtained at low frequencies (below 1 or 2 GHz). At 
higher frequencies, results obtained through the static fields can still be used but in 
conjunction with appropriate modifying functions. We will consider the simple case 
of low-frequency operation and assume lossless propagation.2

To begin, it is useful to consider the microstrip line characteristics when the 
dielectric is not present. Assuming that both conductors have very small thicknesses, 
the internal inductance will be negligible, and so the phase velocity within the air-
filled line, vp0, will be

 v  p0   =   1 _____ 
 √ 

_____
  L  ext   C  0    
  =   1 ____  √ ____  μ  0   ϵ  0       = c (27a)

where C0 is the capacitance of the air-filled line (obtained from the electric field for 
that case), and c is the velocity of light. With the dielectric in place, the capacitance 
changes, but the inductance does not, provided the dielectric permeability is μ0. 
Using (27a), the phase velocity now becomes

 v  p   =   1 ____ 
 √ 

_____
  L  ext  C  
   = c √ 

___

    C  0   __ 
C

     =   c ____  √ ____  ϵ  r,eff       (27b)

where the effective dielectric constant for the microstrip line is

 ϵ  r,eff   =   C __  C  0  
   =   (    c __  v  p     )     

2
  (28)

It is implied from (28) that the microstrip capacitance C would result if both 
the air and substrate regions were filled homogeneously with material having di-
electric constant ϵr,eff. The effective dielectric constant is a convenient parameter 

Figure 13.5 Microstrip 
line geometry.

w

d ϵ′, μ0

ϵ0 , μ0

2 The high-frequency case is treated in detail in Edwards (Reference 2).

hay28159_ch13_456-514.indd   464 27/11/17   12:16 pm



C H A P T E R  1 3  Guided Waves 465

to use because it provides a way of unifying the effects of the dielectric and the 
conductor geometry. To see this, consider the two extreme cases involving large and 
small width-to-height ratios, w/d. If w/d is very large, then the line resembles the 
parallel-plate line, in which nearly all of the electric field exists within the dielectric. 
In this case ϵr, eff ≐ ϵr. On the other hand, for a very narrow top strip, or small w/d, the 
dielectric and air regions contain roughly equal amounts of electric flux. In that case, 
the effective dielectric constant approaches its minimum, given by the average of the 
two dielectric constants. We therefore obtain the range of allowed values of ϵr, eff:

  1 _ 2  (ϵr + 1) < ϵr,eff < ϵr (29)

The physical interpretation of ϵr,eff is that it is a weighted average of the dielectric 
constants of the substrate and air regions, with the weighting determined by the ex-
tent to which the electric field fills either region. We may thus write the effective 
dielectric constant in terms of a field filling factor, q, for the substrate:

ϵr,eff = 1 + q(ϵr − 1) (30)

where 0.5 < q < 1. With large w/d, q → 1; with small w/d, q → 0.5.
Now, the characteristic impedances of the air-filled line and the line with dielec-

tric substrate are, respectively,  Z  0  air  =  √ 
______

  L  ext   ∕  C  0     and  Z  0   =  √ 
_____

  L  ext  C  . Then, using (28),
we find

 Z  0   =    Z  0  air  ____  √ ____  ϵ  r,eff    
   (31)

A procedure for obtaining the characteristic impedance would be to first evaluate the 
air-filled impedance for a given w/d. Then, knowing the effective dielectric constant, 
determine the actual impedance using (31). Another problem would be to determine 
the required ratio w/d for a given substrate material in order to achieve a desired 
characteristic impedance.

Detailed analyses have led to numerous approximation formulas for the evalu-
ation of  ϵ  r,eff  ,  Z  0  air , and Z0 within different regimes (again, see Reference 2 and the 
references therein). For example, with dimensions restricted such that 1.3 < w/d < 
3.3, applicable formulas include:

 Z  0  air  ≐ 60 ln   [   4 (    d _ w   )   +  √ 
___________

 16  (    d _ w   )     
2
  + 2     ]     w __ 

d
   < 3.3 (32)

and

 ϵ  r,eff   ≐    ϵ  r   + 1 ____ 2   +    ϵ  r   − 1 ____ 2    (  1 + 10  d __ w   )     
−0.555

     w __ 
d
   > 1.3 (33)

Or, if a line is to be fabricated having a desired value of Z0, the effective dielectric 
constant (from which the required w/d can be obtained) is found through:

 ϵ  r,eff   ≐  ϵ  r   [0.96 +  ϵ  r  (0.109 − 0.004 ϵ  r  )( log  10  (10 +  Z  0  ) − 1)]   −1    w __ 
d
   > 1.3 (34)
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13.2 BASIC WAVEGUIDE OPERATION
Waveguides assume many different forms that depend on the purpose of the guide 
and on the frequency of the waves to be transmitted. The simplest form (in terms of 
analysis) is the parallel-plate guide shown in Figure 13.6. Other forms are the hollow- 
pipe guides, including the rectangular waveguide of Figure 13.7, and the cylindrical  
guide, shown in Figure 13.8. Dielectric waveguides, used primarily at optical  
frequencies, include the slab waveguide of Figure 13.9 and the optical fiber, shown 
in Figure 13.10. Each of these structures has certain advantages over the others, 
depending on the application and the frequency of the waves to be transmitted. All 
guides, however, exhibit the same basic operating principles, which we will explore 
in this section.

To develop an understanding of waveguide behavior, we consider the parallel- 
plate waveguide of Figure 13.6. At first, we recognize this as one of the transmission- 
line structures that we investigated in Section 13.1. So the first question that  
arises is: how does a waveguide differ from a transmission line to begin with? The 
difference lies in the form of the electric and magnetic fields within the line. To see 
this, consider again Figure 13.1, which shows the fields when the line operates as 
a transmission line. As we saw earlier, a sinusoidal voltage wave, with voltage ap-
plied between conductors, leads to an electric field that is directed vertically between 
the conductors as shown. Because current flows only in the z direction, magnetic 
field will be oriented in and out of the page (in the y direction). The interior fields 
comprise a plane electromagnetic wave which propagates in the z direction (as the 
Poynting vector will show), since both fields lie in the transverse plane. We refer to 

D13.4. A microstrip line is fabricated on a lithium niobate substrate (ϵr = 
4.8) of 1 mm thickness. If the top conductor is 2 mm wide, find (a) ϵr, eff;  
(b) Z0; (c) vp.

Ans. (a) 3.6; (b) 47 Ω; (c) 1.6 × 108 m/s

ϵ

d

z

y

x

Figure 13.6 Parallel-plate waveguide, with metal plates at 
x = 0, d. Between the plates is a dielectric of permittivity ϵ.
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Figure 13.7 Rectangular waveguide.

y

xa

b

Figure 13.8 Cylindrical waveguide.

a

n1

n2

d

n2

Figure 13.9 Symmetric dielectric slab waveguide, 
with slab region (refractive index n1) surrounded by 
two dielectrics of index n2 < n1.
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this as a transmission-line wave, which, as discussed in Section 13.1, is a transverse 
electromagnetic, or TEM, wave. The wavevector k, shown in Figure 13.1, indicates 
the direction of wave travel as well as the direction of power flow.

As the frequency is increased, a remarkable change occurs in the way the fields 
progagate down the line. Although the original field configuration of Figure 13.1 
may still be present, another possibility emerges, which is shown in Figure 13.11. 
Again, a plane wave is guided in the z direction, but by means of a progression of 
zig-zag reflections at the upper and lower plates. Wavevectors ku and kd are associ-
ated with the upward-and downward-propagating waves, respectively, and these have 
identical magnitudes,

  |   k  u   |   =  |   k  d   |   = k = ω √ _μϵ   

For such a wave to propagate, all upward-propagating waves must be in phase (as 
must be true of all downward-propagating waves). This condition can only be sat-
isfied at certain discrete angles of incidence, shown as θ in Figure 13.11. An al-
lowed value of θ, along with the resulting field configuration, comprise a waveguide
mode of the structure. Associated with each guided mode is a cutoff frequency. If 
the operating frequency is below the cutoff frequency, the mode will not propagate. 

Figure 13.10 Optical fiber waveguide, 
with the core dielectric ("ρ < a) of refractive 
index n1. The cladding dielectric (a < ρ < 
b) is of index n2 < n1.

n1

b
a

n2

Figure 13.11 In a parallel-plate waveguide, plane waves can 
propagate by oblique reflection from the conducting walls. This 
produces a waveguide mode that is not TEM.

ku kd
ku

θ

θ
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If above cutoff, the mode propagates. The TEM mode, however, has no cutoff; it will 
be supported at any frequency. At a given frequency, the guide may support several 
modes, the quantity of which depends on the plate separation and on the dielectric 
constant of the interior medium, as will be shown. The number of modes increases 
as the frequency is raised.

So to answer our initial question on the distinction between transmission lines 
and waveguides, we can state the following: Transmission lines consist of two or 
more conductors and as a rule will support TEM waves (or something which could 
approximate such a wave). A waveguide may consist of one or more conductors, or 
no conductors at all, and will support waveguide modes of forms similar to those 
just described. Waveguides may or may not support TEM waves, depending on the 
design.

In the parallel-plate guide, two types of waveguide modes can be supported. 
These are shown in Figure 13.12 as arising from the s and p orientations of the plane 
wave polarizations. In a manner consistent with our previous discussions on oblique 
reflection (Section 12.5), we identify a transverse electric or TE mode when E is 
perpendicular to the plane of incidence (s-polarized); this positions E parallel to the 
transverse plane of the waveguide, as well as to the boundaries. Similarly, a trans-
verse magnetic or TM mode results with a p polarized wave; the entire H field is in 
the y direction and is thus within the transverse plane of the guide. Both possibilities 
are illustrated in Figure 13.12. Note, for example, that with E in the y direction (TE 
mode), H will have x and z components. Likewise, a TM mode will have x and z com-
ponents of E.3 In any event, the reader can verify from the geometry of Figure 13.12 
that it is not possible to achieve a purely TEM mode for values of θ other than 90°. 
Other wave polarizations are possible that lie between the TE and TM cases, but 
these can always be expressed as superpositions of TE and TM modes.

Figure 13.12 Plane wave representation of TE and TM modes in a 
parallel-plate guide.

H

H

TE

ku kukd kd

TM
z

x

E

E

3 Other types of modes can exist in other structures (not the parallel-plate guide) in which both E and 
H have z components. These are known as hybrid modes, and they typically occur in guides with 
cylindrical cross sections, such as the optical fiber.
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13.3  PLANE WAVE ANALYSIS OF THE 
PARALLEL-PLATE WAVEGUIDE

We now investigate the conditions under which waveguide modes will occur, using 
our plane wave model for the mode fields. In Figure 13.13a, a zig-zag path is again 
shown, but this time phase fronts are drawn that are associated with two of the up-
ward-propagating waves. The first wave has reflected twice (at the top and bottom 
surfaces) to form the second wave (the downward-propagating phase fronts are not 
shown). Note that the phase fronts of the second wave do not coincide with those 
of the first wave, and so the two waves are out of phase. In Figure 13.13b, the wave 
angle has been adjusted so that the two waves are now in phase. Having satisfied this 
condition for the two waves, we will find that all upward-propagating waves will 
have coincident phase fronts. The same condition will automatically occur for all 
downward-propagating waves. This is the requirement to establish a guided mode.

13.3.1 Wave Geometry

In Figure 13.14 we show the wavevector, ku, and its components, along with a 
series of phase fronts. A drawing of this kind for kd would be the same, except the 

Figure 13.13 (a) Plane wave 
propagation in a parallel-plate guide in 
which the wave angle is such that the 
upward-propagating waves are not in 
phase. (b) The wave angle has been 
adjusted so that the upward waves are 
in phase, resulting in a guided mode.

(a)

(b)

λ
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x component, κm, would be reversed. In Section 12.4, we measured the phase shift per 
unit distance along the x and z directions by the components, kx and kz, which varied 
continuously as the direction of k changed. In our discussion of waveguides, we in-
troduce a different notation, where κm and βm are used for kx and kz. The subscript m 
is an integer indicating the mode number. This provides a subtle hint that βm and κm 
will assume only certain discrete values that correspond to certain allowed directions 
of ku and kd, such that our coincident phase front requirement is satisfied.4 From the 
geometry we see that for any value of m,

  β  m   =  √ 
_
 k   2  −  κ  m  2   (35)

Use of the symbol βm for the z components of ku and kd is appropriate because βm 
will ultimately be the phase constant for the mth waveguide mode, measuring phase 
shift per distance down the guide; it is also used to determine the phase velocity of 
the mode, ω/βm, and the group velocity, dω/dβm.

Throughout the discussion, we will assume that the medium within the guide is 
lossless and nonmagnetic, so that

k = ω  √ 
____

 μ0ϵ′    =    
ω √ 

__
 ϵr′   ______ c    =    ωn___

c (36)

Figure 13.14 The components of the 
upward wavevector are κm and βm, the 
transverse and axial phase constants. To 
form the downward wavevector, kd, the 
direction of κm is reversed.

λ

kuкm

θm

βm

4 Subscripts (m) are not shown on ku and kd but are understood. Changing m does not affect the 
magnitudes of these vectors, only their directions.
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which we express either in terms of the dielectric constant, ϵr′, or the refractive index, 
n, of the medium.

13.3.2 Transverse Resonance and Cutoff

It is κm, the x component of ku and kd, that will be useful to us in quantifying our 
requirement on coincident phase fronts through a condition known as transverse res-
onance. This condition states that the net phase shift measured during a round trip 
over the full transverse dimension of the guide must be an integer multiple of 2π 
radians. This is another way of stating that all upward- (or downward-) propagating 
plane waves must have coincident phases. The various segments of this round trip are 
illustrated in Figure 13.15. We assume for this exercise that the waves are frozen in 
time and that an observer moves vertically over the round trip, measuring phase shift 
along the way. In the first segment (Figure 13.15a), the observer starts at a position 
just above the lower conductor and moves vertically to the top conductor through dis-
tance d. The measured phase shift over this distance is κmd rad. On reaching the top 
surface, the observer will note a possible phase shift on reflection (Figure 13.15b). 
This will be π if the wave is TE polarized and will be zero if the wave is TM polarized 
(see Figure 13.16 for a demonstration of this). Next, the observer moves along the 
reflected wave phases down to the lower conductor and again measures a phase shift 
of κmd (Figure 13.15c). Finally, after including the phase shift on reflection at the 
bottom conductor, the observer is back at the original starting point and is noting the 
phase of the next upward-propagating wave.

The total phase shift over the round trip is required to be an integer multiple 
of 2π:

  κ  m  d + ϕ +  κ  m  d + ϕ = 2mπ (37)

where ϕ is the phase shift on reflection at each boundary. Note that with ϕ = π (TE 
waves) or 0 (TM waves), the net reflective phase shift over a round trip is 2π or 0, 
regardless of the angle of incidence. Thus the reflective phase shift has no bearing on 
the current problem, and we may simplify (37) to read

  κ  m   =   mπ_ 
d
   (38)

which is valid for both TE and TM modes. Note from Figure 13.14 that κm = k cos θm. 
Thus the wave angles for the allowed modes are readily found from (38) with (36):

 θ  m   =  cos   −1   (    mπ _ 
kd

   )    =  cos   −1   (    mπc _ 
ωnd

   )    =  cos   −1   (    mλ _ 2nd
   )    (39)

where λ is the wavelength in free space.
We can next solve for the phase constant for each mode, using (35) with (38):

 β  m   =  √ 
______

  k   2  −  κ  m  2     = k √ 
_______

 1 −   (    mπ ___ 
kd

   )
2

= k √ 
________

1 −   (    mπc ____ 
ωnd

   )
2

(40)
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Figure 13.15  The net phase shift 
over a round trip in the parallel-plate 
guide is found by first measuring the 
transverse phase shift between plates 
of the initial upward wave (a); next, the 
transverse phase shift in the reflected 
(downward) wave is measured, while 
accounting for the reflective phase 
shift at the top plate (b); finally, the 
phase shift on reflection at the bottom 
plate is added, thus returning to the 
starting position, but with a new up-
ward wave (c). Transverse resonance 
occurs if the phase at the final point is 
the same as that at the starting point 
(the two upward waves are in phase).

λ

ku

kd

uk

(a)

(b)

(c)

Reflection with 0 or π phase shift

Reflection with 0 or π phase shift

кmd

кmd
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We define the radian cutoff frequency for mode m as

  ω  cm   =   mπc_ 
nd

   (41)

so that (40) becomes

  β  m   =   nω _ c   √ 
_

1 −   (     ω  cm   _ ω   )     
2
    (42)

The significance of the cutoff frequency is readily seen from (42): If the operating 
frequency ω is greater than the cutoff frequency for mode m, then that mode will 
have phase constant βm that is real-valued, and so the mode will propagate. For ω < 
ωcm, βm is imaginary, and the mode does not propagate.

Associated with the cutoff frequency is the cutoff wavelength, λcm, defined as the 
free-space wavelength at which cutoff for mode m occurs. This will be

  λ  cm   =   2πc _  ω  cm     =   2nd_
m   (43)

Figure 13.16 The phase shift of a wave on reflection from a perfectly conducting surface 
depends on whether the incident wave is TE (s-polarized) or TM (p-polarized). In both draw-
ings, electric fields are shown as they would appear immediately adjacent to the conducting 
boundary. In (a) the field of a TE wave reverses direction upon reflection to establish a zero net 
field at the boundary. This constitutes a π phase shift, as is evident by considering a fictitious 
transmitted wave (dashed line) formed by a simple rotation of the reflected wave into alignment 
with the incident wave. In (b) an incident TM wave experiences a reversal of the z component of 
its electric field. The resultant field of the reflected wave, however, has not been phase-shifted; 
rotating the reflected wave into alignment with the incident wave (dashed line) shows this.

kd

Ei Er Ei

Ez – Ez

Er

TE

Perfect
conductor

Perfect
conductor

(a) (b)

TM

kd
ku ku
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Note, for example, that in an air-filled guide (n = 1) the wavelength at which the lowest- 
order mode first starts to propagate is λc1 = 2d, or the plate separation is one-half 
wavelength. Mode m will propagate whenever ω > ωcm, or equivalently whenever 
λ < λcm. Use of the cutoff wavelength enables us to construct a second useful form 
of Eq. (42):

  β  m   =   2πn _ λ   √ 
_

1 −   (    λ _  λ  cm     )     
2
    (44)

In the parallel-plate guide of Example 13.1, the operating wavelength is λ = 2 mm. 
How many waveguide modes will propagate?
Solution. For mode m to propagate, the requirement is λ < λcm. For the given wave- 
guide and wavelength, the inequality becomes, using (43),

2 mm <   2 √ 
___

 2.1   (10 mm)  __________
m 

from which

m <   2 √ 
___

 2.1   (10 mm)  __________ 2 mm  = 14.5

Thus the guide will support modes at the given wavelength up to order m = 14. Since 
there will be a TE and a TM mode for each value of m, this gives, not including the 
TEM mode, a total of 28 guided modes that are above cutoff.

A parallel-plate waveguide has plate separation d = 1 cm and is filled with Teflon 
having dielectric constant ϵr′ = 2.1. Determine the maximum operating frequency 
such that only the TEM mode will propagate. Also find the range of frequencies over 
which the TE1 and TM1 (m = 1) modes, and no higher-order modes, will propagate.
Solution. Using (41), the cutoff frequency for the first waveguide mode (m = 1) 
will be

 f  c1   =    ω  c1   ___ 2π
   =   2.99 ×  10   10  ________ 

2 √ 
___

 2.1  
  = 1.03 ×  10   10  Hz = 10.3 GHz

To propagate only TEM waves, we must have f < 10.3 GHz. To allow TE1 and TM1 
(along with TEM) only, the frequency range must be ωc1 < ω < ωc2, where ωc2 = 
2ωc1, from (41). Thus, the frequencies at which we will have the m = 1 modes and 
TEM will be 10.3 GHz < f < 20.6 GHz.

EXAMPLE 13.1

EXAMPLE 13.2
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13.3.3 Plane Wave Superposition, Phase and Group Velocities

The field configuration for a given mode can be found through the superposition of the 
fields of all the reflected waves. We can do this for the TE waves, for example, by writ-
ing the electric field phasor in the guide in terms of incident and reflected fields through

 E  ys   =  E  0   e   −j k  u   · r  −  E  0   e   −j k  d   · r  (45)

where the wavevectors, ku and kd, are indicated in Figure 13.12. The minus sign in 
front of the second term arises from the π phase shift on reflection. From the geom-
etry depicted in Figure 13.14, we write

 k  u   =  κ  m   a  x   +  β  m   a  z   (46)

and
 k  d   = −  κ  m   a  x   +  β  m   a  z   (47)

Then, using
r = x a  x   + z a  z  

Eq. (45) becomes

 E  ys   =  E  0  ( e   −j κ  m  x  −  e   j κ  m  x ) e   −j β  m  z  = 2j  E  0   sin ( κ  m  x) e   −j β  m  z  = E0′ sin ( κ  m  x) e   −j β  m  z  (48)

where the plane wave amplitude, E0, and the overall phase are absorbed into E0′. In 
real instantaneous form, (48) becomes

 E  y  (z, t) = ℛe   (   E  ys   e   jωt  )    = E0′ sin ( κ  m  x) cos (ωt −  β  m  z)  (TE mode above cutoff)
(49)

We interpret this as a wave that propagates in the positive z direction (down the 
guide) while having a field profile that varies with x.5 The TE mode field is the inter-
ference pattern resulting from the superposition of the upward and downward plane 
waves. Note that if ω < ωcm, then (42) yields an imaginary value for βm, which we 
may write as −j|βm| = −jαm. Eqs. (48) and (49) then become

 E  ys   = E0′ sin ( κ  m  x) e   − α  m  z  (50)

E(z, t) = E0′ sin ( κ  m   x) e   − α  m  z  cos (ωt)  (TE mode below cutoff) (51)

This mode does not propagate, but simply oscillates at frequency ω, while exhibiting 
a field pattern that decreases in strength with increasing z. The attenuation coeffi-
cient, αm, is found from (42) with ω < ωcm:

 α  m   =   n ω  cm   ____ c   √ 
________

 1 −   (    ω ___  ω  cm     )     
2
    =   2πn ___  λ  cm

   √ 
_______

1 −   (     λ  cm   ___ λ   )     
2
    (52)

5 We can also interpret this field as that of a standing wave in x while it is a traveling wave in z.
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We note from (39) and (41) that the plane wave angle is related to the cutoff 
frequency and cutoff wavelength through

 cos  θ  m   =    ω  cm   _ ω   =   λ _ λ  cm     (53)

So we see that at cutoff (ω = ωcm), θm = 0, and the plane waves are just reflecting 
back and forth over the cross section; they are making no forward progress down 
the guide. As ω is increased beyond cutoff (or λ is decreased), the wave angle in-
creases, approaching 90° as ω approaches infinity (or as λ approaches zero). From 
Figure 13.14, we have

  β  m   = k sin  θ  m   =   nω _ c   sin  θ  m   (54)

and so the phase velocity of mode m will be

  v   pm   =   ω _  β  m     =   c _ 
n sin  θ  m     (55)

The velocity minimizes at c/n for all modes, approaching this value at frequencies 
far above cutoff; vpm approaches infinity as the frequency is reduced to approach the 
cutoff frequency. Again, phase velocity is the speed of the phases in the z direction, 
and the fact that this velocity may exceed the speed of light in the medium is not a 
violation of relativistic principles, as discussed in Section 12.7.

The energy will propagate at the group velocity, vg = dω/dβ. Using (42), we have

  v   gm  −1  =   d β  m   ___ 
dω

   =   d ___ 
dω

    [    nω _ c   √ 
_

1 −   (     ω  cm   _ ω   )     
2
     ]    (56)

The derivative is straightforward. Carrying it out and taking the reciprocal of the 
result yields:

  v   gm   =   c _ n   √ 
_

 1 −   (     ω  cm   _ ω   )     
2
    =   c _ n  sin  θ  m   (57)

Group velocity is thus identified as the projection of the velocity associated with ku 
or kd into the z direction. This will be less than or equal to the velocity of light in the 
medium, c/n, as expected.

In the guide of Example 13.1, the operating frequency is 25 GHz. Consequently, 
modes for which m = 1 and m = 2 will be above cutoff. Determine the group delay
difference between these two modes over a distance of 1 cm. This is the difference 
in propagation times between the two modes when energy in each propagates over 
the 1-cm distance.

EXAMPLE 13.3

hay28159_ch13_456-514.indd   477 27/11/17   12:16 pm



E N G I N E E R I N G  E L E C T R O M AG N E T I C S478

Solution. The group delay difference is expressed as

Δt =   (    1 _  v  g2     −   1 _  v  g1     )   (s∕cm)

From (57), along with the results of Example 13.1, we have

 v  g1   =   c ___ 
 √ 

___
 2.1  
   √ 

________

 1 −   (    10.3 ____ 25   )     
2
    = 0.63c

   
 v  g2   =   c ___ 

 √ 
___

 2.1  
   √ 

________

 1 −   (    20.6 ____ 25   )     
2
    = 0.39c

Then

Δt =   1 _ c    [    1 _ .39   −   1 _ .63   ]    = 3.3 ×  10   −11  s∕cm = 33 ps∕cm

This computation gives a rough measure of the modal dispersion in the guide, apply-
ing to the case of having only two modes propagating. A pulse, for example, whose 
center frequency is 25 GHz would have its energy divided between the two modes. 
The pulse would broaden by approximately 33 ps/cm of propagation distance as the 
energy in the modes separates. If, however, we include the TEM mode (as we really 
must), then the broadening will be even greater. The group velocity for TEM will be
c ∕  √ 

___
 2.1  . The group delay difference of interest will then be between the TEM mode

and the m = 2 mode (TE or TM). We would therefore have

Δ t  net   =   1 _ c    [    1 _ .39   − 1 ]    = 52 ps∕cm

D13.5. Determine the wave angles θm for the first four modes (m = 1, 2, 3, 4) 
in a parallel-plate guide with d = 2 cm, ϵr′ = 1, and f = 30 GHz.

Ans. 76°; 60°; 41°; 0°

D13.6. A parallel-plate guide has plate spacing d = 5 mm and is filled with 
glass (n = 1.45). What is the maximum frequency at which the guide will op-
erate in the TEM mode only?

Ans. 20.7 GHz

D13.7. A parallel-plate guide having d = 1 cm is filled with air. Find the cutoff 
wavelength for the m = 2 mode (TE or TM).

Ans. 1 cm
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13.4  PARALLEL-PLATE GUIDE ANALYSIS USING 
THE WAVE EQUATION

The most direct approach in the analysis of any waveguide is through the wave equa-
tion, which we solve subject to the boundary conditions at the conducting walls. The 
form of the equation that we will use is that of Eq. (28) in Section 11.1, which was 
written for the case of free-space propagation. We account for the dielectric proper-
ties in the waveguide by replacing k0 in that equation with k to obtain:

  ∇   2  E  s   = −  k   2  E  s   (58)

where k = nω/c as before.
We can use the results of the last section to help us visualize the process of solv-

ing the wave equation. For example, we may consider TE modes first, in which there 
will be only a y component of E. The wave equation becomes:

  
 ∂   2  E  ys   ____ 
∂  x   2 

   +   
 ∂   2  E  ys   ____ 
∂  y   2 

   +   
 ∂   2  E  ys   ____ 
∂  z   2 

   +  k   2  E  ys   = 0 (59)

We assume that the width of the guide (in the y direction) is very large compared to 
the plate separation d. Therefore we can assume no y variation in the fields (fringing 
fields are ignored), and so ∂2 Eys/∂y2 = 0. We also know that the z variation will be of 
the form e−jβmz. The form of the field solution will thus be

  E  ys   =  E  0     f  m  (x) e   −j β  m  z  (60)

where E0 is a constant, and where fm(x) is a normalized function to be determined 
(whose maximum value is unity). We have included subscript m on β, κ, and f(x), 
since we anticipate several solutions that correspond to discrete modes, to which we 
associate mode number m. We now substitute (60) into (59) to obtain

    d   2    f  m  (x) _ 
d x   2 

   + ( k   2  −  β  m  2  )  f  m  (x) = 0 (61)

where E0 and e−jβmz have divided out, and where we have used the fact that

   d   2  ___ 
d z   2 

    e   −j β  m  z  = −  β  m  2   e   −j β  m  z

Note also that we have written (61) using the total derivative d2/dx2, as fm is a func-
tion only of x. We next make use of the geometry of Figure 13.14, and we note that 
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k   2  −  β  m  2   =  κ  m  2  . Using this in (61) we obtain

    d   2    f  m  (x) _ 
d x   2 

   +  κ  m  2     f  m  (x) = 0 (62)

The general solution of (62) will be

  f  m  (x) = cos ( κ  m  x) + sin ( κ  m  x) (63)

We next apply the appropriate boundary conditions in our problem to evaluate 
κm. From Figure 13.6, conducting boundaries appear at x = 0 and x = d, at which the 
tangential electric field (Ey) must be zero. In Eq. (63), only the sin(κm x) term will 
allow the boundary conditions to be satisfied, so we retain it and drop the cosine 
term. The x = 0 condition is automatically satisfied by the sine function. The x = d 
condition is met when we choose the value of κm such that

 κ  m   =   mπ ___ 
d
   (64)

We recognize Eq. (64) as the same result that we obtained using the transverse res-
onance condition of Section 13.3. The final form of Eys is obtained by substituting 
fm(x) as expressed through (63) and (64) into (60), yielding a result that is consistent 
with the one expressed in Eq. (48):

  E  ys   =  E  0   sin   (    mπx _ 
d
   )    e   −j β  m  z  (65)

An additional significance of the mode number m is seen when considering the 
form of the electric field of (65). Specifically, m is the number of spatial half-cycles 
of electric field that occur over the distance d in the transverse plane. This can be un-
derstood physically by considering the behavior of the guide at cutoff. As we learned 
in the last section, the plane wave angle of incidence in the guide at cutoff is zero, 
meaning that the wave simply bounces up and down between the conducting walls. 
The wave must be resonant in the structure, which means that the net round trip phase 
shift is 2mπ. With the plane waves oriented vertically, βm = 0, and so κm = k = 2nπ/ λcm.  
So at cutoff,

  mπ ___ 
d
   =   2nπ___

 λ  cm
  (66)

which leads to
d =   m λ  cm  ____

2n
 at cutoff (67)

Eq. (65) at cutoff then becomes

 E  ys   =  E  0   sin   (    mπx _ 
d
   )    =  E  0   sin   (    2nπx _  λ  cm     ) (68)

The waveguide is simply a one-dimensional resonant cavity, in which a wave can 
oscillate in the x direction if its wavelength as measured in the medium is an integer 
multiple of 2d where the integer is m.
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Now, as the frequency increases, wavelength will decrease, and so the require-
ment of wavelength equaling an integer multiple of 2d is no longer met. The response 
of the mode is to establish z components of ku and kd, which results in the decreased 
wavelength being compensated by an increase in wavelength as measured in the x di-
rection. Figure 13.17 shows this effect for the m = 4 mode, in which the wave angle, 
θ4, steadily increases with increasing frequency. Thus, the mode retains precisely the 
functional form of its field in the x direction, but it establishes an increasing value of 
βm as the frequency is raised. This invariance in the transverse spatial pattern means 
that the mode will retain its identity at all frequencies. Group velocity, expressed in 
(57), is changing as well, meaning that the changing wave angle with frequency is 
a mechanism for group velocity dispersion, known simply as waveguide dispersion. 
Pulses, for example, that propagate in a single waveguide mode will thus experience 
broadening in the manner considered in Section 12.8.

Having found the electric field, we can find the magnetic field using Maxwell’s 
equations. We note from our plane wave model that we expect to obtain x and z com-
ponents of Hs for a TE mode. We use the Maxwell equation

∇ ×  E  s   = − jωμ H  s   (69)

where, in the present case of having only a y component of Es, we have

∇ ×  E  s   =   
∂  E  ys   ____ ∂ x   a  z   −   

∂ E  ys   ____ ∂ z   a  x   =  κ  m   E  0   cos ( κ  m  x) e   −j β  m  z  a  z   + j β  m   E  0   sin ( κ  m  x) e   −j β  m  z  a  x   (70)

Figure 13.17 (a) A plane wave associated 
with an m = 4 mode, showing a net phase 
shift of 4π (two wavelengths measured in x) 
occurring over distance d in the transverse 
plane. (b) As frequency increases, an in-
crease in wave angle is required to maintain 
the 4π transverse phase shift.

(a)

(b)

d/2

d/2

λ

λʹ

ku

ku

θ4

θʹ4
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We solve for Hs by dividing both sides of (69) by −jωμ. Performing this operation on 
(70), we obtain the two magnetic field components:

  H  xs   = −    β  m   _ ωμ   E  0   sin ( κ  m  x) e   −j β  m  z   (71)

  H  zs   = j   κ  m   _ ωμ   E  0   cos ( κ  m  x) e   −j β  m  z  (72)

Together, these two components form closed-loop patterns for Hs in the x, z plane, 
as can be verified using the streamline plotting methods developed in Section 2.6.

It is interesting to consider the magnitude of Hs, which is found through

 |   H  s    |   =  √ 
______

  H  s   ·  H  s  *    =  √ 
____________

   H  xs   H  xs  *   +  H  zs   H  zs  *     (73)

Carrying this out using (71) and (72) results in

 |   H  s    |   =    E  0   ___ ωμ    (   κ  m  2   +  β  m  2   )     1∕2   (   sin   2 ( κ  m  x) +  cos   2 ( κ  m  x) )     1∕2  (74)

Using the fact that  κ  m  2   +  β  m  2   =  k   2  and using the identity  sin   2 ( κ  m  x) +  cos   2 ( κ  m  x) = 1, 
(74) becomes

 |   H  s    |   =   k ___ ωμ   E  0   =   ω √ ___ μϵ   ____ ωμ   =    E  0  __
η (75)

where η =  √ 
____

 μ / ϵ  . This result is consistent with our understanding of waveguide
modes based on the superposition of plane waves, in which the relation between Es 
and Hs is through the medium intrinsic impedance, η.

D13.8. Determine the group velocity of the m = 1 (TE or TM) mode in an 
air-filled parallel-plate guide with d = 0.5 cm at f = (a) 30 GHz, (b) 60 GHz, 
and (c) 100 GHz.

Ans. (a) 0; (b) 2.6 × 108 m/s; (c) 2.9 × 108 m/s

D13.9. A TE mode in a parallel-plate guide is observed to have three maxima 
in its electric field pattern between x = 0 and x = d. What is the value of m?

Ans. 3

13.5 RECTANGULAR WAVEGUIDES
In this section we consider the rectangular waveguide, a structure that is usually 
used in the microwave region of the electromagnetic spectrum. The guide is shown 
in Figure 13.7. As always, the propagation direction is along the z axis. The guide 
is of width a along x and height b along y. We can relate the geometry to that of the 
parallel-plate guide of previous sections by thinking of the rectangular guide as two 
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parallel-plate guides of orthogonal orientation that are assembled to form one unit. 
We have a pair of horizontal conducting walls (along the x direction) and a pair of 
vertical walls (along y), all of which form one continuous boundary. The wave equa-
tion in its full three-dimensional form [Eq. (59)] must now be solved, for in general 
we may have field variations in all three coordinate directions.

In the parallel-plate guide, we found that the TEM mode can exist, along with 
TE and TM modes. The rectangular guide will support the TE and TM modes, but it 
will not support a TEM mode. This is because, in contrast to the parallel-plate guide, 
we now have a conducting boundary that completely surrounds the transverse plane. 
The nonexistence of TEM can be understood by remembering that any electric field 
must have a zero tangential component at the boundary. This means that it is impossi-
ble to set up an electric field that will not exhibit the sideways variation that is neces-
sary to satisfy this boundary condition. Because E varies in the transverse plane, the 
computation of H through ∇ × E = −jωμH must lead to a z component of H, and so 
we cannot have a TEM mode. We cannot find any other orientation of a completely 
transverse E in the guide that will allow a completely transverse H.

13.5.1 Using Maxwell’s Equations to Relate Field Components

With the modes dividing into TE and TM types, the standard approach is to first 
solve the wave equation for the z components. By definition, Ez = 0 in a TE mode, 
and Hz = 0 in a TM mode. Therefore, we will find the TE mode solution by solving 
the wave equation for Hz, and we will obtain the TM mode solution by solving for 
Ez. Using these results, all transverse field components are obtained directly through 
Maxwell’s equations. This procedure may sound a little tedious (which it is), but we 
can be certain to find all the modes this way. First, we will handle the problem of 
finding transverse components in terms of the z components.

To begin the process, we assume that the phasor electric and magnetic fields will 
be forward-z propagating functions that exhibit spatial variation in the xy plane; the 
only z variation is that of a forward-propagating wave:

 E  s  (x, y, z) =  E  s  (x, y,0) e   −jβz  (76a)

 H  s  (x, y, z) =  H  s  (x, y, 0) e   −jβz  (76b)
We can then obtain expressions for the transverse components of the phasor fields 
by evaluating the x and y components of the Maxwell curl equations in sourceless 
media. In evaluating the curl, it is evident from (76) that ∂/∂z = −jβ. The result is

∇ ×  E  s   = − jωμ  H  s   →   {   
∂  E  zs   ∕ ∂ y + jβ  E  ys   = − jωμ  H  xs   (x component)

    
jβ  E  xs   + ∂  E  zs   ∕ ∂ x = jωμ  H  ys   (y component)  

(77a)
(77b)

∇ ×  H  s   = jωϵ  E  s   →   {   
∂  H  zs   ∕ ∂ y + jβ  H  ys   = jωϵ  E  xs   (x component)

     
jβ  H  xs   + ∂ H  zs   ∕ ∂ x = − jωϵ  E  ys   (y component)

(78a)
(78b)

Now, pairs of the preceding equations can be solved together in order to express the 
individual transverse field components in terms of derivatives of the z components 
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of E and H. For example, (77a) and (78b) can be combined, eliminating Eys, to give

  H  xs   =   − j
 _ 

 κ   2 
    [  β   ∂  H  zs   _ ∂ x   − ωϵ   ∂   E  zs   _ ∂ y   ]    (79a)

Then, using (76b) and (77a), eliminate Exs between them to obtain

  H  ys   =   − j
 _ 

 κ   2 
    [  β  ∂ H  zs   _ ∂ y   + ωϵ  ∂ E  zs   _ ∂ x   ]     (79b)

Using the same equation pairs, the transverse electric field components are then found:

  E  xs   =   − j
 _ 

 κ   2 
    [  β  ∂  E  zs   _ ∂ x   + ωμ  ∂  H  zs   _ ∂ y   ]    (79c)

  E  ys   =   − j
 _ 

 κ   2 
    [  β  ∂  E  zs   _ ∂ y   − ωμ  ∂  H  zs   _ ∂ x   ]    (79d)

κ is defined in the same manner as in the parallel-plate guide [Eq. (35)]:
κ =  √ 

_____
 k   2  −  β   2   (80)

where k = ω √ ___ μϵ  . In the parallel-plate geometry, we found that discrete values of κ
and β resulted from the analysis, which we then subscripted with the integer mode 
number, m (κm and βm). The interpretation of m was the number of field maxima that 
occurred between plates (in the x direction). In the rectangular guide, field variations 
will occur in both x and y, and so we will find it necessary to assign two integer sub-
scripts to κ and β, thus leading to

  κ  mp   =  √ 
_
 k   2  −  β  mp  2 (81)

where m and p indicate the number of field variations in the x and y directions. The 
form of Eq. (81) suggests that plane wave (ray) theory could be used to obtain the 
mode fields in the rectangular guide, as was accomplished in Section 13.3 for the 
parallel-plate guide. This is, in fact, the case, and is readily accomplished for cases 
in which plane wave reflections occur between only two opposing boundaries (either 
top to bottom or side to side), and this would be true only for certain TE modes. The 
method becomes complicated when reflections occur at all four surfaces; but in any 
case, the interpretation of κmp is the transverse (xy plane) component of the plane 
wave-vector k, while βmp is the z component, as before.

The next step is to solve the wave equation for the z components of E and H, 
from which we will find the fields of the TM and TE modes.

13.5.2 TM Modes

Finding the TM modes begins with the wave equation [Eq. (59)], in which deriva-
tives with respect to z are equivalent to multiplying by jβ. We write the equation for 
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the z component of Es:

   ∂   2  E  zs   ____ 
∂  x   2 

   +    ∂   2  E  zs   ____ 
∂  y   2 

   + ( k   2  −  β  mp  2  ) E  zs   = 0 (82)

The solution of (82) can be written as a sum of terms, each of which involves the 
product of three functions that exhibit individual variation with x, y, and z:

  E  zs  (x, y, z) =   ∑ 
m,p

    F  m  (x)  G  p  (y) exp (− j β  mp   z) (83)

where the functions Fm(x) and Gp(y) (not normalized) are to be determined. Each 
term in (83) corresponds to one mode of the guide, and will by itself be a solution to 
(82). To determine the functions, a single term in (83) is substituted into (82). Noting 
that all derivatives are applied to functions of a single variable (and thus partial de-
rivatives become total derivatives), and using (81), the result is

  G  p  (y)   d   2  F  m   ____ 
d x   2 

   +  F  m  (x)  
 d   2  G  p   ____ 
d y   2 

   +  κ  mp  2    F  m  (x)  G  p  (y) = 0 (84)

in which the exp(−jβmp z) term has divided out. Rearranging (84), we get

     1 __  F  m      
 d   2  F  m   ____ 
d x   2 

  
 

     

− κ  m  2  

   +     1 __  G  p  
    
 d   2  G  p   ____ 
d y   2 

    
 

     

− κ  p  2 

    +  κ  mp  2   = 0  (85)

Terms in (85) are grouped such that all of the x variation is in the first term, which 
varies only with x, and all y variation is in the second term, which varies only with y. 
Now, consider what would happen if x is allowed to vary while holding y fixed. The 
second and third terms would be fixed, and Eq. (85) must always hold. Therefore, the 
x-varying first term must be a constant. This constant is denoted −  κ  m  2  , as indicated in 
(85). The same is true for the second term, which must also turn out to be a constant 
if y is allowed to vary while x is fixed. We assign the second term the constant value 
−  κ  p  2  as indicated. Eq. (85) then states that

  κ  mp  2   =  κ  m  2   +  κ  p  2  (86)

which suggests an immediate geometrical interpretation: As κmp is the transverse plane 
component of the wavevector k, κm and κp are clearly the x and y components of κmp 
(and of k)—again if one thinks in terms of plane waves and how they would bounce 
around in the waveguide to form the overall mode. Also indicated in (86) is the fact 
that κm and κp will be functions, respectively, of the integers m and p, as we will find.

Under the preceding conditions, Eq. (85) will now separate into two equations, 
one in each variable:

    d   2  F  m   ____ 
d x   2 

     +  κ  m  2    F  m   = 0  (87a)

   
 d   2  G  p   ____ 
d y   2 

     +  κ  p  2   G  p   = 0  (87b)

                  ⏟
                     ⏟
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Equation (87) is now easily solved. We obtain

  F  m  (x) =  A  m   cos ( κ  m  x) +  B  m      sin ( κ  m  x)  (88a)
  G  p  (y) =  C  p   cos ( κ  p  y) +  D  p     sin ( κ  p  y)  (88b)

Using these, along with (83), the general solution for z component of Es for a single 
TM mode can be constructed:

  E  zs   = [ A  m   cos ( κ  m  x) +  B  m   sin ( κ  m  x)][ C  p   cos ( κ  p  y) +  D  p   sin ( κ  p  y)]exp (− j β  mp   z)  (89)

The constants in (89) can be evaluated by applying the boundary conditions of the 
field on all four surfaces. Specifically, as Ezs is tangent to all the conducting surfaces, 
it must vanish on all of them. Referring to Figure 13.7, the boundary conditions are

 E  zs   = 0 at x = 0, y = 0, x = a, and y = b
Obtaining zero field at x = 0 and y = 0 is accomplished by dropping the cosine terms 
in (89) (setting Am = Cp = 0). The values of κm and κp that appear in the remaining 
sine terms are then set to the following, in order to assure zero field at x = a and 
y = b:

  κ  m   =   mπ___
a (90a)

  κ  p   =   pπ__
b
 (90b)

Using these results, and defining B = Bm Dp, Eq. (89) becomes:

  E  zs   = B  sin   (   κ  m  x )   sin   (   κ  p  y )   exp (− j β  mp   z) (91a)

Now, to find the remaining (transverse) field components, we substitute Eq. (91a) 
into Eqs. (79) to obtain:

  E  xs   = − j β  mp    
 κ  m   _ 
 κ  mp  2  

  B cos   (   κ  m  x )    sin   (   κ  p  y )   exp (− j β  mp   z) (91b)

  E  ys   = − j β  mp    
 κ  p   _ 

 κ  mp  2  
  B sin   (   κ  m  x )    cos   (   κ  p  y )   exp (− j β  mp   z) (91c)

  H  xs   = jωϵ  
 κ  p   _ 

 κ  mp  2  
  B  sin   (   κ  m  x )    cos   (   κ  p  y )   exp (− j β  mp   z) (91d)

  H  ys   = − jωϵ   κ  m   _ 
 κ  mp  2  

   B  cos   (   κ  m  x )    sin   (   κ  p  y )   exp (− j β  mp   z) (91e)

The preceding field components pertain to modes designated TMmp. Note that for 
these modes, both m and p must be greater than or equal to 1. A zero value for either 
integer will zero all fields.
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13.5.3 TE Modes

To obtain the TE mode fields, we solve the wave equation for the z component of H 
and then use Eq. (79) as before to find the transverse components. The wave equation 
is now the same as (82), except that Ezs is replaced by Hzs:

    ∂   2  H  zs   ____ 
∂  x   2 

   +    ∂   2  H  zs   ____ 
∂  y   2 

   + ( k   2  −  β  mp  2  ) H  zs   = 0  (92)

and the solution is of the form: 

  H  zs  (x, y, z) =   ∑ 
m,p

    Fm′ (x) Gp′(y)exp (− j β  mp   z) (93)

The procedure from here is identical to that involving TM modes, and the general 
solution will be

  H  zs   = [Am′ cos ( κ  m  x) + Bm′ sin ( κ  m  x)][Cp′ cos ( κ  p   y) + Dp′ sin ( κ  p   y)]exp (− j β  mp   z)  (94)

Again, the expression is simplified by using the appropriate boundary conditions. We 
know that tangential electric field must vanish on all conducting boundaries. When 
we relate the electric field to magnetic field derivatives using (79c) and (79d), the 
following conditions develop:

  E  xs    |    y=0,b
= 0 ⇒   ∂ H  zs   ____ ∂ y      |    y=0,b

   = 0 (95a)

  E  ys      |    x=0,a
    = 0 ⇒     ∂  H  zs   ____ ∂ x      |    x=0,a

     = 0 (95b)

The boundary conditions are now applied to Eq. (94), giving, for Eq. (95a)

  
  ∂  H  zs   ____ ∂ y  

  
=

  
  [  Am′   cos (   κ  m  x )   + Bm′ sin (   κ  m  x )   ]   

       
×   [   −  κ  p  Cp′ sin (   κ  p  y )   +  κ  p  Dp′ cos (   κ  p  y )   ]     ___ exp (− j β  mp   z)

The underlined terms are those that were modified by the partial differentiation. Re-
quiring this result to be zero at y = 0 and y = b leads to dropping the cos(κp y) term (set 
Dp′ = 0) and requiring that κp = pπ/b as before. Applying Eq. (95b) to (94) results in

  ∂  H  zs   ____ ∂ x     =    [  − κ  m   Am′   sin (   κ  m  x )   +  κ  m   Bm′  cos (   κ  m  x )   ]     ____        
 
    

  ×  [  Cp′ cos (   κ  p  y )   + Dp′ sin (   κ  p  y )   ]  exp (  −j β  mp   z )     

where again, the underlined term has been modified by partial differentiation with re-
spect to x. Setting this result to zero at x = 0 and x = a leads to dropping the cos(κmx) 
term (setting Bm′ = 0) and requiring that κm = mπ/a as before. With all the above 
boundary conditions applied, the final expression for Hzs is now

  H  zs   = A cos   (   κ  m  x )    cos   (   κ  p  y )   exp (− j β  mp   z) (96a)
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where we define A = Am′ Cp′. Applying Eqs. (79a) through (79d) to (96a) gives the 
transverse field components:

  H  xs   = j β  mp    
 κ  m   _ 
 κ  mp  2  

  A sin   (   κ  m  x )   cos   (   κ  p  y )   exp (− j β  mp   z) (96b)

  H  ys   = j β  mp    
 κ  p   _ 

 κ  mp  2  
  A cos   (   κ  m  x )   sin   (   κ  p  y )   exp (− j β  mp   z) (96c)

  E  xs   = jωμ  
 κ  p   _ 

 κ  mp  2  
  A cos   (   κ  m  x )   sin   (   κ  p  y )   exp (− j β  mp   z) (96d)

  E  ys   = − jωμ   κ  m   _ 
 κ  mp  2  

  A sin   (   κ  m  x )   cos   (   κ  p  y )   exp (− j β  mp   z) (96e)

These field components pertain to modes designated TEmp. For these modes, either 
m or p may be zero, thus allowing for the possibility of the important TEm0 or TE0p 
cases, as will be discussed later. Some very good illustrations of TE and TM modes 
are presented in Reference 3.

13.5.4 Cutoff Conditions

The phase constant for a given mode can be expressed using Eq. (81):

  β  mp   =  √ 
______
 k   2  −  κ  mp  2 (97)

Then, using (86), along with (90a) and (90b), we have

  β  mp   =  √ 
_____________

   k   2  −   (    mπ ___ a   )     2  −   (    pπ __ 
b
   )

2
(98)

This result can be written in a manner consistent with Eq. (42) by using k = ω 
√ ___ μϵ   and defining a radian cutoff frequency, ωcmp, appropriate for the rectangular 
guide. We obtain:

  β  mp   = ω √ _ μϵ   √ 
___________

  1 −    (    
 ω  Cmp   _ ω   )

2
(99)

where

  ω  Cmp   =   1 ___  √ ___ μϵ      [    (    mπ ___ a   )     2  +   (    pπ __ 
b
   )2

  ]
1∕2

(100)

As discussed for the parallel-plate guide, it is again clear from (99) that the operating 
frequency, ω, must exceed the cutoff frequency, ωCmp, to achieve a real value for βmp 
(and thus enabling mode mp to propagate). Equation (100) applies to both TE and 
TM modes, and thus some combination of both mode types may be present (or above 
cutoff) at a given frequency. It is evident that the choice of guide dimensions, a and 
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b, along with the material properties, ϵr and μr, will determine the number of modes 
that will propagate. For the typical case in which μr = 1, using n =  √ __  ϵ  r    , and identi-
fying the speed of light, c = 1∕  √ ____  μ  0   ϵ  0    , we may re-write (100) in a manner consistent
with Eq. (41):

  ω  Cmp   =   c _ n    [    (    mπ _ a   )     2  +   (    pπ
 _ 

b
   )2

  ]
1∕2

(101)

This would lead to an expression for the cutoff wavelength, λCmp, in a manner con-
sistent with Eq. (43):

  λ  Cmp   =   2πc _  ω  Cmp     = 2n  [    (    m _ a   )     2  +   (    p _ 
b
   )2

  ]
−1∕2

(102)

λCmp is the free space wavelength at cutoff. If measured in the medium that fills the 
waveguide, the cutoff wavelength would be given by Eq. (102) divided by n.

Now, in a manner consistent with Eq. (44), Eq. (99) becomes 

βmp =    2πn ____ λ       √ 
___________

 1 −  (  λ ____
λCmp

  )
2

(103)

where λ is the free space wavelength. As we saw before, a TEmp or TMmp mode can 
propagate if its operating wavelength, λ, is less than λCmp.

13.5.5 Special Cases: TEm0 and TE0p Modes

The most important mode in the rectangular guide is the one that can propagate by 
itself. As we know, this will be the mode that has the lowest cutoff frequency (or the 
highest cutoff wavelength), so that over a certain range of frequencies, this mode 
will be above cutoff, while all others are below cutoff. By inspecting Eq. (101), and 
noting that a > b, the lowest cutoff frequency will occur for the mode in which m = 1 
and p = 0, which will be the TE10 mode (remember that a TM10 mode does not exist, 
as can be shown in (91)). It turns out that this mode, and those of the same general 
type, are of the same form as those of the parallel-plate structure.

The specific fields for the TEm0 family of modes are obtained from (96a) through 
(96e) by setting p = 0, which means, using (86) and (90), that

  κ  m   =  κ  mp    |    p=0
  =   mπ___

a (104)

and κp = 0. Under these conditions, the only surviving field components in (91) will 
be Eys, Hxs, and Hzs. It is convenient to define the field equations in terms of an elec-
tric field amplitude, E0, which is composed of all the amplitude terms in Eq. (96e). 
Specifically, define

  E  0   = − jωμ   κ  m   ___ 
 κ  m0  2  

  A = − j  ωμ ___  κ  m    A (105)
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Substituting (104) and (105) into Eqs. (96e), (96c), and (96a) leads to the following 
expressions for the TEm0 mode fields:

  E  ys   =  E  0   sin   (   κ  m  x )    e   −j β  m0  z   (106)

  H  xs   = −    β  m0   _ ωμ   E  0   sin   (   κ  m  x )    e   −j β  m0  z  (107)

  H  zs   = j   κ  m   _ ωμ   E  0   cos ( κ  m  x) e   −j β  m0  z  (108)

It can be seen that these expressions are identical to the parallel-plate fields, 
Eqs. (65), (71), and (72). For TEm0, we again note that the subscripts indicate 
that there are m half cycles of the electric field over the x dimension and there 
is zero variation in y. The cutoff frequency for the TEm0 mode is given by (101), 
appropriately modified:

  ω  Cm0   =   mπc____
na (109)

Using (109) in (99), the phase constant is

  β  m0   =   nω ___ c   √ 
________
1 −   (    mπc ____ ωna   )     2    (110)

All of the implications on mode behavior above and below cutoff are exactly the 
same as we found for the parallel-plate guide. The plane wave analysis is also carried 
out in the same manner. TEm0 modes can be modeled as plane waves that propagate 
down the guide by reflecting between the vertical side walls.

The electric field of the fundamental (TE10) mode is, from (106):

  E  ys   =  E  0   sin   (    πx _ a   )    e   −j β  10  z  (111)

This field is plotted in Figure 13.18a. The field is vertically polarized, terminates on 
the top and bottom plates, and becomes zero at the two vertical walls, as is required 
from our boundary condition on a tangential electric field at a conducting surface. Its 
cutoff wavelength is found from (102) to be

  λ   C10   = 2na (112)

which means that cutoff for this mode is achieved when the guide horizontal dimen-
sion, a, is equal to a half-wavelength (as measured in the medium).

Another possibility is the TE0p field configuration, which consists of a horizon-
tally polarized electric field. Figure 13.18b shows the field for TE01. The specific 
fields for the TE0p family are obtained from Eqs. (96a) through (96e) by setting m = 0, 
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which means, using (86) and (90), that

  κ  p   =  κ  mp    |    m=0
  =   pπ__

b
 (113)

and κm = 0. Now, the surviving field components in Eqs. (91a) through (91e) will be 
Exs, Hys, and Hzs. Now, define the electric field amplitude, E0′ , which is composed of 
all the amplitude terms in Eq. (96d):

E0′ = jωμ  
 κ  p   ___ 
 κ  0p  2  

  A = j  ωμ ___  κ  p    A (114)

Using (113) and (114) in Eqs. (96d), (96b), and (96a) leads to the following expres-
sions for the TE0p mode fields:

  E  xs   =  E  0   sin   (   κ  p  y )    e   −j β  0p  z  (115)

  H  ys   =   
 β  0p   _ ωμ   E  0   sin   (   κ  p  y )    e   −j β  0p  z  (116)

  H  zs   = − j  
 κ  p   _ ωμ   E  0   cos ( κ  p  y) e   −j β  0p  z  (117)

where the cutoff frequency will be

  ω  C0p   =   pπc_
nb

   (118)

Figure 13.18 (a) TE10 and (b) TE01 mode electric field configurations in a rectangular 
waveguide.
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13.5.6 The Need for Rectangular Waveguides

Having seen how rectangular waveguides work, questions arise: Why are they used, 
and when are they useful? Let us consider for a moment the operation of a transmis-
sion line at frequencies high enough such that waveguide modes can occur. The onset 
of guided modes in a transmission line, known as moding, is in fact a problem that 
needs to be avoided, because signal distortion may result. A signal that is input to 
such a line will find its power divided in some proportions among the various modes. 
The signal power in each mode propagates at a group velocity unique to that mode. 
With the power thus distributed, distortion will occur over sufficient distances, as the 
signal components among the modes lose synchronization with each other, owing 
to the different delay times (group delays) associated with the different modes. We 
encountered this concept in Example 13.3.

The problem of modal dispersion in transmission lines is avoided by ensuring 
that only the TEM mode propagates and that all waveguide modes are below cutoff. 
This is accomplished either by using line dimensions that are smaller than one-half 
the signal wavelength or by assuring an upper limit to the operating frequency in a 
given line. But it is more complicated than this.

In Section 13.1, we saw that increasing the frequency increases the line loss as a 
result of the skin effect. This is manifested through the increase in the series resistance 
per unit length, R. One can compensate by increasing one or more dimensions in the 
line cross section, as shown, for example, in Eqs. (7) and (12), but only to the point at 
which moding may occur. Typically, the increasing loss with increasing frequency will 
render the transmission line useless before the onset of moding, but one still cannot in-
crease the line dimensions to reduce losses without considering the possibility of mod-
ing. This limitation on dimensions also limits the power-handling capability of the line, 
as the voltage at which dielectric breakdown occurs decreases with decreasing conduc-
tor separation. Consequently, the use of transmission lines, as frequencies are increased 
beyond a certain point, becomes undesirable, as losses will become excessive, and as 
the limitation on dimensions will limit the power-handling capability. Instead, we look 
to other guiding structures, among which is the rectangular guide.

EXAMPLE 13.4

An air-filled rectangular waveguide has dimensions a = 2 cm and b = 1 cm. Deter-
mine the range of frequencies over which the guide will operate single mode (TE10).
Solution. Since the guide is air-filled, n = 1, and (109) gives, for m = 1:

 f  C10   =    ω  C10   ___ 2π
   =   c __ 2a

   =   3 ×  10   10  ______ 2(2)   = 7.5 GHz

The next higher-order mode will be either TE20 or TE01, which from (100) will have 
the same cutoff frequency because a = 2b. This frequency will be twice that found 
for TE10, or 15 GHz. Thus the operating frequency range over which the guide will 
be single mode is 7.5 GHz < f < 15 GHz.
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Because the rectangular guide will not support a TEM mode, it will not operate 
until the frequency exceeds the cutoff frequency of the lowest-order guided mode of 
the structure. Thus, the guide must be constructed large enough to accomplish this 
for a given frequency; the required transverse dimensions will consequently be larger 
than those of a transmission line that is designed to support only the TEM mode. The 
increased size, coupled with the fact that there is more conductor surface area than 
in a transmission line of equal volume, means that losses will be substantially lower 
in the rectangular waveguide structure. Additionally, the guides will support more 
power at a given electric field strength than a transmission line, as the rectangular 
guide will have a higher cross-sectional area.

Still, hollow pipe guides must operate in a single mode in order to avoid the sig-
nal distortion problems arising from multimode transmission. This means that the 
guides must be of dimensions such that they operate above the cutoff frequency of the 
lowest-order mode, but below the cutoff frequency of the next higher-order mode, as 
demonstrated in Example 13.4. Increasing the operating frequency again means that the 
guide transverse dimensions must be decreased to maintain single-mode operation. This 
can be accomplished to a point at which skin effect losses again become problematic 
(remember that the skin depth is decreasing with increasing frequency, in addition to 
the decrease in metal surface area with diminishing guide size). In addition, the guides 
become too difficult to fabricate, with machining tolerances becoming more stringent. 
So again, as frequencies are further increased, we look for another type of structure.

D13.10 Specify the minimum width, a, and the maximum height, b, of an 
air-filled rectangular guide so that it will operate in a single mode over the 
frequency range 15 GHz < f < 20 GHz.

Ans. 1 cm; 0.75 cm

13.6 PLANAR DIELECTRIC WAVEGUIDES
When skin effect losses become excessive, a good way to remove them is to remove 
the metal in the structure entirely and use interfaces between dielectrics for the confin-
ing surfaces. We thus obtain a dielectric waveguide; a basic form, the symmetric slab
waveguide, is shown in Figure 13.19. The structure is so named because of its vertical 
symmetry about the z axis. The guide is assumed to have width in y much greater than 
the slab thickness d, so the problem becomes two-dimensional, with fields presumed 
to vary with x and z while being independent of y. The slab waveguide works in very 
much the same way as the parallel-plate waveguide, except wave reflections occur at 
the interfaces between dielectrics, having different refractive indices, n1 for the slab 
and n2 for the surrounding regions above and below. In the dielectric guide, total re-
flection is needed, so the incident angle must exceed the critical angle. Consequently, 
as discussed in Section 12.6, the slab index, n1, must be greater than that of the sur-
rounding materials, n2. Dielectric guides differ from conducting guides in that power 
is not completely confined to the slab but resides partially above and below.
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Dielectric guides are used primarily at optical frequencies (on the order of 1014 Hz).  
Again, guide transverse dimensions must be kept on the order of a wavelength to 
achieve operation in a single mode. A number of fabrication methods can be used 
to accomplish this. For example, a glass plate can be doped with materials that will 
raise the refractive index. The doping process allows materials to be introduced only 
within a thin layer adjacent to the surface that is a few micrometers thick.

13.6.1 Plane Wave Superposition Model

To understand how the guide operates, consider Figure 13.20, which shows a wave 
propagating through the slab by multiple reflections, but where partial transmission 
into the upper and lower regions occurs at each bounce. Wavevectors are shown in 
the middle and upper regions, along with their components in the x and z directions. 
As we found in Chapter 12, the z components ( β) of all wavevectors are equal, as 
must be true if the field boundary conditions at the interfaces are to be satisfied for 
all positions and times. Partial transmission at the boundaries is, of course, an un-
desirable situation, since power in the slab will eventually leak away. We thus have 
a leaky wave propagating in the structure, whereas we need to have a guided mode. 
Note that in either case, we still have the two possibilities of wave polarization, and 
the resulting mode designation—either TE or TM.

Total power reflection at the boundaries for TE or TM waves implies, respectively,  
that   |   Γs  |   2 or   |   Γp  |   2 is unity, where the reflection coefficients are given in Eqs. (71)
and (69) in Chapter 12.

  Γ  s   =    η  2s   −  η  1s   _____  η  2s   +  η  1s      (119)

and

  Γ  p   =   
 η  2p   −  η  1p   ______  η  2p   +  η  1p      (120)

Figure 13.19 Symmetric dielectric slab waveguide structure, in 
which waves propagate along z. The guide is assumed to be in-
finite in the y direction, thus making the problem two-dimensional.

n1

n2

d/2

– d/2

z

x
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As discussed in Section 12.6, we require that the effective impedances, η2s or η2p, 
be purely imaginary, zero, or infinite if (119) or (120) is to have unity magnitude. 
Knowing that

  η  2s   =    η  2   _____
cos θ  2

   (121)
and

  η  2p   =  η  2   cos θ  2    (122)

the requirement is that cos θ2 be zero or imaginary, where, from Eq. (75), Section 12.6,

 cos θ  2   =   [  1 −  sin   2   θ  2   ]     1∕2  =   [  1 −   (     n  1   __  n  2     )     
2
  sin   2   θ  1   ]     

1∕2
(123)

As a result, we require that
  θ  1   ≥  θ  c    (124)

where the critical angle is defined through

 sin θ  c   =    n  2  __ n  1      (125)

Now, from the geometry of Figure 13.20, we can construct the field distribution 
of a TE wave in the guide using plane wave superposition. In the slab region (−d/2 <  
x < d/2), we have

   E  y1s   =  E  0   e   −j k  1u   · r  ±  E  0   e   −j k  1d   · r    (  −   d _ 2   < x <   d _ 2   )     (126)

Figure 13.20 Plane wave geometry of a leaky wave in 
a symmetric slab waveguide. For a guided mode, total 
reflection occurs in the interior, and the x components of k2u 
and k2d are imaginary.
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where
  k  1u   =  κ  1   a  x   + β a  z    (127)

and
  k  1d   = −  κ  1   a  x   + β a  z    (128)

The second term in (126) may either add to or subtract from the first term, since 
either case would result in a symmetric intensity distribution in the x direction. We 
expect this because the guide is symmetric. Now, using r = xax + zaz, (126) becomes

  E  y1s   =  E  0  [ e    j κ  1  x  +  e   −j κ  1  x  ]  e   −jβz  = 2 E  0   cos ( κ  1  x) e   −jβz  (129)

for the choice of the plus sign in (126), and

  E  y1s   =  E  0  [ e    j κ  1  x  −  e   −j κ  1  x  ]  e   −jβz  = 2j  E  0   sin ( κ  1  x) e   −jβz  (130)

if the minus sign is chosen. Because κ1 = n1k0 cos θ1, we see that larger values of κ1 
imply smaller values of θ1 at a given frequency. In addition, larger κ1 values result in 
a greater number of spatial oscillations of the electric field over the transverse dimen-
sion, as (129) and (130) show. We found similar behavior in the parallel-plate guide. 
In the slab waveguide, as with the parallel-plate guide, we associate higher-order 
modes with increasing values of κ1.6

13.6.2 Surface Waves

In the regions above and below the slab, waves propagate according to wavevectors 
k2u and k2d as shown in Figure 13.20. Above the slab, for example (x > d/2), the TE 
electric field will be of the form

 E  y2s   =  E  02   e   −j k  2   · r  =  E  02   e   −j κ  2  x  e   −jβz  (131)
However, κ2 = n2k0  cos θ2, where cos θ2, given in (123), is imaginary. We may 
therefore write

 κ  2   = − j γ  2   (132)
where γ2 is real and is given by [using (123)]

  γ  2   = j κ  2   = j n  2   k  0   cos θ  2   = j n  2   k  0   (− j)   [    (     n  1   _  n  2     )2
  sin   2   θ  1   − 1 ]

1∕2
(133)

Equation (131) now becomes

  E  y2s   =  E  02   e   − γ  2  (x−d∕2)  e   −jβz    (  x >   d _ 2   )    (134)

6 It would be appropriate to add the mode number subscript, m, to κ1, κ2, β, and θ1, because, as was true 
with the metal guides, we will obtain discrete values of these quantities. To keep notation simple, the m 
subscript is suppressed, and we will assume it to be understood. Again, subscripts 1 and 2 in this section 
indicate, respectively, the slab and surrounding regions, and have nothing to do with mode number.
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where the x variable in (131) has been replaced by x − (d/2) to position the field mag-
nitude, E02, at the boundary. Using similar reasoning, the field in the region below 
the lower interface, where x is negative, and where k2d is involved, will be

  E  y2s   =  E  02   e    γ  2  (x+d∕2)  e   −jβz    (  x < −   d _ 2   ) (135)

The fields expressed in (134) and (135) are those of surface waves. Note that they 
propagate in the z direction only, according to e−jβz, but simply reduce in amplitude 
with increasing |x|, according to the  e   − γ  2  (x−d∕2)  term in (134) and the  e    γ  2  (x+d∕2)  term in 
(135). These waves represent a certain fraction of the total power in the mode, and 
so we see an important fundamental difference between dielectric waveguides and 
metal waveguides: in the dielectric guide, the fields (and guided power) exist over 
a cross section that extends beyond the confining boundaries, and in principle they 
exist over an infinite cross section. In practical situations, the exponential decay of 
the fields above and below the boundaries is typically sufficient to render the fields 
negligible within a few slab thicknesses from each boundary.

13.6.3 Mode Fields

The total electric field distribution is composed of the field in all three regions and is 
sketched in Figure 13.21 for the first few modes. Within the slab, the field is oscillatory 
and is of a similar form to that of the parallel-plate waveguide. The difference is that the 
fields in the slab waveguide do not reach zero at the boundaries but connect to the eva-
nescent fields above and below the slab. The restriction is that the TE fields on either side 
of a boundary (being tangent to the interface) must match at the boundary. Specifically,

  E  y1s    |    x=±d∕2   =  E  y2s    |    x=±d∕2    (136)
Applying this condition to (129), (130), (134), and (135) results in the final 
expressions for the TE electric field in the symmetric slab waveguide, for the cases 

Figure 13.21 Electric field amplitude 
distributions over the transverse 
plane for the first three TE modes in a 
symmetric slab waveguide.

n2

n2

m = 1 m = 2 m = 3
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of even and odd symmetry:

   E  se  (even TE) =   

⎧

 
⎪

 ⎨ ⎪ 

⎩

   

  E  0e   cos (   κ  1  x )   e   −jβz  

  

  (  −   d _ 2   < x <   d _ 2   )   

    E  0e   cos    (   κ  1    d _ 2   )     e   − γ  2   (  x−d∕2 )    e   −jβz     (  x >   d _ 2   )      

 E  0e   cos    (   κ  1    d _ 2   )     e    γ  2   (  x+d∕2 )    e   −jβz 

  

  (  x < −   d _ 2   )   

(137)

   E  so  (odd TE) =   

⎧

 
⎪

 ⎨ ⎪ 

⎩

   

  E  0o   sin (   κ  1  x )   e   −jβz  

  

  (  −   d _ 2   < x <   d _ 2   )   

    E  0o   sin    (   κ  1    d _ 2   )     e   − γ  2   (  x−d∕2 )    e   −jβz     (  x >   d _ 2   )      

−  E  0o   sin    (   κ  1    d _ 2   )     e    γ  2   (  x+d∕2 )    e   −jβz 

  

  (  x < −   d _ 2   )   

(138)

Solution of the wave equation yields (as it must) results identical to these. The reader 
is referred to References 2 and 3 for the details. The magnetic field for the TE modes 
will consist of x and z components, as was true for the parallel-plate guide. Finally, 
the TM mode fields will be nearly the same in form as those of TE modes, but with 
a simple rotation in polarization of the plane wave components by 90°. Thus, in TM 
modes, Hy will result, and it will have the same form as Ey for TE, as presented in 
(137) and (138).

Apart from the differences in the field structures, the dielectric slab waveguide 
operates in a manner that is qualitatively similar to the parallel-plate guide. Again, 
a finite number of discrete modes will be allowed at a given frequency, and this 
number increases as frequency increases. Higher-order modes are characterized by 
successively smaller values of θ1.

An important difference in the slab waveguide occurs at cutoff for any mode. We 
know that θ = 0 at cutoff in the metal guides. In the dielectric guide at cutoff, the wave 
angle, θ1, is equal to the critical angle, θc. Then, as the frequency of a given mode is 
raised, its θ1 value increases beyond θc in order to maintain transverse resonance, while 
maintaining the same number of field oscillations in the transverse plane.

As wave angle increases, however, the character of the evanescent fields changes 
significantly. This can be understood by considering the wave angle dependence on 
evanescent decay coefficient γ2, as given by (133). Note in that equation that as θ1 
increases (as frequency goes up), γ2 also increases, leading to a more rapid falloff 
of the fields with increasing distance above and below the slab. The mode therefore 
becomes more tightly confined to the slab as frequency is raised. Also, at a given 
frequency, lower-order modes, having smaller wave angles, will have lower values 
of γ2 as (133) indicates. Consequently, when considering several modes propagating 
together at a single frequency, the higher-order modes will carry a greater percentage 
of their power in the upper and lower regions surrounding the slab than will modes 
of lower order.

13.6.4 Transverse Resonance and Cutoff Conditions

One can determine the conditions under which modes will propagate by using the 
transverse resonance condition, as we did with the parallel-plate guide. We perform 
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the transverse round trip analysis in the slab region in the same manner that was done 
in Section 13.3 and obtain an equation similar to (37):

  κ  1  d +  ϕ  T E   +  κ  1  d +  ϕ  T E   = 2mπ  (139)
for TE waves and

  κ  1  d +  ϕ  T M   +  κ  1  d +  ϕ  T M   = 2mπ (140)

for the TM case. Eqs. (139) and (140) are called the eigenvalue equations for the 
symmetric dielectric slab waveguide. The phase shifts on reflection, ϕTE and ϕTM, are 
the phases of the reflection coefficients, Γs and Γp, given in (119) and (120). These 
are readily found, but they turn out to be functions of θ1. As we know, κ1 also depends 
on θ1, but in a different way than ϕTE and ϕTM. Consequently, (139) and (140) are 
transcendental in θ1, and they cannot be solved in closed form. Instead, numerical or 
graphical methods must be used (see References 4 or 5). Emerging from this solution 
process, however, is a fairly simple cutoff condition for any TE or TM mode:

  k  0   d √ 
_

  n  1  2  −  n  2  2    ≥ (m − 1)π  (m = 1,2,3, . . .) (141)

For mode m to propagate, (141) must hold. The physical interpretation of the 
mode number m is again the number of half-cycles of the electric field (for TE 
modes) or magnetic field (for TM modes) that occur over the transverse dimension. 
The lowest-order mode (m = 1) is seen to have no cutoff—it will propagate from zero 
frequency on up. We will thus achieve single-mode operation (actually a single pair 
of TE and TM modes) if we can assure that the m = 2 modes are below cutoff. Using 
(141), our single-mode condition will thus be:

  k  0  d √ 
_

  n  1  2  −  n  2  2    < π (142)

Using k0 = 2π/λ, the wavelength range over which single-mode operation occurs is

 λ > 2d √ 
_
 n  1  2  −  n  2  2    (143)

A symmetric dielectric slab waveguide is to guide light at wavelength λ = 1.30 μm. 
The slab thickness is to be d = 5.00 μm, and the refractive index of the surrounding 
material is n2 = 1.450. Determine the maximum allowable refractive index of the 
slab material that will allow single TE and TM mode operation.
Solution. Equation (143) can be rewritten in the form

 n  1   <  √ 
________

  (    λ __ 2d
   )     

2
  +  n  2  2   

Thus

 n  1   <  √ 
________________

    (    1.30 _____ 2(5.00)   )     
2
  +  (1.450)   2    = 1.456

EXAMPLE 13.5
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13.7 OPTICAL FIBER
Optical fiber works on the same principle as the dielectric slab waveguide, except of 
course for the round cross section. A step index fiber is shown in Figure 13.10, in which 
a high-index core of radius a is surrounded by a lower-index cladding of radius b. Light 
is confined to the core through the mechanism of total reflection, but again some frac-
tion of the power resides in the cladding as well. As we found in the slab waveguide, the 
cladding power again moves in toward the core as frequency is raised. Additionally, as 
is true in the slab waveguide, the fiber supports a mode that has no cutoff.

Analysis of the optical fiber is complicated. This is mainly because of the round 
cross section, along with the fact that it is generally a three-dimensional problem; 
the slab waveguide had only two dimensions to be concerned about. It is possible to 
analyze the fiber using rays within the core that reflect from the cladding boundary 
as light progresses down the fiber. We did this with the slab waveguide and obtained 
results fairly quickly. The method is difficult in fiber, however, because ray paths are 
complicated. There are two types of rays in the core: (1) those that pass through the 
fiber axis (z axis), known as meridional rays, and (2) those that avoid the axis but 
progress in a spiral-like path as they propagate down the guide. These are known as 
skew rays; their analysis, although possible, is tedious. Fiber modes are developed 
that can be associated with the individual ray types, or with combinations thereof, 
but it is easier to obtain these by solving the wave equation directly. Our purpose in 
this section is to provide a first exposure to the optical fiber problem (and to avoid 
an excessively long treatment). To accomplish this, we will solve the simplest case 
in the quickest way.

13.7.1 Mode Fields in Weakly Guiding Fiber

The simplest fiber configuration is that of a step index, but with the core and clad-
ding indices of values that are very close, that is n1 ≐ n2. This is the weak-guidance 
condition, whose simplifying effect on the analysis is significant. We already saw 
how core and cladding indices in the slab waveguide need to be very close in value in 
order to achieve single-mode or few-mode operation. Fiber manufacturers have taken 
this result to heart, such that the weak-guidance condition is in fact satisfied by most 
commercial fibers today. Typical dimensions of a single-mode fiber are between 5 and 
10 μm for the core diameter, with the cladding diameter usually 125 μm. Refractive 
index differences between core and cladding are typically a small fraction of a percent.

Clearly, fabrication tolerances are very exacting when constructing dielectric guides 
for single-mode operation!

D13.11 A 0.5-mm-thick slab of glass (n1 = 1.45) is surrounded by air (n2 = 1). 
The slab waveguides infrared light at wavelength λ = 1.0 μm. How many TE 
and TM modes will propagate?

Ans. 2102
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The main result of the weak-guidance condition is that a set of modes appears in 
which each mode is linearly polarized. This means that light having x-polarization, for 
example, will enter the fiber and establish itself in a mode or in a set of modes that pre-
serve the x-polarization. Magnetic field is essentially orthogonal to E, and so it would 
in that case lie in the y direction. The z components of both fields, although present, 
are too weak to be of significance; the nearly equal core and cladding indices lead 
to ray paths that are essentially parallel to the guide axis—deviating only slightly. In 
fact, we may write for a given mode, Ex ≐ ηHy, when η is approximated as the intrinsic 
impedance of the cladding. Therefore, in the weak-guidance approximation, the fiber 
mode fields are treated as plane waves (nonuniform, of course). The designation for 
these modes is LPℓm, meaning linearly polarized, with integer order parameters ℓ and 
m. The latter express the numbers of variations over the two dimensions in the circular
transverse plane. Specifically, ℓ, the azimuthal mode number, is one-half the number 
of power density maxima (or minima) that occur at a given radius as ϕ varies from 0 
to 2π. The radial mode number, m, expresses the number of maxima that occur along 
a radial line (at constant ϕ) that extends from zero to infinity.

Although we may assume a linearly polarized field in a rectangular coordinate 
system, we are obliged to work in cylindrical coordinates for obvious reasons. 
In a manner that reminds us of the rectangular waveguide, it is possible to write the 
x-polarized phasor electric field within a weakly guiding cylindrical fiber as a product 
of three functions, each of which varies with one of the coordinate variables, ρ, ϕ, and z:

  E  xs  (ρ, ϕ, z) =  ∑ 
i

     R  i  (ρ) Φ  i  (ϕ)exp(− j β  i  z) (144)

Each term in the summation is an individual mode of the fiber. Note that the z func-
tion is just the propagation term, e−jβz, since we are assuming an infinitely long loss-
less fiber.

The wave equation is Eq. (58), which we may write for the assumed x component 
of Es, but in which the Laplacian operator is written in cylindrical coordinates:

   1 _ ρ     ∂ _ ∂ ρ    (  ρ   ∂   2  E  xs   _ ∂ ρ   )    +   1 _ 
 ρ   2

   ∂   2  E  xs   _ 
∂  ϕ   2 

   + ( k   2  −  β   2 ) E  xs   = 0 (145)

where we recognize that the ∂2/∂z2 operation, when applied to (144), leads to a factor 
of −β2. We now substitute a single term of (144) into (145) [since each term in (144) 
should alone satisfy the wave equation]. Dropping the subscript i, expanding the 
radial derivative, and rearranging terms, we obtain:

    ρ   2  __ 
R

      d   2 R ___ 
d ρ   2 

   +   ρ __ 
R

     dR ___ 
dρ

   +  ρ   2 ( k   2  −  β   2 )   
 
     

 
  


  

  ℓ   2 

    =   −  1 __ Φ      d   2 Φ ___ 
d ϕ   2 

   
 
 

⏟

 

ℓ2

    (146)

We note that the left-hand side of (146) varies only with ρ, whereas the right-hand side 
varies only with ϕ. Since the two variables are independent, it must follow that each side 
of the equation must be equal to a constant. Calling this constant ℓ2, as shown, we may 
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write separate equations for each side; the variables are now separated:

    d   2 Φ _ 
d ϕ   2 

   +  ℓ   2  Φ = 0 (147a)

    d   2 R _ 
d ρ   2 

   +   1 _ ρ     dR_
dρ

 +  [   k   2  −  β   2  −    ℓ   2  _ 
 ρ   2 

   ]  R = 0 (147b)

The solution of (147a) is of the form of the sine or cosine of ϕ:

 Φ(ϕ) =   {   cos (ℓϕ + α)
sin (ℓϕ + α)    (148)

where α is a constant. The form of (148) dictates that ℓ must be an integer, since the 
same mode field must occur in the transverse plane as ϕ is changed by 2π radians. 
Since the fiber is round, the orientation of the x and y axes in the transverse plane is 
immaterial, so we may choose the cosine function and set α = 0. We will thus use 
Φ(ϕ) = cos (ℓϕ).

The solution of (147b) to obtain the radial function is more complicated. 
Eq. (147b) is a form of Bessel’s equation, whose solutions are Bessel functions of 
various forms. The key parameter is the function βt = (k2 − β2)1/2, the square of 
which appears in (147b). Note that βt will differ in the two regions: Within the core 
(ρ < a),  β  t   =  β  t1   =  ( n  1  2  k  0  2  −  β   2 )   1/2 ;  within the cladding ( ρ > a), we have  β  t   =  β  t2   =  
( n  2  2  k  0  2  −  β   2 )   1/2 . Depending on the relative magnitudes of k and β, βt may be real or 
imaginary. These possibilities lead to two solution forms of (147b):

 R(ρ) =   {    A J  ℓ   (   β  t   ρ )      β  t   real    B K  ℓ   (   |   β  t   |   ρ )      β  t   imaginary   (149)

where A and B are constants. Jℓ( βt ρ) is the ordinary Bessel function of the first kind, 
of order ℓ and of argument βt ρ. Kℓ(  |    βt  |   ρ) is the modified Bessel function of the sec-
ond kind, of order ℓ, and having argument   |    βt  |    ρ. The first two orders of each of these
functions are illustrated in Figures 13.22a and b. In our study, it is necessary to know 
the precise zero crossings of the J0 and J1 functions. Those shown in Figure 13.22a 
are as follows: For J0, the zeros are 2.405, 5.520, 8.654, 11.792, and 14.931. For J1, 
the zeros are 0, 3.832, 7.016, 10.173, and 13.324. Other Bessel function types would 
contribute to the solutions in Eq. (149), but these exhibit nonphysical behavior with 
radius and are not included.

We next need to determine which of the two solutions is appropriate for each 
region. Within the core (ρ < a) we expect to get an oscillatory solution for the 
field—much in the same manner as we found in the slab waveguide. Therefore, 
we assign the ordinary Bessel function solutions to that region by requiring that  
 β  t1   =  ( n  1  2  k  0  2  −  β   2 )   1∕2  is real. In the cladding (ρ > a), we expect surface waves that 
decrease in amplitude with increasing radius away from the core/cladding boundary. 
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The Bessel K functions provide this behavior and will apply if βt2 is imaginary. Re-
quiring this, we may therefore write   |    β  t2   |   =  (  β   2  −  n  2  2  k  0  2 )   1∕2  . The diminishing field
amplitude with increasing radius within the cladding allows us to neglect the effect 
of the outer cladding boundary (at ρ = b), as fields there are presumed to be too weak 
for this boundary to have any effect on the mode field.

Because βt1 and βt2 are in units of m−1, it is convenient to normalize these quan-
tities (while making them dimensionless) by multiplying both by the core radius, a. 
Our new normalized parameters become

 u ≡ a β  t1   = a √ 
_
 n  1  2  k  0  2  −  β   2    (150a)

 w ≡ a  |    β  t2    |    = a √ 
_
 β   2  −  n  2  2  k  0  2    (150b)

Figure 13.22 (a) Ordinary Bessel 
functions of the first kind, of orders 0 
and 1, and of argument βt#ρ, where βt is 
real. (b) Modified Bessel functions of the 
second kind, of orders 0 and 1, and of 
argument   |   βt  |   ρ, where βt is imaginary.
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u and w are in direct analogy with the quantities κ1d and κ2d in the slab waveguide. 
As in those parameters, β is the z component of both n1k0 and n2k0 and is the phase 
constant of the guided mode. β must be the same in both regions so that the field 
boundary conditions will be satisfied at ρ = a for all z and t.

We may now construct the total solution for Exs for a single guided mode, using 
(144) along with (148), (149), (150a), and (150b):

  E  xs   =   {     E  0    J  ℓ  (uρ∕ a)cos (ℓϕ) e   −jβz ρ ≤ a     
 E  0   [ J  ℓ  (u)∕  K  ℓ  (w)] K  ℓ  (wρ∕ a)cos (ℓϕ) e   −jβz ρ ≥ a (151)

Note that we have let the coefficient A in (149) equal E0, and B =  E  0  [ J  ℓ  (u)∕  K  ℓ  (w)]. 
These choices ensure that the expressions for Exs in the two regions become equal at ρ = 
a, a condition approximately true as long as n1 ≐ n2 (the weak-guidance approximation).

Again, the weak-guidance condition also allows the approximation H ≐ E/η, 
with η taken as the intrinsic impedance of the cladding. Having Es and Hs enables us 
to find the LPℓm mode average power density (or light intensity) through

   |  〈S〉  |    =  |    1 _ 2  ℛe {  E  s   ×  H  s  * } |   =   1 _ 2  ℛe   E  xs    H  ys  *  } =   1 _ 2η
    |    E  xs    |     2    (152)

Using (151) in (152), the mode intensity in W/m2 becomes

  I  ℓm   =  I  0    J  ℓ  2  (    uρ
 _ a   )   cos   2 (ℓϕ)  ρ ≤ a (153a)

  I  ℓm   =  I  0    (     J  ℓ  (u) _  K  ℓ  (w)   )
2
  K  ℓ  2  (    wρ

 _ a   )   cos   2 (ℓϕ)  ρ ≥ a (153b)

where I0 is the peak intensity value. The significance of the azimuthal mode num-
ber ℓ, as evident in (153a) and (153b), is that twice its value gives the number of 
intensity variations around the circle, 0 < ϕ < 2π; it also determines the order of the 
Bessel functions that are used. The influence of the radial mode number, m, is not 
immediately apparent in (153a) and (153b). Briefly stated, m determines the range 
of allowed values of u that occur in the Bessel function, J(uρ/a). The greater the 
value of m, the greater the allowed values of u; with larger u, the Bessel function 
goes through more oscillations over the range 0 < ρ < a, and so more radial intensity 
variations occur with larger m. In the slab waveguide, the mode number (also m) de-
termines the allowed ranges of κ1. As we saw in Section 13.6, increasing κ1 at a given 
frequency means that the slab ray propagates closer to the normal (smaller θ1), and 
so more spatial oscillations of the field occur in the transverse direction (larger m).

13.7.2 Mode Parameters and Cutoff Conditions

The final step in the analysis is to obtain an equation from which values of mode 
parameters (u, w, and β, for example) can be determined for a given operating 

hay28159_ch13_456-514.indd   504 27/11/17   12:17 pm



C H A P T E R  1 3  Guided Waves 505

frequency and fiber construction. In the slab waveguide, two equations, (139) and 
(140), were found using transverse resonance arguments, and these were associated 
with TE and TM waves in the slab. In our fiber, we do not apply transverse resonance 
directly, but rather implicitly, by requiring that all fields satisfy the boundary condi-
tions at the core/cladding interface, ρ = a.7 We have already applied conditions on the 
transverse fields to obtain Eq. (151). The remaining condition is continuity of the z 
components of E and H. In the weak-guidance approximation, we have neglected all z 
components, but we will consider them now for this last exercise. Using Faraday’s law 
in point form, continuity of Hzs at ρ = a is the same as the continuity of the z component 
of ∇ × Es, provided that μ = μ0 (or is the same value) in both regions. Specifically

  (∇ ×  E  s1  )  z    |    ρ=a   =  (∇ ×  E  s2  )  z    |    ρ=a    (154)

The procedure begins by expressing the electric field in (151) in terms of ρ and ϕ 
components and then applying (154). This is a lengthy procedure and is left as an 
exercise (or may be found in Reference 5). The result is the eigenvalue equation for 
LP modes in the weakly guiding step index fiber:

    J  ℓ−1  (u) _  J  ℓ  (u)   = −   w_ u      K  ℓ−1  (w) _  K  ℓ  (w)   (155)

This equation, like (139) and (140), is transcendental, and it must be solved for u and 
w numerically or graphically. This exercise in all of its aspects is beyond the scope of 
our treatment. Instead, we will obtain from (155) the conditions for cutoff for a given 
mode and some properties of the most important mode—that which has no cutoff, 
and which is therefore the mode that is present in single-mode fiber.

The solution of (155) is facilitated by noting that u and w can be combined to 
give a new parameter that is independent of β and depends only on the fiber con-
struction and on the operating frequency. This new parameter, called the normalized
frequency, or V number, is found using (150a) and (150b):

 V ≡  √ 
_

  u   2  +  w   2    = a k  0   √ 
_
 n  1  2  −  n  2  2    (156)

We note that an increase in V is accomplished through an increase in core radius, 
frequency, or index difference.

The cutoff condition for a given mode can now be found from (155) in con-
junction with (156). To do this, we note that cutoff in a dielectric guide means that 
total reflection at the core/cladding boundary just ceases, and power just begins to 
propagate radially, away from the core. The effect on the electric field of Eq. (151) 
is to produce a cladding field that no longer diminishes with increasing radius. This 
occurs in the modified Bessel function, K(wρ/a), when w = 0. This is our general 

7 Recall that the equations for reflection coefficient (119) and (120), from which the phase shift on 
reflection used in transverse resonance is determined, originally came from the application of the field 
boundary conditions.
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cutoff condition, which we now apply to (155), whose right-hand side becomes zero 
when w = 0. This leads to cutoff values of u and V (uc and Vc), and, by (156), uc = Vc. 
Eq. (155) at cutoff now becomes:

  J  ℓ−1  ( V  c  ) = 0 (157)

Finding the cutoff condition for a given mode is now a matter of finding the appropri-
ate zero of the relevant ordinary Bessel function, as determined by (157). This gives 
the value of V at cutoff for that mode.

For example, the lowest-order mode is the simplest in structure; therefore it has 
no variations in ϕ and one variation (one maximum) in ρ. The designation for this 
mode is therefore LP01, and with ℓ = 0, (157) gives the cutoff condition as J−1(Vc) = 
0. Because J−1 = J1 (true only for the J1 Bessel function), we take the first zero of
J1, which is Vc(01) = 0. The LP01 mode therefore has no cutoff and will propagate 
at the exclusion of all other modes provided V for the fiber is greater than zero but 
less than Vc for the next-higher-order mode. By inspecting Figure 13.22a, we see that 
the next Bessel function zero is 2.405 (for the J0 function). Therefore, ℓ − 1 = 0 in 
(156), and so ℓ = 1 for the next-higher-order mode. Also, we use the lowest value 
of mℓ (m = 1), and the mode is therefore identified as LP11. Its cutoff V is Vc(11) = 
2.405. If m = 2 were to be chosen instead, we would obtain the cutoff V number for 
the LP12 mode. We use the next zero of the J0 function, which is 5.520, or Vc(12) = 
5.520. In this way, the radial mode number, m, numbers the zeros of the Bessel func-
tion of order ℓ − 1, taken in order of increasing value.

13.7.3 Single-Mode Fiber

When we follow the reasoning described above, the condition for single-mode oper-
ation in a step index fiber is found to be

 V <  V  c  (11) = 2.405 (158)
Then, using (156) along with k0 = 2π/λ, we find

 λ >  λ  c   =   2πa _ 2.405   √ 
_

  n  1  2  −  n  2  2    (159)

as the requirement on free-space wavelength to achieve single-mode operation in a 
step index fiber. The similarity to the single-mode condition in the slab waveguide 
[Eq. (143)] is apparent. The cutoff wavelength, λc, is that for the LP11 mode. Its value 
is quoted as a specification of most commercial single-mode fiber.

EXAMPLE 13.6

The cutoff wavelength of a step index fiber is quoted as λc = 1.20 μm. If the fiber is 
operated at wavelength λ = 1.55 μm, what is V ?
Solution. Using (156) and (159), we find

 V = 2.405    λ  c   _ λ   = 2.405 (    1.20 _ 1.55   )   = 1.86
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The intensity profiles of the first two modes can be found using (153a) and (153b), 
having determined u and w values for each mode from (155). For LP01, we find

  I  01   =   
⎧
⎪⎨
⎪⎩

    
  I  0    J  0  2  (   u  01  ρ ∕ a )   

  
ρ ≤ a

 
 I  0    (     J  0   (   u  01   )   _  K  0   (   w  01   )  

   )
2
  K  0  2 ( w  01  ρ∕ a) ρ ≥ a

(160)

and for LP11 we find

  I  11   =   
⎧

 
⎪

 ⎨ 
⎪

 
⎩

    
 I  0    J  1  2 ( u  11  ρ ∕ a) cos   2 ϕ ρ ≤ a

 
 I  0    (     J  1   (   u  11   )   _  K  1   (   w  11   )  

   )
2
  K  1  2 ( w  11  ρ ∕ a)  cos   2 ϕ ρ ≥ a

(161)

The two intensities for a single V value are plotted as functions of radius at ϕ = 0 in 
Figure 13.23. We again note the lower confinement of the higher-order mode to the 
core, as was true in the slab waveguide.

As V increases (accomplished by increasing the frequency, for example), exist-
ing modes become more tightly confined to the core, while new modes of higher or-
der may begin to propagate. The behavior of the lowest-order mode with changing V 
is depicted in Figure 13.24, where we again note that the mode becomes more tightly 
confined as V increases. In determining the intensities, Eq. (155) must in general be 
solved numerically to obtain u and w. Various analytic approximations to the exact 
numerical solution exist, the best of which is the Rudolf-Neumann formula for the 
LP01 mode, valid over the range 1.3 < V < 3.5:

  w  01   ≐ 1.1428V − 0.9960 (162)

Having w01, u01 can be found from (156), knowing V.
Another important simplification for the LP01 mode is the approximation of its 

intensity profile by a Gaussian function. An inspection of any of the intensity plots 
of Figure 13.24 shows a resemblance to a Gaussian, which would be expressed as

  I  01   ≈  I  0   e   −2 ρ   2 ∕ ρ  0  2  (163)

where ρ0, termed the mode field radius, is defined as the radius from the fiber axis 
at which the mode intensity falls to 1/e2 times its on-axis value. This radius depends 
on frequency, and most generally on V. A similar approximation can be made for the 
fundamental symmetric slab waveguide mode intensity. In step index fiber, the best 
fit between the Gaussian approximation and the actual mode intensity as given in 
(160) is given by the Marcuse formula:

    ρ  0   _ a   ≈ 0.65 +   1.619 _ 
 V   3∕2 

   +   2.879_
 V   6 

 (164)
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The mode field radius (at a quoted wavelength) is another important spec-
ification (along with the cutoff wavelength) of commercial single-mode fiber. 
It is important to know for several reasons: First, in splicing or connecting two 
single-mode fibers together, the lowest connection loss will be attained if both 
fibers have the same mode field radius, and if the fiber axes are precisely aligned. 
Different radii or displaced axes result in increased loss, but this can be calculated 
and compared with measurement. Alignment tolerance (allowable deviation from 
precise axis alignment) is relaxed somewhat if the fibers have larger mode field ra-
dii. Second, a smaller mode field radius means that the fiber is less likely to suffer 
loss as a result of bending. A loosely confined mode tends to radiate away more 
as the fiber is bent. Finally, mode field radius is directly related to the mode phase 
constant, β, since if u and w are known (found from ρ0), β can be found from (150a) 
or (150b). Therefore, knowledge of how β changes with frequency (leading to the 
quantification of dispersion) can be found by measuring the change in mode field 
radius with frequency. Again, References 4 and 5 (and references therein) provide 
more detail.

Figure 13.23 Intensity plots from Eqs. (160) and 
(161) of the first two LP modes in a weakly guiding 
step index fiber, as functions of normalized radius, 
ρ/a. Both functions were evaluated at the same op-
erating frequency; the relatively weak confinement 
of the LP11 mode compared to that of LP01 is evident.

LP01 LP11

–2 –1 0 1 2 ρ/a

D13.12 For the fiber of Example 13.6, the core radius is given as a = 5.0 μm. 
Find the mode field radius at wavelengths (a) 1.55 μm; (b) 1.30 μm.

Ans. (a) 6.78 μm; (b) 5.82 μm
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Figure 13.24 Intensity plots for the  
LP01 mode in a weakly guiding step  
index fiber. Traces are shown for V =  
1.0 (solid), V = 1.2 (dashed), and V = 1.5  
(dotted), corresponding to increases  
in frequency in those proportions.  
Dashed vertical lines indicate the  
core/cladding boundary, at which 
for all three cases, the J0 radial 
dependence in the core connects 
to the k0 radial dependence in the 
cladding, as demonstrated in Eq. (160). 
The migration of mode power toward 
the fiber axis as frequency increases 
is evident.
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CHAPTER 13 PROBLEMS
13.1 The conductors of a coaxial transmission line are copper (σc = 5.8 × 

107 S/m), and the dielectric is polyethylene (ϵr′ = 2.26, σ/ωϵ′ = 0.0002). If 
the inner radius of the outer conductor is 4 mm, find the radius of the inner 
conductor so that (a) Z0 = 50 Ω; (b) C = 100 pF/m; (c) L = 0.2 μH/m. A 
lossless line can be assumed. 

13.2 Find R, L, C, and G for a coaxial cable with a = 0.25 mm, b = 2.50 mm, 
c = 3.30 mm, ϵr = 2.0, μr = 1, σc = 1.0 × 107 S/m, σ = 1.0 × 10−5 S/m, and 
f = 300 MHz.

13.3 Two aluminum-clad steel conductors are used to construct a two-wire 
transmission line. Let σAl = 3.8 × 107 S/m, σSt = 5 × 106 S/m, and 
μSt = 100 μH/m. The radius of the steel wire is 0.5 in., and the aluminum 
coating is 0.05 in. thick. The dielectric is air, and the center-to-center wire 
separation is 4 in. Find C, L, G, and R for the line at 10 MHz. 

13.4 Find R, L, C, and G for a two-wire transmission line in polyethylene at 
f = 800 MHz. Assume copper conductors of radius 0.50 mm and separation 
0.80 cm. Use ϵr = 2.26 and σ/(ωϵ′) = 4.0 × 10−4.

13.5 Each conductor of a two-wire transmission line has a radius of 0.5 mm; 
their center-to-center separation is 0.8 cm. Let f = 150 MHz, and assume 
σ and σc are zero. Find the dielectric constant of the insulating medium if 
(a) Z0 = 300 Ω; (b) C = 20 pF/m; (c) vp = 2.6 × 108 m/s.

13.6 Consider an air-filled coaxial transmission line having inner and outer 
radii a and b. (a) Show that skin effect loss in the line is minimized when 
b/a = 3.6, yielding characteristic impedance Z0 = 77 Ω. (b) Show that the 
maximum power the line can carry before air breakdown occurs is achieved 
when b/a = 1.65, yielding characteristic impedance Z0 = 30 ohms. Assume 
low loss, such that the attenuation coefficient is given by Eq. (54a) in 
Chapter 10.

13.7 Pertinent dimensions for the transmission line shown in Figure 13.2 
are b = 3 mm and d = 0.2 mm. The conductors and the dielectric are 
nonmagnetic. (a) If the characteristic impedance of the line is 15 Ω, find ϵr′. 
Assume a low-loss dielectric. (b) Assume copper conductors and operation 
at 2 × 108 rad/s. If RC = GL, determine the loss tangent of the dielectric.

13.8 A transmission line constructed from perfect conductors and an air 
dielectric is to have a maximum dimension of 8 mm for its cross section. 
The line is to be used at high frequencies. Specify the dimensions if it is 
(a) a two-wire line with Z0 = 300 Ω; (b) a planar line with Z0 = 15 Ω; (c) a 
72 Ω coax having a zero-thickness outer conductor.

13.9 A microstrip line is to be constructed using a lossless dielectric for which 
ϵr′ = 7.0. If the line is to have a 50 Ω characteristic impedance, determine 
(a) ϵr, eff; (b) w/d. 
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13.10 Two microstrip lines are fabricated end-to-end on a 2-mm-thick wafer of 
lithium niobate (ϵr′ = 4.8). Line 1 is of 4 mm width; line 2 (unfortunately) 
has been fabricated with a 5 mm width. Determine the power loss in dB for 
waves transmitted through the junction.

13.11 A parallel-plate waveguide is known to have a cutoff wavelength for 
the m = 1 TE and TM modes of λc1 = 4.1 mm. The guide is operated at 
wavelength λ = 1.0 mm. How many modes propagate? 

13.12 A parallel-plate guide is to be constructed for operation in the TEM mode 
only over the frequency range 0 < f < 3 GHz. The dielectric between 
plates is to be Teflon (ϵr′ = 2.1). Determine the maximum allowable plate 
separation, d.

13.13 A lossless parallel-plate waveguide is known to propagate the m = 2 TE 
and TM modes at frequencies as low as 10 GHz. If the plate separation is 
1 cm, determine the dielectric constant of the medium between plates. 

13.14 A d = 1 cm parallel-plate guide is made with glass (n = 1.45) between 
plates. If the operating frequency is 32 GHz, which modes will 
propagate?

13.15 For the guide of Problem 13.14, and at the 32 GHz frequency, determine 
the difference between the group delays of the highest-order mode (TE or 
TM) and the TEM mode. Assume a propagation distance of 10 cm. 

13.16 The cutoff frequency of the m = 1 TE and TM modes in an air-filled 
parallel-plate guide is known to be fc1 = 7.5 GHz. The guide is used at 
wavelength λ = 1.5 cm. Find the group velocity of the m = 2 TE and TM 
modes.

13.17 A parallel-plate guide is partially filled with two lossless dielectrics 
(Figure 13.25) where ϵr′1 = 4.0, ϵr′2 = 2.1, and d = 1 cm. At a certain 
frequency, it is found that the TM1 mode propagates through the guide 
without suffering any reflective loss at the dielectric interface. (a) Find this 
frequency. (b) Is the guide operating at a single TM mode at the frequency 
found in part a? Hint: Remember Brewster’s angle? 

13.18 In the guide of Figure 13.25, it is found that m = 1 modes propagating from 
left to right totally reflect at the interface, so that no power is transmitted 
into the region of dielectric constant ϵr′2. (a) Determine the range of 

Figure 13.25 See Problems 13.17 and 13.18.

ɛ'r1 ɛ'r2
Incident waved

z
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frequencies over which this will occur. (b) Does your part a answer in any 
way relate to the cutoff frequency for m = 1 modes in either region? Hint: 
Remember the critical angle?

13.19 A rectangular waveguide has dimensions a = 6 cm and b = 4 cm. (a) Over 
what range of frequencies will the guide operate single mode? (b) Over 
what frequency range will the guide support both TE10 and TE01 modes and 
no others? 

13.20 Two rectangular waveguides are joined end-to-end. The guides have 
identical dimensions, where a = 2b. One guide is air-filled; the other is 
filled with a lossless dielectric characterized by ϵr′. (a) Determine the 
maximum allowable value of ϵr′ such that single-mode operation can be 
simultaneously assured in both guides at some frequency. (b) Write an 
expression for the frequency range over which single-mode operation 
will occur in both guides; your answer should be in terms of ϵr′, guide 
dimensions as needed, and other known constants.

13.21 An air-filled rectangular waveguide is to be constructed for single-mode 
operation at 15 GHz. Specify the guide dimensions, a and b, such that the 
design frequency is 10 percent higher than the cutoff frequency for the 
TE10 mode, while being 10 percent lower than the cutoff frequency for the 
next-higher-order mode. 

13.22 Consider the TE11 mode in a rectangular guide having width a and height 
b. Using Eqs. (96d) and (96e), along with methods described in Chapter 2,
Section 2.6, show that the equation for the streamlines for this field (at z = 
0) is

 y  =    b _ π    cos   −1  [    C _ cos (  πx ∕ a )     ]        (  0 < x < a, 0 < y < b )   

where C is a constant that identifies a given streamline.
13.23 (a) Using the relation 〈S〉 =   1 _ 2   ℛe {  E  s    ×  H  s  * } and Eqs. (106) through (108),

show that the average power density in the TE10 mode in a rectangular 
waveguide is given by

〈S〉 =    β  10   ___ 2ωμ
   E  0  2   sin   2 ( κ  10  x) a  z    W∕m   2

(b) Integrate the result of part a over the guide cross section, 0 < x < a, 0 < 
y < b, to show that the average power in watts transmitted down the guide 
is given as

 P  av   =    β  10  ab ____ 4ωμ
   E  0  2  =   ab __ 4η

   E  0  2   sin θ  10   W

where η =  √ 
____

 μ∕ ϵ   and θ10 is the wave angle associated with the TE10 mode.
Interpret.

hay28159_ch13_456-514.indd   512 27/11/17   12:17 pm



C H A P T E R  1 3  Guided Waves 513

13.24 Show that the group dispersion parameter, d2β/dω2, for a given mode in a 
parallel-plate or rectangular waveguide is given by

   d   2 β ___ 
d ω   2 

   = −   n __ ωc    (     ω  c   __ ω   )     
2
   [  1 −   (     ω  c   __ ω   )     

2
  ]     

−3∕2

where ωc is the radian cutoff frequency for the mode in question [note that 
the first derivative form was already found, resulting in Eq. (57)].

13.25 Consider a transform-limited pulse of center frequency f = 10 GHz, and 
of full-width 2T = 1.0 ns. The pulse propagates in a lossless single-mode 
rectangular guide which is air-filled and in which the 10 GHz operating 
frequency is 1.1 times the cutoff frequency of the TE10 mode. Using the 
result of Problem 13.24, determine the length of guide over which the pulse 
broadens to twice its initial width. What simple step can be taken to reduce 
the amount of pulse broadening in this guide, while maintaining the same 
initial pulse width? Additional background for this problem is found in 
Section 12.6. 

13.26 A symmetric dielectric slab waveguide has a slab thickness d = 10 μm, 
with n1 = 1.48 and n2 = 1.45. If the operating wavelength is λ = 1.3 μm, 
what modes will propagate?

13.27 A symmetric slab waveguide is known to support only a single pair of TE 
and TM modes at wavelength λ = 1.55 μm. If the slab thickness is 5 μm, 
what is the maximum value of n1 if n2 = 3.30? 

13.28 In a symmetric slab waveguide, n1 = 1.50, n2 = 1.45, and d = 10 μm. 
(a) What is the phase velocity of the m = 1 TE or TM mode at cutoff?  
(b) How will your part a result change for higher-order modes (if at all)?

13.29 An asymmetric slab waveguide is shown in Figure 13.26. In this case, the 
regions above and below the slab have unequal refractive indices, where n1 
> n3 > n2. (a) Write, in terms of the appropriate indices, an expression for 

Figure 13.26 See Problem 13.29.

n3

d

n2

n1
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the minimum possible wave angle, θ1, that a guided mode may have.  
(b) Write an expression for the maximum phase velocity a guided mode 
may have in this structure, using given or known parameters. 

13.30 A step index optical fiber is known to be single mode at wavelengths 
λ > 1.2 μm. Another fiber is to be fabricated from the same materials, but it 
is to be single mode at wavelengths λ > 0.63 μm. By what percentage must 
the core radius of the new fiber differ from the old one, and should it be 
larger or smaller?

13.31 Is the mode field radius greater than or less than the fiber core radius in 
single-mode step index fiber? 

13.32 The mode field radius of a step index fiber is measured as 4.5 μm at free-
space wavelength λ = 1.30 μm. If the cutoff wavelength is specified as λc = 
1.20 μm, find the expected mode field radius at λ = 1.55 μm.
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C H A P T E R 

Electromagnetic Radiation 
and Antennas

W!!e are used to the idea that loss mechanisms in electrical devices, including 
transmission lines and waveguides, are associated with resistive effects in 
which electrical power is transformed into heat. We have also assumed 

that time-varying electric and magnetic fields are totally confined to a waveguide or 
circuit. In fact, confinement is rarely complete, and electromagnetic power will radi-
ate away from the device to some degree. Radiation may generally be an unwanted 
effect, as it represents an additional power loss mechanism, or a device may receive 
unwanted signals from the surrounding region. On the other hand, a well-designed an-
tenna provides an efficient interface between guided waves and free-space waves for 
purposes of intentionally radiating or receiving electromagnetic power. In either case, 
it is important to understand the radiation phenomenon so that it can either be used 
most effectively or be reduced to a minimum. In this chapter, our goal is to establish 
such an understanding and to explore several practical examples of antenna design. ■

14.1  BASIC RADIATION PRINCIPLES: THE 
HERTZIAN DIPOLE

The essential point of this chapter is that any time-varying current distribution will 
radiate electromagnetic power. So our first task is to find the fields that radiate from a 
specific time-varying source. This problem is different from any that we have explored. 
In our treatment of waves and fields in bulk media and in waveguides, only the wave 
motion in the medium was investigated, and the sources of the fields were not consid-
ered. Earlier in Chapter 11, we found the current distribution in a conductor by relating 
it to assumed electric and magnetic field intensities at the conductor surface. Although 
this would relate the current source to the field, it is not practical for our purposes be-
cause the conductors were considered infinite in size in at least one dimension.

We begin by studying a current filament of infinitesimally small cross-section, 
positioned within an infinite lossless medium that is specified by permeability μ and 

14
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permittivity ϵ (both real). The filament is specified as having a differential length, but 
we will later extend the results easily to larger dimensions that are on the order of a 
wavelength. The filament is positioned with its center at the origin and is oriented along 
the z axis as shown in Figure 14.1. The positive sense of the current is taken in the az 
direction. A uniform current I(t) = I0 cos ωt is assumed to flow in this short length d. 
The existence of such a current would imply the existence of time-varying charges of 
equal and opposite instantaneous amplitude on each end of the wire. For this reason, 
the wire is termed an elemental or Hertzian dipole. This is distinct in meaning from 
the more general definition of a dipole antenna that we will use later in this chapter.

14.1.1 Retarded Vector Potential for the Hertzian Dipole

The first step is the application of the retarded vector magnetic potential expression, 
as presented in Section 9.5,

A = ∫    μ I [ t − R / v ] dL  __________
4π R (1)

where I is a function of the retarded time t − R/v.
When a single frequency is used to drive the antenna, v is the phase velocity of 

a wave at that frequency in the medium around the current element and is given by
v = 1 /  √ ___ μϵ  . Since no integration is required for the short filament, we have

 A =   
μ I [ t − R / v ] d

  ___________ 4π R    a  z   (2)

Only the z component of A is present, for the current is only in the az direction. At any 
point P at distance R from the origin, the vector potential is retarded by R/v and so we use

I [t − R / v] =  I  0   cos   [  ω  (  t −   R _ v   )    ]    =  I  0   cos   [  ωt − kR ]    (3)

z

y

I
d

x

Figure 14.1 A differential current filament 
of length d carries a current I = I0 cos ωt .
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where the wavenumber in the lossless medium is k = ω / v = ω  √ ___ μϵ  . In phasor form,
Eq. (3) becomes

 I  s   =  I  0      e   −jkR  (4)

where the current amplitude, I0, is assumed to be real (as it will be throughout this 
chapter). Incorporating (4) into (2), we find the phasor retarded potential:

  A  s   =  A  zs    a  z   =   μ  I  0   d _ 4π R    e   −jkR   a  z   (5)

Using a mixed coordinate system for the moment, we now replace R with the small r 
of the spherical coordinate system and then determine which spherical components 
are represented by Azs. Using the projections as illustrated in Figure 14.2, we find

  A  rs   =  A  zs   cos θ  (6a)

 A  θs   = −  A  zs   sin θ (6b)

and therefore

 A  rs   =   
μ  I  0   d ____ 4πr

   cos θ   e   −jkr  (7a)

 A  θs   = −   
μ  I  0   d ____ 4πr

   sin θ   e   −jkr  (7b)

14.1.2 Obtaining the General Electric and Magnetic Fields

From the preceding two components of the vector magnetic potential at P we can 
now find Bs or Hs from the definition of As,

 B  s   = μ  H  s   = ∇ ×  A  s   (8)

P(r, θ, ϕ) 

Azs – Aθs 

Ars 

θ r

z

y

Figure 14.2 The resolution 
of Azs at P(r, θ, ϕ) into the 
two spherical components 
Ars and Aθs. The sketch is 
arbitrarily drawn in the ϕ = 
90° plane.

hay28159_ch14_515-556.indd   517 25/11/17   2:16 pm



E N G I N E E R I N G  E L E C T R O M AG N E T I C S518

Taking the indicated partial derivatives as specified by the curl operator in spherical 
coordinates, we can separate Eq. (8) into its three spherical components, of which 
only the ϕ component is nonzero:

 H  ϕs   =   1 __
μr     ∂ __ ∂ r   (r  A  θs  ) −   1 __ μr       ∂  A  rs  ____

∂ θ (9)

Now, substituting (7a) and (7b) into (9), we find the magnetic field:

  H  ϕs   =    I  0   d _ 4π
   sin θ   e   −jkr   (  j   k_

r
 +   1 _ 

 r   2 
   ) (10)

The electric field that is associated with Eq. (10) is found from one of Maxwell’s 
equations—specifically the point form of Ampère’s circuital law as applied to the 
surrounding region (where conduction and convection current are absent). In phasor 
form, this is Eq. (23) in Chapter 11, except that in the present case we allow for a 
lossless medium having permittivity ϵ:

∇ ×  H  s   = jωϵ  E  s   (11)
Using (11), we expand the curl in spherical coordinates, assuming the existence of 
only a ϕ component for Hs. The resulting electric field components are:

 E  rs   =   1 ___ 
jωϵ       1 _____ 

r sin θ      ∂ __ ∂ θ   ( H  ϕs   sin θ ) (12a)

 E  θs   =   1 ___ 
jωϵ    (  −   1 _ r   )     ∂ __ ∂ r   (r  H  ϕs   ) (12b)

Then on substituting (10) into (12a) and (12b) we find:

  E  rs   =    I  0   d _ 2π
   η cos θ   e   −jkr   (    1 _ 

 r   2 
   +   1 _ 

jk  r   3 
   ) (13a)

  E  θs   =    I  0   d _ 4π
   η sin θ   e   −jkr   (    jk_

r
 +   1 _ 

 r   2 
   +   1 _ 

jk  r   3 
   ) (13b)

where the intrinsic impedance is, as always, η =  √ 
____

 μ / ϵ  .
Equations (10), (13a), and (13b) are the fields that we set out to find. The next 

step is to interpret them. We first notice the e−jkr factor appearing with each compo-
nent. By itself, this term describes a spherical wave, propagating outward from the 
origin in the positive r direction with a phase constant k = 2π/λ. λ is the wavelength 
as measured in the medium. Matters are complicated by the complex r-dependent 
terms in parentheses that appear in all three equations. These terms can be expressed 
in polar form (magnitude and phase), leading to the following modified versions of 
the three field equations for the Hertzian dipole:

  H  ϕs   =    I  0   kd
 _ 4πr
     [  1 +   1 _ 

 (kr )   2 
   ]     

1/2
  sin θ exp  [− j(kr −  δ  ϕ  )] (14)
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  E  rs   =    I  0   d _ 
2π  r   2 

   η   [  1 +   1 _ 
 (kr )   2 

   ]
1/2

  cos θ exp  [− j(kr −  δ  r  )] (15)

  E  θs   =    I  0   kd
 _ 4πr
   η   [  1 −   1 _ 

 (kr )   2
  +   1 _ 

 (kr )   4 
   ]

1/2
  sin θ exp  [− j(kr −  δ  θ  )] (16)

where the additional phase terms are

  δ  ϕ   =  tan   −1   [  kr ]     (17a)

 δ  r   =  tan   −1   [  kr ]    −   π__
2   (17b)

and

 δ  θ   =  tan   −1   [  kr  (  1 −   1 _ 
 (kr )   2 

   )    ] (18)

In (17) and (18), the principal value is always taken when evaluating the inverse 
tangent. This means that the phases as expressed in (17) and (18) will occur within 
the range ±π/2 as kr varies between zero and infinity. Suppose a single frequency 
(k value) is chosen, and the fields are observed at a fixed instant in time. Consider 
observing the field along a path in the direction of increasing r, in which spatial os-
cillations will be seen as r varies. As a result of the phase terms in (17) and (18), the 
oscillation period will change with increasing r. We may demonstrate this by consid-
ering the Hϕ component as a function of r under the following conditions:

 I  0   d = 4π  θ = 90°  t = 0
Using k = 2π/λ, Eq. (14) becomes

 H  ϕs   =   2π __ 
λr

     [  1 +   (    λ ___ 2πr
   )     

2
  ]     

1/2
  exp   {  − j  [    2πr_

λ
 −  tan   −1   (    2πr _ 

λ
   )    ]    }    (19)

The real part of (19) gives the real instantaneous field at t = 0:

 ℋ  ϕ  (r, 0 ) =   2π __ 
λr

     [  1 +   (    λ ___ 2πr
   )     

2
  ]     

1/2
  cos   [   tan   −1   (    2πr _ 

λ
   )    −   2πr _ 

λ
   ] (20)

We next use the identity, cos(a − b) = cos a cos b + sin a sin b, in addition to cos
( tan   −1  x) = 1 /  √ 

_____
 1 +  x   2    and sin ( tan   −1  x) = x /  √ 

_____
 1 +  x   2   . With these, Eq. (20) simplifies to

 ℋ  ϕ   =   1 __ 
 r   2 

    [  cos   (    2πr _ 
λ
   )    +   2πr _ 

λ
   sin   (    2πr _ 

λ
   )    ] (21)

A few important points emerge when studying Eq. (21). First, at distances r that 
are on the order of a wavelength, the expression consists of two sinusoidal functions 
having the same period but in which the amplitude of the second one increases with 
increasing r. This leads to significant nonsinusoidal behavior in that the field as a 
function of r/λ will oscillate, but with nonuniform periodicity, and with positive and 
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negative amplitudes that differ in each cycle. Second, at distances r that are much 
greater than a wavelength, the second term in (21) dominates, and the field variation 
with r approaches that of a pure sinusoid. We may therefore say that, for all practical 
purposes, the wave at large distances, where r >> λ, is a uniform plane wave having 
a sinusoidal variation with distance (and time, of course) and a well-defined wave-
length. This wave evidently carries power away from the differential antenna.

We should now take a more careful look at the expressions containing terms 
varying as 1/r3, 1/r2, and 1/r in Eqs. (10), (13a), and (13b). At points very close to 
the current element, the 1/r3 term must be dominant. In the numerical example we 
have used, the relative values of the terms in 1/r3, 1/r2, and 1/r in the Eθs expression 
are about 250, 16, and 1, respectively, when r is 1 cm. The variation of an electric 
field as 1/r3 should remind us of the electrostatic field of the dipole (Chapter 4). The 
development of this concept is the subject of Problem 14.4. The near-field terms rep-
resent energy stored in a reactive (capacitive) field, and they do not contribute to the 
radiated power. The inverse-square term in the Hϕs expression is similarly important 
only in the region very near to the current element. It corresponds to the induction 
field of the dc element, as found through the Biot-Savart law (Problem 14.5).

14.1.3 Fields in the Far Zone

At distances corresponding to, say, 10 or more wavelengths from the current element, 
the product kr = 2πr/λ > 20π, and the fields dramatically simplify. In Eqs. (14)–(16), 
the terms within brackets involving 1/(kr)2 and 1/(kr)4 can be considered much less 
than unity and can be neglected. In addition, the phases [Eqs. (17) and (18)] all ap-
proach π/2. The effect is also seen in Eqs. (10), (13a), and (13b), in which all terms 
except the inverse-distance (1/r) term may be neglected. At such distances, at which 
kr >> 1 (equivalently r >> λ), we are said to be in the far field or far zone. The 
remaining field terms that have the 1/r dependence are the radiation fields. This pro-
duces an approximately zero Ers field, leaving only Eθs and Hϕs. Thus, in the far zone:

  

 E  rs  

  

≐

 

 0

   E  θs    =  j   
 I  0   kd

 _ 4πr
   η  sin θ  e   −jkr

  

 H  ϕs   

 

=

 

 j    I  0   kd
 _ 4πr
   sin θ  e   −jkr

 (22)

(23)

The relation between these fields is evidently the same as that of a uniform plane 
wave, which an expanding spherical wave approximates at large radii, and over re-
gions in which 1/r is approximately constant. Specifically,

  E  θs   = η  H  ϕs     (kr > > 1 or r > > λ) (24)

The variation of both radiation fields with the polar angle θ is the same; the fields 
maximize in the equatorial plane (xy plane) of the current element and vanish off the 
ends of the element. The variation with angle may be shown by plotting a vertical, or 
E-plane pattern (assuming a vertical orientation of the current element). The E plane 
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is simply the coordinate plane that contains the electric field, which in our present 
case is any surface of constant ϕ in the spherical coordinate system. Figure 14.3 shows 
an E-plane plot of Eq. (22) in polar coordinates, in which the relative magnitude of 
Eθs is plotted against θ for a constant r. The length of the vector shown in the figure 
represents the magnitude of Eθ, normalized to unity at θ = 90°; the vector length is 
just |  sin θ  |, and so as θ varies, the tip of the vector traces out a circle as shown.

A horizontal, or H-plane pattern may also be plotted for this or more compli-
cated antenna systems. In the present case, this would show the variation of field 
intensity with ϕ. The H-plane of the current element (the plane that contains the 
magnetic field) is any plane that is normal to the z axis. As Eθ is not a function of ϕ, 
the H-plane plot would be simply a circle centered at the origin.

θ Eθs 

Figure 14.3 The polar plot of the 
E-plane pattern of a vertical current ele-
ment. The crest amplitude of Eθs is plotted 
as a function of the polar angle θ at a 
constant distance r. The locus is a circle.

D14.1. A short antenna with a uniform current distribution in air has I0d = 3 ×  
10−4 A · m and λ = 10 cm. Find | Eθs | at θ = 90°, ϕ = 0°, and r =: (a) 1 cm;  
(b) 2 cm; (c) 20 cm; (d ) 200 cm; (e) 2 m.  

Ans. (a) 125 V/m; (b) 25 V/m; (c) 2.8 V/m; (d ) 0.28 V/m; (e) 0.028 V/m

14.2 ANTENNA SPECIFICATIONS
It is important to fully describe and quantify the radiation from a general antenna. To 
do this, we need to be aware of a few new concepts and definitions.

14.2.1 Emitted Power and Radiation Resistance

In order to evaluate the radiated power, the time-average Poynting vector must be 
found (Eq. (77), Chapter 11). In the present case, this will become

< S > =    1 _ 2   ℛe { E  θs      H  ϕs  *  } a  r      W/m   2  (25)
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Substituting (22) and (23) into (25), we obtain the time-average Poynting vector 
magnitude:

| < S > | =  S  r   =   1 _ 2     (     I  0   kd ____ 4πr
   )     

2
  η   sin   2  θ (26)

From this we find the time-average power that crosses the surface of a sphere of 
radius r, centered at the antenna:

 P  r   =  ∫ 
ϕ=0

   2π ∫
θ=0

π

 S  r      r   2  sin θ dθ dϕ = 2π   (     1 _ 2   )     (      I  0   kd ____ 4π
   )     

2
  η  ∫ 

0
  
   π

     sin   3  θ dθ (27)

The integral is evaluated, and we substitute k = 2π/λ. We will also assume that the 
medium is free space, where η = η0 ≐ 120π. We finally obtain:

  P  r   = 40  π   2    (     I  0   d _ 
λ
   )

2
W (28)

This is the same average power that would be dissipated in a resistance Rrad by sinu-
soidal current of amplitude I0 in the absence of any radiation, where

  P  r   =   1 _ 2    I  0  2     R  rad   (29)

We call this effective resistance the radiation resistance of the antenna. For the dif-
ferential antenna, this becomes

  R  rad   =   2  P  r  _
 I  0  2 

 = 80  π   2    (    d _ 
λ
   )

2
(30)

If, for example, the differential length is 0.01λ, then Rrad is about 0.08 Ω. This 
small resistance is probably comparable to the ohmic resistance of a practical antenna 
(providing a measure of the power dissipated through heat), and thus the efficiency 
of the antenna is likely to be too low. Effective matching to the source also becomes 
very difficult to achieve, for the input reactance of an electrically short antenna is 
much greater in magnitude than the input resistance Rrad.

14.2.2 Solid Angle

Evaluating the net power from the antenna, as carried out in (27), involved the inte-
gration of the Poynting vector over a spherical shell of presumed large radius, such 
that the antenna appeared as a point source at the sphere center. In view of this, a new 
concept of power density can be introduced; this involves the power that is carried 
within a very thin cone with its vertex at the antenna location. The axis of the cone 
extends along a line of radius, and thus the cone intersects the spherical surface over 
which the integral in (27) is taken. That portion of the sphere area that the cone 
intersects will have area A. We define the solid angle of the cone in the following 
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manner: If A = r2, where r is the sphere radius, then the cone is defined as having a 
solid angle, Ω, equal to one steradian (sr).1 As the total sphere area is 4πr2, we see 
that the total solid angle contained within a sphere is 4π steradians.

As a consequence of this definition, differential area on the sphere surface can 
be expressed in terms of a differential solid angle through:

d A =  r   2   dΩ (31)
The total sphere area can then be expressed as an integral over solid angle, or equiv-
alently by an integral using spherical coordinates:

 A  net   = 4π  r   2  =  ∫ 
0
  
   4π

     r   2  dΩ =  ∫ 
0
  
   2π

     ∫ 
0
  
   π

     r   2  sin θ dθ dϕ (32)

from which we identify the differential solid angle as expressed in spherical coordinates:

 dΩ = sin θ dθ dϕ (33)

The preceding relations are depicted in Fig. 14.4.

D14.2. A cone is centered on the positive z axis with its vertex at the origin. 
The cone angle in spherical coordinates is θ1. (a) If the cone subtends 1 sr of 
solid angle, determine θ1. (b) If θ1 = 45°, find the solid angle subtended. 

Ans. (a) 32.8°; (b) π   √ 
__
2  

14.2.3 Radiation Intensity

We can now express the Poynting vector magnitude as found in Eq. (26) in units of 
power per unit solid angle. To do this, we multiply the W/m2 power density in (26) 
by the sphere area encompassed in one steradian—which is r2. The result, known as 
the radiation intensity, is

 K (  θ, ϕ )   =  r   2   S  r     W/sr  (34)

For the Hertzian dipole, the intensity is independent of ϕ, and we would have (using (26)):

 K(θ ) =   1 _ 2     (      I  0   kd
 _ 4π

   )
2
  η   sin   2  θ   W/sr  (35)

In the general case, the total radiated power is then

  P  r   =  ∫ 
0
  
   4π

     K dΩ =  ∫ 
0
  
   2π

     ∫ 
0
  
   π

    K(θ, ϕ) sin θ dθ dϕ  W (36)

which, for the Hertzian dipole, gives the same result as found in (28).

1 This definition is related to that of the radian, in which the arc length on a circle traced out by a change of 
angle of one radian is the circle radius, r.
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The advantage of using the radiation intensity for power density is that this quan-
tity is independent of the radius. This is true, however, only if the original power den-
sity exhibits a 1/r2 dependence. In fact, all antennas have this functional dependence 
on radius in the far zone, in that when far enough away, the antenna appears as a point 
source of power. Assuming the surrounding medium does not absorb any power, 
the integral of the Poynting vector over a closed sphere of any radius must give the 
same result. This fact demands an inverse-square dependence on radius for the power 
density. With the radial dependence removed, one can concentrate on the angular 
dependence of the power density as expressed by K, and this will differ significantly 
among different antennas.

14.2.4 Directivity

A special case of a power source is an isotropic radiator, defined as having a con-
stant radiation intensity (i.e., K = Kiso is independent of θ and ϕ). This gives a simple 
relation between K and the total radiated power:

  P  r   =  ∫ 
 0
  
   4π

     K  iso   dΩ = 4π  K  iso   ⇒  K  iso   =  P  r   / 4π   (isotropic radiator)  (37)

Generally, K will vary with angle, giving more intensity in some directions than 
in others. It is useful to compare the radiation intensity in a given direction to that 
which would occur if the antenna were to radiate the same net power isotropically. 

Figure 14.4 A cone having differential solid 
angle dΩ subtends a (shaded) differential area 
on the surface of a sphere of radius r. This area, 
given by dA = r2 dΩ, can also be expressed in 
our more familiar spherical coordinate system as 
dA = r2sinθ dθ dϕ.

ϕ

dΩ

dA = r2dΩ = r2 sinθdθdϕ
θ

r

z

y

x
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The directivity function, D(θ, ϕ), does this.2 Using (36) and (37), we can write the 
directivity:

 D(θ, ϕ) =   K (  θ, ϕ )   _  K  iso  
 =   K (  θ, ϕ )   _  P  r   / 4π

   =   4πK (  θ, ϕ )  _
∮ K dΩ (38)

Of particular interest in most cases is the maximum value of the directivity, Dmax, 
which is sometimes called simply D (without the θ and ϕ dependence indicated):

 D =  D  max   =   4π  K  max  _
∮ K dΩ  (39)

in which the maximum radiation intensity, Kmax, will usually occur at more than one set of 
values of θ and ϕ. Typically, the directivity is quoted in decibels, according to the definition

  D  dB   = 10   log  10    (    D  max   )     dB (40)

Evaluate the directivity of the Hertzian dipole.
Solution. Use Eqs. (35) and (28) with k = 2π/λ and η = η0 = 120π in the expression:

D(θ, ϕ ) =   4π K(θ, ϕ ) ________  P  r  
   =    

2π  (  
I0 d ___ 2λ  ) 

2
 120π   sin   2  θ

  ______________  
40  π   2   (  

I0 d ___ λ  ) 
2     =   3 _ 2    sin   2  θ

The maximum of this result, occurring at θ = π/2, is:

 D  max   =   3 _ 2      Or, in decibels:     D  dB   = 10   log  10    (     3 _ 2   )    = 1.76 dB

EXAMPLE 14.1

D14.3. What is the directivity in dB of a power source at the origin that radi-
ates: (a) uniformly into the upper half-space, but nothing into the lower half-
space; (b) into all space with a cos2 θ power density dependence; (c) into all 
space with a   |    cos   n  θ  |    dependence? 

Ans.  (a) 3; (b) 4.77; (c) 10 log10(n + 1)

2 In earlier times (and in older texts), the directivity function was called the directive gain. The latter term 
has since been discarded by the Antenna Standards Committee of the IEEE Antennas and Propagation 
Society, in favor of the term “directivity.” Details are found in IEEE Std 145-1993.

Usually, one would like to have a much higher directivity than what we just found 
for the Hertzian dipole. One implication of a low directivity (and a problem with the 
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short antenna) is that power is radiated over a broad angular range in the E plane. In 
most cases, we wish to confine the power to a narrow range, or small beamwidth, thus 
increasing the directivity. The 3-dB beamwidth is defined as the separation between 
the two angles at which the directivity falls to one-half its maximum value. For the 
Hertzian dipole, and using the D(θ, ϕ) result from the previous example, the beam-
width will be the span between the two θ values on either side of 90° at which sin2

θ = 1/2, or   |   sin θ  |   = 1 /  √ 
_

 2   = 0.707 . These two values are 45° and 135°, representing
a 3-dB beamwidth of 135° − 45° = 90°. We will see that using a longer antenna leads 
to both a narrower beamwidth and an increased radiation resistance. In the H plane, 
radiation is uniform at all values of ϕ, no matter what length is used. It is necessary to 
use multiple antennas in an array in order to narrow the beam in the H plane.

14.2.5 Antenna Gain and Radiation Efficiency

We have based several definitions on the total average power that is radiated by the 
antenna, Pr. It is desirable, however, to distinguish the radiated power from the input power  
that is supplied to the antenna, Pin. It is likely that Pin will be somewhat greater than 
Pr because of resistive losses in the conducting materials that make up the antenna. To 
overcome this resistance, a greater input voltage amplitude would be necessary to gen-
erate a given current amplitude, I0, on which all of our power computations have been 
based. The antenna gain is defined in such a way as to accommodate this difference.3

Specifically, suppose that the antenna in question were to isotropically radiate 
all of the electrical power that is supplied to it, which is Pin. The radiation intensity 
would simply be Ks = Pin/4π. Gain is defined as the ratio of the actual radiation in-
tensity in a specified direction, to Ks:

 G(θ, ϕ) =   K (  θ, ϕ )   _  K  s  
   =   4π K (  θ, ϕ )  _

 P  in  
 (41)

Note that the term 4π K(θ, ϕ) would be the radiated power of an isotropic antenna 
whose (in that case, constant) radiation intensity is K(θ, ϕ). The gain thus expresses 
the ratio of the radiated power of an antenna to the input power as if the antenna were
to radiate isotropically with constant K as evaluated at a selected θ and ϕ. Using (38), 
we can relate directivity to gain:

 D(θ, ϕ) =   4π K (  θ, ϕ )   _  P  r  
 =    P  in   _  P  r  

   G(θ, ϕ) =   1 _  η  r     G(θ, ϕ) (42)

where ηr is the radiation efficiency of the antenna, defined as the ratio of the radiated 
power to the input power. Other ways of writing this are:

  η  r   =    P  r   _  P  in
   =   G (  θ, ϕ )   _ 

D (  θ, ϕ )     =    G  max  _
 D  max  

   (43)

which expresses ηr as the maximum gain divided by the maximum directivity.

3 The antenna gain defined in this way is sometimes called the power gain.
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14.3 MAGNETIC DIPOLE
An interesting device that is closely related to the Hertzian dipole is the magnetic
dipole antenna. Shown in Figure 14.5, the antenna consists of a circular current loop 
of radius a, centered at the origin, and in the xy plane. The loop current is sinusoidal 
and is given by I(t) = I0 cos ωt, as was the case in the Hertzian dipole. Although it is 
possible to work out the fields for this antenna, beginning with the retarded potentials 
as in the previous section, there is a much faster way.

We first note that the circulating current implies the existence of a circulating 
electric field that overlaps the wire and that has the same time dependence. So one 
could simply replace the wire with a circular electric field that we could designate 
as E(a, t) = E0(a) cos(ωt) aϕ. Such a change would replace conduction current with 
displacement current, which will have no effect on the surrounding field solutions for 
E and H. Next, suppose that we could replace the electric field with a magnetic field, 
again of the form H(a, t) = H0 cos(ωt) aϕ. This is the magnetic field that would be 
generated by the Hertzian dipole at radius a in the xy plane, and it enables us to obtain 
the solution for the current loop field through the following method:

We begin with Maxwell’s equations in a sourceless medium (ρv = J = 0):

∇ × H = ϵ   ∂ E___
∂ t (44a)

∇ × E = − μ   ∂ H___
∂ t (44b)

∇ · E = 0 (44c)
∇ · H = 0 (44d)

θ θ

ϕ ϕ

x

a

r

d

r

Hθ

HϕEϕ

Eθ

P P

I0

I0

x

y y

z z

Figure 14.5 Magnetic (left) and electric dipole antennas are dual structures, producing iden-
tical field patterns but with the roles of E and H interchanged.
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By inspection, we see that the equations would be unchanged if we replaced E with 
H, H with −E, ϵ with μ, and μ with ϵ. This illustrates the concept of duality in electro-
magnetics. The fact that the current loop electric field will have the same functional  
form as the electric dipole magnetic field means that with the above substitutions, 
we can construct the current loop fields directly from the electric dipole results. It 
is because of this duality between field solutions of the two devices that the name, 
magnetic dipole antenna, is applied to the current loop device.

Before making the substitutions, we must relate the currents and geometries of 
the two devices. To do this, consider first the static electric dipole result of Chapter 4 
[Eq. (35)]. We can specialize this result by finding the electric field on the z axis 
(θ = 0). We find

E  |  θ=0   =   Qd _____ 
2π ϵ  z   3 

    a  z   (45)

We can next study the current loop magnetic field as found on the z axis, in which 
a steady current I0 is present. This result can be obtained using the Biot–Savart law:

H  |  θ=0   =   π  a   2   I  0   ____ 
2π   z   3 

    a  z   (46)

Now the current associated with a harmonically time-varying charge on the electric 
dipole, Q(t), is

  I  0   =   dQ_
dt

 = jωQ ⇒ Q =    I  0  _
jω

  (47)

If we substitute Eq. (47) into Eq. (45) and replace d with jωϵ(πa2), we find that 
Eq. (45) is transformed to Eq. (46). We now perform these substitutions, along with 
the replacements, H for E, −E for H, ϵ for μ, and μ for ϵ, on Eqs. (14), (15), and (16). 
The results are

 E  ϕs   = − j   ωμ(π  a   2  )  I  0   k ________ 4πr
     [  1 +   1 ____ 

 (kr )   2 
   ]     

1/2
  sin θ exp  [ − j(kr −  δ  ϕ   )] (48)

 H  rs   = j   ωμ(π  a   2  )  I  0   _______ 
2π  r   2 

    1 __ η     [  1 +   1 ____ 
 (kr )   2 

   ]     
1/2

  cos θ exp  [ − j(kr −  δ  r   )] (49)

 H  θs   = j   ωμ(π  a   2  )  I  0   k ________ 4πr
      1 __ η     [  1 −   1 ____ 

 (kr )   2
  +   1 ____ 

 (kr )   4 
   ]

1/2
  sin θ exp  [ − j(kr −  δ  θ   )] (50)

where δr, δθ, and δϕ are as defined in Eqs. (17) and (18). In the far field (kr >> 1), 
Eϕs and Hθs survive, and these simplify to compare closely with (22) and (23). This 
process of exploiting duality in electromagnetics is a very powerful method that can 
be applied in many situations.
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14.4 THIN WIRE ANTENNAS
In addition to giving insights on radiation fundamentals, the Hertzian dipole results provide 
us with a basis from which the fields associated with more complicated antennas can be de-
rived. In this section this methodology is applied to the more practical problem of straight 
thin wire antennas of any length. We will find that for a given wavelength, changes in 
antenna length lead to dramatic variations in (and control of) the radiation pattern. We will 
also note improvement in directivity and efficiency when using certain antenna lengths.

The basic arrangement is shown in Figure 14.6. In a simplistic way, it is possible 
to think of the antenna as having been formed by bending the two wires of an open-ended  
transmission line down and up by 90°. The midpoint at which the bends occur is known 
as the feed point. The current, originally present, persists and is instantaneously flow-
ing in the same direction in the lower and upper sections of the antenna. If the current 
is sinusoidal, a standing wave is set up in the antenna wires, with zeros occurring at the 
wire ends at z = ± ℓ. A symmetric antenna of this type is called a dipole.

14.4.1 Current Distribution on a Dipole

The actual current distribution on a very thin wire antenna is very nearly sinusoidal. 
With zero current at the ends, maxima occur one-quarter wavelength from each end, 
and the current continues to vary in this manner toward the feed point. The current at 
the feed will be small for an antenna whose overall length, 2ℓ, is an integral number 
of wavelengths; but it will be equal to the maximum found at any point on the anten-
na if the antenna length is an odd multiple of a half-wavelength.

Figure 14.6 A thin dipole antenna driven sinusoi-
dally by a two-wire line. The current amplitude distri-
bution, shown in the adjacent plot, is approximately 
linear if the overall length is sufficiently less than a 
half-wavelength. Current amplitude maximizes at the 
center (feed) point.

I0
I

z z

Dipole antenna

Two-wire line

!

–!
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On a short antenna, where 2ℓ is significantly less than a half-wavelength, we 
see only the first portion of the sine wave; the amplitude of the current increases in 
an approximately linear manner, from zero at the ends to a maximum value at the 
feed, as indicated in Figure 14.6. The gap at the feed point is small and has negligible 
effects. The short antenna approximation (in which a linear current variation along 
the length can be assumed) is reasonable for antennas having an overall length that is 
less than about one-tenth of a wavelength.

A simple extension of the Hertzian dipole results can be performed in the short 
antenna regime (ℓ < λ/20). If this is the case, then retardation effects may be neglected.  
That is, signals arriving at any field point P from the two ends of the antenna are 
approximately in phase. The average current along the antenna is I0/2, where I0 is 
the input current at the feed. The electric and magnetic field intensities will thus be 
one-half the values given in (22) and (23), and there are no changes in the vertical and 
horizontal patterns. The power will be one-quarter of its previous value, and thus the 
radiation resistance will also be one-quarter of the value given by (30). Matters im-
prove as the antenna length is increased, but retardation effects must then be included.

For longer lengths, the current distribution is treated the same as that of an 
open-ended transmission line that propagates a TEM wave. This will be a standing 
wave in which the current phasor is given by

 I  s  (z ) ≐  I  0   sin (kz ) (51)

where the open end is located at z = 0. Also, for a TEM wave on a transmission line,
the phase constant will be β = k = ω  √ ___ μϵ  . When the line is unfolded to form the an-
tenna, the z axis is rotated to the vertical orientation with z = 0 occurring at the feed 
point. The current in (51) is then modified to be

 I  s  (z) ≐   {    I  0   sin k(ℓ − z )   (z > 0 )     I  0   sin k(ℓ + z )   (z < 0 )  }    =  I  0   sin k(ℓ − |z | ) (52)

14.4.2  Modeling the Wire Antenna as a Superposition 
of Hertzian Dipoles

The antenna is now modeled as a stack of Hertzian dipoles, each having length dz 
(Figure 14.7). The current amplitude in each Hertzian is determined according to its 
position z along the length, and is given by (52). The far-zone field from each Hertz-
ian can then be written using Eq. (22), suitably modified. We write this as a differen-
tial field contribution at a far point at distance r′ and spherical coordinate angle, θ′:

d  E  θs   = j    I  s  (z) k dz ______ 4π r′   η  sin θ′  e   −jk r   ′   (53)

The coordinates r′ and θ′ are, of course, referenced from the center of the Hertzian, 
which itself is at a position z along the antenna length. We need to reference these 
local coordinates to the origin, which occurs at the antenna feed point. To do this, 
we borrow from the methods used to analyze the static electric dipole as presented  
in Section 4.7. Referring to Figure 14.7, we can write the relation between the 
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distance r′ from the Hertzian at location z and the distance r from the origin to the 
same point as

r′ ≐ r − z cos θ (54)

where, in the far field, θ′ ≐ θ, and distance lines r′ and r are approximately parallel. 
Eq. (53) is then modified to read

d  E  θs   = j     I  s  (z) k dz ______ 4πr
   η  sin θ   e   −jk(r−z cos θ)  (55)

Notice that in obtaining (55) from (53) we have approximated r′ ≐ r in the denomi-
nator, as the use of Eq. (54) will make little difference when considering amplitude 
variations with z and θ. The exponential term in (55) does include (54) because slight 
variations in z or θ will greatly affect the phase.

Now, the total electric field at the far-zone position (r, θ) will be the sum of 
all the Hertzian dipole contributions along the antenna length, which becomes the 
integral:

   E  θs   (  r, θ )     = ∫ d   E  θs   =  ∫ 
−ℓ

  
   ℓ

    j    I  s   (  z )  k dz ______ 4πr
   η sin θ   e   −jk (  r−z cos θ )  

      
 
  

 
   (56)

=   [  j    I  0   k _ 4πr
   η  sin θ   e   −jkr  ]    ∫ 

−ℓ
  

   ℓ
    sin   k(ℓ − |z | ) e    jkz cos θ   dz

To evaluate the last integral, we first express the complex exponential in terms of sine 
and cosine terms using the Euler identity. Denoting the bracketed terms outside the 

Figure 14.7 A dipole antenna can be represented as a stack of 
Hertzian dipoles whose individual phasor currents are given by 
Is(z). One Hertzian dipole is shown at location z, and has length dz. 
When the observation point, P, lies in the far zone, distance lines r 
and r′ are approximately parallel, so they differ in length by z cos θ.

θ
θʹ

rʹ

r

z

z

z cosθ

dz

Is(z)

P(r,θ)

"

–"
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integral as A, we write:

  E  θs  (r, θ) = A  ∫ 
−ℓ

  
   ℓ

      sin k (  ℓ −  |  z |   )      
even

          cos (  kz cos θ )       
even

    + j     sin k (  ℓ −  |  z |   )       
even

          sin (  kz cos θ )       
odd

     dz

in which the even or odd parity of each term is indicated. The imaginary part of the 
integrand, consisting of the product of even and odd functions, yields a term with net 
odd parity; it thus integrates to zero over the symmetric limits of −ℓ to ℓ. This leaves 
the real part, whose integral can be expressed over the positive z range and then fur-
ther simplified using trigonometric identities:

 E  θs  (r, θ ) 

 

=

 

 2A ∫ 
 0
  
   ℓ

    sin  k(ℓ − z) cos (kz cos θ) dz

    =  A ∫ 
 0
  
   ℓ

    sin    [  k(ℓ − z ) + kz cos θ ]    + sin   [  k(ℓ − z) − kz cos θ ]   dz     

=

 

 A ∫ 
 0
  
   ℓ

    sin    [  kz(cos θ − 1) + kℓ ]    − sin   [  kz(cos θ + 1) − kℓ ]   dz

 

The last integral is straightforward and evaluates as

 E  θs  (r, θ ) = 2A  [    cos (kℓ cos θ ) − cos (kℓ )  ________________  
k   sin   2  θ

   ]   

Now, reincorporating the expression for A gives the final result:

  E  θs  (r, θ ) = j    I  0   η _ 2πr
    e   −jkr   [    cos (kℓ cos θ ) − cos (kℓ )  ________________  sin θ   ]    =  E  0   F(θ )   [     e   −jkr  _ r   ]    (57)

where we identify the field amplitude

 E  0   = j    I  0   η___
2π

   (58)

14.4.3 E-Plane Pattern and Radiation Intensity

The terms involving θ and ℓ in Eq. (57) are isolated to form the pattern function for 
the dipole antenna:

 F(θ ) =   [    cos (kℓ cos θ ) − cos (kℓ )  ________________  sin θ   ]    (59)

This important function, when normalized, is the E-plane pattern of the dipole an-
tenna. It explicitly shows how choices in dipole length affect the θ dependence in 
the pattern, and it ultimately determines the dependence on ℓ of the directive gain, 
directivity, and radiated power for a given current.

Plots of the magnitude of F(θ) in the E-plane are shown in Figure 14.8a and b for 
selected dipole lengths. In these, the xz plane is chosen, although the results will be 
the same in any plane that contains the z axis. The plots show a trend toward narrower 
radiation beams as length increases, but to the point at which secondary maxima, or 
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sidelobes, develop for overall antenna lengths (2ℓ) that exceed one wavelength. The 
presence of sidelobes is usually not wanted, mainly because they represent radiated 
power in directions other than that of the main beam (θ = π/2). Sidelobe power will 
therefore likely miss the intended receiver. In addition, the sidelobe directions change 
with wavelength, and will therefore impart an angular spread to a radiated signal, 
to an extent which will of course increase with increasing signal bandwidth. These 
problems are avoided by using antenna lengths that are less than one wavelength.

The radiation intensity can now be found for the dipole antenna by using Eq. (34), 
along with (25):

K(θ ) =  r   2   S  r   =   1 _ 2   ℛe  {   E  θs    H  ϕs  *   }    r   2

where Hϕs = Eθs/η. Substituting (57), we obtain

 K(θ ) =   η  I  0  2  _ 
8  π 2    [F(θ )]   2  =   15   I  0  2  _ π     [   F (  θ  )    ]     2    W/sr (60)

where in the last equality free space is assumed, in which η = η0 = 120π. The total 
radiated power is now the integral of the radiation intensity over all solid angles, or

 P  r   =  ∫ 
0
  
   4π

    K dΩ =  ∫ 
0
  
   2π

     ∫ 
0
  
   π

    K  (θ ) sin θ dθ dϕ (61)

Again assuming free space we find

  P  r   = 30   I  0  2   ∫ 
0
  
   π

      [  F(θ ) ]     2  sin θ dθ   W (62)

(a) (b)

57.5°

xx

zz

Figure 14.8 E-plane plots, normalized to maxima of 1.0, found from F(θ) for dipole antennas  
having overall lengths, 2ℓ, of (a) λ/16 (solid black), λ/2 (dashed), and λ (blue), and (b) 1.3λ (dashed),  
and 2λ (blue). In (a), the beam-narrowing trend is evident as length increases (or as wavelength  
decreases). Note that the λ/16 curves are nearly circular and thus approximate the Hertzian 
dipole pattern. At lengths that exceed one wavelength, sidelobes begin to develop, as exhib-
ited in the smaller beams in the 1.3λ pattern in (b). As length increases, the sidelobes grow to 
form the four symmetrically arranged main lobes of the 2λ antenna, where the lobe in the first 
quadrant maximizes at λ = 57.5°. The main lobes along x that were present in the 1.3λ antenna 
diminish with increasing length, and have vanished completely when the length reaches 2λ.
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Using this result, expressions for the directivity and radiation resistance can now be 
found. From Eq. (42), and using (60) and (62), the directivity in free space is

D(θ ) =   4π K(θ ) ______  P  r  
   =   2  [F(θ )]   2   ____________  

 ∫
0

   π
      [  F(θ ) ]     2  sin θ dθ

   (63)

whose maximum value is

  D  max   =   2  [F(θ )]  max  2    ____________  
 ∫

0

   π
      [  F(θ ) ]     2  sin θ dθ

  (64)

Finally, the radiation resistance will be

  R  rad   =   2  P  r  _
 I  0  2 

 = 60 ∫ 
0
  
   π

      [  F(θ ) ]     2  sin θ dθ (65)

D14.4. Evaluate the percentage of the maximum power density that is found in 
the direction θ = 45° for dipole antennas of overall length (a) λ/4, (b) λ/2, (c) λ. 

Ans. (a) 45.7%; (b) 38.6%; (c) 3.7%

14.4.4 Half-Wave Dipole

When the antenna length is chosen to be 2ℓ = λ/2, we form a “half-wave” dipole; this 
length choice has several advantages in practice.  We begin with an example:

EXAMPLE 14.2

Write the specific pattern function, and evaluate the beamwidth, directivity, and ra-
diation resistance of a half-wave dipole.
Solution. The length is 2ℓ = λ/2, or ℓ = λ/4. Therefore, kℓ = (2π/λ)(λ/4) = π/2, 
which is now substituted into Eq. (59) to obtain:

F(θ ) =    
cos   (    π _ 2   cos θ )   _________

sin θ (66)

The magnitude of this function is plotted as the dashed curve in Figure 14.8a. Its 
maxima (equal to 1) occur at θ = π/2, 3π/2, whereas zeros occur at θ = 0 and π. 
Beamwidth is found by evaluating the solutions of

   
cos   (    π _ 2   cos θ )   

 _________ sin θ    =   1 __
 √ 

__
 2  
  

Numerically, it is found that the two angles on either side of the maximum at θ = 90° 
that satisfy the preceding equation are θ1/2 = 51° and 129°. The half-power beam-
width is thus 129° − 51° = 78°.

Directivity and radiation resistance are then found using (64) and (65), in which 
the integral of [F(θ)]2 can be performed numerically. The results are Dmax = 1.64 (or 
2.15 dB), and Rrad = 73 Ω.
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In the half-wave dipole, the standing wave current amplitude maximizes at the 
feed point, and the antenna is said to be operated on resonance. As a result, the 
driving point impedance, one-quarter wavelength in front of the open ends, would 
in principle be purely real4 and equal to the 73-Ω radiation resistance, assuming that 
the antenna is otherwise lossless. This is the primary motivation for using half-wave 
dipoles, in that they provide a fairly close impedance match to conventional transmis-
sion lines (whose characteristic impedances are on the same order).

Actually, because the antenna is essentially an unfolded transmission line, the half-
wave dipole does not behave as an ideal quarter-wave transmission line section, as we 
might suspect considering the discussions in Section 14.1. An appreciable reactive part 
of the input impedance will likely be present, but the half-wavelength dimension is 
very close to the length at which the reactance goes to zero. Methods of evaluating the 
reactance are beyond the scope of our treatment, but are considered in detail in Ref. 
1. For a thin lossless dipole of length exactly λ/2, the input impedance would be Zin =
73 + jX, where X is in the vicinity of 40 Ω. The input reactance is extremely sensitive to 
the antenna length and can be reduced to zero by a very slight reduction in the overall 
length below λ/2, leaving the real part essentially unaffected. Similar behavior is seen in 
dipoles having lengths that are integer multiples of λ/2, but in these, radiation resistances  
are considerably higher, thus yielding a poorer impedance match. At dipole lengths 
between half-wavelength multiples, input reactances can be much higher (in the vicinity 
of j600 Ω) and can become sensitive to the wire thickness, in addition to the length. In 
practice, when connecting a transmission line feed, the input reactance can be zeroed by 
length reduction or by using matching techniques such as those discussed in Chapter 10.

Plots of directivity and radiation resistance as functions of antenna length are shown 
in Figure 14.9. Directivity increases modestly with length, whereas radiation resistance 
reaches a local maximum at a length between 3λ/4 and λ. At greater lengths, additional 
peaks in Rrad occur at higher levels, but performance is compromised by the presence of 
sidelobes. Again, half-wave dipoles are typically used because single-lobe behavior is 
assured over a broad spectral bandwidth, whereas radiation resistance (73 Ω) is close to 
the impedance of standard transmission lines that are used to feed the antenna.

14.4.5 Monopole Antenna

As a final exercise in wire antennas, we consider the operation of a monopole an-
tenna. This is one-half a dipole plus a perfectly conducting plane, as shown in 
Figure 14.10a. The image principle discussed in Section 5.5 provides the image 
shown in Figure 14.10b, so that the monopole and its image form a dipole. Therefore, 
all field equations that pertain to the dipole apply directly to the upper half-space. The 
Poynting vector is therefore also the same above the plane, but the integration to find 
the total power radiated is performed only through the hemisphere that surrounds the 
upper half-space. So the radiated power and the radiation resistance for the mono-
pole are half the corresponding values for the dipole. As an example, a quarter-wave 

4 Think of a half-rotation (λ/4) around the Smith chart from the open circuit point, toward the generator, 
where, with loss present, the end position would be somewhere on the negative real axis.
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monopole (presenting a half-wave dipole when including the image) yields a radia-
tion resistance of Rrad = 36.5 Ω.

Monopole antennas may be driven by a coaxial cable below the plane, having 
its center conductor connected to the antenna through a small hole, and having its 
outer conductor connected to the plane. If the region below the plane is inaccessible 
or inconvenient, the coax may be laid on top of the plane and its outer conductor 
connected to it. Examples of this type of antenna include AM broadcasting towers 
and citizens’ band antennas.

Figure 14.9 Plots of directivity (black) and radiation resistance (blue) as 
functions of overall antenna length, expressed in wavelengths.
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Figure 14.10 (a) An ideal monopole is always associated with a perfectly conducting 
plane. (b) The monopole plus its image form a dipole.
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14.5 ARRAYS OF TWO ELEMENTS
We next address the problem of establishing better control of the directional proper-
ties of antenna radiation. Although some control of directivity is achieved through 
adjustment of the length of a wire antenna, these results only appear as changes in 
the E-plane pattern. The H-plane pattern always remains a circle (no ϕ variation), as 
long as a single vertical wire antenna is used. By using multiple elements in an array, 
significant improvement in directivity as determined in both E and H planes can be 
achieved. Our objective in this section is to lay the groundwork for the analysis of 
arrays by considering the simple case of using two elements. The resulting methods 
are readily extendable to multiple element configurations.

14.5.1 Array Fields in the Far Zone

The basic configuration is shown in Figure 14.11. Here, we have our original wire 
antenna with its feed at the origin, and oriented along the z axis. A second identical 
antenna, parallel to the first, is positioned at location d on the x axis. The two carry 
the same current amplitude, I0 (leading to far-field amplitude E0), but we allow the 
second antenna current to exhibit a constant phase difference, ξ, from that of the first. 
The far-field observation point, P, lies at spherical coordinates (r, θ, ϕ). From this 
point, the antennas appear close enough together so that (1) the radial lines, r and r1, 

D14.5. The monopole antenna of Figure 14.10a has a length d/2 = 0.080 m 
and may be assumed to carry a triangular current distribution for which the 
feed current I0 is 16.0 A at a frequency of 375 MHz in free space. At point P 
(r = 400 m, θ = 60°, ϕ = 45°) find (a) Hϕs, (b) Eθs, and (c) the amplitude of r. 

Ans. (a) j1.7 mA/m; (b) j0.65 V/m; (c) 1.1 W/m2

θ
P

I0

I0

ax

r1

ar
r

s

x

z

yd
e jξ

ϕ

Figure 14.11 The original z-directed wire antenna  
with its center at the origin is now joined by a 
second parallel antenna, crossing the x axis at 
distance d. The second antenna carries the same 
current amplitude as the first, but with a constant 
phase shift, ξ. Fields are observed at point P.
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are essentially parallel, and (2) the electric field directions at P are essentially the 
same (along aθ). Using Eq. (57), we may therefore write the total field at P, with the 
understanding that the presence of the second antenna on the x axis will introduce a 
ϕ dependence in the field that was previously not present:

  E  θ P  (r, θ, ϕ ) =  E  0    F(θ )   [     e   −jkr  _ r   +    e   jξ   e   −jk r  1    _  r  1     ] (67)

Next, we may express the distance to P from the second antenna, r1, in terms of the 
distance to the first antenna, r (also the spherical coordinate radius), by noting that in 
the far-field approximation we have

 r  1   ≐ r − s

where s is one leg of the right triangle formed by drawing a perpendicular line seg-
ment between the second antenna and the line of radius r as shown in Figures 14.11 
and 14.12. The length, s, is the projection of the antenna separation, d, onto the radial 
line, r, and is found through

s = d   a  x   ·  a  r   = d  sin θ cos ϕ (68)

Therefore,

 r  1   ≐ r − d  sin θ cos ϕ (69)

In the far field, the distance, d sin θ cos ϕ, is very small compared to r, which allows 
us to neglect the difference between r and r1 in the magnitude terms in (67) (so that 
1/r1 ≐ 1/r). As we know from the dipole studies, the difference cannot be neglected 
in the phase terms in (67) because phase is very sensitive to slight changes in r. With 
these considerations in mind, Eq. (67) becomes

 E  θ P  (r, θ, ϕ ) =    E  0   F(θ ) _____ r    [   e   −jkr  +  e   jξ   e   −jk(r−d sin θ cos ϕ)  ]   (70)

P

S

d
r

r1

x

y

ϕ

Figure 14.12 Top view of the arrangement 
of Figure 14.11 (looking down onto the x-y 
plane). In the far-field approximation, the blue 
lines are essentially parallel, and r1 ≐ r − s.
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which simplifies to

  E  θ P  (r, θ, ϕ ) =    E  0    F(θ ) _ r    e   −jkr   [  1 +  e   jψ  ]    (71)

where

 ψ = ξ + kd  sin θ cos  ϕ 
(72)

ψ is the net phase difference between the two antenna fields that is observed at P(r, θ, ϕ). 
Equation (71) can be further simplified by factoring out the term e jψ/2 to obtain

 E  θ P  (r, θ, ϕ) =   2  E  0    F(θ ) ______ r    e   −jkr   e   jψ/2  cos (ψ / 2) (73)

from which we may determine the field amplitude through

 |  E  θ P  (r, θ, ϕ) | =  √ 
_

  E  θ P    E  θ P  *     =   2  E  0   _ r    | F(θ ) ||cos (ψ / 2)| (74)

14.5.2 Pattern Multiplication Principle

Equation (74) demonstrates the important principle of pattern multiplication that 
applies to arrays of identical antennas. Specifically, the total field magnitude consists 
of the product of the pattern function magnitude, or element factor for the individual 
antennas, |F(θ)|, and the normalized array factor magnitude, given by |cos(ψ/2)|. The 
array factor is often denoted by

  A(θ, ϕ ) = cos (ψ / 2 ) = cos   [    1 _ 2      (  ξ + kd  sin θ cos ϕ )    ]     (75)

Equation (74) then becomes

 | E  θ P  (r, θ, ϕ)| =   2  E  0   _ r   | F(θ )||A(θ, ϕ)| (76)

This principle can be extended to arrays of multiple elements by appropriately modi-
fying the array factor, as we will find. The underlying assumption is that the individ-
ual array elements are essentially uncoupled; that is, they induce negligible currents 
in each other. With appreciable coupling, the problem is far more complicated, and 
pattern multiplication cannot be used.

In the field pattern expressed in (76), the E plane (or θ dependence) is primarily 
determined by the individual elements, or by |F(θ)|. It is in the H plane where the 
effect of the array is the strongest. In fact, the main reason for using an array of this 
configuration is to enable control of the H-plane pattern. In the H plane (θ = π/2), 
Eqs. (75) and (76) give the field dependence on ϕ as
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  E  θ P  (r, π / 2, ϕ) ∝  A(π / 2, ϕ) = cos   [    1 _ 2     (  ξ + kd cos ϕ )    ]     (77)

The H-plane pattern depends on the choices of the relative current phase, ξ, and the 
element spacing, d.

EXAMPLE 14.3

Investigate the H-plane pattern when the currents are in phase (ξ = 0).
Solution. With ξ = 0, Eq. (77) becomes

A(π / 2, ϕ ) = cos   [    kd _ 2   cos ϕ ]    = cos   [    πd_ 
λ
   cos ϕ ]   

This reaches a maximum at ϕ = π/2 and 3π/2, or along the direction that is normal 
to the plane of the antennas (the y axis). This occurs regardless of the choice of d, 
and the array is thus referred to as a broadside array. Now, by choosing d = λ/2, we 
obtain A = cos[(π/2) cos ϕ], which becomes zero at ϕ = 0 and π (along the x axis), 
and we have single main beams along the positive and negative y axis. When d is 
increased beyond λ/2, additional maxima (sidelobes) appear as ϕ is varied, but zeros 
still occur along the x axis if d is set to odd multiples of λ/2.

EXAMPLE 14.4

Determine the necessary conditions to establish an endfire array, in which the maximum 
radiation is directed along the x axis.
Solution. Setting ϕ = 0 or π in Eq. (77) and requiring the equation to achieve a 
maximum results in the condition:

A = cos   [    ξ _ 2   ±   πd _ 
λ
   ]    = ±1

or

  ξ _ 2   ±   πd __ 
λ
   = mπ

where m is an integer that includes 0, and where the plus sign in the bracket applies for 
ϕ = 0, and the minus sign for ϕ = π. One case of practical interest occurs when m = 
0, d = λ/4, and ξ = −π/2, which satisfies the preceding condition when the positive 
sign is chosen. Equation (77) now becomes

A(π / 2, ϕ ) = cos   [    π _ 4    (  cos ϕ − 1 )    ]   

The broadside array of the previous example can be regarded as the simplest case. 
More interesting behavior occurs when a nonzero phase difference exists between the 
two currents, and adjustments can be performed in the phase and element spacing.
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14.6 UNIFORM LINEAR ARRAYS
We next expand our treatment to arrays of more than two elements. With these, the 
designer has more options to improve the directivity and possibly to increase the band-
width of the antenna, for example. As might be imagined, a full treatment of this 
subject would require an entire book. Here, we consider only the case of the uniform 
linear array to demonstrate the analysis methods and to present some of the key results.

14.6.1 Far Zone Array Pattern

The uniform linear array configuration is shown in Figure 14.13. The array is lin-
ear because the elements are arranged along a straight line (the x axis in this case). 
The array is uniform because all elements are identical, have equal spacing d, and 
carry the same current amplitude I0, and the phase progression in current from ele-
ment to element is given by a constant value, ξ. The normalized array factor for the 
two-element array can be expressed using (71) as

  |   A(θ, ϕ ) |    = |  A  2  (θ, ϕ ) | = |  cos   (  ψ / 2 )     | =   1 _ 2    |  1 +  e   jψ    |    (78)

This function maximizes at ϕ = 0 and reaches zero at ϕ = π. We have thus created 
an array that radiates a single main lobe along the positive x axis. The way this works 
can be understood by realizing that the phase lag in current in the element at x = d 
just compensates for the phase lag that arises from the propagation delay between the 
element at the origin and the one at x = d. The second element radiation is therefore 
precisely in phase with the radiation from the first element. The two fields, there-
fore, constructively interfere and propagate together in the forward x direction. In 
the reverse direction, radiation from the antenna at x = d arrives at the origin to find 
itself π radians out of phase with the radiation from the x = 0 element. The two fields 
therefore destructively interfere, and no radiation occurs in the negative x direction.

D14.6. In the broadside configuration of Example 14.3, the element spacing 
is changed to d = λ. Determine (a) the ratio of the emitted intensities in the ϕ = 
0 and ϕ = 90° directions in the H plane, (b) the directions (values of ϕ) of the 
main beams in the H-plane pattern, and (c) the locations (values of ϕ) of the 
zeros in the H-plane pattern. 

Ans. (a) 1; (b) (0, ±90°, 180°); (c) (± 45°, ± 135°)

D14.7. In the endfire configuration of Example 14.4, determine the directions 
(values of ϕ) for the main beams in the H plane if the wavelength is shortened 
from λ = 4d to (a) λ = 3d, (b) λ = 2d, and (c) λ = d. 

Ans. (a) ± 41.4°; (b) ± 45.0°; (c) ± 75.5°

hay28159_ch14_515-556.indd   541 25/11/17   2:16 pm



E N G I N E E R I N G  E L E C T R O M AG N E T I C S542

where the subscript 2 is applied to A to indicate that the function applies to two ele-
ments. The array factor for a linear array of n elements as depicted in Figure 14.13 is 
a direct extension of (78) and becomes

   |     A  n  (θ, ϕ ) |    =   |     A  n  (ψ ) |    =   1 _ n    |  1 +  e   jψ  +  e   j2ψ  +  e   j3ψ  +  e   4ψ  + … + e   j(n−1)ψ    |     (79)

With the elements arranged along the x axis as shown in Figure 14.13, we have ψ = 
ξ + kd sin θ cos ϕ, as before. The geometric progression that comprises Eq. (79) can 
be expressed in closed form to give

  |     A  n  (ψ ) |    =   1 __ n      
 |  1 −  e   jnψ  |   ______ 
 |  1 −  e   jψ  |     =   1 __ n      

 |   e   jnψ/2   (   e   −jnψ/2  −  e   jnψ/2  )    |    ______________  |   e jψ/2   (   e   −jψ/2  −  e   jψ/2)    |     (80)

In the far right side of Eq. (80), we recognize the Euler identities for the sine function 
in both numerator and denominator, leading finally to

   |     A  n  (ψ) |    =   1 _ n      |  sin (nψ / 2) |  _
 |  sin (ψ / 2) |   (81)

The electric field in the far zone for an array of n dipoles can now be written in terms 
of An by extending the result in Eq. (76). Writing |An(ψ)| = |An(θ, ϕ)|, we have

 | E  θ P  (r, θ, ϕ )  | =   n   E  0   _ r     |   F(θ ) |     |    A  n  (θ, ϕ ) |    (82)

demonstrating again the principle of pattern multiplication, in which we now have a 
new array function that pertains to the linear array.

I0 I0 e jξ I0 e j2 ξ I0 e j3 ξ I0 e j4 ξ . . . I0 e j(n–1)ξ

x
d

r

P(r,ϕ)

ϕ

Figure 14.13 H-plane diagram of a 
uniform linear array of n dipoles, arranged 
along x, and with individual dipoles oriented 
along z (out of the page). All elements have 
equal spacing, d, and carry equal current 
amplitudes, I0. Current phase shift ξ occurs 
between adjacent elements. Fields are eval-
uated at far-zone point P, from which the 
dipoles appear to be grouped at the origin.
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14.6.2 Special Cases

Plots of Eq. (81) are shown in Figure 14.14 for the cases in which n = 4 and n = 8. 
Note that the functions always maximize to unity when ψ = 2mπ, where m is an inte-
ger that includes zero. These principal maxima corrrespond to the main beams of the 
array pattern. The effect of increasing the number of elements is to narrow the main 
lobes and to bring in more secondary maxima (sidelobes).

To see how the array pattern is shaped, it is necessary to interpret the array func-
tion, Eq. (81), with regard to angular variation in the H plane. In this plane (where 
θ = π/2), we have ψ = ξ + kd cos ϕ. Then, knowing that ϕ varies from 0 to 2π radians, 
cos ϕ varies between ±1, and we can see that ψ will be within the range

ξ − kd ≤ ψ ≤ ξ + kd (83)

Choices of the current phasing ξ and the antenna spacing d determine the range of ψ 
values that will appear in the actual array pattern. This could lead, in some cases, to a 
fairly narrow range in ψ that may or may not include a principal maximum. The current 
phase determines the central value of ψ, and the antenna spacing determines the maxi-
mum variation of ψ that occurs about the central value as the azimuth angle ϕ is varied.

As discussed in Section 14.5, a broadside array has main beams that occur nor-
mal to the array plane (at ϕ = π/2, 3π/2). The condition for this is that the principal 
maximum, ψ = 0, will occur at these angles. We therefore write

ψ = 0 = ξ + kd cos (π / 2) = ξ

and so we would set ξ = 0 to obtain a broadside array. In this case, (83) gives −kd < 
ψ < kd. The central value of ψ is thus zero, and so the principal maximum there is in-
cluded in the pattern. In the H plane, and with ξ = 0, we thus have ψ = kd cos ϕ. The 
ψ = 0 point will always occur at ϕ = π/2 and 3π/2, and this will be true regardless of 
the choice of element spacing d. The effect of increasing d is to enlarge the range of 
ψ that results when ϕ varies over its range of 0 to 2π. Therefore, for a given number 
of elements, the main beam will get narrower, but more sidelobes will be present in 
the pattern when the element spacing is increased.

1

0.5|A4|

–2π 0–π π 2π 

1

0.5|A8|

–2π 0–π π 2π
ψ ψ

Figure 14.14 |An(ψ)| as evaluated from Eq. (81) over the range −2π < ψ < 2π for cases in which the 
number of elements, n, is (a) 4, and (b) 8.
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An endfire array requires a principal maximum to occur along the x axis. In the 
H plane, we may therefore write

ψ = 0 = ξ + kd cos (0) = ξ + kd

or ξ = −kd to obtain endfire operation with a maximum occurring along the positive 
x axis. This may or may not result in a main beam occurring along the negative x 
axis as well.

EXAMPLE 14.5

For arrays of 4 and 8 elements, select the current phase and element spacing that will 
give unidirectional endfire operation, in which the main beam exists in the ϕ = 0 
direction, whereas no radiation occurs in the direction of ϕ = π, nor in the broadside 
directions (ϕ = ±π/2).
Solution. We want ψ = 0 when ϕ = 0. Therefore, from ψ = ξ + kd cos ϕ, we would 
require that 0 = ξ + kd, or that ξ = −kd. Using 4 or 8 elements, we find either from 
Eq. (81) or from Figure 14.14 that zeros will occur when ψ = ±π/2 and ±π. There-
fore, if we choose ξ = −π/2 and d = λ/4, we obtain ψ = −π/2 at ϕ = π/2, 3π/2, and ψ = 
−π at ϕ = π. We thus have ψ = −(π/2)(1 − cos ϕ). Polar plots of the resulting array 
functions are shown in Figure 14.15a and b. Again, the move from 4 to 8 elements 
has the effect of decreasing the main beamwidth while increasing the sidelobe count 
from 1 to 3 in this case. If an odd number of elements is used with the above choices 
in phasing and spacing, a small sidelobe will be present in the ϕ = π direction.

In general, we may choose current phasing and element spacing to establish the 
main beam in any direction. Choosing the ψ = 0 principal maximum, we may write

ψ = 0 = ξ + kd cos  ϕ  max   ⇒ cos  ϕ  max   = − ξ__
kd

so that the main beam direction can be changed by varying the current phasing.

Figure 14.15 H-plane plots of (a) 4-element and (b) 8-element 
arrays having element spacing of d = λ/4 and current phasing  
ξ = −π/2.

y

x

y

x

(a) (b)
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14.7 ANTENNAS AS RECEIVERS
We next turn to the other fundamental purpose of an antenna, which is its use as a 
means to detect, or receive, radiation that originates from a distant source. We will 
approach this problem through study of a transmit-receive antenna system. This is 
composed of two antennas, along with their supporting electronics, that play the 
interchangeable roles of transmitter and detector.

14.7.1 Transmit-Receive Link as a Two-Port Network: Reciprocity

Figure 14.16 shows an example of a transmit-receive arrangement, in which the two 
coupled antennas together comprise a linear two-port network. Voltage V1 and cur-
rent I1 on the antenna at the left affect the voltage and current (V2 and I2) on the 
antenna at the right—and vice-versa. This coupling is quantified through transim-
pedance parameters Z12 and Z21. The governing equations take the form

V1 = Z11 I1 + Z12 I2

V2 = Z21 I1 + Z22 I2

(84a)

(84b)

Z11 and Z22 are the input impedances to antennas 1 and 2 when either antenna is 
isolated and is used as a transmitter, or equivalently, if the two antennas are sufficiently 

D14.8. In an endfire linear dipole array in which ξ = −kd, what minimum 
element spacing d in wavelengths results in bidirectional operation, in which 
equal intensities occur in the H plane at ϕ = 0 and ϕ = π? 

Ans. d = λ/2

D14.9. For a linear dipole array in which the element spacing is d = λ/4, 
what current phase ξ will result in a main beam in the direction of (a) ϕ = 30°;  
(b) ϕ = 45°? 

Ans. (a) −π   √ 
__

 3   /4; (b) −π   √ 
__

 2   /4

I1

Z11

V1

I2

Z22

V2 
+

–
Z21 Z12

–

+

Figure 14.16 A pair of coupled antennas, 
demonstrating Eqs. (84a) and (84b).
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far away from each other. The real parts of Z11 and Z22 will be the associated radia-
tion resistances, provided ohmic losses in all conductors and all losses to surrounding 
objects are reduced to zero. We will assume this, in addition to far-zone operation, to 
be true here. The trans-impedances, Z12 and Z21, depend on the spacing and relative 
orientation between the antennas, as well as on the characteristics of the surrounding 
medium. A critical property of the transimpedances in a linear medium is that they 
are equal. This property is the embodiment of the reciprocity theorem. Stated simply,

  Z  12   =  Z  21   (85)

Further insights can be found by inverting (84a) and (84b) and invoking the admit-
tance parameters, Yij:

 I  1   =  Y  11    V  1   +  Y  12    V  2   (86a)
 I  2   =  Y  21    V  1   +  Y  22    V  2   (86b)

where, again, the reciprocity theorem tells us that Y12 = Y21.
Now, suppose that the terminals of antenna 2 are shorted, so that V2 = 0. In this 

case, Eq. (86b) gives  I  2  ′   =  Y  21    V  1  ′  , where the single prime denotes the condition of a 
shorted antenna 2. Instead, we could short antenna 1, resulting in  I  1  ″  =  Y  12    V  2  ″  (with 
the double prime indicating conditions with antenna 1 shorted). Because reciprocity 
holds, it follows that

    V  2  ″ _ 
 I  1  ″ 

   =    V  1  ′  _ 
 I  2  ′  

   (87)

Equation (87) applies regardless of the relative positioning and orientation of the 
two antennas. We know that in a given direction, each antenna will transmit a power 
density whose value is determined by the antenna radiation pattern. Furthermore, we 
would expect to see the current that is set up on the receiving antenna depend on that 
antenna’s orientation; that is, there is a reception pattern that the receiving antenna 
presents to the incoming signal. Now, for a fixed relative orientation between the two 
antennas, with antenna 1 as the transmitter, and antenna 2 shorted, a certain ratio  V  1  ′   /  I  2  ′    
will be obtained. This ratio will depend on the relative orientation, which in turn 
will depend on the radiation pattern of antenna 1 and on the reception pattern of 
antenna 2. If roles are reversed such that the transmitter now becomes the receiver, 
and with antenna 1 shorted, a ratio  V  2  ″  /  I  1  ″  will be obtained that by Eq. (87) is the same 
as before. The conclusion we must come to is that the extent to which the receiving 
antenna accepts power will be determined by its radiation pattern. This means, for 
example, that the main beam direction in the radiation pattern of the receiving antenna  
corresponds to the direction from which it is most sensitive to incoming signals. The
radiation and receiving patterns of any antenna are the same.

14.7.2 Received Power and Effective Area

We next consider a more general transmission case, in which the receiving antenna  
is to deliver power to a load. Antenna 1 (Figure 14.16) serves as the transmitter, 
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 while antenna 2 is the receiver, at which the load is attached. A primary assumption 
is that the antennas are far enough away from each other so that only forward cou-
pling (through Z21) will be appreciable. The large separation distance means that the 
induced current I2 is likely to be much less than I1. Reverse coupling (through Z12) 
would involve transmission of the received signal in antenna 2 back to antenna 1; spe-
cifically, the induced current I2 further induces a (now very weak) additional current  I  1  ′   
on antenna 1; that antenna would then carry a net current of  I  1   +  I  1  ′  , where  I  1  ′   ≪  I  1  . We 
therefore assume that the product Z12I2 can be neglected, under which Eq. (84a) gives 
V1 = Z11I1. A load impedance, ZL, is connected across the terminals of antenna 2, as 
shown in the upper part of Figure 14.17. V2 is the voltage across this load. Current IL = 
−I2 now flows through the load. Taking this current as positive, Eq. (84b) becomes

 V  2   =  V  L   =  Z  21    I  1   −  Z  22    I  L   (88)

This is just the Kirchhoff voltage law equation for the right-hand equivalent circuit shown 
in the lower part of Figure 14.17. The term Z21I1 is interpreted as the source voltage 
for this circuit, originating from antenna 1. Using (88), along with VL = ZL IL, leads to

 I  L   =    Z  21    I  1   _____  Z  22   +  Z  L     (89)

The time-average power dissipated by ZL is now

 P  L   =   1 _ 2   ℛe  {   V  L    I  L  *  }    =   1 _ 2     |   I  L   |     2  ℛe  {   Z  L   }    =   1 _ 2     |   I  1   |     2    |     Z  21   _____  Z  22   +  Z  L     |     2  ℛe  {   Z  L   }    (90)

The maximum power transferred to the load occurs when the load impedance 
is conjugate-matched to the driving point impedance, or  Z  L   =  Z  22  *  . Making this 

I1

V1

IL

V1

IL = –I2

V2 = VL

+

–

+

–
VL

+
–

+
–

+
–

ZL

I1
I2

Z11 Z22

Z21I1 ZL

Figure 14.17 Transmitting and receiving antennas, 
and their equivalent circuits.
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substitution in (90), and using the fact that  Z  22   +  Z  22  *   = 2  R  22   gives

 P  L   =   1 _ 2     |     I  1   |     2    |     Z  21   ____
2  R  22  

   |     2 ℛe  {   Z  22   }    =     |     I  1   |     2    |    Z  21   |     2_______
8  R  22  

 (91)

The time-average power transmitted by antenna 1 is

 P  r   =   1 _ 2   ℛe  {   V  1    I  1  *  }    =   1 _ 2    R  11     |   I  1   |     2  (92)

By comparing this result with Eq. (65), we can interpret R11 as the radiation resis-
tance of the transmitting antenna if (1) there are no resistive losses and (2) the current 
amplitude at the driving point is the maximum amplitude I0. As we found earlier, the 
latter will occur in a dipole if the overall antenna length is an integer multiple of a 
half-wavelength. Using (91) and (92), we write the ratio of the received and trans-
mitted powers:

   P  L  __
 P  r

  =     |     Z  21   |     2  ______
4  R  11    R  22

  (93)

At this stage, more understanding is needed of the transimpedance, Z21 (or Z12). This 
quantity will depend on the distance and relative orientations of the two antennas, in 
addition to other parameters. Figure 14.18 shows two dipole antennas, separated by 

θ1

θ2

Ei

r

α

Figure 14.18 A transmit-receive antenna 
pair, showing relative orientation angles for 
the case in which the antennas lie in the same 
plane (in which case the ϕ coordinates are 
not necessary). Incident electric field Ei from 
antenna 1 is shown arriving at antenna 2 and 
presenting angle α to the antenna 2 axis. 
The field is perpendicular to the distance line 
r, and thus α = 90° − θ2. Far-zone operation 
is assumed, so the two antennas appear as 
point objects to each other.
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radial distance r, and with relative orientations that are specified by values of θ, as 
measured with respect to each antenna axis.5 With antenna 1 serving as the transmit-
ter and antenna 2 serving as the receiver, the radiation pattern of antenna 1 is given 
as a function of θ1 and ϕ1, while the receiving pattern of antenna 2 (equivalent to its 
radiation pattern) is given as a function of θ2 and ϕ2.

A convenient way to express the received power in an antenna is through its 
effective area, denoted Ae(θ, ϕ) and expressed in m2. Refer to Figure 14.18, and con-
sider the average power density at the receiver (antenna 2) position, originating from 
the transmitter (antenna 1). As per Eqs. (25) and (26), this will be the magnitude of 
the Poynting vector at that location, Sr(r, θ1, ϕ1) in W/m2, where a dependence on ϕ 
is now necessary to describe all possible relative orientations. The effective area of 
the receiving antenna is defined such that when the power density is multiplied by 
the effective area, the power dissipated by a matched load at the receiving antenna is 
obtained. With antenna 2 as the receiver, we write

 P  L2   =  S  r1  (r,  θ  1  ,  ϕ  1   ) ×  A  e2  ( θ  2  ,  ϕ  2   )   [ W ] (94)

But now, using Eqs. (34) and (38), we may write the power density in terms of the 
directivity of antenna 1:

  S  r1  (r,  θ  1  ,  ϕ  1  ) =    P  r1   _ 
4π  r   2 

    D  1  ( θ  1  ,  ϕ  1  ) (95)

Combining Eqs. (94) and (95), we obtain the ratio of the power received by antenna 
2 to the power radiated by antenna 1:

   P  L2  ___
 P  r1

  =    A  e2  ( θ  2  ,  ϕ  2   )  D  1  ( θ  1  ,  ϕ  1   )  ______________ 
4π  r   2 

  =     |   Z  21   |     2  ______ 4  R  11    R  22  
 (96)

where the second equality repeats Eq. (93). We can solve (96) to find

   |   Z  21   |     2  =    R  11    R  22    A  e2  ( θ  2  ,  ϕ  2   )  D  1  ( θ  1  ,  ϕ  1   )   __________________  
π  r   2 

 (97a)

We next note that if roles are reversed, in which antenna 2 transmits to antenna 1, we 
would find

   |   Z  12   |     2  =    R  11    R  22    A  e1  ( θ  1  ,  ϕ  1   )  D  2  ( θ  2  ,  ϕ  2   )   __________________  
π  r   2 

 (97b)

5 One way to express the relative orientations is to define the z axis along the radial distance line, r. Then 
angles θi and ϕi (i = 1, 2) are used locally to describe the orientations of the antenna axes, in which the 
origins of the two spherical coordinate systems are located at each antenna feed. The ϕ coordinate would 
thus be the angle of rotation about the r axis. For example, in Figure 14.18, with both antennas in the plane 
of the page, both ϕ coordinates could be assigned values of zero. With antenna 2 rotated about r such that 
it is normal to the page, ϕ2 would be 90°, and the antennas would be cross-polarized.
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The reciprocity theorem states that Z12 = Z21. By equating Eqs. (97a) and (97b), it 
therefore follows that

    D  1  ( θ  1  ,  ϕ  1   ) _  A  e1  ( θ  1  ,  ϕ  1   )
   =    D  2  ( θ  2  ,  ϕ  2   ) _  A  e2  ( θ  2  ,  ϕ  2   )

   = Constant (98)

That is, the ratio of directivity to effective area for any antenna is a universal con-
stant, independent of the antenna type or the direction in which these parameters are 
evaluated. To evaluate the constant, we only need to look at one case.

EXAMPLE 14.6

Find the effective area of a Hertzian dipole, and determine the general relation be-
tween the directivity and effective area of any antenna.
Solution. With the Hertzian dipole as the receiving antenna, and having length d, its 
load voltage VL will depend on the electric field that it intercepts from antenna 1. Spe-
cifically, we find the projection of the transmitting antenna field along the length of re-
ceiving antenna. This projected field, when multiplied by the length of antenna 2, gives 
the input voltage to the receiving antenna equivalent circuit. Referring to Figure 14.18, 
the projection angle is α, and thus the voltage that drives the Hertzian dipole will be

 V  in   =  E  i   cos α × d =  E  i    d  sin  θ  2  
The equivalent circuit for the Hertzian dipole is now the same as that of the receiving 
antenna as shown in Figure 14.17, except that we replace the source voltage, I1Z21, 
with Vin as given above. Assuming a conjugate-matched load ( Z  L   =  Z  22  *  ), the current 
through the load is now

 I  L   =   
 E  i    d  sin  θ  2   ________  Z  22   +  Z  L     =   

 E  i    d  sin  θ  2  ________
2  R  22  

 

The power delivered to the matched load is then

 P  L2   =   1 _ 2   ℛe  {   V  L    I  L  *  }    =   1 _ 2    R  22     |   I  L   |     2  =    ( E  i    d )   2   sin   2   θ  2    _________
8  R  22  

 (99)

For the Hertzian dipole, R22 is the radiation resistance. This was previously found to 
be (Eq. (30))

 R  22   =  R  rad   = 80  π   2    (    d __ 
λ
   )

2

Substituting this into (99), we find

 P  L2   =   1 ___ 640     (    
 E  i    λ  sin  θ  2   _______ π   )     

2

[W ] (100)

The average power density that is incident on the receiving antenna is now

 S  r1  (r,  θ  1  ,  ϕ  1  ) =   
 E  i    (r,  θ  1  ,  ϕ  1   )   2  ________ 2  η  0  

  =   
 E  i  2  ____ 240π

    [ W/m   2  ] (101)
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We can now return to Eq. (96) and use Eq. (104) to rewrite the ratio of the power 
delivered to the receiving antenna load to the total power radiated by the transmitting 
antenna. This yields an expression that involves the simple product of the effective 
areas, known as the Friis transmission formula:

    P  L2   _  P  r1
   =    A  e2  ( θ  2  ,  ϕ  2  )  D  1  ( θ  1  ,  ϕ  1  )  ______________ 

4π  r   2 
 =    A  e1  ( θ  1  ,  ϕ  1  )  A  e2  ( θ  2  ,  ϕ  2  )  ______________

 λ   2   r   2 
 (105)

The result can also be expressed in terms of the directivities:

    P  L2   _  P  r1
   =    λ   2  _ 

 (4πr)   2 
    D  1  ( θ  1  ,  ϕ  1  )  D  2  ( θ  2  ,  ϕ  2  ) (106)

These results provide an effective summary of what was discussed in this section, by 
way of giving us a very useful design tool for a free-space communication link. Again, 
Eq. (105) assumes lossless antennas in the far zones of each other and gives the power 
dissipated by a load that is conjugate-matched to the receiving antenna impedance.

Using (100) and (101), the effective area of the Hertzian is

 A  e2  ( θ  2   ) =    P  L2   ___  S  r1  
   =   3 __ 8π

    λ   2     sin   2 ( θ  2   )   [  m   2  ] (102)

The directivity for the Hertzian dipole, derived in Example 14.1, is

  D  2  ( θ  2   ) =   3 _ 2    sin   2 ( θ  2   )  (103)

Comparing Eqs. (102) and (103), we find the relation that we are looking for: The 
effective area and directivity for any antenna are related through

 D(θ, ϕ) =   4π _ 
 λ   2 

    A  e  (θ, ϕ) (104)

D14.10. Given: an antenna having a maximum directivity of 6 dB and operat-
ing at wavelength λ = 1 m. What is the maximum effective area of the antenna? 

Ans. 1/π m2

D14.11. The power of 1 mW is dissipated by the matched load of a receiving 
antenna of a 1-m2 effective area. This antenna is positioned at the center of the 
main beam of the transmitting antenna, located 1.0 km away. What total power 
is radiated by the transmitter if its directivity is (a) 10 dB, (b) 7 dB? 

Ans. (a) 4π kW; (b) 8π kW
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CHAPTER 14 PROBLEMS
14.1 A short dipole-carrying current I0 cos ωt in the az direction is located at the 

origin in free space. (a) If k = 1 rad/m, r = 2 m, θ = 45°, ϕ = 0, and t = 0, 
give a unit vector in rectangular components that shows the instantaneous 
direction of E. (b) What fraction of the total average power is radiated in 
the belt, 80° < θ < 100°? 

14.2 Prepare a curve, r vs. θ in polar coordinates, showing the locus in the ϕ = 0 
plane in which for a Hertzian dipole (a) the radiation field |Eθs| is one-half 
of its value at r = 104 m, θ = π/2; (b) average radiated power density <Sr> 
is one-half its value at r = 104 m, θ = π/2.

14.3 Two short antennas at the origin in free space carry identical currents of 5 
cos ωt A, one in the az direction, and one in the ay direction. Let λ = 2π m 
and d = 0.1 m. Find Es at the distant point where (a) (x = 0, y = 1000, z = 
0); (b) (0, 0, 1000); (c) (1000, 0, 0). (d) Find E at (1000, 0, 0) at t = 0.  
(e) Find |E| at (1000, 0, 0) at t = 0.

14.4 Write the Hertzian dipole electric field whose components are given in 
Eqs. (15) and (16) in the near zone in free space where kr << 1. In this 
case, only a single term in each of the two equations survives, and the 
phases, δr and δθ, simplify to a single value. Construct the resulting electric 
field vector and compare your result to the static dipole result (Eq. (35) in 
Chapter 4). What relation must exist between the static dipole charge Q and 
the current amplitude I0 so that the two results are identical?

14.5 Consider the term in Eq. (14) (or in Eq. (10)) that gives the 1/r2 
dependence in the Hertzian dipole magnetic field. Assuming that this term 
dominates and that kr << 1, show that the resulting magnetic field is the 
same as that found by applying the Biot-Savart law (Eq. (2), Chapter 7) 
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to a current element of differential length d, oriented along the z axis, and 
centered at the origin.

14.6 Evaluate the time-average Poynting vector, < S > =   (    1 _ 2   )   ℛe{ E  s   ×  H  s  * }
for the Hertzian dipole, assuming the general case that involves the field 
components as given by Eqs. (10), (13a), and (13b). Compare your result to 
the far-zone case, Eq. (26).

14.7 A short current element has d = 0.03λ. Calculate the radiation resistance 
that is obtained for each of the following current distributions: (a) uniform, 
I0; (b) linear, I(z) = I0(0.5d − |z|)/0.5d; (c) step, I0 for 0 < |z| < 0.25d and 
0.5I0 for 0.25d < |z| < 0.5d. 

14.8 Evaluate the time-average Poynting vector, < S > =   (  1 / 2 )   ℛe  {   E  s   ×  H  s  *  }   for
the magnetic dipole antenna in the far zone, in which all terms of order 1/r2  
and 1/r4 are neglected in Eqs. (48), (49), and (50). Compare your result 
to the far-zone power density of the Hertzian dipole, Eq. (26). In this 
comparison, and assuming equal current amplitudes, what relation between 
loop radius a and dipole length d would result in equal radiated powers 
from the two devices?

14.9 A dipole antenna in free space has a linear current distribution with zero 
current at each end and with peak current I0 at the center. If the length d is 
0.02λ, what value of I0 is required to (a) provide a radiation-field amplitude of 
100 mV/m at a distance of 1 mi, at θ = 90°; (b) radiate a total power of 1 W? 

14.10 Show that the chord length in the E-plane plot of Figure 14.4 is equal to 
b sin θ, where b is the circle diameter.

14.11 A monopole antenna extends vertically over a perfectly conducting plane 
and has a linear current distribution. If the length of the antenna is 0.01λ, 
what value of I0 is required to (a) provide a radiation-field amplitude of 
100 mV/m at a distance of 1 mi, at θ = 90°; (b) radiate a total power of 
1 W? Assume free space above the plane. 

14.12 Find the zeros in θ for the E-plane pattern of a dipole antenna for which 
(a) ℓ = λ; (b) 2ℓ = 1.3 λ. Use Figure 14.8 as a guide.

14.13 The radiation field of a certain short vertical current element is Eθs = (20/r) 
sin θ e−j10πr V/m if it is located at the origin in free space. (a) Find Eθs at 
P(r = 100, θ = 90°, ϕ = 30°). (b) Find Eθs at P(100, 90°, 30°) if the vertical 
element is located at A(0.1, 90°, 90°). (c) Find Eθs at P(100, 90°, 30°) if 
identical vertical elements are located at A(0.1, 90°, 90°) and B(0.1, 90°, 
270°). 

14.14 For a dipole antenna of overall length 2ℓ = λ, evaluate the maximum 
directivity in decibels, and the half-power beamwidth.

14.15 For a dipole antenna of overall length 2ℓ = 1.3λ, determine the locations 
in θ and the peak intensity of the sidelobes, expressed as a fraction of the 
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main lobe intensity. Express your result as the sidelobe level in decibels, 
given by S  s   [dB ] = 10  log  10  ( S  r,main   /  S  r,sidelobe  ). Again, use Figure 14.8 as a 
guide. 

14.16 For a dipole antenna of overall length, 2ℓ = 1.5λ, (a) evaluate the 
locations in θ at which the zeros and maxima in the E-plane pattern occur; 
(b) determine the sidelobe level, as per the definition in Problem 14.14; 
(c) determine the maximum directivity.

14.17 Consider a lossless half-wave dipole in free space, with radiation resistance, 
Rrad = 73 ohms, and maximum directivity Dmax = 1.64. If the antenna 
carries a 1-A current amplitude, (a) how much total power (in watts) is 
radiated? (b) How much power is intercepted by a 1-m2 aperture situated 
at distance r = 1 km away? The aperture is on the equatorial plane and 
squarely faces the antenna. Assume uniform power density over the aperture. 

14.18 Repeat Problem 14.17, but with a full-wave antenna (2ℓ = λ). Numerical 
integrals may be necessary.

14.19 Design a two-element dipole array that will radiate equal intensities in 
the ϕ = 0, π/2, π, and 3π/2 directions in the H plane. Specify the smallest 
relative current phasing, ξ, and the smallest element spacing, d. 

14.20 A two-element dipole array is configured to provide zero radiation in 
the broadside (ϕ = ± 90°) and endfire (ϕ = 0, 180°) directions, but with 
maxima occurring at angles in between. Consider such a setup with ψ = π 
at ϕ = 0 and ψ = −3π at ϕ = π, with both values determined in the H plane. 
(a) Verify that these values give zero broadside and endfire radiation. 
(b) Determine the required relative current phase, ξ. (c) Determine the 
required element spacing, d. (d ) Determine the values of ϕ at which 
maxima in the radiation pattern occur.

14.21 In the two-element endfire array of Example 14.4, consider the effect 
of varying the operating frequency, f, away from the original design 
frequency, f0, while maintaining the original current phasing, ξ = −π/2. 
Determine the values of ϕ at which the maxima occur when the frequency 
is changed to (a) f = 1.5 f0; (b) f = 2 f0. 

14.22 Revisit Problem 14.21, but with the current phase allowed to vary 
with frequency (this will automatically occur if the phase difference is 
established by a simple time delay between the feed currents). Now, the 
current phase difference will be ξ′ = ξ f /f0, where f0 is the original (design) 
frequency. Under this condition, radiation will maximize in the ϕ = 0 
direction regardless of frequency (show this). Backward radiation (along 
ϕ = π) will develop, however, as the frequency is tuned away from f0. 
Derive an expression for the front-to-back ratio, defined as the ratio of the 
radiation intensities at ϕ = 0 and ϕ = π, expressed in decibels. Express this 
result as a function of the frequency ratio f/f0. Evaluate the front-to-back 
ratio for (a) f = 1.5 f0, (b) f = 2 f0, and (c) f = 0.75 f0.
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14.23 A turnstile antenna consists of two crossed dipole antennas, positioned in 
this case in the xy plane. The dipoles are identical, lie along the x and y 
axes, and are both fed at the origin. Assume that equal currents are supplied 
to each antenna and that a zero phase reference is applied to the x-directed 
antenna. Determine the relative phase, ξ, of the y-directed antenna so that 
the net radiated electric field as measured on the positive z axis is (a) left 
circularly polarized; (b) linearly polarized along the 45° axis between x 
and y. 

14.24 Consider a linear endfire array, designed for maximum radiation intensity 
at ϕ = 0, using ξ and d values as suggested in Example 14.5. Determine 
an expression for the front-to-back ratio (defined in Problem 14.22) as a 
function of the number of elements n if n is an odd number.

14.25 A six-element linear dipole array has element spacing d = λ/2. (a) Select 
the appropriate current phasing ξ to achieve maximum radiation along 
ϕ = ± 60°. (b) With the phase set as in part a, evaluate the intensities 
(relative to the maximum) in the broadside and endfire directions. 

14.26 In a linear endfire array of n elements, a choice of current phasing that 
improves the directivity is given by the Hansen-Woodyard condition:

ξ = ±  (    2πd_
λ
 +   π _ n   )   

where the plus or minus sign choices give maximum radiation along ϕ = 
180° and 0°, respectively. Applying this phasing may not necessarily lead 
to unidirectional endfire operation (zero backward radiation), but it will 
with the proper choice of element spacing, d. (a) Determine this required 
spacing as a function of n and λ. (b) Show that the spacing as found in part 
a approaches λ/4 for a large number of elements. (c) Show that an even 
number of elements is required.

14.27 Consider an n-element broadside linear array. Increasing the number of 
elements has the effect of narrowing the main beam. Demonstrate this 
by evaluating the separation in ϕ between the zeros on either side of the 
principal maximum at ϕ = 90°. Show that for large n this separation is 
approximated by Δϕ ≐ 2λ/L, where L ≐ nd is the overall length of the 
array.

14.28 A large ground-based transmitter radiates 10 kW and communicates with 
a mobile receiving station that dissipates 1 mW on the matched load of its 
antenna. The receiver (not having moved) now transmits back to the ground 
station. If the mobile unit radiates 100 W, what power is received (at a 
matched load) by the ground station?

14.29 Signals are transmitted at a 1-m carrier wavelength between two identical 
half-wave dipole antennas spaced by 1 km. The antennas are oriented such 
that they are exactly parallel to each other. (a) If the transmitting antenna 
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radiates 100 W, how much power is dissipated by a matched load at the 
receiving antenna? (b) Suppose the receiving antenna is rotated by 45° 
while the two antennas remain in the same plane. What is the received 
power in this case? 

14.30 A half-wave dipole antenna is known to have a maximum effective area, 
given as Amax. (a) Write the maximum directivity of this antenna in terms 
of Amax and wavelength λ. (b) Express the current amplitude, I0, needed to 
radiate total power, Pr, in terms of Pr, Amax, and λ. (c) At what values of θ 
and ϕ will the antenna effective area be equal to Amax?
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AA  P  P  E  N  D  I  X

Vector Analysis

A.1 GENERAL CURVILINEAR COORDINATES
Let us consider a general orthogonal coordinate system in which a point is located by 
the intersection of three mutually perpendicular surfaces (of unspecified form or shape),

  
u
  

=
  

constant
   v  =  constant   

w
  

=
  

constant
 

where u, v, and w are the variables of the coordinate system. If each variable is 
increased by a differential amount and three more mutually perpendicular surfaces 
are drawn corresponding to these new values, a differential volume is formed which 
approximates a rectangular parallelepiped. Because u, v, and w need not be measures 
of length, such as the angle variables of the cylindrical and spherical coordinate sys-
tems, each must be multiplied by a general function of u, v, and w in order to obtain 
the differential sides of the parallelepiped. Thus we define the scale factors h1, h2, 
and h3 each as a function of the three variables u, v, and w and write the lengths of 
the sides of the differential volume as

 
d  L  1   =  h  1   du

  d  L  2   =  h  2   dv  
d  L  3   =  h  3   dw

In the three coordinate systems discussed in Chapter 1, it is apparent that the 
variables and scale factors are

  

Rectangular :

  

u = x

  

v = y

  

w = z

      

 h  1   = 1

  

 h  2   = 1

  

 h  3   = 1

    Cylindrical :    u = ρ  v = ϕ  w = z       h  1   = 1   h  2   = ρ   h  3   = 1    

Spherical :     

  

u = r

  

v = θ

  

w = ϕ

      

 h  1   = 1

  

 h  2   = r

  

 h  3   = r sin θ

(A-1)
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The choice of u, v, and w has been made so that  a  u   ×  a  v   =  a  w   in all cases. More 
involved expressions for h1, h2, and h3 are to be expected in other less familiar coor-
dinate systems.1

A.2  DIVERGENCE, GRADIENT, AND CURL IN 
GENERAL CURVILINEAR COORDINATES

If the method used to develop divergence in Sections 3.4 and 3.5 is applied to the 
general curvilinear coordinate system, the flux of the vector D passing through the 
surface of the parallelepiped whose unit normal is au is

 D  u0   d  L  2   d  L  3   +   1 __ 2      ∂ __ ∂ u  ( D  u   d  L  2   d  L  3   ) du

or

 D  u0    h  2    h  3   dv dw +   1 __ 2      ∂ __ ∂ u  ( D  u    h  2    h  3   dv dw ) du

and for the opposite face it is

−   D  u0    h  2    h  3   dv dw +   1 __ 2      ∂ __ ∂ u  ( D  u    h  2    h  3   dv dw ) du

giving a total for these two faces of

  ∂ __ ∂ u   ( D  u    h  2    h  3   dv dw ) du

Because u, v, and w are independent variables, this last expression may be written as

  ∂ __ ∂ u   ( h  2    h  3    D  u   ) du dv dw

and the other two corresponding expressions obtained by a simple permutation of the 
subscripts and of u, v, and w. Thus the total flux leaving the differential volume is

  [    ∂ _ ∂ u    ( h  2    h  3    D  u   ) +   ∂ _ ∂ v    ( h  3    h  1    D  v   ) +   ∂ _ ∂ w    ( h  1    h  2    D  w   ) ]   du dv dw

and the divergence of D is found by dividing by the differential volume

∇ · D = 1_____ 
 h  1    h  2    h  3  

    [    ∂ _ ∂ u   ( h  2    h  3    D  u   ) +   ∂ _ ∂ v  ( h  3    h  1    D  v   ) +   ∂ _ ∂ w  ( h  1    h  2    D  w   ) ] (A.2)

The components of the gradient of a scalar V may be obtained (following the 
methods of Section 4.6) by expressing the total differential of V,

dV =   ∂ V ___ ∂ u   du +   ∂ V ___ ∂ v   dv +   ∂ V ___ ∂ w   dw

1 The variables and scale factors are given for nine orthogonal coordinate systems on pp. 50–59 
in J. A. Stratton, Electromagnetic Theory. New York: McGraw-Hill, 1941. Each system is also 
described briefly.
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in terms of the component differential lengths, h1du, h2dv, and h3dw,

dV =   1 __  h  1  
      ∂ V ___ ∂ u    h  1   du +   1 __  h  2  

      ∂ V ___ ∂ v    h  2   dv +   1 __  h  3  
      ∂ V ___ ∂ w    h  3   dw

Then, because

d L =  h  1   du  a  u   +  h  2   dv  a  v   +  h  3   dw  a  w     and  dV = ∇V · d L

we see that

∇V =   1 __  h  1  
     ∂ V ___ ∂ u    a  u   +   1 __  h  2  

     ∂ V ___ ∂ v    a  v   +   1 __  h  3
     ∂ V ___ ∂ w    a  w (A.3)

The components of the curl of a vector H are obtained by considering a differ-
ential path first in a u = constant surface and finding the circulation of H about that 
path, as discussed for rectangular coordinates in Section 7.3. The contribution along 
the segment in the av direction is

 H  v0    h  2   dv −    1 __ 2     ∂ ___ ∂ w  ( H  v    h  2   dv ) dw

and that from the oppositely directed segment is

−   H  v0    h  2   dv −    1 __ 2     ∂ ___ ∂ w  ( H  v    h  2   dv ) dw

The sum of these two parts is

−    ∂ ___ ∂ w  ( H  v    h  2   dv ) dw

or

−    ∂ ___ ∂ w  ( h  2    H  v   ) dv dw

and the sum of the contributions from the other two sides of the path is

  ∂ __ ∂ v  ( h  3    H  w   ) dv dw

Adding these two terms and dividing the sum by the enclosed area, h2h3dv dw, we see 
that the au component of curl H is

 (∇ × H)  u   =   1 ____  h  2    h  3  
    [    ∂ _ ∂ v  ( h  3    H  w   ) −    ∂ _ ∂ w  ( h  2    H  v   ) ]

and the other two components may be obtained by cyclic permutation. The result is 
expressible as a determinant,

∇ × H =   |   a  u   _
 h  2    h  3  

   a  v   _  h  3    h  1  
  

  

   a  w   _  h  1    h  2  
  

     ∂ _ ∂ u      ∂ _ ∂ v      ∂ _
∂ w
  

 h  1    H  u   h  2    H  v  

  

 h  3    H  w  

  | (A.4)
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The Laplacian of a scalar is found by using (A.2) and (A.3):

 ∇   2  V = ∇ · ∇V =    1 _____  h  1    h  2    h  3  
    [    ∂ _ ∂ u    (     h  2    h  3   _  h  1  

     ∂ v _ ∂ u   )    +   ∂ _ ∂ v    (     h  3    h  1   _  h  2  
     ∂ V _ ∂ v   )     

+   ∂ ___ ∂ w     (     h  1    h  2   _  h  3  
     ∂ V _ ∂ w   )    ]    (A.5)

Equations (A.2) to (A.5) may be used to find the divergence, gradient, curl, and 
Laplacian in any orthogonal coordinate system for which h1, h2, and h3 are known.

Expressions for ∇ · D, ∇V, ∇ × H, and ∇2V are given in rectangular, circular 
cylindrical, and spherical coordinate systems at the end of the book.

A.3 VECTOR IDENTITIES
The vector identities that follow may be proved by expansion in rectangular (or general 
curvilinear) coordinates. The first two identities involve the scalar and vector triple 
products, the next three are concerned with operations on sums, the following three 
apply to operations when the argument is multiplied by a scalar function, the next 
three apply to operations on scalar or vector products, and the last four concern the  
second-order operations.

(A × B ) · C ≡  (B × C) · A ≡ (C × A) · B (A.6)
A × (B × C) ≡  (A · C ) B −  (A · B) C (A.7)

∇ · (A + B) ≡  ∇ · A + ∇ · B (A.8)
∇ (V + W ) ≡  ∇V + ∇W (A.9)

∇ × (A + B) ≡  ∇ × A + ∇ × B (A.10)
∇ · (VA) ≡  A · ∇V + V ∇ · A (A.11)
∇ (VW ) ≡  V ∇W + W ∇V (A.12)

∇ × (VA) ≡  ∇V × A + V ∇ × A (A.13)
∇ · (A × B) ≡  B · ∇ × A −  A · ∇ × B (A.14)

∇ (A · B) ≡   (A · ∇)B + (B · ∇)A + A × (∇ × B) 
+B × (∇ × A) (A.15)

∇ × (A × B) ≡  A∇ · B −  B∇ · A + (B · ∇)A −  (A · ∇)B (A.16)
∇ · ∇V ≡  ∇2 V (A.17)

∇ · ∇ × A ≡  0 (A.18)
∇ × ∇V ≡  0 (A.19)

∇ × ∇ × A ≡  ∇ (∇ · A) −  ∇2 A (A.20)
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BA  P  P  E  N  D  I  X

Units

We describe first the International System (abbreviated SI, for Système International 
d’Unités), which is used in this book and is now standard in electrical engineering 
and much of physics. It has also been officially adopted as the international system 
of units by many countries, including the United States.1

The fundamental unit of length is the meter, which was defined in the lat-
ter part of the nineteenth century as the distance between two marks on a certain 
platinum-iridium bar. The definition was improved in 1960 by relating the meter 
to the wavelength of the radiation emitted by the rare gas isotope krypton-86 under 
certain specified conditions. This so-called krypton meter was accurate to four parts 
per billion, a value leading to negligible uncertainties in constructing skyscrapers or 
building highways, but capable of causing an error greater than one meter in deter-
mining the distance to the moon. The meter was redefined in 1983 in terms of the 
velocity of light. At that time the velocity of light was specified to be an auxiliary 
constant with an exact value of 299,792,458 meters per second. As a result, the latest 
definition of the meter is the distance light travels in a vacuum in 1/299,792,458 
of a second. If greater accuracy is achieved in measuring c, that value will remain 
299,792,458 m/s, but the length of the meter will change.

It is evident that our definition of the meter is expressed in terms of the second, 
the fundamental unit of time. The second is defined as 9,192,631,770 periods of the 
transition frequency between the hyperfine levels F = 4, mF = 0, and F = 3, mF = 0 
of the ground state      2   s  1/2   of the atom of cesium 133, unperturbed by external fields. 

1 The International System of Units was adopted by the Eleventh General Conference on Weights and 
Measures in Paris in 1960, and it was officially adopted for scientific usage by the National Bureau of 
Standards in 1964. It is a metric system, which interestingly enough is the only system which has ever 
received specific sanction from Congress. This occurred first in 1966 and then again in 1975 with the 
Metric Conversion Act, which provides for “voluntary conversion” to the metric system. No specific 
time was specified, however, and we can assume that it will still be a few years before the bathroom 
scale reads mass in kilograms and Miss America is a 90–60–90.
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562 ENGINEERING ELECTROMAGNETICS

This definition of the second, complex though it may be, permits time to be measured 
with an accuracy better than one part in 1013.

The standard mass of one kilogram is defined as the mass of an international 
standard in the form of a platinum-iridium cylinder at the International Bureau of 
Weights and Measures at Sèvres, France.

The unit of temperature is the kelvin, defined by placing the triple-point temper-
ature of water at 273.16 kelvins.

A fifth unit is the candela, in which one candela is the luminous intensity in a 
given direction of a source that emits monochromatic radiation at frequency 5.40 x 
1014 Hz (556 nm wavelength in free space), in which the radiation intensity in that 
direction is 1/683 W/Sr.

The last of the fundamental units is the ampere. Before explicitly defining the 
ampere, we must first define the newton. It is defined in terms of the other fundamen-
tal units from Newton’s third law as the force required to produce an acceleration of 
one meter per second per second on a one-kilogram mass. We now may define the 
ampere as that constant current, flowing in opposite directions in two straight paral-
lel conductors of infinite length and negligible cross section, separated one meter in 
vacuum, that produces a repulsive force of 2 × 10−7 newton per meter length between 
the two conductors. The force between the two parallel conductors is known to be

F =  μ  0      I   2  ___
2πd

and thus

2 ×  10   −7  =  μ  0     1 __
2π

or

 μ  0   = 4π ×  10   −7    (kg ·  m/A   2  ·  s   2 , or H/m)

We thus find that our definition of the ampere has been formulated in such a way as 
to assign an exact, simple, numerical value to the permeability of free space.

Returning to the International System, the units in which the other electric and 
magnetic quantities are measured are given in the body of the text at the time each 
quantity is defined, and all of them can be related to the basic units already defined. 
For example, our work with the plane wave in Chapter 11 shows that the velocity 
with which an electromagnetic wave propagates in free space is

c =   1 ____  √ ____  μ  0    ϵ  0      

and thus

 ϵ  0   =   1 ____ 
 μ  0    c   2 

   =   1 _______ 
4π  10   −7   c   2 

   = 8.854 187 817 ×  10   −12  F/m

It is evident that the numerical value of ϵ0 depends upon the defined value of the 
velocity of light in vacuum, 299,792,458 m/s.

The units are also given in Table B.1 for easy reference. They are listed in the 
same order in which they are defined in the text.
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Table B.1  Names and units of the electric and magnetic quantities in the International 
System (in the order in which they appear in the text)

Symbol Name Unit Abbreviation

v Velocity meter/second m/s
F Force newton N
Q Charge coulomb C
r, R Distance meter m
ϵ0, ϵ Permittivity farad/meter F/m
E Electric field intensity volt/meter V/m
ρv Volume charge density coulomb/meter3 C/m3

v Volume meter3 m3

ρL Linear charge density coulomb/meter C/m
ρS Surface charge density coulomb/meter2 C/m2

Ψ Electric flux coulomb C
D Electric flux density coulomb/meter2 C/m2

S Area meter2 m2

W Work, energy joule J
L Length meter m
V Potential volt V
p Dipole moment coulomb-meter C · m
I Current ampere A
J Current density ampere/meter2 A/m2

μe, μh Mobility meter2/volt-second m2/V · s
e Electronic charge coulomb C
σ Conductivity siemens/meter S/m
R Resistance ohm Ω
P Polarization coulomb/meter2 C/m2

χe,m Susceptibility
C Capacitance farad F
Rs Sheet resistance ohm per square Ω
H Magnetic field intensity ampere/meter A/m
K Surface current density ampere/meter A/m
B Magnetic flux density tesla (or weber/meter2) T (or Wb/m2)
μ0, μ Permeability henry/meter H/m
Φ Magnetic flux weber Wb
Vm Magnetic scalar potential ampere A
A Vector magnetic potential weber/meter Wb/m
T Torque newton-meter N · m
m Magnetic moment ampere-meter2 A · m2

M Magnetization ampere/meter A/m
ℛ Reluctance ampere-turn/weber A · t/Wb
L Inductance henry H
M Mutual inductance henry H

(Continued)
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Finally, other systems of units have been used in electricity and magnetism. In 
the electrostatic system of units (esu), Coulomb’s law is written for free space,

F =    Q  1    Q  2____
 R   2 

   (esu )

The permittivity of free space is assigned the value of unity. The gram and centimeter 
are the fundamental units of mass and distance, and the esu system is therefore a cgs 
system. Units bearing the prefix stat- belong to the electrostatic system of units.

In a similar manner, the electromagnetic system of units (emu) is based on Cou-
lomb’s law for magnetic poles, and the permeability of free space is unity. The prefix 
ab- identifies emu units. When electric quantities are expressed in esu units, mag-
netic quantities are expressed in emu units, and both appear in the same equation 
(such as Maxwell’s curl equations), and the velocity of light appears explicitly. This 
follows from noting that in esu ϵ0 = 1, but μ0ϵ0 = 1/c2, and therefore μ0 = 1/c2, and 
in emu μ0 = 1, and hence ϵ0 = 1/c2. Thus, in this intermixed system known as the 
Gaussian system of units,

∇ × H = 4πJ +   1 __ c      ∂ D ___ ∂ t     (Gaussian )

Other systems include the factor 4π explicitly in Coulomb’s law, and it then does 
not appear in Maxwell’s equations. When this is done, the system is said to be ration-
alized. Hence the Gaussian system is an unrationalized cgs system (when rational-
ized it is known as the Heaviside–Lorentz system), and the International System we 
have used throughout this book is a rationalized mks system.

Symbol Name Unit Abbreviation

ω Radian frequency radian/second rad/s
c Velocity of light meter/second m/s
λ Wavelength meter m
η Intrinsic impedance ohm Ω
k Wave number meter−1 m−1

α Attenuation constant neper/meter Np/m
β Phase constant radian/meter rad/m
f Frequency hertz Hz
S Poynting vector watt/meter2 W/m2

P Power watt W
δ Skin depth meter m
Γ Reflection coefficient
s Standing wave ratio
γ Propagation constant meter−1 m−1

G Conductance siemen S
Z Impedance ohm Ω
Y Admittance siemen S
Q Quality factor

Table B.1 (Continued)
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Table B.2 gives the conversion factors between the more important units of the 
International System (or rationalized mks system) and the Gaussian system, and sev-
eral other assorted units.

Table B.3 lists the prefixes used with any of the SI units, their abbreviations, and 
the power of ten each represents. Those checked are widely used. Both the prefixes 
and their abbreviations are written without hyphens, and therefore 10−6 F = 1 micro-
farad = 1μF = 1000 nanofarads = 1000 nF, and so forth.

Table B.3 Standard prefixes used with SI units

Prefix Abbrev. Meaning Prefix Abbrev. Meaning

atto- a- 10−18 deka- da- 101

femto- f- 10−15 hecto- h- 102

pico- p- 10−12 kilo- k- 103

nano- n- 10−9 mega- M- 106

micro- μ- 10−6 giga- G- 109

milli- m- 10−3 tera- T- 1012

centi- c- 10−2 peta- P- 1015

deci- d- 10−1 exa- E- 1018

Table B.2  Conversion of International to Gaussian and other units 
(use c = 2.997 924 58 × 108)

Quantity 1 mks unit = Gaussian units = Other units

d 1 m 102 cm 39.37 in.
F 1 N 105 dyne 0.2248 lbf

W 1 J 107 erg 0.7376 ft-lbf

Q 1 C 10c statC 0.1 abC
ρv 1 C/m3 10−5c statC/cm3 10−7 abC/cm3

D 1 C/m2 4π 10−3c (esu) 4π 10−5 (emu)
E 1 V/m 104/c statV/cm 106 abV/cm
V 1 V 106/c statV 108 abV
I 1 A 0.1 abA 10c statA
H 1 A/m 4π10−3 oersted 0.4πc (esu)
Vm 1 A · t 0.4π gilbert 40πc (esu)
B 1 T 104 gauss 100/c (esu)
Φ 1 Wb 108 maxwell 106/c (esu)
A 1 Wb/m 106 maxwell/cm
R 1 Ω 109 abΩ 105/c2 statΩ
L 1 H 109 abH 105/c2 statH
C 1 F 10−5c2 statF 10−9 abF
σ 1 S/m 10−11 abS/cm 10−7c2 statS/cm
μ 1 H/m 107/4π (emu) 103/4πc2 (esu)
ϵ 1 F/m 4π10−7c2 (esu) 4π10−11 (emu)
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Material Constants

Table C.1 lists typical values of the relative permittivity ϵr′ or dielectric constant for 
common insulating and dielectric materials, along with representative values for the 
loss tangent. The values should only be considered representative for each materi-
al, and they apply to normal temperature and humidity conditions and to very low 
audio frequencies. Most of them have been taken from Reference Data for Radio
Engineers.1 The Standard Handbook for Electrical Engineers,2 and von Hippel,3 
and these volumes may be referred to for further information on these and other 
materials.

Table C.2 gives the conductivity for a number of metallic conductors, for a few 
insulating materials, and for several other materials of general interest. The values 
have been taken from the references listed previously, and they apply at zero frequency 
and at room temperature. The listing is in the order of decreasing conductivity.

Some representative values of the relative permeability for various diamagnetic, 
paramagnetic, ferrimagnetic, and ferromagnetic materials are listed in Table C.3. 
They have been extracted from the references listed previously, and the data for the 
ferromagnetic materials is only valid for very low magnetic flux densities. Maximum 
permeabilities may be an order of magnitude higher.

Values are given in Table C.4 for the charge and rest mass of an electron, the 
permittivity and permeability of free space, and the velocity of light.4

1 M.E. Van Valkenburg,ed., Reference Data for Engineers, 9th ed., Newnes, Boston, 2002.
2 See References for Chapter 5.
3 von Hippel, A. R. Dielectric Materials and Applications. Cambridge, Mass. and New York: The Tech-
nology Press of the Massachusetts Institute of Technology and John Wiley & Sons, 1954.
4 Cohen, E. R., and B. N. Taylor. The 1986 Adjustment of the Fundamental Physical Constants. 
Elmsford, N.Y.: Pergamon Press, 1986.
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Table C.1 ϵr′ and ϵ″/ϵ′

Material !r′ ϵ″/ϵ′
Air  1.0005
Alcohol, ethyl  25 0.1
Aluminum oxide  8.8 0.000 6
Amber  2.7 0.002
Bakelite  4.74 0.022
Barium titanate 1200 0.013
Carbon dioxide  1.001
Ferrite (NiZn)  12.4 0.000 25
Germanium  16
Glass  4–7 0.002
Ice  4.2 0.05
Mica  5.4 0.000 6
Neoprene  6.6 0.011
Nylon  3.5 0.02
Paper  3 0.008
Plexiglas  3.45 0.03
Polyethylene  2.26 0.000 2
Polypropylene  2.25 0.000 3
Polystyrene  2.56 0.000 05
Porcelain (dry process)  6 0.014
Pyranol  4.4 0.000 5
Pyrex glass  4 0.000 6
Quartz (fused)  3.8 0.000 75
Rubber  2.5–3 0.002
Silica or SiO2 (fused)  3.8 0.000 75
Silicon  11.8
Snow  3.3 0.5
Sodium chloride  5.9 0.000 1
Soil (dry)  2.8 0.05
Steatite  5.8 0.003
Styrofoam  1.03 0.000 1
Teflon  2.1 0.000 3
Titanium dioxide  100 0.001 5
Water (distilled)  80 0.04
Water (sea) 4
Water (dehydrated)  1 0
Wood (dry)  1.5–4 0.01
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Table C.2 σ

Material σ, S/m Material σ, S/m

Silver  6.17 × 107 Nichrome 0.1 × 107

Copper  5.80 × 107 Graphite  7 × 104

Gold  4.10 × 107 Silicon 2300
Aluminum  3.82 × 107 Ferrite (typical) 100
Tungsten  1.82 × 107 Water (sea)    5
Zinc  1.67 × 107 Limestone 10−2

Brass  1.5 × 107 Clay 5 × 10−3

Nickel  1.45 × 107 Water (fresh) 10−3

Iron  1.03 × 107 Water (distilled) 10−4

Phosphor bronze  1 × 107 Soil (sandy) 10−5

Solder  0.7 × 107 Granite 10−6

Carbon steel  0.6 × 107 Marble 10−8

German silver  0.3 × 107 Bakelite 10−9

Manganin 0.227 × 107 Porcelain (dry process) 10−10

Constantan 0.226 × 107 Diamond 2 × 10−13

Germanium  0.22 × 107 Polystyrene 10−16

Stainless steel  0.11 × 107 Quartz 10−17

Table C.3 μr

Material μr Material μr

Bismuth 0.999 998 6 Powdered iron 100
Paraffin 0.999 999 42 Machine steel 300
Wood 0.999 999 5 Ferrite (typical) 1000
Silver 0.999 999 81 Permalloy 45 2500
Aluminum 1.000 000 65 Transformer iron 3000
Beryllium 1.000 000 79 Silicon iron 3500
Nickel chloride 1.000 04 Iron (pure) 4000
Manganese sulfate 1.000 1 Mumetal 20 000
Nickel 50 Sendust 30 000
Cast iron 60 Supermalloy 100 000
Cobalt 60

Table C.4 Physical constants

Quantity Value
Electron charge e = (1.602 177 33 ± 0.000 000 46) × 10−19 C
Electron mass m = (9.109 389 7 ± 0.000 005 4) × 10−31 kg
Permittivity of free space ϵ0 = 8.854 187 817 × 10−12 F/m
Permeability of free space μ0 = 4π × 10−7 H/m
Velocity of light c = 2.997 924 58 × 108 m/s
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The Uniqueness Theorem

Let us assume that we have two solutions of Laplace’s equation, V1 and V2, both gen-
eral functions of the coordinates used. Therefore

 ∇   2   V  1   = 0

and

 ∇   2   V  2   = 0

from which

 ∇   2 ( V  1   −  V  2   ) = 0

Each solution must also satisfy the boundary conditions, and if we represent the given 
potential values on the boundaries by Vb, then the value of V1 on the boundary V1b 
and the value of V2 on the boundary V2b must both be identical to Vb,

 V  1b   =  V  2b   =  V  b  

or

 V  1b   −  V  2b   = 0

In Section 4.8, Eq. (43), we made use of a vector identity,

∇ · (V D) ≡  V(∇ · D) + D · (∇V )

which holds for any scalar V and any vector D. For the present application we shall 
select V1 − V2 as the scalar and ∇(V1 − V2) as the vector, giving

 ∇ · [( V  1   −  V  2  ) ∇ ( V  1   −  V  2   )] ≡  ( V  1   −  V  2   ) [ ∇ · ∇ ( V  1   −  V  2   ) ]       + ∇ ( V  1   −  V  2   ) · ∇ ( V  1   −  V  2   )
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which we shall integrate throughout the volume enclosed by the boundary surfaces 
specified:

 ∫  vol   ∇ · [( V  1   −  V  2  ) ∇ ( V  1   −  V  2   )]dv
    

 ≡  ∫  vol  ( V  1   −  V  2   ) [∇ · ∇ ( V  1   −  V  2   )]dv +  ∫  vol     [   ∇  (    V  1   −  V  2   )   ]     2  dv
  (D.1)

The divergence theorem allows us to replace the volume integral on the left side 
of the equation with the closed surface integral over the surface surrounding the vol-
ume. This surface consists of the boundaries already specified on which V1b = V2b, 
and therefore

 ∫  vol   ∇ · [( V  1   −  V  2  )∇ ( V  1   −  V  2  )]dv =  ∮  S   [( V  1b   −  V  2b  ) ∇ ( V  1b   −  V  2b  )] · d S = 0

One of the factors of the first integral on the right side of (D.1) is ∇ · ∇ ( V  1   −  V  2   ),  
or  ∇   2 ( V  1   −  V  2   ), which is zero by hypothesis, and therefore that integral is zero. 
Hence the remaining volume integral must be zero:

 ∫  vol    [∇ ( V  1   −  V  2  )]   2  dv = 0

There are two reasons why an integral may be zero: either the integrand (the quantity 
under the integral sign) is everywhere zero, or the integrand is positive in some regions 
and negative in others, and the contributions cancel algebraically. In this case the first 
reason must hold because  [∇ ( V  1   −  V  2  )]   2  cannot be negative. Therefore

 [∇ ( V  1   −  V  2   ) ]   2  = 0
and

∇ ( V  1   −  V  2   ) = 0

Finally, if the gradient of V1 − V2 is everywhere zero, then V1 − V2 cannot change 
with any coordinates, and

 V  1   −  V  2   = constant
If we can show that this constant is zero, we shall have accomplished our proof. The 
constant is easily evaluated by considering a point on the boundary. Here V1 − V2 = 
V1b − V2b = 0, and we see that the constant is indeed zero, and therefore

 V  1   =  V  2  
giving two identical solutions.

The uniqueness theorem also applies to Poisson’s equation, for if ∇2 V1 = −ρv /ϵ 
and ∇2V2 = −ρv /ϵ, then ∇2(V1 − V2) = 0 as before. Boundary conditions still require 
that V1b − V2b = 0, and the proof is identical from this point.

This constitutes the proof of the uniqueness theorem. Viewed as the answer to a 
question, “How do two solutions of Laplace’s or Poisson’s equation compare if they 
both satisfy the same boundary conditions?” the uniqueness theorem should please 
us because it ensures that the answers are identical. Once we can find any method of 
solving Laplace’s or Poisson’s equation subject to given boundary conditions, we have 
solved our problem once and for all. No other method can ever give a different answer.
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EA  P  P  E  N  D  I  X

Origins of the Complex 
Permittivity

As we learned in Chapter 5, a dielectric can be modeled as an arrangement of atoms 
and molecules in free space, which can be polarized by an electric field. The field 
forces positive and negative bound charges to separate against their Coulomb attrac-
tive forces, thus producing an array of microscopic dipoles. The molecules can be 
arranged in an ordered and predictable manner (such as in a crystal) or may exhibit 
random positioning and orientation, as would occur in an amorphous material or a 
liquid. The molecules may or may not exhibit permanent dipole moments (existing 
before the field is applied), and if they do, they will usually have random orientations 
throughout the material volume. As discussed in Section 5.7, the displacement of 
charges in a regular manner, as induced by an electric field, gives rise to a macro-
scopic polarization, P, defined as the dipole moment per unit volume:

P =   lim  
Δv→0

     1 ___ Δv
     ∑ 
i=1

  
NΔv

    p  i   (E.1)

where N is the number of dipoles per unit volume and pi is the dipole moment of the 
ith atom or molecule, found through

 p  i   =  Q  i    d  i   (E.2)

Qi is the positive one of the two bound charges composing dipole i, and di is the distance 
between charges, expressed as a vector from the negative to the positive charge. Again, 
borrowing from Section 5.7, the electric field and the polarization are related through

P =  ϵ  0    χ  e   E (E.3)

where the electric susceptibility, χe, forms the more interesting part of the dielectric 
constant:

 ϵ  r   = 1 +  χ  e   (E.4)
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Therefore, to understand the nature of ϵr, we need to understand χe, which in turn 
means that we need to explore the behavior of the polarization, P.

Here, we consider the added complications of how the dipoles respond to a 
time-harmonic field that propagates as a wave through the material. The result of ap-
plying such a forcing function is that oscillating dipole moments are set up, and these
in turn establish a polarization wave that propagates through the material. The ef-
fect is to produce a polarization function, P(z,t), having the same functional form as 
the driving field, E(z,t). The molecules themselves do not move through the material, 
but their oscillating dipole moments collectively exhibit wave motion, just as waves 
in pools of water are formed by the up-and-down motion of the water. From here, the 
description of the process gets complicated and in many ways beyond the scope of 
our present discussion. We can form a basic qualitative understanding, however, by 
considering the classical description of the process, which is that the dipoles, once os-
cillating, behave as microscopic antennas, re-radiating fields that in turn co-propagate 
with the applied field. Depending on the frequency, there will be some phase differ-
ence between the incident field and the radiated field at a given dipole location. This 
results in a net field (formed through the superposition of the two) that now interacts 
with the next dipole. Radiation from this dipole adds to the previous field as before, 
and the process repeats from dipole to dipole. The accumulated phase shifts at each 
location are manifested as a net slowing down of the phase velocity of the resultant 
wave. Attenuation of the field may also occur which, in this classical model, can be 
accounted for by partial phase cancellation between incident and radiated fields.

For our classical description, we use the Lorentz model, in which the medium 
is considered as an ensemble of identical fixed electron oscillators in free space. The 
Coulomb binding forces on the electrons are modeled by springs that attach the elec-
trons to the positive nuclei. We consider electrons for simplicity, but similar models 
can be used for any bound charged particle. Figure E.1 shows a single oscillator, located 
at position z in the material, and oriented along x. A uniform plane wave, assumed 
to be linearly polarized along x, propagates through the material in the z direction. 
The electric field in the wave displaces the electron of the oscillator in the x direction 
through a distance represented by the vector d; a dipole moment is thus established,

p(z, t ) = − ed(z, t ) (E.5)

E

d

displacing force = –eE

damping force = –mγdv

restoring force = –ksd

e
+ –

Figure E.1 Atomic dipole model, with the Coulomb force 
between positive and negative charge modeled by that 
of a spring having spring constant ks. An applied electric 
field displaces the electron through distance d, resulting in 
dipole moment p = −ed.
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where the electron charge, e, is treated as a positive quantity. The applied force is
 F  a  (z, t ) = − eE(z, t ) (E.6)

We need to remember that E(z, t) at a given oscillator location is the net field, com-
posed of the original applied field plus the radiated fields from all other oscillators. 
The relative phasing between oscillators is precisely determined by the spatial and 
temporal behavior of E(z, t).

The restoring force on the electron, Fr, is that produced by the spring, which is 
assumed to obey Hooke’s law:

 F  r  (z, t ) = −  k  s   d(z, t ) (E.7)
where ks is the spring constant (not to be confused with the propagation constant). If 
the field is turned off, the electron is released and will oscillate about the nucleus at 
the resonant frequency, given by

 ω  0   =  √ 
_____
 k  s   / m  (E.8)

where m is the mass of the electron. The oscillation, however, will be damped since 
the electron will experience forces and collisions from neighboring oscillators. We 
model these as a velocity-dependent damping force:

 F  d   (z, t ) = − m  γ  d   v(z, t ) (E.9)
where v(z, t) is the electron velocity. Associated with this damping is the dephasing pro-
cess among the electron oscillators in the system. Their relative phasing, once fixed by 
the applied sinusoidal field, is destroyed through collisions and dies away exponentially 
until a state of totally random phase exists between oscillators. The 1/e point in this pro-
cess occurs at the dephasing time of the system, which is inversely proportional to the 
damping coefficient, γd (in fact it is 2/γd). We are, of course, driving this damped reso-
nant system with an electric field at frequency ω. We can therefore expect the response 
of the oscillators, measured through the magnitude of d, to be frequency-dependent in 
much the same way as an RLC circuit is when driven by a sinusoidal voltage.

We can now use Newton’s second law and write down the forces acting on the 
single oscillator of Figure E.1. To simplify the process a little we can use the complex 
form of the electric field:

 E  c   =  E  0    e   −jkz   e   jωt  (E.10)

Defining a as the acceleration vector of the electron, we have
ma =  F  a   +  F  r   +  F  d  

or

m    ∂   2   d  c   ____ 
∂  t   2 

   + m  γ  d     
∂  d  c   ___ ∂ t   +  k  s    d  c   = − e  E  c   (E.11)

Note that since we are driving the system with the complex field, Ec, we anticipate a 
displacement wave, dc, of the form

 d  c   =  d  0    e   −jkz   e   −jωt  (E.12)
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With the waves in this form, time differentiation produces a factor of jω. Consequently 
(E.11) can be simplified and rewritten in phasor form:

−  ω   2   d  s   + jω  γ  d    d  s   +  ω  0  2   d  s   = −   e __ m    E  s   (E.13)

where (E.4) has been used. We now solve (E.13) for ds, obtaining

 d  s   =   − (e / m )  E  s    ___________  
  (   ω  0  2  −  ω   2  )    + jω  γ  d  

   (E.14)

The dipole moment associated with displacement ds is
 p  s   = − e  d  s   (E.15)

The polarization of the medium is then found, assuming that all dipoles are identical. 
Eq. (E.1) thus becomes

 P  s   = N  p  s  
which, when using (E.14) and (E.15), becomes

 P  s   =   N  e   2  / m ___________  
  (   ω  0  2  −  ω   2  )    + jω  γ  d  

    E  s   (E.16)

Now, using (E.3) we identify the susceptibility associated with the resonance as

 χ  res   =   N  e   2  ____  ϵ  0   m     1 ___________  
  (   ω  0  2  −  ω   2  )    + jω  γ  d  

   = χres′  − j χres′  (E.17)

The real and imaginary parts of the permittivity are now found through the real and 
imaginary parts of χres: Knowing that

ϵ =  ϵ  0  (1 +  χ  res   ) = ϵ′ − j ϵ″
we find

ϵ′ =  ϵ  0  (1 + χres′  ) (E.18)
and

ϵ″ =  ϵ  0   χres″  (E.19)
The preceding expressions can now be used in Eqs. (44) and (45) in Chapter 11 to 
evaluate the attenuation coefficient, α, and phase constant, β, for the plane wave as it 
propagates through our resonant medium.

The real and imaginary parts of χres as functions of frequency are shown in 
Figure E.2 for the special case in which ω ≐ ω0. Eq. (E.17) in this instance becomes

 χ  res   ≐  −    N  e   2  _______  ϵ  0   m  ω  0    γ  d      (    j +  δ  n   _ 
1 +  δ  n  2 

   )    (E.20)

where the normalized detuning parameter, δn, is

  2 __  γ  d    (ω −  ω  0   ) (E.21)
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Key features to note in Figure E.2 include the symmetric χe″ function, whose 
full width at its half-maximum amplitude is γd. Near the resonant frequency, where 
χres″  maximizes, wave attenuation maximizes as seen from Eq. (44), Chapter 11. Ad-
ditionally, we see that away from resonance, attenuation is relatively weak, and the 
material becomes transparent. As Figure E.2 shows, there is still significant variation 
of χres′   with frequency away from resonance, which leads to a frequency-dependent 
refractive index; this is expressed approximately as

n ≐    √ 
_______
1 + χres′      (away from resonance ) (E.22)

This frequency-dependent n, arising from the material resonance, leads to phase and 
group velocities that also depend on frequency. Thus, group dispersion, leading to 
pulse-broadening effects as discussed in Chapter 12, can be directly attributable to 
material resonances.

Somewhat surprisingly, the classical “spring model” described here can provide 
very accurate predictions on dielectric constant behavior with frequency (particularly 
off-resonance) and can be used to a certain extent to model absorption properties. The 
model is insufficient, however, when attempting to describe the more salient features 
of materials; specifically, it assumes that the oscillating electron can assume any one 
of a continuum of energy states, when, in fact, energy states in any atomic system are 
quantized. As a result, the important effects arising from transitions between discrete 
energy levels, such as spontaneous and stimulated absorption and emission, are not 
included in our classical spring system. Quantum mechanical models must be used 

Figure E.2 Plots of the real and imaginary parts of the 
resonant susceptibility, χres, as given by Eq. (E.20). The 
full-width at half-maximum of the imaginary part,  χ  res  ″  , is 
equal to the damping coefficient, γd.

γd

" ʺ

ω0 ω

res

" ŕes
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576 ENGINEERING ELECTROMAGNETICS

to fully describe the medium polarization properties, but the results of such studies 
often reduce to those of the spring model when field amplitudes are very low.

Another way that a dielectric can respond to an electric field is through the 
orientation of molecules that possess permanent dipole moments. In such cases, the 
molecules must be free to move or rotate, and so the material is typically a liquid or a 
gas. Figure E.3 shows an arrangement of polar molecules in a liquid (such as water) 
in which there is no applied field (Figure E.3a) and where an electric field is present 
(Figure E.3b). Applying the field causes the dipole moments, previously having ran-
dom orientations, to line up, and so a net material polarization, P, results. Associated 
with this, of course, is a susceptibility function, χe, through which P relates to E.

Some interesting developments occur when the applied field is time-harmonic. 
With field periodically reversing direction, the dipoles are forced to follow, but  
they do so against their natural propensity to randomize, owing to thermal motion. 
Thermal motion thus acts as a “restoring” force, effectively opposing the applied 
field. We can also think of the thermal effects as viscous forces that introduce some 
difficulty in “pushing” the dipoles back and forth. One might expect (correctly) that 
polarizations of greater amplitude in each direction can be attained at lower frequen-
cies, because enough time is given during each cycle for the dipoles to achieve com-
plete alignment. The polarization amplitude will weaken as the frequency increases 
because there is no longer enough time for complete alignment during each cycle. 
This is the basic description of the dipole relaxation mechanism for the complex 
permittivity. There is no resonant frequency associated with the process.

E
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Figure E.3 Idealized sketches of ensembles of polar molecules 
under conditions of (a) random orientation of the dipole moments, 
and (b) dipole moments aligned under the influence of an applied 
electric field. Conditions in (b) are greatly exaggerated, since 
typically only a very small percentage of the dipoles align them-
selves with the field. But still enough alignment occurs to produce 
measurable changes in the material properties.
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The complex susceptibility associated with dipole relaxation is essentially that 
of an “overdamped” oscillator, and is given by

χ  rel   =   N  p   2  /  ϵ  0   __________  3  k  B   T(1 + jωτ )   (E.23)

where p is the permanent dipole moment magnitude of each molecule, kB is Boltz-
mann’s constant, and T is the temperature in degees Kelvin. τ is the thermal random-
ization time, defined as the time for the polarization, P, to relax to 1/e of its original 
value when the field is turned off. χrel is complex, and so it will possess absorptive 
and dispersive components (imaginary and real parts) as we found in the resonant 
case. The form of Eq. (E.23) is identical to that of the response of a series RC circuit 
driven by a sinusoidal voltage (where τ becomes RC).

Microwave absorption in water occurs through the relaxation mechanism in po-
lar water molecules, and is the primary means by which microwave cooking is done, 
as discussed in Chapter 11. Frequencies near 2.5 GHz are typically used, since these 
provide the optimum penetration depth. The peak water absorption arising from di-
pole relaxation occurs at much higher frequencies, however.

A given material may possess more than one resonance and may have a dipole 
relaxation response as well. In such cases, the net susceptibility is found in frequency 
domain by the direct sum of all component susceptibilities. In general, we may write:

 χ  e   =  χ  rel   +   ∑ 
i=1

  
n
     χ  res  i   (E.24)

where  χ  res  i   is the susceptibility associated with the ith resonant frequency, and n is 
the number of resonances in the material. The reader is referred to the references 
for Chapter 11 for further reading on resonance and relaxation effects in dielectrics.
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F A  P  P  E  N  D  I  X

Answers to  
Odd-Numbered 
Problems

Chapter 1
1.1  C = 4.5 ay (N) D = 2ax + 1.5ay D = 2.5 

(generally ENE)
1.3 (7.8, −7.8, 3.9)
1.5  (a) ay, −0.87(ax + 0.58ay), + 0.87(ax −0.58ay) 

(b) −ay, −0.87(ax −0.58ay), + 0.87(ax + 0.58ay)
1.7  (a) (1) the plane z = 0, with |x| < 2, |y| < 2; (2) the 

plane y = 0 with |x| < 2, |z| < 2; (3) the plane x = 0, 
with |y| < 2, |z| < 2; (4) the plane x = π/2, with |y|  
< 2, |z| < 2 (b) the plane 2z = y, with |x| < 2, |y|  
< 2, |z| < 1 (c) the plane y = 0, with |x| < 2, |z| < 2

1.9 (a) 0.6ax + 0.8ay (b) 53° (c) 26
1.11  (a) (−0.3, 0.3, 0.4) (b) 0.05 

(c) 0.12 (d) 78°
1.13  (a) (0.93, 1.86, 2.79) (b) (9.07, −7.86, 2.21) 

(c) (0.02, 0.25, 0.26)
1.15  (a) (0.08, 0.41, 0.91) (b) (0.29, 0.78, 0.56) 

(c) 30.3 (d) 33.3
1.17  (a) (0.664, −0.379, 0.645) (b) (−0.550, 0.832, 

0.077) (c) (0.168, 0.915, 0.367)
1.19  (a) F = A(ρ2 +z2)−3/2 (ρaρ +zaz) 

(b) F = A(x2 +y2 +z2)−3/2(xax +yay +zaz)
1.21  (a) −6.66aρ − 2.77aϕ + 9az (b) −0.59aρ + 0.21aϕ 

− 0.78az (c) −0.90aρ − 0.44az

1.23 (a) 6.28 (b) 20.7 (c) 22.4 (d) 3.21
1.25 H = (A/ρ)aϕ

1.27  (a) xy plane, on which E = −A/ρ3 az 
(b) z axis, on which E = 2A/z3 azV/m

1.29 (a) Fr = 10a cos2 θ (b) Fθ = −10a cos θ sin θ

Chapter 2
 2.1 (1.19, 1.19)
 2.3 21.5ax μN
 2.5 −10.1 nC
2.7 (a) E(z) =    qaz

 _____ 
4πϵ0z

2      [ (1−   d __ 2z
  )−2

−  (1 +   d __ 2z
  ) −2]  V   / m

(b) E(z = 0) = −    2q
 ____ 

πϵ0d
2    az V/ m

 (c) E(ρ) =    −qd
 _____________  

4πϵ0 (ρ2 + d2 / 4)3/2    az V/ m

 (d) Same as part b
 (e) E(ρ ≫ d) ≐ −    qd

 _____ 
4πϵ0ρ

3    az V/ m
 2.9  (a) (x + 1) = 0.56 [(x + 1)2 + (y − 1)2 + 

(z − 3)2]1.5 (b) 1.69 or 0.31
2.11  (a) −1.63 μC (b) −30.11ax − 180.63ay − 150.53az 

V/ m (c) −183.12aρ − 150.53az V/ m 
(d) −237.1 ar V/ m

2.13 (a) 82.1 pC (b) 4.24 cm
2.15 (a) 3.35 pC (b) 124 μC/m3

2.17 (a) E(ρ) = −    ρ0 _____ 2πϵ0ρ
      [1−  (1 +   d

2
 ___ 

4ρ2  ) 
−1/2]  az V/ m

    (b) E(ρ ≫ d) ≐ −   qd
 _____ 

4πϵ0ρ
3    az V/ m
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2.19 (a) E =    ρ0 ____ 2πϵ0
      [1− (1 +   ℓ2

 ___ 
4ρ2  ) 

−1/2]  aρ V/m

     (b) E (ℓ→ ∞) ≐    ρ0 ____ 2πϵ0
    aρ V/ m (independent of radius)

2.21 E = −   ρ0 ____ πϵ0a    axV/ m
2.23 (a) 8.1 kV/m (b) −8.1 kV/m
2.25 (a) E(z) = −   ρs0 ____ πϵ0z      [1 − (1 + a2 / z2) −1/2]   ay V/ m

(b) E(z ≫ a) ≐ −   ρs0a
2
 _____ 

2πϵ0z
3    ay V/ m

2.27 (a) y2 − x2 = 4xy − 19 (b) 0.99ax + 0.12ay

2.29  (a) 12.2 (b) −0.87ax − 0.50ay  
(c) y = (1/5) ln cos 5x + 0.13

Chapter 3
3.1  (a) F‾ = [Q1 Q2 / 4πϵ0R

2] ar (b) Same as part (a) 
(c) 0 (d) Force will become attractive!

3.3 (a) q
3.5  (a) E(z) = ±    q

 ____ 2ϵ0A
   [1 − exp(− ∣ z ∣ /d)]az V/ m + 

for z > 0, −for z < 0
   (b)  q would be the charge contained within a volume of 

infinite length in z, and of cross-sectional area A.
3.7 (a) E(r) =    q __ ϵ0

      [  1 − e−br
 ______ 

r2  ]  ar V/ m (b) 4πq

3.9  (a) EI = ρ0r
2/(4ϵ0a) ar V/m (b) EII = ρ0a

3/(4ϵ0r
2) 

ar V/m (c) ρs = −ρ0a
3/(4b2) C/m2 

(d) −  ρ  0  2  a6 / (16ϵ0b
4) ar N/m2

3.11 (a) E ≐ ρ0b
2/(2ϵ0ρ) aρ V/m (b) Same as part a

3.13  (a) Dr (r < 2) = 0; Dr(r = 3) = 8.9 × 10−9C/m2; 
Dr(r = 5) = 6.4 × 10−10C/m2 (b) ρs0 = −(4/9) 
× 10−9C/m2

3.15  (a) [(8πL) /3] [  ρ  1  3   − 10−9] μC where ρ1 is in meters 
(b) 4(  ρ  1  3   − 10−9) /(3ρ1)μC/m2 where ρ1 is in meters 
(c) Dρ (0.8 mm) = 0; Dρ (1.6 mm) = 3.6 × 10−6 
μCm2; Dρ(2.4 mm) = 3.9 × 10−6μC/m2

3.17  Surfaces are spherical shells of radii r0 = 2ma, 
where m is an integer.

3.19 113 nC
3.21  (a) Spherical volume charge of radius a and of 

density ρ0, surrounded by spherical surface charge 
layers ρs1 = −aρ0 /3 at r = a and ρs2 = a3ρ0 /(3b2) 
at r = b. (b) Qtot = 4πa3ρ0 /3

3.23  (a) (proof) (b) ρv0 = 3Q/(4π a3) (0 < r < a); 
Dr = Qr/4π a3) and ∇ · D = 3Q/(4π a3) (0 <r <a);  
Dr = Q/(4π r2) and ∇ ·D = 0 (r >a)

3.25 (a) 17.50 C/m3 (b) 5ar C/m2 (c) 320π C (d) 320π C
3.27  (a) ρv = −ρ0exp(−αz) C/m3 

(b) Q = −   Aρ0 ___ α    [1−exp(−αd)]C

3.29 (a) 3.47 C (b) 3.47 C
3.31 −3.91 C

Chapter 4
4.1  (a) −qδEx (b) (−qδ /  √ 

__
 2   )(Ex + Ey)

(c) (−qδ /  √ 
__

 3   )(Ex + Ey+ Ez )
4.3 (a) (−qδ /  √ 

__
 2   )(Eρ + Eϕ) (b) Δϕ = δ / (b  √ 

__
 2   )

4.5 (a) Aα (b) −Aα (c) 0
4.7 (a) E0b/a

4.9 (a) V0e
−r/a (b) V0 is the potential at the origin.

4.11  (a) V = 2A sin θ0 sin(Δθ/2) where Δθ = tan−1(ℓ/r) 
(b) V ≐ (Aℓ/r) sin θ0

4.13 576 pJ
4.15 −68.4 V
4.17 (a) –3.026 V (b) –9.678 V
4.19 (a) ρ0 /ϵ0 (b) Same 
4.21  (a) E =    V0 ________ 

r2  (  1 __ a   −   1 __ 
b
  ) 

    ar V/ m

    (b) zero in both regions 

(c) WE =    2πϵ0 V  0  2  ______ 
 (  1 __ a   −   1 __ 

b
  ) 

    J

    (d) ρsa =    ϵ0V0 ________ 
a2 (  1 __ a   −   1 __ 

b
  ) 

    C/m2

    (e) V0

4.23  (a) E =    
aρ0 ___ ϵ0

    e−ρ/a aρ V/ m

    (b) ρv =    aρ0 ___ ϵ0
     (1 −   ρ __ a  )   e−ρ/a C/ m3

(c) and (d) WE =    πa4 ρ  0  2  _____ 4ϵ0
    J

4.25  (a) ρv =    2ρ0a ____ r     (1 −   r
2
 __ 

a2  )   e−r2/a2 C/m3

    (b) 0 
(c) V0 =    ρ0a

3 √ 
__

 π  
 ______ 2ϵ0

    V

(d) WE =    πa5 ρ  0  2  _____ 4ϵ0
      √ 

__
   π __ 2      J

4.27 (proof)
4.29 1.31 V
4.31 (a) 387 pJ (b) 207 pJ
4.33  (a) (5 × 10−6)/(4πr2) ar C/m2 

(b) 2.81 J (c) 4.45 pF
4.35 (a) 0.779 μJ (b) 1.59 μJ

Chapter 5
5.1 (a) −1.23 MA (b) 0 (c) 0, as expected
5.3 I = QΩ/2π Amps
5.5 β = ω/v
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5.7  (a) mass flux density in (kg/m2 − s) and mass 
density in (kg/m3) (b) −550 g/m3 − s

5.9 (a) 0.28 mm (b) 6.0 × 107A/m2

5.11  (a) E = [(9.55)/ρl)]aρ V/m,V = (4.88)/l V and 
R = (1.63)/l Ω, (b) 14.64/l W

5.13 (a) 0.147 V (b) 0.144 V
5.15  (a) J = I0/(2πr) ar A/m2 (b) E = I0/(2πaσ0r) ar V/m  

(c) V0 = I0ln(b/a)/(2πaσ0) V (d)R = ln(b/a)/
(2πaσ0) ohms

5.17 R = ln(b/a)/(2πaσ0) ohms
5.19 R = 3d/(2πσ0a

3) ohms
5.21 (a) 1.20 kV (b) Ep = 723ax − 18.9ay V/m
5.23  (a) 289.5 V (b) z/[(x − 1)2 + y2 + z2]1.5 −z/[(x + 1)2 

+ y2 + z2]1.5 = 0.222
5.25  (a) 4.7 × 10−5S/m (b) 1.1 × 10−3S/m 

(c) 1.2 × 10−2S/m
5.27 (a) 6.26 pC/m2 (b) 1.000176
5.29  (a) E = [(144.9)/ρ]aρ V/m, D = (3.28aρ)/ρ nC/m2 

(b) Vab = 192 V, χe = 1.56  
(c) [(5.0 × 10−29)/ρ]aρ C · m

5.31  (a) E =    E0 __ ϵr
      [(cos2 ϕ + ϵr sin2 ϕ)ax + (1 −  ϵr) sin ϕ

cos ϕ ay]   V/ m
    (b) ϵr = 2.41
5.33 125ax + 175ay V/m
5.35 (a) E2 = E1 (b) WE1 = 45.1 μJ, WE2 = 338 μJ

Chapter 6
6.1 b/a = exp(2π d/W)
6.3 barium titanate
6.5 f = d[(d −b) + b/ϵr]−1

6.7 C = 4a2ϵ0/d
6.9 C = 3πϵ0a2/(2d) F

6.11  (a)    ϵr1 __ ϵr2
    =    a + b____

2a
 

(b) C=    2πϵr2ϵ0  _____________________   ln(b / a) − (1 − ϵr2 / ϵr1) ln(ϵr1 / ϵr2)
    F

6.13  K1 = 23.0, ρL = 8.87 nC/m, a = 13.8 m, C = 35.5 pF
6.15 (a) 47.3 nC/m2 (b) −15.8 nC/m2 (c) 24.3 pF/m
6.17 Exact value: 57 pF/m
6.19 Exact value: 11ϵ0 F/m
6.21 (b) C ≈ 110 pF/m (c) Result would not change.
6.23 (a) 3.64 nC/m (b) 206 mA
6.25 (proof)
6.27 f(x, y) = −4e2x + 3x2, V(x, y) = 3(x2 −y2)
6.29 Q = 120π C

6.31  V1(z) =    V0z ______________  
b + (ϵr1 / ϵr2)(d − b)  (0 < z < b)

V2(z) = V0   [1 −   (d − z) _______________  (ϵr2 / ϵr1) b + (d − b)  ]  (b < z < d)

6.33  (a) yes, yes, yes, no (b) At the 100 V surface, no 
for all. At the 0 V surfaces, yes, except for V1 + 3. 
(c) Only V2 is

6.35  (a) V (θ) = 100 ln tan(θ/2) + 10 V 
(b) E = 100ay V/m

6.37 (a) 1.01 cm (b) 22.8 kV/m (c) 3.15
6.39  (a) (−2.00 × 104)ϕ + 3.78 × 103 V 

(b) [(2.00 × 104)/ρ]aϕ V/m 
(c) (2.00 × 104ϵ0/ρ)aϕ C/m2 

(d) [(2.00 × 104)/ρ] C/m2

(e) 84.7 nC 
(f) V(ϕ) = 28.7ϕ + 194.9 V, E = −(28.7)/ρaϕ

V/m, D = −(28.7ϵ0)/ρaϕ C/m2, ρs = (28.7ϵ0)/ρ
C/m2, Qb = 122 pC (g) 471 pF

6.41  (a) 12.5 mm (b) 26.7 kV/m 
(c) 4.23 (with given ρs = 1.0 μC/m2)

6.43  V1(r) = V0  [1 −    (  1 __ a   −   1 __ r  ) 
 _______________  

  ϵ1 __ ϵ2
  (  1 __ c   −   1 __ 

b
  )  +  (  1 __ a   −   1 __ c  ) 

  ]  (a ≤ r ≤ c)

 V2(r) = V0  [  
 (  1 __ r   −   1 __ 

b
  ) 
 _______________  

 (  1 __ c   −   1 __ 
b
  )  +   ϵ1 __ ϵ2

    (  1 __ a   −   1 __ c  ) 
  ]  (c ≤ r ≤ b)

6.45 (a) 833.3r−.4 V (b) 833.3r−.4 V

Chapter 7
7.1  (a) −294ax + 196ay μA/m 

(b) −127ax + 382ay μA/m 
(c) −421ax + 578ay μA/m

7.3  H =    πa2I __________ 
2π(a2 + z2)3/2    az A/ m

7.5  ∣H∣ =    I __ 2π
     [ (  2 _________ 

y2 + 2y + 5
  −   2 _________ 

y2 − 2y + 5
  )

2
 + 

 (  (y − 1) _________ 
y2 − 2y + 5

   −   (y + 1) ________ 
y2 + 2y +5

  ) 
2

]
1/2

7.7  (a) H =I/(2π2z) (ax −ay) A/m 
(b) 0

 7.9 (a) I = 2a2ρ0Ω A (b) H = 2aρ0Ω/3 az A/m
7.11 2.0 A/m, 933 mA/m, 360 mA/m, 0
7.13 (e) Hz(a < ρ < b) = kb; Hz(ρ > b) = 0
7.15 H = 0 (r < a) H = −I/(2πr sin θ) aϕ A/m (r > a)
7.17  (a) J = σ0E0ρ az A/m2 (b) E0 = 3I/(2πσ0a

3) V/m 
(c) J = 3Iρ/(2πa3) az A/m2  
(d) H = Iρ2/(2πa3) aϕ A/m (ρ ≤ a) H = I/(2πρ) 
aϕ A/m (ρ ≥ a)
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7.19  (a) K = −Iar/2πr A/m (θ = π/2) 
(b) J = I ar / [2πr2(1 − 1 /  √ 

__
 2   )] A/m2 (θ < π / 4)

(c) H = Iaϕ/[2π r sin θ] A/m (π/4 < θ < π/2)
(d) H = I(1 − cos θ)aϕ / [2πrsin θ (1 − 1 /  √ 

__
 2   )]

A/ m (θ < π / 4)
7.21  (a) I = 2πba3/3 A (b) Hin =bρ2/3aϕ A/m 

(c) Hout =ba3/3ρ aϕ A/m
7.23  (a) σ would have a 1/ρ dependence 

(b) ∇ × H = J = H0/ρ az A/m2

7.25 (a) −259 A (b) −259 A
7.27  (a) 2(x + 2y)/z3ax + 1/z2az A/m (b) same as part (a) 

(c) 1/8 A
7.29  (a) 1.59 × 107az A/m2 

(b) 7.96 × 106ρaϕ A/m, 10ρaϕ Wb/m2 
(c) as expected  
(d) 1/(πρ)aϕ A/m, μ0/(πρ)aϕ Wb/m2  
(e) as expected

7.31 (a) 0.392 μWb (b) 1.49 μWb (c) 27 μWb
7.33 proof
7.35  (a) −40ϕ A (2 <ρ < 4), 0 (ρ > 4) 

(b) 40 μ0 ln(3/ρ)az Wb/m
7.37 [120 − (400/π)ϕ] A (0 < ϕ < 2π)
7.39  (a) −30ay A/m (b) 30y − 6 A (c) −30μ0ay Wb/m2 

(d) μ0(30x − 3)az Wb/m
7.41  (a) Use A(ρ) = µ0I/(2π) ln(b/ρ) az 

(b) A(ρ) = µ0πρ nI/(2π) aϕ

7.43  Az =    μ0I ___ 96π
     [ (  ρ

2
 __ 

a2   − 25) + 98 ln (  5a __ ρ  ) ]  Wb/m

Chapter 8
8.1  (a) (.90, 0, −.135) (b) 3 × 105ax − 9 × 104az m/s 

(c) 1.5 × 10−5J
8.3 (a) .70ax + .70ay − .12az (b) 7.25 fJ
8.5 T = −2πa2ℓK0B0 az N-m
8.7 F = −   μ0I1I2 ____ 2b

    az N/m
8.9 4π × 10−5 N/m

8.11 proof
8.13  (a) dF =    μ0I1I2 ________ 

2π(x2 +  z  0  2 )
     [x(ax − ay) −z0az]  dx N

    (b) Fz = −    μ0I1I2 ____ 2    N
8.15 (6 × 10−6) [b − 2 tan−1 (b/2)]ay N · m
8.17 Δw/w = Δm/m = 1.3 × 10−6

8.19  (a) 77.6yaz kA/m (b) 5.15 × 10−6 H/m (c) 4.1 
(d) 241yaz kA/m (e) 77.6ax kA/m2 
(f  ) 241ax kA/m2 (g) 318ax kA/m2

8.21  (Use χm = .003) (a) 47.7 A/m 
(b) 6.0 A/m (c) 0.288 A/m

8.23  (a) 637 A/m, 1.91 × 10−3 Wb/m2, 884 A/m 
(b) 478 A/m, 2.39 × 10−3 Wb/m2, 1.42 × 103A/m 
(c) 382 A/m, 3.82 × 10−3 Wb/m2, 2.66 × 103A/m

8.25  (a) 1.91/ρA/m   (0 <ρ < ∞) 
(b) (2.4 × 10−6/ρ)aϕ T (ρ < .01), (1.4 × 10−5/ρ)aϕ

T (.01 <ρ < .02), (2.4 × 10−6/ρ)aϕ T (ρ > .02)  
(ρ in meters)

8.27  (a) −4.83ax − 7.24ay + 9.66az A/m 
(b) 54.83ax − 22.76ay + 10.34az A/m 
(c) 54.83ax − 22.76ay + 10.34az A/m 
(d) −1.93ax − 2.90ay + 3.86az A/m 
(e) 102° (f) 95°

8.29 10.5 mA
8.31  (a) 2.8 × 10−4 Wb (b) 2.1 × 10−4 Wb 

(c) ≈ 2.5 × 10−4 Wb
8.33  (a) 23.9/ρ A/m (b) 3.0 × 10−4/ρ Wb/m2

(c) 5.0 × 10−7 Wb 
(d) 23.9/ρ A/m, 6.0 × 10−4/ρ Wb/m2, 
1.0 × 10−6 Wb (e) 1.5 × 10−6 Wb

8.35 (a) 20/(πr sin θ)aϕ A/m (b) 1.35 × 10−4 J
8.37  (a) L1 =   N  1  2   / ℛ, L2 =   N  2  2   / ℛ 

(b) M = N1N2/ℛ
8.39  (a) (1/2)wd μ0   K  0  2   J/m
    (b) μ0 d/w H/m (c) Φ = μ0 d K0 Wb
8.41 (a) 33 μH (b) 24 μH
8.43  (b) Lint  =    2WH____

I2 

=    μ0 __ 8π
     [  d

4 − 4a2c2 + 3c4 + 4c4 ln(a / c)   _____________________  
(a2 − c2)2  ]  H/m

8.45 proof

Chapter 9
9.1 (a) −5.33 sin 120π t V (b) 21.3 sin(120π t) mA
9.3  (a) − 1.13 × 105[cos(3 × 108t − 1) − cos(3 × 108t)] V 

(b) 0
9.5 (a) −4.32 V (b) −0.293 V
9.7  (a) (−1.44)/(9.1 + 39.6t) A 

(b) −1.44   [  1 _________ 61.9 − 39.6t   +   1 ________ 9.1 + 39.6t  ]  A

 9.9     P = 2.9 × 103[cos(l.5 × 108t − 0.13) − cos(1.5 × 108t)]2

9.11  (a)   (  10 __ ρ  )   cos(105t)aρ A/m2 (b) 8π cos(105t) A  
(c) −0.8π sin(105t) A (d) 0.1

9.13 (proof)
9.15 (a) Magnetostatic case (b) Electrostatic case
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9.17 a = 66 m−1

9.19 proof
9.21  (a) π × 109sec−1

(b)    500 ___ ρ    sin(10πz) sin(ωt)aρ V/m
9.23 A = (βE0/ω)y cos(ωt −βz)az Wb/m
9.25  (b)  B =   (t −   z _ c  )  ay T H =    1 __ μ0     (t −   z _ c  )  ay A/m

E = (ct −z)ax V/m D = ϵ0(ct −z)ax C/m2

Chapter 10
10.1  α = 0.080 m−1β = 2.25 rad/m λ = 2.80 m 

Z0 = 93.6 −j3.34 ohms
10.3 63 nJ
10.5  (a) VsT (z) = 2V0 cos(ϕ/2)e−αz ejϕ/2e−jβz 

V(z, t) = 2V0 cos(ϕ/2)e−αz cos(ωt − βz + ϕ/2) V
(b) IsT (z) =    2V0 ___

Z0
    cos(ϕ/2)e−αze jϕ/2−δe−jβz

I(z,t) =    2V0___
Z0

    cos(ϕ/2)e−αz cos(ωt − βz + ϕ/2 − δ) A

(c) P =    2 V  0  2 ___ Z0
   cos2(ϕ/2) cos δ e−2αz W

10.7 7.9 mW
10.9 Prec = 6.8 dBm = 4.8 mW

10.11  V(z, t) = 2V0 cos(ωt −βz) cos(2ωt −2βz).
10.13  (a) A = 1.15 × 10−4 ohms / m-  √ 

___
 Hz   ,

R = 1.15 ohms / m 
(b) PL = 89 mW

10.15 (a ) 104 V (b) 52.6 −j123 V
10.17 P25 = 2.28 W, P100 = 1.16 W
10.19 16.5 W
10.21  (a) s = 2.62 (b) ZL = 1.04 × 103 + j 69.8 Ω 

(c) zmax = −7.2 mm
10.23  (a) 0.037λ or 0.74 m (b) 2.61 

(c) 2.61 (d) 0.463 λ or 9.26 m
10.25  (a) 495 + j 290 Ω (b) j 98 Ω
10.27  (a) 2.6 (b) 11 −j 7.0 mS (c) 0.213 λ
10.29  47.8 + j 49.3 Ω
10.31  (a) 3.8 cm (b ) 14.2 cm
10.33  (a) d = 0.25λ d1 = 0.094λ

(b) d = 0.25λ d1 = 0.344λ

10.35  (a) 39.6 cm (b) 24 pF
10.37  VL = (1/3) V0 (l /v < t < ∞) and is zero for 

t < l /v . IB = (V0 /100) A for 0 < t < 2l /v and is 
(V0 /75) for t > 2l /v

10.39     l _ v    < t <    5l __ 4v
   : V1 = 0.44 V0

   3l __ v    < t <    13l ___ 4v
   : V2 = −0.15 V0

   5l __ v    < t <    21l ___ 4v
   : V3 = 0.049 V0

   7l __ v    < t <    29l ___ 4v
   : V4 = −0.017 V0

 Voltages in between these times are zero.
10.41 0 < t <    l __ 2v

   : VL = 0
   l __ 2v

    < t <    3l __ 2v
   : VL =    V0___

2 

t >    3l __ 2v
   : VL = V0

1 0.43 0 < t < 2l / v: VRL
 = V0 /2

        t > 2l / v: VRL
 = 3V0/4

 0 < t < l / v: VRg
 = 0, IB = 0

        t > l / v: VRg
 = V0 /4, IB = 3V0/4Z0

Chapter 11
11.1 proof
11.3  (a) 0.33 rad/m (b) 18.9 m (c) −3.76 × 103az V/m
11.5  I ∝ EE* = 4  E  0  2   cos2   (  Δω ___ 2   t − kmz)   where Δω

= ω2 − ω1, km =    k1 + k2 _____ 2    velocity = cΔω/(2ω0)
11.7 (a) 0.12δ (b) 0.35δ (c) 3.45δ

11.9  (a) Hs =    –E0 ___ ωμ0
    (βax + jαaz)e−αx e−βiz

(b) α =   √ 
___________
β2 − ω2 μ0ϵ0

11.11  (a) ℓ.t. = 67.5 (good conductor) (b) α ≐ β 
≐ 34.4 m, η ≐ 11.5(1 + j) ohms

  (c) Es(z) = 100e−αz e−jβz ax # (z, t) = 100e−αz

cos(ωt −βz) ax α and β as in part a
     (d) Hs(z) = 6.15e−j0.79 e−αz e−jβz ay $(z, t) 

= 6.15e−αz cos(ωt −βz − 0.79)ay

  (e) < S > (z) = 216e−2αz az W/m2 ( f ) z(25%) 
= 2.0 cm (g) 8.69 dB

11.13  μ = 2.28 × 10−6 H/m, ϵ′ = 1.07 × 10−11 F/m, and 
ϵ″ = 2.90 × 10−12 F/m

11.15  (a) λ = 3 cm, α = 0 (b) λ = 2.95 cm, α = 9.24 
× 10−2 Np/m (c) λ = 1.33 cm, α = 335 Np/m

11.17  (a) E =V0/ℓ az

(b) H =    σρV0 ____ 2ℓ    aϕ A/m (0 < ρ < a)

(c) S = −    σρ V  0  2  ____ 
2ℓ2    aρ W/m2 

(d) and (e) P =     V  0  2  __ R    W
11.19  (a) ω = 4 × 108 rad/s (b) H (ρ, z, t) = (4.0/ρ) cos 

(4 × 108t − 4z)aϕ A/m (c) 〈S〉 = (2.0 × 10−3/ρ2) 
cos2(4 × 108t − 4z)az W/m2 (d) P = 5.7 kW

hay28159_app_f_578-583.indd   582 6/5/18   12:27 PM



583A P P E N D I X F  Answers to Odd-Numbered Problems

11.21  (a) Hϕ1 (ρ) = (54.5/ρ)(104ρ2 − 1) A/m (.01 <ρ 
< .012), Hϕ2 (ρ) = (24/ρ) A/m (ρ > .012), Hϕ = 0  
(ρ < .01m) (b) E = 1.09az V/m (c) 〈S〉  
= −(59.4/ρ)(104ρ2 − 1)aρ W/m2 (.01 <ρ < .012 m), 
− (26/ρ)aρ W/m2 (ρ > 0.12 m)

11.23  (a) 1.4 × 10−3 Ω/m (b) 4.1 × 10−2 Ω/m 
(c) 4.1 × 10−1 Ω/m

11.25 f = 1 GHz, σ = 1.1 × 105 S/m
11.27 (a) 4.7 × 10−8 (b) 3.2 × 103 (c) 3.2 × 103

11.29  (a) Hs = (E0/η0) (ay −jax)e−jβz 
(b) 〈S〉 = (  E  0  2   / η0)az W/m2 (assuming E0 is real)

11.31 (a) L = 14.6 λ (b) Left
11.33  (a) Hs = (1/η) [−18ejϕ ax + 15ay]e−jβz A/m 

(b) 〈S〉 = 275 Re {(1/η*)} W/m2

Chapter 12
12.1 0.01%
12.3 0.056 and 17.9
12.5  (a) 4.7 × 108 Hz 

(b) 691 +j177 Ω (c) −1.7 cm
12.7 (a) s1 = 1.96, s2 = 2, s3 = 1 (b) −0.81 m
12.9  (a) 6.25 × 10−2  

(b) 0.938 (c) 1.67
12.11 641 + j501 Ω
12.13  Reflected wave: left circular polarization; power 

fraction = 0.09. Transmitted wave: right circular 
polarization; power fraction = 0.91

12.15 (a) 2.55 (b) 2.14 (c) 0.845
12.17 2.41
12.19  (a) d1 = d2 = d3 = 0 or d1 = d3 = 0, d2 = λ/2 

(b) d1 = d2 = d3 = λ/4
12.21  (a) Reflected power: 15%. Transmitted power: 85% 

(b)  Reflected wave: s-polarized. Transmitted 
wave: Right elliptically polarized.

12.23 n0 = (n1 / n2)  √ 
_______
 n  1  2  −  n  2  2   

12.25 0.76 (−1.19 dB)
12.27 2
12.29 4.3 km

Chapter 13
13.1 (a) 1.14 mm (b) 1.14 mm (c) 1.47 mm
13.3 14.2 pF/m, 0.786 μH/m, 0, 0.023 Ω/m
13.5 (a) 1.23 (b) 1.99 (c) 1.33

13.7 (a) 2.8 (b) 5.85 × 10−2

13.9 (a) 4.9 (b) 1.33
13.11 9
13.13 9
13.15 1.5 ns
13.17 (a) 12.8 GHz (b) Yes
13.19  (a) 2.5 GHz < f < 3.75 GHz (air-filled) 

(b) 3.75 GHs < f < 4.5 GHz (air-filled)
13.21 a = 1.1 cm, b = 0.90 cm
13.23 proof
13.25 72 cm
13.27 3.304
13.29 (a) θmin = sin−1(n3/n1) (b) vp, max = c/n3
13.31 greater than

Chapter 14
14.1 (a) −0.284ax − 0.959az (b) 0.258
14.3  (a) −j(1.5 × 10−2)e−j1000 az V/m  

(b) −j(1.5 × 10−2)e−j1000 ay V/m 
(c) −j(1.5 × 10−2)(ay +az) V/m  
(d) −(1.24 × 10−2)(ay +az) V/m 
(e) 1.75 × 10−2 V/m

14.5 proof
14.7 (a) 0.711 Ω (b) 0.178 Ω (c) 0.400 Ω
14.9 (a) 85.4 A (b) 5.03 A

14.11 (a) 85.4 A (b) 7.1 A
14.13  (a) 0.2e−j1000π V/m  

(b) 0.2e−j1000π ej0.5π V/m (c) 0
14.15  Primary maxima: θ = ± 90°, relative 

magnitude 1.00. Secondary maxima: θ = 
± 33.8° and θ = ± 146.2°, relative 
magnitude 0.186. Ss = 7.3 dB

14.17 (a) 36.5 W (b) 4.8 μW
14.19 ξ = 0, d = λ
14.21 (a) ± 48.2° (b) ± 60°
14.23 (a) +π/2 (b) 0
14.25  (a) ξ = −π/2 (b) 5.6% of maximum 

(12.6 dB down)
14.27 proof
14.29 (a) 1.7 μW (b) 672 nW
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I N D E X

Note: page numbers followed by “n” with numbers indicate footnote.

A

Absolute potential, 84
Acceleration vector, 233
Acceptors, 129
Addition, 2–3
Alignment tolerance, 508
Ampere (A), 112
Ampère’s circuital law, 190, 251, 292

application to filament current, 192
conductor total current, 191
line integral of H, 190
magnetic field

within coaxial cable, 192–194
within solenoids and toroids, 

195–197
of surface current, 194–195

for time-varying fields, 286–288
Amperian current, 250, 253
Amplitude variations, 531
Angular dispersion, 442
Anisotropic dielectric materials,  

133–134, 253
Anisotropic magnetic material, 248, 253
Anisotropic medium, 402
Antenna(s), 303, 515

gain, 526
magnetic dipole, 527–528
as receivers, 545–551
specifications, 521

antenna gain and radiation 
efficiency, 526

differential solid angle, 524
directivity, 524–526
emitted power and radiation 

resistance, 521–522
radiation intensity, 523–524
solid angle, 522–523

thin wire, 529–537
Antiferromagnetic materials, 248–249, 

254
Array fields in far zone, 537–538

Arrays of two elements, 537. See also 
Uniform linear arrays

array fields in far zone, 537–538
pattern multiplication principle, 

539–541
Atom, 116
Attenuation coefficient, 317, 378, 379, 

383, 389, 476
Azimuthal mode number, 501, 504

B

Backward-z traveling voltage wave, 352
Beamwidth, 526, 534
Bessel functions, 461, 502–504

modified, 505–506
Biot-Savart law, 182, 528

differential form of, 182–184
for current element, 184
integral form, 184–185
magnetic field of current filament, 

186–190
Bound charge, 129–131
Bound current, 250
Boundary conditions, 121–125, 164

and application, 137–139
for dielectric materials, 135–139

normal electric flux density at 
boundary, 136–137

tangential electric field at 
boundary, 135–136

Brewster angle, 439
Broadside array, 543

C

Capacitance, 145, 265
capacitors with multiple dielectrics, 

150–152
coaxial cable, 149
field sketches to estimate capacitance 

in 2D problems, 156–161

Laplace’s equations, 162–164
solution of, 164–170

oppositely charged conductors M1 and 
M2, 146

parallel-plate capacitor, 147–149
Poisson’s equations, 162–164

solution of, 171–174
several capacitance examples, 149
spherical capacitor, 149
of two-wire line, 152–156

Capacitive impedance, 333
Capacitor

coaxial, 60
model, 41
with multiple dielectrics, 150–152
parallel-plate, 147–149
spherical, 149

Characteristic impedance, 310–311, 316, 
317, 319, 322, 326, 330–332, 
337, 345, 350, 356, 376, 459, 
460, 463, 645

Chirped pulse, 449
Chromatic angular dispersion, 442
Circular cylindrical coordinates, 14.

See also Spherical coordinate 
system

differential area and volume, 16
mutually perpendicular surfaces, 15
point coordinates, 14
point transformations, 16–17
relationship between rectangular 

and cylindrical coordinate 
variables, 16

unit vectors, 14–15
vector component transformations, 

17–18
Circular polarization, 399–403
Circulation per unit area, 201
Closed path, 89, 90, 122, 135, 184, 186, 190, 

191, 199, 201, 204, 206, 207, 216, 
236, 250–251, 255, 259, 267, 
280–283, 286, 288, 289
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Closed surface integral, 53, 54, 89, 103, 
207, 222

Coaxial cable, 149
field, 58–60
field energy in, 104
magnetic field within, 192–194

Coaxial capacitor, 60
Coaxial transmission line, 459. See also 

Two-wire transmission line
geometry, 459
high frequencies, 459–460
intermediate frequencies, 461–462
low frequencies, 460–461

Cobalt chloride (CoCl2), 249
Complex

analysis of sinusoidal waves, 313–315
instantaneous voltage, 314
permeability, 379
permittivity, 378
propagation constant, 378

Component scalars, 6
Component vectors, 5
Conducting media, propagation in,  

382–383
Conduction band, 116
Conductivity, 117–118
Conductor(s)

boundary condition, 147
continuity of current, 113–115
current and current density, 112–113
metallic, 116–120
method of images, 126–128
properties and boundary conditions, 

121–125
semiconductors, 128–129

Conservative field, 90, 92, 184, 214–215
Continuity of current,  

113–115, 239
Continuous charge distribution, potential 

field of, 87–88
Continuous volume charge distribution

electric field associated with volume 
charge distribution, 35

example, 34
field arising from, 33
volume charge density, 33–35

Convection current, 113
density, 113, 235, 287, 291

Coordinate
axes, 14
of point, 19–20
systems, 14–18
values, 4, 5

Coplanar vectors, 2
Coulomb forces, 234
Coulomb’s law, 26, 27, 28, 57, 76, 184, 

188, 190
experimental law, 26

electricity, 26
permittivity of free space, 27
vector force, 28

Critical angle of total reflection, 437
Cross product, 11. See also Dot product

geometric definition, 11–13
operational definition, 13

Crystalline solid, 116
Curl, 197

development, 197–200
physical meaning, 200–204

Current, 310, 347
continuity of, 113–115, 239
density, 185
influence of material properties on, 

116–117
magnetic field of current filament, 

186–190
in phasor form, 457
reflection diagram, 352–356

Cutoff conditions, 488–489, 498–500, 
504–506

Cutoff frequency, 468, 472–475
Cutoff wavelength, 474, 506–507
Cylindrical variables, 16
Cylindrical waveguide, 466, 467

D

Decibel units, 321
Del operator, 67–68
Depth of penetration, 391
Diamagnetic material, 247
Dielectric materials

boundary conditions for perfect 
dielectric materials, 135–139

conductor properties and boundary 
conditions, 121–125

continuity of current, 113–115
current and current density, 112–113
metallic conductors, 116–120
method of images, 126–128
nature of, 129

bound charge and polarization 
field, 129–131

electric flux density, 132
material susceptibility and 

dielectric constant, 133–135
semiconductors, 128–129

Dielectric(s)
constant, 133
wave propagation in, 377

good dielectric approximation, 
383–386

propagation in conducting media, 
382–383

propagation in Lossy media, 
378–382

waveguides, 466, 493
Differential area and volume, 16
Differential current element, 235

force between, 238–240
force on, 234–238

Differential current loop, 242
Differential form of Biot-Savart law, 

182–184
Differential magnetic dipole moment, 243
Differential surfaces and volume, 20
Differential volume element, 61–64, 

219–220
Dipole, 96, 130, 529. See also Electric 

dipole
current distribution on, 529–530
field, 126
half-wave, 534–535
moment, 100

Directive gain, 525n2
Directivity, 524–526
Dispersion, 442. See also Plane wave 

reflection and dispersion
angular, 442
group velocity, 445
modal, 478, 492
parameter, 448
waveguide, 481

Dispersive media, 409
pulse broadening in, 446–450
wave propagation in, 440–446

Displacement, 49
current, 286

density, 287, 383, 390
illustration, 288–290
modifying Ampère’s law for 

time-varying fields, 286–288
electric, 48

Faraday’s experiments on, 49
flux, 49

Distributed elements, 303
Divergence, 64–66

theorem, 67, 69–70, 292
del operator, 67–68
gradient, 68
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Division, 3
Domains, 248
Donor materials, 129
Doping process, 129
Dot product, 8. See also Cross product

geometric definition, 8–9
operational definition, 9–11
of unit vectors, 18, 21

Drift velocity, 117
Duality, 528

E

E-plane pattern, 520–521, 532–535
Effective area, 546–551
Effective dielectric constant, 464
Effective impedances, 434–435
Eigenvalue equations, 499, 505
Electric charges, 112
Electric circuit, 259
Electric dipole, 96, 244

electric field, 99
electrostatic field of point dipole, 100
potential in far zone, 97–99
rewriting potential field, 99–101

Electric displacement, 48
Faraday’s experiments on, 49

Electric field, 99, 188, 233, 244, 279. See 
also Magnetic field

definition for point charge, 29–30
energy density, 105
energy expended in moving point 

charge in, 77–78
intensity, 29, 119, 126, 155, 171, 182, 

232, 257
fields associated with charges at 

general locations, 30–32
vector addition, 31

static electric field
conservative nature of, 88–90
as negative gradient, 92–94

stored energy in, 103–104
tangential, 135–136
uniform, 78, 79

Electric flux, 49, 145
density, 48, 49, 51,  

132, 150
Faraday’s experiments on electric 

displacement, 49
in radial direction, 50

Electric susceptibility, 133
Electricity, 26
Electromagnetic radiation, 515

Hertzian dipole, 515–521

Electromagnetic theory, 279, 290–291
field theory, 105

Electromagnetic wave propagation, 111
Electromotive force (emf), 49, 280

arising from time-varying magnetic 
field, 282–283

Electron spin, 246, 247, 249
Electrostatic energy, 101

electric field energy density, 105
field energy in coaxial cable, 104
stored energy

in distribution of charge, 101–103
in electric field, 103–104

Electrostatic fields, 123, 212, 279
Electrostatic potential, 214–215, 257
Elementary circuit theory, 289
Elliptical polarization, 398–399
emf. See Electromotive force (emf)
Emitted power, 521–522
Endfire array, 544
Energy

in distribution of charge, 101–103
expended in moving point charge in 

electric field, 77–78
field energy in coaxial cable, 104
kinetic, 233
on magnetic materials, 263–265

Equipotential surface, 86
Experimental law of Coulomb, 26

electricity, 26
permittivity of free space, 27
vector force, 28

F

Fabry-Perot interferometer, 424
Far field approximation, 98
Far zone array pattern, 541–543
Faraday’s experiments on electric 

displacement, 49
Faraday’s law, 279

EMF arising from time-varying 
magnetic field, 282–283

Faraday’s law in point and integral 
forms, 280–282

motional EMF, 283–286
Farads, 27, 146
Feed point, 529
Ferrimagnetic materials, 379
Ferrites, 379
Ferroelectric materials, 133
Ferromagnetic materials, 248, 266
Ferrous sulfide (FeS), 249
Fiber modes, 500

Field(s), 2
energy

in coaxial cable, 104
magnetic, 145

in far zone, 520–521
filling factor, 465
gravitational, 90
of line charge, 36–39
of off-axis line charge, 38–39
scalar, 2
of sheet of charge, 39–41
sketches, 41–44

to estimate capacitance in 2D 
problems, 156–161

Filament current, Ampere’s law 
application to, 192

Filamentary conductor,  
182–183

Finite length
current element, 188
transmission lines of, 329–332

Fluid dynamics, 200
Flux, 51. See also Electric flux

density, 9, 233
displacement, 49
linkage, 265–267
magnetic, 145, 209–211, 280, 290
total, 266

Forbidden-band energy gap, 128
Force(s), 232

on differential current element, 
234–238

between differential current elements, 
238–240

on magnetic materials, 263–265
on moving charge, 232–233
and torque on closed circuit,  

240–246
Forward-z traveling voltage wave, 352
Fourier transform, 446, 449
Free current density, 256
Free space

wave propagation in, 369
intrinsic impedance, 375–377
solutions of wave equation, 

371–373
vector Helmholtz equation in free 

space, 374–375
wave equation for uniform plane 

wave, 369–371
wavelength at cutoff, 489

Free spectral range of Fabry-Perot 
interferometer, 425

Frequency domain analysis, 311–312
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G

Gain coefficient, 378
Gauss’s law, 52, 132, 134

application, 54–55
charge distribution, 54
closed surface integral, 53
in differential form, 61

differential volume element, 61–64
differential-sized Gaussian 

surface, 62
divergence, 64–66
Maxwell’s first equation, 66–67

generalizations of Faraday’s 
experiment, 52

symmetrical charge distributions, 56
coaxial cable field, 58–60
Gaussian surface for infinite 

uniform line charge, 58
line charge field, 57–58
point charge field, 56–57

Gauss’s theorem. See Divergence—
theorem

Gaussian function, 507
Gaussian surface, 53
General wave equations, 308
Good conductors, propagation in, 389

good conductor approximations, 
390–391

intrinsic impedance and power density 
in good conductors, 393–394

skin effect, 391–393
skin effect resistance in conductors, 

394–396
Good dielectric approximation, 383–386
Gradient, 94
Gravitational field, 77, 90, 105
Group delay difference, 477
Group velocity, 476–478, 481

dispersion, 445
function, 445

Guided waves. See Waveguide

H

H-plane pattern, 521, 537, 539, 540
Half-wave

dipole, 534–535
layers, 423–427
matching, 424

Hall effect, 234
Hall voltage, 234, 235
Handedness of circular polarization, 400
Heaviside’s condition, 318–319

Helmholtz equation in homogeneous and 
isotropic medium, 378

Hertzian dipole, 515
differential current filament of length, 

516
fields in far zone, 520–521
general electric and magnetic fields, 

517–520
modeling wire antenna as 

superposition of, 530–532
retarded vector potential for, 516–517
sinusoidal functions, 519

High frequencies
coaxial transmission-line, 459–460
two-wire transmission line, 462–463

Homogeneous dielectric, 145–147
Hybrid modes, 469n3
Hysteresis, 248

effect, 133, 260
loop for silicon steel, 261

I

Images, method of, 126–128
Impedance transformation, 427–428
Incident wave, 410
Inductance, 265

flux linkage and self-inductance, 
265–267

vector potential and, 267–270
Initially charged lines, 356–360
Input impedance, 336, 344–345, 422

to stub, 346
Instantaneous power, 319–320
Insulator, 121
Integral form

of Biot-Savart law, 184–185
Maxwell’s equations, 292–24

Interference pattern, 476
Intermediate frequencies, coaxial 

transmission-line, 461–462
Internal inductance, 269
International System of Units (SI), 27
Intrinsic impedance, 375–377

in good conductors, 393–394
Intrinsic semiconductor material, 128
Isotropic radiator, 524

K

Kinetic energy, 233
Kirchhoff’s circuital law for voltages, 90
Kirchoff’s current law (KCL), 306
Kirchoff’s voltage law (KVL), 135, 258, 

306

L

l.c.p. See Left circular polarization (l.c.p.)
Laplace’s equations, 162–164, 213

examples of solution, 164–170
Left circular polarization (l.c.p.), 400
Left elliptical polarization, 400
Lenz’s law, 280
Line charge field, 36, 57–58

off-axis line charge, 38–39
symmetry, 36–38

Line discharge process, 357
Line integral, 78

example, 80–83
mechanics, 80
summation interpretation, 79
uniform electric field, 78, 79

Linear polarization, 397–398
Linearly polarized mode, 501
Load impedance, 330, 336
Lorentz force equation, 233, 236
Loss tangent, 379, 383
Lossless medium, 380
Lossless propagation, 308–311, 457

of sinusoidal voltages, 311–313
Lossy media, propagation in, 378–382
Low frequencies

coaxial transmission-line, 460–461
microstrip line, 463–466
two-wire transmission line, 463

Low-loss approximation, 317–319
Low-loss propagation, 317–319
Lumped elements, 303

model of transmission line, 305

M

Magnetic boundary conditions, 254–257
Magnetic charges, 264
Magnetic circuit, 257–263
Magnetic dipole, 527–528. See also 

Hertzian dipole
moment, 246

per unit volume, 250
Magnetic field, 182, 232, 279, 501. See 

also Electric field
within coaxial cable, 192–194
of current filament, 186–190
intensity, 183, 257, 264
within solenoids and toroids,  

195–197
of surface current, 194–195

Magnetic flux, 145, 280, 290
density, 209–211, 234–235, 258

hay28159_Index_584-592.indd   587 25/11/17   2:18 pm



588 INDEX

Magnetic materials
nature of, 246–249
potential energy and forces on, 

263–265
Magnetic moments, 248
Magnetic resonance imaging (MRI), 246
Magnetic response, 379
Magnetic-field-strength variation with 

radius, 193
Magnetism, 280
Magnetization, 249–254
Magnetohydrodynamic generator (MHD 

generator), 233
Magnetomotive force, 257
Marcuse formula, 507
Maxwell’s equations, 282, 369

in integral form, 292–24
in point form, 290–292
to relating field components, 

483–484
Maxwell’s first equation, 66–67
Meridional rays, 500
Metallic conductors, 116

conductivity and Ohm’s law, 
117–118

influence of material properties on 
current, 116–117

resistance, 118–120
MHD generator. See

Magnetohydrodynamic 
generator (MHD generator)

Microfarad (μF), 146
Microstrip line, 463–466
Microwave oven, operating principle of, 

382
Mobility, 117
Modal dispersion, 478, 492
Mode fields, 497–498

radius, 507
in weakly guiding fiber, 500–504

Mode number, 471
Mode parameters, 504–506
Moding, 492
Moment, 241
Monopole antenna, 535–537
Motional EMF, 283–286
MRI. See Magnetic resonance imaging 

(MRI)
Multiple dielectrics, capacitors with,  

150–152
Multiplication, 3
Multipoles, 101
Multiwave bidirectional voltage 

distribution in line, 329

Mutual inductance, 265, 270–272
flux linkage and self-inductance, 

265–267
vector potential and inductance, 

267–270

N

Nanofarad (nF), 146
Negative current, 311
Net series impedance, 315
Net shunt admittance, 315
Nickel oxide (NiO), 249
Nonconservative field, 90
Nonpolar molecule, 130
Normal electric flux density at boundary, 

136–137
Normal incidence, uniform plane waves 

reflection at, 409
partial reflection, 414–416
plane wave incident, 410
power reflectivity, 414–416
reflected and transmitted waves at 

boundary, 410–411
reflection coefficients, 411–412
total reflection, 412–414
transmission coefficients, 411–412

Normalized admittances, 343
Normalized array factor for two-element 

array, 541
Normalized frequency, 505
Normalized load impedance, 337
Nuclear spin, 246

O

Oblique incidence, 428
plane wave reflection at oblique 

incidence angles, 431–436
total reflection and total transmission 

of obliquely incident waves, 
437–440

Odd parity, 37
Off-axis line charge, field of, 

38–39
Ohm’s law, 111, 117–118, 121
ω-β diagram, 443, 445, 447, 450
One siemens (1 S), 118
Optical fiber, 500

cutoff conditions, 504–506
mode fields in weakly guiding fiber, 

500–504
mode parameters, 504–506
single-mode fiber, 506–509

waveguides, 438, 466, 468
Optical waveguides, 438
Orbiting electron, 247
Outward-flowing current, 114

P

P-N junction capacitance, 171–174
p-polarized wave, 432, 434, 474
Parallel polarization wave, 432, 437
Parallel-plate

capacitor, 147–149
guide analysis using wave equation, 

479–482
Parallel-plate waveguide, 466, 469.

See also Planar dielectric 
waveguides; Rectangular 
waveguides

plane wave analysis, 470
phase and group velocities, 

476–478
plane wave superposition,  

476–478
transverse resonance and cutoff, 

472–475
wave geometry, 470–472

Parallelism, 6
Paramagnetic material, 248
Partial differentiation process, 219
Partial reflection, 414–416
Partial transmission, 494
Pattern multiplication principle,  

539–541
Penetration depth of material, 382
Perfect dielectric medium, 380
Permeability, 249–254, 252
Permittivity, 129, 133

of free space, 27
Perpendicular polarization wave, 433
Phase constant, 312, 317, 332, 372, 379, 

443, 488
Phase shift per unit time, 312
Phase velocity, 312, 476–478
Phase-displaced field components, 

398–399
Phasor

retarded potential, 517
solutions in phasor form, 315–317
voltage, 314

Physical description of transmission line 
propagation, 304–306

Picofarad (pF), 146
Planar dielectric waveguides, 493. See

also Parallel-plate waveguide; 
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Rectangular waveguides
cutoff conditions, 498–500
mode fields, 497–498
plane wave superposition model, 

494–496
surface waves, 496–497
transverse resonance, 498–500

Plane of incidence, 432, 469
Plane wave

analysis of parallel-plate waveguide, 
470

phase and group velocities, 
476–478

plane wave superposition,  
476–478

transverse resonance and cutoff, 
472–475

wave geometry, 470–472
propagation in general directions, 

428–431
reflection and dispersion

oblique incidence angles, plane 
wave reflection at, 431–436

plane wave propagation in general 
directions, 428–431

pulse broadening in dispersive 
media, 446–450

reflection of uniform plane waves 
at normal incidence, 409–416

standing wave ratio, 416–420
total reflection and total 

transmission of obliquely 
incident waves, 437–440

wave propagation in dispersive 
media, 440–446

wave reflection from multiple 
interfaces, 420–428

superposition, 476–478, 494–496
Point charge

electric field definition for, 29–31
field, 56–57
symmetrical distribution, 32

Point coordinates, 14
Point dipole, 101
Point form

of Gauss’s law, 66
Maxwell’s equations, 290–292

Point locations as intersections of planes, 
4–5

Point transformations, 16–17, 20–21
Poisson’s equations, 162–164

example of solution, 171–174
Polar molecules, 130
Polarization, 129

angle, 439
field, 129–131

Positive current, 311
Potential. See also Potential field
Potential difference, 83–86, 89–92, 97, 

104, 119, 120, 135, 146, 147, 
150–152, 162, 165, 173

electric, 257
zero, 281

Potential energy and forces on magnetic 
materials, 263–265

Potential field, 76, 83–85
conservative nature of static electric 

field, 88–90
continuous charge distribution,  

87–88
of ensemble of point charges, 87
of point charge, 85–86
simple dc-circuit problem, 90
of system of charges, 87–90

Potential gradient, 91
computation of gradient, 94–96
general relation between electric and 

potential fields, 91–92
potential field, 93
static electric field as negative 

gradient of potential, 92–94
vector incremental element, 91

Power
density in good conductors,  

393–394
reflectivity, 414–416
transmission and use of decibels in 

loss characterization, 319–322
Poynting vector, 376, 387, 535
Poynting’s theorem, 386–389
Projections, 10, 17
Propagation constant, 315
Pulse

broadening in dispersive media, 
446–450

propagation, 347
pulse-forming line, 358
pulse-forming network, 305
spectrum, 446

Q

Quantum theory, 116
Quarter-wave

layers, 423–427
matching, 332, 426
plate, 402

Quasi TEM approximation, 464

R

r.c.p. See Right circular polarization 
(r.c.p.)

Radial mode number, 501
Radiation

efficiency, 526
intensity, 523–524, 532–535
pattern, 546
resistance, 521–522

Radomes, 424
Real instantaneous forms of electric field, 

372
Received power, 546–551
Receivers, antennas as, 545, 550–551

pair of coupled antennas, 545
received power and effective area,  

546–551
time-average power, 547, 548
transmit-receive link as two-port 

network, 545–546
transmitting and receiving antennas, 

547, 548
Receiving antennas, 547
Reception pattern, 546
Reciprocity, 545–546

theorem, 546
Rectangular coordinate system, 3, 65

point locations as intersections of 
planes, 4–5

right-handed coordinate systems, 3–4
Rectangular waveguides, 466, 467, 

482. See also Parallel-plate 
waveguide; Planar dielectric 
waveguides

cutoff conditions, 488–489
using Maxwell’s equations to relating 

field components, 483–484
need for, 492–493
TE modes, 487–488
TE0p modes, 489–492
TEm0 modes, 489–492
TM modes, 484–486

Reflected waves at boundary, 410–411
Reflection coefficients, 323, 347, 

411–412
Refractive index, 424, 425, 436, 442, 443, 

467, 500
Relative permeability, 252
Relative permittivity, 129, 133
Reluctance, 258
Resistance, 118–120, 265
Resistivity, 118
Resonant cavity, 1D, 480
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Retardation, 402
Retarded potentials, 294–298
Retarded vector potential for Hertzian 

dipole, 516–517
Right circular polarization (r.c.p.), 400
Right elliptical polarization, 400
Right-handed coordinate systems, 3–4
Rudolf-Neumann formula, 507

S

s-polarized wave, 433
S/m. See Siemens per meter (S/m)
Scalar(s), 1–2

fields, 2
functions, 17
magnetic potentials, 212
operators, 68
potential, 212–215
product. See Dot product

Second-order differential equation, 165
Self-inductance, 265–267
Semi-infinite cylinder, 264n2
Semiconductors, 111, 116, 128–129
Sheet of charge, field of, 39

capacitor model, 41
ensemble of line charges, 40–41
symmetry, 39

“Short circuit”, 283–284
SI, See International System of 

Units (SI)
Sidelobes, 533
Siemens per meter (S/m), 118
Single-mode fiber, 506–509
Sinusoidal functions, 519
Sinusoidal steady-state conditions, 314
Sinusoidal voltages, lossless propagation 

of, 311–313
Sinusoidal waves, complex analysis of, 

313–315
Sketches of fields, 41–44
Skew rays, 500
Skin effect, 391–393, 458

loss, 318–319
resistance, 459

in conductors, 394–396
Slab waveguide, 466, 467
Slotted line, 325
Smith chart, 336–347
Snell’s law of refraction, 434
Solenoids, magnetic fields within, 

195–197
Solid angle, 522–523
Spatial frequency, 312

“Spectral packet”, 442
Spherical capacitor, 149
Spherical coordinate system, 18, 19.

See also Circular cylindrical 
coordinates

coordinates of point, 19–20
differential surfaces and volume, 20
point transformations, 20–21
unit vectors in, 20
vector component transformations,  

21–22
Standing wave, 315

ratio, 416–420, 421–414
Static electric field

conservative nature of, 88–90
as negative gradient of potential, 

92–94
Static field, 284
Steady magnetic field, 182, 234, 279.

See also Time-varying fields
Ampère’s circuital law, 190–197
Biot-Savart law, 182–190
curl, 197–204
derivation of steady-magnetic field 

laws, 219–225
magnetic flux and magnetic flux 

density, 209–211
scalar and vector magnetic potentials, 

212–218
stokes’ theorem, 204–208

Steady-state conditions, 347
Steady-state situation, 420
Step index fiber, 500
Steradian (sr), 523
Stokes’ theorem, 204–208, 252, 281
Stored energy in distribution of charge, 

101–103
Streamlines, 41–44
Subtraction, 2–3
Superconductivity, 118
Superparamagnetic materials, 249
Surface current

density, 185
magnetic field of, 194–195

Surface waves, 496–497
Symmetric slab waveguide, 493, 494
Symmetrical charge distributions, 56

Gauss’s law
coaxial cable field, 58–60
Gaussian surface for infinite 

uniform line charge, 58
line charge field, 57–58
point charge field, 56–57

Symmetry

field of line charge, 36–38
field of sheet of charge, 39

T

Tangential electric field at boundary, 
135–136

TE mode. See Transverse electric (TE 
mode)

Telegraphist’s equations, 308, 371
TEM fields. See Transverse 

electromagnetic fields (TEM 
fields)

Temporal prism, 447
Tesla (T), 209
Thin wire antennas, 529

current distribution on dipole, 
529–530

E-plane pattern and radiation intensity, 
532–534

half-wave dipole, 534–535
modeling wire antenna as 

superposition of Hertzian 
dipoles, 530–532

monopole antenna, 535–537
thin dipole antenna, 529

3-dB beamwidth, 526
Time-averaged power, 320, 547, 548
Time-varying fields, 279. See also Steady 

magnetic field
displacement current, 286–290
EMF arising from time-varying 

magnetic field, 282–283
Faraday’s law, 279–286
modifying Ampère’s law for, 286–288
retarded potentials, 294–298

Time-varying potentials. See Retarded 
potentials

TM mode. See Transverse magnetic mode  
(TM mode)

Toroids, magnetic fields within, 
195–197

Torques, 232
on closed circuit, 240–246

Total flux, 266
Total internal reflection, 437
Total power reflection, 437
Total reflection, 412–414

of obliquely incident waves, 437–440
Total transmission of obliquely incident 

waves, 437–440
Transform-limited pulse envelope, 450
Transient analysis, 347

current reflection diagram, 352–356
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formulation of transient problem, 
347–350

initially charged lines, 356–360
voltage reflection diagram, 

350–352
Transient phase of process, 420
Transmission coefficients, 323, 411–412
Transmission line fields and primary 

constants, 456
coaxial

high frequencies, 459–460
intermediate frequencies, 461–462
low frequencies, 460–461
transmission-line geometry, 459

geometry of parallel-plate 
transmission line, 458

microstrip line
geometry, 464
low frequencies, 463–466

transmission-line wave, 457
two-wire

geometry, 462
high frequencies, 462–463
low frequencies, 463

Transmission lines, 303, 332–336, 456
complex analysis of sinusoidal waves, 

313–315
equations, 306–308

and solutions in phasor form, 
315–317

of finite length, 329–332
graphical methods, 336–347
lossless propagation, 308–311

of sinusoidal voltages, 311–313
low-loss propagation, 317–319
physical description of transmission 

line propagation, 304–306
power transmission and use 

of decibels in loss 
characterization, 319–322

TEM mode, 469
transient analysis, 347–360
VSWR, 325–329
wave reflection at discontinuities, 

322–325
Transmit-receive link as two-port 

network, 545–546
Transmitted waves at boundary, 

410–411
Transmitter, 303
Transmitting antennas, 547
Transverse electric (TE mode), 469, 

487–488
TE polarization, 433

TE0p modes, 489–492
TEm0 modes, 489–492

Transverse electromagnetic fields (TEM 
fields), 457

TEM wave, 370
Transverse magnetic mode (TM mode), 

469, 484–486
TM polarization, 432

Transverse plane, 370
Transverse resonance, 472–475, 

498–500
Two-dimensional problems, field sketches 

to estimate capacitance, 
156–161

Two-interface problem, 420–421
Two-wire line, capacitance of, 152–156
Two-wire transmission line. See also 

Coaxial transmission line
geometry, 462
high frequencies, 462–463
low frequencies, 463

U

Uniform current
density, 119
distribution, 269

Uniform electric field, 78
Uniform linear arrays, 541

far zone array pattern, 541–543
H-plane diagram of, 542, 544
special cases, 543–545

Uniform magnetic flux density, 240
Uniform plane wave, 369

Poynting’s theorem, 386–389
propagation in good conductors, 

389–396
reflection at normal incidence, 409

partial reflection, 414–416
plane wave incident, 410
power reflectivity, 414–416
reflected and transmitted waves at 

boundary, 410–411
reflection coefficients, 411–412
total reflection, 412–414
transmission coefficients,  

411–412
wave polarization, 396–403
wave power, 386–389
wave propagation

in dielectrics, 377–386
in free space, 369–377

Unit vectors, 5–7, 14–15, 204
in spherical coordinates, 20

V

Valence band, 116, 128
Vector(s), 1–2

curl, 199
fields, 2, 8, 123
Helmholtz equation in free space, 

374–375
Laplacian of Es, 374
potential, 215–218, 267–270
product. See Cross product
surface, 9

Vector algebra, 2
addition, 2–3
division, 3
multiplication, 3
subtraction, 2–3

Vector analysis, 1
coordinate systems, 14–18
cross product, 11–13
dot product, 8–11
rectangular coordinate system, 3–5
scalars and vectors, 1–2
spherical coordinate system, 18–22
unit vectors, 5–7
vector algebra, 2–3
vector components, 5–7
vector field, 8

Vector components, 5–7
transformations, 17–18, 21–22

Vector magnetic potentials, 212
vector potential, 215–218

Visualization processes, 6
Voltage, 310, 347

in phasor form, 457
reflection diagram, 350–352

Voltage standing wave ratio (VSWR), 
315, 325–329, 344

Volume charge density, 33–35, 
115, 235

W

Wave
geometry, 470–472
impedance, 330, 421–423
phenomena, 303
power, 386–389
velocity, 309

Wave equations, 306
parallel-plate guide analysis using, 

479–482
solutions, 371–373
for uniform plane wave, 369–371
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Wave polarization, 396
circular polarization, 399–403
elliptical polarization, 398–399
linear polarization, 397–398

Wave propagation
in dielectrics, 377

in conducting media, 382–383
good dielectric approximation, 

383–386
in Lossy media, 378–382

in dispersive media, 440–446
in free space, 369

intrinsic impedance, 375–377
solutions of wave equation, 

371–373
vector Helmholtz equation in free 

space, 374–375

wave equation for uniform plane 
wave, 369–371

Wave reflection
at discontinuities, 322–325
from multiple interfaces, 420

half-wave layers, 423–427
impedance transformation, 

427–428
quarter-wave layers, 423–427
two-interface problem, 420–421
wave impedance, 421–423

Wavefront, 304, 305
Waveguide, 456

basic waveguide operation, 466–469
dispersion, 481
mode, 468
operation, 466–469

optical fiber, 500–509
parallel-plate guide analysis using 

wave equation, 479–482
planar dielectric waveguides, 

493–500
plane wave analysis of parallel-plate 

waveguide, 470–478
rectangular waveguides, 482–493
transmission line fields and primary 

constants, 456–466
Wavelength, 312

cutoff, 474, 506–507
in free space, 372

Wavenumber, 372, 378, 517
Weak-guidance condition, 500–501, 504
Weighted average of dielectric  

constants, 465
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Ve c t o r  D i f f e r e n t i a l  O p e r a t i o n s

DIVERGENCE

 

RECTANGULAR

  

∇ · D =   ∂  D  x   ___ ∂ x   +   ∂  D  y   ___ ∂ y   +   ∂  D  z  ___
∂ z 

     CYLINDRICAL  ∇ · D =   1 __ ρ     ∂ __ ∂ ρ  (ρ  D  ρ   ) +   1 __ ρ     ∂  D  ϕ   ____ ∂ ϕ   +   ∂  D  z  ___
∂ z      

SPHERICAL

  

∇ · D =   1 __ 
 r   2 

  

 

  ∂ __ ∂ r  ( r   2   D  r   ) +   1 _____ 
r sin θ  

 

  ∂ __ ∂ θ  ( D  θ   sin θ ) +   1 _____ 
r sin θ    ∂  D  ϕ  ____

∂ ϕ 

GRADIENT

 

RECTANGULAR

  

∇V =   ∂ V ___ ∂ x    a  x   +   ∂ V ___ ∂ y    a  y   +   ∂ V ___ ∂ z    a  z  

     CYLINDRICAL  ∇V =   ∂ V ___ ∂ ρ    a  ρ   +   1 __ ρ     ∂ V ___ ∂ ϕ    a  ϕ   +   ∂ V ___ ∂ z    a  z      

SPHERICAL

  

∇V =   ∂ V ___ ∂ r    a  r   +   1 _ r  

 

  ∂ V ___ ∂ θ    a  θ   +   1 _____ 
r sin θ  

 

  ∂ V ___ ∂ ϕ    a  ϕ  

RECTANGULAR ∇ × H =   (    ∂  H  z   _ ∂ y   −   ∂  H  y   _ ∂ z   )    a  x   +   (    ∂  H  x   _ ∂ z   −   ∂  H  z   _ ∂ x   )    a  y   +   (    ∂  H  y   _ ∂ x   −   ∂  H  x   _ ∂ y   )    a  z  

CYLINDRICAL ∇ × H =   (    1 _ ρ     ∂  H  z   _ ∂ ϕ   −   ∂  H  ϕ   _ ∂ z   )    a  ρ   +   (    ∂  H  ρ   _ ∂ z   −   ∂  H  z   _ ∂ ρ   )    a  ϕ   +   1 __ ρ    [    ∂   (  ρ  H  ϕ   )    _ ∂ ρ   −   ∂  H  ρ   _ ∂ ϕ   ]    a  z  

SPHERICAL ∇ × H =   1 _____ 
r sin θ    [    ∂ ( H  ϕ   sin θ ) _ ∂ θ   −   ∂  H  θ   _ ∂ ϕ   ]    a  r   +   1 _ r    [    1 _ sin θ     ∂  H  r   _ ∂ ϕ   −   ∂ (r  H  ϕ  ) _ ∂ r   ]    a  θ  

+   1 _ r    [    ∂   (  r  H  θ   )    _ ∂ r   −   ∂  H  r   _ ∂ θ   ]    a  ϕ  

CURL
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VECTOR LAPLACIAN

 

RECTANGULAR

  

 ∇   2  V

  

=

  

   ∂   2  V ___ 
∂  x   2 

   +    ∂   2  V ___ 
∂  y   2 

   +    ∂   2  V ___ 
∂  z   2 

  

     CYLINDRICAL   ∇   2  V  =    1 __ ρ     ∂ __ ∂ ρ    (  ρ  ∂ V _ ∂ ρ   )    +   1 __ 
 ρ   2 

      ∂   2  V ___ 
∂  ϕ   2 

   +    ∂   2  V ___ 
∂  z   2 

        

SPHERICAL

  

 ∇   2  V

  

=

  

  1 __ 
 r   2 

  

 

  ∂ __ ∂ r    (   r   2    ∂ V _ ∂ r   )    +   1 _____ 
 r   2  sin θ

  

 

  ∂ __ ∂ θ    (  sin θ   ∂ V _ ∂ θ   )    +   1 ______ 
 r   2   sin   2  θ

     ∂   2  V ___ 
∂  ϕ   2 

  

 RECTANGULAR   ∇   2  A =   (   ∇   2   A  x   )      a  x   +   (   ∇   2   A  y   )      a  y   +   (   ∇   2   A  z   )      a  z  

 CYLINDRICAL      ∇   2  A =   (   ∇   2   A  ρ   −   2 _ 
 ρ   2 

     ∂  A  ϕ   _ ∂ ϕ   −   1 _ 
 ρ   2 

    A  ρ   )      a  ρ   +   (   ∇   2   A  ϕ   +   2 _ 
 ρ   2 

     ∂  A  ρ   _ ∂ ϕ   −   1 _ 
 ρ   2 

    A  ϕ   )      a  ϕ   +   (   ∇   2   A  z   )      a  z  

SPHERICAL  ∇   2  A =

  

  [   ∇   2   A  r   −   2 _ 
 r   2 

    (   A  r   +  A  θ   cot θ +   ∂  A  ϕ   _ ∂ ϕ   csc θ +   ∂  A  θ   _ ∂ θ   )    ]      a  r  

      +    [   ∇   2   A  θ   −   1 _ 
 r   2 

    (   A  θ     csc   2  θ + 2 cot θ csc θ   ∂  A  ϕ   _ ∂ ϕ   − 2  ∂  A  r   _ ∂ θ   )    ]      a  θ       

+

  

  [   ∇   2   A  ϕ   −   1 _ 
 r   2 

    (   A  ϕ     csc   2  θ − 2 cot θ csc θ   ∂  A  θ   _ ∂ ϕ   − 2 csc θ   ∂  A  r   _ ∂ ϕ   )    ]      a  ϕ  

LAPLACIAN
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