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Chapter 1

Complex Numbers

1.1 The Algebra of Complex Numbers

To achieve a proper perspective for studying the system of complex numbers, let us
begin by briefly reviewing the construction of the various numbers used in computa-
tion.

We start with the rational numbers. These are ratios of integers and are written
in the form m/n, n �= 0, with the stipulation that all rationals of the form n/n are
equal to 1 (so we can cancel common factors). The arithmetic operations of addition,
subtraction, multiplication, and division with these numbers can always be performed
in a finite number of steps, and the results are, again, rational numbers. Furthermore,
there are certain simple rules concerning the order in which the computations can
proceed. These are the familiar commutative, associative, and distributive laws:

Commutative Law of Addition
a + b = b + a

Commutative Law of Multiplication

ab = ba

Associative Law of Addition

a + (b + c) = (a + b)+ c

Associative Law of Multiplication

a(bc) = (ab)c

Distributive Law
(a + b)c = ac + bc,

for any rationals a, b, and c.

From Chapter 1 of Fundamentals of Complex Analysis with Applications to Engineering, Science, and Mathematics,
 © 2003 by Pearson Education, Inc. All rights reserved.Third Edition. Edward B. Saff, Arthur David Snider. Copyright
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2 Complex Numbers

Notice that the rationals are the only numbers we would ever need, to solve equa-
tions of the form

ax + b = 0.

The solution, for nonzero a, is x=−b/a, and since this is the ratio of two rationals, it
is itself rational.

However, if we try to solve quadratic equations in the rational system, we find that
some of them have no solution; for example, the simple equation

x2 = 2 (1)

cannot be satisfied by any rational number (see Prob. 29 at the end of this section).
Therefore, to get a more satisfactory number system, we extend the concept of “num-
ber” by appending to the rationals a new symbol, mnemonically written as

√
2, which

is defined to be a solution of Eq. (1)). Our revised concept of a number is now an
expression in the standard form

a + b
√

2, (2)

where a and b are rationals. Addition and subtraction are performed according to

(a + b
√

2)± (c + d
√

2) = (a ± c)+ (b ± d)
√

2. (3)

Multiplication is defined via the distributive law with the proviso that the square of the
symbol

√
2 can always be replaced by the rational number 2. Thus we have

(a + b
√

2)(c + d
√

2) = (ac + 2bd)+ (bc + ad)
√

2. (4)

Finally, using the well-known process of rationalizing the denominator, we can put
the quotient of any two of these new numbers into the standard form

a + b
√

2

c + d
√

2
= a + b

√
2

c + d
√

2

c − d
√

2

c − d
√

2
= ac − 2bd

c2 − 2d2
+ bc − ad

c2 − 2d2

√
2. (5)

This procedure of “calculating with radicals” should be very familiar to the reader,
and the resulting arithmetic system can easily be shown to satisfy the commutative,
associative, and distributive laws. However, observe that the symbol

√
2 has not been

absorbed by the rational numbers painlessly. Indeed, in the standard form (2) and in
the algorithms (3), (4), and (5) its presence stands out like a sore thumb. Actually, we
are only using the symbol

√
2 to “hold a place” while we compute around it using the

rational components, except for those occasional opportunities when it occurs squared
and we are temporarily relieved of having to carry it. So the inclusion of

√
2 as a

number is a somewhat artificial process, devised solely so that we might have a richer
system in which we can solve the equation x2 = 2.

With this in mind, let us jump to the stage where we have appended all the real
numbers to our system. Some of them, such as 4

√
17, arise as solutions of more com-

plicated equations, while others, such as π and e, come from certain limit processes.
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1.1 The Algebra of Complex Numbers 3

Each irrational is absorbed in a somewhat artificial manner, but once again the re-
sulting conglomerate of numbers and arithmetic operations satisfies the commutative,
associative, and distributive laws.†

At this point we observe that we still cannot solve the equation

x2 = −1. (6)

But now our experience suggests that we can expand our number system once again
by appending a symbol for a solution to Eq. (6); instead of

√−1, it is customary to
use the symbol i . (Engineers often use the letter j .) Next we imitate the model of
expressions (2) through (5) (pertaining to

√
2) and thereby generalize our concept of

number as follows:‡

Definition 1. A complex number is an expression of the form a + bi , where a
and b are real numbers. Two complex numbers a + bi and c + di are said to be
equal (a + bi = c + di) if and only if a = c and b = d.

The operations of addition and subtraction of complex numbers are given by

(a + bi)± (c + di) := (a ± c)+ (b ± d)i,

where the symbol := means “is defined to be.”
In accordance with the distributive law and the proviso that i2 = −1, we postulate

the following:
The multiplication of two complex numbers is defined by

(a + bi)(c + di) := (ac − bd)+ (bc + ad)i.

To compute the quotient of two complex numbers, we again “rationalize the de-
nominator”:

a + bi

c + di
= a + bi

c + di

c − di

c − di
= ac + bd

c2 + d2
+ bc − ad

c2 + d2
i.

Thus we formally postulate the following:
The division of complex numbers is given by

a + bi

c + di
:= ac + bd

c2 + d2
+ bc − ad

c2 + d2
i (if c2 + d2 �= 0).

These are rules for computing in the complex number system. The usual alge-
braic properties (commutativity, associativity, etc.) are easy to verify and appear as
exercises.

†The algebraic aspects of extending a number field are discussed in Ref. 5 at the end of this
chapter.

‡Karl Friedrich Gauss (1777–1855) was the first mathematician to use complex numbers freely
and give them full acceptance as genuine mathematical objects.
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4 Complex Numbers

Example 1

Find the quotient
(6 + 2i)− (1 + 3i)

(−1 + i)− 2
.

Solution.

(6 + 2i)− (1 + 3i)

(−1 + i)− 2
= 5 − i

−3 + i
= (5 − i)

(−3 + i)

(−3 − i)

(−3 − i)

= −15 − 1 − 5i + 3i

9 + 1

= −8

5
− 1

5
i. �

(7)

(A slug marks the end of solutions or proofs throughout the text.)
Historically, i was considered as an “imaginary” number because of the blatant

impossibility of solving Eq. (6) with any of the numbers at hand. With the perspective
we have developed, we can see that this label could also be applied to the numbers

√
2

or 4
√

17; like them, i is simply one more symbol appended to a given number system
to create a richer system. Nonetheless, tradition dictates the following designations:†

Definition 2. The real part of the complex number a + bi is the (real) number
a; its imaginary part is the (real) number b. If a is zero, the number is said to
be a pure imaginary number.

For convenience we customarily use a single letter, usually z, to denote a complex
number. Its real and imaginary parts are then written Re z and Im z, respectively. With
this notation we have z = Re z + i Im z.

Observe that the equation z1 = z2 holds if and only if Re z1 = Re z2 and Im z1 =
Im z2. Thus any equation involving complex numbers can be interpreted as a pair of
real equations.

The set of all complex numbers is sometimes denoted as C. Unlike the real num-
ber system, there is no natural ordering for the elements of C; it is meaningless, for
example, to ask whether 2 + 3i is greater than or less than 3 + 2i . (See Prob. 30.)

EXERCISES 1.1

1. Verify that −i is also a root of Eq. (6).

2. Verify the commutative, associative, and distributive laws for complex numbers.

†René Descartes introduced the terminology “real” and “imaginary” in 1637. W. R. Hamilton
referred to a number’s “imaginary part” in 1843.
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1.1 The Algebra of Complex Numbers 5

3. Notice that 0 and 1 retain their “identity” properties as complex numbers; that is,
0 + z = z and 1 · z = z when z is complex.

(a) Verify that complex subtraction is the inverse of complex addition (that is,
z3 = z2 − z1 if and only if z3 + z1 = z2).

(b) Verify that complex division, as given in the text, is the inverse of complex
multiplication (that is, if z2 �= 0, then z3 = z1/z2 if and only if z3z2 = z1).

4. Prove that if z1z2 = 0, then z1 = 0 or z2 = 0.

In Problems 5–13, write the number in the form a + bi .

5. (a) −3

(
i

2

)
(b) (8 + i)− (5 + i) (c)

2

i

6. (a) (−1 + i)2 (b)
2 − i

1
3

(c) i(π − 4i)

7. (a)
8i − 1

i
(b)

−1 + 5i

2 + 3i
(c)

3

i
+ i

3

8.
(8 + 2i)− (1 − i)

(2 + i)2

9.
2 + 3i

1 + 2i
− 8 + i

6 − i

10.
[

2 + i

6i − (1 − 2i)

]2

11. i3(i + 1)2

12. (2 + i)(−1 − i)(3 − 2i)

13. ((3 − i)2 − 3)i

14. Show that Re(i z) = −Im z for every complex number z.

15. Let k be an integer. Show that

i4k = 1, i4k+1 = i, i4k+2 = −1, i4k+3 = −i.

16. Use the result of Problem 15 to find

(a) i7 (b) i62 (c) i−202 (d) i−4321

17. Use the result of Problem 15 to evaluate

3i11 + 6i3 + 8

i20
+ i−1.

18. Show that the complex number z = −1 + i satisfies the equation

z2 + 2z + 2 = 0.

5



6 Complex Numbers

19. Write the complex equation z3 + 5z2 = z + 3i as two real equations.

20. Solve each of the following equations for z.

(a) i z = 4 − zi (b)
z

1 − z
= 1 − 5i

(c) (2 − i)z + 8z2 = 0 (d) z2 + 16 = 0

21. The complex numbers z1, z2 satisfy the system of equations

(1 − i)z1 + 3z2 = 2 − 3i,

i z1 + (1 + 2i)z2 = 1.

Find z1, z2.

22. Find all solutions to the equation z4 − 16 = 0.

23. Let z be a complex number such that Re z > 0. Prove that Re(1/z) > 0.

24. Let z be a complex number such that Im z > 0. Prove that Im(1/z) < 0.

25. Let z1, z2 be two complex numbers such that z1 + z2 and z1z2 are each negative real
numbers. Prove that z1 and z2 must be real numbers.

26. Verify that

Re(
n∑

j=1

z j ) =
n∑

j=1

Re z j

and that

Im(
n∑

j=1

z j ) =
n∑

j=1

Im z j .

[The real (imaginary) part of the sum is the sum of the real (imaginary) parts.]
Formulate, and then disprove, the corresponding conjectures for multiplication.

27. Prove the binomial formula for complex numbers:

(z1 + z2)
n = zn

1 +
(

n

1

)
zn−1

1 z2 + · · · +
(

n

k

)
zn−k

1 zk
2 + · · · + zn

2,

where n is a positive integer, and the binomial coefficients are given by(
n

k

)
:= n!

k!(n − k)! .

28. Use the binomial formula (Prob. 27) to compute (2 − i)5.

29. Prove that there is no rational number x that satisfies x2 = 2. [HINT: Show that if
p/q were a solution, where p and q are integers, then 2 would have to divide both
p and q. This contradicts the fact that such a ratio can always be written without
common divisors.]
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1.2 Point Representation of Complex Numbers 7

30. The definition of the order relation denoted by> in the real number system is based
upon the existence of a subset P (the positive reals) having the following properties:

(i) For any number α �= 0, either α or −α (but not both) belongs to P .

(ii) If α and β belong to P , so does α + β.

(iii) If α and β belong to P , so does α · β.

When such a set P exists we write α > β if and only if α − β belongs to P .†

Prove that the complex number system does not possess a nonempty subset P having
properties (i), (ii), and (iii). [HINT: Argue that neither i nor −i could belong to such
a set P .]

31. Write a computer program for calculating sums, differences, products, and quotients
of complex numbers. The input and output parameters should be the corresponding
real and imaginary parts.

32. The straightforward method of computing the product (a + bi)(c + di) = (ac −
bd)+ i(bc +ad) requires four (real) multiplications (and two signed additions). On
most computers multiplication is far more time-consuming than addition. Devise
an algorithm for computing (a + bi)(c + di) with only three multiplications (at the
cost of extra additions). [HINT: Start with (a + b)(c + d).]

1.2 Point Representation of Complex
Numbers

It is presumed that the reader is familiar with the Cartesian coordinate system (Fig. 1.1)
which establishes a one-to-one correspondence between points in the xy-plane and
ordered pairs of real numbers. The ordered pair (−2, 3), for example, corresponds to
that point P that lies two units to the left of the y-axis and three units above the x-axis.

Figure 1.1 Cartesian coordinate system.

†On computers this is, in fact, the method by which the statement α > β is tested.

7



8 Complex Numbers

The Cartesian coordinate system suggests a convenient way to represent complex
numbers as points in the xy-plane; namely, to each complex number a + bi we asso-
ciate that point in the xy-plane that has the coordinates (a, b). The complex number
−2 + 3i is therefore represented by the point P in Fig. 1.1. Also shown in Fig. 1.1 are
the points that represent the complex numbers 0, i , 2 + 2i , and −4 − 3i .

When the xy-plane is used for the purpose of describing complex numbers it is
referred to as the complex plane or z-plane. (The term Argand diagram is sometimes
used; the representation of complex numbers in the plane was proposed independently
by Caspar Wessel in 1797 and Jean Pierre Argand in 1806.) Since each point on the x-
axis represents a real number, this axis is called the real axis. Analogously, the y-axis
is called the imaginary axis for it represents the pure imaginary numbers.

Hereafter, we shall refer to the point that represents the complex number z as
simply the point z; that is, the point z = a + bi is the point with coordinates (a, b).

Example 1

Suppose that n particles with masses m1,m2, . . . ,mn are located at the respective
points z1, z2, . . . , zn in the complex plane. Show that the center of mass of the system
is the point

ẑ = m1z1 + m2z2 + · · · + mnzn

m1 + m2 + · · · + mn
.

Solution. Write z1 = x1 + y1i, z2 = x2 + y2i, . . . , zn = xn + yni , and let M
be the total mass

∑n
k=1 mk . Presumably the reader will recall that the center of mass

of the given system is the point with coordinates (̂x, ŷ), where

x̂ =

n∑
k=1

mk xk

M
, ŷ =

n∑
k=1

mk yk

M
.

But clearly x̂ and ŷ are, respectively, the real and imaginary parts of the complex
number (

∑n
k=1 mk zk)/M = ẑ. �

Absolute Value. By the Pythagorean theorem, the distance from the point z = a + bi
to the origin is given by

√
a2 + b2. Special notation for this distance is given in

Definition 3. The absolute value or modulus of the number z = a + bi is
denoted by |z| and is given by

|z| :=
√

a2 + b2.

In particular,

|0| = 0,

∣∣∣∣ i

2

∣∣∣∣ = 1

2
, |3 − 4i | = √

9 + 16 = 5.

8



1.2 Point Representation of Complex Numbers 9

Figure 1.2 Distance between points.

The reader should note that |z| is always a nonnegative real number and that the only
complex number whose modulus is zero is the number 0.

Let z1 = a1 + b1i and z2 = a2 + b2i . Then

|z1 − z2| = |(a1 − a2)+ (b1 − b2) i | =
√
(a1 − a2)2 + (b1 − b2)2,

which is the distance between the points with coordinates (a1, b1) and (a2, b2) (see
Fig. 1.2). Hence the distance between the points z1 and z2 is given by |z1 − z2|. This
fact is useful in describing certain curves in the plane. Consider, for example, the set
of all numbers z that satisfy the equation

|z − z0| = r, (1)

where z0 is a fixed complex number and r is a fixed positive real number. This set con-
sists of all points z whose distance from z0 is r . Consequently Eq. (1) is the equation
of a circle.

Example 2
Describe the set of points z that satisfy the equations

(a) |z + 2| = |z − 1|, (b) |z − 1| = Re z + 1.

Solution. (a) A point z satisfies Eq. (a) if and only if it is equidistant from the
points −2 and 1. Hence Eq. (a) is the equation of the perpendicular bisector of the line
segment joining −2 and 1; that is, Eq. (a) describes the line x = − 1

2 .
A more routine method for solving Eq. (a) is to set z = x + iy in the equation and

perform the algebra:

|z + 2| = |z − 1|,
|x + iy + 2| = |x + iy − 1|,

(x + 2)2 + y2 = (x − 1)2 + y2,

4x + 4 = −2x + 1,

x = −1

2
.

(b) The geometric interpretation of Eq. (b) is less obvious, so we proceed di-
rectly with the mechanical approach and derive

√
(x − 1)2 + y2 = x + 1, or y2 = 4x ,

which describes a parabola (see Fig. 1.3). �

9



10 Complex Numbers

Figure 1.3 Graphs for Example 2.

Figure 1.4 Complex conjugates.

Complex Conjugates. The reflection of the point z = a +bi in the real axis is the point
a − bi (see Fig. 1.4). As we shall see, the relationship between a + bi and a − bi
will play a significant role in the theory of complex variables. We introduce special
notation for this concept in the next definition.

Definition 4. The complex conjugate of the number z = a + bi is denoted by
z̄ and is given by

z̄ := a − bi.

Thus,
−1 + 5i = −1 − 5i, π − i = π + i, 8 = 8.

Some authors use the asterisk, z∗, to denote the complex conjugate.
It follows from Definition 4 that z = z̄ if and only if z is a real number. Also it

is clear that the conjugate of the sum (difference) of two complex numbers is equal to
the sum (difference) of their conjugates; that is,

z1 + z2 = z1 + z2, z1 − z2 = z1 − z2.

10



1.2 Point Representation of Complex Numbers 11

Perhaps not so obvious is the analogous property for multiplication.

Example 3
Prove that the conjugate of the product of two complex numbers is equal to the product
of the conjugates of these numbers.

Solution. It is required to verify that

(z1z2) = z1 z2. (2)

Write z1 = a1 + b1i, z2 = a2 + b2i . Then

(z1z2) = a1a2 − b1b2 + (a1b2 + a2b1)i

= a1a2 − b1b2 − (a1b2 + a2b1)i.

On the other hand,

z1 z2 = (a1 − b1i)(a2 − b2i) = a1a2 − b1b2 − a1b2i − a2b1i

= a1a2 − b1b2 − (a1b2 + a2b1)i.

Thus Eq. (2) holds. �
In addition to Eq. (2) the following properties can be seen:(

z1

z2

)
= z1

z2
(z2 �= 0); (3)

Re z = z + z̄

2
; (4)

Im z = z − z̄

2i
; (5)

Property (4) demonstrates that the sum of a complex number and its conjugate is real,
whereas (5) shows that the difference is (pure) imaginary. The conjugate of the conju-
gate of a complex number is, of course, the number itself:

(z) = z. (6)

It is clear from Definition 4 that

|z| = |z̄|;
that is, the points z and z̄ are equidistant from the origin. Furthermore, since

zz̄ = (a + bi)(a − bi) = a2 + b2,

we have
zz̄ = |z|2. (7)

11



12 Complex Numbers

This is a useful fact to remember: The square of the modulus of a complex number
equals the number times its conjugate.

Actually we have already employed complex conjugates in Sec. 1.1, in the process
of rationalizing the denominator for the division algorithm. Thus, for instance, if z1
and z2 are complex numbers, then we rewrite z1/z2 as a ratio with a real denominator
by using z2:

z1

z2
= z1z2

z2z2
= z1z2

|z2|2 . (8)

In particular,
1

z
= z

|z|2 . (9)

In closing we would like to mention that there is another, possibly more enlight-
ening, way to see Eq. (2). Notice that when we represent a complex number in terms
of two real numbers and the symbol i , as in z = a + bi , then the action of conjuga-
tion is equivalent to changing the sign of the i term. Now recall the role that i plays in
computations; it merely holds a place while we compute around it, replacing its square
by −1 whenever it arises. Except for these occurrences i is never really absorbed into
the computations; we could just as well call it j , λ,

√−1, or any other symbol whose
square we agree to replace by −1. In fact, without affecting the validity of the calcula-
tion, we could replace it throughout by the symbol (−i), since the square of the latter
is also −1. Thus, for instance, if in the expression (a1 + b1i) (a2 + b2i) we replace i
by −i and then multiply, the only thing different about the product will be the appear-
ance of −i instead of i . But expressed in terms of conjugation, this is precisely the
statement of Example 3.†

EXERCISES 1.2

1. Show that the point (z1 + z2)/2 is the midpoint of the line segment joining z1 and
z2.

2. Given four particles of masses 2, 1, 3, and 5 located at the respective points 1 + i ,
−3i , 1 − 2i , and −6, find the center of mass of this system.

3. Which of the points i , 2 − i , and −3 is farthest from the origin?

4. Let z = 3 − 2i . Plot the points z, −z, z̄, −z̄, and 1/z in the complex plane. Do the
same for z = 2 + 3i and z = −2i .

5. Show that the points 1, −1/2 + i
√

3/2, and −1/2 − i
√

3/2 are the vertices of an
equilateral triangle.

6. Show that the points 3 + i , 6, and 4 + 4i are the vertices of a right triangle.

†By the same token we should be able to replace
√

2 by −√
2 in (3 + 2

√
2)(4 − 3

√
2) either

before or after multiplying and obtain the same result. (Try it.)

12



1.2 Point Representation of Complex Numbers 13

7. Describe the set of points z in the complex plane that satisfies each of the following.

(a) Im z = −2 (b) |z − 1 + i | = 3

(c) |2z − i | = 4 (d) |z − 1| = |z + i |

(e) |z| = Re z + 2 (f) |z − 1| + |z + 1| = 7

(g) |z| = 3|z − 1| (h) Re z ≥ 4

(i) |z − i | < 2 (j) |z| > 6

8. Show, both analytically and graphically, that |z − 1| = |z̄ − 1|.
9. Show that if r is a nonnegative real number, then |r z| = r |z|.

10. Prove that | Re z| ≤ |z| and | Im z| ≤ |z|.
11. Prove that if |z| = Re z, then z is a nonnegative real number.

12. Verify properties (3), (4), and (5).

13. Prove that if (z̄)2 = z2, then z is either real or pure imaginary.

14. Prove that |z1z2| = |z1||z2|. [HINT: Use Eqs. (7) and (2) to show that |z1z2|2 =
|z1|2|z2|2.]

15. Prove that (z̄)k = (zk) for every integer k (provided z �= 0 when k is negative).

16. Prove that if |z| = 1 (z �= 1), then Re[1/(1 − z)] = 1
2 .

17. Let a1, a2, . . . , an be real constants. Show that if z0 is a root of the polynomial
equation zn + a1zn−1 + a2zn−2 + · · · + an = 0, then so is z0.

18. Use the familiar formula for the roots of a quadratic polynomial to give another
proof of the statement in Prob. 17 for the case n = 2.

19. We have noted that the conjugate (z̄) is the reflection of the point z in the real axis
(the horizontal line y = 0). Show that the reflection of z in the line ax + by = c
(a, b, c real) is given by

2ic + (b − ai)z̄

b + ai
.

20. (Matrices with Complex Entries) Let B be an m by n matrix whose entries are com-
plex numbers. Then by B† we denote the n by m matrix that is obtained by forming
the transpose (interchanging rows and columns) of B followed by taking the conju-
gate of each entry. In other words, if B = [

bi j
]
, then B† = [

b̄ j i
]
. For example:[

i 3
4 − i −2i

]†

=
[ −i 4 + i

3 2i

]
,

[
1 + i

3

]†

= [
1 − i 3

]
.

13



14 Complex Numbers

For an n by n matrix A = [
ai j
]

with complex entries, prove the following:

(a) If u†Au = 0 for all n by 1 column vectors u with complex entries, then A is
the zero matrix (that is, ai j = 0 for all i, j). [HINT: To show ai j = 0, take u
to be a column vector with all zeros except for its i th and j th entries.]

(b) Show by example that the conclusion (“A is the zero matrix”) can fail if the
hypothesis for part (a) only holds for vectors u with real number entries.
[HINT: Try to find a 2 by 2 real nonzero matrix A such that u†Au = 0 for
all real 2 by 1 vectors u.]

21. Let A be an n by n matrix with complex entries. We say that A is Hermitean if
A† = A (see Prob. 20).

(a) Show that if A is Hermitean, then u†Au is real for any n by 1 column vector
u with complex entries.

(b) Show that if B is any m by n matrix with complex entries, then B†B is Her-
mitean.

(c) Show that if B is any n by n matrix and u is any n by 1 column vector (each
with complex entries), then u†B†Bu must be a nonnegative real number.

1.3 Vectors and Polar Forms

With each point z in the complex plane we can associate a vector, namely, the directed
line segment from the origin to the point z. Recall that vectors are characterized by
length and direction, and that a given vector remains unchanged under translation.
Thus the vector determined by z = 1 + i is the same as the vector from the point
2 + i to the point 3 + 2i (see Fig. 1.5). Note that every vector parallel to the real axis
corresponds to a real number, while those parallel to the imaginary axis represent pure
imaginary numbers. Observe, also, that the length of the vector associated with z is
|z|.

Figure 1.5 Complex numbers as vectors.

14



1.3 Vectors and Polar Forms 15

Figure 1.6 Vector addition.

Let v1 and v2 denote the vectors determined by the points z1 and z2, respectively.
The vector sum v = v1 + v2 is given by the parallelogram law, which is illustrated in
Fig. 1.6. If z1 = x1 + iy1 and z2 = x2 + iy2, then the terminal point of the vector v
in Fig. 1.6 has the coordinates (x1 + x2, y1 + y2); that is, it corresponds to the point
z1 + z2. Thus we see that the correspondence between complex numbers and planar
vectors carries over to the operation of addition.

Hereafter, the vector determined by the point z will be simply called the vector z.
Recall the geometric fact that the length of any side of a triangle is less than or

equal to the sum of the lengths of the other two sides. If we apply this theorem to the
triangle in Fig. 1.6 with vertices 0, z1, and z1 + z2, we deduce a very important law
relating the magnitudes of complex numbers and their sum:

Triangle Inequality. For any two complex numbers z1 and z2, we have

|z1 + z2| ≤ |z1| + |z2|. (1)

The triangle inequality can easily be extended to more than two complex numbers,
as requested in Prob. 22.

The vector z2 − z1, when added to the vector z1, obviously yields the vector z2.
Thus z2−z1 can be represented as the directed line segment from z1 to z2 (see Fig. 1.7).
Applying the geometric theorem to the triangle in Fig. 1.7, we deduce another form of
the triangle inequality:

|z2| ≤ |z1| + |z2 − z1|
or

|z2| − |z1| ≤ |z2 − z1|. (2)

Inequality (2) states that the difference in the lengths of any two sides of a triangle is
no greater than the length of the third side.

Example 1
Prove that the three distinct points z1, z2, and z3 lie on the same straight line if and
only if z3 − z2 = c(z2 − z1) for some real number c.

15



16 Complex Numbers

Figure 1.7 Vector subtraction.

Figure 1.8 Collinear points.

Solution. Recall that two vectors are parallel if and only if one is a (real) scalar
multiple of the other. In the language of complex numbers, this says that z is parallel
to w if and only if z = cw, where c is real. From Fig. 1.8 we see that the condition
that the points z1, z2, and z3 be collinear is equivalent to the statement that the vector
z3 − z2 is parallel to the vector z2 − z1. Using our characterization of parallelism, the
conclusion follows immediately. �

There is another set of parameters that characterize the vector from the origin to
the point z (other, that is, than the real and imaginary parts of z), which more inti-
mately reflects its interpretation as an object with magnitude and direction. These are
the polar coordinates, r and θ , of the point z. The coordinate r is the distance from the
origin to z, and θ is the angle of inclination of the vector z, measured positively in a
counterclockwise sense from the positive real axis (and thus negative when measured
clockwise) (see Fig. 1.9). We shall always measure angles in radians in this book; the
use of degree measure is fine for visualization purposes, but it becomes quite treach-
erous in any discipline where calculus is involved. Notice that r is the modulus, or
absolute value, of z and is never negative: r = |z|.

From Fig. 1.9 we readily derive the equations expressing the rectangular (or Carte-
sian) coordinates (x, y) in terms of the polar coordinates (r, θ):

x = r cos θ, y = r sin θ. (3)

16



1.3 Vectors and Polar Forms 17

Figure 1.9 Polar coordinates.

On the other hand, the expressions for (r, θ) in terms of (x, y) contain some minor but
troublesome complications. Indeed the coordinate r is given, unambiguously, by

r =
√

x2 + y2 = |z|. (4)

However, observe that although it is certainly true that tan θ = y/x , the natural con-
clusion

θ = tan−1
( y

x

)
is invalid for points z in the second and third quadrants (since the standard interpre-
tation of the arctangent function places its range in the first and fourth quadrants).
Since an angle is fixed by its sine and cosine, θ is uniquely determined by the pair of
equations

cos θ = x

|z| , sin θ = y

|z| , (5)

but in practice we usually compute tan−1(y/x) and adjust for the quadrant problem by
adding or subtracting π (radians) when appropriate (see Prob. 14).

The nuisance aspects of θ do not end here, however. Even using Eqs. (5) one can,
because of its identification as an angle, determine θ only up to an integer multiple
of 2π . To accommodate this feature we shall call the value of any of these angles an
argument, or phase, of z, denoted

arg z.

Thus if θ0 qualifies as a value of arg z, then so do

θ0 ± 2π, θ0 ± 4π, θ0 ± 6π, . . . ,

and every value of arg z must be one of these.† In particular, the values of arg i are

π

2
,
π

2
± 2π,

π

2
± 4π, . . .

†An alternative way to express arg z is to write it as the set

arg z = {θ0 + 2kπ : k = 0,±1,±2, . . .}.

17



18 Complex Numbers

and we write
arg i = π

2
+ 2kπ (k = 0,±1,±2, . . .).

It is convenient to have a notation for some definite value of arg z. Notice that any
half-open interval of length 2π will contain one and only one value of the argument.
By specifying such an interval we say that we have selected a particular branch of arg z.
Figure 1.10 illustrates three possible branch selections. The first diagram (Fig. 1.10(a))
depicts the branch that selects the value of arg z from the interval (−π, π]; it is known
as the principal value of the argument and is denoted Arg z (with capital A). The
principal value is most commonly used in complex arithmetic computer codes; it is
inherently discontinous, jumping by 2π as z crosses the negative real axis. This line
of discontinuities is known as the branch cut.

Of course, any branch of arg z must have a jump of 2π somewhere. The branch
depicted in Fig. 1.10(b) is discontinuous on the positive real axis, taking values from
the interval (0, 2π]. The branch in Fig. 1.10(c) has the same branch cut but selects
values from the interval (2π, 4π].

The notation argτ z is used for the branch of arg z taking values from the interval
(τ, τ + 2π]. Thus arg−π z is the principal value Arg z, and the branches depicted in
Fig. 1.10(b) and 1.10(c), respectively, are arg0 z and arg2π z. Note that arg 0 cannot be
sensibly defined for any branch.

With these conventions in hand, one can now write z = x + iy in the polar form
[recall Eq. (3)]

z = x + iy = r(cos θ + i sin θ) = r cis θ, (6)

where we abbreviate the “cosine plus i sine” operator as cis.

Example 2
Find arg(1 + √

3i) and write 1 + √
3i in polar form.

Solution. Note that r = |1 + √
3i | = 2 and that the equations cos θ = 1/2,

sin θ = √
3/2 are satisfied by θ = π/3. Hence arg(1 + √

3i) = π/3 + 2kπ , k =
0,±1,±2, . . . [in particular, Arg(1 + √

3i) = π/3]. The polar form of 1 + √
3i is

2(cosπ/3 + i sinπ/3) = 2 cisπ/3. �
In many circumstances one of the forms x + iy or r cis θ may be more suitable

than the other. The rectangular form, for example, is very convenient for addition or
subtraction, whereas the polar form can be a monstrosity (see Prob. 21). On the other
hand, the polar form lends a very interesting geometric interpretation to the process of
multiplication. If we let

z1 = r1 (cos θ1 + i sin θ1) , z2 = r2 (cos θ2 + i sin θ2) ,

then we compute

z1z2 = r1r2 [(cos θ1 cos θ2 − sin θ1 sin θ2)+ i (sin θ1 cos θ2 + cos θ1 sin θ2)] ,

and so
z1z2 = r1r2 [cos (θ1 + θ2)+ i sin (θ1 + θ2)] . (7)

18



1.3 Vectors and Polar Forms 19

Figure 1.10 Branches of arg z.
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20 Complex Numbers

Figure 1.11 Geometric interpretation of the product.

The abbreviated version of Eq. (7) reads as follows:

z1z2 = (r1 cis θ1) (r2 cis θ2) = (r1r2) cis (θ1 + θ2)

and we see that

The modulus of the product is the product of the moduli:

|z1z2| = |z1| |z2| (= r1r2) ; (8)

The argument of the product is the sum of the arguments:

arg z1z2 = arg z1 + arg z2 (= θ1 + θ2) . (9)

(To be precise, the ambiguous Eq. (9) is to be interpreted as saying that if particular
values are assigned to any pair of terms therein, then one can find a value for the third
term that satisfies the identity.)

Geometrically, the vector z1z2 has length equal to the product of the lengths of the
vectors z1 and z2 and has angle equal to the sum of the angles of the vectors z1 and z2
(see Fig. 1.11). For instance, since the vector i has length 1 and angle π/2, it follows
that the vector i z can be obtained by rotating the vector z through a right angle in the
counterclockwise direction.

Observing that division is the inverse operation to multiplication, we are led to the
following equations:

z1

z2
= r1

r2
[cos (θ1 − θ2)+ i sin (θ1 − θ2)] = r1

r2
cis (θ1 − θ2) , (10)

arg

(
z1

z2

)
= arg z1 − arg z2, (11)

and
z1

z2
= |z1|

|z2| . (12)

Equation (10) can be proved in a manner similar to Eq. (7), and Eqs. (11) and (12)
follow immediately. Geometrically, the vector z1/z2 has length equal to the quotient
of the lengths of the vectors z1 and z2 and has angle equal to the difference of the
angles of the vectors z1 and z2.

20



1.3 Vectors and Polar Forms 21

Figure 1.12 Perpendicular vectors.

Example 3
Write the quotient (1 + i)/(

√
3 − i) in polar form.

Solution. The polar forms for (1 + i) and (
√

3 − i) are

1 + i = |1 + i | cis(arg(1 + i)) = √
2 cis(π/4),√

3 − i = 2 cis(−π/6).
Hence, from Eq. (10), we have

1 + i√
3 − i

=
√

2

2
cis
[π

4
−
(
−π

6

)]
=

√
2

2
cis

5π

12
. �

Example 4
Prove that the line l through the points z1 and z2 is perpendicular to the line L through
the points z3 and z4 if and only if

Arg
z1 − z2

z3 − z4
= ±π

2
. (13)

Solution. Note that the lines l and L are perpendicular if and only if the vectors
z1 − z2 and z3 − z4 are perpendicular (see Fig. 1.12). Since

arg
z1 − z2

z3 − z4
= arg(z1 − z2)− arg(z3 − z4)

gives the angle from z3 − z4 to z1 − z2, orthogonality holds precisely when this angle
(up to an integer multiple of 2π) is equal to π/2 or −π/2. But this is the same as
saying that (13) holds. �

Recall that, geometrically, the vector z̄ is the reflection in the real axis of the vector
z (see Fig. 1.13). Hence we see that the argument of the conjugate of a complex number
is the negative of the argument of the number; that is,

arg z̄ = − arg z. (14)

In fact, as a special case of Eq. (11) we also have

arg
1

z
= − arg z.

Thus z̄ and z−1 have the same argument and represent parallel vectors (see Fig. 1.13).
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22 Complex Numbers

Figure 1.13 The argument of the conjugate and the reciprocal.

EXERCISES 1.3

1. Let z1 = 2 − i and z2 = 1 + i . Use the parallelogram law to construct each of the
following vectors.

(a) z1 + z2 (b) z1 − z2 (c) 2z1 − 3z2

2. Show that |z1z2z3| = |z1| |z2| |z3|.
3. Translate the following geometric theorem into the language of complex numbers:

The sum of the squares of the lengths of the diagonals of a parallelogram is equal to
the sum of the squares of its sides. (See Fig. 1.6.)

4. Show that for any integer k, |zk | = |z|k (provided z �= 0 when k is negative).

5. Find the following.

(a)

∣∣∣∣ 1 + 2i

−2 − i

∣∣∣∣ (b)
∣∣(1 + i)(2 − 3i)(4i − 3)

∣∣ (c)

∣∣∣∣∣ i(2 + i)3

(1 − i)2

∣∣∣∣∣ (d)

∣∣∣∣∣ (π + i)100

(π − i)100

∣∣∣∣∣
6. Draw each of the following vectors.

(a) 7 cis(3π/4) (b) 4 cis(−π/6) (c) cis(3π/4) (d) 3 cis(27π/4)

7. Find the argument of each of the following complex numbers and write each in polar
form.

(a) −1/2 (b) −3 + 3i (c) −π i
(d) −2

√
3 − 2i (e) (1 − i)(−√

3 + i) (f) (
√

3 − i)2

(g)
−1 + √

3i

2 + 2i
(h)

−√
7(1 + i)√
3 + i

8. Show geometrically that the nonzero complex numbers z1 and z2 satisfy |z1 + z2| =
|z1| + |z2| if and only if they have the same argument.

9. Given the vector z, interpret geometrically the vector (cosφ + i sinφ)z.
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10. Show the following:

(a) arg z1z2z3 = arg z1 + arg z2 + arg z3

(b) arg z1z2 = arg z1 − arg z2.

11. Using the complex product (1 + i)(5 − i)4, derive

π/4 = 4 tan−1(1/5)− tan−1(1/239).

12. Find the following.

(a) Arg(−6 − 6i) (b) Arg(−π) (c) Arg(10i) (d) Arg(
√

3 − i)

13. Decide which of the following statements are always true.

(a) Arg z1z2 = Arg z1 + Arg z2 if z1 �= 0, z2 �= 0.

(b) Arg z = − Arg z if z is not a real number.

(c) Arg(z1/z2) = Arg z1 − Arg z2 if z1 �= 0, z2 �= 0.

(d) arg z = Arg z + 2πk, k = 0,±1,±2, . . ., if z �= 0.

14. Show that a correct formula for arg(x + iy) can be computed using the form

arg(x + iy) =
 tan−1 (y/x)+ (π/2) [1 − sgn(x)] if x �= 0,
(π/2) sgn(y) if x = 0 and y �= 0,
undefined if x = y = 0,

where the “signum” function is specified by

sgn(t) :=


+1 if t > 0,
0 if t = 0,

−1 if t < 0.

Show also that the expression sgn(y) cos−1(x/
√

x2 + y2), at its points of continuity,
equals Arg(x + iy).

15. Prove that |z1 − z2| ≤ |z1| + |z2|.
16. Prove that ‖z1| − |z2‖ ≤ |z1 − z2|.
17. Show that the vector z1 is parallel to the vector z2 if and only if Im(z1z2) = 0.

18. Show that every point z on the line through the distinct points z1 and z2 is of the
form z = z1 + c (z2 − z1), where c is a real number. What can be said about the
value of c if z also lies strictly between z1 and z2?

19. Prove that arg z1 = arg z2 if and only if z1 = cz2, where c is a positive real number.

20. Let z1, z2, and z3 be distinct points and let φ be a particular value of arg[(z3 −
z1)/(z2 − z1)]. Prove that

|z3 − z2|2 = |z3 − z1|2 + |z2 − z1|2 − 2|z3 − z1||z2 − z1| cosφ.

[HINT: Consider the triangle with vertices z1, z2, z3.]
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24 Complex Numbers

21. If r cis θ = r1 cis θ1 + r2 cis θ2, determine r and θ in terms of r1, r2, θ1, and θ2.
Check your answer by applying the law of cosines.

22. Use mathematical induction to prove the generalized triangle inequality:

n∑
k=1

zk ≤
n∑

k=1

| zk |.

23. Let m1, m2, and m3 be three positive real numbers and let z1, z2, and z3 be three
complex numbers, each of modulus less than or equal to 1. Use the generalized
triangle inequality (Prob. 22) to prove that∣∣∣∣m1z1 + m2z2 + m3z3

m1 + m2 + m3

∣∣∣∣ ≤ 1,

and give a physical interpretation of the inequality.

24. Write computer programs for converting between rectangular and polar coordinates
(using the principal value of the argument).

25. Recall that the dot (scalar) product of two planar vectors v1 = (x1, y1) and v2 =
(x2, y2) is given by

v1 · v2 = x1x2 + y1 y2 .

Show that the dot product of the vectors represented by the complex numbers z1 and
z2 is given by

z1 · z2 = Re (z̄1z2) .

26. Use the formula for the dot product in Prob. 25 to show that the vectors represented
by the (nonzero) complex numbers z1 and z2 are orthogonal if and only if z1 · z2 =
0. [HINT: Recall from the discussion following Eq. (9) that orthogonality holds
precisely when z1 = icz2 for some real c.]

27. Recall that in three dimensions the cross (vector) product of two vectors v1 =
(x1, y1, 0) and v2 = (x2, y2, 0) in the xy-plane is given by

v1×v2 = (0, 0, x1 y2 − x2 y1) .

(a) Show that the third component of the cross product of vectors in the xy-plane
represented by the complex numbers z1 and z2 is given by Im (z̄1z2) .

(b) Show that the vectors represented by the (nonzero) complex numbers z1 and
z2 are parallel if and only if Im (z̄1z2) = 0. [HINT: Observe that these vectors
are parallel precisely when z1 = cz2 for some real c.]

28. This problem demonstrates how complex notation can simplify the kinematic anal-
ysis of planar mechanisms.

Consider the crank-and-piston linkage depicted in Fig. 1.14. The crank arm a ro-
tates about the fixed point O while the piston arm c executes horizontal motion.
(If this were a gasoline engine, combustion forces would drive the piston and the
connecting arm b would transform this energy into a rotation of the crankshaft.)
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Figure 1.14 Crank-and-piston linkage.

For engineering analysis it is important to be able to relate the crankshaft’s angular
coordinates—position, velocity, and acceleration—to the corresponding linear co-
ordinates for the piston. Although this calculation can be carried out using vector
analysis, the following complex variable technique is more “automatic.”

Let the crankshaft pivot O lie at the origin of the coordinate system, and let z be
the complex number giving the location of the base of the piston rod, as depicted in
Fig. 1.14,

z = l + id,

where l gives the piston’s (linear) excursion and d is a fixed offset. The crank arm
is described by A = a(cos θ1 + i sin θ1) and the connecting arm by B = b(cos θ2 +
i sin θ2) (θ2 is negative in Fig. 1.14). Exploit the obvious identity A+B = z = l+id
to derive the expression relating the piston position to the crankshaft angle:

l = a cos θ1 + b cos

[
sin−1

(
d − a sin θ1

b

)]
.

29. Suppose the mechanism in Prob. 28 has the dimensions

a = 0.1 m, b = 0.2 m, d = 0.1 m

and the crankshaft rotates at a uniform velocity of 2 rad/s. Compute the position
and velocity of the piston when θ1 = π .

30. For the linkage illustrated in Fig. 1.15, use complex variables to outline a scheme
for expressing the angular position, velocity, and acceleration of arm c in terms of
those of arm a. (You needn’t work out the equations.)

Figure 1.15 Linkage in Prob. 30.
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1.4 The Complex Exponential

The familiar exponential function f (x) = ex has a natural and extremely useful ex-
tension to the complex plane. Indeed the complex function ez provides a basic tool
for the application of complex variables to electrical circuits, control systems, wave
propagation, and time-invariant physical systems in general.

To find a suitable definition for ez when z = x + iy, we want to preserve the
basic identities satisfied by the real function ex . So, first of all, we postulate that the
multiplicative property should persist:

ez1ez2 = ez1+z2 . (1)

This simplifies matters considerably, since Eq. (1) enables the decomposition

ez = ex+iy = ex eiy (2)

and we see that to define ez , we need only specify eiy (in other words we will be able to
exponentiate complex numbers once we discover how to exponentiate pure imaginary
ones).

Next we propose that the differentiation law

dez

dz
= ez (3)

be preserved. Differentiation with respect to a complex variable z = x + iy is a very
profound and, at this stage, ambiguous operation; indeed Chapter 2 is devoted to a
painstaking study of this concept (and the rest of the book is dedicated to exploring
its consequences). But thanks to the factorization displayed in Eq. (2) we need only
consider (for the moment) a special case of Eq. (3)—namely,

deiy

d(iy)
= eiy

or, equivalently (by the chain rule),

deiy

dy
= ieiy . (4)

The consequences of postulating Eq. (4) become more apparent if we differentiate
again:

d2eiy

dy2
= d

dy
(ieiy)

= i2eiy

= −eiy;
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1.4 The Complex Exponential 27

in other words, the function g(y) := eiy satisfies the differential equation

d2g

dy2
= −g. (5)

Now observe that any function of the form

A cos y + B sin y (A, B constants)

satisfies Eq. (5). In fact, from the theory of differential equations it is known that every
solution of Eq. (5) must have this form. Hence we can write

g(y) = A cos y + B sin y. (6)

To evaluate A and B we use the conditions that

g(0) = ei0 = e0 = 1 = A cos 0 + B sin 0

and
dg

dy
(0) = ig(0) = i = −A sin 0 + B cos 0.

Thus A = 1 and B = i , leading us to the identification

eiy = cos y + i sin y. (7)

Equation (7) is known as Euler’s equation.† Combining Eqs. (7) and (2) we formulate
the following.

Definition 5. If z = x + iy, then ez is defined to be the complex number

ez := ex (cos y + i sin y). (8)

It is not difficult to verify directly that ez , as defined above, satisfies the usual al-
gebraic properties of the exponential function—in particular, the multiplicative iden-
tity (1) and the associated division rule

ez1

ez2
= ez1−z2 (9)

(see Prob. 15a). In Sec. 2.5 we will obtain further confirmation that we have made the
“right choice” by showing that Definition 5 produces a function that has the extremely
desirable property of analyticity. Another confirmation is exhibited in the following
example.

†Leonhard Euler (1707–1783).
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Example 1
Show that Euler’s equation is formally consistent with the usual Taylor series expan-
sions

ex = 1 + x + x2

2! + x3

3! + x4

4! + x5

5! + · · · ,

cos x = 1 − x2

2! + x4

4! − · · · ,

sin x = x − x3

3! + x5

5! − · · · .
Solution. We shall study series representations of complex functions in full de-

tail in Chapter 5. For now we ignore questions of convergence, etc., and simply sub-
stitute x = iy into the exponential series:

eiy = 1 + iy + (iy)2

2! + (iy)3

3! + (iy)4

4! + (iy)5

5! + · · ·

=
(

1 − y2

2! + y4

4! − · · ·
)

+ i

(
y − y3

3! + y5

5! − · · ·
)

= cos y + i sin y. �

Euler’s equation (7) enables us to write the polar form (Sec. 1.3) of a complex
number as

z = r cis θ = r(cos θ + i sin θ) = reiθ .

Thus we can (and do) drop the awkward “cis” artifice and use, as the standard polar
representation,

z = reiθ = |z|ei arg z . (10)

In particular, notice the following identities:

ei0 = e2π i = e−2π i = e4π i = e−4π i = · · · = 1,

e(π/2)i = i, e(−π/2)i = −i, eπ i = −1.

(Students of mathematics, including Euler himself, have often marveled at the last
identity. The constant e comes from calculus, π comes from geometry, and i comes
from algebra—and the combination eπ i gives −1, the basic unit for generating the
arithmetic system from the counting numbers, or cardinals!)

Observe also that |ei arg z| = 1 and that Euler’s equation leads to the following
representations of the customary trigonometric functions:

cos θ = Re eiθ = eiθ + e−iθ

2
, (11)

sin θ = Im eiθ = eiθ − e−iθ

2i
. (12)
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The rules derived in Sec. 1.3 for multiplying and dividing complex numbers in
polar form now find very natural expressions:

z1z2 =
(

r1eiθ1
) (

r2eiθ2
)

= (r1r2) ei(θ1+θ2), (13)

z1

z2
= r1eiθ1

r2eiθ2
=
(

r1

r2

)
ei(θ1−θ2), (14)

and complex conjugation of z = reiθ is accomplished by changing the sign of i in the
exponent:

z̄ = re−iθ . (15)

Example 2
Compute (a) (1 + i)/(

√
3 − i) and (b) (1 + i)24.

Solution. (a) This quotient was evaluated using the cis operator in Example 1.11
of Sec. 1.3; using the exponential the calculations take the form

1 + i = √
2 cis(π/4) = √

2eiπ/4,
√

3 − i = 2 cis(−π/6) = 2e−iπ/6,

and, therefore,
1 + i√
3 − i

=
√

2eiπ/4

2e−iπ/6
=

√
2

2
ei5π/12.

(b) The exponential forms become

(1 + i)24 = (
√

2eiπ/4)24 = (
√

2)24ei24π/4 = 212ei6π = 212. �

In the solution to part (b) above we glossed over the justification for the iden-
tity (eiπ/4)24 = ei24π/4. Actually, a careful scrutiny yields much more—a powerful
formula involving trigonometric functions, which we describe in the next example.

Example 3
Prove De Moivre’s formula:†

(cos θ + i sin θ)n = cos nθ + i sin nθ, n = 1, 2, 3, . . . (16)

Solution. By the multiplicative property, Eq. (1),

(eiθ )n = eiθeiθ · · · eiθ︸ ︷︷ ︸
(n times)

= eiθ+iθ+···+iθ = einθ .

Now applying Euler’s formula (7) to the first and last members of this equation string,
we deduce (16). �

De Moivre’s formula can be a convenient tool for deducing multiple-angle trigono-
metric identities, as is illustrated by the following example. (See also Probs. 12 and
20.)

†Published by Abraham De Moivre in 1707.
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Example 4

Express cos 3θ in terms of cos θ and sin θ .

Solution. By Eq. (16) (with n = 3) we have

cos 3θ = Re (cos 3θ + i sin 3θ) = Re (cos θ + i sin θ)3. (17)

According to the binomial formula,

(a + b)3 = a3 + 3a2b + 3ab2 + b3.

Thus, making the obvious identifications a = cos θ , b = i sin θ in (17), we deduce

cos 3θ = Re
[
cos3 θ + 3 cos2 θ (i sin θ)+ 3 cos θ (− sin2 θ)− i sin3 θ

]
= cos3 θ − 3 cos θ sin2 θ. �

(18)

Example 5

Compute the integral ∫ 2π

0
cos4 θ dθ

by using the representation (11) together with the binomial formula (see Exercises 1.1,
Prob. 27).

Solution. We can express the integrand as

cos4 θ =
(

eiθ + e−iθ

2

)4

= 1

24

(
eiθ + e−iθ

)4
,

and expanding via the binomial formula gives

cos4 θ = 1

24

(
e4iθ + 4e3iθe−iθ + 6e2iθe−2iθ + 4eiθe−3iθ + e−4iθ

)
= 1

24

(
e4iθ + 4e2iθ + 6 + 4e−2iθ + e−4iθ

)
= 1

24
(6 + 8 cos 2θ + 2 cos 4θ).

Thus ∫ 2π

0
cos4 θ dθ =

∫ 2π

0

1

24
(6 + 8 cos 2θ + 2 cos 4θ) dθ

= 1

24
[6θ + 4 sin 2θ + 1

2
sin 4θ]

∣∣∣2π
0

= 6

24
2π = 3

4
π. �
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EXERCISES 1.4

In Problems 1 and 2 write each of the given numbers in the form a + bi .

1. (a) e−iπ/4 (b)
e1+i3π

e−1+iπ/2
(c) eei

2. (a)
e3i − e−3i

2i
(b) 2e3+iπ/6 (c) ez , where z = 4eiπ/3

In Problems 3 and 4 write each of the given numbers in the polar form reiθ .

3. (a)
1 − i

3
(b) −8π(1 + √

3i) (c) (1 + i)6

4. (a)
(

cos
2π

9
+ i sin

2π

9

)3

(b)
2 + 2i

−√
3 + i

(c)
2i

3e4+i

5. Show that |ex+iy | = ex and arg ex+iy = y + 2kπ (k = 0,±1,±2, . . .).

6. Show that, for real θ ,

(a) tan θ = eiθ − e−iθ

i(eiθ + e−iθ )
(b) csc θ = 2

ei(θ−π/2) − e−i(θ+π/2)

7. Show that ez = ez+2π i for all z. (The exponential function is periodic with period
2π i .)

8. Show that, for all z,

(a) ez+π i = −ez (b) ez = ez̄

9. Show that (ez)n = enz for any integer n.

10. Show that |ez | ≤ 1 if Re z ≤ 0.

11. Determine which of the following properties of the real exponential function remain
true for the complex exponential function (that is, for x replaced by z).

(a) ex is never zero. (b) ex is a one-to-one function.
(c) ex is defined for all x . (d) e−x = 1/ex .

12. Use De Moivre’s formula together with the binomial formula to derive the following
identities.

(a) sin 3θ = 3 cos2 θ sin θ − sin3 θ

(b) sin 4θ = 4 cos3 θ sin θ − 4 cos θ sin3 θ

13. Show how the following trigonometric identities follow from Eqs. (11) and (12).

(a) sin2 θ + cos2 θ = 1

(b) cos (θ1 + θ2) = cos θ1 cos θ2 − sin θ1 sin θ2
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14. Does De Moivre’s formula hold for negative integers n?

15. (a) Show that the multiplicative law (1) follows from Definition 5.

(b) Show that the division rule (9) follows from Definition 5.

16. Let z = reiθ , (z �= 0). Show that exp(ln r + iθ) = z.†

17. Show that the function z(t) = eit , 0 ≤ t ≤ 2π , describes the unit circle |z| = 1
traversed in the counterclockwise direction (as t increases from 0 to 2π ). Then
describe each of the following curves.

(a) z(t) = 3eit , 0 ≤ t ≤ 2π (b) z(t) = 2eit + i, 0 ≤ t ≤ 2π
(c) z(t) = 2ei2π t , 0 ≤ t ≤ 1/2 (d) z(t) = 3e−i t + 2 − i, 0 ≤ t ≤ 2π

18. Sketch the curves that are given for 0 ≤ t ≤ 2π by

(a) z(t) = e(1+i)t (b) z(t) = e(1−i)t

(c) z(t) = e(−1+i)t (d) z(t) = e(−1−i)t

19. Let n be a positive integer greater than 2. Show that the points e2π ik/n , k = 0, 1,
. . ., n − 1, form the vertices of a regular polygon.

20. Prove that if z �= 1, then

1 + z + z2 + · · · + zn = zn+1 − 1

z − 1
.

Use this result and De Moivre’s formula to establish the following identities.

(a) 1 + cos θ + cos 2θ + · · · + cos nθ = 1

2
+ sin[(n + 1

2 )θ ]
2 sin (θ/2)

(b) sin θ + sin 2θ + · · · + sin nθ = sin (nθ/2) sin ((n + 1)θ/2)

sin (θ/2)
, where

0 < θ < 2π .

21. Prove that if n is a positive integer, then

sin(nθ/2)

sin(θ/2)
≤ n (θ �= 0,±2π,±4π, . . .).

[HINT: Argue first that if z = eiθ , then the left-hand side equals |(1 − zn)/(1 − z)|.]
22. Show that if n is an integer, then∫ 2π

0
einθdθ =

∫ 2π

0
cos(nθ) dθ + i

∫ 2π

0
sin(nθ) dθ =

{
2π if n = 0,
0 if n �= 0.

23. Compute the following integrals by using the representations (11) or (12) together
with the binomial formula.

(a)
∫ 2π

0 cos8 θ dθ (b)
∫ 2π

0 sin6(2θ) dθ.

†As a convenience in printing we sometimes write exp(z) instead of ez .
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1.5 Powers and Roots

In this section we shall derive formulas for the nth power and the mth roots of a com-
plex number.

Let z = reiθ = r(cos θ + i sin θ) be the polar form of the complex number z. By
taking z1 = z2 = z in Eq. (13) of Sec. 1.4, we obtain the formula

z2 = r2ei2θ .

Since z3 = zz2, we can apply the identity a second time to deduce that

z3 = r3ei3θ .

Continuing in this manner we arrive at the formula for the nth power of z:

zn = rneinθ = rn(cos nθ + i sin nθ). (1)

Clearly this is just an extension of De Moivre’s formula, discussed in Example 3 of
Sec. 1.4.

Equation (1) is an appealing formula for raising a complex number to a positive
integer power. It is easy to see that the identity is also valid for negative integers n
(see Prob. 2). The question arises whether the formula will work for n = 1/m, so that
ζ = z1/m is an mth root of z satisfying

ζm = z. (2)

Certainly if we define
ζ = m

√
r eiθ/m (3)

(where m
√

r denotes the customary, positive, mth root), we compute a complex number
ζ satisfying Eq. (2) [as is easily seen by applying Eq. (1)]. But the matter is more
complicated than this; the number 1, for instance, has two square roots: 1 and −1.
And each of these has, in turn, two square roots—generating four fourth roots of 1,
namely, 1, −1, i , and −i .

To see how the additional roots fit into the scheme of things, let’s work out the
polar description of the equation ζ 4 = 1 for each of these numbers:

14 = (1ei0)4 = 14ei0 = 1,

i4 = (1eiπ/2)4 = 14ei2π = 1,

(−1)4 = (1eiπ)4 = 14ei4π = 1,

(−i)4 = (1ei3π/2)4 = 14ei6π = 1.

It is instructive to trace the consecutive powers of these roots in the Argand diagram.
Thus Fig. 1.16 shows that i , i2, i3, and i4 complete one revolution before landing on 1;
(−1), (−1)2, (−1)3, and (−1)4 go around twice; the powers of (−i) go around three
times counterclockwise, and of course 1, 12, 13, and 14 never move.
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Figure 1.16 Successive powers of the fourth roots of unity.

Clearly, the multiplicity of roots is tied to the ambiguity in representing 1, in polar
form, as ei0, ei2π , ei4π , etc. Thus to compute all the mth roots of a number z, we must
apply formula (3) to every polar representation of z. For the cube roots of unity, for
example, we would compute as shown in the table opposite. Obviously the roots recur
in sets of three, since ei2πm1/3 = ei2πm2/3 whenever m1 − m2 = 3.

Generalizing, we can see that there are exactly m distinct mth roots of unity, de-
noted by 11/m, and they are given by

11/m = ei2kπ/m = cos
2kπ

m
+ i sin

2kπ

m
(k = 0, 1, 2, . . . ,m − 1). (4)

The arguments of these roots are 2π/m radians apart, and the roots themselves form
the vertices of a regular polygon (Fig. 1.17).

Taking k = 1 in Eq. (4) we obtain the root†

ωm := ei2π/m = cos
2π

m
+ i sin

2π

m
,

and it is easy to see that the complete set of roots can be displayed as

1, ωm, ω
2
m, . . . , ω

m−1
m .

†A number w is said to be a primitive mth root of unity if wm equals 1 but wk �= 1 for k =
1, 2, . . . ,m − 1. Clearly, ωm is a primitive root.

34



1.5 Powers and Roots 35

Cube Roots of Unity

Polar representation of 1 Application of (3)
...

...

1 = e−i6π 11/3 = e−i6π/3 = 1

1 = e−i4π 11/3 = e−i4π/3 = − 1
2 + i

√
3

2

1 = e−i2π 11/3 = e−i2π/3 = − 1
2 − i

√
3

2
1 = ei0 11/3 = ei0/3 = 1

1 = ei2π 11/3 = ei2π/3 = − 1
2 + i

√
3

2

1 = ei4π 11/3 = ei4π/3 = − 1
2 − i

√
3

2
1 = ei6π 11/3 = ei6π/3 = 1
...

...

Figure 1.17 Regular polygons formed by the roots of unity.
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Example 1
Prove that

1 + ωm + ω2
m + · · · + ωm−1

m = 0. (5)

Solution. This result is obvious from a physical point of view, since, by sym-
metry, the center of mass (1 + ωm + ω2

m + · · · + ωm−1
m )/m of the system of m unit

masses located at the mth roots of unity must be at the origin (see Fig. 1.17).
To give an algebraic proof we simply note that

(ωm − 1)(1 + ωm + ω2
m + · · · + ωm−1

m ) = ωm
m − 1 = 0.

Since ωm �= 1, Eq. (5) follows. �
To obtain the mth roots of an arbitrary (nonzero) complex number z = reiθ , we

generalize the idea displayed by Eq. (4) and, reasoning similarly, conclude that the m
distinct mth roots of z are given by

z1/m = m
√|z|ei(θ+2kπ)/m (k = 0, 1, 2, . . . ,m − 1). (6)

Equivalently, we can form these roots by taking any single one such as given in (3)
and multiplying by the mth roots of unity.

Example 2
Find all the cube roots of

√
2 + i

√
2.

Solution. The polar form for
√

2 + i
√

2 is
√

2 + i
√

2 = 2eiπ/4.

Putting |z| = 2, θ = π/4, and m = 3 into Eq. (6), we obtain

(
√

2 + i
√

2)1/3 = 3
√

2 ei(π/12+2kπ/3) (k = 0, 1, 2).

Therefore, the three cube roots of
√

2 + i
√

2 are 3
√

2(cosπ/12 + i sinπ/12),
3
√

2(cos 3π/4 + i sin 3π/4), and 3
√

2(cos 17π/12 + i sin 17π/12). �

Example 3
Let a, b, and c be complex constants with a �= 0. Prove that the solutions of the
equation

az2 + bz + c = 0 (7)

are given by the (usual) quadratic formula

z = −b ± √
b2 − 4ac

2a
, (8)

where
√

b2 − 4ac denotes one of the values of (b2 − 4ac)1/2.
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Solution. After multiplying Eq. (7) by 4a, one can manipulate it into the form

4a2z2 + 4abz + b2 = b2 − 4ac.

The left hand side is (2az + b)2, so

2az + b = (b2 − 4ac)1/2 = ±
√

b2 − 4ac,

which is equivalent to Eq. (8). �

EXERCISES 1.5

1. Prove identity (1) by using induction.

2. Show that formula (1) also holds for negative integers n.

3. Let n be a positive integer. Prove that arg zn = n Arg z + 2kπ , k = 0,±1,±2, . . .,
for z �= 0.

4. Use the identity (1) to show that

(a) (
√

3 − i)7 = −64
√

3 + i64 (b) (1 + i)95 = 247(1 − i)

5. Find all the values of the following.

(a) (−16)1/4 (b) 11/5 (c) i1/4

(d) (1 − √
3i)1/3 (e) (i − 1)1/2 (f)

(
2i

1 + i

)1/6

6. Describe how to construct geometrically the fifth roots of z0 if

(a) z0 = −1 (b) z0 = i (c) z0 = 1 + i

7. Solve each of the following equations.

(a) 2z2 + z + 3 = 0

(b) z2 − (3 − 2i)z + 1 − 3i = 0

(c) z2 − 2z + i = 0

8. Let a, b, and c be real numbers and let a �= 0. Show that the equation az2+bz+c =
0 has

(a) two real solutions if b2 − 4ac > 0.

(b) two nonreal conjugate solutions if b2 − 4ac < 0.

9. Solve the equation z3 − 3z2 + 6z − 4 = 0.

10. Find all four roots of the equation z4 + 1 = 0 and use them to deduce the factoriza-
tion z4 + 1 = (z2 − √

2z + 1)(z2 + √
2z + 1).

11. Solve the equation (z + 1)5 = z5.
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12. Show that the n points z1/n
0 form the vertices of a regular n-sided polygon inscribed

in the circle of radius n
√|z0| about the origin.

13. Show that ω3 = (−1 + √
3i)/2 and that ω4 = i . Use these values to verify identity

(5) for the special cases n = 3 and n = 4.

14. Let m and n be positive integers that have no common factor. Prove that the set of
numbers (z1/n)m is the same as the set of numbers (zm)1/n . We denote this common
set of numbers by zm/n . Show that

zm/n = n
√|z|m

[
cos

m

n
(θ + 2kπ)+ i sin

m

n
(θ + 2kπ)

]
(9)

for k = 0, 1, 2, . . . , n − 1 .

15. Use the result of Prob. 14 to find all the values of (1 − i)3/2.

16. Show that the real part of any solution of (z + 1)100 = (z − 1)100 must be zero.

17. Let m be a fixed positive integer and let l be an integer that is not divisible by m.
Prove the following generalization of Eq. (5):

1 + ωl
m + ω2l

m + · · · + ω(m−1)l
m = 0.

18. Show that if α and β are nth and mth roots of unity, respectively, then the product
αβ is a kth root of unity for some integer k.

19. (Electric Field) A uniformly charged infinite rod, standing perpendicular to the z-
plane at the point z0, generates an electric field at every point in the plane. The
intensity of this field varies inversely as the distance from z0 to the point and is
directed along the line from z0 to the point.

(a) Show that the (vector) field at the point z is given by the function F(z) =
1/(z̄ − z0), in appropriate units. (Recall Fig. 1.13, Sec 1.3.)

(b) If three such rods are located at the points 1 + i , −1 + i , and 0, find the
positions of equilibrium (that is, the points where the vector sum of the fields
is zero).

20. Write a computer program for solving the quadratic equation

az2 + bz + c = 0, a �= 0.

Use as inputs the real and imaginary parts of a, b, c and print the solutions in both
rectangular and polar form.

21. Some complex integer square roots can be obtained by a modification of the poly-
nomial factoring strategy. For example, if 3 + 4i equals (a + bi)2, then 4 = 2ab
and 3 = a2 − b2. A little mental experimentation yields the answer a = 2, b = 1;
of course −2 − i is the other square root. Use this strategy to find the square roots
of the following numbers:

(a) 8 + 6i (b) 5 + 12i (c) 24 + 10i
(d) 3 − 4i (e) −8 + 6i (f) 8 − 6i
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1.6 Planar Sets 39

1.6 Planar Sets

In the calculus of functions of a real variable, the main theorems are typically stated for
functions defined on an interval (open or closed). For functions of a complex variable
the basic results are formulated for functions defined on sets that are 2-dimensional
“domains” or “closed regions.” In this section we give the precise definition of these
point sets. We begin with the meaning of a “neighborhood” in the complex plane.

The set of all points that satisfy the inequality

|z − z0| < ρ,

where ρ is a positive real number, is called an open disk or circular neighborhood of
z0. This set consists of all the points that lie inside the circle of radius ρ about z0. In
particular, the solution sets of the inequalities

|z − 2| < 3, |z + i | < 1

2
, |z| < 8

are circular neighborhoods of the respective points 2, −i , and 0. We shall make fre-
quent reference to the neighborhood |z| < 1, which is called the open unit disk.

A point z0 which lies in a set S is called an interior point of S if there is some
circular neighborhood of z0 that is completely contained in S. For example, if S is the
right half-plane Re z > 0 and z0 = 0.01, then z0 is an interior point of S because S
contains the neighborhood |z − z0| < 0.01 (see Fig. 1.18).

If every point of a set S is an interior point of S, we say that S is an open set. Any
open disk is an open set (Prob. 1). Each of the following inequalities also describes an
open set: (a) ρ1 < |z − z0| < ρ2, (b) |z − 3| > 2, (c) Im z > 0, and (d) 1 < Re z < 2.
These sets are sketched in Fig. 1.19. Note that the solution set T of the inequality
|z − 3| ≥ 2 is not an open set since no point on the circle |z − 3| = 2 is an interior
point of T . Note also that an open interval of the real axis is not an open set since it
contains no open disk.

Let w1, w2, . . . , wn+1 be n + 1 points in the plane. For each k = 1, 2, . . . , n,
let lk denote the line segment joining wk to wk+1. Then the successive line segments
l1, l2, . . . , ln form a continuous chain known as a polygonal path that joinsw1 town+1.

0 0.02

S

Figure 1.18 Interior point.
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(a) (b) (c) (d)

z2

z0 2

1

z1 1
3

5
1 2

x x

Figure 1.19 Open sets.

An open set S is said to be connected if every pair of points z1, z2 in S can be
joined by a polygonal path that lies entirely in S [see Fig. 1.19(a)]. Roughly speaking,
this means that S consists of a “single piece.” Each of the sets in Fig. 1.19 is connected.
The set consisting of all those points in the plane that do not lie on the circle |z| = 1 is
an example of an open set that is not connected; indeed, if z1 is a point inside the circle
and z2 is a point outside, then every polygonal path that joins z1 and z2 must intersect
the circle.

We call an open connected set a domain. Therefore, all the sets in Fig. 1.19 are
domains.

In the calculus of functions of a single real variable a useful and familiar fact is
that, on an interval, the vanishing of the derivative implies that the function is iden-
tically constant. We now present an extension of this result to functions of two real
variables, which underscores the importance of the notion of a domain.

Theorem 1. Suppose u(x, y) is a real-valued function defined in a domain D.
If the first partial derivatives of u satisfy

∂u

∂x
= ∂u

∂y
= 0 (1)

at all points of D, then u ≡ constant in D.

Proof. Notice that the assumption ∂u/∂x = 0 implies that u remains constant
along any horizontal line segment contained in D; indeed, on such a segment, u is
a function of a single variable (namely, x) whose derivative vanishes. Similarly, the
assumption ∂u/∂y = 0 means that u is constant along any vertical line segment that
lies in D. Putting these facts together we see that u remains unchanged along any
polygonal path in D that has all its segments parallel to the coordinate axes. Now
from the definition of connectedness we know that any pair of points in D can be
joined by some polygonal path lying entirely in D. The catch is that this path may
have some segments that are neither vertical nor horizontal. However, it turns out
from topological considerations (see Prob. 22) that any such segment can be replaced
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D z
2

z
1

Figure 1.20 Polygonal path with vertical and horizontal segments.

by a chain of small horizontal and vertical segments lying in D (see Fig. 1.20). Thus,
Theorem 1 follows. �

For the reader who prefers to avoid such topological arguments, an alternative
proof of Theorem 1 can be given with the aid of the chain rule (see Prob. 24).

What is crucial for Theorem 1 is the connectedness property of domains; in fact,
the theorem is no longer true if D is merely assumed to be an open set, because then
“piecewise constant” functions would satisfy the hypothesis (see Prob. 19).

Example 1

A real-valued function u(x, y) satisfies

∂u

∂x
= 3 and

∂u

∂y
= 6 (2)

at every point in the open unit disk D = {z : |z| < 1}. Show that u(x, y) = 3x +6y+c
for some constant c.

Solution. Let v(x, y) = 3x+6y, and consider the functionw(x, y) := u(x, y)−
v(x, y). From (2) and the definition of v(x, y), we have

∂w

∂x
= 3 − 3 = 0 and

∂w

∂y
= 6 − 6 = 0

at each point of D. Since D is a domain, Theorem 1 asserts that w(x, y) is constant in
D, say w(x, y) = c. Thus u(x, y) = v(x, y) + w(x, y) = v(x, y) + c, which is the
requested formula for u. �
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We now continue with our discussion of planar sets. A point z0 is said to be a
boundary point of a set S if every neighborhood of z0 contains at least one point of
S and at least one point not in S. The set of all boundary points of S is called the
boundary or frontier of S. The boundaries of the sets in Fig. 1.19 are as follows: (a)
the two circles |z − z0| = ρ1 and |z − z0| = ρ2, (b) the circle |z − 3| = 2, (c) the real
axis, and (d) the two lines Re z = 1 and Re z = 2. Since each point of a domain D
is an interior point of D, it follows that a domain cannot contain any of its boundary
points.

A set S is said to be closed if it contains all of its boundary points. (As requested in
Prob. 13, the reader should verify that S being closed is equivalent to its complement
C\S being open.) The set described by the inequality 0 < |z| ≤ 1 is not closed since
it does not contain the boundary point 0. The set of points z that satisfy the inequality

|z − z0| ≤ ρ (ρ > 0)

is a closed set, for it contains its boundary |z − z0| = ρ. Therefore, we call this set a
closed disk.

A set of points S is said to be bounded if there exists a positive real number R such
that |z| < R for every z in S. In other words, S is bounded if it is contained in some
neighborhood of the origin. An unbounded set is one that is not bounded. Of the sets
in Fig. 1.19 only (a) is bounded. A set that is both closed and bounded is said to be
compact.

A region is a domain together with some, none, or all of its boundary points. In
particular, every domain is a region.

EXERCISES 1.6

1. Prove that the neighborhood |z − z0| < ρ is an open set. [HINT: Show that if z1
belongs to the neighborhood, then so do all points z that satisfy |z − z1| < R, where
R = ρ − |z1 − z0|.]

Problems 2–8 refer to the sets described by the following inequalities:

(a) |z − 1 + i | ≤ 3 (b) | Arg z| < π/4
(c) 0 < |z − 2| < 3 (d) −1 < Im z ≤ 1
(e) |z| ≥ 2 (f) (Re z)2 > 1

2. Sketch each of the given sets.

3. Which of the given sets are open?

4. Which of the given sets are domains?

5. Which of the given sets are bounded?

6. Describe the boundary of each of the given sets.

7. Which of the given sets are regions?
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8. Which of the given sets are closed regions?

9. Prove that any set consisting of finitely many points is bounded.

10. Prove that the closed disk |z − z0| ≤ ρ is bounded.

11. Let S be the set consisting of the points 1, 1/2, 1/3, . . .. What is the boundary of S?

12. Let z0 be a point of the set S. Prove that if z0 is not an interior point of S, then z0
must be a boundary point of S.

13. Let S be a subset of C. Prove that S is closed if and only if its complement C\S is
an open set.

14. A point z0 is said to be an accumulation point of a set S if every neighborhood of
z0 contains infinitely many points of the set S. Prove that a closed region contains
all its accumulation points.

Problems 15–18 refer to the following definitions: Let S and T be sets. The set consisting
of all points belonging to S or T or both S and T is called the union of S and T and is
denoted by S ∪ T . The set consisting of all points belonging to both S and T is called the
intersection of S and T and is denoted by S ∩ T .

15. Let S and T be the sets described by |z + 1| < 2 and |z − i | < 1, respectively.
Sketch the sets S ∪ T and S ∩ T .

16. If S and T are open sets, prove that S ∪ T is an open set.

17. If S and T are domains, is S ∩ T necessarily a domain?

18. Prove that if S and T are domains that have at least one point in common, then S∪T
is a domain.

19. Let

u(x, y) :=
{

1 for |z| < 1,
0 for |z| > 2.

Show that ∂u/∂x = ∂u/∂y = 0 in the open set

D := {z : |z| < 1} ∪ {z : |z| > 2},
but u is not constant in D. Why doesn’t this contradict Theorem 1?

20. Suppose u(x, y) is a real-valued function defined in a domain D. If

∂u

∂x
= y and

∂u

∂y
= x

at all points of D, prove that u(x, y) = xy + c for some constant c.

21. A real-valued function u(x, y) satisfies

∂u

∂x
= 2x

x2 + y2
and

∂u

∂y
= 2y

x2 + y2

at every point in the annulus A = {z : 1 < |z| < 3}. Determine u(x, y) up to an
additive constant.
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22. Let D be a domain and l be a closed line segment lying in D. In elementary topol-
ogy it is shown that l can be covered by a finite number of open disks that lie in D
and have their centers on l. Use this fact to prove that any two points in a domain D
can be joined by a polygonal path in D having all its segments parallel to the coor-
dinate axes.

23. The notion of “connectedness” also applies to closed sets. We say that a closed
set S ⊂ C is connected if it cannot be written as the union of two nonempty dis-
joint (nonintersecting) closed sets. A closed connected set is called a continuum.
Determine which of the following sets is a continuum:

(a) {z : |z − 3| = 4}
(b) {z : |z| = 1} ∪ {z : |z| = 3}
(c) {1,−1, i}
(d) {z : |z − 1| ≥ 2}

24. Prove Theorem 1 by completing the following steps.

(a) Show that any line segment can be parametrized by

x = at + b, y = ct + d,

where a, b, c, and d are real constants and t ranges between 0 and 1. Hence
the values of u along a line segment lying in D are given by

U (t) := u(at + b, ct + d), 0 ≤ t ≤ 1.

(b) Use assumption (1) of Theorem 1 and the chain rule to show that dU/dt = 0
for 0 ≤ t ≤ 1 and thus conclude that u is constant on any line segment in D.

(c) By appealing to the definition of connectedness, argue that u must have the
same value at any two points of D.

1.7 The Riemann Sphere and Stereographic Projection

For centuries cartographers have struggled with the problem of how to represent the
spherical-like surface of Earth on a flat sheet of paper, and a variety of useful projec-
tions have resulted. In this section we describe one such method that identifies points
on the surface of a sphere with points in the complex plane; namely, the so-called
stereographic projection. While this projection is not one typically found in atlases, it
is of considerable importance in the theory of complex variables.

To describe the stereographic projection, we consider the unit sphere in 3 dimen-
sions (x1, x2, x3) whose equation is given by

x2
1 + x2

2 + x2
3 = 1 .

A sketch of this sphere and its equatorial plane is given in Fig. 1.21.
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Z

z

x2

x3

x1

N

Z

Figure 1.21 The Riemann sphere.

x2

x3

x1

Arctic Circle

Prime Meridian

Tropic of Cancer

Figure 1.22 The Riemann geosphere.

Our goal is to associate with each point z in the equatorial plane a unique point Z
on the sphere. For this purpose we construct the line that passes through the north pole
N = (0, 0, 1) of the sphere and the given point z in the x1x2-plane. This line pierces
the spherical surface in exactly one point Z as shown in Fig. 1.21, and we say that
the point Z is the stereographic projection of the point z. If we identify the equatorial
plane as the complex plane (or z-plane), the unit sphere is called the Riemann sphere.†

Continuing with this geographical interpretation of the Riemann sphere, we note
that under stereographic projection, points on the unit circle |z| = 1 (in the z-plane)
remain fixed (that is, z = Z ), forming the equator. Points outside the unit circle (for
which |z| > 1) project to points in the northern hemisphere, while those inside the unit
circle (for which |z| < 1) project to the southern hemisphere. In particular, the origin
of the z-plane projects to the south pole of the Riemann sphere.

Figure 1.22 displays other features of the stereographic projection. Circles of lat-
itude (parallel to the equator) on the sphere are the projections of circles centered at
the origin in the z plane; the Arctic Circle and the Tropic of Cancer are projections

†Bernhard Riemann (1826–1866).
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of circles of radius greater than one, and the Antarctic Circle and the Tropic of Capri-
corn are projections of circles of radius smaller than one. The temperate zones on the
sphere are projections of annuli (washers) in the plane, centered at the origin. Straight
lines in the z-plane that pass through the origin project to circles of longitude (great
circles passing through the poles) on the sphere. (If we imagine the projection of the
positive y-axis as the prime meridian through Greenwich, England, then the negative
y-axis projects to the International Date Line, halfway around the globe.)†

Stereographic projection preserves the angles of intersection of these curves: cir-
cles centered at the origin intersect lines through the origin at right angles in the z-
plane, and longitudes intersect latitudes at right angles on the sphere. This is no mere
coincidence for it is a beautiful property of stereographic projection that it preserves
angles—a useful feature for analyzing images.

To be more specific about the correspondence between the points in the z-plane
and those on the Riemann sphere, it is imperative that we have a formula for the pro-
jection.

Example 1

Show that if Z = (x1, x2, x3) is the projection on the Riemann sphere of the point
z = x + iy in the complex plane, then

x1 = 2 Re z

|z|2 + 1
, x2 = 2 Im z

|z|2 + 1
, x3 = |z|2 − 1

|z|2 + 1
. (1)

Solution. The line through the north pole N = (0, 0, 1) and (x, y, 0) is given by
the parametric equations

x1 = t x, x2 = t y, x3 = 1 − t, −∞ < t < ∞ . (2)

This line cuts the sphere precisely when t satisfies

1 = x2
1 + x2

2 + x2
3 = t2x2 + t2 y2 + (1 − t)2

or
1 = t2(x2 + y2 + 1)+ 1 − 2t ,

whose roots are t = 0 (the north pole) and

t = 2

x2 + y2 + 1
= 2

|z|2 + 1
. (3)

Substitution of this value of t into (2) yields Eqs. (1). �
†Most college students perform a crude stereographic projection when they wash their laundry.

They toss their dirty clothes onto the bedsheet, then bring up the four corners of the sheet and knot
them to form a laundry bag. The flat bedsheet corresponds to the z-plane, and the “bag” to the
Riemann sphere.
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As an example, the point z = 1 + √
3i corresponds to the point Z = ( 2

5 ,
2
√

3
5 , 3

5 )

on the Riemann sphere.

Conversely, if we start with the point (x1, x2, x3) on the Riemann sphere, we get
from (2) that its corresponding point x + iy in the z-plane is given by

x = x1/t , y = x2/t , t = 1 − x3,

and by eliminating t we derive

x = x1

1 − x3
, y = x2

1 − x3
. (4)

We have observed that circles centered at the origin and lines through the origin,
in the z-plane, become circles of latitude or longitude on the Riemann sphere. With
the help of the formulas we can generalize:

Example 2
Show that all lines and circles in the z-plane correspond under stereographic projection
to circles on the Riemann sphere (see Fig. 1.23).

Solution. The general equation for a circle or line in the z = x + iy plane is
given by

A(x2 + y2)+ Cx + Dy + E = 0 . (5)

When we substitute our formulas (4) into (5) we get

A

[(
x1

1 − x3

)2

+
(

x2

1 − x3

)2
]

+ Cx1

1 − x3
+ Dx2

1 − x3
+ E = 0 ,

which simplifies to

A(x2
1 + x2

2)+ Cx1(1 − x3)+ Dx2(1 − x3)+ E(1 − x3)
2 = 0 .

Recalling that x2
1 + x2

2 + x2
3 = 1, we rewrite the last equation as

A(1 − x2
3)+ Cx1(1 − x3)+ Dx2(1 − x3)+ E(1 − x3)

2 = 0 ,

N

Figure 1.23 Circles on the Riemann sphere.

47



48 Complex Numbers

and dividing by (1 − x3) we obtain

A(1 + x3)+ Cx1 + Dx2 + E(1 − x3) = 0

or
Cx1 + Dx2 + (A − E)x3 + A + E = 0 . (6)

But (6) is just the equation of a plane in 3-dimensional space. We have thus shown
that the projection of a line or circle in the z-plane must lie in the plane described by
(6), as well as on the Riemann sphere. The intersection of a plane and a sphere is, of
course, a circle. �

The argument can be reversed; every circle on the Riemann sphere is the projection
of either a line or circle in the z-plane (Prob. 10).

What is the role of the north pole N = (0, 0, 1) in this picture? Clearly N does not
arise as the projection of any point in the complex plane; equally clear is the exclusion
of x3 = 1 from the formulas (4). Nonetheless, we can give meaning to this exceptional
point if we think of points in the complex plane that are very large in modulus (that
is, are far from the origin). Such points project onto points near the north pole and, as
|z| → +∞, their projections tend to this pole. In this context we associate with N the
extended complex number “∞,” and call

Ĉ = C ∪ {∞}
the extended complex plane.†

The nature of the “point at ∞” in the extended complex plane is quite different
from the customary interpretation for the one-dimensional real line. In the latter case
we consider +∞ and −∞ as distinct metaphors, and distinguish between situations
where points on the line become unbounded by getting large positively or large neg-
atively. In the present context, however, although points in the plane can become
unbounded from many different directions (along the real axis, along the imaginary
axis, along an expanding spiral, etc.), they all “approach infinity.”

Carrying this notion a little further, we observe that the spherical cap formed by
the interior of the Arctic Circle constitutes a neighborhood of the north pole N (see
Fig. 1.22), and the interiors of the smaller circles of latitude form smaller neighbor-
hoods. Thus we are led to regard the neighborhoods of ∞ in the extended complex
plane Ĉ as the preimages of these spherical caps, that is the exteriors of circles centered
at the origin.

This highlights the fact that there is a considerable difference between the distance
between two points in the plane and the distance between their projections. Indeed,
the sphere is bounded (two points on it cannot be more than one diameter apart), while
the plane is unbounded (distances between points can be arbitrarily large). The next
calculation gives a comparison formula for these distances; it will be used later in the
book.

†In topological jargon, one refers to Ĉ as a one-point compactification of the plane.
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Example 3
Show that the distance (in 3-space) between the projections Z , W of the points z, w in
the complex plane is given by

dist(Z ,W ) = 2|z − w|√
1 + |z|2√1 + |w|2 = 2 dist(z, w)√

1 + |z|2√1 + |w|2 . (7)

Solution. This formula can be proved geometrically; Probs. 6 and 7 guide the
reader through the derivation. Here we’ll simply grind out the algebra. Let (x1, x2, x3)

and (̂x1, x̂2, x̂3) denote the coordinates of Z and W , and set d := dist(Z ,W ). Then

d2 = (x1 − x̂1)
2 + (x2 − x̂2)

2 + (x3 − x̂3)
2 .

Since x2
1 + x2

2 + x2
3 = 1 and x̂2

1 + x̂2
2 + x̂2

3 = 1, after expansion the formula for d2

becomes
d2 = 2[1 − (x1 x̂1 + x2 x̂2 + x3 x̂3)]. (8)

Next we use formulas (1) for z = x + iy and w = u + iv to write

1 − (x1 x̂1 + x2 x̂2 + x3 x̂3) =

1 − 4xu

(|z|2 + 1)(|w|2 + 1)
− 4yv

(|z|2 + 1)(|w|2 + 1)
−
(

|z|2 − 1

|z|2 + 1

)(
|w|2 − 1

|w|2 + 1

)

= 2|z|2 + 2|w|2 − 4xu − 4yv

(|z|2 + 1)(|w|2 + 1)

= 2(x2 + y2)+ 2(u2 + v2)− 4xu − 4yv

(|z|2 + 1)(|w|2 + 1)

= 2
(x − u)2 + (y − v)2

(|z|2 + 1)(|w|2 + 1)
. (9)

Substituting this expression into (8) and taking square roots yields (7). �

The Euclidean distance between the projections Z and W that we have just com-
puted is called the chordal distance between the (original) complex numbers z and w
and is denoted by the Greek symbol χ (“chi”), that is,

χ[z, w] := 2|z − w|√
1 + |z|2√1 + |w|2 . (10)

Like the ordinary Euclidean distance between points in the plane, χ is a metric in the
sense that it satisfies the triangle inequality

χ[z1, z2] ≤ χ[z1, w] + χ[w, z2] (11)
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and the familiar identities

χ[z, z] = 0 , χ[z, w] = χ[w, z] ,
for any points in the plane.

The χ-metric is also meaningful for the extended complex plane Ĉ; we calculate
the chordal distance from z to ∞ by manipulating Eq. (10),

χ[z,∞] = lim|w|→∞
2|z − w|√

1 + |z|2√1 + |w|2 = lim|w|→∞
2|z/w − 1|√

1 + |z|2√1/|w|2 + 1
,

to conclude

χ[z,∞] = 2√
1 + |z|2 . (12)

This quantifies our earlier image of neighborhoods of ∞ in Ĉ; the spherical cap
described by dist(Z , N ) ≡ χ[z,∞] < ρ for ρ less than 2 (the diameter of the sphere)
is the projection of all points in the plane that lie outside the circle |z| = √

(4/ρ2)− 1.

EXERCISES 1.7

1. For each of the following points in C, determine its stereographic projection on the
Riemann sphere.

(a) i (b) 6 − 8i (c) − 3
10 + 2

5 i.

2. (a) Show that the stereographic projections of the points z and 1/z̄ are reflections
of each other in the equatorial plane of the Riemann sphere.

(b) Show that the stereographic projections of the points z and −1/z̄ are diamet-
rically opposite points on the Riemann sphere.

3. If Z and W are two distinct points on the Riemann sphere, then the plane through
these points and the origin cuts the sphere in a “great circle,” that is, a circle with
maximum diameter (2, for a unit sphere). Show that this great circle corresponds
to the unique circle (or line) in the plane that passes through the points z, w, and
−1/z̄, where Z , W are the projections of z, w respectively. [HINT: See Prob. 2.]

4. By considering their stereographic projections, show that the (unique) circle (or
line) through the three points z, w, and −1/z̄ in the plane is the same as the circle
(or line) through the three points z, w, and −1/w̄, where z �= w. [HINT: See
Prob. 3.]

5. Describe the projections on the Riemann sphere of the following sets in the complex
plane:

(a) the right half-plane {z : Re z > 0}
(b) the disk {z : |z| < 1/2}
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(c) the annulus {z : 1 < |z| < 2}
(d) the set {z : |z| > 3}
(e) the line y = x (including the point at ∞).

6. Give a geometric argument based on similar triangles to show that the chordal dis-
tance between a point z and ∞ (that is, the distance between the projection Z and
the north pole) is given by

χ [z,∞] = 2/
√

1 + |z|2.
[HINT: Draw a cross section of the Riemann sphere and the z-plane containing the
north pole, the point z, and its projection Z .]

7. Establish formula (10) for the chordal distance by using a geometric argument.
[HINT: Draw a figure displaying the north pole, z, Z , w, and W . Identify all the
segments whose lengths are known; see Prob. 6. Use the law of cosines to write for-
mulas for |z − w| and |Z − W |, and note that same angle occurs in both formulas.]

8. For the χ -metric, verify from formula (10) that for any two points z, w ∈ Ĉ, there
holds

χ [1/z, 1/w] = χ [z, w] .
(We adopt the convention that 1/0 = ∞ and 1/∞ = 0.) Now give a geometric
argument (based on the Riemann sphere) as to why these two chordal distances
should be the same.

9. Without performing any computations, explain why the triangle inequality (11)
holds.

10. By reversing the steps in Example 2, show that every circle on the Riemann sphere
is the projection of either a circle or a line in the z-plane, where we regard ∞ as
belonging to every line.

SUMMARY

The complex number system is an extension of the real number system and consists
of all expressions of the form a + bi , where a and b are real and i2 = −1. The
operations of addition, subtraction, multiplication, and division with complex numbers
are performed in a manner analogous to “computing with radicals.” Geometrically,
complex numbers can be represented by points or vectors in the plane. Thus certain
theorems from geometry, such as the triangle inequality, can be translated into the
language of complex numbers. Associated with a complex number z = a + bi are
its absolute value, given by |z| = √

a2 + b2, and its complex conjugate, given by
z̄ = a − bi . The former is the distance from the point z to the origin, while the latter
is the reflection of the point z in the x-axis. The numbers z, z̄, and |z| are related by
zz̄ = |z|2.
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Every nonzero complex number z can be written in the polar form z = r(cos θ +
i sin θ), where r = |z| and θ is the angle of inclination of the vector z. Any of the
equivalent angles θ + 2kπ , k = 0,±1,±2, . . . , is called the argument of z (arg z).
The polar form is useful in finding powers and roots of z.

For z = x + iy, the complex exponential ez is defined by ez = ex (cos y + i sin y).
In particular, if θ is real, Euler’s equation states that eiθ = cos θ + i sin θ . Moreover,
the polar form of a complex number can be written simply as z = reiθ .

Special terminology is used in describing point sets in the plane. Important is the
concept of a domain D. Such a set is characterized by two properties: (i) each point z
of D is the center of an open disk completely contained in D; (ii) each pair of points
z1 and z2 in D can be joined by a polygonal path that lies entirely in D. If some, all,
or none of the boundary points are adjoined to a domain, the resulting set is called a
region.

Complex numbers can be visualized as points on the unit sphere in 3-space (the
Riemann sphere) via stereographic projection, which associates with a point z in the
equatorial plane the point at which the line through z and the north pole cuts the sphere.
The extended complex number ∞ is identified with the north pole, and C ∪ {∞} is
called the extended complex plane.
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Chapter 2

Analytic Functions

2.1 Functions of a Complex Variable

The concept of a complex number z was introduced in Chapter 1 in order to solve cer-
tain algebraic equations. We shall now study functions f (z) defined on these complex
variables. Our objective is to mimic the concepts, theorems, and mathematical struc-
ture of calculus; we want to differentiate and integrate f (z). The notion of a derivative
is far more subtle in the complex case because of the intrinsically two-dimensional
nature of the complex variable, and the exposition of this point will consume all of
Chapter 2. The payoff is enormous, however, and the remainder of the book will be
devoted to developing the mathematical consequences and demonstrating their appli-
cations to physical problems.

Let us begin with a careful review of the basics. Recall that a function f is a rule
that assigns to each element in a set A one and only one element in a set B. If f
assigns the value b to the element a in A, we write

b = f (a)

and call b the image of a under f . The set A is the domain of definition of f (even
if A is not a domain in the sense of Chapter 1), and the set of all images f (a) is the
range of f . We sometimes refer to f as a mapping of A into B.

Here we are concerned with complex-valued functions of a complex variable, so
that the domains of definition and the ranges are subsets of the complex numbers. If
f (z) is expressed by a formula such as

f (z) = z2 − 1

z2 + 1
,

then, unless stated otherwise, we take the domain of f to be the set of all z for which
the formula is well defined. (Thus the domain for this f comprises all z except for
±i .)

If w denotes the value of the function f at the point z, we then write w = f (z).
Just as z decomposes into real and imaginary parts as z = x+iy, the real and imaginary

From Chapter 2 of Fundamentals of Complex Analysis with Applications to Engineering, Science, and Mathematics,
 © 2003 by Pearson Education, Inc. All rights reserved.Third Edition. Edward B. Saff, Arthur David Snider. Copyright
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parts of w are each (real-valued) functions of z or, equivalently, of x and y, and so we
customarily write

w = u(x, y)+ iv(x, y),

with u and v denoting the real and imaginary parts, respectively, ofw. Thus a complex-
valued function of a complex variable is, in essence, a pair of real functions of two real
variables.

Example 1

Write the function w = f (z) = z2 + 2z in the form w = u(x, y)+ iv(x, y).

Solution. Setting z = x + iy we obtain

w = f (z) = (x + iy)2 + 2(x + iy) = x2 − y2 + i2xy + 2x + i2y.

Hence w = (x2 − y2 + 2x)+ i(2xy + 2y) is the desired form. �

Unfortunately, it is generally impossible to draw the graph of a complex function;
to display two real functions of two real variables graphically would require four di-
mensions. We can, however, visualize some of the properties of a complex function
w = f (z) by sketching its domain of definition in the z-plane and its range in the
w-plane, and depicting the relationship as in Fig. 2.1.

Figure 2.1 Representation of a complex function.

Example 2

Describe the range of the function f (z) = x2 + 2i defined on the closed unit disk
|z| ≤ 1.

Solution. We have u(x, y) = x2 and v(x, y) = 2. Thus as z varies over the
closed unit disk, u varies between 0 and 1, and v is constant. The range is therefore
the line segment from w = 2i to w = 1 + 2i . �
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Figure 2.2 Mapping of a semidisk under f (z) = z3.

Example 3
Describe the function f (z) = z3 for z in the semidisk given by |z| ≤ 2, Im z ≥ 0 [see
Fig. 2.2(a)].

Solution. From Sec. 1.5 we know that the points z in the sector of the semidisk
from Arg z = 0 to Arg z = 2π/3, when cubed, cover the entire disk |w| ≤ 8. The
cubes of the remaining z-points also fall in this disk, overlapping it in the upper half-
plane, as depicted in Fig. 2.2(b). �

The function f (z) = 1/z is called the inversion mapping. It is an example of a
one-to-one function because it maps distinct points to distinct points, i.e., if z1 �= z2,
then f (z1) �= f (z2).

Example 4
Show that the inversion mapping w = 1/z corresponds to a rotation of the Riemann
sphere by 180◦ about the x1-axis (see Fig. 1.21 on page 44).

Solution. Let Z = (x1, x2, x3) denote the stereographic projection of the point
z and W = (x̂1, x̂2, x̂3) denote the projection of 1/z. We need to show that W can be
obtained by a 180◦ rotation of Z about the x1-axis.

Referring to the formulas (1) in Sec. 1.7 we have

x1 = 2 Re(z)

|z|2 + 1
, x2 = 2 Im(z)

|z|2 + 1
, x3 = |z|2 − 1

|z|2 + 1
;

x̂1 = 2 Re(1/z)

|1/z|2 + 1
, x̂2 = 2 Im(1/z)

|1/z|2 + 1
, x̂3 = |1/z|2 − 1

|1/z|2 + 1
.

Strictly speaking, this function is not defined at z = 0, but in light of the discussion of the point
at ∞ in Sec. 1.7, it is natural to define f (0) = ∞ and, moreover, to regard f as a function in the
extended complex plane Ĉ = C ∪ {∞}, with f (∞) = 0.
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Since Re(1/z) = (Re z)/|z|2 and Im(1/z) = −(Im z)/|z|2, we get after simplifi-
cation that

x̂1 = 2 Re z

1 + |z|2 = x1, x̂2 = −2 Im z

1 + |z|2 = −x2, and x̂3 = 1 − |z|2
1 + |z|2 = −x3.

A rotation about the x1-axis preserves x1 while negating x2 and x3; so indeed W is the
stated rotation of Z . �

One nice consequence of this example is the fact that an inversion mapping pre-
serves the class of circles and lines (see Prob. 17)

EXERCISES 2.1

1. Write each of the following functions in the form w = u(x, y)+ iv(x, y).

(a) f (z) = 3z2 + 5z + i + 1 (b) g(z) = 1/z

(c) h(z) = z + i

z2 + 1
(d) q(z) = 2z2 + 3

|z − 1|
(e) F(z) = e3z (f) G(z) = ez + e−z

2. Find the domain of definition of each of the functions in Prob. 1.

3. Describe the range of each of the following functions.

(a) f (z) = z + 5 for Re z > 0

(b) g(z) = z2 for z in the first quadrant, Re z ≥ 0, Im z ≥ 0

(c) h(z) = 1

z
for 0 < |z| ≤ 1

(d) p(z) = −2z3 for z in the quarter-disk |z| < 1, 0 < Arg z <
π

2

4. Show that the inversion mapping w = f (z) = 1/z maps

(a) the circle |z| = r onto the circle |w| = 1/r ;

(b) the ray Arg z = θ0, −π < θ0 < π , onto the ray Arg w = −θ0;

(c) the circle |z − 1| = 1 onto the vertical line x = 1/2.

5. For the complex exponential function f (z) = ez defined in Sec. 1.4:

(a) Describe the domain of definition and the range.

(b) Show that f (−z) = 1/ f (z).

(c) Describe the image of the vertical line Re z = 1.

(d) Describe the image of the horizontal line Im z = π/4.

(e) Describe the image of the infinite strip 0 ≤ Im z ≤ π/4.
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6. The Joukowski mapping is defined by

w = J (z) = 1

2

(
z + 1

z

)
.

Show that

(a) J (z) = J (1/z).

(b) J maps the unit circle |z| = 1 onto the real interval [−1, 1].
(c) J maps the circle |z| = r (r > 0, r �= 1) onto the ellipse

u2[
1
2

(
r + 1

r

)]2
+ v2[

1
2

(
r − 1

r

)]2
= 1,

which has foci at ±1.

7. A function of the form F(z) = z + c, where c is a complex constant, generates
a translation mapping. Sketch the image of the semidisk |z| ≤ 2, Im z ≥ 0, [see
Fig. 2.2(a)] under F when (a) c = 3; (b) c = 2i ; (c) c = −1 − i .

8. A function of the form G(z) = eiφz, where φ is a real constant, generates a rotation
mapping. Sketch the image of the semidisk |z| ≤ 2, Im z ≥ 0 [see Fig. 2.2(a)]
under G when (a) φ = π/4; (b) φ = −π/4; (c) φ = 3π/4.

9. A function of the form H(z) = ρz, where ρ is a positive real constant, generates a
magnification mapping when ρ > 1 and a reduction mapping when ρ < 1. Sketch
the image of the semidisk |z| ≤ 2, Im z ≥ 0 [see Fig. 2.2(a)] under H when (a)
ρ = 3; (b) ρ = 1/2.

10. Let F(z) = z + i , G(z) = eiπ/4z, and H(z) = z/2. Sketch the image of the
semidisk |z| ≤ 2, Im z ≥ 0 [see Fig. 2.2(a)] under each of the following composite
mappings:

(a) G(F(z)) (b) G(H(z))

(c) H(F(z)) (d) F(G(H(z)))

11. Let F(z) = z − 3, G(z) = −i z, and H(z) = 2z. Sketch the image of the circle
|z| = 1 under each of the following composite mappings:

(a) G(F(z)) (b) G(H(z))

(c) H(F(z)) (d) F(G(H(z)))

12. A function of the form f (z) = az+b, where a and b are complex constants, is called
a linear transformation. Show that every linear transformation can be expressed as
the composition of a magnification (or reduction; Prob. 9), a rotation (Prob. 8), and
a translation (Prob. 7). Deduce from this that a linear transformation maps lines to
lines and circles to circles. [HINT: Write a in polar form.]
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13. Show that the function w = z2 maps

(a) the line x = 1,

(b) the hyperbola xy = 1, and

(c) the circle |z − 1| = 1,

into a parabola, a straight line, and the cardioid w = 2(1 + cos θ)eiθ , respectively,
in the w-plane.

14. (Rotation of the Riemann Sphere) Referring to Fig. 1.21 and Eqs. (1) in Sec. 1.7 for
stereographic projection, show each of the following:

(a) The mappingw = eiφz corresponds to a rotation of the Riemann sphere about
the x3-axis through an angle φ.

(b) The mappingw = −1/z corresponds to a 180◦ rotation of the Riemann sphere
about the x2-axis (the imaginary axis).

15. Show that the mapping w = (1 + z)/(1 − z) corresponds to a 90◦ counterclockwise
rotation of the Riemann sphere about the x2-axis.

16. Describe the mapping w = (1 − i z)/(z − i) in terms of a suitable rotation of the
Riemann sphere.

17. Use the result of Example 4 and properties of stereographic projection to show that
the inversion w = 1/z maps any circle in the z-plane to either a circle or a line in
the w-plane, and the same holds for the mapping of any line in the z-plane. (Regard
∞ as a point on every line.)

2.2 Limits and Continuity

As we observed in Chapter 1, the definition of absolute value can be used to designate
the distance between two complex numbers. Having a concept of distance, we can
proceed to introduce the notions of limit and continuity.

Informally, when we have an infinite sequence z1, z2, z3, . . . of complex numbers,
we say that the number z0 is the limit of the sequence if the zn eventually (i.e., for
large enough n) stay arbitrarily close to z0. More precisely, we state

Definition 1. A sequence of complex numbers {zn}∞1 is said to have the limit z0
or to converge to z0, and we write

lim
n→∞ zn = z0

or, equivalently,
zn → z0 as n → ∞,

if for any ε > 0 there exists an integer N such that |zn − z0| < ε for all n > N .
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Figure 2.3 A convergent sequence.

Geometrically, this means that each term zn , for n > N , lies in the open disk of
radius ε about z0 (see Fig. 2.3).

Example 1
Find the limit (if it exists) of the sequence

(a) zn =
(

i

3

)n

; (b) zn = 2 + in

1 + 3n
; (c) zn = in .

Solution. We use methods familiar from elementary calculus that can be rigor-
ously justified from Definition 1.

(a) Since |(i/3)n| = 1/3n → 0, it follows (see Prob. 5) that

lim
n→∞

(
i

3

)n

= 0.

(b) Dividing numerator and denominator by n we get

2 + in

1 + 3n
= (2/n)+ i

(1/n)+ 3
→ 0 + i

0 + 3
= i

3
as n → ∞.

(c) The sequence in consists of infinitely many repetitions of i , −1, −i , and 1. Thus
this sequence does not have a limit. �

A related concept is the limit of a complex-valued function f (z). Roughly speak-
ing, we say that the number w0 is the limit of the function f (z) as z approaches z0, if
f (z) stays arbitrarily close to w0 whenever z is sufficiently near z0. In precise terms
we give

Definition 2. Let f be a function defined in some neighborhood of z0, with the
possible exception of the point z0 itself. We say that the limit of f (z) as z
approaches z0 is the number w0 and write

lim
z→z0

f (z) = w0
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or, equivalently,
f (z) → w0 as z → z0,

if for any ε > 0 there exists a positive number δ such that

| f (z)− w0| < ε whenever 0 < |z − z0| < δ.

Geometrically, this says that any neighborhood of w0 contains all the values as-
sumed by f in some full neighborhood of z0, except possibly the value f (z0); see
Fig. 2.4.

Figure 2.4 Mapping property of a function with limit w0
as z → z0.

Example 2

Use Definition 2 to prove that limz→i z2 = −1.

Solution. We must show that for given ε > 0 there is a positive number δ such
that

|z2 − (−1)| < ε whenever 0 < |z − i | < δ.

So we express |z2 − (−1)| in terms of |z − i |:
z2 − (−1) = z2 + 1 = (z − i)(z + i) = (z − i)(z − i + 2i).

It follows from the properties of absolute value derived in Sec. 1.3 (in particular, the
triangle inequality) that∣∣∣z2 − (−1)

∣∣∣ = |z − i ||z − i + 2i | ≤ |z − i |(|z − i | + 2). (1)

Now if |z − i | < δ the right-hand member of (1) is less than δ(δ+ 2); so to ensure that
it is less than ε, we choose δ to be smaller than each either of the numbers ε/3 and 1:

|z − i |(|z − i | + 2) <
ε

3
(1 + 2) = ε. �
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There is an obvious relation between the limit of a function and the limit of a
sequence; namely, if limz→z0 f (z) = w0, then for every sequence {zn}∞1 converging to
z0 (zn �= z0) the sequence { f (zn)}∞1 converges to w0. The converse of this statement
is also valid and is left as an exercise.

The condition of continuity is expressed in

Definition 3. Let f be a function defined in a neighborhood of z0. Then f is
continuous at z0 if

lim
z→z0

f (z) = f (z0).

In other words, for f to be continuous at z0, it must have a limiting value at z0,
and this limiting value must be f (z0).

A function f is said to be continuous on a set S if it is continuous at each point
of S.

Clearly the definitions of this section are direct analogues of concepts introduced in
elementary calculus. In fact, one can show that f (z) approaches a limit precisely when
its real and imaginary parts approach limits (see Prob. 18); similarly, the continuity of
the latter functions is equivalent to the continuity of f . Because of the analogy, many
of the familiar theorems on real sequences, limits, and continuity remain valid in the
complex case. Two such theorems are stated here.

Theorem 1. If limz→z0 f (z) = A and limz→z0 g(z) = B, then

(i) lim
z→z0

( f (z)± g(z)) = A ± B,

(ii) lim
z→z0

f (z)g(z) = AB,

(iii) lim
z→z0

f (z)

g(z)
= A

B
if B �= 0.

Theorem 2. If f (z) and g(z) are continuous at z0, then so are f (z) ± g(z) and
f (z)g(z). The quotient f (z)/g(z) is also continuous at z0 provided g(z0) �= 0.

(Theorem 2 is an immediate consequence of Theorem 1.)
One can easily verify that the constant functions as well as the function f (z) =

z are continuous on the whole plane C. Thus from Theorem 2 we deduce that the
polynomial functions in z, i.e., functions of the form

a0 + a1z + a2z2 + · · · + anzn,

61



62 Analytic Functions

where the ai are constants, are also continuous on the whole plane. Rational functions
in z, which are defined as quotients of polynomials, i.e.,

a0 + a1z + · · · + anzn

b0 + b1z + · · · + bm zm
,

are therefore continuous at each point where the denominator does not vanish. These
considerations provide a much simpler solution for problems such as Example 2, as
we illustrate next.

Example 3
Find the limits, as z → 2i , of the functions f1(z) = z2 − 2z + 1, f2(z) = (z + 2i)/z,
and f3(z) = (

z2 + 4
)
/z(z − 2i).

Solution. Since f1(z) and f2(z) are continuous at z = 2i , we simply evaluate
them there, i.e.,

lim
z→2i

f1(z) = f1(2i) = (2i)2 − 2(2i)+ 1 = −3 − 4i,

lim
z→2i

f2(z) = f2(2i) = 2i + 2i

2i
= 2.

The function f3(z) is not continuous at z = 2i because it is not defined there (the
denominator vanishes). However, for z �= 2i and z �= 0 we have

f3(z) = (z + 2i)(z − 2i)

z(z − 2i)
= z + 2i

z
= f2(z),

and so
lim

z→2i
f3(z) = lim

z→2i
f2(z) = 2. �

Note that in the preceding example the discontinuity of f3(z) at z = 2i can be
removed by suitably defining the function at this point [set f3(2i) = 2]. In general, if
a function can be defined or redefined at a single point z0 so as to be continuous there,
we say that this function has a removable discontinuity at z0.

We shall see that limits involving infinity are very useful in describing the behavior
of certain sequences and functions. We say “zn → ∞” if, for each positive number
M (no matter how large), there is an integer N such that |zn| > M whenever n > N ;
similarly “limz→z0 f (z) = ∞” means that for each positive number M (no matter how
large), there is a δ > 0 such that | f (z)| > M whenever 0 < |z − z0| < δ. Essentially
we are saying that complex numbers approach infinity when their magnitudes approach
infinity. Therefore

lim
z→3i

z

z2 + 9
= ∞, lim

z→∞
i z − 2

4z + i
= i

4
, lim

z→∞
z3 + 3i

z2 + 5z
= ∞.

In fact, the concept of a point at infinity, as introduced in Sec. 1.7, quantifies this notion
nicely: see Probs. 23–25.
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In closing this section, we wish to emphasize an important distinction between
the concepts of limit in the (one-dimensional) real and complex cases. For the latter
situation, observe that a sequence {zn}∞1 may approach a limit z0 from any direction in
the plane, or even along a spiral, etc. Thus the manner in which a sequence of numbers
approaches its limit can be much more complicated in the complex case.

EXERCISES 2.2

1. Sketch the first five terms of the sequence (i/2)n , n = 1, 2, 3, . . ., and then describe
the convergence of this sequence.

2. Sketch the first five terms of the sequence (2i)n , n = 1, 2, 3, . . ., and then describe
the divergence of this sequence.

3. Using Definition 1, prove that the sequence of complex numbers zn = xn + iyn

converges to z0 = x0 + iy0 if and only if xn converges to x0 and yn converges to y0.
[HINT: |xn−x0| ≤ |zn−z0|, |yn−y0| ≤ |zn−z0|, and |zn−z0| ≤ |xn−x0|+|yn−y0|.]

4. Prove that zn → z0 if and only if zn → z0 as n → ∞.

5. Prove that limn→∞ zn = 0 if and only if limn→∞ |zn| = 0 using Definition 1.

6. Prove that if |z0| < 1, then zn
0 → 0 as n → ∞. Also prove that if |z0| > 1, then the

sequence zn
0 diverges.

7. Decide whether each of the following sequences converges, and if so, find its limit.

(a) zn = i

n
(b) zn = i(−1)n (c) zn = Arg

(
−1 + i

n

)
(d) zn = n(2 + i)

n + 1
(e) zn =

(
1 − i

4

)n

(f) zn = exp

(
2nπ i

5

)
8. Use Definition 2 to prove that limz→1+i (6z − 4) = 2 + 6i .

9. Use Definition 2 to prove that limz→−i 1/z = i .

10. Use Theorem 1 to prove Theorem 2.

11. Find each of the following limits.

(a) lim
z→2+3i

(z − 5i)2 (b) lim
z→2

z2 + 3

i z

(c) lim
z→3i

z2 + 9

z − 3i
(d) lim

z→i

z2 + i

z4 − 1

(e) lim
�z→0

(z0 +�z)2 − z2
0

�z
(f) lim

z→1+2i

∣∣z2 − 1
∣∣

12. Show that the function Arg z is discontinuous at each point on the nonpositive real
axis.
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13. Let f (z) be defined by

f (z) =
{

2z/(z + 1) if z �= 0,
1 if z = 0.

At which points does f (z) have a finite limit, and at which points is it continuous?
Which of the discontinuities of f (z) are removable?

14. Prove that the function g(z) = z̄ is continuous on the whole plane.

15. Prove that if f (z) is continuous at z0, then so are the functions f (z), Re f (z),
Im f (z), and | f (z)|. [HINT: To show that | f (z)| is continuous at z0 use inequality
(2) in Sec. 1.3.]

16. Let g be a function defined in a neighborhood of z0 and let f be a function defined
in a neighborhood of the point g(z0). Show that if g is continuous at z0 and f is
continuous at g(z0), then the composite function f (g(z)) is continuous at z0.

17. Let f (z) = [
x2/(x2 + y2)

] + 2i . Does f have a limit at z = 0? [HINT: Inves-
tigate { f (zn)} for sequences {zn} approaching 0 along the real and imaginary axes
separately.]

18. Let f (z) = u(x, y)+ iv(x, y), z0 = x0 + iy0, and w0 = u0 + iv0. Prove that

lim
z→z0

f (z) = w0

if, and only if,

lim
x→x0y→y0

u(x, y) = u0 and lim
x→x0y→y0

v(x, y) = v0.

[HINT: First show that f (z) → w0 if and only if f (z) → w0 as z → z0, and then
use Theorem 1.]

19. Use Prob. 18 to find limz→1−i
[
x
/(

x2 + 3y
) ]+ i xy.

20. Use Prob. 18 to prove that f (z) = ez is continuous everywhere.

21. Find each of the following limits:

(a) lim
z→0

ez (b) lim
z→2π i

(
ez − e−z

)
(c) lim

z→π i/2
(z + 1)ez (d) lim

z→−π i
exp

(
z2 + π2

z + π i

)

22. Show that if limn→∞ f (zn) = w0 for every sequence {zn}∞1 converging to z0 (zn �=
z0), then limz→z0 f (z) = w0. [HINT: Show that if the latter were not true, then one
could construct a sequence {zn}∞1 violating the hypothesis.]

23. Show that the definition of “zn → ∞” in the text is equivalent to the following: A
sequence of complex numbers {zn}∞1 is said to have the limit ∞ if lim

n→∞χ [zn,∞] =
0, where χ denotes the chordal distance (chi metric) (see page 49).
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24. Show that the definition of “limz→z0 f (z) = ∞” in the text is equivalent to: The
limit of f (z) as z → z0 is ∞ if limz→z0 χ [ f (z),∞] = 0, where χ denotes the
chordal distance (as in the previous problem).

25. Find each of the following limits involving infinity.

(a) lim
z→2i

z2 + 9

2z2 + 8
(b) lim

z→∞
3z2 − 2z

z2 − i z + 8

(c) lim
z→5

3z

z2 − (5 − i)z − 5i
(d) lim

z→∞(8z3 + 5z + 2) (e) lim
z→∞ ez

2.3 Analyticity

Now that we have a secure notion of functions of a complex variable, we are ready
to turn to the main topic of this book—the theory of analytic functions. Before we
proceed with the rigorous exposition, however, it will prove useful for the reader’s
perspective if we give an informal preview of what it is we want to achieve.

So far we have viewed a complex function of a complex variable, f (z), as nothing
more than an arbitrary mapping from the xy-plane to the uv-plane. We have individual
names for the real and imaginary parts of z (x and y, respectively) and for the real
and imaginary parts of f (u and v); and any pair u(x, y) and v(x, y) of two-variable
functions gives us a complex function (u + iv) in this sense. But notice that there is
something special about the pair

u1(x, y) = x2 − y2, v1(x, y) = 2xy,

as opposed to (say)

u2(x, y) = x2 − y2, v2(x, y) = 3xy;
namely, the complex function u1 + iv1 treats z = x + iy as a single “unit,” because
it equals x2 − y2 + i2xy = (x + iy)2 and thus it respects the complex structure of
z = x + iy. However (apparently, at least), the formulation of u2 + iv2 requires us to
break apart the real and imaginary parts of z.

In (real) calculus we don’t deal with functions that look at a number like 3 + 4
√

2
and square the 3 but cube the 4. The interesting calculus functions treat the number
as an indivisible module. We seek to classify the complex functions that behave this
same way with regard to their complex argument. Thus we want to admit functions
such as

z = x + iy (admissible),
z2 = x2 − y2 + i2xy (admissible),
z3 = x3 − 3xy2 + i(3x2 y − y3) (admissible),
1/z = x

x2+y2 − i y
x2+y2 (admissible),
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and their basic arithmetic combinations (sums, products, quotients, powers, and roots)
but ban such functions as

Re z = x (inadmissible),
Im z = y (inadmissible),
x2 − y2 + i3xy (inadmissible).

Notice that we will have to ban the conjugate function z̄, because if we admit it we
will open the gate to x [= (z + z̄)/2] and y [= (z − z̄)/2i]:

z̄ = x − iy (inadmissible).

Similarly, admitting the modulus |z| would be a mistake as well, since z̄ = |z|2/z:

|z| (inadmissible).

One could criticize our “inadmissible” classification of u2 + iv2 = x2 − y2 + i3xy,
because we have not yet proved that it cannot be written in terms of z alone. The
following computation is instructive: we set

x = (z + z̄)/2, y = (z − z̄)/2i (1)

in u2 + iv2 and obtain, after some algebra,

u2 + iv2 = x2 − y2 + i3xy = (z + z̄)2

4
− (z − z̄)2

(−4)
+ i3

(z + z̄)

2

(z − z̄)

2i

= 5

4
z2 − 1

4
z̄2.

Now we see that if we admit u2 + iv2, we would have to admit z̄2 [since it equals
5z2 − 4(u2 + iv2)] and its undesirable square root z̄.

Example 1
Express the following functions in terms of z and z̄:

f1(z) = x − 1 − iy

(x − 1)2 + y2
, f2(z) = x2 + y2 + 3x + 1 + i3y.

Solution. Using relations (1) we obtain

f1(z) =
z + z̄

2
− 1 − i

z − z̄

2i(
z + z̄

2
− 1

)2

+
(

z − z̄

2i

)2

= z̄ − 1

zz̄ − z − z̄ + 1
= 1

z − 1
,

f2(z) = (z + z̄)2

4
+ (z − z̄)2

4i2
+ 3

(
z + z̄

2

)
+ 1 + i3

(
z − z̄

2i

)
= zz̄ + 3z + 1. �
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Clearly we will want to accept f1 as admissible, but the presence of z̄ in f2 dis-
qualifies it. However, this procedure—the disqualification of functions with z̄ in their
formulas—does not lead to a workable criterion. For instance, who among us would
recognize that the function

z2 z̄2 + z2 + z̄2 − 2z̄z2 − 2z̄ + 1

10z̄ + zz̄2 − 2zz̄ − 5z̄2 + z − 5

has a canceling common factor of (z̄ − 1)2 in its numerator and denominator and thus
is admissible?

The function ez is even more vexing. The definition we have adopted separates the
real and imaginary parts of z:

ez = ex (cos y + i sin y). (2)

But recall (Example 1, Sec. 1.4) that this definition was shown to be consistent with
the Taylor expansion for ex ,

ez = 1 + z + z2

2! + z3

3! + · · · . (3)

As the right-hand side of (3) appears to respect the complex structure of z, we suspect
ez to be admissible. This is indeed the case, but we postpone the official verification
until the next section.

Over the next four chapters we will see that the criterion we are seeking—the test
that will distinguish the admissible functions from the others—can be expressed sim-
ply in terms of differentiability. The following definition is a straightforward extension
of the definition in the real case and appears innocuous enough.

Definition 4. Let f be a complex-valued function defined in a neighborhood of
z0. Then the derivative of f at z0 is given by

d f

dz
(z0) ≡ f ′(z0) := lim

�z→0

f (z0 +�z)− f (z0)

�z
,

provided this limit exists. (Such an f is said to be differentiable at z0.)

The catch here is that �z is a complex number, so it can approach zero in many
different ways (from the right, from below, along a spiral, etc.); but the difference
quotient must tend to a unique limit f ′(z0) independent of the manner in which�z →
0. Let us see why this notion disqualifies z̄.

Example 2

Show that f (z) = z is nowhere differentiable.
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Figure 2.5 Horizontal and vertical approach to zero of �z.

Solution. The difference quotient for this function takes the form

f (z0 +�z)− f (z0)

�z
= (z0 +�z)− z0

�z
= �z

�z
.

Now if �z → 0 through real values, then �z = �x (see Fig. 2.5) and �z = �z, so
the difference quotient is 1. On the other hand, if�z → 0 from above, then�z = i�y
and �z = −�z, so the quotient is −1. Consequently there is no way of assigning a
unique value to the derivative of z̄ at any point. Hence z̄ is not differentiable. �

A similar analysis demonstrates that neither x , y, nor |z| is differentiable (see
Prob. 4).

Let us reassure ourselves that the elementary functions such as sums, products,
and quotients of powers of z are differentiable.

Example 3
Show that, for any positive integer n,

d

dz
zn = nzn−1. (4)

Solution. Using the binomial formula (Prob. 27 in Exercises 1.1) we find

(z +�z)n − zn

�z
= nzn−1�z + n(n−1)

2 zn−2(�z)2 + · · · + (�z)n

�z
.

Thus

d

dz
zn = lim

�z→0
[nzn−1 + n(n − 1)

2
zn−2�z + · · · + (�z)n−1] = nzn−1. �

Notice that the proof was just the same as for the real-variable case. In fact the
validity of any of the following rules can be proven from Definition 4 by mimicking
the corresponding proof from elementary calculus.
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Theorem 3. If f and g are differentiable at z, then

( f ± g)′(z) = f ′(z)± g′(z), (5)

(c f )′(z) = c f ′(z) (for any constant c), (6)

( f g)′(z) = f (z)g′(z)+ f ′(z)g(z), (7)(
f

g

)′
(z) = g(z) f ′(z)− f (z)g′(z)

g(z)2
if g(z) �= 0. (8)

If g is differentiable at z and f is differentiable at g(z), then the chain rule holds:

d

dz
f (g(z)) = f ′(g(z))g′(z). (9)

The reader will also not be surprised to learn that differentiability implies continu-
ity, as in the real case (see Prob. 3).

It follows from Example 3 and rules (5) and (6) that any polynomial in z,

P(z) = anzn + an−1zn−1 + · · · + a1z + a0,

is differentiable in the whole plane and that its derivative is given by

P ′(z) = nanzn−1 + (n − 1)an−1zn−2 + · · · + a1.

Consequently, from rule (8), any rational function of z is differentiable at every point
in its domain of definition. We see then that for purposes of differentiation, polynomial
and rational functions in z can be treated as if z were a real variable.

Example 4
Compute the derivative of

f (z) =
(

z2 − 1

z2 + 1

)100

.

Solution. Unless z = ±i (where the denominator is zero), the usual calculus
rules apply. Thus

f ′(z) = 100

(
z2 − 1

z2 + 1

)99
(z2 + 1)2z − (z2 − 1)2z

(z2 + 1)2
= 400z

(z2 − 1)99

(z2 + 1)101
. �

As we demonstrate in Prob. 10, it is possible for a complex function to be differ-
entiable solely at isolated points. Of course, this also occurs in real analysis. Such
functions are treated there as exceptional cases, while the general theorems usually
apply only to functions differentiable over open intervals of the real line. By analogy,
then, we distinguish a special class of complex functions in
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70 Analytic Functions

Definition 5. A complex-valued function f (z) is said to be analytic on an open
set G if it has a derivative at every point of G.

We emphasize that analyticity is a property defined over open sets, while differen-
tiability could conceivably hold at one point only. Occasionally, however, we shall use
the abbreviated phrase “ f (z) is analytic at the point z0” to mean that f (z) is analytic
in some neighborhood of z0. A point where f is not analytic but which is the limit of
points where f is analytic is known as a singular point or singularity. Thus we can
say that a rational function of z is analytic at every point for which its denominator
is nonzero, and the zeros of the denominator are singularities. If f (z) is analytic on
the whole complex plane, then it is said to be entire. For example, all polynomial
functions of z are entire.

As we shall see in the next few chapters, analyticity is the criterion that we have
been seeking, for functions to respect the complex structure of the variable z. In fact,
Sec. 5.2 will demonstrate that all analytic functions can be written in terms of z alone
(no x , y, or z̄).

When a function is given in terms of real and imaginary parts as u(x, y)+iv(x, y),
it may be very tedious to apply the definition to determine if f is analytic. In the next
section we will establish a test that is easier to use. Also, we will verify the analyticity
of ez . We will then have no further occasion for using the substitution method based
on Eqs. (1).

EXERCISES 2.3

1. Let f (z) be defined in a neighborhood of z0. Show that finding

lim
�z→0

[ f (z0 +�z)− f (z0)] /�z

is equivalent to finding

lim
z→z0

[ f (z)− f (z0)]/(z − z0).

2. Prove that if f (z) is differentiable at z0, then

f (z) = f (z0)+ f ′(z0)(z − z0)+ λ(z)(z − z0),

where λ(z) → 0 as z → z0.

3. Prove that if f (z) is differentiable at z0, then it is continuous at z0. [HINT: Use the
result of Prob. 2.]

4. Using Definition 4, show that each of the following functions is nowhere differen-
tiable.

Some authors use the words holomorphic or regular instead of analytic. The terminology “ana-
lytic function” was first used by Marquis de Condorcet (1743–1794.)
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(a) Re z (b) Im z (c) |z|
5. Prove rules (5) and (7).

6. Prove that formula (4) is also valid for negative integers n.

7. Use rules (5)–(9) to find the derivatives of the following functions.

(a) f (z) = 6z3 + 8z2 + i z + 10 (b) f (z) = (
z2 − 3i

)−6

(c) f (z) = z2 − 9

i z3 + 2z + π
(d) f (z) = (z + 2)3(

z2 + i z + 1
)4

(e) f (z) = 6i
(
z3 − 1

)4
(z2 + i z)100

8. (Geometric Interpretation of f ′) Suppose that f is analytic at z0 and f ′(z0) �= 0.
Show that

lim
z→z0

| f (z)− f (z0)|
|z − z0| = ∣∣ f ′(z0)

∣∣
and

lim
z→z0

{arg [ f (z)− f (z0)] − arg (z − z0)} = arg f ′(z0).

Thus, on setting w = f (z) and w0 = f (z0) we see that for z near z0, the mapping
f dilates distances by the factor | f ′(z0)|:

|w − w0| ≈ | f ′(z0)| × |z − z0|.
Also, f rotates vectors emanating from z0 by an angle of arg f ′(z0):

arg (w − w0) ≈ arg (z − z0)+ arg f ′(z0).

In other words, for z near z0 the mapping w = f (z) behaves like the linear trans-
formation

w = f (z0)+ f ′(z0) (z − z0)

= c + eiφρ (z − z0) .

(See Prob. 12, Exercises 2.1.)

9. For each of the following determine the points at which the function is not analytic.

(a)
1

z − 2 + 3i
(b)

i z3 + 2z

z2 + 1

(c)
3z − 1

z2 + z + 4
(d) z2

(
2z2 − 3z + 1

)−2

10. Let f (z) = |z|2. Use Definition 4 to show that f is differentiable at z = 0 but is not
differentiable at any other point. [HINT: Write

|z0 +�z|2 − |z0|2
�z

= (z0 +�z)
(
z0 +�z

)− z0z0

�z

= z0 +�z + z0
�z

�z
. ]
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11. Discuss the analyticity of each of the following functions.

(a) 8z̄ + i (b)
z

z̄ + 2
(c)

z3 + 2z + i

z − 5
(d) x2 − y2 + 2xyi

(e) x2 + y2 + y − 2 + i x (f)
(

x + x

x2 + y2

)
+ i

(
y − y

x2 + y2

)

(g) |z|2 + 2z (h)
|z| + z

2

12. Let P(z) = (z − z1)(z − z2) · · · (z − zn). Show by induction on n that

P ′(z)
P(z)

= 1

z − z1
+ 1

z − z2
+ · · · + 1

z − zn
.

[NOTE: P ′(z)/P(z) is called the logarithmic derivative of P(z).]

13. Let f (z) and g(z) be entire functions. Decide which of the following statements are
always true.

(a) f (z)3 is entire. (b) f (z)g(z) is entire.
(c) f (z)/g(z) is entire. (d) 5 f (z)+ ig(z) is entire.
(e) f (1/z) is entire. (f) g(z2 + 2) is entire.
(g) f (g(z)) is entire.

14. Prove L’Hôpital’s rule: If f (z) and g(z) are analytic at z0 and f (z0) = g(z0) = 0,
but g′(z0) �= 0, then

lim
z→z0

f (z)

g(z)
= f ′(z0)

g′(z0)
.

[HINT: Write
f (z)

g(z)
= f (z)− f (z0)

z − z0

/ g(z)− g(z0)

z − z0
.]

15. Use L’Hôpital’s rule to find limz→i (1 + z6)/(1 + z10).

16. Let f (z) = z3 + 1, and let z1 = (−1 + √
3i)/2, z2 = (−1 − √

3i)/2. Show that
there is no point w on the line segment from z1 to z2 such that

f (z2)− f (z1) = f ′(w) (z2 − z1).

This shows that the mean-value theorem of calculus does not extend to complex
functions.

17. Let F(z) = f (z)g(z)h(z), where f , g, and h are each differentiable at z0. Prove
that

F ′(z0) = f ′(z0)g(z0)h(z0)+ f (z0)g
′(z0)h(z0)+ f (z0)g(z0)h

′(z0).

Guillaume De L’Hôpital (1661–1704) wrote the first textbook on differential calculus.
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2.4 The Cauchy-Riemann Equations 73

2.4 The Cauchy-Riemann Equations

The property of analyticity for a function indicates some type of connection between
its real and imaginary parts. The precise expression of this kinship is easily derived,
as we shall see shortly, by letting �z approach zero from the right and from above in
Definition 4. In this section we shall explore the nature of this relationship.

If the function f (z) = u(x, y) + iv(x, y) is differentiable at z0 = x0 + iy0, then
the limit

f ′(z0) = lim
�z→0

f (z0 +�z)− f (z0)

�z
can be computed by allowing�z (= �x +i�y) to approach zero from any convenient
direction in the complex plane. If it approaches horizontally, then �z = �x , and we
obtain

f ′(z0) = lim
�x→0

u (x0 +�x, y0)+ iv (x0 +�x, y0)− u (x0, y0)− iv (x0, y0)

�x

= lim
�x→0

[
u (x0 +�x, y0)− u (x0, y0)

�x

]
+ i lim

�x→0

[
v (x0 +�x, y0)− v (x0, y0)

�x

]
.

(It may be helpful to consult Fig. 2.5 again.) Since the limits of the bracketed ex-
pressions are just the first partial derivatives of u and v with respect to x , we deduce
that

f ′(z0) = ∂u

∂x
(x0, y0)+ i

∂v

∂x
(x0, y0) . (1)

On the other hand, if �z approaches zero vertically, then �z = i�y and we have

f ′(z0) = lim
�y→0

[
u (x0, y0 +�y)− u (x0, y0)

i�y

]
+ i lim

�y→0

[
v (x0, y0 +�y)− v (x0, y0)

i�y

]
.

Hence

f ′(z0) = −i
∂u

∂y
(x0, y0)+ ∂v

∂y
(x0, y0) . (2)

But the right-hand members of Eqs. (1) and (2) are equal to the same complex number
f ′(z0), so by equating real and imaginary parts we see that the equations

∂u

∂x
= ∂v

∂y
,

∂u

∂y
= −∂v

∂x
(3)

must hold at z0 = x0 + iy0. Equations (3) are called the Cauchy-Riemann equations.
We have thus established

Theorem 4. A necessary condition for a function f (z) = u(x, y)+ iv(x, y) to
be differentiable at a point z0 is that the Cauchy-Riemann equations hold at z0.

Consequently, if f is analytic in an open set G, then the Cauchy-Riemann
equations must hold at every point of G.

Augustin-Louis Cauchy (1789–1867), Bernhard Riemann (1826–1866).
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There’s an easy way to recall the Cauchy-Riemann equations. Simply remember
that the horizontal derivative must equal the vertical derivative and write

∂ f

∂x
= ∂ f

∂(iy)
or

∂(u + iv)

∂x
= 1

i

∂(u + iv)

∂y
,

and equate the real and imaginary parts:

∂u

∂x
= ∂v

∂y
,
∂v

∂x
= −∂u

∂y
.

Example 1
Show that the function f (z) = (x2 + y)+ i(y2 − x) is not analytic at any point.

Solution. Since u(x, y) = x2 + y and v(x, y) = y2 − x , we have

∂u

∂x
= 2x,

∂v

∂y
= 2y,

∂u

∂y
= 1,

∂v

∂x
= −1.

Hence the Cauchy-Riemann equations are simultaneously satisfied only on the line
x = y and therefore in no open disk. Thus by Theorem 4 the function f (z) is nowhere
analytic. �

To be mathematically precise, we point out that the Cauchy-Riemann equations
alone are not sufficient to ensure differentiability; one needs the additional hypothesis
of continuity of the first partial derivatives of u and v. The complete story is given in
the following theorem.

Theorem 5. Let f (z) = u(x, y)+ iv(x, y) be defined in some open set G con-
taining the point z0. If the first partial derivatives of u and v exist in G, are
continuous at z0, and satisfy the Cauchy-Riemann equations at z0, then f is dif-
ferentiable at z0.

Consequently, if the first partial derivatives are continuousand satisfy the
Cauchy-Riemann equations at all points of G, then f is analytic in G.

Proof. The difference quotient for f at z0 can be written in the form

f (z0 +�z)− f (z0)

�z

= [u (x0 +�x, y0 +�y)− u (x0, y0)] + i [v (x0 +�x, y0 +�y)− v (x0, y0)]

�x + i�y
(4)

Albeit far from obvious, it has been shown that the continuity assumption can be removed in this
part of the theorem.
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where z0 = x0 + iy0 and �z = �x + i�y. The above expressions are well defined if
|�z| is so small that the closed disk with center z0 and radius |�z| lies entirely in G.
Let us rewrite the difference

u (x0 +�x, y0 +�y)− u (x0, y0)

as

[u (x0 +�x, y0 +�y)− u (x0, y0 +�y)] + [u (x0, y0 +�y)− u (x0, y0)] . (5)

Because the partial derivatives exist in G, the mean-value theorem says that there is a
number x∗ between x0 and x0 +�x such that

u (x0 +�x, y0 +�y)− u (x0, y0 +�y) = �x
∂u

∂x

(
x∗, y0 +�y

)
.

Furthermore, since the partial derivatives are continuous at (x0, y0), we can write

∂u

∂x

(
x∗, y0 +�y

) = ∂u

∂x
(x0, y0)+ ε1,

where the function ε1 → 0 as x∗ → x0 and �y → 0 (in particular, as�z → 0). Thus
the first bracketed expression in (5) can be written as

u (x0 +�x, y0 +�y)− u (x0, y0 +�y) = �x

[
∂u

∂x
(x0, y0)+ ε1

]
.

The second bracketed expression in (5) is treated similarly, introducing the func-
tion ε2. Then working the same strategy for the v-difference in Eq. (4), we ultimately
have

f (z0 +�z)− f (z0)

�z
=
�x

[
∂u
∂x + ε1 + i ∂v

∂x + iε3
]+�y

[
∂u
∂y + ε2 + i ∂v

∂y + iε4

]
�x + i�y

,

where each partial derivative is evaluated at (x0, y0) and where each εi → 0 as �z →
0. Now we use the Cauchy-Riemann equations to express the difference quotient as

�x
[
∂u
∂x + i ∂v

∂x

]+ i�y
[
∂u
∂x + i ∂v

∂x

]
�x + i�y

+ λ

�x + i�y
, (6)

where λ := �x (ε1 + iε3)+�y (ε2 + iε4). Since

λ

�x + i�y
≤ �x

�x + i�y
|ε1 + iε3| + �y

�x + i�y
|ε2 + iε4|

≤ |ε1 + iε3| + |ε2 + iε4|,
we see that the last term in (6) approaches zero as �z → 0, and so

lim
�z→0

f (z0 +�z)− f (z0)

�z
= ∂u

∂x
(x0, y0)+ i

∂v

∂x
(x0, y0) ;
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i.e., f ′(z0) exists. �

It follows from Theorem 4 that the nowhere analytic function f (z) of Example 1
is, nonetheless, differentiable at each point on the line x = y.

As promised in Sec. 1.4, we now offer one last vindication of our definition of the
complex exponential, by demonstrating its analyticity.

Example 2
Prove that the function f (z) = ez = ex cos y + iex sin y is entire, and find its deriva-
tive.

Solution. Since we have ∂u/∂x = ex cos y, ∂v/∂y = ex cos y, ∂u/∂y =
−ex sin y, and ∂v/∂x = ex sin y, the first partial derivatives are continuous and satisfy
the Cauchy-Riemann equations at every point in the plane. Hence f (z) is entire. From
Eq. (1) we see that

f ′(z) = ∂u

∂x
+ i

∂v

∂x
= ex cos y + iex sin y.

Not surprisingly, f ′(z) = f (z). �
As a further application of these techniques, let us prove the following theorem

whose analogue in the real case is well known.

Theorem 6. If f (z) is analytic in a domain D and if f ′(z) = 0 everywhere in
D, then f (z) is constant in D.

Before we proceed with the proof, we observe that the connectedness property of
the domain is essential. Indeed, if f (z) is defined by

f (z) =
{

0 if |z| < 1,
1 if |z| > 2,

then f is analytic and f ′(z) = 0 on its domain of definition (which is not a domain!),
yet f is not constant.

Proof of Theorem 6. Since f ′(z) = 0 in D, we see from Eqs. (1) and (2) that all
the first partial derivatives of u and v vanish in D; that is,

∂u

∂x
= ∂u

∂y
= ∂v

∂x
= ∂v

∂y
= 0.

Thus, by Theorem 1 in Sec. 1.6 (see page 40), we have u = constant and v = constant
in D. Consequently, f = u + iv is also constant in D. �

One easy consequence of Theorem 6 is the fact that if f and g are two functions
analytic in a domain D whose derivatives are identical in D, then f = g + constant in
D (see Prob. 7).
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Using Theorem 6 and the Cauchy-Riemann equations, one can further show that
an analytic function f (z) must be constant when any one of the following conditions
hold in a domain D:

Re f (z) is constant;

Im f (z) is constant;

| f (z)| is constant. (7)

The proofs are left as problems.

EXERCISES 2.4

1. Use the Cauchy-Riemann equations to show that the following functions are no-
where differentiable.

(a) w = z̄ (b) w = Re z (c) w = 2y − i x

2. Show that h(z) = x3 + 3xy2 − 3x + i(y3 + 3x2 y − 3y) is differentiable on the
coordinate axes but is nowhere analytic.

3. Use Theorem 5 to show that g(z) = 3x2 + 2x − 3y2 − 1 + i(6xy + 2y) is entire.
Write this function in terms of z.

4. Let

f (z) =
{
(x4/3 y5/3 + i x5/3 y4/3)/(x2 + y2) if z �= 0,
0 if z = 0.

Show that the Cauchy-Riemann equations hold at z = 0 but that f is not differen-
tiable at this point. [HINT: Consider the difference quotient f (�z)/�z for�z → 0
along the real axis and along the line y = x .]

5. Show that the function f (z) = ex2−y2 [cos(2xy)+ i sin(2xy)] is entire, and find its
derivative.

6. If u and v are expressed in terms of polar coordinates (r, θ), show that the Cauchy-
Riemann equations can be written in the form

∂u

∂r
= 1

r

∂v

∂θ
,

∂v

∂r
= −1

r

∂u

∂θ
.

[HINT: Consider the difference quotient ( f (z)− f (z0))/(z−z0), as z → z0 = r0eiθ0

along the ray arg z = θ0 and along the circle |z| = r0.]

7. Show that if two analytic functions f and g have the same derivative throughout a
domain D, then they differ only by an additive constant. [HINT: Consider f − g.]

8. Show that if f is analytic in a domain D and either Re f (z) or Im f (z) is constant
in D, then f (z) must be constant in D.

9. Show, by contradiction, that the function F(z) = ∣∣z2 − z
∣∣ is nowhere analytic be-

cause of condition (7).
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10. Show that if f (z) is analytic and real-valued in a domain D, then f (z) is constant
in D.

11. Suppose that f (z) and f (z) are analytic in a domain D. Show that f (z) is constant
in D.

12. Show that if f is analytic in a domain D and | f (z)| is constant in D, then the
function f (z) is constant in D. [HINT: | f |2 is constant, so ∂| f |2/∂x = ∂| f |2/∂y =
0 throughout D. Using these two relations and the Cauchy-Riemann equations,
deduce that f ′(z) = 0.]

13. Given that f (z) and | f (z)| are each analytic in a domain D, prove that f (z) is
constant in D.

14. Show that if the analytic function w = f (z) maps a domain D onto a portion of a
line, then f must be constant throughout D.

15. The Jacobian of a mapping

u = u(x, y), v = v(x, y)

from the xy-plane to the uv-plane is defined to be the determinant

J (x0, y0) :=

∣∣∣∣∣∣∣∣∣
∂u

∂x

∂u

∂y

∂v

∂x

∂v

∂y

∣∣∣∣∣∣∣∣∣ ,
where the partial derivatives are all evaluated at (x0, y0). Show that if f = u + iv
is analytic at z0 = x0 + iy0, then J (x0, y0) = | f ′(z0)|2.

16. The notion of analyticity as discussed in the preceding section requires that the
function f (x, y) = u(x, y) + iv(x, y) can be written in terms of (x + iy) alone,
without using z̄ = (x − iy). To make this concept more explicit, we introduce the
change of variables{

ξ = x + iy
η = x − iy

or, equivalently,

{
x = (ξ + η)/2
y = (ξ − η)/2i

producing the function

f̃ (ξ, η) := f (x(ξ, η), y(ξ, η)).

(a) Using the chain rule show formally that

∂ f̃

∂ξ
= 1

2

(
∂u

∂x
+ ∂v

∂y

)
+ i

2

(
∂v

∂x
− ∂u

∂y

)
,

∂ f̃

∂η
= 1

2

(
∂u

∂x
− ∂v

∂y

)
+ i

2

(
∂u

∂y
+ ∂v

∂x

)
.

That is, “z-bar” is barred!
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(b) Since η is the same as z̄, the statement “ f is independent of z̄” is equivalent
to

∂ f̃

∂η
= ∂ f̃

∂ z̄
= 0.

Show that this condition is the same as the Cauchy-Riemann equations for f .

2.5 Harmonic Functions

Solutions of the two-dimensional Laplace equation

∇2φ := ∂2φ

∂x2
+ ∂2φ

∂y2
= 0 (1)

are among the most important functions in mathematical physics. The electrostatic
potential solves Eq. (1) in two-dimensional free space, as does the scalar magnetostatic
potential; the corresponding field in any direction is given by the directional derivative
of φ(x, y). Two-dimensional fluid flow problems are described by such functions
under certain idealized conditions, and φ can also be interpreted as the displacement
of a membrane stretched across a loop of wire, if the loop is nearly flat. In the next
section we shall discuss equilibrium temperature distributions as models for solutions
to Eq. (1).

One of the most important applications of analytic function theory to applied math-
ematics is the abundance of solutions of Eq. (1) that it supplies. We shall adopt the
following standard terminology for these solutions.

Definition 6. A real-valued function φ(x, y) is said to be harmonic in a domain
D if all its second-order partial derivatives are continuous in D and if, at each
point of D, φ satisfies Laplace’s equation (1).

The sources of these harmonic functions are the real and imaginary parts of ana-
lytic functions, as we prove in the next theorem.

Theorem 7. If f (z) = u(x, y) + iv(x, y) is analytic in a domain D, then each
of the functions u(x, y) and v(x, y) is harmonic in D.

Proof. In a later chapter we shall show that the real and imaginary parts of any
analytic function have continuous partial derivatives of all orders. Assuming this fact,

Marquis Pierre-Simon de Laplace, 1749–1827.
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we recall from elementary calculus that under such conditions mixed partial derivatives
can be taken in any order; i.e.,

∂

∂y

∂u

∂x
= ∂

∂x

∂u

∂y
. (2)

Using the Cauchy-Riemann equations for the first derivatives, we transform Eq. (2)
into

∂2v

∂y2
= −∂

2v

∂x2
.

which is equivalent to Eq. (1). Thus v is harmonic in D, and a similar computation
proves that u is also. �

Conversely, if we are given a function u(x, y) harmonic in, say, an open disk, then
we can find another harmonic function v(x, y) so that u + iv is an analytic function of
z in the disk. Such a function v is called a harmonic conjugate of u. The construction
of v is effected by exploiting the Cauchy-Riemann equations, as we illustrate in the
following example.

Example 1
Construct an analytic function whose real part is u(x, y) = x3 − 3xy2 + y.

Solution. First we verify that

∂2u

∂x2
+ ∂2u

∂y2
= 6x − 6x = 0,

and so u is harmonic in the whole plane. Now we have to find a mate, v(x, y), for u
such that the Cauchy-Riemann equations are satisfied. Thus we must have

∂v

∂y
= ∂u

∂x
= 3x2 − 3y2 (3)

and
∂v

∂x
= −∂u

∂y
= 6xy − 1. (4)

If we hold x constant and integrate Eq. (3) with respect to y, we get

v(x, y) = 3x2 y − y3 + constant,

but the “constant” could conceivably be any differentiable function of x ; it need only
be independent of y. Therefore, we write

v(x, y) = 3x2 y − y3 + ψ(x).

We can find ψ(x) by plugging this last expression into Eq. (4);

∂v

∂x
= 6xy + ψ ′(x) = 6xy − 1. (5)
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Figure 2.6 Level curves of real and imaginary parts of z2.

This yields ψ ′(x) ≡ −1, and so ψ(x) = −x + a, where a is some (genuine) constant.
It follows that a harmonic conjugate of u(x, y) is given by

v(x, y) = 3x2 y − y3 − x + a,

and the analytic function

f (z) = x3 − 3xy2 + y + i
(

3x2 y − y3 − x + a
)
,

which we recognize as z3 − i(z − a), solves the problem. �

This procedure will always work for an u(x, y) harmonic in a disk, as is shown in
Prob. 20. Thus we can learn a great deal about analytic functions by studying harmonic
functions and vice versa.

The harmonic functions forming the real and imaginary parts of an analytic func-
tion f (z) each generate a family of curves in the xy-plane, namely, the level curves or
isotimic curves

u(x, y) = constant (6)

and
v(x, y) = constant. (7)

If u is interpreted as an electrostatic potential, then the curves (6) are the equipoten-
tials. If u is temperature, (6) describes the isotherms.

For the function f (z) = z2 = x2 − y2 + i2xy, the level curves u = x2 − y2 =
constant are hyperbolas asymptotic to the lines y = ±x , as shown in Fig. 2.6(a). The
curves v = 2xy = constant are also hyperbolas, asymptotic to the coordinate axes; see
Fig. 2.6(b).

We caution the reader that finding a harmonic conjugate in an arbitrary domain may not always
be possible. See Prob. 21 for an example of this unfortunate circumstance when the domain is a
punctured disk.
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Figure 2.7 Level curves of Fig. 2.6 superimposed.

Figure 2.8 Level curves of real and imaginary parts of z3.

Figure 2.9 Level curves of real and imaginary parts of 1/z.
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Figure 2.10 Level curves of real and imaginary parts of ez .

Notice that if the two families of curves are superimposed as in Fig. 2.7 they appear
to intersect at right angles. The same effect occurs with the level curves for the analytic
functions z3 (Fig. 2.8), 1/z (Fig. 2.9), and ez (Fig. 2.10). This is no accident; the level
curves of the real and imaginary parts of an analytic function f (z)will always intersect
at right angles—unless f ′(z) = 0 at the point of intersection. This can be seen from
the Cauchy-Riemann equations as follows.

Recall that the vector with components [∂u/∂x, ∂u/∂y] is the gradient of u and
is normal to the level curves of u. Similarly, [∂v/∂x, ∂v/∂y] is normal to the level
curves of v. The scalar (dot) product of these gradient vectors is

∂u

∂x

∂v

∂x
+ ∂u

∂y

∂v

∂y
= ∂v

∂y

∂v

∂x
− ∂v

∂x

∂v

∂y
= 0

by the Cauchy-Riemann equations. Thus if these gradients are nonzero, they are per-
pendicular, and hence so are the level curves. Level curves of harmonic functions and
their harmonic conjugates intersect at right angles.

The following examples illustrate how analytic function theory can be used to
solve Laplace’s equation in regions whose boundaries are identifiable as level curves.

Example 2
Find a function φ(x, y) that is harmonic in the region of the right half-plane between
the curves x2 − y2 = 2 and x2 − y2 = 4 and takes the value 3 on the left edge and the
value 7 on the right edge (Fig. 2.11).

Solution. We recognize x2 − y2 as the real part of z2, so the boundary curves are
level curves of a known harmonic function. To meet the specified boundary conditions,
we add some flexibility by considering

φ(x, y) = A
(

x2 − y2
)

+ B = Re
(

Az2 + B
)
, A, B real,

and adjust A and B accordingly. When x2 − y2 = 2, we require φ = 3;

A(2)+ B = 3.

When x2 − y2 = 4, we want φ = 7;

A(4)+ B = 7.
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Figure 2.11 Laplace’s equation for the region of Example 2.

Solving for A and B we find the solution to be

φ(x, y) = 2
(

x2 − y2
)

− 1. �

This example was clearly contrived. In Chapters 3 and 7 we shall consider more
profound applications of this idea.

EXERCISES 2.5

1. Verify directly that the real and imaginary parts of the following analytic functions
satisfy Laplace’s equation.

(a) f (z) = z2 + 2z + 1 (b) g(z) = 1

z
(c) h(z) = ez

2. Find the most general harmonic polynomial of the form ax2 + bxy + cy2.

3. Verify that each given function u is harmonic (in the region where it is defined) and
then find a harmonic conjugate of u.

(a) u = y (b) u = ex sin y
(c) u = xy − x + y (d) u = sin x cosh y

(e) u = ln |z| for Re z > 0 (f) u = Im ez2

4. Show that if v(x, y) is a harmonic conjugate of u(x, y) in a domain D, then every
harmonic conjugate of u(x, y) in D must be of the form v(x, y) + a, where a is a
real constant.

5. Show that if v is a harmonic conjugate for u, then −u is a harmonic conjugate for v.

6. Show that if v is a harmonic conjugate of u in a domain D, then uv is harmonic
in D.
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7. Find a function φ(x, y) that is harmonic in the infinite vertical strip

{z : − 1 ≤ Re z ≤ 3}

and takes the value 0 on the left edge and the value 4 on the right edge.

8. Suppose that the functions u and v are harmonic in a domain D.

(a) Is the sum u + v necessarily harmonic in D?

(b) Is the product uv necessarily harmonic in D?

(c) Is ∂u/∂x harmonic in D? (You may use the fact—which we will prove in
Chapter 4—that harmonic functions have continuous partial derivatives of all
orders.)

9. Find a function φ(x, y) that is harmonic in the region of the first quadrant between
the curves xy = 2 and xy = 4 and takes the value 1 on the lower edge and the value
3 on the upper edge. [HINT: Begin by considering z2.]

10. Show that in polar coordinates (r, θ) Laplace’s equation becomes

∂2φ

∂r2
+ 1

r

∂φ

∂r
+ 1

r2

∂2φ

∂θ2
= 0.

11. Let f (z) = z + 1/z. Show that the level curve Im f (z) = 0 consists of the real axis
(excluding z = 0) and the circle |z| = 1. [The level curves Im f (z) = constant can
be interpreted as streamlines for fluid flow around a cylindrical obstacle.]

12. Prove that if r and θ are polar coordinates, then the functions rn cos nθ and rn sin nθ ,
where n is an integer, are harmonic as functions of x and y. [HINT: Recall De
Moivre’s formula.]

13. Find a function harmonic inside the wedge bounded by the nonegative x-axis and
the half-line y = x (x ≥ 0) that goes to zero on these sides but is not identically
zero. [HINT: See Prob. 12.] The level curves for this function can be interpreted as
streamlines for a fluid flowing inside this wedge, under certain idealized conditions.

14. Suppose that f (z) is analytic and nonzero in a domain D. Prove that ln | f (z)| is
harmonic in D.
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15. Find a function φ(z), harmonic within the annulus (ring domain) bounded by the
concentric circles |z| = 1 and |z| = 2, such that φ = 0 on the inner circle and
φ(2eiθ ) = 5 cos 3θ on the outer circle. [HINT: Think of zn and z−n .]

16. Find a function harmonic outside the circle |z| = 3 that goes to zero on |z| = 3 but
is not identically zero. [HINT: See Prob. 14]

17. Find a function φ(x, y) harmonic in the upper half-plane Im z > 0 and continuous
on Im z ≥ 0 such that

(a) φ(x, 0) = x2 + 5x + 1 for all x .

(b) φ(x, 0) = 2x3/(x2 + 4) for all x .

[HINT: φ = Re[2z3/(z2 + 4)] won’t work because 2z3/(z2 + 4) is not analytic at
z = 2i in the upper half-plane. Instead, write

2x3

x2 + 4
= x2

x − 2i
+ x2

x + 2i
= 2 Re

x2

x + 2i
,

which suggests the proper choice for φ.]

18. Show that if φ(x, y) is harmonic, then φx − iφy is analytic. (You may assume that
φ has continuous partial derivatives of all orders.)

19. Find a function φ(z) harmonic outside the unit circle |z| = 1, satisfying

φ(eiθ ) = cos2 θ, 0 ≤ θ ≤ 2π,

such that φ(reiθ ) approaches the constant value 1/2 along all large radii r . [HINT:
Recall that z−n is analytic outside the unit circle and goes to zero along large radii r .]

20. By tracing the steps in Example 1, show that every function u(x, y) harmonic in
a disk has a harmonic conjugate v(x, y). [HINT: The only difficulty which could
occur is in the step corresponding to Eq. (5), where in order to find ψ ′(x) we must
be certain that all appearances of the variable y cancel. Show that this is guaranteed
because u is harmonic.]

21. Show that although u = ln |z| is harmonic in the complex plane except at z = 0 (i.e.,
in the domain C\{0}), u does not have a harmonic conjugate v throughout C\{0}.
In other words, show that there is no function v such that ln |z|+ iv(z) is analytic in
C\{0}. [HINT: Show that if ln |z|+ iv(z) is analytic in C\{0}, then v(z) = Arg z +a
except along the nonpositive real axis.]

22. Show that if φ(x, y) and ψ(x, y) are harmonic, then u and v defined by

u(x, y) = φxφy + ψxψy

and

v(x, y) = 1
2

(
φ2

x + ψ2
x − φ2

y − ψ2
y

)
satisfy the Cauchy-Riemann equations.
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Figure 2.12 Slab of thermally conducting material.

Figure 2.13 Sinks and sources.

2.6 *Steady-State Temperature as a Harmonic
Function

It is useful to have a familiar physical model for harmonic functions as an aid in visu-
alizing and remembering their properties. The equilibrium temperatures in a slab, as
we shall see, fill this role nicely.

Figure 2.12 depicts a uniform slab of a thermally-conducting material, such as
a copper plate or a ceramic substrate for microelectronic circuitry. It has constant
thickness, so its top and bottom surfaces lie parallel to the xy-plane. We assume that
these surfaces are also insulated, and no heat flows in the vertical direction. As a result
the equilibrium temperature T is a function of x and y;

T = T (x, y).

This temperature distribution is maintained by heat sources (or sinks) and insula-
tion placed around the edges, so that the isotherms appear as illustrated in Fig. 2.13.

Now once the temperature has reached equilibrium, T (x, y) will be a harmonic
function:

∂2T

∂x2
+ ∂2T

∂y2
= 0. (1)

The physical reason for this is as follows. Focusing attention on a small square in the
slab as depicted in Fig. 2.14, we call upon Fourier’s law of heat conduction, which
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states that the rate at which heat flows through each side of the square is proportional
to the rate of change of temperature in the direction of the flow. Thus the flow through
AB and C D is proportional to ∂T/∂x , and that through BC and AD is proportional
to ∂T/∂y. (In fact the constant of proportionality, which depends on the cross-section
area and the material, is negative, since heat flows from hot to cold!) The heat flows
are depicted as entering the square through AB and AD and exiting through BC and
C D. Therefore, the net outflow of heat is proportional to

∂T

∂x

∣∣∣∣
C D

− ∂T

∂x

∣∣∣∣
AB

+ ∂T

∂y

∣∣∣∣
BC

− ∂T

∂y

∣∣∣∣
AD
.

For small dimensions s the difference in the first derivatives can be approximated
by the second derivative, and the net outflux is proportional to

∂2T

∂x2
s + ∂2T

∂y2
s. (2)

At equilibrium the temperature has settled; the square has finished cooling down (or
heating up), and the net outflux will be zero. Dividing expression (2) by s, then, we
conclude that T (x, y) satisfies Eq. (1).

The fact that harmonic functions arise as temperature distributions permits us to
anticipate some of their mathematical properties. For example, look at the isothermal
curves in Fig. 2.15. They indicate a “hot spot” in the interior of the slab. This cannot
occur at equilibrium, because heat would flow away from the hot spot and it would cool
down. Of course, this pattern could be maintained by an external source underneath
the slab, but we have precluded this by assuming that such sources are located only
on the edge. We conclude that the temperature distribution can never exhibit such an
interior maximum. The rigorous formulation and generalization of this observation to
harmonic functions is identified in Chapter 4 as the maximum principle, which says
that a harmonic function cannot take its maximum in the interior of a region, except in
the trivial case when it is constant throughout.

As another example consider the following experiment. The edges of the slab in
Fig. 2.16 are maintained at fixed temperatures by external heat sources. except for a
small section along which we can control the temperature to our liking (using some
type of adjustable furnace). Then, on physical grounds we would expect to be able,
by turning up the furnace sufficiently, to raise the temperature of an arbitrary interior
point to any specified value—although, of course, we couldn’t guarantee to replicate a
whole pattern of temperatures across the slab.

Our expectation is premised on the intuitive feeling that the interior temperatures
are completely determined by the edge temperature distribution. This is actually an
instance of the boundary value property of harmonic functions, and in fact in Chapter
4 we shall study Poisson’s formulas, which express the explicit relationship between
the interior and boundary values of such functions for certain geometries.

Note also that the thermodynamic reality of a zero absolute temperature inhibits our ability to
cool interior points arbitrarily.
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Figure 2.14 Heat flow.

Figure 2.15 Isotherms.

Figure 2.16 Adjustable boundary temperatures.
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EXERCISES 2.6

1. Using only your physical intuition, sketch the family of isotherms that you would
expect to see at equilibrium for slabs with edge temperatures maintained as shown
in Fig. 2.17.

Figure 2.17 Isotherm constructions (Prob. 1).

2. Sketch the isotherms for the edge-temperature distribution in Fig. 2.18. Does this
configuration violate the maximum principle?

Figure 2.18 Isotherm construction (Prob. 2).

3. Sketch the isotherms for the edge-temperature distribution in Fig. 2.19. Does this
configuration violate the maximum principle?
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Figure 2.19 Isotherm construction (Prob. 3).

2.7 *Iterated Maps: Julia and Mandelbrot Sets

What happens if one enters a number into a calculator, pushes a function key like x2,
and then pushes it again and again? The calculator squares the number, then squares
the result, then squares that result, and so on; one has iterated the function f (x) = x2.
Now this iteration process can be very interesting when it is performed with complex
numbers; the sequence of points z0, f (z0) , f ( f (z0)) , f ( f ( f (z0))), . . . becomes an
orbit in the complex plane.

If we iterate the complex function f (z) = z2, it is easy to predict many of the
orbits. When the starting point or “seed” z0 lies within the unit circle, that is |z0| < 1,
the orbit stays bounded (because the squares get smaller in modulus) and converges to
z = 0. If |z0| > 1, the iterates get larger in modulus and the orbit is unbounded.

Example 1 describes a test for bounded orbits that is easy to apply.

Example 1
Show that if

(i) f (z) is analytic in a neighborhood of z = ζ ,

(ii) f (ζ ) = ζ , and

(iii) | f ′(ζ )| < 1,

then there is a disk around ζ with the property that all orbits launched from inside the
disk remain confined to the disk and converge to ζ .

Solution. Since

lim
z→ζ

∣∣∣∣ f (z)− f (ζ )

z − ζ

∣∣∣∣ = | f ′(ζ )| < 1

and f (ζ ) = ζ , we can pick a real number ρ lying between | f ′(ζ )| and 1 such that

| f (z)− f (ζ )| ≡ | f (z)− ζ | ≤ ρ|z − ζ | (1)
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for all z in a sufficiently small disk around ζ . Such a disk meets the specifications;
indeed, if any point z0 in this disk is the seed for an orbit z1 = f (z0), z2 = f (z1), . . .,
then by (1) we have

|zn − ζ | ≤ ρ|zn−1 − ζ | ≤ · · · ≤ ρn|z0 − ζ |.
Since ρ < 1, the point zn lies closer to ζ than zn−1 and, in fact, limn→∞ zn = ζ . �

If f (ζ ) = ζ , then ζ is called a fixed point of the function f . A fixed point meeting
the conditions of Example 1 is called an attractor, and the set of seed points whose
orbits converge to ζ is called its basin of attraction. Thus ζ = 0 is an attractor for
f (z) = z2 (since 0 = 02 = f (0) and | f ′(0)| = 0 < 1) whose basin is the open disk
|z| < 1. Example 1 shows that every attractor has a basin containing, at least, a small
disk.

The other fixed point for f (z) = z2, ζ = 1, is a repellor. Its properties are
explored in Prob. 2.

For the function f (z) = z2, if z0 lies on the unit circle |z0| = 1, so does the entire
orbit launched from z0. In fact if z0 = 1 or −1 the orbit quickly settles down to the
fixed point z = 1. If z0 = ei2π/3 (a primitive cube root of unity in the parlance of
Sec. 1.5) the orbit oscillates between two points e±i2π/3 and is called a 2-cycle, with
period 2; note that this is equivalent to saying that ei2π/3 is a fixed point of f ( f (z)).
The seed ei2π/7 gives birth to a 3-cycle, and ei2π/15 to a 4-cycle. Do you see the pattern
(cf. Prob. 6)?

It can be shown that the seed choice z0 = eiα2π , for irrational α, generates an orbit
whose points never repeat (cf. Prob. 4) and, in fact, permeate the unit circle densely.
So the unit circle, which separates the seeds of orbits converging to zero from those of
unbounded orbits, contains a variety of orbits itself.

Definition 7. The filled Julia set for a polynomial function f (z) is defined to
be the set of points that launch bounded orbits through iteration of f ; the Julia
set is the boundary of the filled Julia set.

So the Julia set for z2 is the unit circle, and the filled Julia set is the closed unit
disk.

The Julia set for the function f (z) = z2 − 2 consists of the real interval [−2, 2]
(which is already “filled”). Indeed, one immediately sees that if −2 ≤ x ≤ 2, then
0 ≤ x2 ≤ 4 and −2 ≤ x2 − 2 ≡ f (x) ≤ 2, so orbits launched from [−2, 2] remain
bounded. The proof that other values of z are seeds of unbounded orbits will have to
wait until we have studied the Joukowski transformation (Prob. 8a, Exercises 7.7).

G. Julia investigated these sets in 1918.
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From these considerations, one might conclude that the Julia sets for all functions
of the form f (z) = z2 + c are disks, segments, or other mundane configurations.
Nothing could be further from the truth! An astonishing assortment of exotic patterns
result when we locate the seeds of bounded orbits of z2 + c, for various complex
values of the constant c. Fig. 2.20 displays some of the dragons, rabbits, fern leaves,
and shoreline patterns that have been discovered to be Julia sets, together with the
corresponding values of c. Many of these patterns are fractals; objects that typically
have dimension neither one nor two, but some fraction in between. Some also enjoy
the property of self-similarity, in that if one zooms in to see the details of a small
subset, a replica of the original pattern reappears.

The most enjoyable way to explore Julia sets is with software. Although func-
tional iteration is trivial to code, the graphics displays are best left to experts, and the
references at the end of this chapter contain pointers to some websites and software
packages that provide this facility. We invite the reader to try to replicate the designs
depicted in Fig. 2.20, using software.

Note that some of the filled Julia sets consist of single connected components,
while the others appear to be totally disconnected. In 1982, Benoit Mandelbrot was
inspired to investigate which values of c give rise to (filled) Julia sets that are con-
nected. The answer was the astonishing Mandelbrot set, depicted in Fig. 2.21. The
point c lies in the Mandelbrot set if the filled Julia set for f (z) = z2 + c is connected;
it lies outside if the filled Julia set is disconnected. It is amusing to use software to
see what happens to the Julia sets for a family of values of c tracing a path from the
interior to the exterior of the Mandelbrot set; the Julia sets “vaporize” as they meta-
morphose from connected to disconnected. (See references.) It should not surprise the
reader that some phase transitions in physics have been modeled using the Mandelbrot
set.

The interplay between rigorous, theoretical analyses of these sets and computer
experimentation has generated some interesting insights into the latter. For example,
we can’t trust a computer to tell us if an orbit is unbounded, because the computer can
only distinguish a finite set of numbers; eventually it will recycle (or overflow). So we
have to make a judgment as to how many iterations we must simulate before deciding
that an orbit is unbounded. Secondly, virtually every time the computer iterates the
function f (z) it commits a roundoff error, and these errors accumulate as we simulate
long orbits; so we have to carefully evaluate the credibility of our calculations. Despite
these forebodings, in 1987 Hammel, Yorke, and Grebogi proved that every computed
orbit is arbitrarily close to some true orbit!

The Julia sets (and their analogs) for more complicated functions are subjects of
continuing mathematical research. The software listed at the end of the chapter will
guide the reader to explore the beautiful convergence patterns resulting from iterating
the complex trigonometric functions (defined in Chapter 3) and others. In fact a in-
ternational exhibition of patterns generated using the Mandelbrot set, titled “Frontiers
of Chaos,” toured many museums in the late 1980s; see the reference by Peitgen and
Richter.
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Figure 2.20 Julia sets.

Figure 2.21 Mandelbrot set.
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EXERCISES 2.7

1. Find the fixed points and attractors for the function f (z) = z2 + c, in terms of the
real constant c.

2. If f (z) is entire and ζ is a fixed point of f such that | f ′(ζ )| > 1, then ζ is said to
be a repellor for f . Show that there is a disk around ζ such that all orbits launched
from within the disk, other than the 1-cycle launched from ζ itself, eventually leave
the disk.

3. For each of the following functions, determine the fixed points and decide which
are attractors, repellors (see Prob. 2), or neither.

(a) f (z) = z2 + z + 1 (b) f (z) = z3 + z2 + (3/4)z − 1/4 .

4. Prove that if α is a real irrational number, the seed z0 = ei2πα generates an orbit
under f (z) = z2 whose points never repeat.

5. For the function f (z) = 1/(z + 1), determine the fixed points and decide which are
attractors, repellors (see Prob. 2), or neither.

6. Derive the formula z0 = ei2π/(2n−1) for a seed launching an n-cycle for orbits
formed by iterating f (z) = z2.

7. The seed point z0 = ei2π/5 launches a 4-cycle for iterates of f (z) = z2, but it does
not fit into the pattern of Prob. 6. Explain.

8. Use software to generate the Julia sets in Fig. 2.20.

9. Determine the filled Julia set for the mapping f (z) = αz, where α is a complex
constant. Consider separately the cases where |α| ≤ 1 and |α| > 1.

10. In general, Newton’s method for approximating the zeros of the entire function F(z)
can be described as forming the orbits of the function

f (z) = z − F(z)

F ′(z)
.

Show that the fixed points of f (z) are the same as the zeros of F(z), with the
possible exception of the points where F ′(z) = 0. Then show that every zero of
F(z) (other than ones where F ′(z) = 0) is an attractor for f (z).

SUMMARY

A complex-valued function f of a complex variable z = x + iy can be considered
as a pair of real functions of two real variables in accordance with f (z) = u(x, y) +
iv(x, y). The definitions of limit, continuity, and derivative for such functions are
direct analogues of the corresponding concepts introduced in calculus, but the greater
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freedom of z to vary in two dimensions lends added strength to these conditions. In
particular, the existence of a derivative, defined as the limit of

f (z +�z)− f (z)

�z
as �z → 0,

implies a strong relationship between the functions u and v, namely, the Cauchy-
Riemann equations

∂u

∂x
= ∂v

∂y
,

∂u

∂y
= −∂v

∂x
.

If the function f is differentiable in an open set, it is said to be analytic. This
property can be established by showing that the first-order partial derivatives of u and
v are continuous and satisfy the Cauchy-Riemann equations on the open set. Analyt-
icity of a function f is the mathematical expression of the intuitive condition that f
respects the complex structure of z; i.e., f can be computed using x and y only in the
combination (x + iy). If f is given in terms of z alone, the basic formulas of calculus
can be used to find its derivative.

The real and imaginary parts of an analytic function are harmonic; i.e., they satisfy
Laplace’s equation

∂2φ

∂x2
+ ∂2φ

∂y2
= 0,

and their second-order partial derivatives are continuous. Furthermore, the level curves
of the real part intersect those of the imaginary part orthogonally. Given a harmonic
function u(x, y) in a disk it is possible to construct another harmonic function v(x, y)
so that u(x, y)+ iv(x, y) is analytic in that disk; such a function v is called a harmonic
conjugate of u. Harmonic functions can be physically interpreted as equilibrium tem-
perature distributions.

Suggested Reading
In addition to the references following Chapter 1, the following texts, articles, web-
sites, and software packages may be helpful for special topics:

Harmonic Functions

[1] Davis, H., and Snider, A.D. Introduction to Vector Analysis, 7th ed. Quant
Systems, Charleston, SC, 1994.

[2] Hille, E. Analytic Function Theory, Vol. II. Chelsea, New York, 1973.

[3] Snider, A.D. Partial Differential Equations: Sources and Solutions, Prentice-
Hall, Upper Saddle River, NJ, 1999.
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Julia and Mandelbrot Sets

[1] Devaney, R. L. A First Course in Chaotic Dynamical Systems, Addison-Wesley
Publishing Co., Reading, MA, 1992.

[2] Hammel, S. M., Yorke, J. A., and Grebogi, C. “Do numerical orbits of chaotic
dynamical processes represent true orbits?,” J. of Complexity 3 (1987), 136–145.

[3] Peitgen, H.-O. and Richter, P. H. The Beauty of Fractals, Springer-Verlag, Ber-
lin, 1986. (Describes the exhibit “Frontiers of Chaos.”)

[4] http://math.bu.edu/DYSYS/explorer/tour4.html, a web site maintained at Boston
University by R. L. Devaney, contains much material on the Julia and Mandel-
brot sets. The “evaporating” Julia sets mentioned in the text are visible here.

[5] http://www.unca.edu/ mcmcclur/java/Julia/ allows the user to click on an arbi-
trary value for c and view the Julia set for z2 + c.
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Chapter 3

Elementary Functions

3.1 Polynomials and Rational Functions

As we indicated in Sec. 2.2, polynomial functions of z are functions of the form

pn(z) = a0 + a1z + a2z2 + · · · + anzn, (1)

and rational functions are ratios of polynomials:

Rm,n(z) = a0 + a1z + a2z2 + · · · + am zm

b0 + b1z + b2z2 + · · · + bnzn
. (2)

The degree of the polynomial (1) is n if the complex constant an is nonzero. The
rational function (2) has numerator degree m and denominator degree n, if am �= 0
and bn �= 0. The analyticity of these functions is quite transparent: polynomials are
entire, and rational functions are analytic everywhere except for the zeros of their
denominators. These families are ideal for launching our survey of the elementary
analytic functions.

To begin, we take a specific polynomial of degree three as a prototype for our
analysis:

p3(z) = 12 + 10z − 4z2 − 2z3 ≡ −2z3 − 4z2 + 10z + 12. (3)

We are going to study how p3(z) is characterized by its zeros and by the values of its
derivatives at a single point.

It is easy to verify (by substitution) that the zeros of p3(z) are 2, −1, and −3. The
reader is no doubt acquainted with the fact that this implies p3(z) can be expressed in
factored form as

p3(z) = −2(z − 2)(z + 1)(z + 3). (4)

A familiar line of reasoning that leads to the factored form goes roughly as follows.
One can always divide a “dividend” polynomial by a “divisor” polynomial to obtain a

The identically zero polynomial is assigned a degree of −∞. This has little significance other
than to avoid “exceptions” (see Prob. 22).

From Chapter 3 of Fundamentals of Complex Analysis with Applications to Engineering, Science, and Mathematics,
 © 2003 by Pearson Education, Inc. All rights reserved.Third Edition. Edward B. Saff, Arthur David Snider. Copyright
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“quotient” polynomial and a “remainder” polynomial whose degree is less than that of
the divisor:

dividend = divisor × quotient + remainder . (5)

If z1 is any arbitrary complex number, then division of pn(z) in (1) by the degree-
one polynomial z − z1 must result in a remainder of lower degree: in other words, a
constant,

pn(z) = (z − z1) pn−1(z)+ constant , (6)

where the quotient polynomial pn−1(z) has degree n − 1. But suppose z1 happens
to be a zero of pn(z). Then by setting z = z1 in (6) we deduce that the (constant)
remainder is zero. Thus (6) displays how (z − z1) has been factored out from pn(z);
we say pn(z) has been “deflated.” For our prototype p3(z), factoring out the first zero
z1 = 2 results in

−2z3 − 4z2 + 10z + 12 = (z − 2)(−2z2 − 8z − 6).

Now if z2 is a zero of the quotient pn−1(z) (and consequently of pn(z)) we can
deflate further by factoring out (z − z2), and so on, until we run out of zeros, leaving
us with the factorization

pn(z) = (z − z1)(z − z2) · · · (z − zk) pn−k(z). (7)

Since we knew 3 zeros for p3(z), Eq. (4) displays its “complete” deflation down
to factors of degree one (and the degree-zero factor −2).

Example 1
Carry out the deflation of the polynomial z3 + (2 − i)z2 − 2i z .

Solution. Obviously z1 = 0 is a zero, and the first deflation is trivial:

z3 + (2 − i)z2 − 2i z = z (z2 + (2 − i)z − 2i).

The quadratic formula (Example 3, Sec. 1.5) provides 2 zeros of the degree-two poly-
nomial:

z2, z3 = −(2 − i)±√
(2 − i)2 − 4(1)(−2i)

2
= −2, i

(see Prob. 21, Exercises 1.5, for the square root) and the factored form is

z3 + (2 − i)z2 − 2z = z(z + 2)(z − i). �

If we contemplate the deflation of the degree-six polynomial p6(z) = z6 + z4 −
4i z2 − 4z + 4 − 3i , we are confronted with the question as to how we find a zero of

The proper name for this division procedure is the Division Algorithm.
The reader may be aware of the fact that, in theory, deflation can always be continued until

pn−k(z) has been reduced to a constant. This will be discussed shortly.
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3.1 Polynomials and Rational Functions 101

p6(z). A logically prior question is: how do we know p6(z) has any zeros? Recall that
in Sec. 1.1 we observed that x2 + 1 had no zeros among the real numbers, and that we
had to extend our number system to the complex numbers C to create the zeros ±i .
This raises the chilling possibility that there is a horde of polynomials with coefficients
in C, which don’t have zeros in C, and that we will have to keep extending the number
system.

The hero of the saga is Gauss. In his doctoral dissertation of 1799 he proved
the Fundamental Theorem of Algebra, demonstrating that no further extensions are
necessary:

Theorem 1. Every nonconstant polynomial with complex coefficients has at
least one zero in C.

We immediately conclude that a polynomial of degree n has, in fact, n zeros, since
we can continue to factor out zeros in the deflation process until we reach the final,
constant, quotient. Repeated zeros are counted according to their multiplicities; for
example, z4 + 2z2 + 1 = (z − i)2(z + i)2 has zeros in two points, each of multiplicity
2, and we count them as 4 zeros.

Gauss constructed four proofs of the Fundamental Theorem in his lifetime. The
easiest one is based on complex integration, which we study in Chapter 4; the details
of the proof are postponed to Sec. 4.6.

Returning to the deflation process, with the issue of existence of zeros for the
quotients settled we have a complete factorization of any polynomial

pn(z) = an(z − z1)(z − z2) · · · (z − zn). (8)

The display (8) conveys a lot of information. It demonstrates that a polynomial pn(z)
of degree n has n zeros: no less (if we count multiplicities) and no more (why?); and
that pn(z) is completely determined by its zeros, up to a constant multiple (an). If
two polynomials of degree n have the same (n) zeros, then they are simply constant
multiples of each other. Furthermore, the factorization shows that z0 is a zero of p(z)
of multiplicity precisely k if and only if

pn(z) = (z − z0)
kq(z),

where q(z) is a polynomial with q(z0) �= 0 .

Example 2

Show that if the polynomial p(z) has real coefficients, it can be expressed as a product
of linear and quadratic factors, each having real coefficients.

Solution. The nonreal zeros of a polynomial with real coefficients occur in com-
plex conjugate pairs (Prob. 17, Exercises 1.2). So if, say, z2 is the conjugate of z1, we
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can combine (z − z1)(z − z2) in (8) to obtain

pn(z) = an(z − z1)(z − z2) · · · (z − zn)

= an

(
z2 − (z1 + z1)z + z1z1

)
· · · (z − zn)

= an

(
z2 − 2(Re z1)z + |z1|2

)
· · · (z − zn).

The pair of complex factors of degree one has been replaced by a real factor of degree
two. Combining the remaining complex factors similarly (and noting that the real
zeros, if any, generate real degree-one factors) we achieve the required display. For
example, recalling the fifth roots of unity, the reader can verify that

z5 − 1 = (z − 1)(z2 − 2 cos(2π/5)z + 1)(z2 − 2 cos(4π/5)z + 1). �

Of course the Fundamental Theorem only tells us that there are zeros; it doesn’t
tell us how to find them. We do know how to find all zeros of polynomials of degree
one (trivial!) and two (the quadratic formula). The references at the end of this chapter
describe algorithms for finding zeros of polynomials of degrees three and four. Re-
markably, Abel and Galois ended a centuries-long search by proving that no similar
such algorithm exists for polynomials of degrees five or higher!

Therefore to implement the factored form of a polynomial in general we have to
rely on numerical approximations for the zeros. Newton’s method (Prob. 10, Exer-
cises 2.7) is an excellent zero-finder for any analytic function if a good initial estimate
is available. The references describe other algorithms that are specifically designed for
polynomials.

As motivation for the next topic, consider the following example.

Example 3
Express the polynomial p3(z) of Eq. (3) in terms of powers of (z − 1) (instead of
powers of z).

Solution. The task is to find coefficients d0, d1, d2, and d3 so that

p3(z) = 12 + 10z − 4z2 − 2z3 (9)

= d0 + d1(z − 1)+ d2(z − 1)2 + d3(z − 1)3. (10)

A brute-force solution would be to expand (10) in powers of z, match the coefficients
with (9), and solve the resulting 4 equations in 4 unknowns. Somewhat craftier would
be to note that z = (z − 1) + 1; call this ζ + 1, and expand p3(z) = p3(ζ + 1) in
powers of ζ , replacing ζ by (z − 1) at the end:

p3(ζ + 1) = 12 + 10(ζ + 1)− 4(ζ + 1)2 − 2(ζ + 1)3

= 12 + 10ζ + 10 − 4ζ 2 − 8ζ − 4 − 2ζ 3 − 6ζ 2 − 6ζ − 2

= 16 − 4ζ − 10ζ 2 − 2ζ 3;
p3(z) = 16 − 4(z − 1)− 10(z − 1)2 − 2(z − 1)3. � (11)

Abel, Niels Henrik (1802–1829); Galois, Evariste (1811–1832).
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From this example we readily generalize to conclude that any polynomial can be
rewritten in powers of (z − z0), for arbitrary z0. But there’s an easier way of accom-
plishing this “re-expansion.” First note that the coefficients of p3(z), as displayed in
(10), are directly expressible in terms of the values of p3 and its derivatives at z = 1.
For example, if we differentiate (10) twice, we eliminate d0 and d1; and if we set z = 1
in what’s left, we eliminate d3; only d2 (times 2) survives. So from (10) we get via
successive differentiation

p3(1) = d0 ,

p′
3(1) = 1d1 ,

p′′
3(1) = 2 · 1d2 ,

p′′′
3 (1) = 3 · 2 · 1d3 ,

p(4)3 (1) = p(5)3 (1) = · · · = 0.

The pattern is clear. The coefficient of (z − z0)
k , in the expansion of a polynomial

pn(z) in powers of (z − z0), is given by its kth derivative, evaluated at z0, and divided
by k factorial:

pn(z) = pn(z0)

0! + p′
n(z0)

1! (z − z0)
1 + p′′

n(z0)

2! (z − z0)
2 + · · · + p(n)n (z0)

n! (z − z0)
n

=
n∑

k=0

p(k)n (z0)

k! (z − z0)
k . (12)

This is known as the Taylor form of the polynomial pn(z), centered at z0. Of course,
we can compute the Taylor form of p3(z) centered at 1 directly from (9):

p3(1) = 12 + 10 · 11 − 4 · 12 − 2 · 13 = 16 = d0,

p′
3(1) = 10 − 4 · 2 · 11 − 2 · 3 · 12 = −4 = d1,

etc. (compare (11)). The “standard” form (3) of the polynomial p3(z) is, then, its
Taylor form centered at z0 = 0. Usually one uses the nomenclature Maclaurin form
for the Taylor form centered at 0; the standard form (9) is thus its Maclaurin form.

If the Taylor form of a polynomial starts with a term of degree one

pn(z) = p′
n(z0)

1! (z − z0)+ p′′
n(z0)

2! (z − z0)
2 + · · · + p(n)n (z0)

n! (z − z0)
n,

it clearly signals that z0 is a zero of the polynomial. For instance, the Taylor form of
p3(z) centered at its zero z0 = 2 is

p3(z) = (0)− 30

1! (z − 2)− 32

2! (z − 2)2 − 12

3! (z − 2)3. (13)

Remember that 0! = 1.
Brook Taylor (1685–1731) published his discovery in 1715, but it had already been anticipated

by James Gregory (1638–1675) 40 years earlier.
Colin Maclaurin, 1698–1746.

103



104 Elementary Functions

In fact, not only does the absence of the constant term p3(2) highlight the fact that
p3(z) is zero when z = 2, but (13) also provides an alternative demonstration of how
(z − 2) can be factored out. When more of the leading terms in the Taylor form for the
general polynomial pn(z) are missing, it looks like

pn(z) = p(k)n (z0)

k! (z − z0)
k + p(k+1)

n (z0)

(k + 1)! (z − z0)
k+1 + · · · + p(n)n (z0)

n! (z − z0)
n

= (z − z0)
k

[
p(k)n (z0)

k! + p(k+1)
n (z0)

(k + 1)! (z − z0)+ · · · + p(n)n (z0)

n! (z − z0)
n−k

]
.

(14)
Thus we see that if pn(z) has a zero of multiplicity precisely k at z0, then p(k)n (z0) �= 0,
while p( j)

n (z0) = 0 for 0 ≤ j < k.

Now we direct our attention to rational functions. Since they are ratios of poly-
nomials, all of the previous considerations can be applied to their numerators and
denominators separately. Probably the most enlightening display comes from the fac-
tored form:

Rm,n(z) = am(z − z1)(z − z2) · · · (z − zm)

bn(z − ζ1)(z − ζ2) · · · · · · (z − ζn)
, (15)

where {zk} designates the zeros of the numerator and {ζk} designates those of the
denominator. We assume that common zeros have been cancelled. The zeros of the
numerator are, of course, zeros of Rm,n(z); zeros of the denominator are called poles
of Rm,n(z). (Zeros and poles can, of course, be multiple.) Clearly the magnitude of
Rm,n(z) grows without bound as z approaches a pole.

Example 4
Find all the poles and their multiplicities for

R(z) = (3z + 3i)(z2 − 4)

(z − 2)(z2 + 1)2
.

Solution. The zeros of the denominator are 2, i , and −i , which are candidates
for the poles. To determine whether they truly are, we factor both numerator and
denominator and cancel common terms:

(3z + 3i)(z2 − 4)

(z − 2)(z2 + 1)2
= 3(z + i)(z − 2)(z + 2)

(z − 2)(z − i)2(z + i)2

= 3(z + 2)

(z − i)2(z + i)
.

Thus we see that the only poles of R(z) are at z = i of multiplicity 2 and z = −i of
multiplicity 1. �

A rational function maps neighborhoods of its poles into neighborhoods of infinity, in the sense
of Sec. 1.7.
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Knowledge of the poles of Rm,n(z) enables its expression in terms of partial frac-
tions. Some examples of the partial fraction expansion are

3z2 + 4z − 5

(z − 2)(z + 1)(z + 3)
= 1

z − 2
+ 1

z + 1
+ 1

z + 3
(16)

and, for multiple poles,

4z + 4

z(z − 1)(z − 2)2
= −1

z
+ 8

z − 1
+ −7

z − 2
+ 6

(z − 2)2
. (17)

Note that the partial fraction decomposition focuses on the poles of the rational func-
tion, conveying little information about its zeros.

Theorem 2. If

Rm,n(z) = a0 + a1z + a2z2 + · · · + am zm

bn(z − ζ1)d1(z − ζ2)d2 · · · (z − ζr )dr
(18)

is a rational function whose denominator degree n = d1 + d2 + · · · + dr exceeds
its numerator degree m, then Rm,n(z) has a partial fraction decomposition of
the form

Rm,n(z) = A(1)0

(z − ζ1)d1
+ A(1)1

(z − ζ1)d1−1
+ · · · + A(1)d1−1

(z − ζ1)

+ A(2)0

(z − ζ2)d2
+ · · · + A(2)d2−1

(z − ζ2)

+ · · · + A(r)0

(z − ζr )dr
+ · · · + A(r)dr −1

(z − ζr )
, (19)

where the {A( j)
s } are constants. (The ζk’s are assumed distinct.)

The reader may have had some experience with partial fractions in the evaluation
of integrals. Advanced applications will be discussed in later chapters.

Before proceeding with the proof of Theorem 2, assume for the moment that every
suitable rational function has a partial fraction decomposition and let us consider how
to find it.

The brute-force procedure consists in rearranging the proposed form (19) over a
common denominator and comparing the resulting numerator, term by term, with the
original numerator of Rm,n(z). This results in a system of linear equations for the

unknown coefficients {A( j)
s }. A quicker, more sophisticated method for evaluating the

{A( j)
s } is illustrated in the following example.

In most applications, when the numerator degree of a rational function equals or exceeds its
denominator degree, one performs long division to extract the “polynomial” part of the function and
applies the partial fraction decomposition to the residual fraction.
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Example 5
Reproduce the partial fraction decomposition of the rational function in (17).

Solution. The desired form is

R(z) = 4z + 4

z(z − 1)(z − 2)2
= A(1)0

z
+ A(2)0

z − 1
+ A(3)0

(z − 2)2
+ A(3)1

z − 2
. (20)

Note that if the proposed display (20) is multiplied by z, canceling the z in the first
denominator, and then the result is evaluated at z = 0, only the number A(1)0 would

survive; in other words, A(1)0 = limz→0 z R(z). But this limit is readily evaluated from
the original formula for R(z):

A(1)0 = lim
z→0

z R(z) = 4 · 0 + 4

(0 − 1)(0 − 2)2
= −1.

Similarly, we read off

A(2)0 = lim
z→1

(z − 1)R(z) = 4 · 1 + 4

1(1 − 2)2
= 8

A(3)0 = lim
z→2

(z − 2)2 R(z) = 4 · 2 + 4

2(2 − 1)
= 6.

To get A(3)1 , we multiply (20) by (z −2)2, then we differentiate to kill off the term A(3)0 :

d

dz

[
(z − 2)2 R(z)

]
= d

dz

[
A(1)0 (z − 2)2

z
+ A(2)0 (z − 2)2

z − 1
+ A(3)1 (z − 2)+ A(3)0

]

= d

dz

[
A(1)0 (z − 2)2

z
+ A(2)0 (z − 2)2

z − 1

]
+ A(3)1 .

After the differentiation, everything but A(3)1 will still have at least one factor of (z−2),
so

A(3)1 = lim
z→2

d

dz

[
(z − 2)2 R(z)

]
= lim

z→2

d

dz

(
4z + 4

z2 − z

)
= (22 − 2)4 − (4 · 2 + 4)(2 · 2 − 1)

(22 − 2)2
= −7. �

From the method employed in the above example, it can be seen that if Rm,n(z)
can be written in the form (19), then a general expression for the coefficients is

A( j)
s = lim

z→ζ j

1

s!
ds

dzs
[(z − ζ j )

d j Rm,n(z)]. (21)

This formula will enable us to give the
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Proof of Theorem 2. Let the constants A( j)
s be defined by formula (21) and

consider, at first, the sum of those partial fractions in (19) that are associated with the
pole ζ1 (the so-called singular part of Rm,n(z) around ζ1). We claim that the difference

Rm,n(z)−
d1−1∑
s=0

A(1)s

(z − ζ1)d1−s
= Rm,n(z)− 1

(z − ζ1)d1

d1−1∑
s=0

A(1)s (z − ζ1)
s (22)

has no pole at ζ1. Writing

T (z) :=
d1−1∑
s=0

A(1)s (z − ζ1)
s , (23)

P(z) := a0 + a1z + a2z2 + · · · + am zm ,

Q(z) := bn(z − ζ2)
d2(z − ζ3)

d3 · · · (z − ζr )
dr ,

the expression (22) becomes

P(z)

(z − ζ1)d1 Q(z)
− T (z)

(z − ζ1)d1
= P(z)− Q(z)T (z)

(z − ζ1)d1 Q(z)
.

Thus our claim will be proved if we show that the polynomial P − QT has a zero at
ζ1 of order at least d1, that is

(P − QT )(s)(ζ1) = 0, for s = 0, 1, . . . , d1 − 1. (24)

For this purpose observe that (23) is the Taylor form of the polynomial T centered at
ζ1. Hence

T (s)(ζ1)/s! = A(1)s , for s = 0, 1, . . . , d1 − 1.

From the defining formula (21) we also know that

A(1)s = 1

s!g(s)(ζ1), where g(z) := (z − ζ1)
d1 Rm,n(z) = P(z)

Q(z)
.

Thus
T (s)(ζ1) = g(s)(ζ1), for s = 0, 1, . . . , d1 − 1.

But these last equations, when written in the equivalent form (g−T )(s)(ζ1) = 0, imply
(24) since

(P − QT ) = Q(g − T )

(P − QT )′ = Q(g − T )′ + Q′(g − T )

(P − QT )′′ = Q(g − T )′′ + 2Q′(g − T )′ + Q′′(g − T ),

etc. This verifies the claim that the difference (22) has no pole at ζ1.
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Similarly, we deduce that the difference between Rm,n(z) and its singular part
around ζ2 has no pole at ζ2, and so on. From this it follows that

Rm,n −
d1−1∑
s=0

A(1)s

(z − ζ1)d1−s
− · · · −

dr −1∑
s=0

A(r)s

(z − ζr )dr −s
(25)

is a rational function with no poles, i.e., a polynomial. But every term in (25) ap-
proaches 0 as |z| becomes unbounded, so this must be the zero polynomial, which
yields equality (19). �

EXERCISES 3.1

1. A polynomial p(z) of degree 4 has zeros at the points −1, 3i , and −3i of respective
multiplicities 2, 1, and 1. If p(1) = 80, find p(z).

2. Show that if the polynomial p(z) = anzn +an−1zn−1+· · ·+a0 is written in factored
form as p(z) = an(z − z1)

d1(z − z2)
d2 · · · (z − zr )

dr , then

(a) n = d1 + d2 + · · · + dr ,

(b) an−1 = −an(d1z1 + d2z2 + · · · + dr zr ),

(c) a0 = an(−1)nzd1
1 zd2

2 · · · zdr
r .

3. Write the following polynomials in factored form:

(a) z5 + (2 + 2i)z4 + 2i z3 (b) z4 − 16

(c) 1 + z + z2 + z3 + z4 + z5 + z6

4. Show that if p(z) = zn + an−1zn−1 + · · · + a0 is a polynomial of degree n ≥ 1 and
|a0| > 1, then p(z) has at least one zero outside the unit circle. [HINT: Notice that
the leading coefficient an = 1 and consider the factored form of p.]

5. Write the following polynomials in the Taylor form, centered at z = 2:

(a) z5 + 3z + 4 (b) z10 (c) (z − 1)(z − 2)3

6. If p(z) = anzn + an−1zn−1 + · · · + a0 (an �= 0), then its reverse polynomial p∗(z)
is given by

p∗(z) = an + an−1z + · · · + a0zn .

(a) Show that p∗(z) = zn p(1/z).

(b) Show that if p(z) has a zero at z0( �= 0), then p∗(z) has a zero at 1/z0.

(c) Show that for |z| = 1, we have |p(z)| = |p∗(z)|.
7. Prove that if the polynomial p(z) has a zero of order m at z0, then p′(z) has a zero

of order m − 1 at z0.
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8. Show that if the polynomials p(z) and q(z) have, respectively, zeros of order m and
k at z0, then the product polynomial p(z)q(z) has a zero of order m + k at z0.

9. Show that if z0 is a zero of pn(z) of order d, then for all z sufficiently near z0, there
are positive constants c1 and c2 such that c1|z − z0|d ≤ |pn(z)| ≤ c2|z − z0|d .

10. Show that if pn(z) has degree n, then for all z with |z| sufficiently large, there are
positive constants c1 and c2 such that c1|z|n < |pn(z)| < c2|z|n .

11. For each of the following rational functions find all its poles and their multiplicities.

(a)
3z2 + 1

z3(z2 + 2i z + 1)
(b)

z2 + 4

(z − 2)(z − 3)2

(c)
(

2z + 3

z2 + 4z + 4

)3

(d)
2z

z2 + 3z + 2
+ 2

z + 1

12. Let Rm,n(z) = P(z)/Q(z) and rm,n = p(z)/q(z) be two rational functions each
with numerator degree m and denominator degree n. Show that if Rm,n and rm,n

agree at m + n + 1 distinct points, then Rm,n = rm,n for all z.

13. Use formula (21) to find the partial fraction decompositions of each of the following
rational functions:

(a)
3 + i

z(z + 1)(z + 2)
(b)

2z + i

z3 + z
(c)

z

(z2 + z + 1)2

(d)
5z4 + 3z2 + 1

2z2 + 3z + 1
[HINT: First apply the division algorithm to

obtain a rational function of suitable form.]

14. Show that if the rational function R(z) has a pole of order m at z0, then its derivative
R′(z) has a pole of order m + 1 at z0.

15. (Residue) Let R = P/Q be a rational function with deg P < deg Q. If ζ is a pole
of R, then the coefficient of 1/(z −ζ ) in the partial fraction expansion of R is called
the residue of R(z) at ζ and is denoted by Res(ζ ). Using formula (21), compute
each of the following residues:

(a) Res(i) for R(z) = 2z + 3

(z − i)(z2 + 1)

(b) Res(−1) for R(z) = z3 + 4z + 9

(2z + 2)(z − 3)5

(c) Res(0) for R(z) = 2z2 + 3

z2(z2 + 2z + i)

(d) Res(3i) for R(z) = z2 − 9

(z2 + 9)2

(e) Res(0) for R(z) = 2z3 + 3

z3(z + 1)

109



110 Elementary Functions

16. Show that if Rm,n(z) is a rational function with numerator degree m and denomina-
tor degree n, then for all |z| sufficiently large, there are positive constants c1 and c2
such that c1|z|m−n < |Rm,n(z)| < c2|z|m−n .

17. Show that if p(z) = an(z − z1)
d1(z − z2)

d2 · · · (z − zr )
dr , then the partial fraction

expansion of the logarithmic derivative p′/p is given by

p′(z)
p(z)

= d1

z − z1
+ d2

z − z2
+ · · · + dr

z − zr
.

[HINT: Generalize from the formula ( f gh)′ = f ′gh + f g′h + f gh′.]

18. Show that if

R(z) = d1

z − z1
+ d2

z − z2
+ · · · + dr

z − zr
,

where each di is real and positive and each zk lies in the upper half-plane Im z > 0,
then R(z) has no zeros in the lower half-plane Im z < 0. [HINT:Write R(z) =
d1(z−z1)

|z−z1|2 + · · · + dr (z−zr )

|z−zr |2 . Then sketch the vectors (z − zk) for Im zk > 0 and
Im z < 0. Argue from the sketch that any linear combination of these vectors with
real, positive coefficients (dk/|z − zk |2) must have a negative (and hence nonzero)
imaginary part. Alternatively, show directly that Im R(z) > 0 for Im z < 0.]

19. Show that if all the zeros of a polynomial p(z) lie in the upper half-plane, then the
same is true for the zeros of p′(z). [HINT: See Probs. 17 and 18.]

20. Generalize the geometric argument in Prob. 19 to show that if all the zeros of a
polynomial p(z) lie on one side of any line, then the same is true for the zeros of
p′(z).

21. When a set of points lies entirely on one side of a straight line, let us say that the
line “shelters” the point set. If z1, z2, . . . , zr is any finite set of points in the plane,
their convex hull is the common “territory” that is sheltered by every straight line
that shelters the {z j }. Argue that Prob. 20 proves the Gauss-Lucas Theorem: if p(z)
is any polynomial, all the zeros of p′(z) lie in the convex hull of the zeros of p(z).

22. Show how exceptions to the statement “the degree of the product of two polynomials
equals the sum of the degrees of each factor” are finessed by the choice (−∞) as
the degree of the identically zero polynomial.

3.2 The Exponential, Trigonometric, and
Hyperbolic Functions

The complex exponential function ez plays a prominent role in analytic function the-
ory, not only because of its own important properties but because it is used to define the

Francois Edouard Anatole Lucas (1842–1891) invented the Tower of Hanoi puzzle.
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complex trigonometric and hyperbolic functions. Recall the definition from Chapter
1: If z = x + iy,

ez = ex (cos y + i sin y). (1)

As a consequence of Example 2 in Sec. 2.4, we know that ez is an entire function
and that

d

dz
ez = ez .

The polar components of ez are readily derived from (1):

|ez| = ex , (2)

arg ez = y + 2kπ (k = 0,±1,±2, . . .). (3)

It follows that ez is never zero. However, ez does assume every other complex value
(see Prob. 4).

Recall that a function f is one-to-one on a set S if the equation f (z1) = f (z2),
where z1 and z2 are in S, implies that z1 = z2. As is shown in calculus, the exponential
function is one-to-one on the real axis. However it is not one-to-one on the complex
plane. In fact, we have the following.

Theorem 3.

(i) The equation ez = 1 holds if, and only if, z = 2kπ i , where k is an integer.

(ii) The equation ez1 = ez2 holds if, and only if, z1 = z2 + 2kπ i , where k is
an integer.

Proof of (i). First suppose that ez = 1, with z = x + iy. Then we must have

|ez| = |ex+iy | = ex = 1,

and so x = 0. This implies that

ez = eiy = cos y + i sin y = 1,

or, equivalently,
cos y = 1, sin y = 0.

These two simultaneous equations are clearly satisfied only when y = 2kπ for some
integer k; i.e., z = 2kπ i .

Conversely, if z = 2kπ i , where k is an integer, then

ez = e2kπ i = e0(cos 2kπ + i sin 2kπ) = 1.

Proof of (ii). It follows from the division rule that

ez1 = ez2 if, and only if, ez1−z2 = 1.
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But, by part (i), the last equation holds precisely when z1 − z2 = 2kπ i , where k is an
integer. �

One important consequence of Theorem 3 is the fact that ez is periodic. In general,
a function f is said to be periodic in a domain D if there exists a nonzero constant λ
such that the equation f (z + λ) = f (z) holds for every z in D. Any constant λ with
this property is called a period of f . Since, for all z,

ez+2π i = ez,

we see that ez is periodic with complex period 2π i . Consequently, if we divide up the
z-plane into the infinite horizontal strips

Sn := {x + iy| − ∞ < x < ∞, (2n − 1)π < y ≤ (2n + 1)π} (n = 0,±1,±2, . . .),

as shown in Fig. 3.1, then ez will behave in the same manner on each strip. Further-
more, from part (ii) of Theorem 3, it follows that ez is one-to-one on each strip Sn . For
these reasons any one of these strips is called a fundamental region for ez .

Figure 3.1 Fundamental regions for ez .

From the identity
eiy = cos y + i sin y,

and its obvious consequence

e−iy = cos y − i sin y,

we deduce, by subtracting and adding these equations, that

sin y = eiy − e−iy

2i
, cos y = eiy + e−iy

2
.

These real variable formulas suggest the following extensions of the trigonometric
functions to complex “angles.”
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Definition 1. Given any complex number z, we define

sin z := eiz − e−i z

2i
, cos z := eiz + e−i z

2
.

Since eiz and e−i z are entire functions, so are sin z and cos z. In fact,

d

dz
sin z = d

dz

(
eiz − e−i z

2i

)
= 1

2i
(ieiz − (−i)e−i z) = cos z, (4)

and, similarly,
d

dz
cos z = − sin z. (5)

We recognize that Eqs. (4) and (5) agree with the familiar formulas derived in calculus.
Some further identities that remain valid in the complex case are listed below:

sin(z + 2π) = sin z, cos(z + 2π) = cos z. (6)

sin(−z) = − sin z, cos(−z) = cos z. (7)

sin2 z + cos2 z = 1. (8)

sin(z1 ± z2) = sin z1 cos z2 ± sin z2 cos z1. (9)

cos(z1 ± z2) = cos z1 cos z2 ∓ sin z1 sin z2. (10)

sin 2z = 2 sin z cos z, cos 2z = cos2 z − sin2 z. (11)

The proofs of these identities follow directly from the properties of the exponential
function and are left to the exercises. Notice that Eqs. (6) imply that sin z and cos z are
both periodic with period 2π .

Example 1

Prove that sin z = 0 if, and only if, z = kπ , where k is an integer.

Solution. If z = kπ , then clearly sin z = 0. Now suppose, conversely, that
sin z = 0. Then we have

eiz − e−i z

2i
= 0,

or, equivalently,
eiz = e−i z .

By Theorem 3(ii) it follows that

i z = −i z + 2kπ i,

which implies that z = kπ for some integer k. �

113



114 Elementary Functions

Thus the only zeros of sin z are its real zeros. The same is true of the function
cos z; i.e.,

cos z = 0 if and only if z = π

2
+ kπ,

where k is an integer.
The other four complex trigonometric functions are defined by

tan z := sin z

cos z
, cot z := cos z

sin z
, sec z := 1

cos z
, csc z := 1

sin z
.

Notice that the functions cot z and csc z are analytic except at the zeros of sin z, i.e., the
points z = kπ , whereas the functions tan z and sec z are analytic except at the points
z = π/2 + kπ , where k is any integer. Furthermore, the usual rules for differentiation
remain valid for these functions:

d

dz
tan z = sec2 z,

d

dz
sec z = sec z tan z,

d

dz
cot z = − csc2 z,

d

dz
csc z = − csc z cot z.

The preceding discussion has emphasized the similarity between the real trigono-
metric functions and their complex extensions. However, this analogy should not be
carried too far. For example, the real cosine function is bounded by 1, i.e.,

| cos x | ≤ 1, for all real x,

but

| cos(iy)| =
∣∣∣∣e−y + ey

2

∣∣∣∣ = cosh y,

which is unbounded and, in fact, is never less than 1!
The complex hyperbolic functions are defined by a natural extension of their defi-

nitions in the real case:

Definition 2. For any complex number z we define

sinh z := ez − e−z

2
, cosh z := ez + e−z

2
. (12)

Notice that the functions (12) are entire and satisfy

d

dz
sinh z = cosh z,

d

dz
cosh z = sinh z. (13)

One nice feature of the complex variable perspective is that it reveals the intimate con-
nection between hyperbolic functions and their trigonometric analogues. The reader
can readily verify that

sin i z = i sinh z, sinh i z = i sin z, cos i z = cosh z, cosh i z = cos z, (14)
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and using these formulas one can transform the trigonometric identities (6)–(11) into
their hyperbolic versions. For example, replacing z by i z in the identity (8) yields the
familiar hyperbolic identity cosh2 z − sinh2 z = 1.

The four remaining complex hyperbolic functions are given by

tanh z := sinh z

cosh z
, coth z := cosh z

sinh z
, sech z := 1

cosh z
, csch z := 1

sinh z
.

EXERCISES 3.2

1. Show that ez =(1 + i)/
√

2 if and only if z = (π/4 + 2kπ)i , k = 0,±1,±2, . . ..

2. Let f (z) = ez − (1 + z + z2/2 + z3/6). Show that f (3)(0) = 0.

3. Find the sum
∑100

k=0 ekz .

4. Let ω ( �= 0) have the polar representation ω = reiθ . Show that
exp(log r + iθ) = ω (base e logarithm).

5. Write each of the following numbers in the form a + bi .

(a) exp(2 + iπ/4) (b)
exp(1 + i3π)

exp(−1 + iπ/2)

(c) sin(2i) (d) cos(1 − i)

(e) sinh(1 + π i) (f) cosh(iπ/2)

6. Establish the trigonometric identities (8) and (9).

7. Show that the formula eiz = cos z + i sin z holds for all complex numbers z.

8. Verify the differentiation formulas (13).

9. Find dw/dz for each of the following.

(a) w = exp(π z2) (b) w = cos(2z)+ i sin

(
1

z

)
(c) w = exp[sin(2z)] (d) w = tan3 z

(e) w = [sinh z + 1]2 (f) w = tanh z

10. Explain why the function f (z) = sin(z2)+ e−z + i z is entire.

11. Explain why the function Re
(cos z

ez

)
is harmonic in the whole plane.

12. Establish the following hyperbolic identities by using the relations (14) and the cor-
responding trigonometric identities.

(a) cosh2 z − sinh2 z = 1

(b) sinh(z1 + z2) = sinh z1 cosh z2 + cosh z1 sinh z2
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(c) cosh(z1 + z2) = cosh z1 cosh z2 + sinh z1 sinh z2

13. Show the following.

(a) sin(x + iy) = sin x cosh y + i cos x sinh y

(b) cos(x + iy) = cos x cosh y − i sin x sinh y

14. Prove the following.

(a) eiz is periodic with period 2π .

(b) tan z is periodic with period π .

(c) sinh z and cosh z are both periodic with period 2π i .

(d) tanh z is periodic with period π i .

15. Prove that cos z = 0 if and only if z = π/2 + kπ , where k is an integer.

16. Verify the identity

sin z2 − sin z1 = 2 cos

(
z2 + z1

2

)
sin

(
z2 − z1

2

)
,

and use it to show that sin z1 = sin z2 if and only if z2 = z1 + 2kπ or z2 =
−z1 + (2k + 1)π , where k is an integer.

17. Find all numbers z (if any) such that

(a) e4z = 1

(b) eiz = 3

(c) cos z = i sin z

18. Prove the following.

(a) lim
z→0

sin z

z
= 1 (b) lim

z→0

cos z − 1

z
= 0

[HINT: Use the fact that f ′(0) = lim
z→0

[ f (z)− f (0)]/z.]

19. Prove that the function ez is one-to-one on any open disk of radius π .

20. Show that the function w = ez maps the shaded rectangle in Fig. 3.2(a) one-to-one
onto the semi-annulus in Fig. 3.2(b).

21. (a) Show that the mapping w = sin z is one-to-one in the semi-infinite strip

S1 = {x + iy | − π < x < π, y > 0}
and find the image of this strip. [HINT: See Prob. 16]

(b) For w = sin z, what is the image of the smaller semi-infinite strip

S2 = {x + iy | − π/2 < x < π/2, y > 0}?
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Figure 3.2 Mapping of a rectangle under w = ez .

22. Prove that for any m distinct complex numbers λ1, λ2, . . . , λm (λi �= λ j for i �= j),
the functions eλ1z, eλ2z, . . . , eλm z are linearly independent on C. In other words,
show that if c1eλ1z + c2eλ2z + · · · + cmeλm z = 0 for all z, then c1 = c2 = · · · =
cm = 0. [HINT: Proceed by induction on m. In the inductive step, divide by one of
the exponentials and then take the derivative.]

23. Below is an outline of an alternative proof that sin2 z + cos2 z = 1 for all z. Justify
each step in the proof.

(a) The function f (z) = sin2 z + cos2 z is entire.

(b) f ′(z) = 0 for all z.

(c) f (z) is a constant function.

(d) f (0) = 1.

(e) f (z) = 1 for all z.

24. Using only real arithmetic operations, write a computer program that, when given
as input the real and imaginary parts (x, y) of z = x + iy, produces as output the
real and imaginary parts of (a) ez , (b) sin z, and (c) cosh z.

25. The behavior of the function e1/z around z = 0 is extremely erratic; in Sec. 5.6
this point is classified as an “essential singularity.” Find values of z, all located in
the tiny disk |z| ≤ 0.001, where e1/z takes the value (a) i , (b) −1, (c) 6.02 × 1023

(Avogadro’s number), (d) 1.6 × 10−19 (the electronic charge in Coulombs).
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3.3 The Logarithmic Function

In discussing a correspondence w = f (z) we have used the word “function” to mean
that f assigns a single value w to each permissible value of z. Sometimes this fact is
emphasized by saying “ f is a single-valued function.” Of course there are equations
that do not define single-valued functions; for example, w = arg z and w = z1/2.
Indeed, for each nonzero z there are an infinite number of distinct values of arg z
and two distinct values of z1/2. In general, if for some values of z there corresponds
more than one value of w = f (z), then we say that w = f (z) is a multiple-valued
function. We commonly obtain multiple-valued functions by taking the inverses of
single-valued functions that are not one-to-one. This is, in fact, how we obtain the
complex logarithmic function log z.

So we want to define log z as the inverse of the exponential function; i.e.,

w = log z if z = ew. (1)

Since ew is never zero, we presume that z �= 0. To find log z explicitly, let us write
z in polar form as z = reiθ and write w in standard form as w = u + iv. Then the
equation z = ew becomes

reiθ = eu+iv = eueiv. (2)

Taking magnitudes of both sides of (2) we deduce that r = eu , or that u is the ordinary
(real) logarithm of r :

u = Log r.

(We capitalize Log here to distinguish the natural logarithmic function of real vari-
ables.) The equality of the remaining factors in Eq. (2), namely, eiθ = eiv , identifies v
as the (multiple-valued) polar angle θ = arg z:

v = arg z = θ.

Thusw = log z is also a multiple-valued function. The explicit definition is as follows.

Definition 3. If z �= 0, then we define log z to be the set of infinitely many values

log z : = Log |z| + i arg z

= Log |z| + i Arg z + i2kπ (k = 0,±1,±2, . . .).
(3)

All logarithms in this text are taken to the base e and are hereafter abbreviated log or Log. The
notations ln and Ln are not used in this book. Leonhard Euler (1707–1783) conceived the idea that
the logarithm could be extended to negative and complex numbers.
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The multiple-valuedness of log z simply reflects the fact that the imaginary part of
the logarithm is the polar angle θ ; the real part is single-valued. As examples, consider

log 3 = Log 3 + i arg 3 = (1.908 . . .)+ i2kπ,

log(−1) = Log 1 + i arg(−1) = i(2k + 1)π,

log(1 + i) = Log |1 + i | + i arg(1 + i)

= 1

2
Log 2 + i

(π
4

+ 2kπ
)
,

where k = 0,±1,±2, . . ..
The familiar properties of the real logarithmic function extend to the complex case,

but the precise statements of these extensions are complicated by the fact that log z is
multiple-valued. For example, if z �= 0, then we have

z = elog z,

but
log ez = z + 2kπ i (k = 0,±1,±2, . . .).

Furthermore, using the representation (3) and the equations

arg z1z2 = arg z1 + arg z2, (4)

arg

(
z1

z2

)
= arg z1 − arg z2, (5)

one can readily verify that

log z1z2 = log z1 + log z2, (6)

and that

log

(
z1

z2

)
= log z1 − log z2. (7)

As with Eqs. (5), we must interpret Eqs. (6) and (7) to mean that if particular values
are assigned to any two of their terms, then one can find a value of the third term so
that the equation is satisfied. For example, if z1 = z2 = −1 and we select π i to be the
value of log z1 and log z2, then Eq. (6) will be satisfied if we use the particular value
2π i for log(z1z2) = log 1.

Recall that in Sec. 1.3 we used the notion of a branch cut to resolve the ambiguity
in the designation of the polar angle θ = arg z. We took Arg z to be the principal value
of arg z, the value in the interval (−π, π], which jumps by 2π as z crosses the branch
cut along the negative real axis. Other branches argτ z resulted from restricting the
values of arg z to (τ, τ + 2π] and shifting the 2π-discontinuities to the ray θ = τ .

Clearly the same artifice will generate single-valued branches of log z. The prin-
cipal value of the logarithm Log z is the value inherited from the principal value of the
argument:

Log z := Log |z| + i Arg z. (8)
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Figure 3.3 Analyticity domain for Log z.

[Notice that we can use the same convention (Log with a capital L) for the principal
value as for the usual (real) value, since Arg z = 0 if z is positive real.] Log z also
inherits, from Arg z, the discontinuities along the branch cut; it jumps by 2π i as z
crosses the negative real axis. However, at all points off the nonpositive real axis,
Log z is continuous, and this fact enables us to prove the next theorem.

Theorem 4. The function Log z is analytic in the domain D∗ consisting of all
points of the complex plane except those lying on the nonpositive real axis (see
Fig. 3.3). Furthermore,

d

dz
Log z = 1

z
, for z in D∗. (9)

Proof. Let us set w = Log z. Our goal is to prove that, for z0 in D∗ and w0 =
Log z0, the limit of the difference quotient

lim
z→z0

w − w0

z − z0
(10)

exists and equals 1/z0. We are guided in this endeavor by the knowledge that z = ew

and that the exponential function is analytic so that

lim
w→w0

z − z0

w − w0
= dz

dw

∣∣∣
w=w0

= ew0 = z0.

Observe that we will have accomplished our goal if we can show that

lim
z→z0

w − w0

z − z0
= lim
w→w0

1
z−z0
w−w0

, (11)

It is convenient here to use form (10) instead of the usual form

lim
�z→0

[
Log (z0 +�z)− Log z0

]
/�z.

The equivalence of these limits can be seen by putting �z = z − z0.
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because the limit on the right exists and equals 1/z0. But (11) will follow from the
trivial identity

w − w0

z − z0
= 1

z−z0
w−w0

, (12)

provided we show that

(a) As z approaches z0, w must approach w0, and

(b) For z �= z0, w will not coincide with w0 [so that the terms in Eq. (11) are
meaningful].

Condition (a) follows from the continuity, in D∗, of w = Log z. Condition (b)
is even more immediate; if w coincided with w0, z would have to equal z0, since
z = ew. Thus w = Log z is differentiable at every point in D∗ and hence is analytic
there. �

Corollary 1. The function Arg z is harmonic in the domain D∗ of Theorem 4.

Corollary 2. The real function Log |z| is harmonic in the entire plane with the
exception of the origin. (See Prob. 8.)

Example 1
Determine the domain of analyticity for the function f (z) := Log(3z − i). Compute
f ′(z).

Solution. Since f is the composition of Log with the function g(z) = 3z − i ,
the chain rule asserts that f will be differentiable at each point z for which 3z − i lies
in the domain D∗ of Theorem 4. Thus points where 3z − i is negative or zero are
disallowed; a little thought shows that these points lie on the horizontal ray x ≤ 0,
y = 1

3 (see Fig. 3.4). In this slit plane, then, from Eq. (9):

f ′(z) = d

dz
Log(3z − i) = 1

3z − i

d

dz
(3z − i) = 3

3z − i
. �

Other branches of log z can be employed if the location of the discontinuities on
the negative axis is inconvenient. Clearly the specification

Lτ (z) := Log |z| + i argτ z (13)

Advanced readers will observe that the same proof could be applied to any function f (z) that is
analytic and one-to-one around z0 and for which f ′(z0) �= 0, to conclude that the inverse function is
analytic and has derivative 1/ f ′(z0).
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Figure 3.4 Analyticity domain for Log(3z − i).

Figure 3.5 Domain of L−π/4(z).

results in a single-valued function whose imaginary part lies in the interval (τ, τ+2π].
Moreover, the same reasoning used in the proof of Theorem 4 shows that this function
is analytic in the complex plane excluding the ray θ = τ and the origin, and in this
domain,

d

dz
Lτ (z) = 1

z
.

Figure 3.5 depicts the domain of analyticity for L−π/4(z). Of course, no branch of
log z is analytic at the origin, which is called a branch point for log z.

Thus far we have used the phrase “branch of log z” in a somewhat informal manner
to denote specific values for this multiple-valued function. To make matters more
precise, we give the following definition.

Definition 4. F(z) is said to be a branch of a multiple-valued function f (z) in
a domain D if F(z) is single-valued and continuous in D and has the property
that, for each z in D, the value F(z) is one of the values of f (z).

For example, Arg z is a branch of arg z and Log z is a branch of log z in the plane
slit along the negative real axis. In this same domain, the function defined by e(1/2)Log z

gives a branch of z1/2 whose values all lie in the right half-plane.
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Example 2
Determine a branch of f (z) = log(z3 − 2) that is analytic at z = 0, and find f (0) and
f ′(0).

Solution. The multiple-valued function f (z) is the composition of the logarithm
with the analytic function g(z) = z3 − 2. Thus, by the chain rule, it suffices to choose
any branch of the logarithm that is analytic at g(0) = −2. In particular, F(z) =
L−π/4(g(z)) solves the problem. For this choice,

F(0) = L−π/4(03 − 2) = Log 2 + iπ,

F ′(0) = L′−π/4(g(0))g′(0) = g′(0)
g(0)

= 0. �

We conclude this section with a word of warning. When complex arithmetic is
incorporated into computer packages, all functions must of necessity be programmed
as single-valued. The complex logarithm, for instance, is usually programmed as our
“principal value,” Log z. This invalidates some identitites, such as Eq. (6), since it is
not true in general that Log z1z2 = Log z1 + Log z2. (See Prob. 3.)

EXERCISES 3.3

1. Evaluate each of the following.

(a) log i (b) log(1 − i)
(c) Log(−i) (d) Log(

√
3 + i)

2. Verify formulas (6) and (7).

3. Show that if z1 = i and z2 = i − 1, then y

Log z1z2 �= Log z1 + Log z2.

4. Prove that Log ez = z if and only if −π < Im z ≤ π .

5. Solve the following equations.

(a) ez = 2i (b) Log(z2 − 1) = iπ
2 (c) e2z + ez + 1 = 0

6. Find the error in the following “proof” that z = −z: Since z2 = (−z)2, it follows
that 2 Log z = 2 Log(−z), and hence Log z = Log(−z), which implies that z =
eLog z = eLog(−z) = −z.

7. Use the polar form of the Cauchy-Riemann equations (Prob. 6 in Exercises 2.4) to
give another proof of Theorem 4.

8. Without directly verifying Laplace’s equation, explain why the function Log |z| is
harmonic in every domain that does not contain the origin.
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9. Determine the domain of analyticity for f (z) = Log(4 + i − z). Compute f ′(z).

10. Show that the function Log(−z)+ iπ is a branch of log z analytic in the domain D0
consisting of all points in the plane except those on the nonnegative real axis.

11. Determine a branch of log(z2 + 2z + 3) that is analytic at z = −1, and find its
derivative there.

12. Find a branch of log(z2 + 1) that is analytic at z = 0 and takes the value 2π i there.

13. Find a branch of log(2z − 1) that is analytic at all points in the plane except those
on the following rays.

(a) {x + iy | x ≤ 1
2 , y = 0}

(b) {x + iy | x ≥ 1
2 , y = 0}

(c) {x + iy | x = 1
2 , y ≥ 0}

14. Prove that there exists no function F(z) analytic in the annulus D : 1 < |z| < 2
such that F ′(z) = 1/z for all z in D. [HINT: Assume that F exists and show that for
z in D, z not a negative real number, F(z) = Log z + c, where c is a constant.]

15. Find a one-to-one analytic mapping of the upper half-plane Im z > 0 onto the infi-
nite horizontal strip

H := {u + iv| − ∞ < u < ∞, 0 < v < 1}.
[HINT: Start by considering w = Log z.]

16. Sketch the level curves for the real and imaginary parts of Log z and verify the
orthogonality property discussed in Sec. 2.5.

17. Prove that any branch of log z (cf. Definition 4) is analytic in its domain and has
derivative 1/z.

18. Prove that if F is a branch of log z analytic in a domain D, then the totality of
branches of log z analytic in D are the functions F + 2kπ i , k = 0,±1,±2, . . ..
[HINT: Use the result of Prob. 17.]

19. How would you construct a branch of log z that is analytic in the domain D consist-
ing of all points in the plane except those lying on the half-parabola {x + iy : x ≥
0, y = √

x}?
20. Using only real arithmetic operations, write a computer program whose input (x, y)

is the real and imaginary parts of z = x + iy and whose output is the real and
imaginary parts of

(a) Log z (b) L−π/4(z) (c) L0(z) (d) L4π (z)

21. Find a counterexample to the rule log (z1z2) = log z1 + log z2 for the software
system your computer uses.
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3.4 Washers, Wedges, and Walls 125

3.4 Washers, Wedges, and Walls

Now that we have established that the function log z, when suitably restricted, is ana-
lytic, the discussion in Sec. 2.5 implies that we have a new pair of harmonic functions
(the real and imaginary parts) that we can use to solve steady-state temperature prob-
lems.

The real part, Log |z| (or Log r in polar-coordinate jargon), is constant on circles
centered at the origin (obviously!). So steady-state temperatures, or electrostatic volt-
ages, or any quantity φ(x, y) that is governed by Laplace’s equation φxx +φyy = 0 and
is constant on concentric circles must vary logarithmically between the circles. Exam-
ple 1 can be interpreted as describing a thermally conducting “heat pipe” separating
two fluids at different temperatures.

Example 1

Find a function φ(x, y) that is harmonic in the washer-shaped region between the
circles |z| = 1 and |z| = 2 and takes the values φ = 20 on the inner circle and φ = 30
on the outer circle. See Fig. 3.6.

Solution. As in Example 2, Sec. 2.5, we gain some flexibility by noting that
for any value of the constants A and B the function φ(x, y) = A Log |z| + B is
harmonic, and we only have to adjust A and B so as to achieve the prescribed boundary
conditions. We require that

A Log 1 + B = 20 and A Log 2 + B = 30 ,

Figure 3.6 Boundary value problem for a heat pipe.
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so B = 20, A = 10/Log 2, and the solution is

φ(z) = 10
Log |z|
Log 2

+ 20 . �

If the circles were centered at z0, we would simply use the solution form
A Log |z − z0| + B.

Note that we did not worry about the branch cuts that encumber the Log z function
for this application, since we only used the real part, Log |z|, whose values do not
depend on the choice of branch. We need to be a little more fastidious when we use
the imaginary part arg z, which is constant along rays emanating from the origin. The
following example can be interpreted as describing the temperature distribution in a
wedge whose sides are maintained at fixed temperatures.

Example 2
Find a function φ(x, y) that is harmonic in the wedge-shaped region depicted in Fig.
3.7 and takes the values φ = 20 on the upper side and φ = 30 on the lower side.

Solution. Strictly speaking, we cannot employ the form A Arg z + B because the
nonpositive axis, which is the branch cut for Arg z, lies in the region of interest. But
the remedy is obvious: we simply use another branch of arg z, such as arg0 z, whose
discontinuities lie on the positive axis. In other words, we measure the polar angle
θ = arg z from 0 to 2π , instead of from −π to +π . The boundary conditions are

A
3π

4
+ B = 20 and A

5π

4
+ B = 30 ,

so A = 20/π , B = 5, and the solution is

φ(z) = 20

π
arg0 z + 5 . �

Figure 3.7 Boundary value problem for a wedge.
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Figure 3.8 Boundary value problem for upper half-plane.

The more sophisticated boundary value problem depicted in Fig. 3.8 can be re-
garded as an alignment of several 1800 wedges. If we create the function template

φ(x, y) = A1 Arg(z − x1)+ A2 Arg(z − x2)+ · · · + An Arg(z − xn)+ B,

which is harmonic in the upper half-plane, we can adjust the constants so as to satisfy
the boundary conditions. An example will make the process clear.

Example 3
Find a function φ(x, y) that is harmonic in the upper half-plane and takes the following
values on the x-axis: φ(x, 0) = 0 for x > 1, φ(x, 0) = 1 for −1 < x < 1, and
φ(x, 0) = 0 for x < −1.

Solution. We enforce the given boundary conditions on the form

φ(x, 0) = A1 Arg(z + 1)+ A2 Arg(z − 1)+ B.

For z = x > 1, Arg(z − 1) = Arg(z + 1) = 0, so

A1 · 0 + A2 · 0 + B = 0 .

For z = x, −1 < x < 1, Arg(z − 1) = π , Arg(z + 1) = 0, so

A1 · 0 + A2 · π + B = 1 .

For z = x < −1, Arg(z − 1) = Arg(z + 1) = π , so

A1 · π + A2 · π + B = 0 .

Therefore B = 0, A1 = −1/π, A2 = 1/π , and the solution is

φ(z) = − 1

π
Arg(z + 1)+ 1

π
Arg(z − 1) . �

In closing we note that the simple function φ(x, y) = x (the real part of f (z) = z)
is harmonic and is constant along vertical lines. Thus the format Ax + B can be used
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Figure 3.9 Boundary value problem for a slab.

Figure 3.10 Isotherms.

to find steady state temperatures in a conducting wall, or slab, separating two temper-
ature baths; the solution to the problem depicted in Fig. 3.9 is φ(x, y) = 10x + 10.
The level curves or isotherms for φ for these four geometries are depicted in Fig. 3.10.

Note that the boundary values are discontinuous for the wedge examples; tiny in-
sulators would have to be embedded in the wedge vertices to maintain the temperature
drops. Nonetheless, the solutions in the interiors are smooth functions of position.
This a characteristic of Laplace’s equation; its solutions are, in fact, infinitely differ-
entiable except at the boundaries. It is interesting to note how the isotherms near the
corners form “fan” patterns to mollify the discontinuities.

In Chapter 7 we will see that by using the techniques of complex analysis, one can
often reduce the problem of solving Laplace’s equation in domains with complicated
geometries to solving it in a washer, wedge, or wall. So the tools developed in this
section will be extremely significant.
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EXERCISES 3.4

1. Find a solution to the boundary value problem depicted in Fig. 3.11 and evaluate it
at (0,0).

Figure 3.11 Boundary value problem for Prob. 1.

2. Find a solution to the boundary value problem depicted in Fig. 3.12 and evaluate it
at (0,0).

Figure 3.12 Boundary value problem for Prob. 2.
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3. Find a solution to the boundary value problem depicted in Fig. 3.13 and evaluate it
at (1,1).

Figure 3.13 Boundary value problem for Prob. 3.

4. Find a solution to the boundary value problem depicted in Fig. 3.14 and evaluate it
at (2,3).

Figure 3.14 Boundary value problem for Prob. 4.

5. Find a general formula for a solution φ(x, y) to the boundary value problem inside
the washer depicted in Fig. 3.15.

6. Find a general formula for a solution φ(x, y) to the boundary value problem inside
the disk depicted in Fig. 3.16. (If you’re not sure, apply the formula derived in the
previous exercise and let the inner radius r1 go to zero. Now don’t you feel foolish?)

7. Prove that the function (arg z)(Log |z|) is harmonic. [HINT: It occurs as the imagi-
nary part of what analytic function?]
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3.5 Complex Powers and Inverse Trigonometric Functions 131

Figure 3.15 Boundary value problem for Prob. 5.

Figure 3.16 Boundary value problem for Prob. 6.

3.5 Complex Powers and Inverse
Trigonometric Functions

One important theoretical use of the logarithmic function is to define complex powers
of z. The definition is motivated by the identity

zn = (elog z)n = en log z,

which holds for any integer n.
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Definition 5. If α is a complex constant and z �= 0, then we define zα by

zα := eα log z .

This means that each value of log z leads to a particular value of zα .

Example 1
Find all the values of (−2)i .

Solution. Since log(−2) = Log 2 + (π + 2kπ)i , we have

(−2)i = ei log(−2) = ei Log 2e−π−2kπ (k = 0,±1,±2, . . .).

Thus (−2)i has infinitely many different values. �
Using the representations of Sec. 3.3, we can write

zα = eα(Log |z|+i Arg z+2kπ i) = eα(Log |z|+i Arg z)eα2kπ i , (1)

where k = 0,±1,±2, . . .. The values of zα obtained by taking k = k1 and k = k2 ( �=
k1) in Eq. (1) will therefore be the same when

eα2k1π i = eα2k2π i .

But by Theorem 3 of Section 3.2 this occurs only if

α2k1π i = α2k2π i + 2mπ i,

where m is an integer. Solving the equation we get α = m/(k1 − k2); i.e., formula
(1) yields some identical values of zα only when α is a real rational number. Conse-
quently, if α is not a real rational number, we obtain infinitely many different values
for zα , one for each choice of the integer k in Eq. (1). On the other hand, if α = m/n,
where m and n > 0 are integers having no common factor, then one can verify that
there are exactly n distinct values of zm/n , namely,

zm/n = exp
(m

n
Log |z|

)
exp

(
i
m

n
(Arg z + 2kπ)

)
(k = 0, 1, . . . , n − 1). (2)

This is entirely consistent with the theory of roots discussed in Sec. 1.5. In summary,

zα is single-valued when α is a real integer;
zα takes finitely many values when α is a real rational number;
zα takes infinitely many values in all other cases.

It is clear from Definitions 4 and 5 that each branch of log z yields a branch of
zα . For example, using the principal branch of log z we obtain the principal branch
of zα , namely, eα Log z . Since ez is entire and Log z is analytic in the slit domain
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D∗ = C\(−∞, 0] of Theorem 4, the chain rule implies that the principal branch of
zα is also analytic in D∗. Furthermore, for z in D∗, we have

d

dz
(eα Log z) = eα Log z d

dz
(α Log z) = eα Log z α

z
.

Other branches of zα can be constructed by using other branches of log z, and since
each branch of the latter has derivative 1/z, the formula

d

dz
(zα) = αzα

1

z
(3)

is valid for each corresponding branch of zα (provided the same branch is used on
both sides of the equation). Observe that if z0 is any given nonzero point, then by
selecting a branch cut for log z that avoids z0, we get a branch of zα that is analytic in
a neighborhood of z0.

“Branch chasing” with complicated functions is often a tedious task; fortunately,
it is seldom necessary for elementary applications. Some of the subtleties are demon-
strated in the following example.

Example 2

Define a branch of (z2 − 1)1/2 that is analytic in the exterior of the unit circle, |z| > 1.

Solution. Our task, restated, is to find a function w = f (z) that is analytic
outside the unit circle and satisfies

w2 = z2 − 1. (4)

Note the principal branch of (z2 − 1)1/2, namely,

e(1/2)Log(z2−1),

will not work; it has branch cuts wherever z2−1 is negative real, and this constitutes the
whole y-axis as well as a portion of the x-axis (see Fig. 3.17). But if we experiment
with some alternative expressions for w, we are led to consider z(1 − 1/z2)1/2 as a
solution to (4). The principal branch of (1 − 1/z2)1/2, i.e.,

e(1/2)Log(1−1/z2),

has cuts where 1 − 1/z2 is negative real, and this occurs only when 1/z2 is real and
greater than one—i.e., the cut is the segment [−1, 1], as shown in Fig. 3.18. Thus

w = f (z) = ze(1/2)Log(1−1/z2)

satisfies the required condition of analyticity outside the unit circle. �

133



134 Elementary Functions

Figure 3.17 Branch cut for e(1/2)Log(z2−1).

Figure 3.18 Branch cut for e(1/2)Log(1−1/z2).

Now that we have exponentials expressed in terms of trig functions (Sec. 1.4),
trig functions expressed as exponentials (Sec. 3.2), and logs interpreted as inverses of
exponentials, the following example should come as no surprise. It demonstrates that
the arcsine is, in fact, a logarithm.

Example 3
The inverse sine function w = sin−1 z is defined by the equation z = sinw. Show that
sin−1 z is a multiple-valued function given by

sin−1 z = −i log[i z + (1 − z2)1/2]. (5)

Solution. From the equation

z = sinw = eiw − e−iw

2i
,

we deduce that
e2iw − 2i zeiw − 1 = 0. (6)

We remark that Eq. (3) can be written in the more familiar form

d

dz
(zα) = αzα−1

with the proviso that the branch of the logarithm used in defining zα is the same as the branch of the
logarithm used in defining zα−1.
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Using the quadratic formula we can solve Eq. (6) for eiw:

eiw = i z + (1 − z2)1/2,

where, of course, the square root is two-valued. Formula (5) now follows by taking
logarithms. �

We can obtain a branch of the multiple-valued function sin−1 z by first choosing a
branch of the square root and then selecting a suitable branch of the logarithm. Using
the chain rule and formula (5) one can show that any such branch of sin−1 z satisfies

d

dz
(sin−1 z) = 1

(1 − z2)1/2
(z �= ±1), (7)

where the choice of the square root on the right must be the same as that used in the
branch of sin−1 z.

Example 4
Suppose z is real and lies in the interval (−1, 1). If principal values are used in formula
(5), what is the range of sin−1 z?

Solution. With principal values, Eq. (5) is realized as

Sin−1 z = −i Log[i z + e(1/2)Log(1−z2)]. (8)

For |z| = |x | < 1, clearly 1 − z2 lies in the interval (0, 1], and its Log is real; hence
the exponential in (8), which represents (1 − z2)1/2, is positive real. The term i z, on
the other hand, is pure imaginary. Consequently, the bracketed expression in (8) lies
in the right half-plane. As a matter of fact, it also lies on the unit circle, since∣∣∣∣i z +

(
1 − z2

)1/2
∣∣∣∣ =

√
x2 + (

1 − x2
) = 1

(see Fig. 3.19). Taking the Log, then, results in values iθ , where −π/2 < θ < π/2,
and the leading factor (−i) in (8) produces

−π
2
< Sin−1 x <

π

2

(in keeping with the usual interpretation). �
For the inverse cosine and inverse tangent functions, calculations similar to those

in Example 3 lead to the expressions

cos−1 z = −i log[z + (z2 − 1)1/2], (9)

tan−1 z = i

2
log

i + z

i − z
= i

2
log

1 − i z

1 + i z
(z �= ±i) (10)

To ensure that our method has not introduced extraneous solutions, one should verify that every
value w given by Eq. (5) satisfies z = sinw.
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Figure 3.19 Points i x + (1 − x2)1/2 for |x | < 1.

and the formulas

d

dz
(cos−1 z) = −1

(1 − z2)1/2
(z �= ±1), (11)

d

dz
(tan−1 z) = 1

1 + z2
(z �= ±i). (12)

Notice that the derivative in Eq. (12) is independent of the branch chosen for tan−1 z,
whereas the derivative in Eq. (11) depends on the choice of the square root used in the
branch of cos−1 z.

The same methods can be applied to the inverse hyperbolic functions. The results
are

sinh−1 z = log
[
z + (z2 + 1)1/2

]
, (13)

cosh−1 z = log
[
z + (z2 − 1)1/2

]
, (14)

tanh−1 z = 1

2
log

1 + z

1 − z
(z �= ±1). (15)

EXERCISES 3.5

1. Find all the values of the following.

(a) i i (b) (−1)2/3 (c) 2π i

(d) (1 + i)1−i (e) (1 + i)3

2. Show from Definition 5 that if z �= 0, then z0 = 1.

3. Find the principal value (i.e., the value given by the principal branch) of each of the
following.

(a) 41/2 (b) i2i (c) (1 + i)1+i
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4. Is 1 raised to any power always equal to 1?

5. Give an example to show that the principal value of (z1z2)
α need not be equal to the

product of principal values zα1 zα2 .

6. Let α and β be complex constants and let z �= 0. Show that the following identities
hold when each power function is given by its principal branch.

(a) z−α = 1/zα (b) zαzβ = zα+β (c)
zα

zβ
= zα−β

7. Find the derivative of the principal branch of z1+i at z = i .

8. Show that all solutions of the equation sin z = 2 are given by π/2+2kπ±i Log(2+√
3), where k = 0,±1,±2, . . .. [REMARK: This solution set can also be repre-

sented as π/2 + 2kπ − i Log(2 ± √
3, k = 0,±1,±2, . . ..]

9. Derive formulas (9) and (11) concerning cos−1 z.

10. Show that all the solutions of the equation cos z = 2i are given by π/2 + 2kπ −
i Log(

√
5 + 2), −π/2 + 2kπ + i Log(

√
5 + 2), for k = 0,±1,±2, . . .. [REMARK:

This solution set can also be represented as π/2 + 2kπ − i Log(
√

5 + 2), −π/2 +
2kπ − i Log(

√
5 − 2), for k = 0,±1,±2, . . .. ]

11. Find all solutions of the equation sin z = cos z.

12. Derive formulas (10) and (12) concerning tan−1 z.

13. Derive formulas (13) and (14) for sinh−1 z and cosh−1 z.

14. Derive the formula d(sinh−1 z)/dz = 1/(1+z2)1/2 and explain the conditions under
which it is valid.

15. Find a branch of each of the following multiple-valued functions that is analytic in
the given domain:

(a) (z2 − 1)1/2 in the unit disk, |z| < 1. [HINT: z2 − 1 = (z − 1)(z + 1).]

(b) (4 + z2)1/2 in the complex plane slit along the imaginary axis from −2i to 2i .

(c) (z4 − 1)1/2 in the exterior of the unit circle, |z| > 1.

(d) (z3 − 1)1/3 in the exterior of the unit circle, |z| > 1.

16. According to Definition 5 the multiple-valued function cz , where c is a nonzero
constant, is given by cz = ez log c. Show that by selecting a particular value of log c
we obtain a branch of cz that is entire. Find the derivative of such a branch.

17. Derive the identity

sec−1 z = −i log

[
1

z
+
(

1

z2
− 1

)1/2
]
.

Using principal values determine the range of Sec−1 x when x > 1, and when
x < −1. Compare this with the ranges listed in standard mathematical handbooks:

0 ≤ Sec−1 x < π/2, for x ≥ 1; −π ≤ Sec−1 x < −π/2, for x ≤ −1.
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18. Using only real arithmetic operations, write a computer program whose input (x, y)
is the real and imaginary parts of z = x + iy and whose output is the real and
imaginary parts of

(a) the principal branch of zα

(b) Sin−1 z

(c) Sec−1 z

(d) the branch of (z2 − 1)1/2 discussed in Example 3.5

19. Determine the inverse of the function

w = q(z) := 2ez + e2z

explicitly in terms of the complex logarithm. Use your formula to find all values of
z for which q(z) = 3.

3.6 *Application to Oscillating Systems

Many engineering problems are ultimately based upon the response of a system to
a sinusoidal input. Naturally, all the parameters in such a situation are real, and the
models can be analyzed using the techniques of real variables. However, the utilization
of complex variables can greatly simplify the computations and lend some insight
into the roles played by the various parameters. In this section we shall illustrate the
technique for the analysis of a simple RLC (resistor-inductor-capacitor) circuit.

The electric circuit is shown in Fig. 3.20. We suppose that the power supply is
driving the system with a sinusoidal voltage Vs oscillating at a frequency of ν =
ω/(2π) cycles per second. To be precise, let us say that at time t

Vs = cosωt. (1)

Our goal is to find the current Is drawn out of the power supply.

Figure 3.20 RLC circuit.
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Across each element of the circuit there is a voltage drop V which is related to the
current I flowing through the element. The relationships between these two quantities
are as follows: for the resistor we have Ohm’s law

Vr = Ir R, (2)

where R is a constant known as the resistance; for the capacitor

C
dVc

dt
= Ic, (3)

where C is the capacitance; and for the inductor

Vl = L
d Il

dt
, (4)

where L is the inductance.
One can incorporate formulas (1)–(4), together with Kirchhoff’s laws which ex-

press conservation of charge and energy, to produce a system of differential equations
determining all the currents and voltages. The solution of this system is, however, a
laborious process, and a simpler technique is desirable. The complex exponential func-
tion will provide this simplification. Before we demonstrate the utilization of complex
variables in this problem, we shall make some observations based upon physical con-
siderations.

Figure 3.21 Resistor circuit.

First, notice that if the capacitor and inductor were replaced by resistors, as we
illustrate in Fig. 3.21, the solution would be an elementary exercise in high school
physics. The pair of resistances R and Rc are wired in parallel, so they can be replaced
by an equivalent resistance R|| given by the familiar law

1

R||
= 1

R
+ 1

Rc
,

George Simon Ohm, a professor of mathematics, published this law in 1827.
Gustav Robert Kirchhoff (1824–1887.)
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Figure 3.22 Equivalent resistor circuit.

or

R|| = R Rc

R + Rc
. (5)

This resistance then appears in series with Rl , yielding an effective total resistance
Ref f given by

Ref f = R|| + Rl , (6)

and (from the point of view of the power supply) the circuit is equivalently represented
by Fig. 3.22. Equations (1) and (2) yield the current output Is :

Is = cosωt

Ref f
= cosωt

R Rc
R+Rc

+ Rl
.

Since this model is so easy to solve, it would clearly be advantageous to replace
the capacitor and inductor by equivalent resistors.

The second point we wish to make involves the nature of the solution Is for the
original circuit. If the power supply is turned on at time t = 0, there will be a fairly
complicated initial current response; this so-called “transient,” however, eventually
dies out, and the system enters a steady state in which all the currents and voltages
oscillate sinuosoidally at the same frequency as the driving voltage. This “in-synch”
behavior is common to all damped linear systems, and it will be familiar to anyone who
has ridden a bicycle over railroad ties or mastered the art of dribbling a basketball. For
many applications it is this steady-state response, which is independent of the initial
state of the system, that is of interest.

The complex variable technique that we shall describe allows us to replace ca-
pacitors and inductors by resistors, and is ideally suited for finding the steady state
response.

The technique is based upon exploiting Euler’s identity eiωt = cosωt + i sinωt ,
which enables us to express the power supply voltage cosωt in terms of the exponen-
tial,

cosωt = Re eiωt . (7)

In fact, the more general sinusoidal forms a cosωt + b sinωt and A cos(ωt + γ ) can
also be expressed in an exponential form Reαeiωt :

a cosωt + b sinωt = Re(aeiωt − ibeiωt ) = Reαeiωt , (8)

The widespread adoption of this technique in electrical engineering is traditionally attributed to
Charles Proteus Steinmetz (1865–1923).
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where α = a − ib; or
A cos(ωt + γ ) = Re[αeiωt ], (9)

where α = Aeiγ . The complex factor α = a − ib = Aeiγ is known as a phasor in this
context. (See Problem 2 for a generalization.)

The advantage of the exponential representation for these functions lies in its com-
pactness, and in the simplicity of the expression for the derivative; differentiating eiωt

(with respect to t) merely amounts to multiplying by iω. Therefore, the derivative of
the general sinusoid in Eq. (8) can be computed by

d

dt
(a cosωt + b sinωt) = d

dt
Reαeiωt = Re

d

dt
(αeiωt )

= Re iωαeiωt

(= −aω sinωt + bω cosωt).

To exploit these advantages, we must make one more observation about the circuit
in Fig. 3.20. Each of the elements is a linear device in the sense that the superposition
principle holds; that is, if an element responds to the excitation voltages V1(t) and
V2(t) by producing the currents I1(t) and I2(t), respectively, then the response to the
voltage V1(t) + βV2(t) will be the current I1(t) + β I2(t), for any constant β. This is
a mathematical consequence of the linearity of Eqs. (2)–(4); it will still hold true, in
the mathematical sense, even if the functions take complex values. Furthermore, since
we know that the circuit responds to real voltages V1(t) and V2(t) with real currents,
it follows that both I1(t) and I2(t) are real, so I1(t) = Re[I1(t) + i I2(t)]. In short, if
the mathematical response to the complex voltage V (t) is I (t), then the response to
the (real) voltage Re V (t) will be Re I (t).

With these tools at hand, let us return to the solution of the problem depicted in
Fig. 3.20. The supply voltage, given in Eq. (1), can be represented by

Vs(t) = Re eiωt . (10)

Our strategy will be to find the steady-state response of the circuit to the complex
voltage eiωt , and to take the real part of the answer as our solution.

From the earlier observations about the nature of the steady-state response and
Eqs. (8, 9), we are led to propose that the sinusoidal current or voltage in any part
of the circuit can be written as a (possibly complex) constant times eiωt ; furthermore,
differentiation of such a function is equivalent to multiplication by the factor iω. Thus,
in the situation at hand, Eq. (3) for the behavior of the capacitor becomes

iωCVc = Ic, (11)

and Eq. (4) for the inductor becomes

Vl = iωL Il . (12)

But the voltage-current relationships (11) and (12) now have the same form as Eq. (2)
for a resistor; in other words, operated at the frequency ν = ω/2π , a capacitor behaves
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mathematically like a resistor with resistance

Rc = 1

iωC
, (13)

and an inductor behaves like a resistor with resistance

Rl = iωL . (14)

These pure imaginary parameters are artifacts of our postulating a complex power-
supply voltage. Engineers have adopted the term “impedance” to describe complex
resistances.

Having replaced, formally, the capacitor and inductor by resistors, we are back in
the situation of the simple circuit of Fig. 3.21. The effective impedance of the series-
parallel arrangement is displayed in Eqs. (5) and (6), and substitution of the relations
(13) and (14) yields the expression

Ref f =
R

iωC

R + 1
iωC

+ iωL .

The current output of the power supply is therefore

Is = Re
eiωt

Re f f
,

which after some manipulation can be written as

Is = R cosωt − [R2ωC(1 − ω2LC)− ωL] sinωt

R2(1 − ω2LC)2 + ω2L2
. (15)

Again complex variables can be used to provide a more meaningful interpretation
of the answer. If we define φ0 and R0 by

φ0 := Arg Ref f , R0 := |Ref f |,
then Is can be expressed as

Is = Re
eiωt

R0eiφ0
= Re

1

R0
ei(ωt−φ0) = 1

R0
cos (ωt − φ0). (16)

This displays some easily visualized properties of the output current in relation to the
input voltage (1). The current is, as we indicated earlier, a sinusoid with the same
frequency, but its amplitude differs from the voltage amplitude by the factor 1/R0.
Furthermore, the two sinusoids are out of phase, with φ0 measuring the phase dif-
ference in radians. The numbers R0 and φ0 can be computed in terms of the circuit
parameters and the frequency, and the circuit problem is solved.

If the power supply voltage had been a more complicated sinusoid, like a cosωt +
b sinωt or A cos(ωt − γ ), we would express it as an exponential Reαeiωt using the
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prescription (8) or (9). The complex current response would simply then be multiplied
by the constant (“phasor”) α, and

Is = Re
αeiωt

Re f f
.

In conclusion we reiterate the two advantages of using complex notation in ana-
lyzing linear sinusoidal systems. First, the representation of general sinusoids (8) is
compact and leads naturally to a reinterpretation of the sinusoid in terms of amplitudes
and phases, as is evidenced by comparing Eqs. (15) and (16). And second, the process
of differentiation is replaced by simple multiplication. It is important to keep in mind,
however, that only the real part of the solution corresponds to physical reality and that
the condition of linearity is of the utmost importance.

EXERCISES 3.6

1. What is the steady-state current response of the circuit in Fig. 3.20 if the power
supply voltage is Vs = sinωt?

2. Find a formula for the complex constant (“phasor”) α so that the general sinusoid at
frequency ν = ω/(2π) ,

a1 cos(ωt + γ1)+ a2 cos(ωt + γ2)+ · · · + am cos(ωt + γm)

+ b1 sin(ωt + δ1)+ b2 sin(ωt + δ2)+ · · · bn sin(ωt + δn)

is expressed as Reαeiωt .

3. Verify the expression in Eq. (15).

4. Using the techniques of this section, find the steady-state current output Is of the
circuits in Fig. 3.23.

5. In the limit of very low frequencies, a capacitor behaves like an open circuit (infinite
resistance), while an inductor behaves like a short circuit (zero resistance). Draw
and analyze the low-frequency limit of the circuit in Fig. 3.20, and verify expression
(15) in this limit.

6. Repeat Prob. 5 for the high-frequency limit. (What are the behaviors of the capacitor
and inductor in this case?)

7. The operation of synchronous and induction motors requires that a rotating magnetic
flux be established inside the motor; that is, if we regard a cross section plane of
the motor to be the complex z-plane, the motor needs a magnetic flux vector which
rotates like the complex number eiωt . Now a solenoid whose coils are wound around
an axis directed along the complex number α produces a magnetic flux in the interior
of the motor given by I (t)α, where I (t) is the real current in its windings. See
Fig. 3.24.
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Figure 3.23 Electrical circuits for Prob. 4.

(a) Show that three inductors, wound around axes directed along the complex
numbers 1, ei2π/3, ei4π/3, and carrying the “3-phase” currents I0 cosωt ,
I0 cos(ωt − 2π/3), I0 cos(ωt − 4π/3) respectively, will produce the desired
rotating flux (by superposition of their individual fields). [HINT:You will find
the algebra easier if you remember

cos(ωt − 2π/3) = ei(ωt−2π/3) + e−i(ωt−2π/3)

2
. ]

(b) Would two symmetrically placed 2-phase inductors work? Four? Five? Can
you figure out the general rule?

8. In radio transmission, a carrier radio wave takes the form of a pure sinusoid,
A cosωt . The carrier wave can transmit an information signal f (t) by using modu-
lation. Two forms of modulation are
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Figure 3.24 Rotating magnetic flux. Figure 3.25 Modulation schemes.

Amplitude Modulation: the amplitude A is perturbed by a small multiple (β) of the
information signal, so that the transmitted signal equals [A + β f (t)] cosωt ;

(Narrow Band) Frequency Modulation: the angular frequency ω is perturbed by a
small multiple (β) of the information signal, so that the transmitted signal equals
A cos

∫ [ω + β f (t)]dt . (Here the constant of integration is not important, and we
are identifying the “instantaneous angular velocity” associated with the sinusoid
cos g(t) as g′(t).)

(a) Show that if f (t) is also a sinusoid cosωmt , and if β is sufficiently small, the
FM signal approximately equals the real part of eiωt [A + i(Aβ/ωm) sinωmt],
while the AM signal (exactly) equals the real part of eiωt [A + β cosωmt].
[HINT: sinα ≈ α and cosα ≈ 1 for small |α|.]

(b) Which of the diagrams in Fig. 3.25 depicts AM, and which depicts FM, for a
sinusoidal information signal?

(c) To get a feeling for AM and FM, use software to plot the transmitted AM and
FM signals for 0 ≤ t ≤ 1 with increments�t = 0.0005, for A = 1, ω = 300,
f (t) = cos 18t , and β = 18. (This value of β is chosen excessively large to
highlight the modulations.)

SUMMARY

Polynomials and rational functions of z are analytic except at the poles of the latter.
Every polynomial can be completely factored into degree-one polynomial factors with
complex coefficients; the factorization displays the multiplicity of each zero. The
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Taylor form of the polynomial displays all of the derivatives of the polynomial at the
expansion “center”, as well as the multiplicity of the zero there (if any). A rational
function P/Q, where P and Q are polynomials having no common factors, is said to
have poles at the points where the denominator vanishes. Whenever deg P < deg Q,
the rational can be written as the sum of constants times simple fractions of the form
1/(z − zk)

j , where {zk} are the poles of the rational function and the integer j ranges
from 1 to the multiplicity of the pole.

The complex sine and cosine functions are defined in terms of the exponential
functions: sin z = (

eiz − e−i z
)
/2i , cos z = (

eiz + e−i z
)
/2. When z is real these

definitions agree with those given in calculus. Further, the usual differentiation formu-
las and trigonometric identities remain valid for these functions. Complex hyperbolic
functions are also defined in terms of the exponential function, and, again, they retain
many of their familiar properties.

The complex logarithmic function log z is the inverse of the exponential function
and is given by log z = Log |z| + i arg z, where the capitalization signifies the natural
logarithmic function of real variables. Since for each z �= 0, arg z has infinitely many
values, the same is true of log z. Thus log z is an example of a multiple-valued function.

The real and imaginary parts of log z, namely Log r and θ in terms of the polar
coordinates, are harmonic functions taking constant values on circles and wedges re-
spectively. They are useful in solving boundary value problems for Laplace’s equation.

The concept of analyticity for a multiple-valued function f is discussed in terms of
branches of f . A single-valued function F is said to be a branch of f if it is continuous
in some domain, at each point of which F(z) coincides with one of the values of f (z).

Branches of log z can be obtained by restricting arg z so that it is single-valued and
continuous. For example, the function Log z = Log |z| + i Arg z, which is the princi-
pal branch of log z, is analytic in the domain D∗ consisting of all points in the plane
except those on the nonpositive real axis. The formula d(log z)/dz = 1/z is valid in
the sense that it holds for every branch of log z.

Complex powers of z are defined by means of logarithms. Specifically, zα =
eα log z for z �= 0. Unless α is an integer, w = zα is a multiple-valued function whose
branches can be obtained by selecting branches of log z. The inverse trigonometric
and hyperbolic functions can also be expressed in terms of logarithms, and they too
are multiple-valued.

The analysis of sinusoidally oscillating systems can be greatly simplified with the
use of complex variables. In particular, the differentiation operation, applied to terms
containing the factor eiωt , reduces to simple multiplication (by iω).

Suggested Reading
The algorithms for extracting the zeros of degree-three and degree-four polynomials
are presented in the following tables:

[1] Standard Mathematical Tables. The Chemical Rubber Company, Cleveland
(continuing editions).
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[2] Handbook of Mathematical Tables and Formulas. R.S. Burington. Handbook
Publishers, Sandusky, Ohio (continuing editions).

The following text may be helpful for further study of boundary value problems for
Laplace’s equation (Sec. 3.4):

[3] Snider, A.D. Partial Differential Equations: Sources and Solutions, Prentice-
Hall, Upper Saddle River, NJ, 1999.

The following texts may be helpful for further study of the concepts used in Sec. 3.6:

Electrical Circuits

[4] Scott, D.E. An Introduction to Circuit Analysis: A Systems Approach, McGraw-
Hill Book Company, New York, 1987.

[5] Hayt, W.H., Kemmerly, J.E., and Durbin, S.M. Engineering Circuit Analysis,
6th ed. McGraw-Hill, New York, 2001.

Sinusoidal Analysis

[6] Lathi, B.P. Signal Processing and Linear Systems, Oxford University Press,
New York, 2000.

[7] Guillemin, E.A. Theory of Linear Physical Systems. John Wiley & Sons, Inc.,
New York, 1963.
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Chapter 4

Complex Integration

In Chapter 2 we saw that the two-dimensional nature of the complex plane required
us to generalize our notion of a derivative because of the freedom of the variable to
approach its limit along any of an infinite number of directions. This two-dimensional
aspect will have an effect on the theory of integration as well, necessitating the consid-
eration of integrals along general curves in the plane and not merely segments of the
x-axis. Fortunately, such well-known techniques as using antiderivatives to evaluate
integrals carry over to the complex case.

When the function under consideration is analytic the theory of integration be-
comes an instrument of profound significance in studying its behavior. The main result
is the theorem of Cauchy, which roughly says that the integral of a function around
a closed loop is zero if the function is analytic “inside and on” the loop. Using this
result we shall derive the Cauchy integral formula, which explicitly displays many of
the important properties of analytic function.

4.1 Contours

Let us turn to the problem of finding a mathematical explication of our intuitive con-
cept of a curve in the xy-plane. Although most of the applications described in this
book involve only two simple types of curves—line segments and arcs of circles—it
will be necessary for proving theorems to nail down the definitions of more general
curves.

It is helpful in this regard to visualize an artist actually tracing the curve γ on graph
paper. At any particular instant of time t , a dot is drawn at, say, the point z = x + iy;
the locus of dots generated over an interval of time a ≤ t ≤ b constitutes the curve.
Clearly we can interpret the artist’s actions as generating z as a function of t , and then
the curve γ is the range of z(t) as t varies between a and b. In such a case z(t) is
called the parametrization of γ . Fig. 4.1 shows some examples of the types of curves
we need to consider.

From Chapter 4 of Fundamentals of Complex Analysis with Applications to Engineering, Science, and Mathematics,
 © 2003 by Pearson Education, Inc. All rights reserved.Third Edition. Edward B. Saff, Arthur David Snider. Copyright
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Figure 4.1 Examples of smooth and nonsmooth curves.

The mathematical description of curves is considerably simplified if the curves
have no sharp corners or self intersections, so we begin by confining attention to the
first two, “smooth,” curves in the figure. The other curves will be dubbed “contours,”
and eventually we will deal with them by breaking them into smooth pieces. So here
are the ground rules for the artist to follow in drawing a smooth curve γ .

First, we do not permit the pen to be lifted from the paper during the sketch;
mathematically, we are requiring that z(t) be continuous. Second, we insist that the
curves be drawn with an even, steady stroke; specifically, the pen point must move with
a well-defined (finite) velocity that, also, must vary continuously. Now the velocity of
the point tracing out the trajectory (x(t), y(t)) is the vector

(dx/dt, dy/dt) = x ′(t)+ iy′(t).

It makes sense to call this vector z′(t). Thus we insist that z′(t) exist† and be contin-
uous on [a, b]. Furthermore, to avoid the appearance of sharp corners (which would
necessitate an abrupt interruption in the sketching process), we require that z′(t) �= 0.

Finally, we stipulate that no point be drawn twice; in other words, z(t) must be
one-to-one. We do, however, allow the possibility that the initial and terminal points
coincide, as for the second curve in Fig. 4.1.

Putting this all together, we now specify the class of smooth curves. These fall
into two separate categories; smooth arcs, which have distinct endpoints, and smooth
closed curves, whose endpoints coincide.

Definition 1. A point set γ in the complex plane is said to be a smooth‡ arc if
it is the range of some continuous complex-valued function z = z(t), a ≤ t ≤ b,
that satisfies the following conditions:

(i) z(t) has a continuous derivative†† on [a, b],
(ii) z′(t) never vanishes on [a, b],

† Observe, however, that since t is a real variable in this context, the existence of the derivative
z′(t) is not nearly so profound as it was in Chapter 2, where the independent variable was complex.

‡The term regular is sometimes used instead of smooth.
††At the endpoint t = a, z′(t) denotes the right-hand derivative, while at t = b, z′(t) is the

left-hand derivative.
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(iii) z(t) is one-to-one on [a, b].

A point set γ is called a smooth closed curve if it is the range of some continuous
function z = z(t), a ≤ t ≤ b, satisfying conditions (i) and (ii) and the following:

(iii′) z(t) is one-to-one on the half-open interval [a, b), but
z(b) = z(a) and z′(b) = z′(a).

The phrase “γ is a smooth curve” means that γ is either a smooth arc or a smooth
closed curve.

In elementary calculus it is shown that the vector
(
x ′(t), y′(t)

)
, if it exists and is

nonzero, can be interpreted geometrically as being tangent to the curve at the point
(x(t), y(t)). Hence the conditions of Definition 1 imply that a smooth curve possesses
a unique tangent at every point and that the tangent direction varies continuously along
the curve. Consequently a smooth curve has no corners or cusps; see Fig. 4.1.

To show that a set of points γ in the complex plane is a smooth curve, we have
to exhibit a parametrization function z(t) whose range is γ , and is “admissible” in the
sense that it meets the criteria of Definition 1. Actually, if a curve is smooth, it will
have an infinite number of admissible parametrizations. The artist, for instance, can
draw it forwards or backwards; if the curve is closed he can begin his sketch anywhere
on the curve; and he can draw some parts fast and other parts slow. A given smooth
curve γ will have many different admissible parametrizations, but we need produce
only one admissible parametrization in order to show that a given curve is smooth.

In this book we shall deal only with explicit parametrizations for line segments
or circular arcs, for the most part. The following example shows that these are quite
elementary.

Example 1

Find an admissible parametrization for each of the following smooth curves:

(a) the horizontal line segment from z = 1 to z = 8,

(b) the vertical line segment from z = 2 − 2i to z = 2 + 2i ,

(c) the straight-line segment joining −2 − 3i and 5 + 6i ,

(d) the circle of radius 2 centered at 1 − i , and

(e) the graph of the function y = x3 for 0 ≤ x ≤ 1.

Solution. (a) The point set is described as z = x , 1 ≤ x ≤ 8. So just let the
parameter t be x , itself:

z(t) = t (1 ≤ t ≤ 8).
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In fact, there is no reason to insist that the parameter be called “t”; the formula

z(x) = x (1 ≤ x ≤ 8)

is quite satisfactory.

(b) The point set is z = 2 + iy, −2 ≤ y ≤ 2, so simply take

z(y) = 2 + iy (−2 ≤ y ≤ 2).

(c) Given any two distinct points z1 and z2, every point on the line segment
joining z1 and z2 is of the form z1 + t (z2 − z1), where 0 ≤ t ≤ 1 (see Prob. 18 in
Exercises 1.3). Therefore, the given curve constitutes the range of

z(t) = −2 − 3i + t (7 + 9i) (0 ≤ t ≤ 1).

(d) In Section 1.4 it was shown that any point on the unit circle centered at the
origin can be written in the form eiθ = cos θ + i sin θ for 0 ≤ θ < 2π ; therefore, an
admissible parametrization for this smooth closed curve is constructed by interpreting
θ as the parameter: z0(θ) = eiθ , 0 ≤ θ ≤ 2π (notice that the endpoints are joined
properly). To parametrize the given circle (d) we simply shift the center and double
the radius:

z(θ) = 1 − i + 2eiθ (0 ≤ θ ≤ 2π).

Note that by suitably restricting the limits on θ we could generate a semicircle or any
other circular arc.

(e) The parametrization of the graph of any function y = f (x) is also easy;
simply let x be the parameter and write z(x) = x + i f (x), and set the limits. This is
an admissible parametrization as long as f (x) is continuously differentiable. For the
graph (e) we have

z(x) = x + i x3 (0 ≤ x ≤ 1).

The verification of conditions (i), (ii), and (iii) (or (iii′)) is immediate for each of
these curves; thus these are admissible parametrizations. �

Let us carry our analysis of curve sketching a little further. Suppose that the artist
is to draw a smooth arc like that in Fig. 4.2 and is to abide by our ground rules (in
particular it is illegal to retrace points). Then it is intuitively clear that the artist must
either start at zI and work toward zI I , or start at zI I and terminate at zI . Either mode
produces an ordering of the points along the curve (Fig. 4.3).

Thus we see that there are exactly two such “natural” orderings of the points of a
smooth arc γ , and either one can be specified by declaring which endpoint of γ is the
initial point. A smooth arc, together with a specific ordering of its points, is called a
directed smooth arc. The ordering can be indicated by an arrow, as in Fig. 4.3.

The ordering that the artist generates while drawing γ is reflected in the parame-
trization function z(t) that describes the pen’s trajectory; specifically, the point z (t1)
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Figure 4.2 Smooth arc.

Figure 4.3 Directed smooth arcs.

will precede the point z (t2) whenever t1 < t2. Since there are only two possible (nat-
ural) orderings, any admissible parametrization must fall into one of two categories,
according to the particular ordering it respects. In general, if z = z(t), a ≤ t ≤ b, is
an admissible parametrization consistent with one of the orderings, then z = z(−t),
−b ≤ t ≤ −a, always corresponds to the opposite ordering.

The situation is slightly more complicated if the artist is to draw a smooth closed
curve. First an initial point must be selected; then the artist must choose one of the
two directions in which to trace the curve (see Fig. 4.4). Having made these decisions,
the artist has established the ordering of the points of γ . Now, however, there is one
anomaly; the initial point both precedes and is preceded by every other point, since it
also serves as the terminal point. Ignoring this schizophrenic pest, we shall say that
the points of a smooth closed curve have been ordered when (i) a designation of the
initial point is made and (ii) one of the two “directions of transit” from this point is
selected. A smooth closed curve whose points have been ordered is called a directed
smooth closed curve.

As in the case of smooth arcs, the parametrization of the trajectory of the artist’s
pen reflects the ordering generated in sketching a smooth closed curve. If this parame-
trization is given by z = z(t), a ≤ t ≤ b, then (i) the initial point must be z(a) and
(ii) the point z (t1) precedes the point z (t2) whenever a < t1 < t2 < b. Any other
admissible parametrization having the same initial point must reflect either the same
or the opposite ordering.
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Figure 4.4 Directed smooth closed curves.

The phrase directed smooth curve will be used to mean either a directed smooth
arc or a directed smooth closed curve.

Now we are ready to specify the more general kinds of curves that will be used in
the theory of integration. They are formed by joining directed smooth curves together
end-to-end; this allows self-intersections, cusps, and corners. In addition, it will be
convenient to include single isolated points as members of this class. Let us explore
the possibilities uncovered by the following definition.

Definition 2. A contour 
 is either a single point z0 or a finite sequence of di-
rected smooth curves (γ1, γ2, . . . , γn) such that the terminal point of γk coincides
with the initial point of γk+1 for each k = 1, 2, . . . , n − 1. In this case one can
write 
 = γ1 + γ2 + · · · + γn .

Notice that a single directed smooth curve is a contour with n = 1.
Speaking loosely, we can say that the contour 
 inherits a direction from its com-

ponents γk : If z1 and z2 lie on the same directed smooth curve γk , they are ordered by
the direction on γk , and if z1 lies on γi while z2 lies on γ j , we say that z1 precedes z2
if i < j . This is ambiguous because of the possibility that a point of self-intersection,
say z1, would lie on two different smooth curves, and therefore we must indicate which
“occurrence” of z1 is meant when we say z1 precedes z2.

Figure 4.5 illustrates four elementary examples of contours formed by joining di-
rected smooth curves. In Fig. 4.5(d), if zα is regarded as a point of γ1 it precedes zβ ,
but regarded as a point of γ3, it is preceded by zβ .

Figs. 4.6, 4.7, and 4.8 depict three interesting contours that will be employed when
we study examples of contour integration in Chapter 6. Note that in Fig. 4.7 we retrace
entire segments in the course of tracing the contour.

A parametrization of a contour is simply a “piecing together” of admissible para-
metrizations of its smooth-curve components. We will never have need to carry this out
explicitly, because in practice we always break up a contour into its smooth-curve com-
ponents. However the theory is much easier to express in terms of contour parametriza-
tions, so let us spell it out once and for all. One says that z = z(t), a ≤ t ≤ b, is a
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Figure 4.5 Examples of contours.

Figure 4.6 Semicircular contour.

Figure 4.7 Contour with intrusions.
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Figure 4.8 Contour with indentations.

parametrization of the contour 
 = (γ1, γ2, . . . , γn) if there is a subdivision of [a, b]
into n subintervals [τ0, τ1] , [τ1, τ2] , . . . ,

[
τn−1, τn

]
, where

a = τ0 < τ1 < · · · < τn−1 < τn = b,

such that on each subinterval
[
τk−1, τk

]
the function z(t) is an admissible parametriza-

tion of the smooth curve γk , consistent with the direction on γk . Since the endpoints of
consecutive γk’s are properly connected, z(t) must be continuous on [a, b]. However
z′(t) may have jump discontinuities at the points τk .

The contour parametrization of a point is simply a constant function.
When we have admissible parametrizations of the components γk of a contour 
,

we can piece these together to get a contour parametrization for 
 by simply rescaling
and shifting the parameter intervals for t . The technique is amply illustrated by the
following example. (The general case is discussed in Prob. 6.)

Example 2

Parametrize the contour in Fig. 4.9, for t in the interval 0 ≤ t ≤ 1.

Solution. We have already seen how to parametrize straight lines. The follow-
ing functions are admissible parametrizations for γ1, γ2, and γ3, consistent with their

Figure 4.9 Contour for Example 2.
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directions:
γ1 : z1(t) = t (0 ≤ t ≤ 1),

γ2 : z2(t) = 1 + t (i − 1) (0 ≤ t ≤ 1),

γ3 : z3(t) = i − ti (0 ≤ t ≤ 1).

Now we rescale so that γ1 is traced as t varies between 0 and 1
3 , γ2 is traced for

1
3 ≤ t ≤ 2

3 , and γ3 is traced for 2
3 ≤ t ≤ 1. This is simply a matter of shifting and

stretching the variable t .
For γ1, observe that the range of the function z1(t) = t , 0 ≤ t ≤ 1, is the same

as the range of zI (t) = 3t , 0 ≤ t ≤ 1
3 , and that zI (t) is an admissible parametrization

corresponding to the same ordering. The curve γ2 is the range of z2(t) = 1 + t (i − 1),
0 ≤ t ≤ 1, and this is the same as the range of zI I (t) = 1+3(t − 1

3 )(i −1), 1
3 ≤ t ≤ 2

3 ,
again preserving admissibility and ordering. Handling z3(t) similarly, we find

z(t) =



3t
(

0 ≤ t ≤ 1
3

)
,

1 + 3
(

t − 1
3

)
(i − 1)

(
1
3 ≤ t ≤ 2

3

)
,

i − 3
(

t − 2
3

)
i

(
2
3 ≤ t ≤ 1

)
. �

The (undirected) point set underlying a contour is known as a piecewise smooth
curve. We shall use the symbol 
 ambiguously to refer to both the contour and its
underlying curve, allowing the context to provide the proper interpretation.

Much of the terminology of directed smooth curves is readily applied to contours.
The initial point of 
 is the initial point of γ1, and its terminal point is the terminal
point of γn; therefore 
 can be regarded as a path connecting these points. If the
directions on all the components of 
 are reversed and the components are taken in the
opposite order, the resulting contour is called the opposite contour and is denoted by
−
 (see Fig. 4.10). Notice that if z = z(t), a ≤ t ≤ b, is a parametrization of 
, then
z = z(−t), −b ≤ t ≤ −a, parametrizes −
.


 is said to be a closed contour or a loop if its initial and terminal points coincide.
A simple closed contour is a closed contour with no multiple points other than its

Figure 4.10 Oppositely oriented contours.
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Figure 4.11 Jordan curve theorem.

initial-terminal point; in other words, if z = z(t), a ≤ t ≤ b, is a parametrization of
the closed contour, then z(t) is one-to-one on the half-open interval [a, b).

There is an alternative way of specifying the direction along a curve if the curve
happens to be a simple closed contour. We employ the venerable Jordan curve theo-
rem† from topology, which guarantees the intuitively transparent observation that such
a curve has an inside and an outside (see Fig. 4.11).

Theorem 1. Any simple closed contour separates the plane into two domains,
each having the curve as its boundary. One of these domains, called the interior,
is bounded; the other, called the exterior, is unbounded.

Jordan’s theorem actually holds for more general curves, but the proof is quite
involved—even for contours.

Now given a simple closed contour 
 we can imagine a child bicycling around the
curve and tracing out its points in the order specified by its direction. If the bicycle has
training wheels and if it is small enough, then one of the training wheels will always
remain in the interior domain of the contour, while the other remains in the exterior
(otherwise we would have a path connecting these domains without crossing 
, in
contradiction to the Jordan curve theorem). Consequently the direction along 
 can be
completely specified by declaring its initial-terminal point and stating which domain
(interior or exterior) lies to the left of an observer tracing out the points in order. When
the interior domain lies to the left, we say that 
 is positively oriented. Otherwise

 is said to be oriented negatively. A positive orientation generalizes the concept of
counterclockwise motion; see Fig. 4.12.

The final topic we want to discuss in this section is the length of a contour. We
begin by considering a smooth curve γ , with any admissible parametrization z =

†Camille Jordan (1838–1922).
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Figure 4.12 Jordan, age four.

z(t) = x(t)+ iy(t), a ≤ t ≤ b. Let s(t) denote the length of the arc of γ traversed in
going from the point z(a) to the point z(t). As shown in elementary calculus, we have

ds

dt
=
√(

dx

dt

)2

+
(

dy

dt

)2

,

i.e. ds/dt = |dz/dt |. Consequently, the length of the smooth curve is given by the
important integral formula

�(γ ) = length of γ =
∫ b

a

ds

dt
dt =

∫ b

a

∣∣∣∣dz

dt

∣∣∣∣ dt. (1)

This formula is established rigorously in the references. Sometimes the shorthand∫
γ

|dz| is used to indicate
∫ b

a |dz/dt | dt ; it emphasizes the intuitively evident fact that
�(γ ) is a geometric quantity that depends only on the point set γ and is independent
of the particular admissible parametrization used in the computation.

The length of a contour is simply defined to be the sum of the lengths of its com-
ponent curves. For example, the length of the contour in Fig. 4.9 is just the sum
�(γ1)+�(γ2)+�(γ3) = 1+√

2+1 = 2+√
2. For a contour 
 that consists of two coun-

terclockwise laps around the circle C : |z − i | = 3, we have �(
) = 6π + 6π = 12π .

EXERCISES 4.1

1. For each of the following smooth curves give an admissible parametrization that is
consistent with the indicated direction.

(a) the line segment from z = 1 + i to z = −2 − 3i

(b) the circle |z − 2i | = 4 traversed once in the clockwise direction starting from
the point z = 4 + 2i
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(c) the arc of the circle |z| = R lying in the second quadrant, from z = Ri to
z = −R

(d) the segment of the parabola y = x2 from the point (1, 1) to the point (3, 9)

2. Show why the condition that z′(t) never vanishes is necessary to ensure that smooth
curves have no cusps. [HINT: Consider the curve traced by z(t) = t2 + i t3, −1 ≤
t ≤ 1.]

3. Show that the ellipse x2/a2 + y2/b2 = 1 is a smooth curve by producing an admis-
sible parametrization.

4. Show that the range of the function z(t) = t3 + i t6, −1 ≤ t ≤ 1, is a smooth curve
even though the given parametrization is not admissible.

5. Identify the interior of the simple closed contour 
 in Fig. 4.13. Is 
 positively
oriented?

Figure 4.13 Contour for Prob. 5.

6. Let γ be a directed smooth curve. Show that if z = z(t), a ≤ t ≤ b, is an admissible
parametrization of γ consistent with the ordering on γ , then the same is true of

z1(t) = z

(
b − a

d − c
t + ad − bc

d − c

)
(c ≤ t ≤ d).

7. Parametrize the contour consisting of the perimeter of the square with vertices −1−
i , 1 − i , 1 + i , and −1 + i traversed once in that order. What is the length of this
contour?

8. Parametrize the contour 
 indicated in Fig. 4.14. Also give a parametrization for
the opposite contour −
.

Figure 4.14 Contour for Prob. 8.
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Figure 4.15 Contour for Prob. 9.

9. Parametrize the barbell-shaped contour in Fig. 4.15; it has initial point −1 and ter-
minal point 1.

10. Using an admissible parametrization verify from formula (1) that

(a) the length of the line segment from z1 to z2 is |z2 − z1|;
(b) the length of the circle |z − z0| = r is 2πr .

11. Find the length of the contour 
 parametrized by z = z(t) = 5e3i t , 0 ≤ t ≤ π .

12. Does formula (1) remain valid when γ is a contour parametrized by z = z(t),
a ≤ t ≤ b?

13. Interpreting t as time and the admissible parametrization z = z(t), a ≤ t ≤ b, as the
position function of a moving particle, give the physical meaning of the following
quantities.

(a) z′(t) (b) |z′(t)|
(c) |z′(t) dt | (d)

∫ b
a |z′(t)| dt

14. Let z = z1(t) be an admissible parametrization of the smooth curve γ . If φ(s), c ≤
s ≤ d, is a strictly increasing function such that (i) φ′(s) is positive and continuous
on [c, d] and (ii) φ(c) = a, φ(d) = b, then the function z2(s) = z1(φ(s)), c ≤ s ≤
d, is also an admissible parametrization of γ . Verify that∫ b

a

∣∣z′
1(t)

∣∣ dt =
∫ d

c

∣∣z′
2(s)

∣∣ ds,

which demonstrates the invariance of formula (1).

4.2 Contour Integrals

In calculus the definite integral of a real-valued function f over an interval [a, b] is
defined as the limit of certain sums

∑n
k=1 f (ck)�xk (called Riemann sums). However,

the fundamental theorem of calculus lets us evaluate integrals more directly when an
antiderivative is known. The aim of the present section is to use this notion of Riemann
sums to define the definite integral of a complex-valued function f along a contour 
 in
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Figure 4.16 Partitioned curve.

the plane. We will accomplish this by first defining the integral along a single directed
smooth curve and then defining integrals along a contour in terms of the integrals
along its smooth components. When we are finished, however, we will once again
obtain simple rules for evaluating integrals in terms of antiderivatives.

Consider then a function f defined over a directed smooth curve γ with initial
point α and terminal point β (possibly coinciding with α). As in the previous section,
the points on γ are ordered in accordance with the direction.

For any positive integer n, we define a partition Pn of γ to be a finite number of
points z0, z1, . . . , zn on γ such that z0 = α, zn = β, and zk−1 precedes zk on γ for
k = 1, 2, . . . , n (see Fig. 4.16). If we compute the arc length along γ between every
consecutive pair of points (zk−1, zk), the largest of these lengths provides a measure
of the “fineness” of the subdivision; this maximum length is called the mesh of the
partition and is denoted by µ (Pn). It follows that if a given partition Pn has a “small”
mesh, then n must be large and the successive points of the partition must be close to
one another.

Now let c1, c2, . . . , cn be any points on γ such that c1 lies on the arc from z0 to z1,
c2 lies on the arc from z1 to z2, etc. Under these circumstances the sum S (Pn) defined
by

S (Pn) := f (c1)(z1 − z0)+ f (c2)(z2 − z1)+ · · · + f (cn)(zn − zn−1)

is called a Riemann sum for the function f corresponding to the partition Pn . On
writing zk − zk−1 = �zk , this becomes

S (Pn) =
n∑

k=1

f (ck)(zk − zk−1) =
n∑

k=1

f (ck)�zk .

Now we can generalize the definition of definite integral given in calculus.

Definition 3. Let f be a complex-valued function defined on the directed
smooth curve γ . We say that f is integrable along γ if there exists a
complex number L that is the limit of every sequence of Riemann sums
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S (P1) , S (P2) , . . . , S (Pn) , . . . corresponding to any sequence of partitions of
γ satisfying lim

n→∞µ (Pn) = 0; i.e.

lim
n→∞ S (Pn) = L whenever lim

n→∞µ (Pn) = 0.

The constant L is called the integral of f along γ , and we write

L = lim
n→∞

n∑
k=1

f (ck)�zk =
∫
γ

f (z) dz or L =
∫
γ

f.

Because Definition 3 is analogous to the definition of the integral given in calculus,
certain familiar properties of the latter integrals carry over to the complex case. For
example, if f and g are integrable along γ , then∫

γ

[ f (z)± g(z)] dz =
∫
γ

f (z) dz ±
∫
γ

g(z)dz, (1)∫
γ

c f (z) dz = c
∫
γ

f (z) dz (c any complex constant), (2)

and ∫
−γ

f (z) dz = −
∫
γ

f (z) dz, (3)

where −γ denotes the curve directed opposite to γ .
As we know from calculus, not all functions f are integrable. However, if we

require that f be continuous, then its integral must exist.

Theorem 2. If f is continuous† on the directed smooth curve γ , then f is inte-
grable along γ .

For a proof of this theorem see Ref. 2 at the end of the chapter.
While Theorem 2 is of great theoretical importance, it gives us no information

on how to compute the integral
∫
γ

f (z) dz. However, since we are already skilled in
evaluating the definite integrals of calculus, it would certainly be advantageous if we
could express the complex integral in terms of real integrals.

For this purpose we first consider the special case when γ is the real line segment
[a, b] directed from left to right. Notice that if f happened to be a real-valued function

†The meaning of continuity for a function f having an arbitrary set S as its domain of definition
is as follows: f is continuous on the set S if for any point z0 in S and for every ε > 0, there exists a
δ > 0 such that | f (z)− f (z0)| < ε whenever z belongs to S and |z − z0| < δ.
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defined on [a, b], the Definition 3 would agree precisely with the definition of the
integral

∫ b
a f (t) dt given in calculus. Hence, even when f is complex-valued, we

shall use the symbol ∫ b

a
f (t) dt

to denote the integral of f along the directed real line segment. In this case, when f (t)
is a complex-valued function continuous on [a, b], we can write f (t) = u(t)+ iv(t),
where u and v are each real-valued and continuous on [a, b]. Then from properties (1)
and (2) we have ∫ b

a
f (t) dt =

∫ b

a
[u(t)+ iv(t)] dt

=
∫ b

a
u(t) dt + i

∫ b

a
v(t) dt;

(4)

this expresses the complex integral in terms of two real integrals.
If f (t) has the antiderivative F(t) = U (t) + i V (t), then U ′ = u, V ′ = v, and

Eq. (4) leads immediately to the following generalization of the fundamental theorem
of calculus.

Theorem 3. If the complex-valued function f is continuous on [a, b] and
F ′(t) = f (t) for all t in [a, b], then∫ b

a
f (t) dt = F(b)− F(a).

This result is illustrated in the following example.

Example 1
Compute

∫ π
0 eit dt .

Solution. Since F(t) = eit
/

i is an antiderivative of f (t) = eit , we have by
Theorem 3 ∫ π

0
eit dt = eit

i

∣∣∣∣π
0

= eiπ

i
− ei0

i
= −2

i
= 2i. �

Now we move on to the general case where γ is any directed smooth curve along
which f is continuous. We can obtain a formula for the integral

∫
γ

f (z)dz by consid-
ering an admissible parametrization z = z(t), a ≤ t ≤ b, for γ (consistent with its
direction). Indeed, if Pn = {z0, z1, . . . , zn} is a partition of γ , then we can write

z0 = z(t0), z1 = z(t1), . . . , zn = z(tn),

164



4.2 Contour Integrals 165

where

a = t0 < t1 < · · · < tn = b.

Furthermore, since the function z(t) has a continuous derivative on [a, b], the differ-
ence �zk = z(tk) − z(tk−1) is approximately equal to z′(tk)(tk − tk−1) = z′(tk)�tk ,
the error going to zero faster than �tk . Hence we see that the sum

n∑
k=1

f (zk)�zk =
n∑

k=1

f (z(tk))�zk,

which is a Riemann sum for f along γ , can be approximated by the sum

n∑
k=1

f (z(tk))z
′(tk)�tk,

which is a Riemann sum for the continuous function f (z(t))z′(t) over the interval
[a, b]. These considerations suggest the following theorem (and provide the essential
ingredients for its justification):

Theorem 4. Let f be a function continuous on the directed smooth curve γ .
Then if z = z(t), a ≤ t ≤ b, is any admissible parametrization of γ consistent
with its direction, we have∫

γ

f (z) dz =
∫ b

a
f (z(t))z′(t) dt. (5)

The precise details of the proof of Theorem 4, though not difficult, are quite la-
borious and not particularly illuminating for our subject matter. Hence we shall omit
them. A rigorous treatment of this theorem can be found in Ref. [2].

Since Eq. (5) is valid for all suitable parametrizations of γ and since the integral of
f along γ was defined independently of any parametrization, we immediately deduce
the following.

Corollary 1. If f is continuous on the directed smooth curve γ and if z = z1(t),
a ≤ t ≤ b, and z = z2(t), c ≤ t ≤ d, are any two admissible parametrizations
of γ consistent with its direction, then∫ b

a
f (z1(t)) z′

1(t) dt =
∫ d

c
f (z2(t)) z′

2(t) dt.
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Example 2
Compute the integral

∫
Cr
(z − z0)

n dz, with n an integer and Cr the circle |z − z0| = r

traversed once in the counterclockwise direction,† as indicated in Fig. 4.17.

Figure 4.17 Directed smooth curve for Example 2.

Solution. A suitable parametrization for Cr is given by z(t) = z0 + reit , 0 ≤
t ≤ 2π . Setting f (z) = (z − z0)

n , we have

f (z(t)) = (z0 + reit − z0)
n = rneint

and
z′(t) = ireit .

Hence, by formula (5),∫
Cr

(z − z0)
n dz =

∫ 2π

0

(
rneint

) (
ireit

)
dt = irn+1

∫ 2π

0
ei(n+1)t dt.

The evaluation of the last integral requires two separate computations. If n �= −1, we
obtain

irn+1
∫ 2π

0
ei(n+1)t dt = irn+1 ei(n+1)t

i(n + 1)

∣∣∣∣∣
2π

0

= irn+1
[

1

i(n + 1)
− 1

i(n + 1)

]
= 0,

while if n = −1, then

irn+1
∫ 2π

0
ei(n+1)t dt = i

∫ 2π

0
dt = 2π i.

Thus (regardless of the value of r )∫
Cr

(z − z0)
n dz =

{
0 for n �= −1,

2π i for n = −1. �
(6)

Integrals along a contour are computed according to the following definition.

† Occasionally we write

�
∫

Cr

f (z) dz

to emphasize the fact that the integration is taken in the positive direction.
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Definition 4. Suppose that 
 is a contour consisting of the directed smooth
curves (γ1, γ2, . . . , γn), and let f be a function continuous on 
. Then the con-
tour integral of f along 
 is denoted by the symbol

∫



f (z) dz and is defined
by the equation∫




f (z) dz :=
∫
γ1

f (z) dz +
∫
γ2

f (z) dz + · · · +
∫
γn

f (z) dz. (7)

If 
 consists of a single point, then for obvious reasons we set∫



f (z) dz := 0.

Example 3

Compute ∫



1

z − z0
dz ,

where 
 is the circle |z − z0| = r traversed twice in the counterclockwise direction
starting from the point z0 + r .

Solution. Letting Cr denote the circle traversed once in the counterclockwise
direction, we have 
 = (Cr ,Cr ). Hence, from formula (6) obtained in the solution of
Example 2, there follows∫




dz

z − z0
=
∫

Cr

dz

z − z0
+
∫

Cr

dz

z − z0
= 2π i + 2π i = 4π i. �

Example 4

Compute
∫



z2dz along the simple closed contour 
 of Fig. 4.18.

Figure 4.18 Contour for Example 4.
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Solution. According to Definition 4 we have∫



z2 dz =
∫
γ1

z2 dz +
∫
γ2

z2 dz +
∫
γ3

z2 dz.

Suitable parametrizations for the line segments γk are

γ1 : z1(t) = t (0 ≤ t ≤ 2),
γ2 : z2(t) = 2 + ti (0 ≤ t ≤ 2),
γ3 : z3(t) = −t (1 + i) (−2 ≤ t ≤ 0),

and so by Theorem 4 we have∫
γ1

z2 dz =
∫ 2

0
z1(t)

2
z′

1(t) dt =
∫ 2

0
t2 dt = t3

3

∣∣∣∣∣
2

0

= 8

3
,

∫
γ2

z2 dz =
∫ 2

0
z2(t)

2
z′

2(t) dt =
∫ 2

0
(2 − ti)2i dt

= i(2 − ti)3

−3i

∣∣∣∣∣
2

0

= −(2 − 2i)3

3
+ 8

3
,

and ∫
γ3

z2 dz =
∫ 0

−2
z3(t)

2
z′

3(t) dt =
∫ 0

−2
[−t (1 − i)]2[−(1 + i)] dt

= −(1 + i)(1 − i)2
∫ 0

−2
t2 dt = −(1 + i)(1 − i)2

8

3
.

Therefore ∫



z2 dz = 8

3
+
[−(2 − 2i)3

3
+ 8

3

]
+
[
−(1 + i)(1 − i)2

8

3

]
,

which after some computation turns out to equal 16/3 + 32i/3. �
Using Definition 4 it is easy to see that the results discussed previously for integrals

along a directed smooth curve carry over to integrals along a contour. In particular, we
have ∫




[ f (z)± g(z)] dz =
∫



f (z) dz ±
∫



g(z) dz, (8)∫



c f (z) dz = c
∫



f (z) dz (c any complex constant), (9)

and ∫
−


f (z) dz = −
∫



f (z) dz, (10)

where f and g are both continuous on the contour 
.
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Furthermore, if we have a parametrization z = z(t), a ≤ t ≤ b, for the whole
contour 
 = (γ1, γ2, . . . , γn), then we know that there is a subdivision

a = τ0 < τ1 < · · · < τn−1 < τn = b

such that the function z(t) restricted to the kth subinterval
[
τk−1, τk

]
constitutes a

suitable parametrization of γk . Hence by formula (5)∫
γk

f (z) dz =
∫ τk

τk−1

f (z(t))z′(t) dt (k = 1, 2, . . . , n),

and so ∫



f (z) dz =
n∑

k=1

∫ τk

τk−1

f (z(t))z′(t) dt,

which we can write as ∫



f (z) dz =
∫ b

a
f (z(t))z′(t) dt.

Using this formula it is not difficult to prove that integration around simple closed
contours is independent of the choice of the initial-terminal point (see Prob. 18). Con-
sequently, in problems dealing with integrals along such contours, we need only spec-
ify the direction of transit, not the starting point.

Many times in theory and in practice, it is not actually necessary to evaluate a con-
tour integral. What may be required is simply a good upper bound on its magnitude.
We therefore turn to the problem of estimating contour integrals.

Suppose that the function f is continuous on the directed smooth curve γ and that
f (z) is bounded by the constant M on γ ; i.e., | f (z)| ≤ M for all z on γ . If we consider
a Riemann sum

∑n
k=1 f (ck)�zk corresponding to a partition Pn of γ , then we have,

by the generalized triangle inequality,∣∣∣∣∣
n∑

k=1

f (ck)�zk

∣∣∣∣∣ ≤
n∑

k=1

| f (ck)| |�zk | ≤ M
n∑

k=1

|�zk | .

Furthermore, notice that the sum of the chordal lengths
∑n

k=1 |�zk | cannot be greater
than the length of γ . Hence ∣∣∣∣∣

n∑
k=1

f (ck)�zk

∣∣∣∣∣ ≤ M�(γ ). (11)

Since inequality (11) is valid for all Riemann sums of f (z), it follows by taking the
limit [as µ (Pn) → 0] that ∣∣∣∣∫

γ

f (z) dz

∣∣∣∣ ≤ M�(γ ). (12)

Applying this fact and the triangle inequality to the Eq. (7) defining a contour integral,
we deduce
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Theorem 5. If f is continuous on the contour 
 and if | f (z)| ≤ M for all z on

, then ∣∣∣∣∫




f (z) dz

∣∣∣∣ ≤ M�(
), (13)

where �(
) denotes the length of 
. In particular, we have∣∣∣∣∫



f (z) dz

∣∣∣∣ ≤ max
z on 


| f (z)| · �(
). (14)

Example 5
Find an upper bound for

∣∣∫



ez
/
(z2 + 1) dz

∣∣, where 
 is the circle |z| = 2 traversed
once in the counterclockwise direction.

Solution. First observe that the path of integration has length � = 4π . Next we
seek an upper bound M for the function ez

/
(z2 + 1) when |z| = 2. Writing z = x+iy

we have ∣∣ez
∣∣ =

∣∣∣ex+iy
∣∣∣ = ex ≤ e2, for |z| =

√
x2 + y2 = 2,

and by the triangle inequality∣∣∣z2 + 1
∣∣∣ ≥ |z|2 − 1 = 4 − 1 = 3, for |z| = 2.

Hence
∣∣ez
/
(z2 + 1)

∣∣ ≤ e2
/

3 for |z| = 2, and so by the theorem∣∣∣∣∫



ez

z2 + 1
dz

∣∣∣∣ ≤ e2

3
· 4π. �

In concluding this section we remark that although the real definite integral can be
interpreted, among other things, as an area, no corresponding geometric visualization
is available for contour integrals. Nevertheless, the latter integrals are extremely useful
in applied problems, as we shall see in subsequent chapters.

EXERCISES 4.2

1. Let γ be a directed smooth curve with initial point α and terminal point β. Show
directly from Definition 3 that

∫
γ

c dz = c(β−α), where c is any complex constant.
Does the same formula hold for integration along an arbitrary contour joining α to
β?

2. Using Definition 3, prove properties (1), (2) and (3).

3. Evaluate each of the following integrals.
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(a)
∫ 1

0

(
2t + i t2

)
dt (b)

∫ 0

−2
(1 + i) cos(i t) dt

(c)
∫ 1

0
(1 + 2i t)5 dt (d)

∫ 2

0

t(
t2 + i

)2 dt

4. Furnish the details of the proof of Theorem 3.

5. Utilize Example 2 to evaluate∫
C

[
6

(z − i)2
+ 2

z − i
+ 1 − 3(z − i)2

]
dz,

where C is the circle |z − i | = 4 traversed once counterclockwise.

6. Compute
∫



z dz, where

(a) 
 is the circle |z| = 2 traversed once counterclockwise.

(b) 
 is the circle |z| = 2 traversed once clockwise.

(c) 
 is the circle |z| = 2 traversed three times clockwise.

7. Compute
∫



Re z dz along the directed line segment from z = 0 to z = 1 + 2i .

8. Let C be the perimeter of the square with vertices at the points z = 0, z = 1,
z = 1 + i , and z = i traversed once in that order. Show that∫

C
ez dz = 0.

9. Evaluate
∫


(x − 2xyi) dz over the contour 
 : z = t + i t2, 0 ≤ t ≤ 1, where

x = Re z, y = Im z.

10. Compute
∫

C z2 dz along the perimeter of the square in Prob. 8.

11. Evaluate
∫


(2z + 1) dz, where 
 is the following contour from z = −i to z = 1:

(a) the simple line segment.

(b) two simple line segments, the first from z = −i to z = 0 and the second from
z = 0 to z = 1.

(c) the circular arc z = eit , −π/2 ≤ t ≤ 0.

12. True or false: �
∫

|z|=1
z dz = �

∫
|z|=1

1

z
dz.

13. Compute
∫



(|z − 1 + i |2 − z
)

dz along the semicircle z = 1 − i + eit ,
0 ≤ t ≤ π .

14. For each of the following, use Theorem 5 to establish the indicated estimate.

(a) If C is the circle |z| = 3 traversed once, then∣∣∣∣∫
C

dz

z2 − i

∣∣∣∣ ≤ 3π

4
.
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(b) If γ is the vertical line segment from z = R (> 0) to z = R + 2π i , then∣∣∣∣∣
∫
γ

e3z

1 + ez
dz

∣∣∣∣∣ ≤ 2πe3R

eR − 1
.

(c) If 
 is the arc of the circle |z| = 1 that lies in the first quadrant, then∣∣∣∣∫



Log z dz

∣∣∣∣ ≤ π2

4
.

(d) If γ is the line segment from z = 0 to z = i , then∣∣∣∣∫
γ

esin z dz

∣∣∣∣ ≤ 1.

15. Let f be a continuous complex-valued function on the real interval [a, b]. Prove
that ∣∣∣∣∫ b

a
f (t) dt

∣∣∣∣ ≤
∫ b

a
| f (t)| dt.

[HINT: Consider the Riemann sums of f over [a, b].]
16. Let γ be a directed smooth curve with initial point α and terminal point β. Use

formula (5) and Theorem 3 to show that∫
γ

z dz = β2 − α2

2
.

17. Using the result of Prob. 16, prove that for any closed contour 
∫



z dz = 0.

18. Let 
1 be a closed contour parametrized by z = z1(t), a ≤ t ≤ b. We can shift the
initial-terminal point of 
1 by choosing a number c in the interval (a, b) and letting

2 be the contour parametrized by

z2(t) =
{

z1(t) if c ≤ t ≤ b,
z1(t − b + a) if b ≤ t ≤ b − a + c.

Prove that ∫

1

f (z) dz =
∫

2

f (z) dz

for any function f continuous on the points of 
1.
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4.3 Independence of Path

One of the important results in the theory of complex analysis is the extension of the
Fundamental Theorem of Calculus to contour integrals. It implies that in certain situ-
ations the integral of a function is independent of the particular path joining the initial
and terminal points; in fact, it completely characterizes the conditions under which
this property holds. In this section, we shall explore this phenomenon in detail. We
begin with the Fundamental Theorem, which enables us to evaluate integrals with-
out introducing parametrizations, provided that an antiderivative of the integrand is
known.

Theorem 6. Suppose that the function f (z) is continuous in a domain D and
has an antiderivative F(z) throughout D; i.e., d F(z)/dz = f (z) for each z in D.
Then for any contour 
 lying in D, with initial point zI and terminal point zT ,
we have ∫




f (z) dz = F(zT )− F(zI ). (1)

[Notice that the conditions of the theorem imply that F(z) is analytic and hence
continuous in D. The function Log z, for example, is not an antiderivative for 1/z in
any domain containing points of the negative real axis.]

Before proceeding with the proof we shall show how Theorem 6 can greatly facil-
itate the computation of certain contour integrals.

Example 1
Compute the integral

∫



cos z dz, where 
 is the contour shown in Fig. 4.19.

Figure 4.19 Contour for Example 1.

Solution. There is no need to parametrize 
 since the integrand has the an-
tiderivative F(z) = sin z for all z. Hence by Theorem 6, the value of the integral
can be computed using only the endpoints of 
:∫




cos z dz = sin z

∣∣∣∣2+i

−1
= sin(2 + i)− sin(−1). �
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Proof of Theorem 6. The demonstration is quite straightforward; once we write
the integral in terms of a parametrization, the conclusion will follow as a result of the
chain rule and Theorem 3 of the last section.

So suppose that 
 is a contour in D joining zI to zT . We select a suitable parame-
trization z = z(t), a ≤ t ≤ b, for 
 and, as in the previous section, let {τk}n

0 denote
the values of t corresponding to the endpoints of the smooth components

{
γ j
}n

1 of 

[in particular, z (τ0) = zI and z (τn) = zT ]. Then we have∫




f (z) dz =
n∑

j=1

∫
γ j

f (z) dz

=
n∑

j=1

∫ τ j

τ j−1

f (z(t))z′(t) dt. (2)

Using the fact that F is an antiderivative of f , it is possible to rewrite the integrands ap-
pearing in Eq. (2). For this purpose we recall that on each separate interval

[
τ j−1, τ j

]
the derivative dz/dt exists and is continuous. Hence the chain rule implies that

d

dt
[F(z(t))] = d F

dz

dz

dt
= f (z(t))z′(t)

(
τ j−1 ≤ t ≤ τ j

)
,

and so, by Theorem 3,∫ τ j

τ j−1

f (z(t))z′(t) dt =
∫ τ j

τ j−1

d

dt
[F(z(t))] dt

= F(z(τ j ))− F(z(τ j−1)).

Therefore, we have∫



f (z) dz =
n∑

j=1

[
F(z(τ j ))− F(z(τ j−1))

]
= [F(z(τ1))− F(z(τ0))] + [F(z(τ2))− F(z(τ1))]

+ · · · + [
F(z(τn))− F(z(τn−1))

]
.

(3)

But this sum telescopes, leaving∫



f (z) dz = F(z(τn))− F(z(τ0))

= F(zT )− F(zI ). �

Example 2

Compute
∫



1/z dz, where (a) 
 is the contour shown in Fig. 4.20 and (b) 
 is the
contour indicated in Fig. 4.21.
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Figure 4.20 Contour for Example 2(a). Figure 4.21 Contour for Example 2(b).

Solution. (a) At each point of the contour 
 of Fig. 4.20 the function 1/z is the
derivative of the principal branch of log z (cf. Sec. 3.3). Hence∫




dz

z
= Log z

∣∣∣∣i−i
= π

2
i −

(
−π

2
i
)

= π i.

(b) For the contour 
 of Fig. 4.21 we cannot employ the function Log z, since its
branch cut intersects 
. We use instead L0(z) = Log |z| + i arg z,
0 < arg z < 2π , which is a branch of the logarithm with cut along the nonnegative
x-axis. Thus ∫




dz

z
= L0(z)

∣∣∣∣i−i
= π

2
i − 3π

2
i = −π i. �

Since the endpoints of a loop, i.e., a closed contour, are equal, we have the follow-
ing immediate consequence of Theorem 6.

Corollary 2. If f is continuous in a domain D and has an antiderivative through-
out D, then

∫



f (z) dz = 0 for all loops 
 lying in D.

Corollary 2 provides an alternative solution to the problem of evaluating the inte-
gral

∫
Cr
(z − z0)

n dz of Example 2 in Sec. 4.2 when n �= −1. For if we set f (z) =
(z − z0)

n , then f (z) is the derivative of the function F(z) = (z − z0)
n+1/(n + 1),

which is analytic in the domain D consisting of all points in the plane except z = z0.
(Actually the point z0 need be excluded only in the case when n is negative. Why?)
Since Cr is a closed contour which lies in D, we deduce from the corollary that∫

Cr
(z − z0)

n dz = 0, n �= −1.
Another important conclusion that can be drawn from Eq. (1) is that when a func-

tion f has an antiderivative throughout a domain D, its integral along a contour in D
depends only on the endpoints zI and zT ; i.e., the integral is independent of the path

 joining these two points! For instance, in Fig. 4.22 all the integrals

∫

1

f (z) dz,∫

2

f (z) dz, and
∫

3

f (z) dz are equal under this condition. As a matter of fact, we
shall establish that the three properties we have discussed in this section amount to
logically equivalent statements when applied to a continuous function f (z).
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Figure 4.22 Independence of path.

Theorem 7. Let f be continuous in a domain D. Then the following are equiv-
alent:

(i) f has an antiderivative in D.

(ii) Every loop integral of f in D vanishes [i.e., if 
 is any loop in D, then∫



f (z)dz = 0].

(iii) The contour integrals of f are independent of path in D [i.e., if 
1 and

2 are any two contours in D sharing the same initial and terminal points,
then

∫

1

f (z) dz = ∫

2

f (z) dz].

Proof. We have already seen from Theorem 6 that statement (i) implies (ii) [as
well as (iii)]. Thus Theorem 7 will be proved if we can show that (ii) implies (iii) and
that (iii) implies (i).

So assume that statement (ii) is true, and let 
1 and 
2 be any two contours in D
sharing the same initial point zI and terminal point zT . Now define 
 to be the contour
generated by proceeding first along 
1 from zI to zT and then backwards from zT to
zI along −
2. Then by Eq. (10) of Sec. 4.2, we have∫




f (z) dz =
∫

1

f (z) dz +
∫

−
2

f (z) dz =
∫

1

f (z) dz −
∫

2

f (z) dz.

On the other hand, since 
 is closed, (ii) implies that∫



f (z) dz = 0.

Thus we deduce statement (iii).
We now show that whenever property (iii) holds, so does (i). To prove that f has

an antiderivative, we must define some function F(z) and show that its derivative is
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Figure 4.23 Path of integration for Theorem 7.

f (z). The clue as to where to look for F(z) is provided by the earlier considerations;
if f had an antiderivative, Eq. (1) would hold. So we use Eq. (1) to define the function
F(z) and show that it is, indeed, an antiderivative.

Accordingly, we fix some point z0 in D. Then for any point z in D, let F(z) be
the integral of f along some contour 
 in D joining z0 to z. Since D is connected, we
know that there will be at least one such contour (a directed polygonal path), and by
condition (iii) it does not matter which contour we choose; all the possible paths will
yield the same value for F(z). Hence F(z) is a well-defined single-valued function in
D. To prove (i) we compute F(z +�z)− F(z).

We prudently elect to evaluate F(z+�z) by first integrating f along the contour 

from z0 to z and then along the straight-line segment from z to z +�z. This segment
will lie in D if �z is small enough, because D is an open set; see Fig. 4.23. But
now the difference F(z +�z) − F(z) is simply the integral of f along this segment.
Parametrizing the latter by z(t) = z + t�z, 0 ≤ t ≤ 1, we have

F(z +�z)− F(z) =
∫ 1

0
f (z + t�z)�z dt,

and thus
F(z +�z)− F(z)

�z
=
∫ 1

0
f (z + t�z) dt.

Since f is continuous, it is easy to see (Prob. 10) that as �z → 0 the last integral
approaches

∫ 1
0 f (z) dt = f (z). Thus F ′(z) exists and equals f (z). This concludes the

proof of the equivalence. �

Theorem 7 probably appears useless at present; you may wonder how in the world
one tests whether the integral of a function around every closed curve is zero. In
the next section our efforts will be vindicated thanks to a surprising result known
as Cauchy’s theorem, which gives a simple condition for this property to hold. For
now, we shall simply summarize by saying that a given continuous function has an
antiderivative in D if and only if its integral around every loop in D is zero.
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EXERCISES 4.3

1. Calculate each of the following integrals along the indicated contours. (Observe
that a standard table of integrals can be used. Explain why.)

(a)
∫



(
3z2 − 5z + i

)
dz along the line segment from z = i to z = 1.

(b)
∫



ez dz along the upper half of the circle |z| = 1 from z = 1 to z = −1.

(c)
∫



1/z dz for any contour in the right half-plane from z = −3i to z = 3i .

(d)
∫



csc2 z dz for any closed contour that avoids the points 0, ±π , ±2π , . . ..

(e)
∫



sin2 z cos z dz along the contour in Fig. 4.24.

(f)
∫



ez cos z dz along the contour in Fig. 4.24.

(g)
∫



z1/2 dz for the principal branch of z1/2 along the contour in Fig. 4.24.

(h)
∫


(Log z)2 dz along the line segment from z = 1 to z = i .

(i)
∫



1
/(

1 + z2
)

dz along the line segment from z = 1 to z = 1 + i .

Figure 4.24 Contour for Prob. 1(e), (f), and (g).

2. If P(z) is a polynomial and 
 is any closed contour, explain why
∫



P(z) dz = 0.

3. In Chapter 5 we shall show that if f is entire and 
 is any contour, then for each
ε > 0 there exists a polynomial P(z) such that

| f (z)− P(z)| < ε for all z on 
.

Assuming this fact, prove that if f is entire, then

(a)
∫



f (z) dz = 0 for all closed contours 
. [HINT: Use the result of Prob. 2.]

(b) f is the derivative of an entire function.

4. True or false: If f is analytic at each point of a closed contour 
, then
∫



f (z) dz =
0.

5. Explain why Example 2 shows that the function f (z) = 1/z has no antiderivative
in the punctured plane C \ {0}.
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6. Although Corollary 2 does not apply to the function 1
/
(z − z0) in the plane punc-

tured at z0, Theorem 6 can be used as follows to show that∫
C

dz

z − z0
= 2π i

for any circle C traversed once in the positive direction surrounding the point z0.
Introduce a horizontal branch cut from z0 to ∞ as in Fig. 4.25. In the resulting “slit
plane” the function 1

/
(z − z0) has the antiderivative Log (z − z0). Apply Theorem

6 to compute the integral along the portion of C from α to β as indicated in Fig.
4.25. Now let α and β approach the point τ on the cut to evaluate the given integral
over all of C .

Figure 4.25 Contour for Prob. 6.

7. Show that if C is a positively oriented circle and z0 lies outside C , then∫
C

dz

z − z0
= 0.

8. Show directly that property (iii) implies (ii) in Theorem 7.

9. As we know, an antiderivative is only specified up to a constant. How was this
flexibility reflected in the proof that (iii) implies (i) in Theorem 7?

10. Verify the statement made in the text that if f is continuous at the point z, then∫ 1

0
f (z + t�z) dt → f (z) as �z → 0.

[HINT: Estimate the difference∫ 1

0
f (z + t�z) dt − f (z) =

∫ 1

0
[ f (z + t�z)− f (z)] dt . ]

11. Prove the integration-by-parts formula: If f and g have continuous first derivatives
in a domain containing the contour 
, then∫




f ′(z)g(z) dz = f (z)g(z)
∣∣∣zT

zI
−
∫



f (z)g′(z) dz,
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where zI and zT are the initial and terminal points of 
. [HINT: Use Theorem 6 on
the function d( f g)/dz.]

12. Let f be an analytic function with a continuous derivative satisfying
∣∣ f ′(z)

∣∣ ≤ M
for all z in the disk D : |z| < 1. Show that

| f (z2)− f (z1)| ≤ M |z2 − z1| (z1, z2 in D) .

[HINT: Observe that f (z2)− f (z1) = ∫
f ′(z) dz, where the integration can be taken

along the line segment from z1 to z2.]

4.4 Cauchy’s Integral Theorem

The essential content of this section is the Cauchy integral theorem.† We feel that a
clear and intuitive approach to this subject is provided by the concept of continuous
deformations of one contour into another. On the other hand, some instructors may
feel that the theorem is better handled by appealing to vector analysis, in particular
Green’s theorem. Accordingly, we have provided the reader with two alternative sec-
tions, 4.4a and 4.4b, and either one may be studied without affecting the subsequent
development.

In order that each section may be self-contained, some duplication of the text
appears; for instance Theorem 12 in Sec. 4.4b restates Theorem 9 in Sec. 4.4a, and
many of the same examples occur in both sections (though the methods of solution are
different).

Exercises 4.4 are divided into three parts: problems appropriate to Sec. 4.4a,
problems appropriate to Sec. 4.4b, and problems for all readers.

4.4a Deformation of Contours Approach

In the last section we saw that if a continuous function f possesses an (analytic) an-
tiderivative in a domain D, its integral around any loop in D is zero and vice versa.
Now we are going to show how this property ties in with the analyticity of f itself.
Our first task will be to develop the necessary geometry.

The critical notion in this regard is the continuous deformation of one loop into
another, in a given domain of the plane. Deformations are quite easily visualized
but somewhat harder to express in precise mathematical language. Most of the time,
however, the visualization alone will suffice for our purposes. With this in mind, we
first give an intuitive definition of deformations.

We say that the loop 
0 can be continuously deformed into the loop 
1 in the
domain D if 
0 (considered as an elastic string with indicated orientation) can be con-
tinuously moved about the plane, without leaving D, in such a manner that it ultimately
coincides with 
1 (in position as well as direction).

The following examples serve to illustrate this notion:

†Gauss actually discovered this theorem in 1811, a few years before Cauchy published it.
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Figure 4.26 Expanding circular contours.

Figure 4.27 Deformation of a triangle.

(a) Let D be the annulus and let 
0 and 
1 be the circular contours indicated in
Fig. 4.26(a). Since both circles are positively oriented, the “elastic” circle 
0 can be
continuously deformed to 
1 in D by expanding the radius of 
0 from 1 to 2; i.e., we
visualize a continuum of concentric circles varying in radii from 1 to 2. The dashed
circles in Fig. 4.26(b) depict some of the intermediate loops; notice that all of them lie
in D.

(b) Let D be the annulus, 
0 the triangular contour, and 
1 the circular contour of
Fig. 4.27. Then 
0 can be deformed to 
1 in D by expanding 
0 and simultaneously
making its sides more circular. Some intermediate loops are sketched in Fig. 4.27.
Again they all remain in D.

(c) Let D be the whole plane, 
0 the loop indicated in Fig. 4.28, and 
1 the point
contour z = 0. Then 
0 can be continuously deformed to 
1 in D by simply shrinking
and shifting, as indicated in Fig. 4.28.
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(d) Let D be the first quadrant and let 
0 and 
1 be the circular contours in
Fig. 4.29(a). Notice that merely moving 
0 to the right will not yield the desired de-
formation, for while 
0 will eventually coincide in position with 
1, the orientations
will be different. To circumvent this difficulty we first shrink 
0 to a point (which has
no direction) and then expand the point to 
1, always remaining in D, as indicated in
Fig. 4.29(b).

(e) Let D be the plane minus the points ±i , and let 
0 be the circular contour and

1 be the “barbell” contour of Fig. 4.30. Then 
0 can be continuously deformed to 
1
in D, as illustrated by the dashed-line intermediate loops in Fig. 4.30.

Now let us be more precise. The preceding examples show that 
0 can be con-
tinuously deformed to 
1 in D if 
0 and 
1 belong to a continuum of loops {
s},
0 ≤ s ≤ 1, each lying in D, such that any pair 
s′ and 
s′′ can be made “arbitrarily
close” by taking s′ sufficiently near s′′. Thus there must be parametrizations {zs(t)}
for the contours {
s} which are continuous in the variable s. Using the standard [0, 1]
parametric interval for the loops and rewriting zs(t) as z(s, t), we formalize these ideas
in the following definition.

Definition 5. The loop 
0 is said to be continuously deformable† to the loop

1 in the domain D if there exists a function z(s, t) continuous on the unit
square 0 ≤ s ≤ 1, 0 ≤ t ≤ 1, that satisfies the following conditions:

(i) For each fixed s in [0, 1], the function z(s, t) parametrizes a loop lying
in D.

(ii) The function z(0, t) parametrizes the loop 
0.

(iii) The function z(1, t) parametrizes the loop 
1. (See Fig. 4.31)

Example 1

By exhibiting a deformation function z(s, t), prove that the loop 
0 : z = e2π i t ,
0 ≤ t ≤ 1, can be continuously deformed to the loop 
1 : z = 2e2π i t , 0 ≤ t ≤ 1, in
the domain D consisting of the annulus 1/2 < |z| < 3.

Solution. This is precisely the problem illustrated in Fig. 4.26; the intermediate
loops 
s , 0 ≤ s ≤ 1, are concentric circles with radii varying from 1 to 2. The function

z(s, t) = (1 + s)e2π i t (0 ≤ s ≤ 1, 0 ≤ t ≤ 1)

therefore effects the deformation. �
†The word homotopic is sometimes used.
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Figure 4.28 Shrinking a contour.

Figure 4.29 Reversal of orientation by shrinking to a point.

Figure 4.30 Circle deforming to a barbell.
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Figure 4.31 Parametrization of deformation.

Example 2
Exhibit a deformation function that shows that in the domain consisting of the whole
plane any loop can be shrunk to the point contour z = 0.

Solution. This is the situation of Fig. 4.28. If 
0 is parametrized by z = z0(t),
0 ≤ t ≤ 1, then the shrinking can be accomplished by multiplying z0(t) by a scaling
factor that varies from 1 to 0. The deformation function is therefore given by

z(s, t) = (1 − s)z0(t) (0 ≤ s ≤ 1, 0 ≤ t ≤ 1). �

A few elementary observations about continuous deformations are in order. First,
notice that if z(s, t) generates a deformation of loop 
0 into 
1, then z(1−s, t) deforms

1 into 
0. Furthermore, if in a given domain 
0 can be deformed into a single point
and 
1 can also be deformed into a point, then 
0 can be deformed into 
1 in the
domain (see Prob. 2).

As we have observed in Example 2, in the domain D consisting of the entire
complex plane any loop can be deformed into the single point z = 0. (Consequently,
any two loops can be deformed one into the other in this domain.) There are many
other domains with this property, e.g., interiors of circles, interiors of regular polygons,
half-planes, etc. We categorize such domains as follows.

Definition 6. Any domain D possessing the property that every loop in D can
be continuously deformed in D to a point is called a simply connected domain.

Roughly speaking, we say that a simply connected domain cannot have any “holes,”
for if there were a hole in D, then a loop surrounding it could not be shrunk to a point
without leaving D. It is shown in topology that if γ is any simple closed contour, then
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Figure 4.32 Examples of simply connected and multiply connected do-
mains.

Figure 4.33 Nondeformable loops in punctured plain.

its interior is a simply connected domain. Indeed, this fact is often regarded as part of
the Jordan Curve Theorem. These considerations provide us with a quick method of
identifying some simply connected domains (see Fig. 4.32).

Interesting situations arise when the domain is not simply connected (such a do-
main is called multiply connected). For example, let D be the complex plane with
the origin deleted, and let 
 be the unit circle |z| = 1, traversed once in the counter-
clockwise direction starting from the point z = 1. We list some loops which are not
deformable to 
 in D:

(a) The circle parametrized by z(t) = 4 + e2π i t , 0 ≤ t ≤ 1, cannot be de-
formed into 
, because some intermediate loop would have to pass through z = 0 (see
Fig. 4.33).

(b) 
 cannot be shrunk to a point in D. [However, the circle in (a) can be so
deformed.]

(c) 
 cannot be continuously deformed into the opposite contour, −
. (The
reader should mentally try to devise a family of loops linking these two, to see why
the quarantining of the origin inhibits the deformation.)

(d) 
 cannot be deformed into the same unit circle circumscribed twice in the
positive direction.
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At this point we would like to insert a word of comfort to the reader, who is
probably developing some anxiety concerning his or her ability to construct the defor-
mation function z(s, t). Theorem 8 will show that, in practice, only the existence of
the continuous deformation is important (at least for the theory of analytic functions).
Consequently, we shall be content merely to visualize the deformation in most cases,
without officially verifying its existence.

We are now ready to state the main theorem of this section.

Theorem 8. (Deformation Invariance Theorem) Let f be a function analytic in
a domain D containing the loops 
0 and 
1. If these loops can be continuously
deformed into one another in D, then∫


0

f (z) dz =
∫

1

f (z) dz.

A rigorous proof of Theorem 8 involves procedures that take us far afield from the
basic techniques of complex analysis. Here we shall only prove a weaker version of
this theorem for the special case when 
0 and 
1 are linked by a deformation function
z(s, t) whose second-order partial derivatives are continuous. We shall also assume
that f ′(z) is continuous (recall that analyticity merely requires that f ′ exist).

The fact that one need not assume continuity for f ′ was first demonstrated by
the mathematician Edouard Goursat; see Ref. 2. The subsequent extension of the
restricted theorem to the general statement of Theorem 8 can be effected by techniques
of approximation theory (Ref. 5).

Proof of Weak Version of Theorem 8. As mentioned before, we shall assume that
the deformation function z(s, t) has continuous partial derivatives up to order 2 for
0 ≤ s ≤ 1, 0 ≤ t ≤ 1, and that f ′(z) is continuous. Now, for each fixed s the equation
z = z(s, t), 0 ≤ t ≤ 1, defines a loop 
s in D. Let I (s) be the integral of f along this
loop, so that

I (s) :=
∫

s

f (z) dz =
∫ 1

0
f (z(s, t))

∂z(s, t)

∂t
dt. (1)

We wish to take the derivative of I (s) with respect to s. The assumptions guarantee
that the integrand in Eq. (1) is continuously differentiable in s, so Leibniz’s rule for
integrals (Ref. 6) sanctions differentiation under the integral sign. Using the chain rule
we obtain

d I (s)

ds
=
∫ 1

0

[
f ′(z(s, t))

∂z

∂s
· ∂z

∂t
+ f (z(s, t))

∂2z

∂s ∂t

]
dt. (2)

On the other hand observe that

∂

∂t

[
f (z(s, t))

∂z

∂s

]
= f ′(z(s, t))

∂z

∂t
· ∂z

∂s
+ f (z(s, t))

∂2z

∂t ∂s
.
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Because of the continuity conditions the mixed partials of z(s, t) are equal, so the last
expression is the same as the integrand in Eq. (2). Thus

d I (s)

ds
=
∫ 1

0

∂

∂t

[
f (z(s, t))

∂z

∂s

]
dt

= f (z(s, 1))
∂z

∂s
(s, 1)− f (z(s, 0))

∂z

∂s
(s, 0).

But since each 
s is closed, we have z(s, 1) = z(s, 0) for all s, from which we also
see that the derivatives of these functions are identical. Consequently I (s) is constant.
In particular I (0) = I (1), which is merely a disguised form of the conclusion∫


0

f (z) dz =
∫

1

f (z) dz. �

An easy consequence of Theorem 8 is the following, familiarly known as Cauchy’s
integral theorem.

Theorem 9. If f is analytic in a simply connected domain D and 
 is any loop
(closed contour) in D, then ∫




f (z) dz = 0. (3)

Proof. The proof is immediate; in a simply connected domain any loop can be
shrunk to a point. The integral of a continuous function over a shrinking loop con-
verges, of course, to zero. �

It can be shown by topological methods that if 
 is a simple closed contour and
f is analytic at each point on and inside 
, then f must be analytic in some simply
connected domain containing 
. Thus, by Theorem 9, the integral along 
 must
vanish whenever the integrand is analytic “inside and on 
.”

Cauchy’s theorem links the considerations of the last section with the property of
analyticity. We can conclude the following.

Theorem 10. In a simply connected domain, an analytic function has an an-
tiderivative, its contour integrals are independent of path, and its loop integrals
vanish.

In an earlier section we showed that if C is any circle centered at z0 and n is an
integer, then

�
∫

C
(z − z0)

n dz =
{

0 for n �= −1,
2π i for n = −1

(4)
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(see Example 2, Sec. 4.2). Equation (4) with z0 = 0 neatly exemplifies the theory
we have been discussing. If n is a positive integer or zero, zn is analytic in the whole
plane, which is simply connected; thus Theorem 10 applies, zn has an antiderivative
[the function zn+1

/
(n + 1)], and its loop integrals are zero.

If n is negative, zn is analytic only in the punctured plane, with the origin deleted.
This domain is not simply connected, so Theorem 10 does not apply. In fact, for
n = −1, the function zn does not even have an antiderivative in the punctured plane
(since any branch of log z will be discontinuous on the branch cut), and sure enough
the loop integral (4) fails to vanish. On the other hand, if n ≤ −2, then zn regains its
antiderivative zn+1

/
(n +1) in the punctured plane, and the loop integrals (4) are zero.

Thus either case can occur in multiply connected domains.
The main value of the Deformation Invariance Theorem is that it allows us to

replace complicated contours with more familiar ones, for the purpose of integration.
We shall illustrate this point with several examples.

Example 3
Evaluate

∫



1/z dz, where 
 is the ellipse defined by x2 + 4y2 = 1, traversed once in
the positive sense, as indicated in Fig. 4.34.

Figure 4.34 Contour for Example 3. Figure 4.35 Contour for Example 4.

Solution. The integrand 1/z is analytic in the plane with the origin deleted. Fur-
thermore, it is obvious that without passing through the origin 
 can be continuously
deformed into the unit circle 
0, oriented positively. Thus, by the Deformation Invari-
ance Theorem and Eq. (4),∫




1

z
dz =

∫

0

1

z
dz = 2π i. �

Example 4
Evaluate

�
∫

|z|=2

ez

z2 − 9
dz.
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Solution. The notation employed signifies that the contour of integration is the
circle |z| = 2 traversed once counterclockwise. The integrand ez/(z2 − 9) is analytic
everywhere except at z = ±3, where the denominator vanishes. From Fig. 4.35 we
immediately see that the contour can be shrunk to a point in the domain of analyticity,
and thus the integral is zero. (Alternatively, Cauchy’s theorem can be applied to this
example.) �

Example 5

Determine the possible values for
∫



1/(z − a) dz, where 
 is any circle not passing
through z = a, traversed once in the counterclockwise direction.

Solution. The integrand is analytic in the domain D consisting of the plane with
the point z = a deleted. If this point lies exterior to 
, then 
 can be continuously
deformed to a point in D, and so the integral vanishes. If a lies in the interior of 
, the
contour can be continuously deformed in D to a positively oriented circle centered at
z = a, and thus the integral is 2π i by Eq. (4). Summarizing, we have∫




dz

z − a
=
{

0 if a lies outside 
,
2π i if a lies inside 
.

(5)

�

Example 6

Compute ∫



(3z − 2)
/
(z2 − z) dz,

where 
 is the simple closed contour indicated in Fig. 4.36.

Figure 4.36 Contour for Example 6.
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Figure 4.37 Deformation of contour in Fig. 4.36.

Solution. We don’t need an exact description of 
; since the integrand f (z) =
(3z − 2)/(z2 − z) is analytic except at z = 0 and z = 1, the contour can be deformed
to the “barbell”-shaped contour of Fig. 4.37 without affecting the value of the integral.
This can be further simplified by observing that the integration along the line segment
proceeds forward and backward, the results canceling each other. Thus∫




f (z) dz =
∫

C0

f (z) dz +
∫

C1

f (z) dz,

where the circles C0 and C1 are as indicated in Fig. 4.37.
We shall derive a powerful method for evaluating these integrals in Sec. 6.1. For

now we merely use the partial fraction expansion to rewrite the integrand as

3z − 2

z2 − z
= A

z
+ B

z − 1
. (6)

In Eq. (6) the constants A and B are determined by formula (21) of Sec. 3.1:

A = lim
z→0

z
3z − 2

z2 − z
= 2, B = lim

z→1
(z − 1)

3z − 2

z2 − z
= 1.

Thus ∫



3z − 2

z(z − 1)
dz =

∫
C0

(
2

z
+ 1

z − 1

)
dz +

∫
C1

(
2

z
+ 1

z − 1

)
dz.

The right-hand side of the last equation can be viewed as the sum of four integrals,
each of the form of Example 5. So by Eq. (5), the integral is

2(2π i)+ 0 + 2 · 0 + 2π i = 6π i. �
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Figure 4.38 Contour deformation for Example 7.

Example 7
Evaluate

∫



1
/
(z2 − 1) dz, where 
 is depicted as in Fig. 4.38.

Solution. Observing that 1
/(

z2 − 1
)

fails to be analytic only at z = ±1, we see
that without passing through these points 
 can be continuously deformed into a small
positively oriented circle C around z = −1. Again we use partial fractions to find

1

z2 − 1
= 1

2(z − 1)
− 1

2(z + 1)
.

Hence ∫



1

z2 − 1
dz =

∫
C

[
1

2(z − 1)
− 1

2(z + 1)

]
dz,

which, by Example 5, equals

1

2
· 0 − 1

2
(2π i) = −π i. �

Note: Exercises appear at the end of Sec. 4.4b.

4.4b Vector Analysis Approach

In Sec. 4.3 we deduced that a continuous function f (z) possesses an (analytic) an-
tiderivative in a domain D if, and only if, its integral around every loop in D is zero.
Now we are going to show how this property ties in with the analyticity of f (z) itself.
To do this we shall employ some concepts and theorems from vector analysis (Ref. 8).
First we demonstrate that our definition of the integral of f (z) over a contour 
 can be
related to the vector concept of a line integral.

Suppose that we have a two-dimensional vector V = (V1, V2) defined at every
point (x, y) in some domain D in the plane; i.e., V is a vector field

V = V(x, y) = (V1(x, y), V2(x, y)) .
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For our purposes we require V1(x, y) and V2(x, y) to be continuous functions. Sup-
pose furthermore that the (oriented) contour 
, lying in D, has the parametrization

x = x(t), y = y(t) (a ≤ t ≤ b). (7)

Then the line integral of V along 
, denoted by∫



(V1 dx + V2 dy) ,

is given by∫



(V1 dx + V2 dy) :=
∫ b

a

[
V1(x(t), y(t))

dx

dt
+ V2(x(t), y(t))

dy

dt

]
dt.

Students of physics can interpret this as the work done by a force V(x, y) exerted on a
particle as it traverses the contour 
.

To see how line integrals relate to complex integration we shall write out
∫



f (z) dz
in terms of its real and imaginary parts, utilizing the parametrization (7). With the usual
notation f (z) = u(x, y)+ iv(x, y), we have∫




f (z) dz =
∫ b

a
f (z(t))

dz(t)

dt
dt

=
∫ b

a
[u(x(t), y(t))+ iv(x(t), y(t))]

(
dx

dt
+ i

dy

dt

)
dt

=
∫ b

a

[
u(x(t), y(t))

dx

dt
− v(x(t), y(t))

dy

dt

]
dt

+ i
∫ b

a

[
v(x(t), y(t))

dx

dt
+ u(x(t), y(t))

dy

dt

]
dt;

that is, ∫



f (z) dz =
∫



(u dx − v dy)+ i
∫



(v dx + u dy). (8)

From this equation we can see that the real part of
∫



f (z) dz equals the line integral
over 
 of the vector field (u,−v), and that its imaginary part equals the line integral
of the vector field (v, u).†

Now that we can express complex integrals in terms of line integrals, we can trans-
late many of the theorems of vector analysis into theorems about complex analysis. In
Probs. 6, 7 and 8, the reader is guided in rediscovering some of the earlier theorems
by this route. Our immediate goal is to uncover the consequences of Green’s theorem
in the context of the complex integral.

To apply Green’s theorem it is convenient to introduce one new geometric concept;
the simply connected domain. Roughly speaking, a domain is said to be simply con-
nected if it has no holes, e.g., the inside of a simple closed contour (recall the Jordan
curve theorem). One way of characterizing such domains is given in Definition 7.

† Observe that the vector (u,−v) corresponds to the complex number u − iv = f and that (v, u)
corresponds to i f .
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Figure 4.39 Examples of simply connected and multiply connected do-
mains.

Definition 7.† A simply connected domain D is a domain having the following
property: If 
 is any simple closed contour lying in D, then the domain interior
to 
 lies wholly in D. (See Fig. 4.39.)

In this context, one statement of Green’s theorem is given as follows (cf. Ref. 8).

Theorem 11. Let V = (V1, V2) be a continuously differentiable‡ vector field
defined on a simply connected domain D, and let 
 be a positively oriented sim-
ple closed contour in D. Then the line integral of V around 
 equals the integral
of
(
∂V2

/
∂x − ∂V1

/
∂y
)
, integrated with respect to area over the domain D′

interior to 
; i.e.,∫



(V1 dx + V2 dy) =
∫∫

D′

(
∂V2

∂x
− ∂V1

∂y

)
dx dy.

Let’s apply this to the line integrals that occur in
∫



f (z) dz. Using Eq. (8), we
have ∫




f (z) dz =
∫



(u dx − v dy)+ i
∫



(v dx + u dy)

=
∫∫

D′

(
−∂v
∂x

− ∂u

∂y

)
dx dy + i

∫∫
D′

(
∂u

∂x
− ∂v

∂y

)
dx dy.

(9)

Observe that we have assumed that u and v are continuously differentiable.
Now we take the big step. If f (z) is analytic in D, the double integrals in Eq. (9)

are zero because of the Cauchy-Riemann equations! In other words, we have shown

†Definition 7 is equivalent to Definition 6.
‡Recall that this means the partials ∂V1

/
∂x , ∂V1

/
∂y, ∂V2

/
∂x , ∂V2

/
∂y exist and are contin-

uous.
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that if a function is analytic in a simply connected domain and if its derivative f ′(z) is
continuous (recall that analyticity only stipulates that f ′ exist), then its integral around
any simple closed contour in the domain is zero. This result, in a somewhat more
general form, is known as Cauchy’s integral theorem.

Theorem 12.† If f is analytic in a simply connected domain D and 
 is any
loop (closed contour) in D, then∫




f (z) dz = 0.

Observe that we have generalized in two directions. First, we require only that 

be a loop, not necessarily a simple closed curve. This is justified by the geometrically
obvious fact that integration over a loop can always be decomposed into integrations
over simple closed curves—see Fig. 4.40 for an illustration.

Figure 4.40 Decomposition of a loop integral.

The second generalization is that we have dropped the assumption that f ′(z) is
continuous. The fact that this is possible was first demonstrated by the mathematician
Edouard Goursat; see Ref. 2.

We remark that it can be shown by topological methods that if 
 is a simple closed
contour and f is analytic at each point on and inside 
, then f must be analytic in
some simply connected domain containing 
. Thus, by Theorem 12, the integral
along 
 must vanish whenever the integrand is analytic “inside and on 
.”

Cauchy’s theorem links the considerations of Sec. 4.3 with the property of analyt-
icity. Combining Theorems 7 and 12 yields the following.

Theorem 13.‡ In a simply connected domain, an analytic function has an an-
tiderivative, its contour integrals are independent of path, and its loop integrals
vanish.

†Theorem 12 is the same as Theorem 9.
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In an earlier section we showed that if C is any circle centered at z0 and n is an
integer, then

�
∫

C
(z − z0)

n dz =
{

0 for n �= −1,
2π i for n = −1

(10)

(see Example 2, Sec. 4.2). Equation (10) with z0 = 0 neatly exemplifies the theory
we have been discussing. If n is a positive integer or zero, zn is analytic in the whole
plane, which is simply connected; thus Theorem 13 applies, zn has an antiderivative
[the function zn+1

/
(n + 1)], and its loop integrals are zero.

If n is negative, zn is analytic only in the punctured plane, with the origin deleted.
This domain is not simply connected, so Theorem 13 does not apply. In fact, for
n = −1, the function zn does not even have an antiderivative in the punctured plane
(since any branch of log z will be discontinuous on the branch cut), and sure enough
the loop integral (10) fails to vanish. On the other hand, if n ≤ −2, then zn regains
its antiderivative zn+1

/
(n + 1) in the punctured plane, and the loop integrals (10) are

zero. Thus either case can occur in a domain that is not simply connected (such a
domain is called multiply connected).

Example 1
Evaluate

�
∫

|z|=2

ez

z2 − 9
dz.

Solution. The notation employed signifies that the contour of integration is the
circle |z| = 2 traversed once counterclockwise. The integrand is analytic everywhere
except at z = ±3, where the denominator vanishes. Since these points lie exterior to
the contour, the integral is zero, by Cauchy’s integral theorem. �

Theorems 12 and 13 can often be used to change the contour of integration, as the
following examples demonstrate:

Example 2
Evaluate

∫



1/z dz, where 
 is the ellipse defined by x2 + 4y2 = 1, traversed once in
the positive sense, as indicated in Fig. 4.41(a).

Solution. We shall show that one can change the contour from 
 to the posi-
tively oriented unit circle without changing the integral. With reference to Fig. 4.41(b),
observe that the complex plane, slit down the negative y-axis from the origin, consti-
tutes a simply connected domain in which the function 1/z is analytic. Hence, by
Theorem 13, ∫

γ2

1

z
dz =

∫
γ1

1

z
dz.

Similarly, by considering the plane slit along the positive y-axis we have∫
γ3

1

z
dz =

∫
γ4

1

z
dz.

‡ Theorem 13 is the same as Theorem 10.
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Figure 4.41 Contours for Example 2.

Hence ∫



1

z
dz =

∫
γ2+γ3

1

z
dz =

∫
γ1+γ4

1

z
dz = �

∫
|z|=1

1

z
dz,

and by Eq. (10) the answer is 2π i . �
This technique is easily generalized in the next example.

Example 3
Determine the possible values for

∫



1/(z − a) dz, where 
 is any positively oriented
simple closed contour not passing through z = a.

Figure 4.42 Contours for Example 3.

Solution. Observe that the integrand is analytic everywhere except at the point
z = a. Thus if a lies exterior to 
, Cauchy’s theorem yields the answer zero for the
integral. If a lies inside 
, we choose a small circle Cr centered at a and lying within

, and we draw two segments from 
 to Cr ; see Fig. 4.42 for the construction. Then
the endpoints P1 and P2 of the segments divide 
 into two contours 
1 and 
2, and
the endpoints P3 and P4 divide Cr into γ1 and γ2. Now observe that both the contour
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1 and the composite contour consisting of the directed segment P1 P3, γ1, and the
segment P4 P2 can be enclosed in a simply connected domain that excludes the point
a. Thus we deduce from Theorem 13 that the integral is the same along these contours:∫


1

dz

z − a
=
( ∫

P1 P3

+
∫
γ1

+
∫

P4 P2

)
dz

z − a
.

Similarly, ∫

2

dz

z − a
=
( ∫

P2 P4

+
∫
γ2

+
∫

P3 P1

)
dz

z − a
.

Adding these and taking account of the cancellations along the line segments we find
that∫




dz

z − a
=
( ∫


1

+
∫

2

)
dz

z − a
=
( ∫

γ1

+
∫
γ2

)
dz

z − a
= �
∫

Cr

dz

z − a
= 2π i

(recall Eq. (10)).
Summarizing, we have∫




dz

z − a
=
{

0 if a lies outside 
,
2π i if a lies inside 
.

(11)

�

Example 4
Find

∫


(3z − 2)

/
(z2 − z) dz, where 
 is the simple closed contour indicated in

Fig. 4.43(a).

Figure 4.43 Contours for Example 4.

Solution. The integrand f (z) = (3z − 2)
/
(z2 − z) is, of course, analytic ev-

erywhere except for the zeros of the denominator, z = 0 and z = 1. Referring to
Fig. 4.43(b), we begin by enclosing these points in small circles C0 and C1, respec-
tively, and observe by Theorem 13 that the integral over 
1, the upper portion of 
,
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equals the integral over the contour indicated as 
3. Similarly, integration over 
2
can be replaced by integration over 
4. Combining these and taking into account the
cancellations along the segments of the real axis we find∫




f (z) dz =
( ∫


1

+
∫

2

)
f (z) dz = �

∫
C0

f (z) dz + �
∫

C1

f (z) dz.

We shall derive a powerful method for evaluating these integrals in Sec. 6.1. For
now we merely use the partial fraction expansion to write the integrand as

3z − 2

z2 − z
= A

z
+ B

z − 1
. (12)

In Eq. (12) the constants A and B are determined by formula (21) of Sec. 3.1:

A = lim
z→0

z
3z − 2

z2 − z
= 2, B = lim

z→1
(z − 1)

3z − 2

z2 − z
= 1.

Thus ∫



3z − 2

z(z − 1)
dz = �

∫
C0

(
2

z
+ 1

z − 1

)
dz + �

∫
C1

(
2

z
+ 1

z − 1

)
dz.

The right-hand side of the last equation can be viewed as the sum of four integrals,
each of the form of Example 3. So by Eq. (11), the integral is

2(2π i)+ 0 + 2 · 0 + 2π i = 6π i. �

Example 5
Evaluate

∫



1
/
(z2 − 1) dz, where 
 is depicted in Fig. 4.44(a).

Figure 4.44 Contours for Example 5.

Solution. Observing that 1
/(

z2 − 1
)

fails to be analytic only at z = ±1, the
reader should be able by now to use the construction indicated in Fig. 4.44(b) to argue
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4.4 Cauchy’s Integral Theorem 199

that the integral over 
 is the same as the integral over the small circle C enclosing
−1. Using partial fractions again we find

1

z2 − 1
= 1

2(z − 1)
− 1

2(z + 1)
.

Hence ∫



dz

z2 − 1
=
∫

C

dz

z2 − 1
=
∫

C

[
1

2(z − 1)
− 1

2(z + 1)

]
dz,

which, by Example 3, equals

1

2
· 0 − 1

2
(2π i) = −π i. �

EXERCISES 4.4

Problems 1–5 refer to Sec. 4.4a.

1. Let D be the domain consisting of the complex plane with the three points 0, 2i ,
and 4 deleted and let 
 be the (solid-line) contour shown in Fig. 4.45. Decide which
of the following contours are continuously deformable to 
 in D.

(a) the dashed line contour 
0 in Fig. 4.45

(b) the circle |z| = 3 traversed once in the positive direction starting from the
point z = 3

(c) the circle |z| = 104 traversed once in the positive direction starting from the
point z = 104

(d) the circle |z − 2| = 1 traversed once in the positive direction starting from the
point z = 3

Figure 4.45 Contour for Prob. 1.
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2. Prove the statement made in the text: If the contours 
0 and 
1 can each be shrunk
to points in the domain D, then 
0 can be continuously deformed into 
1 in D. (Do
not assume that 
0 and 
1 are deformable to the same point.)

3. Let D be the annulus 1 < |z| < 5, and let 
 be the circle |z − 3| = 1 traversed
once in the positive direction starting from the point z = 4. Decide which of the
following contours are continuously deformable to 
 in D.

(a) the circle |z − 3| = 1 traversed once in the positive direction starting from the
point z = 2

(b) the point z = 3i

(c) the circle |z| = 2 traversed once in the positive direction starting from the
point z = 2

(d) the circle |z + 3| = 1 traversed once in the positive direction starting from the
point z = −2

(e) the circle |z − 3| = 1 traversed twice in the negative direction starting from
the point z = 4

4. Let 
0 be the unit circle |z| = 1 traversed once counterclockwise and then once
clockwise, starting from z = 1. Construct a function z(s, t) which deforms 
0 to
the single point z = 1 in any domain D containing the unit circle. Verify directly
that the conclusion of Theorem 8 is true for these two contours.

5. Write down a function z(s, t) deforming 
0 into 
1 in the domain D, where 
0 is
the ellipse x2/4+y2/9 = 1 traversed once counterclockwise starting from (2, 0), 
1
is the circle |z| = 1 traversed once counterclockwise starting from (1, 0) and D is
the annulus 1/2 < |z| < 4. [HINT: Start with the parametrization x(t) = 2 cos 2π t ,
y(t) = 3 sin 2π t , 0 ≤ t ≤ 1, for 
0.]

Problems 6–8 refer to Sec. 4.4b.

6. It is well known from potential theory that if the line integrals of a vector field
V(x, y) are independent of path (i.e., if V is a “conservative” field), then there is a
scalar function of position φ(x, y) such that V1 = ∂φ/∂x and V2 = ∂φ/∂y (under
such conditions we say that φ is a potential for V). Apply this result to the vector
fields f (z) and i f (z) to prove that property (iii) implies (i) in Theorem 7. What is
the relationship between the (analytic) antiderivative F(z) and the potentials?

7. In vector analysis a vector field V = (V1, V2) is said to be irrotational if its compo-
nents satisfy

∂V1

∂y
= ∂V2

∂x
;

it is called solenoidal if
∂V1

∂x
= −∂V2

∂y
.
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4.4 Cauchy’s Integral Theorem 201

(a) Show that, if f (z) is an analytic function, the vector field corresponding to
f (z) is both irrotational and solenoidal.

(b) Prove the converse to part (a), if the vector field is continuously differentiable.

8. An important result from potential theory says that if a vector field V is irrotational
(see Prob. 7) in a simply connected domain D, then there is a potential function
for V(x, y) in D. Applying this fact to f (z) and i f (z), prove the first assertion in
Theorem 13.

Problems 9–19 are for both Secs. 4.4a and 4.4b.

9. Which of the following domains are simply connected?

(a) the horizontal strip | Im z| < 1

(b) the annulus 1 < |z| < 2

(c) the set of all points in the plane except those on the nonpositive x-axis

(d) the interior of the ellipse 4x2 + y2 = 1

(e) the exterior of the ellipse 4x2 + y2 = 1

(f) the domain D in Fig. 4.46.

Figure 4.46 Is D simply connected?.

10. Determine the domain of analyticity for each of the given functions f and explain
why

�
∫

|z|=2
f (z) dz = 0.

(a) f (z) = z

z2 + 25
(b) f (z) = e−z(2z + 1)

(c) f (z) = cos z

z2 − 6z + 10
(d) f (z) = Log(z + 3)

(e) f (z) = sec
( z

2

)
11. Explain why the function ez2

has an antiderivative in the whole plane.

12. Given that D is a domain containing the closed contour 
, that z0 is a point not in
D, and that

∫

 (z − z0)

−1 dz �= 0, explain why D is not simply connected.
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13. Evaluate
∫

1/(z2 + 1) dz along the three closed contours 
1, 
2, 
3 in Fig. 4.47.

Figure 4.47 Contours for Prob. 13.

14. Consider the shaded domain D in Fig. 4.48 bounded by the simple closed positively
oriented contours C , C1, C2 and C3. If f (z) is analytic on D and on its boundary,
explain why ∫

C
f (z) dz =

∫
C1

f (z) dz +
∫

C2

f (z) dz +
∫

C3

f (z) dz.

Figure 4.48 Domain for Prob. 14.

15. Evaluate ∫



z

(z + 2)(z − 1)
dz,

where 
 is the circle |z| = 4 traversed twice in the clockwise direction.

16. Show that if f is of the form

f (z) = Ak

zk
+ Ak−1

zk−1
+ · · · + A1

z
+ g(z) (k ≥ 1),

where g is analytic inside and on the circle |z| = 1, then

�
∫

|z|=1
f (z) dz = 2π i A1.
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4.4 Cauchy’s Integral Theorem 203

Figure 4.49 Contour for Prob. 17. Figure 4.50 Contour for Prob. 20.

17. Evaluate ∫



2z2 − z + 1

(z − 1)2(z + 1)
dz,

where 
 is the figure-eight contour traversed once as shown in Fig. 4.49. [HINT:

Use the partial fraction expansion
A

(z − 1)2
+ B

(z − 1)
+ C

(z + 1)
; see Sec. 3.1.]

18. Let

I := �
∫

|z|=2

dz

z2(z − 1)3
.

Below is an outline of a proof that I = 0. Justify each step.

(a) For every R > 2, I = I (R), where

I (R) := �
∫

|z|=R

1

z2(z − 1)3
dz.

(b) |I (R)| ≤ 2π

R(R − 1)3
for R > 2.

(c) lim
R→+∞ I (R) = 0.

(d) I = 0.

19. Using the method of proof in Prob. 18, establish the following theorem. If P is a
polynomial of degree at least 2 and P has all its zeros inside the circle |z| = r , then

�
∫

|z|=r

1

P(z)
dz = 0.

20. Let 
 denote the four-leaf clover path traversed once as shown in Fig. 4.50. Show
that ∫




1

z4 − 1
dz = 0

in two ways; first, by using partial fractions and second, by using the result of Prob.
19.
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4.5 Cauchy’s Integral Formula
and Its Consequences

Given f analytic inside and on the simple closed contour 
, we know from Cauchy’s
theorem that

∫



f (z) dz = 0. However, if we consider the integral
∫



f (z)
/
(z − z0) dz,

where z0 is a point in the interior of 
, then there is no reason to expect that this
integral is zero, because the integrand has a singularity inside the contour 
. In fact,
as the primary result of this section, we shall show that for all z0 inside 
 the value of
this integral is proportional to f (z0).

Theorem 14. (Cauchy’s Integral Formula) Let 
 be a simple closed positively
oriented contour. If f is analytic in some simply connected domain D containing

 and z0 is any point inside 
, then

f (z0) = 1

2π i

∫



f (z)

z − z0
dz. (1)

Proof. The function f (z)
/
(z − z0) is analytic everywhere in D except for the

point z0. Hence by the methods of Sec. 4.4 the integral over 
 can be equated to the
integral over some small positively oriented circle Cr : |z − z0| = r ; Fig. 4.51(a)
illustrates the continuous deformation method of Sec. 4.4a, while Fig. 4.51(b) shows
the construction appropriate to Sec. 4.4b. So we can write∫




f (z)

z − z0
dz =

∫
Cr

f (z)

z − z0
dz.

It is now convenient to express the right-hand side as the sum of two integrals:∫
Cr

f (z)

z − z0
dz =

∫
Cr

f (z0)

z − z0
dz +

∫
Cr

f (z)− f (z0)

z − z0
dz.

Figure 4.51 Contours for Cauchy’s integral formula.

204



4.5 Cauchy’s Integral Formula and Its Consequences 205

From our earlier deliberations we know that∫
Cr

f (z0)

z − z0
dz = f (z0)

∫
Cr

dz

z − z0
= f (z0) 2π i;

consequently, ∫



f (z)

z − z0
dz = f (z0) 2π i +

∫
Cr

f (z)− f (z0)

z − z0
dz. (2)

Now observe that the first two terms in Eq. (2) are constants independent of r , and
so the value of the last term does not change if we allow r to decrease to zero; i.e.,∫




f (z)

z − z0
dz = f (z0) 2π i + lim

r→0+

∫
Cr

f (z)− f (z0)

z − z0
dz. (3)

Therefore, Cauchy’s formula will follow if we can prove that the last limit is zero.
For this purpose set Mr := max{| f (z)− f (z0)| : z on Cr }. Then for z on Cr , we

have ∣∣∣∣ f (z)− f (z0)

z − z0

∣∣∣∣ = | f (z)− f (z0)|
r

≤ Mr

r
,

and hence by Theorem 5 in Sec. 4.2,∣∣∣∣ ∫
Cr

f (z)− f (z0)

z − z0
dz

∣∣∣∣ ≤ Mr

r
� (Cr ) = Mr

r
2πr = 2πMr .

But since f is continuous at the point z0, we know that lim
r→0+ Mr = 0. Thus

lim
r→0+

∫
Cr

f (z)− f (z0)

z − z0
dz = 0,

and so Eq. (3) reduces to (1). �
One remarkable consequence of Cauchy’s formula is that by merely knowing the

values of the analytic function f on 
 we can compute the integral in Eq. (1) and
hence all the values of f inside 
. In other words, the behavior of a function analytic
in a region is completely determined by its behavior on the boundary.

We shall now present some examples that employ Cauchy’s formula to evaluate
certain integrals. The reader should keep in mind, however, that Chapter 6 will be
devoted to more efficient and powerful techniques for computing integrals and that the
present examples are intended primarily to illustrate the integral formula (1).

Example 1
Compute the integral ∫




ez + sin z

z
dz,

where 
 is the circle |z − 2| = 3 traversed once in the counterclockwise direction.

205



206 Complex Integration

Figure 4.52 Contour for Example 2.

Solution. Observe that the function f (z) = ez + sin z is analytic inside and on

 and that the point z0 = 0 lies inside this circle. Hence the integral has the format of
formula (1) and the desired value is

2π i f (0) = 2π i
[
e0 + sin 0

]
= 2π i. �

Example 2
Evaluate the integral ∫




cos z

z2 − 4
dz

along the contour sketched in Fig. 4.52.

Solution. We first notice that the integrand fails to be analytic at the points z =
±2. However, only one of these, z = 2, occurs inside 
. Thus if we write

cos z

z2 − 4
= (cos z)/(z + 2)

z − 2
,

we again have the format of Eq. (1). Hence the integral is∫



cos z

z2 − 4
dz = 2π i cos z/(z + 2)

∣∣
z=2 = 2π i cos 2

4
. �

Example 3
Compute ∫

C

z2ez

2z + i
dz,

where C is the unit circle |z| = 1 traversed once in the clockwise direction.

Solution. Two minor difficulties inhibit an immediate application of Cauchy’s
formula. First, the denominator is not of the form z − z0, and second, the contour is
negatively oriented. The former difficulty is easily resolved by writing

z2ez

2z + i
=

1
2 z2ez

z + i/2
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(notice that the singular point z = −i/2 lies inside C). And to compensate for the
negative orientation of C we have to introduce a minus sign in formula (1):∫

C

z2ez

2z + i
dz =

∫
C

1
2 z2ez

z + i/2
dz = −2π i · 1

2
z2ez

∣∣∣∣∣
z=−i/2

= π i

4
e−i/2. �

If in Cauchy’s formula (1) we replace z by ζ and z0 by z, then we obtain

f (z) = 1

2π i

∫



f (ζ )

ζ − z
dζ (z inside 
). (4)

The advantage of this representation is that it suggests a formula for the derivative
f ′(z), obtained by formally differentiating with respect to z under the integral sign.
Thus we are led to suspect that

f ′(z) = 1

2π i

∫



f (ζ )

(ζ − z)2
dζ (z inside 
). (5)

In verifying this equation we shall actually establish a more general theorem.

Theorem 15. Let g be continuous on the contour 
, and for each z not on 
 set

G(z) :=
∫



g(ζ )

ζ − z
dζ. (6)

Then the function G is analytic at each point not on 
, and its derivative is given
by

G ′(z) =
∫



g(ζ )

(ζ − z)2
dζ. (7)

(Observe that we have generalized in two directions; we have not assumed that

 is closed or that g is analytic. Furthermore, we make no claim about the limiting
values of G(z) as z approaches a point on 
; see Prob. 13.)

Proof of Theorem 15. Let z be any fixed point not on 
. To prove the existence of
G ′(z) and the formula (7) we need to show that

lim
�z→0

G(z +�z)− G(z)

�z
=
∫



g(ζ )

(ζ − z)2
dζ,

or, equivalently, that the difference

J := G(z +�z)− G(z)

�z
−
∫



g(ζ )

(ζ − z)2
dζ (8)
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approaches zero as �z → 0. This is accomplished by first writing J in a convenient
form obtained as follows.

Using Eq. (6) we have

G(z +�z)− G(z)

�z
= 1

�z

∫



[
1

ζ − (z +�z)
− 1

ζ − z

]
g(ζ ) dζ

=
∫



g(ζ ) dζ

(ζ − z −�z)(ζ − z)
,

where �z is chosen sufficiently small so that z + �z also lies off of 
. Then from
Eq. (8) and some elementary algebra we find

J =
∫



g(ζ ) dζ

(ζ − z −�z)(ζ − z)
−
∫



g(ζ )

(ζ − z)2
dζ

= �z
∫



g(ζ ) dζ

(ζ − z −�z)(ζ − z)2
.

(9)

To verify that J → 0 as �z → 0, we estimate the last expression. In this regard,
let M equal the maximum value of |g(ζ )| on 
, and set d equal to the shortest distance
from z to 
, so that |ζ − z| ≥ d > 0 for all ζ on 
. Since we are letting �z approach
zero, we may assume that |�z| < d/2. Then, by the triangle inequality,

|ζ − z −�z| ≥ |ζ − z| − |�z| ≥ d − d

2
= d

2
(ζ on 
)

(see Fig. 4.53) and so ∣∣∣∣ g(ζ )

(ζ − z −�z)(ζ − z)2

∣∣∣∣ ≤ M
d
2 · d2

= 2M

d3

for all ζ on 
. Hence from Theorem 5, Sec. 4.2, we see that

|J | =
∣∣∣∣�z

∫



g(ζ )dζ

(ζ − z −�z)(ζ − z)2

∣∣∣∣ ≤ |�z|2M�(
)

d3
,

where �(
) denotes the length of 
. Thus J must approach zero as �z → 0. This
implies that formula (7) is valid and completes the proof. �

The preceding argument can be carried further; namely, starting with the function

H(z) :=
∫



g(ζ )

(ζ − z)2
dζ (z not on 
), (10)

it can be shown that H is analytic off of 
 and that H ′ is given by the formula

H ′(z) = 2
∫



g(ζ )

(ζ − z)3
dζ (z not on 
), (11)
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Figure 4.53 Contour for Theorem 15.

obtained formally from (10) by differentiation under the integral sign. The proof of
this fact parallels the proof of Theorem 15 and is left as an exercise.

One important consequence of these results is that the derivative of an analytic
function is again analytic. For suppose that f is analytic at the point z0. We wish to
argue that f ′ is also analytic at z0; i.e., f ′ itself has a derivative in some neighborhood
of z0. To this end, we choose a positively oriented circle C : |ζ − z0| = r so small
that f is analytic inside and on C . Since f has the Cauchy integral representation

f (z) = 1

2π i

∫
C

f (ζ )

ζ − z
dζ (z inside C),

it follows from Theorem 15 that

f ′(z) = 1

2π i

∫
C

f (ζ )

(ζ − z)2
dζ (z inside C),

But the right-hand side is a function of the form (10) and hence has a derivative at each
point inside C . Thus f ′ must be analytic at z0.

The same reasoning can be applied to the function f ′ to deduce that its derivative,
f ′′, is also analytic at z0. More generally, the analyticity of f (n) implies that of f (n+1),
and so by induction we obtain the following result.

Theorem 16. If f is analytic in a domain D, then all its derivatives f ′, f ′′, . . .,
f (n), . . . exist and are analytic in D.

Theorem 16 is particularly surprising in light of the fact that its analogue in calcu-
lus fails to be true; for example, the function f (x) = x5/3 is differentiable for all real
x , but f ′(x) = 5x2/3/3 has no derivative at x = 0.

Recall that if the analytic function f is written in the form f (z) = u(x, y) +
iv(x, y), then as explained in Sec. 2.4 we have the alternative expression

f ′(z) = ∂u

∂x
+ i

∂v

∂x
and f ′(z) = ∂v

∂y
− i

∂u

∂y
. (12)
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We now know that f ′ is analytic and hence continuous. Therefore, from (12), all
the first-order partial derivatives of u and v must be continuous. Similarly, since f ′′
exists, the formulas (12) together with the Cauchy-Riemann equations for f ′ lead to
the expressions

f ′′(z) = ∂2u

∂x2
+ i

∂2v

∂x2
= ∂2v

∂y∂x
− i

∂2u

∂y∂x

f ′′(z) = ∂2v

∂x∂y
− i

∂2u

∂x∂y
= −∂

2u

∂y2
− i

∂2v

∂y2
,

and so the continuity of f ′′ implies that all second-order partial derivatives of u and
v are continuous at the points where f is analytic. Continuing with this process we
obtain the following theorem.

Theorem 17. If f = u+iv is analytic in a domain D, then all partial derivatives
of u and v exist and are continuous in D.

(This theorem validates the argument given in Sec. 2.5 that the real and imaginary
parts of an analytic function f = u + iv are harmonic†. Applying this argument to the
functions f ′, f ′′, . . ., we see that all partials of u and v are harmonic as well.)

Another way to phrase the results on the analyticity of derivatives is to say that
whenever a given function f has an antiderivative in a domain D, then f must itself
be analytic in D.‡ Now by Theorem 7 of Sec. 4.3 the existence of an antiderivative
for a continuous function is equivalent to the property that all loop integrals vanish.
Hence we deduce the following result, known as Morera’s theorem.

Theorem 18. If f is continuous in a domain D and if∫



f (z) dz = 0

for every closed contour 
 in D, then f is analytic in D.

Observe that in establishing equations (7) and (11) we actually verify that for
certain types of integrands the process of differentiation with respect to z can be in-
terchanged with the process of integration with respect to ζ . In fact, starting with
Cauchy’s integral formula, it can be shown inductively that repeated differentiations
with respect to z under the integral sign yields valid formulas for the successive deriva-
tives of f . Keeping track of the exponents, then, we have the generalized Cauchy
integral formula.

†Specifically, in Sec. 2.5 we assumed that the second partials of u and v were continuous.
‡ Of course the antiderivative is analytic, since it has a derivative!
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Theorem 19. If f is analytic inside and on the simple closed positively oriented
contour 
 and if z is any point inside 
, then

f (n)(z) = n!
2π i

∫



f (ζ )

(ζ − z)n+1
dζ (n = 1, 2, 3, . . .). (13)

For purposes of application it is convenient to write Eq. (13) in the equivalent form∫



f (z)

(z − z0)
m dz = 2π i f (m−1) (z0)

(m − 1)! (z0 inside 
, m = 1, 2, . . .) . (14)

Example 4
Compute

∫



e5z/z3 dz, where 
 is the circle |z| = 1 traversed once counterclockwise.

Solution. Observe that f (z) = e5z is analytic inside and on 
. Therefore, from
Eq. (14) with z0 = 0 and m = 3 we have∫




e5z

z3
dz = 2π i f ′′(0)

2! = 25π i. �

Example 5
Compute ∫

C

2z + 1

z(z − 1)2
dz

along the figure-eight contour C sketched in Fig. 4.54.

Figure 4.54 Contour for Example 5.

Solution. Notice that integration along C is equivalent to integrating once around
the positively oriented right lobe 
1 and then integrating once around the negatively
oriented left lobe 
2; i.e.,∫

C

2z + 1

z(z − 1)2
dz =

∫

1

(2z + 1)/z

(z − 1)2
dz +

∫

2

(2z + 1)/(z − 1)2

z
dz,
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where we have written the integrand in each term so as to display the relevant singu-
larity. These integrals along 
1 and 
2 can be evaluated by using Eq. (14) with m = 2
and m = 1; the desired value is

2π i

1!
d

dz

(
2z + 1

z

)∣∣∣∣
z=1

− 2π i
2z + 1

(z − 1)2

∣∣∣∣
z=0

= −2π i − 2π i = −4π i. �

EXERCISES 4.5

1. Let f be analytic inside and on the simple closed contour 
. What is the value of

1

2π i

∫



f (z)

z − z0
dz

when z0 lies outside 
?

2. Let f and g be analytic inside and on the simple loop 
. Prove that if f (z) = g(z)
for all z on 
, then f (z) = g(z) for all z inside 
.

3. Let C be the circle |z| = 2 traversed once in the positive sense. Compute each of
the following integrals.

(a)
∫

C

sin 3z

z − π
2

dz (b)
∫

C

zez

2z − 3
dz (c)

∫
C

cos z

z3 + 9z
dz

(d)
∫

C

5z2 + 2z + 1

(z − i)3
dz (e)

∫
C

e−z

(z + 1)2
dz (f)

∫
C

sin z

z2(z − 4)
dz

4. Compute ∫
C

z + i

z3 + 2z2
dz,

where C is

(a) the circle |z| = 1 traversed once counterclockwise.

(b) the circle |z + 2 − i | = 2 traversed once counterclockwise.

(c) the circle |z − 2i | = 1 traversed once counterclockwise.

5. Let C be the ellipse x2/4 + y2/9 = 1 traversed once in the positive direction, and
define

G(z) :=
∫

C

ζ 2 − ζ + 2

ζ − z
dζ (z inside C).

Find G(1), G ′(i), and G ′′(−i).

6. Evaluate ∫



eiz(
z2 + 1

)2 dz,

where 
 is the circle |z| = 3 traversed once counterclockwise. [HINT: Show that
the integral can be written as the sum of two integrals around small circles centered
at the singularities.]
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7. Compute ∫



cos z

z2(z − 3)
dz

along the contour indicated in Fig. 4.55.

Figure 4.55 Contour for Prob. 7.

8. Use Cauchy’s formula to show that if f is analytic inside and on the circle |z − z0| =
r , then

f (z0) = 1

2π

∫ 2π

0
f (z0 + reiθ )dθ.

Prove more generally that

f (n)(z0) = n!
2πrn

∫ 2π

0
f (z0 + reiθ )e−inθ dθ.

9. Suppose that f is analytic inside and on the unit circle |z| = 1. Prove that if
| f (z)| ≤ M for |z| = 1, then | f (0)| ≤ M and

∣∣ f ′(0)
∣∣ ≤ M . What estimate can you

give for
∣∣ f (n)(0)

∣∣?
10. Let f be analytic inside and on the simple closed contour 
. Verify from the theo-

rems in this section that ∫



f ′(z)
z − z0

dz =
∫



f (z)

(z − z0)
2

dz

for all z0 not on 
.

11. Let f = u + iv be analytic in a domain D. Explain why ∂2u/∂x2 is harmonic in D.

12. Prove that the function H defined in Eq. (10) is analytic inside 
 and that its deriva-
tive is given by formula (11).

13. According to Theorem 15, when 
 is a simple closed contour the function G defined
by

G(z) := 1

2π i

∫



g(ζ )

ζ − z
dζ

is analytic in the domain enclosed by 
 (assuming only that g is continuous on 
).
Show that the limiting values of G(z) as z approaches 
 need not coincide with the
values of g, by considering the situation where 
 is the positively oriented circle
|z| = 1 and g(z) = 1/z. Why doesn’t this violate Cauchy’s formula? [HINT: Use
partial fractions to evaluate G.]
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14. Let 
 be a simple closed positively oriented contour that passes through the point
2 + 3i . Set

G(z) := 1

2π i

∫



cos ζ

ζ − z
dζ.

Find the following limits:

(a) lim
z→2+3i

G(z), where z approaches 2 + 3i from inside 
.

(b) lim
z→2+3i

G(z), where z approaches 2 + 3i from outside 
.

[The curious reader may speculate on the interpretation of the integral for points
z, such as 2 + 3i , which actually lie on 
. The theory of Sokhotskyi and Plemelj,
which states that in such a case G(z) equals the average of the interior and exterior
limiting values, is developed in Sec. 8.5.]

15. Suppose that f (z) is analytic at each point of the closed disk |z| ≤ 1 and that
f (0) = 0. Prove that the function

F(z) :=
{

f (z)/z z �= 0,
f ′(0) z = 0,

is analytic on |z| ≤ 1. [HINT: To show that F is analytic at z = 0 note that by
Theorem 15 the function

G(z) := 1

2π i
�
∫

|ζ |=1

f (ζ )/ζ

ζ − z
dζ

is analytic at this point. Using partial fractions deduce that G(z) = F(z) for |z| <
1.]

16. Below is an outline of a proof of the fact that for any analytic function f (z) that is
never zero in a simply connected domain D there exists a single-valued branch of
log f (z) analytic in D. Justify each step in the proof.

(a) f ′(z)/ f (z) is analytic in D.

(b) f ′(z)/ f (z) has an (analytic) antiderivative in D, say H(z).

(c) The function f (z)e−H(z) is constant in D, so that f (z) = ceH(z).

(d) Letting α be a value of log c, the function H(z) + α is a branch of log f (z)
analytic in D.

17. Use the result of Prob. 16 to prove that there exists a single-valued analytic branch

of
(
z3 − 1

)1/2
in the unit disk |z| < 1.

4.6 Bounds for Analytic Functions

Many interesting facts about analytic functions are uncovered when one considers up-
per bounds on their moduli. We already have one result in this direction, namely,
the integral estimate Theorem 5 of Sec. 4.2. When this is judiciously applied to the
Cauchy integral formulas we obtain the Cauchy estimates for the derivatives of an
analytic function.
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Figure 4.56 Circle for Cauchy estimates.

Theorem 20. Let f be analytic inside and on a circle CR of radius R centered
about z0. If | f (z)| ≤ M for all z on CR , then the derivatives of f at z0 satisfy∣∣∣ f (n)(z0)

∣∣∣ ≤ n!M
Rn

(n = 1, 2, 3, . . .). (1)

Proof. Giving CR a positive orientation in Fig. 4.56, we have, by the generalized
Cauchy formula (Theorem 19),

f (n)(z0) = n!
2π i

∫
CR

f (ζ )

(ζ − z0)
n+1

dζ.

For ζ on CR , the integrand is bounded by M/Rn+1; the length of CR is 2πR. Thus
from Theorem 5 in Sec. 4.2 there follows∣∣∣ f (n)(z0)

∣∣∣ ≤ n!
2π

M

Rn+1
2πR,

which reduces to (1). �

This innocuous-looking theorem actually places rather severe restrictions on the
behavior of analytic functions. Suppose, for instance, that f is analytic and bounded
by some number M over the whole plane C. Then the conditions of the theorem hold
for any z0 and for any R. Taking n = 1 in (1) and letting R → ∞, we conclude
that f ′ vanishes everywhere; i.e., f must be constant. This startling result is known as
Liouville’s theorem.

Theorem 21. The only bounded entire functions are the constant functions.

Clearly, nonconstant polynomials are unbounded (over the whole plane). Loosely
speaking, we expect a polynomial of degree n to behave like zn for large |z|, because
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the leading term will dominate the lower powers. Indeed, if P(z) = anzn+an−1zn−1+
· · · + a1z + a0 with an �= 0, then

P(z) = zn
(

an + an−1
/

z + · · · + a1
/

zn−1 + a0
/

zn
)

and we see that
P(z)/zn → an as |z| → ∞. (2)

This observation and Liouville’s theorem enable us to prove the Fundamental The-
orem of Algebra, as we promised in Sec. 3.1.

Theorem 22. Every nonconstant polynomial with complex coefficients has at
least one zero.

Proof. Suppose P(z) = anzn + an−1zn−1 + · · · + a1z + a0, with an �= 0, has
no zeros. It follows immediately that f (z) = 1/P(z) is entire; we shall also see that it
is bounded over the whole plane.

(i) From (2) we know that |P(z)/zn| ≥ |an|/2 for |z| sufficiently large - say, |z| ≥
ρ. Hence

| f (z)| = 1

|P(z)| ≤ 2

|zn| |an| ≤ 2

ρn|an| (|z| ≥ ρ).

(ii) For |z| ≤ ρ, we have the case of a continuous function, | f (z)|, on a closed disk.
Under such circumstances it is known from calculus that the function must be
bounded there (indeed, it achieves its maximum).

But if 1/P(z) is bounded and entire it must be constant. Thus P(z), itself, is
constant (and its degree n is zero). In other words, the only polynomials that have no
zeros are the constants. �

Let us now return to the Cauchy formula for the function f , analytic inside and on
the circle CR of radius R around z0. We have

f (z0) = 1

2π i
�
∫

CR

f (z)

z − z0
dz. (3)

Parametrizing CR by z = z0 + Reit , 0 ≤ t ≤ 2π , we write Eq. (3) as

f (z0) = 1

2π i

∫ 2π

0

f (z0 + Reit )

Reit
i Reit dt,

or

f (z0) = 1

2π

∫ 2π

0
f (z0 + Reit ) dt. (4)
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Equation (4), which is known as the mean-value property, displays f (z0) as the aver-
age of its values around the circle CR . Clearly, if | f (z)| ≤ M on CR , then | f (z0)| is
bounded by M also (this verifies the case n = 0 of Theorem 20, with 0! = 1). But
more importantly, we can utilize Eq. (4) to establish the following.

Lemma 1. Suppose that f is analytic in a disk centered at z0 and that the max-
imum value of | f (z)| over this disk is | f (z0)|. Then | f (z)| is constant in the
disk.

Proof. Assume to the contrary that | f (z)| is not constant. Then there must exist
a point z1 in the disk such that | f (z0)| > | f (z1)|. Let CR denote the circle centered
at z0 which passes through z1. Then by hypothesis | f (z0)| ≥ | f (z)| for all z on CR .
Moreover, by the continuity of f , the strict inequality | f (z0)| > | f (z)| must hold for z
on a portion of CR containing z1. This leads to a contradiction of Eq. (4), because the
portion containing z1 would contribute “less than its share” to the average in Eq. (4),
and the “deficit” cannot be made up anywhere else on CR . (We invite the reader to
provide a rigorous version of this argument in Prob. 9.) �

Observe that the lemma says that the modulus of an analytic function cannot
achieve its maximum at the center of the disk unless | f | is constant. We shall use
the lemma to extend this idea in the following version of the maximum modulus prin-
ciple.

Theorem 23. If f is analytic in a domain D and | f (z)| achieves its maximum
value at a point z0 in D, then f is constant in D.

Proof. We shall prove that | f | is constant in D; by Prob. 12 in Exercises 2.5, we
can then conclude that f , itself, is constant.

So for the moment let us suppose that | f (z)| is not constant. Then there must be
a point z1 in D such that | f (z1)| < | f (z0)|. Let γ be a path in D running from z0
to z1, as in Fig. 4.57. Now we consider the values of | f (z)| for z on γ , starting at z0.
Intuitively, we expect to encounter a point w where | f (z)| first starts to decrease on γ .
That is, there should be a point w on γ with the following properties:

(i) | f (z)| = | f (z0)| for all z preceeding w on γ .

(ii) There are points z on γ , arbitrarily close to w, where | f (z)| < | f (z0)|.

(It is possible that w may coincide with z0.) The existence of w is a fact that can
be rigorously demonstrated from the axioms of the real number system, but we shall
omit the details here. Naturally, from property (i) and the continuity of f , we have
| f (w)| = | f (z0)|.
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Figure 4.57 Geometry for proof of Theorem 23.

Now since every point of a domain is an interior point, there must be a disk cen-
tered at w that lies in D. But Lemma 1 applies and says that | f | is constant in this
disk, contradicting property (ii) above. We are forced to conclude, therefore, that our
initial supposition about the existence of z1 is erroneous. Consequently | f |, and hence
f itself, is constant in D. �

Next, consider a function f (z) analytic in a bounded domain D and continuous on
D and its boundary. From calculus we know that the continuous function | f (z)| must
achieve its maximum on this closed bounded region; on the other hand, Theorem 23
says that the maximum cannot occur at an interior point unless f is constant. In any
case, we can conservatively state the following modification of the maximum modulus
principle.

Theorem 24. A function analytic in a bounded domain and continuous up to
and including its boundary attains its maximum modulus on the boundary.

Example 1
Find the maximum value of

∣∣z2 + 3z − 1
∣∣ in the disk |z| ≤ 1.

Solution. The triangle inequality immediately gives us∣∣∣z2 + 3z − 1
∣∣∣ ≤

∣∣∣z2
∣∣∣+ 3|z| + 1 ≤ 5 (for |z| ≤ 1). (5)

However, the maximum is actually smaller than this, as the following analysis shows.
The maximum of

∣∣z2 + 3z − 1
∣∣ must occur on the boundary of the disk (|z| = 1).

The latter can be parametrized z = eit , 0 ≤ t ≤ 2π ; whence∣∣∣z2 + 3z − 1
∣∣∣2 =

(
ei2t + 3eit − 1

) (
e−i2t + 3e−i t − 1

)
.

Expanding and gathering terms reduces this to (11 − 2 cos 2t). Thus the maximum of∣∣z2 + 3z − 1
∣∣ is

√
13, which occurs at z = ±i . A sketch of the graph of the function∣∣z2 + 3z − 1

∣∣ appears in Fig. 4.58. �
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Figure 4.58 Graph of |z2 + 3z − 1| for |z| < 1.

EXERCISES 4.6

1. Let f (z) = 1
/
(1 − z)2 , and let 0 < R < 1. Verify that max|z|=R

| f (z)| = 1
/
(1 − R)2 ,

and also show f (n)(0) = (n + 1)!, so that by the Cauchy estimates

(n + 1)! ≤ n!
Rn(1 − R)2

.

2. Suppose that f is analytic in |z| < 1 and that | f (z)| < 1/(1 − |z|). Prove that∣∣∣ f (n)(0)
∣∣∣ ≤ n!

Rn(1 − R)
(0 < R < 1),

and show that the upper bound is smallest when R = n/(n + 1).

3. Let f be analytic and bounded by M in |z| ≤ r . Prove that∣∣∣ f (n)(z)
∣∣∣ ≤ n!M

(r − |z|)n (|z| < r).

4. If p(z) = a0 + a1z + · · · + anzn is a polynomial and max |p(z)| = M for |z| = 1,
show that each coefficient ak is bounded by M .

5. Let f be entire and suppose that Re f (z) ≤ M for all z. Prove that f must be a
constant function. [HINT: Apply Liouville’s theorem to the function e f .]

6. Let f be entire and suppose that f (5) is bounded in the whole plane. Prove that f
must be a polynomial of degree at most 5.
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7. Suppose that f is entire and that | f (z)| ≤ |z|2 for all sufficiently large values
of |z|, say |z| > r0. Prove that f must be a polynomial of degree at most 2.
[HINT: Show by the Cauchy estimates that for R sufficiently large

∣∣ f (3)(z0)
∣∣ ≤

3! (R + |z0|)2 /R3, and thereby conclude that f (3) vanishes everywhere.] General-
ize this result.

8. If f is analytic in the annulus 1 ≤ |z| ≤ 2 and | f (z)| ≤ 3 on |z| = 1 and | f (z)| ≤ 12
on |z| = 2, prove that | f (z)| ≤ 3|z|2 for 1 ≤ |z| ≤ 2. [HINT: Consider f (z)/3z2.]

9. Using formula (4) show that if the analytic function f satisfies | f (z0)| ≥ | f (z)| for
all z on CR : z0 + Reit , 0 ≤ t ≤ 2π , then there is no point z1 on CR for which
| f (z0)| > | f (z1)|. [HINT: If z1 exists, then by the continuity of f there is an ε > 0
such that

∣∣ f (z0 + Reit )
∣∣ ≤ | f (z0)| − ε over some interval of t . Using this interval

divide up the integration in Eq. (4) to reach the contradiction | f (z0)| < | f (z0)|.]
10. Find all functions f analytic in D : |z| < R that satisfy f (0) = i and | f (z)| ≤ 1

for all z in D. [HINT: Where does the maximum modulus occur?]

11. Suppose that f is analytic inside and on the simple closed curve C and that | f (z)−
1| < 1 for all z on C . Prove that f has no zeros inside C . [HINT: Suppose f (z0) = 0
for some z0 inside C and consider the function g(z) := f (z)− 1.]

12. It is proved in Chapter 6 that every analytic function which is nonconstant on do-
mains maps open sets onto open sets. Using this fact give another proof of the
maximum modulus principle (Theorem 23).

13. Let f and g be analytic in the bounded domain D and continuous up to and in-
cluding its boundary B. Suppose that g never vanishes. Prove that if the inequality
| f (z)| ≤ |g(z)| holds for all z on B, then it must hold for all z in D. [HINT: Consider
the function f (z)/g(z).]

14. Prove the minimum modulus principle: Let f be analytic in a bounded domain D
and continuous up to and including its boundary. Then if f is nonzero in D, the
modulus | f (z)| attains its minimum value on the boundary of D. [HINT: Consider
the function 1/ f (z).] Give an example to show why the italicized condition is es-
sential.

15. Let the nonconstant function f be analytic in the bounded domain D and continuous
up to and including its boundary B. Prove that if | f (z)| is constant on B, then f
must have at least one zero in D.

16. Show that max
|z|≤1

|azn + b| = |a| + |b|.

17. Find max|z|≤1 |(z − 1)(z + 1/2)|. [HINT: Use calculus.]

18. Let P be a polynomial which has no zeros on the simple closed positively oriented
contour 
. Prove that the number of zeros of P (counting multiplicity) that lie inside

 is given by the integral

1

2π i

∫



P ′(z)
P(z)

dz.

[HINT: See Exercises 3.1, Prob. 17.]
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19. Prove that for any polynomial P of the form P(z) = zn +an−1zn−1 +· · ·+a1z+a0,
we have max|z|=1 |P(z)| ≥ 1. [HINT: Consider the polynomial Q(z) = zn P(1/z),
and note that Q(0) = 1 and that

max
|z|=1

|Q(z)| = max
|z|=1

|P(z)|. ]

4.7 *Applications to Harmonic Functions

In the last part of Chapter 2 we discussed the harmonic functions, which are twice-
continuously differentiable solutions of Laplace’s equation

∂2φ

∂x2
+ ∂2φ

∂y2
= 0.

In particular, we showed that the real and imaginary parts of analytic functions are
harmonic, subject to an assumption about their differentiability. This assumption has
now been vindicated by Theorem 17. Conversely, we showed how a given harmonic
function can be regarded as the real (or imaginary) part of an analytic function by
giving a method that constructs the harmonic conjugate, at least in certain elementary
domains such as disks. We shall now exploit this interpretation to derive some more
facts about harmonic functions.

Our first step will be to extend the harmonic-analytic dualism to simply connected
domains, via the next theorem.

Theorem 25. Let φ be a function harmonic on a simply connected domain D.
Then there is an analytic function f such that φ = Re f on D.

Proof. For motivation, suppose that we had such an analytic function, say, f =
φ+iψ . Then one expression for f ′(z)would be given by f ′ = ∂φ/∂x−i∂φ/∂y (using
the Cauchy-Riemann equations), and f would be an antiderivative of this analytic
function.

Accordingly, we begin the proof by defining g(z) := ∂φ/∂x − i∂φ/∂y. We now
claim that g satisfies the Cauchy-Riemann equations in D:

∂

∂x

(
∂φ

∂x

)
= ∂

∂y

(
−∂φ
∂y

)
because φ is harmonic, and

∂

∂y

(
∂φ

∂x

)
= − ∂

∂x

(
−∂φ
∂y

)
because of the equality of mixed second partial derivatives. Of course, these partials
are continuous since φ is harmonic. Hence g(z) is analytic, and by Theorem 10 (or 13)

221



222 Complex Integration

in Sec. 4.4 it has an analytic antiderivative G = u + iv in the simply connected
domain D. Since G ′ = g, we can write

∂u

∂x
− i

∂u

∂y
= ∂φ

∂x
− i

∂φ

∂y
,

showing that u and φ have identical first partial derivatives in D. Thus by Theorem 1
of Sec. 1.6, we conclude that φ − u is constant in D; i.e., φ = u + c. It follows that
f (z) := G(z)+ c is an analytic function of the kind predicted by the theorem. �

With Theorem 25 in hand we are fully equipped to study harmonic functions in
simply connected domains, using the theory of analytic functions. Let φ(x, y) be a
harmonic function and f = φ + iψ be an “analytic completion” for φ in the simply
connected domain D. Now observe the following about the function e f (z):

|e f | = |eφ+iψ | = |eφ ||eiψ | = eφ. (1)

Because the exponential is a monotonically increasing function of a real variable,
Eq. (1) implies that the maximum points of φ coincide with the maximum points of the
modulus of the analytic function e f . Thus we immediately have a maximum principle
for harmonic functions! Furthermore, since the minimum points of φ are the same as
the maximum points of the harmonic function −φ, we can state the following versions
of the maximum-minimum principle for harmonic functions.

Theorem 26. If φ is harmonic in a simply connected domain D and φ(z)
achieves its maximum or minimum value at some point z0 in D, then φ is con-
stant in D.

Theorem 27. A function harmonic in a bounded simply connected domain and
continuous up to and including the boundary attains its maximum and minimum
on the boundary.

Actually, these principles can easily be extended to multiply connected domains
by appropriately modifying the proof of Theorem 23; see Prob. 3. We shall utilize this
extended form hereafter.

An important problem that arises in electromagnetism, fluid mechanics, and heat
transfer is the following.

Dirichlet Problem Find a function φ(x, y) continuous on a domain D and its
boundary, harmonic in D, and taking specified values on the boundary of D.
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The function φ can be interpreted as electric potential, velocity potential, or steady-
state temperature. In studying the Dirichlet problem we are concerned with two main
questions: Does a solution exist, and, if so, is it uniquely determined by the given
boundary values? For the case of bounded domains the question of uniqueness is an-
swered by the next theorem.

Theorem 28. Let φ1(x, y) and φ2(x, y) each be harmonic in a bounded domain
D and continuous on D and its boundary. Furthermore, suppose that φ1 = φ2 on
the boundary of D. Then φ1 = φ2 throughout D.

Proof. Consider the harmonic function φ := φ1−φ2. It must attain its maximum
and minimum on the boundary, but it vanishes there! Hence φ = 0 throughout D. �

A solution to the Dirichlet problem could be expressed by a formula giving φ
inside D in terms of its (specified) values on the boundary. Surely this suggests exper-
imenting with the Cauchy integral formula; it expresses the combination f = φ + iψ
inside D in terms of its values on the boundary (here f is the analytic completion of
φ). So if we could “uncouple” the real and imaginary parts of f in the Cauchy integral
formula, we would solve the Dirchlet problem.

We are, in fact, able to solve the Dirichlet problems for the disk and the half-plane
by this technique. Leaving the latter as an exercise for the reader, we proceed with the
former.

For simplicity we consider the disk that is bounded by the positively oriented circle
CR : |z| = R. The Cauchy integral formula gives the values of an analytic function f
inside the disk in terms of its values on the circle:

f (z) = 1

2π i

∫
CR

f (ζ )

ζ − z
dζ (|z| < R) (2)

(assuming the domain of analyticity includes the circle CR as well as its interior). We
wish to transform Eq. (2) into a formula that involves only the real part of f . To this
end, we observe that for fixed z, with |z| < R, the function

f (ζ )z

R2 − ζ z

is an analytic function of ζ inside and on CR (think about this; the denominator does
not vanish). Hence by the Cauchy theorem

1

2π i

∫
CR

f (ζ )z

R2 − ζ z
dζ = 0.

The utility of this relationship will become apparent when we add it to Eq. (2):

f (z) = 1

2π i

∫
CR

(
1

ζ − z
+ z

R2 − ζ z

)
f (ζ ) dζ

= 1

2π i

∫
CR

R2 − |z|2
(ζ − z)

(
R2 − ζ z

) f (ζ ) dζ.

(3)
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If we parametrize CR by ζ = Reit , 0 ≤ t ≤ 2π , Eq. (3) becomes

f (z) = 1

2π i

∫ 2π

0

R2 − |z|2(
Reit − z

) (
R2 − Reit z

) f (Reit )Rieit dt

= R2 − |z|2
2π

∫ 2π

0

f (Reit )(
Reit − z

) (
Re−i t − z

) dt

= R2 − |z|2
2π

∫ 2π

0

f (Reit )∣∣Reit − z
∣∣2 dt.

Finally, by taking the real part of this equation, identifying Re f as the harmonic func-
tion φ, and writing z in the polar form z = reiθ , we arrive at the Poisson integral
formula, which we state as follows.

Theorem 29. Let φ be harmonic in a domain containing the disk |z| ≤ R. Then
for 0 ≤ r < R, we have

φ
(

reiθ
)

= R2 − r2

2π

∫ 2π

0

φ(Reit )

R2 + r2 − 2r R cos(t − θ)
dt. (4)

Actually, Poisson’s formula is more general than is indicated in this statement. We
direct the interested reader to Ref. [9] or [10] for a proof of the next theorem.

Theorem 30. Let U be a real-valued function defined on the circle CR : |z| = R
and continuous there except for a finite number of jump discontinuities. Then the
function

u(reiθ ) := R2 − r2

2π

∫ 2π

0

U (Reit )

R2 + r2 − 2r R cos(t − θ)
dt (5)

is harmonic inside CR , and as reiθ approaches any point on CR where U is
continuous, u

(
reiθ

)
approaches the value of U at that point.

Naturally at the points of discontinuity of U the behavior is more complicated. As
an example, consider the harmonic function Arg(z + 1), which is the imaginary part
of Log(z + 1), in the domain depicted in Fig. 4.59. Clearly, Arg(z + 1) approaches
its boundary values in a reasonable manner except at z = −1, where it is erratic (the
boundary value jumps from π/2 to −π/2 there).

Thus Poisson’s formula solves the Dirichlet problem for the disk under very gen-
eral circumstances. (We solved the simplest case, where U is constant, in Exercises
3.4, Prob. 6.)
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Figure 4.59 Arg(z + 1). Figure 4.60 Find the temperature in-
side the disk.

Example 1

Find the steady-state temperature T at each point inside the unit disk if the temperature
is prescribed to be +1 on the part of the rim in the first quadrant, and 0 elsewhere
(Fig. 4.60).

Solution. The temperature is given by the harmonic function taking the pre-
scribed boundary values. Here formula (5) becomes

T (reiθ ) = 1 − r2

2π

∫ π/2

0

1

1 + r2 − 2r cos(t − θ)
dt.

For example, at the center,

T (0) = 1

2π

∫ π/2

0
1 dt = 1

4
,

which is the average of its values on the rim. �

EXERCISES 4.7

1. Find all functions φ harmonic in the unit disk D : |z| < 1 that satisfy φ(i/2) = −5
and φ(z) ≥ −5 for all z in D.

2. Show by example that a harmonic function need not have an analytic completion in
a multiply connected domain. [HINT: Consider Log |z|.]

3. Prove the maximum-minimum principle for harmonic functions in an arbitrary do-
main. [HINT: Theorem 26 can be used to establish a lemma analogous to Lemma 1
in Sec. 4.6. Then argue as in Theorem 23.]

4. What is the physical interpretation of the maximum-minimum principle in steady-
state heat flow?
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5. Show by example that the solution to the Dirichlet problem need not be unique for
unbounded domains. [HINT: Construct two functions that are harmonic in the upper
half-plane, each vanishing on the x-axis.]

6. Prove the circumferential mean-value theorem for harmonic functions: If φ is har-
monic in a domain containing the disk |z| ≤ ρ, then

φ(0) = 1

2π

∫ 2π

0
φ(ρeit ) dt.

7. Prove the following version of the solid mean-value theorem for harmonic functions:
If φ is harmonic in a domain containing the closed disk D : |z| ≤ R, then

φ(0) = 1

πR2

∫∫
D
φ dx dy.

[HINT: Multiply the equation in Prob. 6 by ρ dρ and integrate.]

8. Without doing any computations, explain why

R2 − r2

2π

∫ 2π

0

1

R2 + r2 − 2r R cos(t − θ)
dt = 1 for 0 ≤ r < R.

9. Prove Harnack’s inequality: If φ(z) is harmonic and nonnegative in a domain con-
taining the disk |z| ≤ R, then for 0 ≤ r < R

φ(0)
R − r

R + r
≤ φ(reiθ ) ≤ φ(0)

R + r

R − r
.

[HINT: Use Poisson’s formula and the mean-value property of Prob. 6, observing
also that

(R − r)2 ≤ R2 + r2 − 2r R cos(t − θ) ≤ (R + r)2.]
10. Prove Liouville’s theorem for harmonic functions: If φ is harmonic in the whole

plane and bounded from above or below there, then φ is constant. [HINT: Modify φ
so that Harnack’s inequality (Prob. 9) can be applied.]

11. The temperature of the rim of the unit disk is maintained at the levels indicated in
Fig. 4.61. What is the temperature at the center?

12. (Schwarz Integral Formula) Let f = u + iv be analytic on the disk |z| ≤ R. Then
Poisson’s integral formula expresses the values of the real part u inside the disk in
terms of the values of u on the boundary of the disk. In this problem you will derive
an expression for the imaginary part v in terms of the boundary values of u.

(a) Show that the Poisson integral formula (4) can be written

u(z) = 1

2π

∫ 2π

0
P(Reit , z) u(Reit ) dt,

where the Poisson kernel P is given by

P(ζ, z) := |ζ |2 − |z|2
|ζ − z|2 .
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Figure 4.61 Find the temperature at the center.

(b) Show that
ζ + z

ζ − z
= P(ζ, z)+ 2i

Im zζ

|ζ − z|2 ;
in other words, P(ζ, z) is the real part of (ζ + z)/(ζ − z).

(c) Utilizing Theorem 15, argue that

H(z) := 1

2π i
�
∫

|ζ |=R

ζ + z

ζ − z

u(ζ )

ζ
dζ

defines an analytic function of z for |z| < R.

(d) Insert the parametrization ζ = Reit into the integral for H(z) and derive

Re H(z) = 1

2π

∫ 2π

0
P(Reit , z)u(Reit )dt

which, by the Poisson integral formula, equals u(z).

(e) Since H(z) and f (z) are two analytic functions whose real parts coincide,
use the theory developed in Sec. 2.5 to argue that they can differ only by an
imaginary constant,

f (z) = H(z)+ iC.

Insert the value z = 0 into this identity and use the circumferential mean-
value theorem (Prob. 6) to demonstrate that C must be v(0).
Assemble the results to obtain the Schwarz integral formula

f (z) = 1

2π i
�
∫

|ζ |=R

ζ + z

ζ − z

u(ζ )

ζ
dζ + iv(0), for |z| < R.

(f) Equate the imaginary parts in the Schwarz integral formula to derive the rep-
resentation for v in terms of the boundary values of u:

v(z) = 1

2π

∫ 2π

0
Q(Reit , z) u(Reit )dt + v(0), for |z| < R,

where

Q(ζ, z) := 2
Im zζ

|ζ − z|2 .
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13. Let f be an entire function whose real part satisfies | Re f (z)| ≤ M |z|2 for all
sufficiently large values of |z|, where M is a constant. Show that f must be a
polynomial by arguing as follows.

(a) Use the Schwarz formula [Prob. 12(e)] with R = 2|z| to show that | f (z)| is
bounded for large |z| by some multiple of |z|2.

(b) Use the result of Prob. 7 of Exercises 4.6 to conclude that f is a polynomial
of degree at most 2.

14. (Poisson Integral Formula for the Half-Plane) If f = φ+ iψ is analytic in a domain
containing the x-axis and the upper half-plane and | f (z)| ≤ K in this domain, then
the values of the harmonic function φ in the upper half-plane are given in terms of
its values on the x-axis by

φ(x, y) = y

π

∫ ∞

−∞
φ(ξ, 0) dξ

(ξ − x)2 + y2
(y > 0).

Here is an outline of the derivation; justify the steps.

(a) For the situation depicted in Fig. 4.62,

f (z) = 1

2π i

∫

R

f (ζ )

ζ − z
dζ.

(b) For the same situation

0 = 1

2π i

∫

R

f (ζ )

ζ − z
dζ.

(c) Subtract these two equations to conclude that

f (z) = 1

2π i

∫ R

−R
f (ξ)

2i Im z

|ξ − z|2 dξ

+ 1

2π i

∫
C+

R

f (ζ )
2i Im z

(ζ − z) (ζ − z)
dζ,

where C+
R is the semicircular portion of 
R .

(d) Show that the integral along C+
R is bounded by

K

π

Im z

(R − |z|)2 πR.

(e) Let R → ∞ in the last equation and take the real part.

15. The Poisson integral formula in Prob. 14 admits a generalization; for suitable func-
tions U (ξ) the integral

φ(x, y) := y

π

∫ ∞

−∞
U (ξ)

(ξ − x)2 + y2
dξ
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Figure 4.62 Poisson integral formula.

Figure 4.63 Find the temperature in the upper half-plane.

will define a harmonic function in either half-plane taking the limiting value U (x)
as z approaches a point of continuity x of U . Use the formula to find the temperature
in the upper half-plane if the temperature on the x-axis is maintained as in Fig. 4.63.
(This problem was solved by elementary methods in Example 3, Sec. 3.4.)

16. (Schwarz Integral Formula for the Half-Plane) If f = u + iv is an analytic function
in the closed upper half-plane and | f | is bounded there, then the Poisson integral
formula expresses the values of u(x, y) for y > 0 in terms of the values of u on the
real axis (Prob. 14). If f satisfies a slightly stronger condition, then the derivation
in Prob. 14 can be modified to express also the values of the imaginary part v(x, y)
for y > 0 in terms of these boundary values of u.

(a) Retrace parts (a) and (b) of Prob. 14, but in part (c) add the two integrals to
obtain the identity

f (z) = 1

2π i

∫ R

−R
f (ξ)

2(ξ − x)

|ξ − z|2 dξ + 1

2π i

∫
C+

R

f (ζ )
2(ζ − x)

(ζ − z) (ζ − z)
dζ.

(b) Show that the integral along C+
R goes to zero as R → ∞ if f satisfies an

inequality of the form | f (z)| ≤ K
/|z|α with α > 0, for sufficiently large |z|

in the closed upper half-plane. Thus, for such an f ,

f (z) = 1

π i

∫ ∞

−∞
f (ξ)

(ξ − x)

|ξ − z|2 dξ, for Im z > 0.
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(c) Equate imaginary parts in the last equation to derive

v(z) = − 1

π

∫ ∞

−∞
u(ξ, 0)

(ξ − x)

|ξ − z|2 dξ, Im z > 0.

(d) Combine this formula with the Poisson integral formula to obtain the Schwarz
integral formula for the upper half-plane

f (z) = 1

π i

∫ ∞

−∞
u(ξ, 0)

ξ − z
dξ, Im z > 0.

17. With the assumptions of Prob. 16, the Schwarz integral formula also defines a func-
tion in the lower half-plane; call this function f̃ (z).

(a) Show that f̃ (z) = − f (z), for Im z < 0, and conclude from this that f̃ (z) is
analytic in the lower half-plane.

(b) Use the equation in part (a) to show that as z crosses the real axis from above,
the change in

1

π i

∫ ∞

−∞
u(ξ, 0)

ξ − z
dξ

is the real number −2u(x, 0).

18. Use the theory developed in Probs. 16 and 17 to argue that

1

z + i
= 1

π i

∫ ∞

−∞
ξ(

ξ2 + 1
)
(ξ − z)

dξ for Im z > 0,

and that −1

z − i
= 1

π i

∫ ∞

−∞
ξ(

ξ2 + 1
)
(ξ − z)

dξ for Im z < 0.

(These values will be confirmed directly in Prob. 12, Exercises 6.3.) Verify that the
jump in the value of the integral as z crosses the real axis equals −2x

/(
x2 + 1

)
.

SUMMARY

Integration in the complex plane takes place along contours, which are continuous
chains of directed smooth curves. The definite integral over each smooth part is defined
by imitating the Riemann sum definition used in calculus, and the contour integral∫



f (z) dz is the sum of the integrals over the smooth components of 
.
A “brute-force” technique for computing an integral along a contour 
 involves

finding a parametrization z = z(t), a ≤ t ≤ b, for 
; then the contour integral can be
obtained by performing an integration with respect to the real variable t , in accordance
with the formula ∫




f (z) dz =
∫ b

a
f (z(t))z′(t) dt.

When the integrand f (z) is analytic in a domain containing 
, the following con-
siderations may be useful in evaluating

∫



f (z) dz:
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1. (Fundamental Theorem of Calculus) If f has an antiderivative F in a domain
containing 
, then ∫




f (z) dz = F (zT )− F (zI ) .

where zI and zT are the initial and terminal points of 
.

2. (Cauchy’s Theorem) If 
 is a simple closed contour (i.e., zI = zT but no other
self-intersections occur) and f is analytic inside and on 
, then

∫



f (z) dz = 0.

3. (Cauchy’s Integral Formula) If 
 is a simple closed positively oriented contour
and f has the form f (z) = g(z)/(z − z0), with g analytic inside and on 
 and
z0 lying inside 
, then∫




f (z) dz =
∫



g(z)

z − z0
dz = 2π ig (z0) .

More generally, ∫



g(z) dz

(z − z0)
m = 2π ig(m−1)(z0)

(m − 1)! .

4. If f is of the form f (z) = g(z)/[(z − z1)
m1(z − z2)

m2], with g as in case (3) and
the points z1 and z2 lying inside the simple closed contour 
, then

∫



f (z) dz
can be reduced to case (3) by using partial fractions.

5. (Deformation Invariance Theorem) If the closed contour 
 can be continuously
deformed to another closed contour 
′ without passing through any singularities
of f , then ∫




f (z) dz =
∫

′

f (z) dz.

When the domain of analyticity of f is simply connected (i.e., has no “holes”),
then f has an antiderivative and integrals of f are independent of path.

The Cauchy integral formula has many consequences for analytic functions. Some
of these are the infinite differentiability of analytic functions (see 3), Liouville’s the-
orem (bounded entire functions are constant), the Fundamental Theorem of Algebra
(every nonconstant polynomial has a zero), and the maximum modulus theorem (the
maximum of | f | is attained on the boundary of a bounded domain).

In simply connected domains harmonic functions can be identified as real parts of
analytic functions. Hence these results have analogues for harmonic functions, such
as infinite differentiability, maximum principles, and Poisson’s formula (the analogue
of Cauchy’s integral formula).
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Chapter 5

Series Representations
for Analytic Functions

5.1 Sequences and Series

In Chapter 2 we defined what is meant by convergence of a sequence of complex
numbers; recall that the sequence {An}∞n=1 has A as a limit if |A − An| can be made
arbitrarily small by taking n large enough. For computational convenience it is often
advantageous to use an element An of the sequence as an approximation to A. Indeed,
when we calculate the area of a circle we usually use an element of the sequence
3.14, 3.141, 3.1415, 3.14159, . . . as an approximation to π . The use of sequences,
and in particular the kind of sequences associated with series, is an important tool
in both the theory and applications of analytic functions, and the present chapter is
devoted to the development of this subject.

The possibility of summing an infinite string of numbers must have occurred to
anyone who has toyed with adding

1

2
+ 1

4
= 3

4
,

1

2
+ 1

4
+ 1

8
= 7

8
,

1

2
+ 1

4
+ 1

8
+ 1

16
= 15

16
, etc.

The sequence of sums thus derived obviously has 1 as a limit, and it seems sensible to
say 1

2 + 1
4 + 1

8 + · · · = 1. We are motivated to generalize this by saying that an infinite
series of the form c0 + c1 + c2 + · · · has the sum S if the sums of the first n terms
approach S as a limit as n goes to infinity. The customary nomenclature is summarized
in the following definition.

Definition 1. A series is a formal expression of the form c0 + c1 + c2 + · · · ,
or equivalently

∑∞
j=0 c j , where the terms c j are complex numbers. The nth

partial sum of the series, usually denoted Sn , is the sum of the first n + 1 terms,
that is, Sn := ∑n

j=0 c j . If the sequence of partial sums {Sn}∞n=0 has a limit S,
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the series is said to converge, or sum, to S, and we write S =∑∞
j=0 c j . A series

that does not converge is said to diverge.

Notice that the notion of convergence for a series has been defined in terms of
convergence for a sequence. As an illustration, observe that π is the sum of the series
3 + .1 + .04 + .001 + .0005 + .00009 + · · · .

Clearly one way to demonstrate that a series converges to S is to show that the
remainder after summing the first n + 1 terms, S −∑n

j=0 c j , goes to zero as n → ∞.
We use this technique in describing the convergence of the simple but extremely useful
geometric series

∑∞
j=0 c j .

Lemma 1. The series
∑∞

j=0 c j converges to 1/(1 − c) if |c| < 1; that is,

1 + c + c2 + c3 + · · · = 1

1 − c
if |c| < 1. (1)

(In Prob. 6 we shall see that such a series diverges if |c| ≥ 1.)

Proof. Observe that

(1 − c)
(

1 + c + c2 + · · · + cn−1 + cn
)

= 1 + c + c2 + · · · + cn−1 + cn − c − c2 − · · · − cn−1 − cn − cn+1

= 1 − cn+1.

Rearranging this yields

1

1 − c
−
(

1 + c + c2 + · · · + cn−1 + cn
)

= cn+1

1 − c
. (2)

Since |c| < 1, the lemma follows; Eq. (2) displays the remainder as cn+1/(1 − c),
which certainly goes to zero as n → ∞ (cf. Prob. 6 in Exercises 2.2). �

Another important way to establish the convergence of a series involves comparing
it with another series whose convergence is known. The following theorem, which
generalizes a result from calculus, seems so transparent that we shall spare our trusting
readers the proof and refer the skeptics to Sec. 5.4.

Theorem 1. (Comparison Test) Suppose that the terms c j satisfy the inequality∣∣c j
∣∣ ≤ M j

for all integers j larger than some number J . Then if the series
∑∞

j=0 M j con-
verges, so does

∑∞
j=0 c j .
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Example 1
Show that the series

∑∞
j=0(3 + 2i)/( j + 1) j converges.

Solution. We shall compare the series

∞∑
j=0

3 + 2i

( j + 1) j
= (3 + 2i)+ (3 + 2i)

2
+ (3 + 2i)

9
+ (3 + 2i)

64
+ · · · (3)

with the convergent geometric series

∞∑
j=0

1

2 j
= 1 + 1

2
+ 1

4
+ 1

8
+ · · · . (4)

Since |3 + 2i | = √
13 < 4, the reader can easily verify that∣∣∣∣ 3 + 2i

( j + 1) j

∣∣∣∣ < 4

( j + 1) j
,

and that this is less than 1/2 j for j ≥ 3 . Thus the terms of (4) dominate those of the
series in (3) and, hence, (3) converges. �

Sometimes the ratio test can be applied to a series to establish convergence.

Theorem 2. (Ratio Test) Suppose that the terms of the series
∑∞

j=0 c j have the
property that the ratios |c j+1/c j | approach a limit L as j → ∞. Then the series
converges if L < 1 and diverges if L > 1.

The proof of this theorem involves comparing the given series with a series ob-
tained by judiciously modifying the geometric series

∑∞
j=0 L j . See Prob. 15.

Example 2
Show that the series

∑∞
j=0 4 j/j ! converges.

Solution. We have ∣∣∣∣c j+1

c j

∣∣∣∣ = 4 j+1

( j + 1)!
j !
4 j

= 4

j + 1
.

This ratio approaches zero as j → ∞; thus the series converges. �
We remark that a series

∑∞
j=0 c j is said to be absolutely convergent if the series∑∞

j=0

∣∣c j
∣∣ converges. Any absolutely convergent series is convergent, by a trivial

application of the comparison test.
The kinds of sequences and series that often arise in complex analysis are those

where the terms are functions of a complex variable z. Thus if we have a sequence
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of functions F1(z), F2(z), F3(z), . . ., we must consider the possibility that for some
values of z the sequence converges, while for others it diverges. As an example, the
sequence (z/2i)n , n = 1, 2, 3, . . ., approaches zero for |z| < |2i | = 2, approaches 1
for z = 2i (obviously!), and has no limit otherwise (see Prob. 4). Similarly, a series
of complex functions

∑∞
j=0 f j (z) may converge for some values of z and diverge for

others.

Example 3
If z0 (�= 0) is fixed, show that the series

∑∞
j=0 (z/z0)

j [which is quite distinct from

the sequence (z/z0)
j ] converges for |z| < |z0|.

Solution. This is merely a thinly disguised resurrection of Lemma 1. In fact,
setting c = z/z0 in Eq. (2) yields

1

1 − z/z0
−
[

1 + z

z0
+
(

z

z0

)2

+ · · · +
(

z

z0

)n
]

= (z/z0)
n+1

1 − z/z0
. (5)

We conclude, as before, that for |z| < |z0| the series sums to the function 1/(1 −
z/z0). �

In applying this theory to analytic functions we need a somewhat stronger notion of
convergence. By way of illustration, consider the sequence of real functions Fn(x) =
xn , depicted over the half-open interval 0 ≤ x < 1 in Fig. 5.1. Clearly, on this set the
sequence {Fn(x)}∞n=1 converges to the function F(x) ≡ 0; that is, for any given x the
powers xn become minuscule, for sufficiently large n. But none of the curves y = xn

(0 ≤ x < 1) would be regarded as good approximations to the curve y = 0, since
each of the former has points near its right edge that generate (relatively) large values
of xn . We say that the convergence is pointwise, but not uniform. Thus we formulate
the following.

Figure 5.1 The functions Fn(x) = xn converge to zero pointwise but not
uniformly in [0, 1).
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Definition 2. The sequence {Fn(z)}∞n=1 is said to converge uniformly to F(z)
on the set T if for any ε > 0 there exists an integer N such that when n > N ,

|F(z)− Fn(z)| < ε for all z in T .

Accordingly, the series
∑∞

j=0 f j (z) converges uniformly to f (z) on T if the
sequence of its partial sums converges uniformly to f (z) there.

The essential feature of uniform convergence is that for a given ε > 0, one
must be able to find an integer N that is independent of z in T such that the error
|F(z)− Fn(z)| is less than ε for n > N . In contrast, for pointwise convergence, N
can depend upon z. (See Prob. 17.) Of course, uniform convergence on T implies
pointwise convergence on T .

Example 4
Show that the series

∑∞
j=0(z/z0)

j of Example 3 is uniformly convergent in every
closed disk |z| ≤ r , if r < |z0|.

Solution. Given ε > 0, we have to show that the remainder after n + 1 terms
will be less than ε for all z in the disk, when n is large enough. This is easy; from
Eq. (5) we can find an upper bound, independent of z, for the remainder:∣∣∣∣∣ (z/z0)

n+1

1 − z/z0

∣∣∣∣∣ ≤ (r/|z0|)n+1

1 − r/|z0| , for |z| ≤ r.

This can be made arbitrarily small since r < |z0|. �
Combining Examples 3 and 4 we see that the series

∑∞
j=0(z/z0)

j converges point-
wise in the open disk |z| < |z0| and uniformly on any closed subdisk |z| ≤ r < |z0|.

EXERCISES 5.1

1. Find the sum of the following convergent series.

(a)
∞∑
j=0

(
i

3

) j

(b)
∞∑

k=0

3

(1 + i)k
(c)

∞∑
j=0

(−1) j
(

2

3

) j

(d)
∞∑

k=14

(
1

2i

)k

(e)
∞∑
j=0

(
1

3

)2 j

(f)
∞∑
j=0

[
1

j + 2
− 1

j + 1

]
2. Using the ratio test, show that the following series converge.

(a)
∞∑
j=1

1

j ! (b)
∞∑

k=1

(3 + i)k

k! (c)
∞∑
j=0

j2

4 j
(d)

∞∑
k=1

k!
kk
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3. Prove that if the sequence {zn}∞n=1 converges, then (zn − zn−1) → 0 as n → ∞.

4. Let z0 �= 0. Prove that the sequence (z/z0)
n , n = 1, 2, . . ., diverges if |z| ≥ |z0|,

z �= z0. [HINT: For |z| = |z0|, observe that∣∣∣∣∣
(

z

z0

)n

−
(

z

z0

)n−1
∣∣∣∣∣ =

∣∣∣∣ z

z0
− 1

∣∣∣∣ > 0

and use the result of Prob. 3.]

5. Prove that if the series
∑∞

j=0 c j converges, then c j → 0 as j → ∞. [HINT:
Consider the difference Sn − Sn−1 of consecutive partial sums.]

6. Prove that the series
∑∞

j=0 c j diverges if |c| ≥ 1. [HINT: See Prob. 5.]

7. For each of the following determine if the given series converges or diverges.

(a)
∞∑

k=0

(
1 + 2i

1 − i

)k

(b)
∞∑
j=1

1

j23 j
(c)

∞∑
n=1

nin

2n + 1

(d)
∞∑
j=1

j !
5 j

(e)
∞∑

k=1

(−1)kk3

(1 + i)k
(f)

∞∑
k=1

(
i k − 1

k2

)

8. Prove the following statements.

(a) If
∑∞

j=0 c j sums to S, then
∑∞

j=0 c j sums to S.

(b) If
∑∞

j=0 c j sums to S and λ is any complex number, then
∑∞

j=0 λc j sums to
λS.

(c) If
∑∞

j=0 c j sums to S and
∑∞

j=0 d j sums to T , then
∑∞

j=0

(
c j + d j

)
sums to

S + T .

9. Prove that the series
∑∞

j=0 z j converges if and only if both of the series
∑∞

j=0 Re(z j )

and
∑∞

j=0 Im(z j ) converge.

10. Show that the sequence of functions Fn(z) = zn
/
(zn − 3n) , n = 1, 2, . . ., con-

verges to zero for |z| < 3 and to 1 for |z| > 3.

11. Using the ratio test, find a domain in which convergence holds for each of the fol-
lowing series of functions.

(a)
∞∑
j=1

j z j (b)
∞∑

k=0

(z − i)k

2k

(c)
∞∑
j=0

z j

j ! (d)
∞∑

k=0

(z + 5i)2k(k + 1)2

12. Let Fn(z) = [nz/(n + 1)] + (3/n), n = 1, 2, . . .. Prove that the sequence {Fn(z)}∞1
converges uniformly to F(z) = z on every closed disk |z| ≤ R.
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5.1 Sequences and Series 241

13. Prove that
∑∞

j=1 1/j p converges if p > 1. [HINT: Interpret the integral
∫ N

1 (1/x p) dx

as an area; then interpret
∑N

j=2 1/j p as an area and compare.]

14. Using the comparison test and the result of Prob. 13, show that the following series
converge.

(a)
∞∑
j=1

1

j ( j + i)
(b)

∞∑
k=1

sin
(
k2
)

k3/2

(c)
∞∑

k=1

k2i k

k4 + 1
(d)

∞∑
k=2

(−1)k
(

5k + 8

k3 − 1

)

15. Prove the ratio test (Theorem 2). [HINT: If L < 1, choose ε > 0 and J so that
|c j+1/c j | < L + ε < 1 for j ≥ J . Then show that |ck | ≤ |cJ |(L + ε)k−J for k > J
and use the comparison test.]

16. Prove that the sequence {zn}∞1 converges if and only if the series
∑∞

k=1 (zk+1 − zk)

converges.

17. Consider the sequence of functions Fn(x) = xn (n = 0, 1, 2, . . .) on the real in-
terval T = (0, 1), which converges pointwise to F(x) = 0 on T . Show that, for
0 < x < 1,

|Fn(x)− F(x)| < 1

2

when and only when n > Nx , where

Nx := Log 2

Log
(
x−1
) .

(Observe that Nx → ∞ as x → 1−, so that it is not possible to fulfill Definition 2
with an N independent of x in T when ε = 1

2 . This proves that this sequence does
not converge uniformly on T .)

18. Assume that the sequence of functions {Fn(z)}∞1 converges uniformly to F(z) on a
set T . Prove that if |F(z)| ≥ ρ > 0 for all z in T , then there exists an integer N
such that for n > N the inequality |Fn(z)| > ρ/2 holds for all z in T . [HINT: Take
ε = ρ/2 in Definition 2 and apply the triangle inequality.]

19. It will be shown in the next section that the series
∑∞

k=0 zk/k! converges uniformly
to ez on every disk |z| ≤ R. Accepting this fact, prove that, for n sufficiently large,
none of the polynomials Sn(z) = ∑n

k=0 zk/k! has zeros on |z| ≤ 5. [HINT: Use
Prob. 18.] (There is nothing special about the disk |z| ≤ 5; the same assertion holds
on any bounded set.)

20. Prove that the series
∑∞

j=0 z j does not converge uniformly to 1/(1 − z) on the open
disk |z| < 1.
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242 Series Representations for Analytic Functions

21. An increasingly lazy and asymmetric frog leaps one meter (from z = 0 to z = 1) on
his first jump, 1/2 meter on his second jump, 1/4 meter on his third jump, 1/8 meter
on his fourth jump, and so on, each time turning exactly an angle α to the left of his
preceding flight path. Use complex algebra to demonstrate that the limiting location
of the frog will inevitably be someplace on the circle |z − 4/3| = 2/3 regardless of
the value of α.

5.2 Taylor Series

Suppose that we wish to find a polynomial pn(z) of degree at most n that approximates
an analytic function f (z) in a neighborhood of a point z0. Naturally there are differing
criteria as to how well the polynomial approximates the function. We shall construct a
polynomial that “looks like” f (z) at the point z0 in the sense that its derivatives match
those of f at z0, insofar as possible:

pn (z0) = f (z0)

p′
n (z0) = f ′ (z0)

...

p(n)n (z0) = f (n) (z0) .

[Of course, the (n + 1)st derivative of any polynomial of degree n must equal zero.]
As we saw in Sec. 3.1, the preceding equations determine the Taylor form of

pn(z), and according to Eq. (2) of that section the nth-degree polynomial that matches
f, f ′, f ′′, . . . , f (n) at z0 is

pn(z) = f (z0)+ f ′(z0) (z − z0)+ f ′′(z0)

2! (z − z0)
2 + · · · + f (n)(z0)

n! (z − z0)
n .† (1)

Naturally we conjecture that as n tends to infinity, pn(z) becomes a better and
better approximation to f (z) near z0. In fact, the astute reader may have noticed
that pn(z) looks like a partial sum of a series, and so might anticipate that this series
converges to f (z). The precise state of affairs is given in the following definition and
theorem.

Definition 3. If f is analytic at z0, then the series

f (z0)+ f ′(z0) (z − z0)+ f ′′(z0)

2! (z − z0)
2 + · · · =

∞∑
j=0

f ( j)(z0)

j ! (z − z0)
j (2)

is called the Taylor series for f around z0. When z0 = 0, it is also known as the
Maclaurin series for f .

† Actually pn(z) will have degree less than n if f (n)(z0) = 0.
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5.2 Taylor Series 243

Figure 5.2 Uniform convergence in closed subdisks.

Theorem 3. If f is analytic in the disk |z − z0| < R, then the Taylor series (2)
converges to f (z) for all z in this disk. Furthermore, the convergence of the
series is uniform in any closed subdisk |z − z0| ≤ R′ < R.

Proof. Notice that if we prove uniform convergence in every closed subdisk
|z − z0| ≤ R′ < R, we will have pointwise convergence for each z in the open disk
|z − z0| < R (why?); thus we deal only with the closed subdisk statement. Let C
be the circle |z − z0| = (

R + R′)/ 2, positively oriented (see Fig. 5.2). Then by
Cauchy’s integral formula we have, for any z within the closed subdisk,

f (z) = 1

2π i

∫
C

f (ζ )

ζ − z
dζ.

We rewrite the integrand by manipulating (ζ−z)−1 into a form suggesting the geomet-
ric series in powers of (z − z0)/(ζ − z0), which converges since |z − z0|/|ζ − z0| < 1
in Fig. 5.2:

1

ζ − z
= 1

(ζ − z0)− (z − z0)
= 1

1 − z − z0

ζ − z0

· 1

ζ − z0

=

1 + z − z0

ζ − z0
+ (z − z0)

2

(ζ − z0)
2

+ · · · + (z − z0)
n

(ζ − z0)
n +

(z − z0)
n+1

(ζ − z0)
n+1

1 − z − z0

ζ − z0

 1

ζ − z0
,

(3)
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244 Series Representations for Analytic Functions

using identity (2) of Sec. 5.1 with c = (z − z0)
/
(ζ − z0). Putting this into the Cauchy

integral formula we find

f (z) = 1

2π i

∫
C

f (ζ )

ζ − z0
dζ + z − z0

2π i

∫
C

f (ζ )

(ζ − z0)
2

dζ

+ (z − z0)
2

2π i

∫
C

f (ζ )

(ζ − z0)
3

dζ + · · · + (z − z0)
n

2π i

∫
C

f (ζ )

(ζ − z0)
n+1

dζ + Tn(z),

(4)

where Tn(z) can be expressed (with a little algebra) as

Tn(z) = 1

2π i

∫
C

f (ζ )

(ζ − z)

(z − z0)
n+1

(ζ − z0)
n+1

dζ. (5)

Now by Cauchy’s integral formula for derivatives

1

2π i

∫
C

f (ζ )

ζ − z0
dζ = f (z0),

1

2π i

∫
C

f (ζ )

(ζ − z0)
2

dζ = f ′(z0),

1

2π i

∫
C

f (ζ )

(ζ − z0)
3

dζ = f ′′(z0)

2! , etc.,

and so the first n + 1 terms on the right-hand side of Eq. (4) yield the nth partial sum
of the series in (2). Thus Tn(z) is the remainder, and we must show that it can be made
“uniformly small” for all z in the subdisk, by taking n sufficiently large.

This is simply a matter of applying the integral inequality of Chapter 4 (Theorem
5, Sec. 4.2) and being more specific about the ratio |z − z0|/|ζ − z0|. For the terms in
the integrand of Eq. (5) we have

|z − z0| ≤ R′, |ζ − z0| = R + R′

2
,

|z − z0|
|ζ − z0| ≤ 2R′

R + R′ ,

and, from Fig. 5.2,

|ζ − z| ≥ R + R′

2
− R′ = R − R′

2
.

The length of C is 2π(R + R′)
/

2. Thus for z in the subdisk

|Tn(z)| ≤ 1

2π
· max
ζ on C

| f (ζ )| 2

R − R′

(
2R′

R + R′

)n+1

2π

(
R + R′

2

)
.

The right-hand side is independent of z, and since 2R′ < R + R′, it can be made less
than any positive ε by taking n large enough. �

Notice that the theorem implies that the Taylor series will converge to f (z) every-
where inside the largest open disk, centered at z0, over which f is analytic.
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5.2 Taylor Series 245

Example 1
Compute and state the convergence properties of the Taylor series for (a) Log z around
z0 = 1, (b) 1/(1 − z) around z0 = 0, and (c) ez around z0 = 0.

Solution. (a) The consecutive derivatives of Log z are Log z, z−1, −z−2, 2z−3,
−3 · 2z−4, etc.; in general

d j Log z

dz j
= (−1) j+1( j − 1)!z− j ( j = 1, 2, . . .).

Evaluating these at z = 1 we find

Log z = 0 + (z − 1)− (z − 1)2

2! + 2! (z − 1)3

3! − 3! (z − 1)4

4! + · · ·

=
∞∑
j=1

(−1) j+1(z − 1) j

j
.

(6)

This is valid for |z − 1| < 1, the largest open disk centered at +1 over which Log z is
analytic.

(b) The consecutive derivatives of (1 − z)−1 are (1 − z)−1, (1 − z)−2, 2(1 − z)−3,
3 · 2(1 − z)−4, and, in general,

d j

dz j
(1 − z)−1 = j !(1 − z)− j−1.

Evaluating these at z = 0 gives the Taylor series

1

1 − z
= 1 + z + 2!z2

2! + 3!z3

3! + · · · =
∞∑
j=0

z j , (7)

valid for |z| < 1 (why?). Not surprisingly, this is just the geometric series considered
in Lemma 1.

(c) Since
d j ez

dz j
= ez

for all j = 0, 1, . . ., the common value of these derivatives at z = 0 is 1. Thus

ez = 1 + z + z2

2! + z3

3! + · · · =
∞∑
j=0

z j

j ! ,

which is valid for all z because ez is entire. �
Let’s experiment with Eq. (6), the expansion for Log z. If we differentiate the

series term by term, we get

1 − (z − 1)+ (z − 1)2 − (z − 1)3 + · · · =
∞∑
j=0

(1 − z) j , (8)
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246 Series Representations for Analytic Functions

properly incorporating the negative signs. But the series (8) has the same form as the
series in Eq. (7), with (1 − z) in place of z. Thus (8) actually converges to the function
1/[1 − (1 − z)] = 1/z; in other words, by differentiating the series for Log z we
obtained the series for 1/z, which is, in fact, the derivative of Log z. We are led to
conjecture the following.

Theorem 4. If f is analytic at z0, the Taylor series for f ′ around z0 can be
obtained by termwise differentiation of the Taylor series for f around z0 and
converges in the same disk as the series for f .

Proof. The j th derivative of f ′ is, of course, the ( j + 1)st derivative of f . Thus
the Taylor series for f ′ is given by

f ′(z0)+ f ′′(z0) (z − z0)+ f ′′′(z0)

2! (z − z0)
2 + · · · . (9)

On the other hand, termwise differentiation of the Taylor series (2) yields

0 + 1 · f ′(z0)+ 2

2! · f ′′(z0) (z − z0)+ 3

3! · f ′′′(z0) (z − z0)
2 + · · · ,

which is the same as (9). Furthermore, application of Theorem 3 to the function f ′(z)
establishes that (9) converges in the largest open disk around z0 over which f ′ is ana-
lytic. But according to Theorem 16 of Sec. 4.5, f ′ is analytic wherever f is analytic.
This completes the proof. �

Example 2

Find the Maclaurin series for sin z and cos z.

Solution. We expand sin z as usual. The sequence of the derivatives is sin z,
cos z, − sin z, − cos z, sin z, . . . . Evaluating at the origin yields

sin z = z − z3

3! + z5

5! − z7

7! + · · · , (10)

which holds for all z since sin z is entire. To get cos z, we differentiate Eq. (10):

cos z = 1 − z2

2! + z4

4! − z6

6! + · · · . (11)

The reader should by now be able to predict what would result if we differentiate
Eq. (11). �

The next two theorems may sometimes simplify the computation of a Taylor series.
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5.2 Taylor Series 247

Theorem 5. Let f and g be analytic functions with Taylor series f (z) =∑∞
j=0 a j (z − z0)

j and g(z) = ∑∞
j=0 b j (z − z0)

j around the point z0 [that is,

a j = f ( j)(z0)/j ! and b j = g( j)(z0)/j !]. Then

(i) the Taylor series for c f (z), c a constant, is
∑∞

j=0 ca j (z − z0)
j ;

(ii) the Taylor series for f (z)± g(z) is
∑∞

j=0(a j ± b j )(z − z0)
j .

The proof is left as an easy exercise. The disk of convergence for f ± g is, of
course, at least as big as the smaller of the convergence disks for f and g.

Example 3

Find the Maclaurin series for cos z + i sin z.

Solution. Using the expansions (10) and (11) we find

cos z + i sin z = 1 + i z − z2

2! − i z3

3! + z4

4! + i z5

5! − · · · = eiz

for all z. (This validates a computation made in Example 1, Sec. 1.4.) �

Theorem 5 naturally leads us to cogitate the corresponding statement for prod-
ucts. First we must find a sensible way of multiplying two Taylor series. The Cauchy
product of two Taylor series around a point z0 is defined in the manner suggested by
applying the distributive law and then grouping the terms in powers of (z − z0). Thus,
if z0 = 0, we find for the Cauchy product[

a0 + a1z + a2z2 + a3z3 + · · ·
]

·
[
b0 + b1z + b2z2 + b3z3 + · · ·

]
= a0b0 + (a1b0 + a0b1)z + (a2b0 + a1b1 + a0b2)z

2

+ (a3b0 + a2b1 + a1b2 + a0b3)z
3 + · · · . (12)

The coefficient, c j , of z j is therefore given by

c j = a j b0 + a j−1b1 + a j−2b2 + · · · + a1b j−1 + a0b j =
j∑

�=0

a j−�b�. (13)

Definition 4. The Cauchy product of two Taylor series
∑∞

j=0 a j (z − z0)
j and∑∞

j=0 b j (z − z0)
j is defined to be the (formal) series

∑∞
j=0 c j (z − z0)

j , where
c j is given by formula (13).
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Theorem 6. Let f and g be analytic functions with Taylor series f (z) =∑∞
j=0 a j (z − z0)

j and g(z) = ∑∞
j=0 b j (z − z0)

j around the point z0. Then
the Taylor series for the product f g around z0 is given by the Cauchy product of
these two series.

Actually, we anticipated this result in electing to write the Cauchy product in (12)
as if it were an ordinary product. As in Theorem 5, the Taylor series for f g converges
at least in the smaller of the convergence disks for f and g.

Proof of Theorem 6. We compute the consecutive derivatives of the product f g:

( f g)′ = f ′g + f g′,
( f g)′′ = f ′′g + 2 f ′g′ + f g′′,
( f g)′′′ = f ′′′g + 3 f ′′g′ + 3 f ′g′′ + f g′′′,

and, in general, we have Leibniz’s formula for the j th derivative of f g:

( f g)( j) =
j∑

�=0

j ! f ( j−�)

( j − �)! · g(�)

�! , (14)

which we invite the reader to prove in Prob. 10.
On the other hand, if we identify the constants ak and bk in Eq. (13) with their

expressions in terms of derivatives of f and g [e.g., ak = f (k) (z0)
/

k!], we see from
Eq. (14) that ( f g)( j)

/
j ! evaluated at z0 is precisely c j . This completes the proof. �

Example 4
Use the Cauchy product to find the Maclaurin series for sin z · cos z.

Solution. We have(
z − z3

3! + z5

5! − z7

7! + · · ·
)

·
(

1 − z2

2! + z4

4! − z6

6! + · · ·
)

= z −
(

1

3! + 1

2!
)

z3 +
(

1

5! + 1

3!
1

2! + 1

4!
)

z5

−
(

1

7! + 1

5!
1

2! + 1

3!
1

4! + 1

6!
)

z7 + · · · .

It is amusing to try to simplify the coefficients; the reader can verify that

sin z · cos z = z − 4

3! z3 + 16

5! z5 − 64

7! z7 + · · · ,
which, when rewritten as

1

2

[
(2z)− (2z)3

3! + (2z)5

5! − (2z)7

7! + · · ·
]
,
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will be recognized as the Taylor series for 1
2 sinw, with w = 2z. We have reproduced

a well-known trigonometric identity! �

Example 5
Find the first few terms of the Maclaurin series for tan z.

Solution. The expressions for the higher derivatives of tan z are cumbersome,
so let’s try to use the Cauchy product. First observe that cos z · tan z = sin z. Now set
tan z =∑∞

j=0 a j z j for |z| < π/2. (Why π/2?) The product cos z · tan z then becomes(
1 − z2

2! + z4

4! − · · ·
)

·
(

a0 + a1z + a2z2 + a3z3 + a4z4 + a5z5 + · · ·
)

= a0 + a1z +
(

a2 − a0

2!
)

z2 +
(

a3 − a1

2!
)

z3 +
(

a4 − a2

2! + a0

4!
)

z4

+
(

a5 − a3

2! + a1

4!
)

z5 + · · · .

Identifying this with sin z = z − z3
/

3! + z5
/

5! − · · · , we solve recursively and find

a0 = 0, a1 = 1, a2 = 0, a3 = 1

3
, a4 = 0, a5 = 2

15
, etc.

Thus

tan z = z + z3

3
+ 2z5

15
+ · · · .

The shrewd reader will observe that we have actually uncovered an indirect method of
dividing Taylor series! �

In closing this section we would like to point out that the proof of the validity
of the Taylor expansion substantiates the claim, made in Sec. 2.3, that any analytic
function can be displayed with a formula involving z alone, and not z, x , or y.

EXERCISES 5.2

1. Using Definition 3, verify each of the following Taylor expansions by finding a
general formula for f ( j)(z0).

(a) e−z =
∞∑
j=0

(−z) j

j ! = 1 − z + z2

2! − z3

3! + · · · , z0 = 0

(b) cosh z =
∞∑
j=0

z2 j

(2 j)! = 1 + z2

2! + z4

4! + · · · , z0 = 0

(c) sinh z =
∞∑
j=0

z2 j+1

(2 j + 1)! = z + z3

3! + z5

5! + · · · , z0 = 0
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(d)
1

1 − z
=

∞∑
j=0

(z − i) j

(1 − i) j+1
, z0 = i

(e) Log(1 − z) =
∞∑
j=1

−z j

j
, z0 = 0

(f) z3 = 1 + 3(z − 1)+ 3(z − 1)2 + (z − 1)3, z0 = 1

2. Determine the disks over which the Taylor expansions in Prob. 1 are valid.

3. Let f (z) = ∑∞
j=0 a j z j be the Maclaurin expansion of a function f (z) analytic at

the origin. Prove each of the following statements.

(a)
∞∑
j=0

a j z2 j is the Maclaurin expansion of g(z) := f
(
z2
)
.

(b)
∞∑
j=0

a j c j z j is the Maclaurin expansion of h(z) := f (cz).

(c)
∞∑
j=0

a j zm+ j is the Maclaurin expansion of H(z) := zm f (z).

(d)
∞∑
j=0

a j (z − z0)
j is the Taylor expansion of G(z) := f (z − z0) around z0.

4. Let α be a complex number. Show that if (1 + z)α is taken as eα Log(1+z), then for
|z| < 1

(1 + z)α = 1 + α

1
z + α(α − 1)

1 · 2
z2 + α(α − 1)(α − 2)

1 · 2 · 3
z3 + · · · .

[REMARK: This generalizes the binomial theorem.]

5. Find and state the convergence properties of the Taylor series for the following.

(a)
1

1 + z
around z0 = 0 (b) e−z2

around z0 = 0

(c) z3 sin 3z around z0 = 0 (d) 2 cos z − iez around z0 = 0

(e)
1 + z

1 − z
around z0 = i (f) cos z around z0 = π

4

(g)
z

(1 − z)2
around z0 = 0

6. Prove directly that the Taylor expansion of 1/(ζ − z) around z0( �= ζ ) is given by

1

ζ − z
=

∞∑
j=0

(z − z0)
j

(ζ − z0)
j+1

for |z − z0| < |ζ − z0| .

[REMARK: The expansion lies at the heart of the proof of Theorem 3.]
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5.2 Taylor Series 251

7. Verify that the identity

Log

(
1 + z

1 − z

)
= Log(1 + z)− Log(1 − z)

holds when |z| < 1. Then, using the Maclaurin expansions of Log(1 + z) and
Log(1 − z), find the Maclaurin expansion of Log[(1 + z)/(1 − z)].

8. Use Taylor series to verify the following identities.

(a) sin(−z) = − sin z (b)
dez

dz
= ez

(c) e−i z = cos z − i sin z (d) e2z = ez · ez

9. Prove Theorem 5.

10. Prove Leibniz’s formula,† Eq. (14). [HINT: Use mathematical induction.]

11. Using Theorem 6 for computing the product of Taylor series, find the first three
nonzero terms in the Maclaurin expansion of the following.

(a) ez cos z (b)
ez

z − 1

(c) sec z = 1

cos z
(d) tanh z = sinh z

cosh z

12. Prove that the polynomial pn(z) of Eq. (1) is the only polynomial of degree at most
n that matches f, f ′, f ′′, . . . , f (n) at z0.

13. Find an explicit formula for the analytic function f (z) that has the Maclaurin ex-
pansion

∑∞
k=0 k2zk . [HINT: Starting with the expression (1 − z)−1 = ∑∞

k=0 zk ,
differentiate, multiply by z, differentiate again, and finally multiply by z.]

14. Let f (z) be analytic in the disk D : |z − z0| < R. Prove that if f (k)(z0) = 0 for
every k = 0, 1, 2, . . ., then f (z) is identically zero in D.

15. Let f (z) be analytic in the unit disk |z| < 1. Prove that if f ′(0) = f (3)(0) =
f (5)(0) = · · · = 0, then f (−z) = f (z) for all z in this disk. That is, show that f is
an even function.

16. Rewrite the polynomial p(z) = a0 + a1z + · · · + anzn in powers of (z − 1); that is,
find the coefficients ci of the expansion pn(z) = c0 + c1(z − 1)+ · · · + cn(z − 1)n

in terms of the a j . [HINT: Do not rearrange; use Taylor series.]

17. Recall from Exercises 5.1, Prob. 20, that the Taylor series
∑∞

j=0 z j does not con-

verge uniformly to (1 − z)−1 on the open disk D : |z| < 1. Why doesn’t this
contradict Theorem 3?

18. The Taylor series provides a workable method of numerically tabulating the func-
tions of mathematical physics when the remainder term can be estimated. Establish
each of the following error estimates: for |z| ≤ 1,

†Gottfried Wilhelm von Leibniz (1646–1716) practiced law in Mainz, Germany.
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(a)

∣∣∣∣ez −
n∑

k=0

zk

k!
∣∣∣∣ ≤ 1

(n + 1)! ·
(

1 + 1

n + 1

)

(b)

∣∣∣∣∣sin z −
n∑

k=0

(−1)k z2k+1

(2k + 1)!

∣∣∣∣∣ ≤ 1

(2n + 3)!

(
4n2 + 18n + 20

4n2 + 18n + 19

)

[HINT: Write the error as an infinite series, factor out the first term, and then com-
pare with a geometric series.]

19. According to the estimate in Prob. 18(a), how many terms of the expansion
∑∞

k=0 zk/k!
are needed to compute ez to within ±10−5 for |z| ≤ 1?

20. (Hermite Formula) From the proof of Theorem 3 deduce the Hermite† formula for
the remainder in the Maclaurin series for a function f analytic on |z| ≤ R:

f (z)−
n∑

j=0

f ( j)(0)

j ! z j = 1

2π i
�
∫

|ζ |=R

zn+1

ζ n+1

f (ζ )

(ζ − z)
dζ for |z| < R.

5.3 Power Series

A Taylor series for an analytic function appears to be a special instance of a certain
general type of series of the form

∑∞
j=0 a j (z − z0)

j . Such series have a name:

Definition 5. A series of the form
∑∞

j=0 a j (z − z0)
j is called a power series.

The constants a j are the coefficients of the power series.

Suppose that we are presented with an arbitrary power series, such as

∞∑
j=0

z j

( j + 1)2
= 1 + z

4
+ z2

9
+ z3

16
+ · · · . (1)

Certain questions then arise naturally. For what values of z does the series converge? Is
the sum an analytic function? Is the power series representation of a function unique?
In short, is every power series a Taylor series? This section is devoted to answering
these questions.

The issue of convergence is settled by the following result, which smacks of the
Taylor expansion.

†Charles Hermite (1822–1901) published the first proof that e is a transcendental number.
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Theorem 7. For any power series
∑∞

j=0 a j (z − z0)
j there is a real number R

between 0 and ∞, inclusive, which depends only on the coefficients
{
a j
}
, such

that

(i) the series converges for |z − z0| < R,

(ii) the series converges uniformly in any closed subdisk |z − z0| ≤ R′ < R,

(iii) the series diverges for |z − z0| > R.

The number R is called the radius of convergence of the power series.

In particular, when R = 0 the power series converges only at z = z0, and when
R = ∞ the series converges for all z. For 0 < R < ∞, the circle |z − z0| = R is
called the circle of convergence, but no general convergence statement can be made
for z lying on this circle (see Prob. 1). The situation is depicted in Fig. 5.3.

Figure 5.3 Circle of convergence.

Although a rigorous proof of Theorem 7 is deferred to (optional) Sec. 5.4, we can
give an informal argument here that shows why the particular format of a power series
dictates that its region of convergence has to be a disk. The essential ingredient is the
following lemma, which we state for the special case z0 = 0:

Lemma 2. If the power series
∑∞

j=0 a j z j converges at a point having modu-
lus r , then it converges at every point in the disk |z| < r .

Proof of Lemma 2. By hypothesis, there exists a point z1, with |z1| = r , such
that the series

∑∞
j=0 a j z

j
1 converges. This implies that the sequence of terms a j z

j
1 is
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254 Series Representations for Analytic Functions

bounded; that is, there exists a constant M such that∣∣∣a j z
j
1

∣∣∣ = ∣∣a j
∣∣ r j ≤ M (for all j).

Now for |z| < r we can write∣∣∣a j z
j
∣∣∣ = ∣∣a j

∣∣ r j ·
( |z|

r

) j

≤ M

( |z|
r

) j

.

Thus, for |z|/r < 1, the terms of the series
∑∞

j=0 a j z j are dominated by the terms of
a convergent geometric series. By the comparison test, therefore, we conclude that the
series converges. �

To see the existence of the number R in Theorem 7 for the power series
∑∞

j=0 a j z j

we reason informally as follows: Consider the set of all real numbers r such that the
series converges at some point having modulus r . Let R be the “largest”† of these num-
bers r . Then, by Lemma 2, the series converges for |z| < R, and from the definition
of R the series diverges for all z with |z| > R.

If z is replaced by (z − z0) in the preceding argument, we deduce that the region
of convergence of the general power series

∑∞
j=0 a j (z − z0)

j must be a disk with
center z0.

A formula for the radius of convergence R can be given, but we shall postpone it
also until Sec. 5.4. However, in Prob. 2, the ratio test is used to show that in the special
case when

∣∣a j+1
/

a j
∣∣ has a limit as j goes to infinity, R is the reciprocal of this limit.

For example, the coefficients of the power series (1) satisfy

lim
j→∞

∣∣∣∣a j+1

a j

∣∣∣∣ = lim
j→∞

( j + 1)2

( j + 2)2
= 1,

so its circle of convergence is |z| = R = 1
1 = 1.

Uniform convergence [cf. (ii) of Theorem 7] is a powerful feature of a sequence,
as the next three results show. The first says that the uniform limit of continuous
functions is itself continuous.

Lemma 3. Let fn be a sequence of functions continuous on a set T ⊂ C and
converging uniformly to f on T . Then f is also continuous on T .

Proof. To prove that f is continuous at a point z0 of T , we must show that
for any ε > 0 there is a δ > 0 such that if z belongs to T and |z0 − z| < δ,
then | f (z0)− f (z)| < ε. We proceed by first choosing an integer N so large that
| f (z)− fN (z)| < ε/3 for all z in T ; this is possible thanks to uniform convergence.

†More advanced students will recognize that R is precisely defined as the least upper bound of
the numbers r .
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5.3 Power Series 255

Now since fN is continuous, there is a number δ′ > 0 such that | fN (z0)− fN (z)| <
ε/3 for any z in T satisfying |z0 − z| < δ′. But then | f (z0)− f (z)| < ε for such z,
since

| f (z0)− f (z)| = | f (z0)− fN (z0)+ fN (z0)− fN (z)+ fN (z)− f (z)|
≤ | f (z0)− fN (z0)| + | fN (z0)− fN (z)| + | fN (z)− f (z)|
<
ε

3
+ ε

3
+ ε

3
= ε.

Thus f is continuous at every point of T . �

Knowing that the uniform limit of a sequence of continuous functions is continu-
ous, we can integrate this limit. In fact the integral of the limit is the limit of integrals.

Theorem 8. Let fn be a sequence of functions continuous on a set T ⊂ C con-
taining the contour �, and suppose that fn converges uniformly to f on T . Then
the sequence

∫
�

fn(z) dz converges to
∫
�

f (z) dz.

Proof. This is easy. Let � be the length of �, and choose N large enough so that
| f (z)− fn(z)| < ε/� for any n > N and for all z on �. Then∣∣∣∣∫

�

f (z) dz −
∫
�

fn(z) dz

∣∣∣∣ = ∣∣∣∣∫
�

[ f (z)− fn(z)] dz

∣∣∣∣
<
ε

�
· � = ε. �

Combining these results with Morera’s theorem (Theorem 18, Chapter 4), we can
prove the following.

Theorem 9. Let fn be a sequence of functions analytic in a simply connected
domain D and converging uniformly to f in D. Then f is analytic in D.†

Proof. By Lemma 3, the function f is continuous. Let � be any loop contained
in D. Then by Theorem 8, the integral

∫
�

f (z) dz is the limit of
∫
�

fn(z) dz; but the
latter is zero for all n, since each fn is analytic inside and on �. Thus

∫
�

f (z) dz = 0,
and Morera’s result applies. �

Now we have everything we need to render an account of power series. Since the
partial sums of a power series are analytic functions (indeed, polynomials) and since
they converge uniformly in any closed subdisk interior to the circle of convergence,
Theorem 9 tells us that the limit function is analytic inside every such subdisk. But
any point within the circle of convergence lies inside such a subdisk, so we can state
the following.

†In fact this result holds in any domain, since a domain is a union of open disks.
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256 Series Representations for Analytic Functions

Theorem 10. A power series sums to a function that is analytic at every point
inside its circle of convergence.

For example, the power series (1) defines an analytic function for |z| < 1.

Notice that Theorems 7 and 8 justify integrating a power series termwise, as long
as the contour lies inside the circle of convergence. Using this fact, we can identify
every power series (with R > 0) as a Taylor series, in accordance with the next result.

Theorem 11. If
∑∞

j=0 a j (z − z0)
j converges to f (z) in some circular neigh-

borhood of z0 (that is, the radius of its circle of convergence is nonzero), then

a j = f ( j)(z0)

j ! ( j = 0, 1, 2, . . .).

Consequently,
∑∞

j=0 a j (z − z0)
j is the Taylor expansion of f (z) around z0.

Proof. Let C be a positively oriented circle centered at z0 and lying inside the
circle of convergence. Since the limit f (z) is analytic, we can write the generalized
Cauchy integral formula

f (n)(z0) = n!
2π i

∫
C

f (ζ )

(ζ − z0)
n+1

dζ (n = 0, 1, 2, . . .). (2)

Now plug in the series
∞∑
j=0

a j (ζ − z0)
j for f (ζ ) and integrate termwise; since

∫
C

(ζ − z0)
j

(ζ − z0)
n+1

dζ =
{

2π i if j = n,
0 otherwise,

the only term that survives the integration in (2) is n! an . �

At this point we have specified two disks around z0 in which a power series such
as (1) converges. One is the interior of the “circle of convergence” of Theorem 7. The
other is the largest disk over whose interior the limit function f is analytic. Are these
two disks the same? Observe that the “Taylor disk” cannot extend beyond the circle
of convergence because the series is known to diverge outside the latter. On the other
hand, the limit function is analytic inside the circle of convergence, so the Taylor disk
must enclose the interior of this circle. Thus the disks actually do coincide.

Summarizing, we have shown that if a power series converges inside some circle,
it is the Taylor series of its (analytic) limit function and can be integrated and differ-
entiated term by term inside this circle; moreover, this limit function must fail to be
analytic somewhere on the circle of convergence.
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5.3 Power Series 257

Example 1
Find a function f that is analytic and satisfies the differential equation

d f (z)

dz
= 3i f (z) (3)

in a neighborhood of z = 0, taking the value 1 at z = 0.

Solution. Since f is analytic at the origin, it must have a Maclaurin series
representation. We can find this series by using Eq. (3) to compute the derivatives.

We are given f (0) = 1, and from Eq. (3) we have f ′(0) = 3i · 1 = 3i . By
differentiating Eq. (3), we see recursively that

f ′′(0) = 3i f ′(0) = (3i)2,

f ′′′(0) = 3i f ′′(0) = (3i)3,

and, in general,

f ( j)(0) = 3i f ( j−1)(0) = (3i)2 f ( j−2)(0) = · · · = (3i) j .

Thus we can write the solution as

f (z) = 1 + 3i z + (3i)2z2

2! + · · · =
∞∑
j=0

(3i z) j

j ! . (4)

Recalling the representation

ew =
∞∑
j=0

w j

j ! , (5)

we can identify our solution (4) as

f (z) = e3i z .

Indeed, direct computation quickly verifies that e3i z solves the problem. �

The classic initial value problem for the nth-order linear homogeneous differential
equation

dn f

dzn
+ pn−1(z)

dn−1 f

dzn−1
+ · · · + p2(z)

d2 f

dz2
+ p1(z)

d f

dz
+ p0(z) f = 0

is the task of finding a solution that satisfies the initial conditions

f (z0) = a0, f ′ (z0) = a1, f ′′ (z0) = a2, . . . , f (n−1) (z0) = an−1

at some point z0. In advanced differential equation texts (cf. Refs. [3] and [4]), it
is shown that if each of the coefficients p j (z) is analytic inside a disk centered at z0,
then for arbitrary constants {a0, a1, . . . , an−1}, there is one and only one solution of
the initial value problem, and it, too, is analytic inside this disk.
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258 Series Representations for Analytic Functions

Example 2
Let g be a continuous complex-valued function of a real variable on [0, 2], and for
each complex number z define

F(z) :=
∫ 2

0
ezt g(t) dt.

Prove that F is entire, and find its power series around the origin.

Solution. We first find a power series representation for F . Let z be fixed and
define

h(t) := ezt , for all complex numbers t.

Then h is an entire function of t , and so its Maclaurin expansion

h(t) = ezt =
∞∑

k=0

zk

k! · tk = 1 + zt + z2t2

2! + · · ·

converges uniformly on every disk |t | ≤ r ; in particular, the convergence is uniform for
t in the interval [0, 2]. Furthermore, termwise multiplication by the bounded function
g preserves this convergence; that is,

ezt g(t) =
∞∑

k=0

zk

k! · tk g(t)

uniformly for 0 ≤ t ≤ 2 (and fixed z). Now, by Theorem 8, we can integrate term by
term with respect to t to obtain

F(z) =
∫ 2

0
ezt g(t) dt =

∞∑
k=0

[
1

k!
∫ 2

0
tk g(t) dt

]
zk .

Since the bracketed quantity in the series is a constant dependent only on k, the pre-
ceding expansion is a power series in z; moreover, it converges to F(z) for all z. Hence
F is entire by Theorem 10. �

EXERCISES 5.3

1. (a) Prove that the power series
∑∞

j=0 z j converges at no point on its circle of
convergence |z| = 1.

(b) Prove that the power series
∑∞

j=1 z j/j2 converges at every point on its circle
of convergence |z| = 1. [HINT: See Prob. 13 in Exercises 5.1.]

2. Assume for the power series
∑∞

j=0 a j (z − z0)
j we have lim j→∞ |a j+1/a j | = L .

Prove, by the ratio test, that the radius of convergence of the power series is given
by R = 1/L .
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3. Using the results of Prob. 2, find the circle of convergence of each of the following
power series:

(a)
∞∑
j=0

j3z j (b)
∞∑

k=0
2k(z − 1)k (c)

∞∑
j=0

j !z j

(d)
∞∑

k=0

(−1)kk

3k
(z − i)k (e)

∞∑
k=1

(3 − i)k

k2
(z + 2)k (f)

∞∑
j=0

z2 j

4 j

4. Does there exist a power series
∑∞

j=0 a j z j that converges at z = 2+3i and diverges
at z = 3 − i?

5. Let f (z) =
∞∑

k=0

(
k3
/

3k
)

zk . Compute each of the following.

(a) f (6)(0) (b) �
∫

|z|=1

f (z)

z4
dz

(c) �
∫

|z|=1
ez f (z) dz (d) �

∫
|z|=1

f (z) sin z

z2
dz

6. Define

f (z) :=


sin z

z
for z �= 0,

1 for z = 0.

(a) Using the Maclaurin expansion for sin z, show that for all z

f (z) = 1 − z2

3! + z4

5! − z6

7! + · · · .

(b) Explain why f (z) is analytic at the origin.

(c) Find f (3)(0) and f (4)(0).

7. Find the first three nonzero terms in the Maclaurin expansion of f (z) := ∫ z
0 eζ

2
dζ .

[HINT: First expand eζ
2
.]

8. Assume that f (z) is analytic at the origin and that f (0) = f ′(0) = 0. Prove that
f (z) can be written in the form f (z) = z2g(z), where g(z) is analytic at z = 0.

9. Suppose that g is continuous on the circle C : |z| = 1, and that there exists a
sequence of polynomials that converges uniformly to g on C . Prove that

�
∫

C
g(z) dz = 0.

10. Explain why the two power series
∑∞

k=0 ak zk and
∑∞

k=1 kak zk−1 have the same
radius of convergence.
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260 Series Representations for Analytic Functions

11. Let
∑∞

k=0 ak zk and
∑∞

k=0 bk zk be two power series having a positive radius of con-
vergence.

(a) Show that if
∑∞

k=0 ak zk = ∑∞
k=0 bk zk in some circular neighborhood of the

origin, then ak = bk for all k.

(b) Show, more generally, that if
∑∞

k=0 ak xk = ∑∞
k=0 bk xk for all real x in some

open interval containing the origin, then ak = bk for all k.

12. Prove by means of power series that the only solution of the initial-value problem
d f

dz
= f

f (0) = 1

that is analytic at z = 0 is f (z) = ez .

13. Each of the following initial-value problems has a unique solution that is analytic at
the origin. Find the power series expansion

∑∞
j=0 a j z j of the solution by determin-

ing a recurrence relation for the coefficients a j .

(a)


d2 f

dz2
− z

d f

dz
− f = 0

f (0) = 1, f ′(0) = 0

(b)


d2 f

dz2
+ 4 f = 0

f (0) = 1, f ′(0) = 1

(c)


(
1 − z2

) d2 f

dz2
− 6z

d f

dz
− 4 f = 0

f (0) = 1, f ′(0) = 0

[HINT: The technique demonstrated in Example 1 becomes laborious for more com-
plicated equations such as (c). It is more efficient to substitute the power series
expression for f (z) into the equation and collect like powers of z.]

14. Prove by means of power series that the only solution of the initial-value problem
d2 f

dz2
+ f = 0

f (0) = 0, f ′(0) = 1

that is analytic at z = 0 is f (z) = sin z.

15. Let g be continuous on the real interval [−1, 2], and define

F(z) :=
∫ 2

−1
g(t) sin(zt) dt.

(a) Prove that F is entire and find its power series expansion around the origin.
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(b) Prove that for all z

F ′(z) =
∫ 2

−1
tg(t) cos(zt) dt.

16. Let g be continuous on the real interval [0, 1] and define

H(z) :=
∫ 1

0

g(t)

1 − zt2
dt (|z| < 1).

Prove that H is analytic in the open disk |z| < 1.

17. Define
(a) j := a(a + 1) · · · (a + j − 1), j ≥ 1, (a)0 := 1,

for any complex number a. The Gaussian hypergeometric series 2 F1(b, c; d; z) is
defined by

2 F1(b, c; d; z) :=
∞∑
j=0

(b) j (c) j

(d) j
· z j

j ! ,

and the confluent hypergeometric series 1 F1(c; d; z) is given by

1 F1(c; d; z) :=
∞∑
j=0

(c) j

(d) j
· z j

j ! .

(a) Verify that

∞∑
j=0

z j

j + 1
= 2 F1(1, 1; 2; z),

ez −
n−1∑
k=0

zk

k! = zn

n! 1 F1(1; n + 1; z) (n = 1, 2, . . .).

(b) Prove that if d �= 0,−1,−2, . . ., then the series 2 F1(b, c; d; z) converges for
|z| < 1 and satisfies the differential equation

z(1 − z)
d2 f

dz2
+ [d − (b + c + 1)z]d f

dz
− bc f = 0.

(c) Prove that if d �= 0,−1,−2, . . ., then the series 1 F1(c; d; z) converges for all
z and satisfies the differential equation

z
d2 f

dz2
+ (d − z)

d f

dz
− c f = 0.

18. (Generalized L’Hôpital’s Rule). Use power series to prove that if f , g are both
analytic at z0 and

f (z0) = g (z0) = f ′ (z0) = g′ (z0) = · · · = f (m−1) (z0) = g(m−1) (z0) = 0

but g(m) (z0) �= 0, then

lim
z→z0

f (z)

g(z)
= f (m) (z0)

g(m) (z0)
.
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19. (Area Integral Formula). By completing the steps below, prove the following area
integral representation formula for any function f analytic on the closed unit disk
�D = {z : |z| ≤ 1}. For |ζ | < 1,

f (ζ ) = 1

π

∫ ∫
�D

f (z)

(1 − z̄ζ )2
dx dy, z = x + iy.

(a) Show that ∫ ∫
�D

z j z̄kdx dy =

π/(k + 1) if j = k,

0 if j �= k.

[HINT: dx dy = r dr dθ .]

(b) Use part (a) to verify that the Maclaurin series coefficients ak = f (k)(0)/k!
of the function f satisfy

ak = k + 1

π

∫ ∫
�D

f (z)z̄kdx dy, k = 0, 1, . . . .

(c) Use part (b) to prove the area integral representation formula given above for
f (z). [HINT: (1 − z̄ζ )−2 =∑∞

k=0(k + 1)z̄kζ k, |ζ | < 1, |z| ≤ 1.]

5.4 *Mathematical Theory of Convergence

In this section we shall backtrack somewhat and provide the mathematical details of
the unproved theorems of this chapter. Applications-oriented students may wish to
skip ahead to Sec. 5.5.

So far all the conditions we have seen for convergence of a sequence involve the
limit explicitly. However, there is a way of testing whether or not a sequence is con-
vergent without mentioning a limit at all. It is known as the Cauchy criterion for
convergence.

Theorem 12. A necessary and sufficient condition for the sequence of complex
numbers {An}∞n=1 to converge is the following: For any ε > 0 there exists an
integer N such that |An − Am | < ε for every pair of integers m and n satisfying
m > N , n > N .

Proof. (Necessity). If the sequence does converge, say to A, we choose N so
that each A� is within ε/2 of A for � > N . Then any two such A� must lie within ε of
each other.

The proof that the Cauchy criterion is sufficient for convergence requires a rigor-
ous axiomatization for the real number system; indeed, the criterion can be used to
define the concept of an irrational real number. We shall not explore this here. �

A sequence that satisfies the Cauchy criterion is often called a Cauchy sequence.
By Theorem 12, every convergent sequence is a Cauchy sequence and vice versa.
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5.4 *Mathematical Theory of Convergence 263

Corollary 1. If {An}∞n=1 is a Cauchy sequence and N is chosen so that
|An − Am | < ε for every m and n greater than N , then each An with n > N
is within ε of the limit.

Proof. Let m → ∞ in the inequality |An − Am | < ε. The result is

|An − A| ≤ ε. �

The Cauchy criterion, applied to the sequence of partial sums of a series, reads as
follows:

Corollary 2. A necessary and sufficient condition for the series
∑∞

j=0 c j to
converge is the following: For any ε > 0 there exists an N such that
|∑m

j=n+1 c j | < ε for every pair of integers m and n satisfying m > n > N .

The proof is immediate. Such a series is (naturally) called a Cauchy series. Corol-
lary 2 justifies the following, almost obvious, result: If

∑∞
j=0 c j converges, then

c j → 0 as j → ∞.
With the Cauchy criterion in hand we can give a proof of the comparison test,

Theorem 1 of this chapter. However, it takes only a little more effort to prove the
following, more general, theorem, known as the Weierstrass M-test:

Theorem 13 (M-test). Suppose
∑∞

j=0 M j is a convergent series with real non-
negative terms and suppose, for all z in some set T and for all j greater than some
number J , that

∣∣ f j (z)
∣∣ ≤ M j . Then the series

∑∞
j=0 f j (z) converges uniformly

on T .

Proof. Since
∑∞

j=0 M j is a Cauchy series, we can choose N > J so that for
any m and n satisfying m > n > N we have

∑m
j=n+1 M j < ε. But then for z in T ,

the series
∑∞

j=0 f j (z) is a Cauchy series also, because∣∣∣∣∣∣
m∑

j=n+1

f j (z)

∣∣∣∣∣∣ ≤
m∑

j=n+1

∣∣ f j (z)
∣∣ ≤ m∑

j=n+1

M j < ε. (1)

Hence
∑∞

j=0 f j (z) converges for each z in T , say to the function F(z). It is easy to
see that the convergence is uniform; observe that the inequality (1) can be rewritten in
terms of the partial sums as∣∣∣∣∣∣

m∑
j=0

f j (z)−
n∑

j=0

f j (z)

∣∣∣∣∣∣ < ε, for all z in T , and m > n > N .
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Therefore, by Corollary 1,∣∣∣∣∣∣F(z)−
n∑

j=0

f j (z)

∣∣∣∣∣∣ ≤ ε, for all z in T , and n > N .

This proves uniform convergence. �

The comparison test can be regarded as a special case of the M-test wherein each
f j (z) is a constant function.

Now we are ready to analyze Theorem 7 of the previous section, specifying the
convergence properties of power series. For convenience, we restate the theorem here.

Theorem 7. For any power series
∑∞

j=0 a j (z − z0)
j there is a real number R

between 0 and ∞, inclusive, which depends only on the coefficients
{
a j
}
, such

that

(i) the series converges for |z − z0| < R,

(ii) the series converges uniformly in any closed subdisk |z − z0| ≤ R′ < R,

(iii) the series diverges for |z − z0| > R.

To specify this number R, we must introduce the concept of the upper limit of an
infinite sequence of real numbers; it generalizes the notion of limit. For motivation,
let us first consider a convergent sequence of real numbers {xn}, with limit x . Then for
any ε > 0 there is an N such that all the elements xn for n > N will lie within ε of
x . So, in particular, x has the following property: Given any ε > 0, for only a finite
number of values of n does xn exceed x + ε. Moreover, no number less than x has this
property. We now extend this notion to arbitrary sequences.

Definition 6. The upper limit of a sequence of real numbers {xn}∞n=1, abbrevi-
ated lim sup xn , is defined to be the smallest real number � with the property that
for any ε > 0 there are only a finite number of values of n such that xn exceeds
� + ε; if there are no such numbers with this property, we set lim sup xn := ∞;
if all real numbers have this property we set lim sup xn := −∞.

As we indicated before, if {xn} converges to x , then lim sup xn = x . Other exam-
ples are lim sup (−1)n = 1, lim sup (n) = ∞, and lim sup (−n) = −∞.

The number R in Theorem 7 is now specified as follows. From the set of coef-
ficients

{
a j
}

we form the sequence n
√|an|. Then R is equal to the reciprocal of the
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5.4 *Mathematical Theory of Convergence 265

upper limit of this sequence,

R = 1

lim sup n
√|an| , (2)

with the usual conventions 1/0 = ∞, 1/∞ = 0. Equation (2) is known as the Cauchy-
Hadamard formula. Starting with this formula, let’s address Theorem 7.

Proof of Theorem 7. First we consider the convergence statements (i) and (ii). If
R = 0, there is nothing to prove. When R > 0, the convergence for |z − z0| < R
follows from the uniform convergence in all closed subdisks |z − z0| ≤ R′ < R, so
we attack the latter problem.

Choose a number k in the interval

1

R
< k <

1

R′ .

Then because of Eq. (2), all but a finite number of the a j will satisfy j
√|a j | < k.

Consequently, if z lies in the closed subdisk |z − z0| ≤ R′, we have the inequality∣∣∣a j (z − z0)
j
∣∣∣ = ( j

√∣∣a j
∣∣ |z − z0|

) j

<
(
k R′) j

, (3)

valid for j sufficiently large. But inequality (3) tells us that the M-test (Theorem 13) is
satisfied when we compare

∑∞
j=0 a j (z − z0)

j to the geometric series
∑∞

j=0

(
k R′) j ,

which converges since k R′ < 1. Accordingly,
∑∞

j=0 a j (z − z0)
j is uniformly conver-

gent in the closed subdisk and statement (ii) is proved.
To prove divergence when |z − z0| > R, we choose k in the interval

1

|z − z0| < k <
1

R
.

Then it follows from the definition of lim sup and Eq. (2) that there must be an infinite
number of a j satisfying j

√|a j | > k (remember that the lim sup is the smallest number
such that so-and-so). For such a j∣∣∣a j (z − z0)

j
∣∣∣ = ( j

√∣∣a j
∣∣ |z − z0|

) j

> (k |z − z0|) j > 1;

that is, an infinite number of the terms of
∑∞

j=0 a j (z − z0)
j exceed 1 in modulus.

This is clearly incompatible with the Cauchy criterion, so the series must diverge. �

In the next example we shall make use of the following lemma.

Lemma 4. Limn→∞ n
√

n! = ∞.
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266 Series Representations for Analytic Functions

Proof of Lemma 4. It is not hard to see that, given any positive integer B, the
factorial n! exceeds Bn when n is sufficiently large; we simply presume n > 2B and
examine the ratio

n!
Bn

= (2B)!
B2B

(2B + 1)

B

(2B + 2)

B
· · · n

B
>
(2B)!
B2B

2n−2B ,

which exceeds 1 whenever 2n exceeds 22B B2B/[(2B)!]. Taking nth roots we conclude
that n

√
n! approaches infinity, because it eventually exceeds any integer B. �

Example 1
Show that the Bessel function of the first kind of order zero†

J0(z) :=
∞∑
j=0

(−1) j z2 j

22 j ( j !)2 (4)

is entire.

Solution. Our goal is to prove that R = ∞. Keeping in mind that a j is the
coefficient of z j , we have

a j =


0 if j is odd,

(−1) j/2

2 j [( j/2)!]2
if j is even.

Obviously j
√|a j | = 0 for odd j . For even j ,

j
√∣∣a j

∣∣ = 1

2[( j/2)!]2/j
,

and Lemma 4 shows that this goes to zero. Hence lim sup j
√|a j | = 0, and R = ∞.

Consequently J0(z) is an entire function. �
The reader should verify (Prob. 7) that J0(z) satisfies Bessel’s equation of order

zero:
d2 f

dz2
+ 1

z

d f

dz
+ f = 0.

EXERCISES 5.4

1. Find the upper limit of each of the following sequences {xn}∞n=1.

(a) xn = (−1)n
(

2n

n + 1

)
(b) xn = (−1)nn

(c) xn = 1

n2
(d) xn = n sin

(nπ

2

)
†Friedrich Wilhelm Bessel (1784–1846) worked principally as an astronomer in Konigsberg.
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5.4 *Mathematical Theory of Convergence 267

2. Prove that for any sequence {xn} of positive real numbers

lim sup n
√

xn ≤ lim sup
xn+1

xn
.

3. Find the radius of convergence of each of the following power series.

(a)
∞∑
j=1

2 j

3 j + 4 j
z j (b)

∞∑
j=0

2 j z j2
(c)

∞∑
j=0

[
2 + (−1) j

] j
z j

(d)
∞∑
j=1

j !
j j

z j (e)
∞∑
j=1

2

3 j
z2 j (f)

∞∑
j=0

z j !

4. By considering the series
∑∞

j=1 z j/j2,
∑∞

j=1 z j/j , and
∑∞

j=0 z j , show that a power
series may converge on all, some, or none of the points on its circle of convergence.

5. If the radius of convergence for the series
∑∞

j=0 a j z j is R, find the radius of con-
vergence for the following.

(a)
∞∑
j=0

j3a j z j (b)
∞∑
j=0

a4
j z j (c)

∞∑
j=0

a j z2 j

(d)
∞∑
j=0

a j z j+7 (e)
∞∑
j=1

j− j a j z j

6. Prove that if the radius of convergence for the series
∑∞

j=0 a j z j is R, then the radius

of convergence for the series
∑∞

j=0 Re(a j )z j is greater than or equal to R.

7. Show that the Bessel function J0(z) satisfies Bessel’s equation of order zero (as
claimed after Example 1).

8. Bessel’s equation of order n is

d2 f (z)

dz2
+ 1

z

d f (z)

dz
+
(

1 − n2

z2

)
f (z) = 0.

Show that, for integers n > 0, the Bessel function of the first kind of order n

Jn(z) =
∞∑
j=0

(−1) j

j !(n + j)! ·
( z

2

)2 j+n

is entire and satisfies the Bessel equation. (Bessel functions arise in the study of
two-dimensional wave propagation in radial directions.)

9. Use power series to solve the functional equation

f (z) = z + f (z2)

for the analytic function f .
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10. The Fibonacci sequence† 1, 1, 2, 3, 5, 8, 13, . . . arises with surprising frequency in
natural phenomena. The defining relations for the terms are

a0 = a1 = 1,

an = an−1 + an−2 (for n ≥ 2) .

Show that
f (z) := a0 + a1z + a2z2 + · · ·

defines an analytic function satisfying the equation

f (z) = 1 + z f (z)+ z2 f (z).

Solve for f (z) and compute the Maclaurin series to derive the expression

a j = 1√
5

(1 + √
5

2

) j+1

−
(

1 − √
5

2

) j+1
 .

11. The Legendre polynomials‡ Pj (ζ ) are the coefficients of z j in the Maclaurin series
for (

1 − 2ζ z + z2
)−1/2 =

∞∑
j=0

Pj (ζ )z
j

(regarding ζ as a parameter). Show that Pj (ζ ) is a polynomial in ζ of degree j ,
and compute P0, P1, P2, and P3. (These polynomials arise in three-dimensional
potential theory.)

12. The Riemann zeta function has important applications to number theory. It is defined
by

ζ(z) :=
∞∑
j=1

1

j z
(Re z > 1)

where j z := exp(z Log j). Prove that ζ(z) is analytic for Re z > 1. [HINT: Let
Re z ≥ λ > 1, and show that

∣∣1/ j z
∣∣ ≤ j−λ. Then use the Weierstrass M-test.]

(One of the most famous problems whose solution still eludes mathematicians is the
Riemann hypothesis. It asserts that all the nonreal zeros of the analytic continuation
(cf. Sec. 5.8) of ζ(z) lie on the vertical line Re z = 1/2.)

13. (Abel’s Limit Theorem) Let
∑∞

j=0 a j z j be the power series expansion for a function

f analytic in |z| < 1 (so that f (z) = ∑∞
j=0 a j z j for |z| < 1). Suppose that

limr→1− f (r) (with r real) exists and equals A. Prove that if
∑∞

j=0 a j converges,
then

A =
∞∑
j=0

a j .

†Fibonacci was the nickname of Leonardo Pisano (1170–1250), who introduced the Hindu-
Arabic place-valued decimal system to Europe.

‡Adrien-Marie Legendre (1752–1833) discovered these polynomials while analyzing the gravita-
tional attraction of ellipsoids.
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[HINT: Set Mn := max
j≥n

∣∣∣∣∣ ∞∑
k= j

ak

∣∣∣∣∣. Then Mn → 0 as n → ∞ and for 0 ≤ r < 1

∣∣∣∣∣∣ f (r)−
n∑

j=0

a jr
j

∣∣∣∣∣∣ =
∣∣∣∣∣∣

∞∑
j=n+1

a jr
j

∣∣∣∣∣∣ =
∣∣∣∣∣∣

∞∑
j=n+1

 ∞∑
k= j

ak −
∞∑

k= j+1

ak

 r j

∣∣∣∣∣∣
=
∣∣∣∣∣∣
 ∞∑

k=n+1

ak

 rn+1 +
∞∑

j=n+2

 ∞∑
k= j

ak

 r j−1(r − 1)

∣∣∣∣∣∣
≤ Mn+1 + Mn+2.

Now let r → 1− and then n → ∞.]

14. Use Abel’s limit theorem (Prob. 13) to prove that

Log 2 = 1 − 1

2
+ 1

3
− 1

4
+ · · · .

5.5 Laurent Series

We now wish to investigate the possibility of a series representation of a function f
near a singularity.† After all, if (for example) the occurrence of a singularity is merely
due to a vanishing denominator, might it not be possible to express the function as
something like A

/
(z − z0)

p +g(z), where g is analytic and has a Taylor series around
z0? To be sure, not all singularities are of this type (recall Log z at z0 = 0). However,
if the function is analytic in an annulus surrounding one or more of its singularities
(note that Log z does not have this property, due to its branch cut), we can display its
“singular part” according to the following theorem.

Theorem 14. Let f be analytic in the annulus‡r < |z − z0| < R. Then f can
be expressed there as the sum of two series

f (z) =
∞∑
j=0

a j (z − z0)
j +

∞∑
j=1

a− j (z − z0)
− j ,

both series converging in the annulus, and converging uniformly in any closed
subannulus r < ρ1 ≤ |z − z0| ≤ ρ2 < R. The coefficients a j are given by

a j = 1

2π i
�
∫
C

f (ζ )

(ζ − z0)
j+1

dζ ( j = 0,±1,±2, . . .), (1)

†Recall from Sec. 2.3 that a singularity of f is a point z0 where f is not analytic but that is the
limit of points where f is analytic.

‡We allow r = 0, in which case the “annulus” becomes a punctured disk.
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where C is any positively oriented simple closed contour lying in the annulus
and containing z0 in its interior.

Such an expansion, containing negative as well as positive powers of (z − z0), is
called the Laurent series† for f in this annulus. It is usually abbreviated

∞∑
j=−∞

a j (z − z0)
j .

Notice that if f is analytic throughout the disk |z − z0| < R, the coefficients in (1)
with negative subscripts are zero by Cauchy’s theorem, and the others reproduce the
Taylor series for f .

Proof of Theorem 14. It suffices to prove uniform convergence in every closed
subannulus, for this implies (pointwise) convergence in the open annulus.

First we show that for any z satisfying r < ρ1 ≤ |z − z0| ≤ ρ2 < R we have the
representation

f (z) = 1

2π i
�
∫

C1

f (ζ )

ζ − z
dζ + 1

2π i
�
∫

C2

f (ζ )

ζ − z
dζ, (2)

where C1 is the negatively oriented circle around z0 of radius R1 = (r + ρ1)/2, and
C2 is the positively oriented circle around z0 of radius R2 = (R + ρ2)/2; see Fig. 5.4.
Indeed, Eq. (2) is just a slight variation of the Cauchy integral formula in this case,
as the following argument shows. Consider the contour � of Fig. 5.5(a); it is simple,
closed, positively oriented, and contains z in its interior. Therefore,

f (z) = 1

2π i

∫
�

f (ζ )

ζ − z
dζ. (3)

Let’s think of � as a doughnut with a bite taken out of it, and let �′ denote the “bite,”
as in Fig. 5.5(b). Observe that

1

2π i

∫
�′

f (ζ )

ζ − z
dζ = 0

because the integrand is analytic inside and on �′. Consequently we can put the “bite”
back into the doughnut and modify Eq. (3) to read

f (z) = 1

2π i

∫
�+�′

f (ζ )

ζ − z
dζ,

where � + �′ is the path indicated in Fig. 5.5(c). But the integrals along the line seg-
ments in Fig. 5.5(c) cancel and, keeping track of the orientation, we arrive at Eq. (2).‡

Now we are ready to proceed with the derivation of the Laurent expansion.

†Pierre Alphonse Laurent (1813–1854) was an engineer responsible for the port of Le Havre.
‡Some readers may be able to use a deformation-of-contour argument to derive Eq. (2), but the

doughnut analogy is probably easier to digest.
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5.5 Laurent Series 271

Figure 5.4 Circles of integration for Eq. (2).

Figure 5.5 The hole equals the sum of its parts.

Since z lies inside C2, the integral over C2 appearing in Eq. (2) is exactly like the
integral that arose in the Taylor series theorem (Theorem 3, Sec. 5.2); we treat it the
same way, and find

1

2π i
�
∫

C2

f (ζ )

ζ − z
dζ =

n∑
j=0

a j (z − z0)
j + Tn(z),

where Tn(z) → 0 uniformly as n → ∞ for |z − z0| ≤ ρ2 and a j is given by

a j = 1

2π i
�
∫

C2

f (ζ )

(ζ − z0)
j+1

dζ ( j = 0, 1, 2, . . .). (4)

Hence
1

2π i
�
∫

C2

f (ζ )

ζ − z
dζ =

∞∑
j=0

a j (z − z0)
j (|z − z0| ≤ ρ2) .

Note, however, that a j in (4) can no longer be identified as f ( j)(z0)/j !, as was the
case in the Taylor theorem. Indeed, our hypotheses contain no guarantee that f is
differentiable at z0.
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We now turn to the integral around C1 in Eq. (2). Since z lies outside C1, we seek
an expression for 1/(ζ − z) in powers of (ζ − z0)

/
(z − z0), whose magnitude is less

than 1; accordingly, we write

1

ζ − z
= 1

(ζ − z0)− (z − z0)
= − 1

(z − z0)

1

1 − ζ−z0
z−z0

= − 1

z − z0

1 + ζ − z0

z − z0
+ (ζ − z0)

2

(z − z0)
2

+ · · · + (ζ − z0)
m

(z − z0)
m +

(ζ−z0)
m+1

(z−z0)
m+1

1 − ζ−z0
z−z0

 .
Inserting this into the integral, we find

1

2π i
�
∫

C1

f (ζ )

ζ − z
dζ =

m+1∑
j=1

a− j (z − z0)
− j + Tm(z),

where we identify

a− j = − 1

2π i
�
∫

C1

f (ζ )

(ζ − z0)
− j+1

dζ ( j = 1, 2, 3, . . .) (5)

(observe the exponent with care) and

Tm(z) = 1

2π i
�
∫

C1

f (ζ )

(ζ − z)

(ζ − z0)
m+1

(z − z0)
m+1

dζ.

Now for ζ on C1 we have |ζ − z| ≥ ρ1 − R1, |ζ − z0| = R1, and |z − z0| ≥ ρ1 (see
Fig. 5.4). Thus

|Tm(z)| ≤ 1

2π
· max
ζ on C1

| f (ζ )| 1

ρ1 − R1

(
R1

ρ1

)m+1

2πR1.

Since R1
/
ρ1 < 1, Tm(z) → 0 uniformly for |z − z0| ≥ ρ1, and so

1

2π i
�
∫

C1

f (ζ )

ζ − z
dζ =

∞∑
j=1

a− j (z − z0)
− j (|z − z0| ≥ ρ1) .

We have thus expressed both integrals in Eq. (2) as uniformly convergent se-
ries of the form mentioned in the theorem with the common region of convergence
ρ1 ≤ |z − z0| ≤ ρ2; we still have to verify formula (1) for the coefficients. If j is
nonnegative, formula (4) applies, but the analysis of Chapter 4 justifies replacing the
integral over C2 by the integral over the contour C mentioned in the theorem, since
the intervening region contains no singularities of f (ζ )/(ζ − z0)

j+1; hence Eq. (1)
holds for j ≥ 0. Similarly, the integral over C1 in formula (5) can be changed into an
integral over C , incorporating the minus sign to account for the change in orientation.
Therefore (1) is verified for every j . �
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Replacing (z − z0) with 1/(z − z0) in Theorem 7, one easily sees that any for-
mal series of the form

∑∞
j=1 c− j (z − z0)

− j will converge outside some “circle of
convergence” |z − z0| = r whose radius depends on the coefficients, with uniform
convergence holding in each region |z − z0| ≥ r ′ > r . Thus termwise integration is
justified by Theorem 8, and proceeding in a manner analogous to that of Sec. 5.3 we
can prove the following.

Theorem 15. Let
∑∞

j=0 c j (z − z0)
j and

∑∞
j=1 c− j (z − z0)

− j be any two se-
ries with the following properties:

(i)
∞∑
j=0

c j (z − z0)
j converges for |z − z0| < R,

(ii)
∞∑
j=1

c− j (z − z0)
− j converges for |z − z0| > r , and

(iii) r < R.

Then there is a function f (z), analytic for r < |z − z0| < R, whose Laurent
series in this annulus is given by

∑∞
j=−∞ c j (z − z0)

j .

The proof is left to the exercises (Prob. 8).
This theorem, like Theorem 7, justifies the use of other methods of finding Laurent

series since it implies that any convergent series of the form
∑∞

j=−∞ c j (z − z0)
j ,

however obtained, must be the Laurent series of its sum function. In Examples 1
and 2 we shall derive Laurent expansions by making judicious use of the fact that the
geometric series

∑∞
j=0w

j converges to (1 − w)−1 when |w| < 1.

Example 1
Find the Laurent series for the function (z2 −2z +3)/(z −2) in the region |z −1| > 1.

Solution. Notice that this region is centered at z0 = 1 and excludes the singular-
ity at z = 2. First we manipulate 1/(z − 2) so that we can apply the geometric series
result in the specified region:

1

z − 2
= 1

(z − 1)− 1
= 1

z − 1
· 1

1 − 1/(z − 1)
.

Thus for |z − 1| > 1,

1

z − 2
= 1

z − 1
·

∞∑
j=0

1

(z − 1) j

= 1

z − 1
+ 1

(z − 1)2
+ 1

(z − 1)3
+ · · · .
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Using the methods of Sec. 3.1 we express the numerator z2 −2z +3 in powers of z −1:

z2 − 2z + 3 = (z − 1)2 + 0 · (z − 1)+ 2 = (z − 1)2 + 2.

Therefore,

z2 − 2z + 3

z − 2
=
[
(z − 1)2 + 2

]
·
[

1

z − 1
+ 1

(z − 1)2
+ 1

(z − 1)3
+ · · ·

]
=
[
(z − 1)+ 1 + 1

(z − 1)
+ 1

(z − 1)2
+ · · ·

]
+
[

2

(z − 1)
+ 2

(z − 1)2
+ · · ·

]
= (z − 1)+ 1 +

∞∑
j=1

3

(z − 1) j
. �

Example 2
For the function

1

(z − 1)(z − 2)
,

find the Laurent series expansion in

(a) the region |z| < 1,

(b) the region 1 < |z| < 2,

(c) the region |z| > 2.

Solution. Again using partial fractions, write

1

(z − 1)(z − 2)
= 1

z − 2
− 1

z − 1
.

Now we proceed differently in each region in order to derive convergent series.

(a) For |z| < 1,

1

z − 2
= −1

2

1

1 − z/2
= −1

2

∞∑
j=0

( z

2

) j = −
∞∑
j=0

z j

2 j+1
(6)

and
1

z − 1
= − 1

1 − z
= −

∞∑
j=0

z j . (7)

Subtracting Eq. (7) from Eq. (6) gives

1

(z − 1)(z − 2)
=

∞∑
j=0

(
− 1

2 j+1
+ 1

)
z j = 1

2
+ 3

4
z + 7

8
z2 + · · · .
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(b) For 1 < |z| < 2, Eq. (6) is still valid, but we have

1

z − 1
= 1

z

1

1 − 1/z
= 1

z

∞∑
j=0

1

z j
=

∞∑
j=0

1

z j+1
. (8)

Thus

1

(z − 1)(z − 2)
= −

∞∑
j=0

z j

2 j+1
−

∞∑
j=0

1

z j+1
= · · · − 1

z2
− 1

z
− 1

2
− z

4
− · · · .

(c) For |z| > 2, Eq. (8) is still valid and

1

z − 2
= 1

z

1

1 − 2/z
= 1

z

∞∑
j=0

(
2

z

) j

=
∞∑
j=0

2 j

z j+1
.

Hence

1

(z − 1)(z − 2)
=

∞∑
j=0

2 j − 1

z j+1
= 1

z2
+ 3

z3
+ 7

z4
+ · · · . �

Example 3
Expand e1/z in a Laurent series around z = 0.

Solution. As we already know,

ew = 1 + w + w2

2! + w3

3! + · · ·
for all (finite) w. Thus if z �= 0, we let w = 1/z and find

e1/z = 1 + 1

z
+ 1

2!z2
+ 1

3!z3
+ · · · . � (9)

Example 4
What is the Laurent expansion around z = 0 for the function

f (z) =
{

sin z if z �= 0,
5 if z = 0?

Solution. The alert reader, upon seeing this example, will undoubtedly accuse
the authors of toying with trifles—and with good reason! The function f is simply
defined “incorrectly” at z = 0 in order to make a point. We ask, however, that the
audience bear with us, because this example will be useful in the next section.

Observe that f satisfies the hypothesis of Theorem 14, so it does have a Laurent
series, valid for |z| > 0. But for such z we have [recall Eq. (10), Sec. 5.2]

f (z) = sin z = z − z3

3! + z5

5! − · · · (|z| > 0). (10)

Therefore, Eq. (10) must be the Laurent expansion for f . �
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EXERCISES 5.5

1. Find the Laurent series for the function 1/(z + z2) in each of the following domains:

(a) 0 < |z| < 1 (b) 1 < |z|
(c) 0 < |z + 1| < 1 (d) 1 < |z + 1|

2. Does the principal branch
√

z have a Laurent series expansion in the domain C�{0}?
3. Find the Laurent series for the function

z

(z + 1)(z − 2)
in each of the following

domains.

(a) |z| < 1 (b) 1 < |z| < 2 (c) 2 < |z|
4. Find the Laurent series for (sin 2z)/z3 in |z| > 0.

5. Find the Laurent series for
(z + 1)

z(z − 4)3
in 0 < |z − 4| < 4.

6. Find the Laurent series for z2 cos

(
1

3z

)
in |z| > 0.

7. Obtain the first few terms of the Laurent series for each of the following functions
in the specified domains.

(a)
e1/z

z2 − 1
for |z| > 1 (b)

1

ez − 1
for 0 < |z| < 2π

(c) csc z for 0 < |z| < π (d) 1
/

e(1−z) for 1 < |z|
8. Give a proof of Theorem 15.

9. Determine the annulus of convergence of the Laurent series

∞∑
j=−∞

z j

2| j | .

10. Prove that the Laurent series expansion of the function

f (z) = exp

[
λ

2

(
z − 1

z

)]
in |z| > 0 is given by

∞∑
k=−∞

Jk(λ)z
k,

where

Jk(λ) = (−1)k J−k(λ) := 1

2π

2π∫
0

cos(kθ − λ sin θ) dθ.
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The Jk(λ) are known as Bessel functions of the first kind of order k.† [HINT: Use
the integral formula (1) with C : |z| = 1.]

11. Obtain a general formula for the Laurent expansion of

fn(z) = 1

(z − α)n
(n = 1, 2, . . .)

that is valid for |z| > |α|.
12. Prove that if f (z) has a Laurent series expansion of the form

∑∞
j=0 a j z j in

0 < |z| < ρ, then limz→0 f (z) exists.

13. Let f (z) be analytic in the annulus r < |z − z0| < R and bounded by M there.
Prove that the coefficients a j of the Laurent expansion of f (z) in the annulus satisfy∣∣a j

∣∣ ≤ M

R j
,

∣∣a− j
∣∣ ≤ Mr j (for j = 0, 1, 2, . . .).

5.6 Zeros and Singularities

In this section we shall use the Laurent expansion to classify, in general terms, the
behavior of an analytic function near its zeros and isolated singularities. A zero of a
function f is a point z0 where f is analytic and f (z0) = 0. An isolated singularity of
f is a point z0 such that f is analytic in some punctured disk 0 < |z − z0| < R but
not analytic at z0 itself. For example, tan(π z/2) has a zero at each even integer and an
isolated singularity at each odd integer.

We shall begin by examining the zeros of f .

Definition 7. A point z0 is called a zero of order m for the function f if f is
analytic at z0 and f and its first m −1 derivatives vanish at z0, but f (m)(z0) �= 0.

In other words, we have

f (z0) = f ′(z0) = f ′′(z0) = · · · = f (m−1)(z0) = 0 �= f (m)(z0).

In this case the Taylor series for f around z0 takes the form

f (z) = am (z − z0)
m + am+1 (z − z0)

m+1 + am+2 (z − z0)
m+2 + · · ·

or
f (z) = (z − z0)

m
[
am + am+1 (z − z0)+ am+2 (z − z0)

2 + · · ·
]
, (1)

where am = f (m)(z0)/m! �= 0. The bracketed series in Eq. (1) clearly converges wher-
ever the series for f does (at any particular point one is just a multiple of the other);
hence it defines a function g(z) analytic in a neighborhood of z0, with g(z0) �= 0. Con-
versely, any function with a representation like Eq. (1) must have a zero of order m, so
we deduce the following.

†It can be shown that this integral formula is equivalent to the series representation in Prob. 8,
Exercises 5.4.
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Theorem 16. Let f be analytic at z0. Then f has a zero of order m at z0 if and
only if f can be written as

f (z) = (z − z0)
m g(z),

where g is analytic at z0 and g(z0) �= 0.

A zero of order 1 is sometimes called a simple zero. For instance, the zeros of the
function sin z, which occur (as we saw in Chapter 3) at integer multiples of π , are all
simple (at such points the first derivative, cos z, is nonzero).

An easy consequence of Theorem 16 is the following result, which asserts that
zeros of nonconstant analytic functions are isolated.

Corollary 3. If f is an analytic function such that f (z0) = 0, then either f is
identically zero in a neighborhood of z0 or there is a punctured disk about z0 in
which f has no zeros.

Proof. Let
∑∞

k=0 ak(z − z0)
k be the Taylor series for f about z0 (so that ak =

f (k)(z0)
/

k! ). Then, as we know from Theorem 3, this series converges to f (z) in
some circular neighborhood of z0. So if all the Taylor coefficients ak are zero, then
f (z) must be identically zero in this neighborhood. Otherwise, let m(≥ 1) be the
smallest subscript such that am �= 0. Then, by Definition 7, f has a zero of order
m at z0, and so the representation f (z) = (z − z0)

m g(z) of Theorem 16 is valid.
Since g (z0) �= 0 and g is continuous at z0 (indeed, it is analytic there), there exists
a disk |z − z0| < δ throughout which g is nonzero. Consequently, f (z) �= 0 for
0 < |z − z0| < δ. �

Notice that if f is nonconstant, analytic, and zero at z0, the order of the zero must
be a whole number; the condition of analyticity at z0 in the analysis of Theorem 16
dictates that m be an integer. The function z1/2 could be said to have a zero of order 1

2
at z = 0, but of course it is not analytic there.

We now turn to the isolated singularities of f . We know that f has a Laurent
expansion around any isolated singularity z0;

f (z) =
∞∑

j=−∞
a j (z − z0)

j , (2)

for, say, 0 < |z − z0| < R. (The “r” of Theorem 14 is zero for an isolated singularity.)
We can classify z0 into one of the following three categories.

Definition 8. Let f have an isolated singularity at z0, and let (2) be the Laurent
expansion of f in 0 < |z − z0| < R. Then
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5.6 Zeros and Singularities 279

(i) If a j = 0 for all j < 0, we say that z0 is a removable singularity of f ;

(ii) If a−m �= 0 for some positive integer m but a j = 0 for all j < −m, we
say that z0 is a pole of order m for f ;

(iii) If a j �= 0 for an infinite number of negative values of j , we say that z0 is
an essential singularity of f .

By examining separately each of these three types of isolated singularities we shall
show that they can be distinguished by the qualitative behavior of f (z) near the sin-
gularity (that is, without working out the Laurent expansion). The resulting character-
izations are summarized in the final theorem of this section.

When f has a removable singularity at z0, its Laurent series takes the form

f (z) = a0 + a1 (z − z0)+ a2 (z − z0)
2 + · · · (0 < |z − z0| < R) . (3)

Example 4 of the previous section provides an illustration of this. Other examples of
functions having removable singularities are

sin z

z
= 1

z

(
z − z3

3! + z5

5! − · · ·
)

= 1 − z2

3! + z4

5! − · · · (z0 = 0) ,

cos z − 1

z
= 1

z

[(
1 − z2

2! + z4

4! − · · ·
)

− 1

]
= − z

2! + z3

4! − · · · (z0 = 0) ,

z2 − 1

z − 1
= z + 1 = 2 + (z − 1)+ 0 + 0 + · · · (z0 = 1) .

From (3) we can see that, except for the point z0 itself, f (z) is equal to a function
h(z), which is analytic at z0. In other words, the only reason for the singularity is that
f (z) is undefined or defined “peculiarly” at z0. Since the function h(z) is analytic at
z0, it is obviously bounded† in some neighborhood of z0, and so we have established
the following lemma.

Lemma 5. If f has a removable singularity at z0, then

(i) f (z) is bounded in some punctured circular neighborhood of z0,

(ii) f (z) has a (finite) limit as z approaches z0, and

(iii) f (z) can be redefined at z0 so that the new function is analytic at z0.

†That is, there exists a neighborhood of z0 and a constant M such that |h(z)| ≤ M for all z in this
neighborhood.
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Conversely, if a function is bounded in some punctured neighborhood of an iso-
lated singularity, that singularity is removable; see Prob. 13 for a direct proof.

Clearly, removable singularities are not too important in the theory of analytic
functions. But as we shall see in Lemmas 6 and 8, the concept is occasionally helpful
in providing compact descriptions of the other kinds of singularities.

The Laurent series for a function with a pole of order m looks like

f (z) = a−m

(z − z0)
m + a−(m−1)

(z − z0)
m−1

+ · · · + a−1

z − z0

+ a0 + a1 (z − z0)+ a2 (z − z0)
2 + · · · (a−m �= 0) ,

(4)

valid in some punctured neighborhood of z0. For example,

ez

z2
= 1

z2

(
1 + z + z2

2! + · · ·
)

= 1

z2
+ 1

z
+ 1

2! + z

3! + · · ·

has a pole of order 2, and

sin z

z5
= 1

z5

(
z − z3

3! + z5

5! − · · ·
)

= 1

z4
− 1

3!z2
+ 1

5! − z2

7! + · · ·

has a pole of order 4, at z = 0.
A pole of order 1 is called a simple pole. For example, z = 0 is a simple pole of

the function (sin z)
/

z2 .
From Eq. (4), we can deduce the following characterization of a pole:

Lemma 6. If the function f has a pole of order m at z0, then | (z − z0)
� f (z)| →

∞ as z → z0 for all integers � < m, while (z − z0)
m f (z) has a removable

singularity at z0. In particular, | f (z)| → ∞ as z approaches a pole.†

Proof of Lemma 6. Equation (4) implies that in some punctured neighborhood of
z0 we have

(z − z0)
m f (z) = a−m + a−m+1 (z − z0)+ · · · , (5)

and since there are no negative powers, the singularity of (z − z0)
m f (z) at z0 is re-

movable. Furthermore, (z − z0)
m f (z) → a−m �= 0 as z → z0. Thus for any integer

� < m, ∣∣∣(z − z0)
� f (z)

∣∣∣ = ∣∣∣∣ 1

(z − z0)
m−� (z − z0)

m f (z)

∣∣∣∣→ ∞ as z → z0, (6)

because (z − z0)
m−� → 0 and a−m �= 0. �

†We remind the reader that the notation “|h(z)| → ∞ as z → z0” means that |h(z)| exceeds any
given number for all z sufficiently near z0.
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Lemma 7. A function f has a pole of order m at z0 if and only if in some
punctured neighborhood of z0

f (z) = g(z)

(z − z0)
m , (7)

where g is analytic at z0 and g(z0) �= 0.

Proof. If f has a pole of order m at z0, then it follows from the representation
(5) that in some punctured neighborhood of z0 we have (z − z0)

m f (z) = g(z), where

g(z) := a−m + a−m+1 (z − z0)+ · · · .
Setting g (z0) := a−m �= 0, we see that g is analytic and nonzero at z0, so (7) follows.

Now suppose that the representation (7) holds, and write the Taylor series for g(z):

g(z) = b0 + b1 (z − z0)+ b2 (z − z0)
2 + · · · .

Then the Laurent series for f near z0 must be

f (z) = g(z)

(z − z0)
m = b0

(z − z0)
m + b1

(z − z0)
m−1

+ · · · .

Since b0 = g (z0) �= 0, the expansion displays the predicted pole for f . �

Example 1

Classify the singularity at z = 1 of the function (sin z)/
(
z2 − 1

)2
.

Solution. Since
sin z(

z2 − 1
)2 = (sin z)/(z + 1)2

(z − 1)2

and the numerator is analytic and nonzero at z = 1, Lemma 7 implies that the function
has a pole of order 2. �

Example 2
Show that the only singularities of rational functions are removable singularities or
poles.

Solution. Recall that a rational function is P(z)/Q(z), the ratio of two poly-
nomials, and is analytic everywhere except at the zeros of Q(z). If Q(z) has a zero,
say of order m, at z0, then Q(z) = (z − z0)

m q(z), where q(z) is a polynomial and
q (z0) �= 0.

If P (z0) �= 0, we apply Lemma 7 to the expression

P(z)

Q(z)
= 1

(z − z0)
m

P(z)

q(z)
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to deduce that P(z)/Q(z) has a pole of order m. If, on the other hand, P (z0) = 0, we
can write P(z) = (z − z0)

n p(z), where n is the order of the zero at z0 [we ignore the
trivial case P(z) ≡ 0]; thus

P(z)

Q(z)
= (z − z0)

n

(z − z0)
m

p(z)

q(z)
,

and clearly P(z)/Q(z) will have a pole if n < m or a removable singularity if
n ≥ m. �

The following lemma relating zeros and poles is easily derived using the preceding
methods of analysis, so we simply state it here for reference purposes and assign the
proof to the reader (Prob. 4).

Lemma 8. If f has a zero of order m at z0, then 1/ f has a pole of order m at z0.
Conversely, if f has a pole of order m at z0, then 1/ f has a removable singularity
at z0, and if we define (1/ f )(z0) = 0, then 1/ f has a zero of order m at z0.

Some students may have felt that it is obvious that | f (z)| → ∞ as z approaches
a pole and that our painstaking analysis was unnecessary. They will probably be sur-
prised to learn that such behavior does not occur as z approaches an essential singular-
ity; instead we have the following.

Theorem 17 (Picard’s Theorem). A function with an essential singularity as-
sumes every complex number, with possibly one exception, as a value in any
neighborhood of this singularity.

The proof of this theorem is beyond our text, but we invite the student to prove a
somewhat weaker result, the Casorati-Weierstrass theorem, in Prob. 14. We illustrate
the Picard† theorem in the next example.

Example 3
Verify Picard’s result for e1/z near z = 0.

Solution. (Observe first of all that z = 0 is an essential singularity; see Example
3, Sec. 5.5.) Obviously e1/z is never zero. However, if c �= 0, we can show that e1/z

achieves the value c for |z| less than any positive ε. To this end, recall that

log c = Log |c| + i Arg c + 2nπ i (n = 0,±1,±2, . . .)

†Charles Emile Picard (1856–1941) trained over 10,000 engineers during his career at Ecole
Centrale in Paris.
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(Sec. 3.3). By picking n sufficiently large, we can find a value w of log c such that
|w| > 1/ε. Then let z = 1/w. We will have |z| < ε, and

e1/z = ew = elog c = c.

(To gain further insight into the exotic behavior of e1/z near its essential singular-
ity, the reader is invited (Prob. 16) to sketch the curves

∣∣e1/z
∣∣ = s, where s =

1, 1
2 , 2, 1

3 , 3, . . ..) �

From the preceding results we observe that the three different kinds of isolated sin-
gularities produce qualitatively different behaviors near these points. Thus bounded-
ness indicates a removable singularity, approaching ∞ indicates a pole, and anything
else must indicate an essential singularity. These characterizations are often useful
in determining the nature of a singularity when it is inconvenient to find the Laurent
expansion, as illustrated in the next example.

Example 4
Classify the zeros and singularities of the function sin

(
1 − z−1

)
.

Solution. Since the zeros of sinw occur only when w is an integer multiple of
π , the function sin

(
1 − z−1

)
has zeros when

1 − z−1 = nπ,

that is, at

z = 1

1 − nπ
(n = 0,±1,±2, . . .).

Furthermore, the zeros are simple because the derivative at these points is

d

dz
sin
(

1 − z−1
)∣∣∣∣

z=(1−nπ)−1
= 1

z2
cos
(

1 − z−1
)∣∣∣∣

z=(1−nπ)−1

= (1 − nπ)2 cos nπ �= 0.

The only singularity of sin
(
1 − z−1

)
appears at z = 0. If we let z approach 0

through positive values, then sin
(
1 − z−1

)
oscillates between ±1. Such behavior can

only characterize an essential singularity. �

Example 5
Classify the zeros and poles of the function f (z) = (tan z)/z.

Solution. Since (tan z)/z = (sin z)/(z cos z), the only possible zeros are those
of sin z; that is, z = nπ (n = 0,±1,±2, . . .). However z = 0 is, in fact, a singu-
larity. Furthermore, the points z = (n + 1

2 )π , which are the zeros of cos z, are also
singularities. We shall investigate these in turn.
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If n is a nonzero integer, the reader should have no trouble showing that z = nπ is
a simple zero for the given function.

Near the point z = 0 we can write

tan z

z
= sin z

z cos z

= 1

z cos z

(
z − z3

3! + z5

5! − · · ·
)

= 1

cos z

(
1 − z2

3! + z4

5! − · · ·
)
,

and we see that (tan z)/z → 1 as z → 0. Hence the origin is a removable singularity.
Finally, since cos z has simple zeros at z = (n + 1

2 )π for n = 0,±1,±2, . . ., it is
easy to see that f (z) has simple poles at these points. �

Theorem 18 summarizes the various equivalent characterizations of the three types
of isolated singularities. For economy of notation we employ the logician’s symbol
“⇔” to denote logical equivalence; it can be translated “if and only if.”

Theorem 18. If f has an isolated singularity at z0, then the following equiva-
lences hold:

(i) z0 is a removable singularity ⇔ | f | is bounded near z0 ⇔ f (z) has a
limit as z → z0 ⇔ f can be redefined at z0 so that f is analytic at z0.

(ii) z0 is a pole ⇔ | f (z)| → ∞ as z → z0 ⇔ f can be written f (z) =
g(z)

/
(z − z0)

m for some integer m > 0 and some function g analytic at
z0 with g (z0) �= 0.

(iii) z0 is an essential singularity ⇔ | f (z)| neither is bounded near z0 nor
goes to infinity as z → z0 ⇔ f (z) assumes every complex number, with
possibly one exception, as a value in every neighborhood of z0.

In closing, we make a few some general observations. Earlier we saw that the
seemingly innocent-looking property of analyticity for a function f at a point z0
places enormous restrictions on f ; in particular, it must be infinitely differentiable,
and expressible by its Taylor series in a neighborhood of z0. Now we find that if f is
merely presumed to be defined, and analytic, in a punctured neighborhood of z0 (like
0 < |z − z0| < r ), then it is still strongly restricted. One can characterize its behavior
near z0 by asking how many powers of (z − z0) would it take to “civilize” f (z), in the
sense that (z − z0)

m f (z) would have a finite, nonzero limiting value as z → z0. If the
answer (m) is a positive integer, then f has a pole of order m at z0 and it can be written
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as g(z)/(z − z0)
m with g analytic and nonzero at z0. If m is a negative integer, then f

can be written as g(z)(z − z0)
|m| with g, again, analytic and nonzero at z0; the latter

form exhibits a zero of order |m| at z0. If m is zero, then f has a removable singularity
at z0.

The only other possibility is that no such m exists, that is, no power of (z − z0)

can endow (z − z0)
m f (z) with a nonzero limit at z0. Then unless f is identically zero

(and not worth “civilizing”), it has an essential singularity at z0, taking all complex
numbers as values in any neighborhood of z0 (with, possibly, one exception).

EXERCISES 5.6

1. Find and classify the isolated singularities of each of the following functions.

(a)
z3 + 1

z2(z + 1)
(b) z3e1/z (c)

cos z

z2 + 1
+ 4z (d)

1

ez − 1

(e) tan z (f) cos

(
1 − 1

z

)
(g)

sin(3z)

z2
− 3

z
(h) cot

(
1

z

)
2. What is the order of the pole of

f (z) = 1(
2 cos z − 2 + z2

)2
at z = 0? [HINT: Work with 1/ f (z).]

3. For each of the following, construct a function f , analytic in the plane except for
isolated singularities, that satisfies the given conditions.

(a) f has a zero of order 2 at z = i and a pole of order 5 at z = 2 − 3i .

(b) f has a simple zero at z = 0 and an essential singularity at z = 1.

(c) f has a removable singularity at z = 0, a pole of order 6 at z = 1, and an
essential singularity at z = i .

(d) f has a pole of order 2 at z = 1 + i and essential singularities at z = 0 and
z = 1.

4. Give a proof of Lemma 8.

5. For each of the following, determine whether the statement made is always true or
sometimes false.

(a) If f and g have a pole at z0, then f + g has a pole at z0.

(b) If f has an essential singularity at z0 and g has a pole at z0, then f + g has
an essential singularity at z0.

(c) If f (z) has a pole of order m at z = 0, then f (z2) has a pole of order 2m at
z = 0.
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(d) If f has a pole at z0 and g has an essential singularity at z0, then the product
f · g has a pole at z0.

(e) If f has a zero of order m at z0 and g has a pole of order n, n ≤ m, at z0, then
the product f · g has a removable singularity at z0.

6. Prove that if f (z) has a pole of order m at z0, then f ′(z) has a pole of order m + 1
at z0.

7. If f (z) is analytic in D : 0 < |z| ≤ 1, and z� · f (z) is unbounded in D for every
integer �, then what kind of singularity does f (z) have at z = 0?

8. Verify Picard’s theorem for the function cos(1/z) at z0 = 0.

9. Does there exist a function f (z) having an essential singularity at z0 that is bounded
along some line segment emanating from z0?

10. If the function f (z) is analytic in a domain D and has zeros at the distinct points
z1, z2, . . . , zn of respective orders m1,m2, . . . ,mn , then prove that there exists a
function g(z) analytic in D such that

f (z) = (z − z1)
m1 (z − z2)

m2 · · · (z − zn)
mn g(z).

11. If f has a pole at z0, show that Re f and Im f take on arbitrarily large positive as
well as negative values in any punctured neighborhood of z0.

12. Prove that if f (z) has a pole of order m at z0, then g(z) := f ′(z)
/

f (z) has a simple
pole at z0. What is the coefficient of (z − z0)

−1 in the Laurent expansion for g(z)?

13. Let f (z) have an isolated singularity at z0 and suppose that f (z) is bounded in
some punctured neighborhood of z0. Prove directly from the integral formula for
the Laurent coefficients that a− j = 0 for all j = 1, 2, . . .; that is, f (z) must have a
removable singularity at z0.

14. Without appealing to Picard’s theorem, prove the theorem of Casorati and Weier-
strass:† If f (z) has an essential singularity at z0, then in any punctured neigh-
borhood of z0 the function f (z) comes arbitrarily close to any specified complex
number. [HINT: Let the specified number be c and assume to the contrary that
| f (z) − c| ≥ δ > 0 in every small punctured neighborhood of z0. Then, using
Prob. 13, show that f (z) − c [and hence f (z) itself] must have either a pole or a
removable singularity at z0.]

15. Prove that if f (z) has an essential singularity at z0, then so does the function e f (z).
[HINT: Argue that e f (z) is neither bounded nor tends (in modulus) to infinity as
z → z0.]

16. Sketch the graphs for s = 1, 1
2 , 2, 1

3 , 3, . . . of the level curves
∣∣e1/z

∣∣ = s, and
observe that they all converge at the essential singularity z = 0 of e1/z . [HINT: The
level curves are all circles.]

17. By completing each of the following steps, prove Schwarz’s lemma.

†Felice Casorati (1835–1890), Karl Theodor Wilhelm Weierstrass (1853–1897). In his lectures
developing the subject of analysis, Weierstrass established standards of rigor for the future of math-
ematics.
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5.7 The Point at Infinity 287

(Schwarz’s Lemma) If f is analytic in the unit disk U : |z| < 1 and satisfies
the conditions

f (0) = 0 and | f (z)| ≤ 1 for all z in U,

then | f (z)| ≤ |z| for all z in U .

(a) Define F(z) := f (z)/z, for z �= 0, and F(0) = f ′(0). Show that F is analytic
in U .

(b) Let ζ( �= 0) be any fixed point in U , and r be any real number that satisfies
|ζ | < r < 1. Show by means of the maximum-modulus principle that if Cr

denotes the circle |z| = r , then

|F(ζ )| ≤ max
z on Cr

| f (z)|
r

≤ 1

r
.

(c) Letting r → 1− in part (b), deduce that | f (ζ )| ≤ |ζ | for all ζ in U .

18. Let f be a function satisfying the conditions of Schwarz’s lemma (Prob. 17). Prove
that if | f (z0)| = |z0| for some nonzero z0 in U , then f must be a function of
the form f (z) = eiθ z for some real θ . Show also that f must be of this form if∣∣ f ′(0)

∣∣ = 1.

19. Define the function h(z) by

h(z) = 1

sin z
− 1

z
+ 2z

z2 − π2
.

(a) Show that h(z) is analytic in the disk |z| < 2π , except for removable singu-
larities at z = 0, ±π .

(b) Find the first four terms of the Taylor series about z = 0 for h(z). What is the
radius of convergence of this series?

(c) Use the result of part (b) to obtain the first few coefficients (with positive and
negative indices) in the Laurent series expansion for csc z = 1/ sin z, valid in
the annulus π < |z| < 2π .

5.7 The Point at Infinity

From our discussion of singularities in Sec. 5.6 we know that if a mapping is given by
an analytic function possessing a pole, it carries points near that pole to indefinitely
distant points. It must have occurred to the reader that one might take the value of f
at the pole to be ∞. Before taking this plunge, however, we should be aware of all the
ramifications. Let us look in detail at the behavior of 1/z near z = 0.
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As z → 0 along the positive real axis, 1/z goes to “plus infinity”; along the
negative real axis, 1/z goes to “minus infinity”; and along the positive y-axis, 1/z goes
to—what? “Minus i times infinity?” If we are to assign the symbol ∞ to 1/0, we must
realize that we are identifying all these “limits” as a single number; geometrically, we
are speaking of the point at infinity, which can be reached (in a manner of speaking)
by proceeding infinitely far along any direction in the complex plane.

The incorporation of the point at infinity into the complex number system was
discussed in considerable detail in Section 1.7. Recall that when “∞” is appended
to the set of complex numbers the resulting collection Ĉ = C ∪ {∞}, known as the
extended complex plane, can be visualized (via stereographic projection) as points on
the Riemann sphere. A neighborhood of ∞ is just a spherical cap centered at the north
pole (see Fig. 1.22), which corresponds to the set of all points z in C lying outside
some circle |z| = M , together with ∞. Furthermore, a sequence of points zn in C
(n = 1, 2, 3, . . .) approaches ∞ if |zn| can be made arbitrarily large by taking n large.

Consequently, we shall write f (z0) = ∞ when | f (z)| increases without bound†

as z → z0 and shall write f (∞) = w0 when f (z) → w0 as z → ∞. For example, if

f (z) = 2z + 1

z − 1
, (1)

then f (1) = ∞ and f (∞) = 2.
Observe that for h(z) = 2z + 1 we have h(∞) = ∞.
Now we find it convenient to carry this notion still further and speak of functions

that are “analytic at ∞.” The analyticity properties of f at ∞ are classified by first
performing the mapping w = 1/z, which maps the point at infinity to the origin, and
then examining the behavior of the composite function g(w) := f (1/w) at the origin
w = 0. Thus we say

1. f (z) is analytic at ∞ if f (1/w) is analytic (or has a removable singularity) at
w = 0,

2. f (z) has a pole of order m at ∞ if f (1/w) has a pole of order m at w = 0, and

3. f (z) has an essential singularity at ∞ if f (1/w) has an essential singularity at
w = 0.‡

From Theorem 18, we can interpret these conditions for a function analytic outside
some disk as follows:

1′. f (z) is analytic at ∞ if | f (z)| is bounded for sufficiently large |z|,
† Technically, f (z0) = ∞ if for any M > 0 there is a δ > 0 such that 0 < |z − z0| < δ implies

that | f (z)| > M .
‡Some authors also allow the possibility of a removable singularity at ∞, but we feel that nothing

is gained by this generality. Of course, a zero of order m for f (z) at ∞ corresponds to a zero of order
m for f (1/w) at 0.
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2′. f (z) has a pole at ∞ if f (z) → ∞ as z → ∞, and

3′. f (z) has an essential singularity at ∞ if | f (z)| neither is bounded for large |z|
nor goes to infinity as z → ∞.

Example 1
Classify the behavior at ∞ of the functions z2 + 2, (i z + 1)/(z − 1), and sin z.

Solution. Obviously f (z) = z2 + 2 has a pole at ∞. The pole is of order 2,
because

f

(
1

w

)
= 1

w2
+ 2

has a pole of order 2 at w = 0.
Since

i z + 1

z − 1
→ i as z → ∞,

this function is analytic at ∞.
Finally, sin z has no limit as z → ∞, even for real z (it oscillates). Hence ∞ must

be an essential singularity.† �

Example 2
Find all the functions f that are analytic everywhere in the extended complex plane.

Solution. Since f is analytic at ∞, it is bounded for, say, |z| > M . By conti-
nuity, f is also bounded for |z| ≤ M . Consequently, f is a bounded entire function.
Hence f is constant, by Liouville’s theorem. �

Example 3
Classify all the functions that are everywhere analytic in the extended complex plane
except for a pole at one point.

Solution. If f (z) has a pole, say, of order m at some finite point z0, then the
Laurent series for f

f (z) = a−m

(z − z0)
m + a−m+1

(z − z0)
m−1

+ · · · + a−1

z − z0
+

∞∑
n=0

an (z − z0)
n (2)

converges for all z �= z0. Moreover, since we are assuming that z0 �= ∞, the function
f must be analytic, and hence bounded, at ∞. From Eq. (2), then, we see that the
entire function defined by the series

∑∞
n=0 an (z − z0)

n is also bounded at ∞; thus it
must be constant, that is, equal to a0. Therefore, the most general form for such a
function f is

f (z) = a−m

(z − z0)
m + a−m+1

(z − z0)
m−1

+ · · · + a−1

z − z0
+ a0. (3)

†Alternatively, this can be seen directly from the Laurent expansion for sin(1/w) about w = 0.
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If the pole occurs at z = ∞, then f (1/w) has a pole at the origin and can be
expressed in the form

f (
1

w
) = a−m

wm
+ a−m+1

wm−1
+ · · · + a−1

w
+

∞∑
n=0

anw
n. (4)

Since f (z) is bounded near z = 0, it follows that f (1/w) is bounded for large |w|,
and, as before, we conclude that an = 0 for n > 0. Hence Eq. (4) becomes

f (z) = a−m zm + a−m+1zm−1 + · · · + a−1z + a0; (5)

that is, f (z) is a polynomial in z.
Equations (3) and (5) categorize the totality of all functions possessing one pole in

the extended complex plane. �

We note in passing that the theory of Fuchsian equations is based upon consider-
ations of singularities in the extended complex plane, and these have been extremely
helpful in relating many of the so-called “special functions” that arise in mathematical
physics; Ref. [3] discusses this application.

EXERCISES 5.7

1. Classify the behavior at ∞ for each of the following functions (if a zero or pole,
give its order):

(a) ez (b) cosh z (c)
z − 1

z + 1

(d)
z

z3 + i
(e)

z3 + i

z
(f) esinh z

(g)
sin z

z2
(h)

1

sin z
(i) etan 1/z

2. Prove that if f (z) is analytic at ∞, then it has a series expansion of the form

f (z) =
∞∑

n=0

an

zn

converging uniformly outside some disk.

3. Construct the series mentioned in Prob. 2 for the following functions.

(a)
z − 1

z + 1
(b)

z2

z2 + 1
(c)

1

z3 − i

4. State Picard’s theorem (Sec. 5.6) for functions with an essential singularity at ∞.
Verify for ez .
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5. What is the order of the zero at ∞ if f (z) is a rational function of the form
P(z)

Q(z)with deg P < deg Q?

6. Suppose that f is analytic on and outside the simple closed negatively oriented
contour �. Assume further that f is analytic at ∞ and f (∞) = 0. Prove that

f (z) = 1

2π i
�
∫
�

f (ζ )

ζ − z
dζ

for all z outside �. [HINT: Apply Cauchy’s integral formula for z in an annulus and
let the outer radius tend to ∞.]

7. Prove that if f is analytic on and outside the simple closed contour � and has a zero
of order 2 or more at ∞, then ∫

�

f (z) dz = 0.

Does this integral vanish if we merely assume that f has a simple zero at ∞?

Problems 8–12 discuss the class of positive functions.

8. (a) Argue that in some neighborhood of a zero, z0, of order m for the analytic
function f one can express f (z) as (z − z0)

m [c + ε(z)], where c is constant,
ε(z) is analytic, and |ε(z)| < |c|/100. (The fraction 1

100 has no special signif-
icance.)

(b) Argue that in some neighborhood of a pole, z0, of order m for the analytic
function f one can express f (z) as (z − z0)

−m [c+η(z)], where c is constant,
η(z) is analytic, and |η(z)| < |c|/100.

9. A function f (z) is said to be a positive function if f (z) is rational (a ratio of poly-
nomials) and if Re f (z) > 0 whenever Re z > 0. In 1931 Otto Brune proved that
the complex impedance of any electric circuit must be a positive function when z is
interpreted as the “imaginary frequency” iω (Sec. 3.6).

(a) Show that the complex impedance for the electrical circuit studied in Sec. 3.6,

Reff = R/ iωC

R + 1/ iωC
+ iωL ,

yields a positive function when z is substituted for iω (for positive R, L , and
C).

(b) Show that the complex admittance 1
/

Reff is also a positive function.

(c) Generalize: Show that the reciprocal of any positive function is also positive.

10. By considering the changes of sign in the factor (z − z0)
±m , use the results of the

previous problems to show that if f is a positive function,

(a) f has no poles or zeros in the right half-plane;

(b) the pure imaginary poles and zeros (if any) of f must be simple (order 1) and
the corresponding constants c in Prob. 8 must be real and positive.
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11. Extend the reasoning of the previous problems to argue that a positive function is
either analytic and nonzero at ∞ or has a simple pole or a simple zero there. What
does this say about the degrees of its numerator and denominator polynomials?

12. (a) Suppose that f is a positive function that has no poles on the imaginary axis.
Use the max-min theory of Sec. 4.7 to deduce that the minimal value of Re f
in the closed right half-plane occurs on the imaginary axis (including the point
at infinity).

(b) Using the characterization of the imaginary poles of f as described in Prob.
10, remove the “no-poles” restriction in part (a). [HINT: Use an indented
contour.]

(c) Establish the following: If f is a rational function that is analytic in the right
half-plane, has only simple poles with positive “residues” (constants c as in
Prob. 8) on the imaginary axis (including the point at infinity), and satisfies
Re f ≥ 0 on the imaginary axis, then f is a positive function.

13. (a) Prove there does not exist a (single-valued) branch of
(
z2 − 1

)1/3
that is ana-

lytic in |z| > 1. [HINT: Consider the point at infinity.]

(b) Prove that there does exist a (single-valued) branch of [(z−1)(z−2)(z−3)]1/3

analytic in |z| > 3.

5.8 *Analytic Continuation

When one is given a formula or algorithm for computing an analytic function f in
a domain D, it is often of interest to know if this “domain of analyticity” can be
extended—that is, if there is a function F analytic in a larger domain whose values
agree with those of f (z) for z in D. In such a case we say that F is an analytic
continuation of f .

This terminology is also used in some situations when the original domain of defi-
nition of f is not truly a “domain” in the sense of Chapter 1—and hence the original f
is not analytic. We have already encountered some trivial examples of analytic contin-
uation in this sense; for instance, when we extend the real polynomial x2 + 1 to com-
plex numbers as z2 + 1, we have analytically continued the function f (x) = x2 + 1
from the x-axis to the entire plane C. The functions ez , sin z, and log z can also be
interpreted as analytic continuations.

Analytic continuation arises in the analysis of many engineering systems, wherein
one is confronted with a function f (ω) describing the system response to an excita-
tion at the frequency ω (recall Sec. 3.6). The analytic continuation of f to “complex
frequency values” can often be most instructive. In fact, we shall use this approach to
relate the Fourier and Laplace transforms in Chapter 8.
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Analytic continuation can be a subtle process. True, the continuation of x2 + 1 to
z2 + 1 is only a matter of extending the formula; but the identity (recall Sec. 4.4)

�
∫
C

dζ

ζ − z
=
{

2π i if z lies inside C ,

0 if z lies outside C ,

demonstrates that the “formula”
∫

C dζ/(ζ − z) for the function f (z) := 2π i (= con-
stant), valid inside C , does not provide the correct analytic continuation of f outside C .

The interesting questions about analytic continuations are these. Is analytic con-
tinuation across the boundary of D—or part of the boundary—always possible? Is the
continued function F unique? Are there any computational rules for obtaining F? We
will try to address these issues at an elementary level in this section.

One tool for studying analytic continuations is the Taylor series. Let us postulate a
situation where an analyst needs to investigate the function f (z) defined by the series

f (z) :=
∞∑
j=1

(−1) j−1(z − 1) j

j
. (1)

For instance, she might have obtained (1) as a result of using the power series method
of Example 1, Sec. 5.3, on the differential equation

y′′ + y′

z
= 0 (2)

with the initial conditions

y(1) = 0, y′(1) = 1. (3)

[In fact, f (z) is a well-known function, but for the purposes of exposition we choose
not to identify it for the moment.]

Since the coefficients in the differential equation (2) fail to be analytic only at
z = 0, the initial-value theorem quoted in Sec. 5.3 guarantees that the circle of con-
vergence for (1) extends at least to this point. Therefore, we can say that the analyst
knows the values of this analytic function f inside C : |z − 1| = 1 (or, more realis-
tically, she can compute the values of f (z), and its derivatives, to arbitrary accuracy
inside C). In particular, she “knows” the function and its derivatives at the point z1 in
Fig. 5.6.

From these data she can construct the power series

∞∑
j=0

f ( j)(z1)

j ! (z − z1)
j . (4)

Of course, this is a Taylor series for the solution f centered at z1, and it is guaranteed
to converge to f at least inside the small circle C ′ of Fig. 5.7, wherein f is known
to be analytic. The initial-value theorem, however, tells us more—namely, that (4)
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Figure 5.6 Circle of convergence for series (1).

Figure 5.7 Proposed circles of convergence.

converges inside the larger circle C ′′, extending from z1 to the origin (again, because
the coefficients in the differential equation are analytic inside C ′′). Thus by employ-
ing (4) the analyst has analytically continued the function f , extending its domain of
analyticity outside the circle C .

The function defined by the series (1) is, in fact, Log z. The reader can directly
verify that (1) is a Taylor series for Log z and that Log z satisfies the differential equa-
tion (2) and the initial conditions (3). This solution does, indeed, fail to be analytic at
z = 0, and the circles C and C ′′ are true circles of convergence.

To continue our study we formalize some terminology covering the particular sit-
uation just analyzed.

Definition 9. Suppose that f is analytic in a domain D1, and that g is analytic
in a domain D2. Then we say that g is a direct analytic continuation of f to
D2 if D1 ∩ D2 is nonempty and f (z) = g(z) for all z in D1 ∩ D2.

In our example the first domain D1 is the interior of C , the second domain D2
is the interior of C ′′, and g is the sum of the power series (4). We have not actually
proved that f = g over the whole lens-shaped domain D1 ∩ D2; equality has been
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established only inside C ′. So we shall use the following theorem to show that (4) is a
bona fide direct analytic continuation of f (z) to D2.

Theorem 19. If F is analytic in a domain D and vanishes on some open disk
contained in D, then it vanishes throughout D.

Figure 5.8 Geometry for Theorem 19.

Proof. By hypothesis, D contains a disk N , say with center z0, such that F(z) =
0 for all z in N . Now let’s assume, contrary to the conclusion of the theorem, that there
is some point z1 in D such that F (z1) �= 0, and let � be a path in D joining z0 to z1.
(See Fig. 5.8.) As we move along � from z0, at first we only observe points where
F(z) = 0. Eventually, however, we must encounter a point w with the properties

(i) For all z on � preceding w, we have F(z) = 0;

(ii) There are points z on � arbitrarily close to w such that F(z) �= 0. (Recall a
similar situation in the proof of Theorem 23, Sec. 4.6.)

First we observe that condition (i) implies that the derivative of F(z) is zero on the
portion of � preceding w, because at any point z on this part of the curve we can
evaluate

F ′(z) = lim
ζ→z

F(ζ )− F(z)

ζ − z

by letting ζ approach z along this portion of �, where F(ζ ) = F(z) = 0. Hence the
limit is zero. Continuing in this fashion, we express

F ′′(z) = lim
ζ→z
ζ on �

F ′(ζ )− F ′(z)
ζ − z

= lim
ζ→z
ζ on �

0 = 0,

and so on, to conclude that all derivatives of F(z) vanish on the portion of � preceding
w. By continuity, then, F and all its derivatives also vanish at w, which implies that
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the Taylor coefficients for F about z = w are all zeros; that is, F must vanish in some
disk around w. But this contradicts condition (ii), so our assumption that F is not
identically zero must be wrong. �

Corollary 4. If f and g are analytic in a domain D and f = g in some disk
contained in D, then f = g throughout D.

Proof. Simply apply Theorem 19 to the difference F := f − g. �

Returning to our discussion of the situation depicted in Fig. 5.7 we can now con-
clude that because the series (1) and (4) agree inside the circle C ′, they must agree
inside the lens-shaped domain formed by the intersection of the interiors of C and C ′′.
This, then, implies that (4) is a direct analytic continuation of f (z) from the interior of
C to the interior of C ′′, in strict accordance with Definition 9.

It is worthwhile at this point to list some salient observations about direct analytic
continuation. The first two are so trivial that we shall delete the proofs:

Theorem 20. If f is analytic in a domain D1 and g is a direct analytic continu-
ation of f to the domain D2, then the function

F(z) :=
{

f (z) for z in D1,

g(z) for z in D2,
(5)

is single-valued and analytic on D1 ∪ D2.

Theorem 21. If f is analytic in a domain D1, and D2 is a domain such that
D1 ∩ D2 is nonempty, then the direct analytic continuation of f to D2, if it
exists, is unique.

Theorem 19 and its corollary can be generalized as follows.

Theorem 22. Suppose that f is analytic in a domain D and that {zn} is an infi-
nite sequence of distinct points converging to a point z0 in D. Suppose, more-
over, that f (zn) = 0 for each n = 1, 2, . . .. Then f (z) ≡ 0 throughout D.

Proof. By continuity, z0 is a zero of f . However, it is not an isolated zero
because every punctured disk about z0 contains points of the sequence {zn}. Conse-
quently, by Corollary 3, Sec. 5.6, f must be identically zero in some neighborhood of
z0. Hence Theorem 19 implies f (z) ≡ 0 throughout D. �
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Corollary 5. If f and g are analytic functions in a domain D and f (zn) = g(zn)

for an infinite sequence of distinct points {zn} converging to a point z0 in D, then
f ≡ g throughout D.

Proof. Again, consider f − g. �

Often this corollary is used to extend a known equality from a curve to a domain,
as in the next example.

Example 1
Use Corollary 5 to prove that

sin2 z + cos2 z = 1 for all z.

Solution. We know from elementary trigonometry that the equality is true for
real z. In other words, the two entire functions f (z) := sin2 z + cos2 z and g(z) := 1
agree on the real axis. Corollary 5 thus extends the equality to the whole plane. �

Now let’s turn to a related topic, the concept of analytic continuation along a
curve. The situation is as follows (refer to Fig. 5.9): f (z) is analytic in a domain D,
z1 is a point in D, and γ is some path connecting z1 to a point z∗.

Figure 5.9 Analytic continuation along a curve.

We expand f (z) in a Taylor series around z1; the resulting power series converges
to a function f1(z) inside, say, the circle C1. Staying inside C1, we proceed along
γ until we come to some point z2, and then we expand f1(z) around z2. This series
converges to some analytic function f2(z) inside the circle C2. Next we move further
along γ , now staying inside C2, to some point z3, and expand around z3. And so on.
If this process eventually produces a circle of convergence, say Cn , that encloses the
portion of γ between zn and z∗, we say that the scheme derived from the sequence
of points {z1, z2, . . . , zn, z∗} and the corresponding functions { f, f1, f2, . . . , fn} con-
stitutes an analytic continuation of f (z) to z∗ along the curve γ . The value of this
analytic continuation at z∗ is, of course, fn(z∗).
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Figure 5.10 Curve for continuation. Figure 5.11 Stages of continuation.

Figure 5.12 Further stages of continua-
tion.

Figure 5.13 Alternative route for contin-
uation.

(We remark that there can be situations in which f1 is not a direct analytic contin-
uation of f ; Prob. 6 illustrates this possibility.)

Let’s see what would happen if our aforementioned colleague investigating the
series

∑∞
j=1(−1) j−1(z − 1) j/j sought to establish an analytic continuation along the

curve γ in Fig. 5.10. She expands around z1 (as before), computing the function f1(z),
which we know to equal Log z inside C1. Next she expands around z2, deriving the
function f2(z) inside the circle C2; see Fig. 5.11.

But now the domain of the analytic function f2 extends beyond the negative real
axis, so we cannot identify f2 with Log z over the whole interior of C2. However, f2(z)
is an analytic function, defined on the interior of C2, whose value and derivatives coin-
cide with those of Log z at z2; hence f2(z)must agree with some appropriately chosen
branch of log z whose branch cut does not intersect C2. For example, the branch given
by Log |z| + i arg z with 0 < arg z ≤ 2π matches Log z at z2; thus it agrees with f2(z)
inside C2.

Finally our tireless mathematician expands around the point z3 and derives the
function f3(z), analytic inside C3 (see Fig. 5.12). Once again we see that f3(z) is
the branch Log |z| + i arg z, 0 < arg z ≤ 2π , inside C3; in particular, f3(−1) =
π i . In short, the mathematician has analytically continued the power series f (z) =
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j=1(−1) j−1(z − 1) j/j along the curve γ , and the value of the continuation at −1

is π i .
It is instructive to study the result of continuing this same function f along the

curve γ ′ in Fig. 5.13. In this case, the scheme might consist of the points {+1, ξ1, ξ2,
ξ3, −1} and the functions { f, g1, g2, g3}. The power series computed around the point
ξ2 would sum to the function g2(z), whose derivatives would agree with those of Log z
at ξ2 but whose domain of analyticity (the interior of C ′

2) would enclose a portion of
the negative real axis. Thus g2(z) and, in fact, g3(z) would agree with the branch

L−2π(z) = Log |z| + i arg z, −2π < arg z ≤ 0.

In particular, g3(−1) = −π i .
Summarizing, we have seen that an analytic continuation of f (z) along γ gives

the value π i at z = −1, but an analytic continuation along γ ′ gives the value −π i . We
conclude that, in general, the value obtained by analytic continuation along a curve
may depend on the curve itself, not merely on its terminal point.

The alert reader has probably surmised by now that the source of this anomaly is
the singularity of all the branches of log z at the origin. This is in fact the case, and the
following result, known as the Monodromy theorem, can be considered a vindication
of the procedure of analytic continuation along curves.

Theorem 23 (Monodromy Theorem). Let f (z) be analytic in a domain D, and
suppose that γ and γ ′ are two directed smooth curves connecting the point z1
in D to some point z∗. Suppose further that there is some domain D′ with the
following properties:

(i) The loop � = {
γ,−γ ′} lies in D′ and can be continuously deformed† to

a point in D′, and

(ii) f (z) can be analytically continued along any smooth curve in D′.

Then the value at z∗ of the analytic continuation of f along γ agrees with the
value of its continuation along γ ′.

Thus, for instance, if we continue Log z from z = +1 to z = −1 along any curve
lying in the upper half-plane, we shall arrive at the value π i , while the value of the
continuation along any curve in the lower half-plane will be −π i .

The proof of the Monodromy theorem involves some topological constructions
with which our readers may be unfamiliar, so we shall delete it (see Ref. [5]). It should
be noted, however, that one consequence of the theorem is the fact (which we have
tacitly assumed) that the analytic continuation of a function along a particular curve
does not depend on the choice of points {z1, z2, . . . , zn, z∗} used in the scheme—again
we direct the reader to the references for a rigorous proof.

†Compare Sec. 4.4a.
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Figure 5.14 Origin lies on γ . Figure 5.15 Origin lies outside γ .

Example 2

Consider the function f (z) defined for Re z > 0 as the principal branch of z1/2, that
is, that branch that takes the value +1 when z = 1. What is the value obtained by
continuation of f along a simple closed positively oriented curve γ beginning at z = 1
and terminating at the same point, z = 1?

Solution. We must consider three possibilities: Either the origin lies on γ ,
outside γ , or inside γ .

Case 1: The origin lies on γ . Then analytic continuation along γ is not possible;
there is no scheme of points and power series that can pass through the “barrier” z = 0,
since this singularity will be excluded from every circle of convergence of a Taylor
series for z1/2. See Fig. 5.14.

Case 2: The origin lies outside γ (see Fig. 5.15). Then the conditions of the Mon-
odromy theorem are satisfied with the curve γ ′ consisting of the single point z = 1,
and the domain D′ given by the entire plane with the origin deleted. The continuation
along γ ′ (and hence γ ) results, of course, in the value +1.

Case 3: The origin lies inside γ . We can apply the Monodromy theorem, again
identifying D′ as the punctured plane but now taking γ ′ to be the unit circle |z| =
1, positively oriented (see Fig. 5.16). To get the continuation along γ ′ we use De
Moivre’s formula for z1/2. Then it is clear that if γ ′ is parametrized by z = eiθ ,
0 ≤ θ ≤ 2π , the value of the continuation of z1/2 at z = eiθ is eiθ/2; this gives
ei2π/2 = −1 at the terminal point z = 1. Thus we learn that analytic continuation
around a closed curve may yield functional values that are different from the original
ones! �

We conclude this section by remarking that there exist functions analytic in a do-
main D that cannot be analytically continued to any point outside D. In such a case the
boundary of D is called a natural boundary. This situation is illustrated in Prob. 10.
Schwarz reflection, discussed in Probs. 13 through 15, can provide simple rules for
implementing analytic continuations in some cases.
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Figure 5.16 Origin lies inside γ .

EXERCISES 5.8

1. Given that f (z) is analytic at z = 0 and that f (1/n) = 1
/

n2 , n = 1, 2, . . ., find
f (z).

2. Prove that if f (z) is analytic and agrees with a polynomial
∑n

j=0 a j x j for z = x on

a segment of the real axis, then f (z) =∑n
j=0 a j z j everywhere.

3. Does there exist a function f (z), not identically zero, which is analytic in the open
disk D : |z| < 1 and vanishes at infinitely many points in D?

4. Prove that if f is analytic in a punctured neighborhood of z = 0 and if f (1/n) = 0
for all n = ±1,±2, . . ., then either f is identically zero or f has an essential
singularity at z = 0.

5. Let f (z) = ∑∞
j=0 z j for |z| < 1. For what values of α (|α| < 1) does the Taylor

expansion of f (z) about z = α yield a direct analytic continuation of f (z) to a disk
extending outside |z| < 1?

6. Show that when a function f is analytically continued along a curve (as depicted
in Fig. 5.9, the first function f1(z) generated by the power series expansion around
the initial point z1 of γ need not be a direct analytic continuation of f . [HINT: Take
f (z) = Log z, with D and z1 as depicted in Fig. 5.17.]

Figure 5.17 Example for Prob. 6.

7. By summing the series, show that −∑∞
j=0(2−z) j is an analytic continuation, along

some curve, of
∑∞

j=0 z j .
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8. The Gamma function �(z) is defined for Re z > 0 by the integral

�(z) :=
∫ ∞

0
e−t t z−1 dt.

(a) Show that �(z + 1) = z�(z) for Re z > 0.

(b) In most advanced texts it is shown that �(z) is analytic in the right half-plane.
Assuming this, argue that the functional equation in part (a) can be used to an-
alytically continue �(z) to the entire plane, except for the nonpositive integers
z = −n, n = 0, 1, 2, . . ..

(c) Show that �(n) = (n − 1)! for positive integers n.

Figure 5.18 Continuation path for Prob. 8.

9. For each of the following functions, choose a branch that is analytic in the circle
|z − 2| < 1. Then analytically continue this branch along the curve γ indicated in
Fig. 5.18. Do the new functional values agree with the old?

(a) 3z2/3 (b) sin 5z (c) (ez)1/3

(d) sin
(
z1/2

)
(e)
(
z1/2

)2
(f)
(
z2
)1/2

10. Show that the unit circle |z| = 1 is a natural boundary for the function f (z) =∑∞
j=1 z j !, |z| < 1. [HINT: Argue that | f (reipπ )| → ∞ as r → 1− for any rational

number p.]

11. Show that |z| = 1 is a natural boundary for the function g(z) = ∑∞
j=1 z j !/j !,

although the series converges for |z| = 1. [HINT: Relate g(z) to the function f (z)
of Prob. 10.]

12. Show that |z| = 1 is a natural boundary for
∑∞

j=0 z2 j
.

13. The Schwarz reflection principle provides a formula for analytic continuation across
a straight-line segment under certain circumstances. Its simplest form is stated as
follows: Suppose that f (z) = u(x, y) + iv(x, y) is analytic in a simply connected
domain D that lies in the upper half-plane and which has a segment γ of the real
axis as part of its boundary (see Fig. 5.19). Suppose furthermore that v(x, y) → 0
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as (x, y) approaches γ and that u(x, y) also takes continuous limiting values on γ ,
denoted by U (x) [so that U (x) is continuous on γ ]. Then the function f can be
analytically continued across γ into the domain D′, which is the reflection of D in
the real axis. Specifically, the function F(z) defined by

F(z) =


u(x, y)+ iv(x, y) for z = x + iy in D,

U (x) for z = x on γ,

u(x,−y)− iv(x,−y) for z = x + iy in D′

is analytic in the domain D ∪γ ∪ D′. Justify this principle based upon the following
observations.

(a) F(z) satisfies the Cauchy-Riemann equations in D′.
(b) F(z) is continuous in D ∪ γ ∪ D′.
(c) Morera’s theorem can be applied to F(z), if the contour of integration � is

decomposed as illustrated in Fig. 5.20.

Figure 5.19 Domain for Prob. 13.

14. State and prove a generalization of the Schwarz reflection principle to the case where
the boundary of D contains an arbitrary line segment upon which the limiting values
of f (z) all lie on some straight line (as would be the case, for example, if these
limiting values were all real).

15. State and prove two reflection principles for harmonic functions φ(x, y), based upon
the Schwarz reflection principle. One should cover the case when φ(x, y) → 0 on
the real axis, and the other should apply when ∂φ/∂y → 0 on the real axis.

16. Prove the following generalization of Theorem 23 in Sec. 4.6: If f is analytic in a
domain D and | f (z)| achieves a local maximum at a point z0 in D, the f is constant
in D.
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Figure 5.20 The integral of F(z) along � is zero.

SUMMARY

The principal achievement of this chapter was to establish an equivalence (roughly
speaking) between analytic functions and convergent power series. The equivalence is
as follows: Any function f can be expressed as a power series around any point z0 at
which f is analytic, and the series converges uniformly in every closed disk (centered
at z0) that excludes the singularities of f . This series is known as the Taylor series and
has the form ∞∑

j=0

f ( j)(z0)

j ! (z − z0)
j .

On the other hand, any power series
∑∞

j=0 a j (z − z0)
j converging in a disk |z − z0| <

R sums to an analytic function and, in fact, is the Taylor series of this function.
Power series can be added, integrated, and differentiated termwise, as can any

uniformly convergent sequence of analytic functions. Moreover, power series can be
multiplied like polynomials.

If a function f fails to be analytic at certain points but is analytic in an annulus
surrounding or excluding these points, it can be expanded in a Laurent series,

f (z) =
∞∑

j=−∞
a j (z − z0)

j ,

converging uniformly in any closed subannulus; the nonanalyticity is reflected in the
appearance of negative exponents in the expansion. In fact, if z0 is an isolated singu-
larity of the function f , the Laurent series can be used to classify z0 into one of three
categories: a removable singularity ( f bounded near z0), a pole (| f | → ∞ at z0), or
an essential singularity (neither of the above). Similarly, the Taylor series allows one
to classify the order of an isolated zero of f .

The proof of the Taylor and Laurent expansions, and the actual computation of
many Taylor and Laurent series, is made easier by the use of the geometric series
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j=0w

j , which converges uniformly to (1 − w)−1 on any closed disk of the form
|w| ≤ ρ < 1.

Finally, we have seen how the power series expansions lead one to the possibility
of extending the domain of definition of f as an analytic function. Analytic continua-
tion, however, is a subtle process in that it may result in multiple-valuedness.

Suggested Reading
More detailed treatments of some of the topics of this chapter can be found in the
following references:

Theory of Series

[1] Dienes, P. The Taylor Series. Dover Publications, Inc., New York, 1957.

[2] Knopp, K. Infinite Sequences and Series. Dover Publications, Inc., New York,
1956.

Differential Equations

[3] Birkhoff, G., and Rota, G. C. Ordinary Differential Equations, 4th ed. John
Wiley & Sons, New York, 1989.

[4] Rainville, E. D. Intermediate Differential Equations, 2nd ed. Chelsea, New
York, 1972.

Analytic Continuation and the Reflection Principle

[5] Hille, E. Analytic Function Theory, Vol. II, 2nd ed. Chelsea, New York, 1973.

[6] Nehari, Z. Conformal Mapping. Dover, New York, 1975.

Positive Functions and Circuit Analysis

[7] Van Valkenburg, M. E. Introduction to Modern Network Synthesis. John Wiley
& Sons, New York, 1960.

[8] Levinson, N., and Redheffer, R. M. Complex Variables. Holden-Day, Inc., San
Francisco, 1970.

Applications of Bessel and Legendre Functions

[9] Snider, A.D., Partial Differential Equations: Sources and Solutions. Prentice-
Hall, Inc., Upper Saddle River NJ, 1999.
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Chapter 6

Residue Theory

We have already seen how the theory of contour integration lends great insight into the
properties of analytic functions. In this chapter we shall explore another dividend of
this theory, namely, its usefulness in evaluating certain real integrals. We shall begin
by presenting a technique for evaluating contour integrals that is known as residue
theory.

6.1 The Residue Theorem

Let us consider the problem of evaluating the integral∫
�

f (z) dz,

where � is a simple closed positively oriented contour and f (z) is analytic on and
inside � except for a single isolated singularity, z0, lying interior to �. As we know,
the function f (z) has a Laurent series expansion

f (z) =
∞∑

j=−∞
a j (z − z0)

j , (1)

converging in some punctured circular neighborhood of z0; in particular Eq. (1) is
valid for all z on the small positively oriented circle C indicated in Fig. 6.1. By the
methods of Sec. 4.4, integration over � can be converted to integration over C without
changing the integral: ∫

�

f (z) dz =
∫

C
f (z) dz.

This last integral can be computed by termwise integration of the series (1) along
C . For all j �= −1 the integral is zero, and for j = −1 we obtain the value 2π i a−1.
Consequently we have ∫

�

f (z) dz = 2π i a−1. (2)

From Chapter 6 of Fundamentals of Complex Analysis with Applications to Engineering, Science, and Mathematics,
 © 2003 by Pearson Education, Inc. All rights reserved.Third Edition. Edward B. Saff, Arthur David Snider. Copyright
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Figure 6.1 Contours for integration.

[Compare this with the formula for a−1 given in Theorem 14 of Chapter 5.]
Thus the constant a−1 plays an important role in contour integration. Accordingly,

we adopt the following terminology.

Definition 1. If f has an isolated singularity at the point z0, then the coefficient
a−1 of 1

/
(z − z0) in the Laurent expansion for f around z0 is called the residue

of f at z0 and is denoted by

Res ( f ; z0) or Res (z0) .

Example 1
Find the residue at z = 0 of the function f (z) = ze3/z and compute

�
∫

|z|=4
ze3/z dz.

Solution. Since ew has the Taylor expansion

ew =
∞∑
j=0

w j

j ! (for all w),

the Laurent expansion for ze3/z around z = 0 is given by

ze3/z = z
∞∑
j=0

1

j !
(

3

z

) j

= z + 3 + 32

2!z + 33

3!z2
+ · · · .

Hence

Res(0) = 32

2! = 9

2
,

and since z = 0 is the only singularity inside |z| = 4, we have, by formula (2),

�
∫

|z|=4
ze3/z dz = 2π i · 9

2
= 9π i. �
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Now if f has a removable singularity at z0, all the coefficients of the negative
powers of (z − z0) in its Laurent expansion are zero, and so, in particular, the residue
at z0 is zero. Furthermore, if f has a pole at z0, we shall see that its residue there can
be computed from a formula. Suppose first that z0 is a simple pole, that is, a pole of
order 1. Then for z near z0, we have

f (z) = a−1

z − z0
+ a0 + a1 (z − z0)+ a2 (z − z0)

2 + · · · ,

and so

(z − z0) f (z) = a−1 + (z − z0)
[
a0 + a1 (z − z0)+ a2 (z − z0)

2 + · · ·
]
.

By taking the limit as z → z0 we deduce that

lim
z→z0

(z − z0) f (z) = a−1 + 0.

Hence at a simple pole

Res ( f ; z0) = lim
z→z0

(z − z0) f (z). (3)

For example, the function f (z) = ez

z(z + 1)
has simple poles at z = 0 and z = −1;

therefore,

Res( f ; 0) = lim
z→0

z f (z) = lim
z→0

ez

z + 1
= 1,

and

Res( f ; −1) = lim
z→−1

(z + 1) f (z) = lim
z→−1

ez

z
= −e−1.

Another consequence of formula (3) is illustrated in the next example.

Example 2

Let f (z) = P(z)/Q(z), where the functions P(z) and Q(z) are both analytic at z0,
and Q has a simple zero at z0, while P (z0) �= 0. Prove that

Res ( f ; z0) = P (z0)

Q′ (z0)
.

Solution. Obviously f has a simple pole at z0 (see Sec. 5.6), so we can apply
formula (3). Using the fact that Q (z0) = 0, we see directly that

Res ( f ; z0) = lim
z→z0

(z − z0)
P(z)

Q(z)
= lim

z→z0

P(z)
Q(z)−Q(z0)

z−z0

= P (z0)

Q′ (z0)
. �
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Example 3

Compute the residue at each singularity of f (z) = cot z.

Solution. Since cot z = cos z/ sin z, the singularities of this function are simple
poles occurring at the points z = nπ , n = 0,±1,±2, . . .. Utilizing Example 2 with
P(z) = cos z, Q(z) = sin z, the residues at these points are given by

Res(cot z; nπ) = cos z

(sin z)′

∣∣∣∣
z=nπ

= cos nπ

cos nπ
= 1. �

To obtain the general formula for the residue at a pole of order m we need some
method of picking out the coefficient a−1 from the Laurent expansion. The reader
should encounter no difficulty in following the derivation of the next formula, which
was obtained for rational functions in Sec. 3.1 (see Eq. (21)).

Theorem 1. If f has a pole of order m at z0, then

Res ( f ; z0) = lim
z→z0

1

(m − 1)!
dm−1

dzm−1

[
(z − z0)

m f (z)
]
. (4)

Proof. Starting with the Laurent expansion for f around z0,

f (z) = a−m

(z − z0)
m + · · · + a−2

(z − z0)
2

+ a−1

z − z0
+ a0 + a1 (z − z0)+ · · · ,

we multiply by (z − z0)
m ,

(z − z0)
m f (z) = a−m + · · · + a−2 (z − z0)

m−2 + a−1 (z − z0)
m−1

+ a0 (z − z0)
m + a1 (z − z0)

m+1 + · · · .
and differentiate m − 1 times to derive

dm−1

dzm−1

[
(z − z0)

m f (z)
]

= (m − 1)! a−1 + m! a0 (z − z0)+ (m + 1)!
2

a1 (z − z0)
2 + · · · .

Hence

lim
z→z0

dm−1

dzm−1

[
(z − z0)

m f (z)
] = (m − 1)!a−1 + 0,

which is equivalent to Eq. (4). �
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Example 4
Compute the residues at the singularities of

f (z) = cos z

z2(z − π)3
.

Solution. This function has a pole of order 2 at z = 0 and a pole of order 3 at
z = π . Applying formula (4) we find

Res(0) = lim
z→0

1

1!
d

dz

[
z2 f (z)

]
= lim

z→0

d

dz

[
cos z

(z − π)3

]
= lim

z→0

[−(z − π) sin z − 3 cos z

(z − π)4

]
= −3

π4
,

Res(π) = lim
z→π

1

2!
d2

dz2

[
(z − π)3 f (z)

]
= lim

z→π

1

2

d2

dz2

[
cos z

z2

]
= lim

z→π

1

2

[(
6 − z2

)
cos z + 4z sin z

z4

]
= − (6 − π2

)
2π4

. �

We have already seen how to compute the integral
∫
�

f (z) dz when f (z) has only
one singularity inside �. Let’s now turn to the more general case where � is a simple
closed positively oriented contour and f (z) is analytic inside and on � except for a fi-
nite number of isolated singularities at the points z1, z2, . . . , zn inside � (see Fig. 6.2).
Notice that by the methods of Sec. 4.4 we can express the integral along � in terms of
the integrals around the circles C j in Fig. 6.3:∫

�

f (z) dz =
n∑

j=1

∫
C j

f (z) dz.

However, because z j is the only singularity of f inside C j , we know that∫
C j

f (z) dz = 2π i Res
(
z j
)
.

Figure 6.2 Isolated singularities inside contour.
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Figure 6.3 Equivalent contours for integration.

Hence we have established the following important result.

Theorem 2 (Cauchy’s Residue Theorem). If � is a simple closed positively ori-
ented contour and f is analytic inside and on � except at the points z1, z2, . . . , zn
inside �, then ∫

�

f (z) dz = 2π i
n∑

j=1

Res
(
z j
)
. (5)

Example 5
Evaluate

�
∫

|z|=2

1 − 2z

z(z − 1)(z − 3)
dz.

Solution. The integrand f (z) = (1 − 2z)/[z(z − 1)(z − 3)] has simple poles
at z = 0, z = 1, and z = 3. However, only the first two of these points lie inside
� : |z| = 2. Thus by the residue theorem

�
∫

|z|=2
f (z) dz = 2π i[Res(0)+ Res(1)],

and since

Res(0) = lim
z→0

z f (z) = lim
z→0

1 − 2z

(z − 1)(z − 3)
= 1

3
,

Res(1) = lim
z→1

(z − 1) f (z) = lim
z→1

1 − 2z

z(z − 3)
= 1

2
,

we obtain

�
∫

|z|=2
f (z) dz = 2π i

(
1

3
+ 1

2

)
= 5π i

3
. �
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Example 6
Compute

�
∫

|z|=5

[
ze3/z + cos z

z2(z − π)3

]
dz.

Solution. The given integral can obviously be expressed as the sum

�
∫

|z|=5
ze3/z dz + �

∫
|z|=5

cos z

z2(z − π)
dz,

which, by the residue theorem, equals

2π i

[
Res

(
ze3/z; 0

)
+ Res

(
cos z

z2(z − π)3
; 0

)
+ Res

(
cos z

z2(z − π)3
;π
)]
.

These residues were computed in Examples 1 and 4; the desired answer is therefore

2π i

[
9

2
− 3

π4
−
(
6 − π2

)
2π4

]
. �

EXERCISES 6.1

1. Determine all the isolated singularities of each of the following functions and com-
pute the residue at each singularity.

(a)
e3z

z − 2
(b)

z + 1

z2 − 3z + 2
(c)

cos z

z2
(d)
(

z − 1

z + 1

)3

(e)
ez

z(z + 1)3
(f) sin

(
1

3z

)
(g) tan z (h)

z − 1

sin z

(i) z2
/
(1 − √

z), where
√

z denotes the principal branch.

2. Explain why Cauchy’s integral formula can be regarded as a special case of the
residue theorem.

3. Evaluate each of the following integrals by means of the Cauchy residue theorem.

(a) �
∫

|z|=5

sin z

z2 − 4
dz (b) �

∫
|z|=3

ez

z(z − 2)3
dz

(c) �
∫

|z|=2π
tan z dz (d) �

∫
|z|=3

eiz

z2(z − 2)(z + 5i)
dz

(e) �
∫

|z|=1

1

z2 sin z
dz (f) �

∫
|z|=3

3z + 2

z4 + 1
dz

(g) �
∫

|z|=8

1

z2 + z + 1
dz
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314 Residue Theory

4. Let f have an isolated singularity at z0 ( f analytic in a punctured neighborhood of
z0). Show that the residue of the derivative f ′ at z0 is equal to zero.

5. Is there a function f having a simple pole at z0 with Res ( f ; z0) = 0? How about a
function with a pole of order 2 at z0 and Res( f ; z0) = 0?

6. Suppose that f is analytic and has a zero of order m at the point z0. Show that the
function g(z) = f ′(z)/ f (z) has a simple pole at z0 with Res(g; z0) = m.

7. Evaluate
�
∫

|z|=1
e1/z sin(1/z) dz.

6.2 Trigonometric Integrals over [0, 2π]
Our goal in this section is to apply the residue theorem to evaluate real integrals of the
form ∫ 2π

0
U (cos θ, sin θ) dθ, (1)

where U (cos θ, sin θ) is a rational function (with real coefficients) of cos θ and sin θ
and is finite over [0, 2π]. An example of such an integral is∫ 2π

0

sin2 θ

5 + 4 cos θ
dθ .

We shall show that (1) can be identified as the parametrized form of a contour
integral,

∫
C F(z) dz, of some complex function F around the positively oriented unit

circle C : |z| = 1. To establish this identification we parametrize C by

z = eiθ (0 ≤ θ ≤ 2π).

For such z we have
1

z
= 1

eiθ
= e−iθ ,

and since

cos θ = eiθ + e−iθ

2
, sin θ = eiθ − e−iθ

2i
,

we have the identities†

cos θ = 1

2

(
z + 1

z

)
, sin θ = 1

2i

(
z − 1

z

)
. (2)

Furthermore, when integrating along C ,

dz = ieiθ dθ = i z dθ,

†Of course we could use z instead of 1/z, but this would forfeit analyticity.
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6.2 Trigonometric Integrals over [0, 2π] 315

so that

dθ = dz

i z
. (3)

Making the substitutions (2) and (3) in the integral (1), we see that∫ 2π

0
U (cos θ, sin θ) dθ =

∫
C

F(z) dz, (4)

where the new integrand F is

F(z) := U

[
1

2

(
z + 1

z

)
,

1

2i

(
z − 1

z

)]
· 1

i z
;

integration over [0, 2π] has thus been replaced by integration around C .
Because of the form of U , the function F must be a rational function of z. Hence

it has only removable singularities (which can be ignored in evaluating integrals) or
poles. Consequently, by the residue theorem, our trigonometric integral equals 2π i
times the sum of the residues at those poles of F that lie inside C .

The procedure is illustrated in the next example.

Example 1
Evaluate

I =
∫ 2π

0

sin2 θ

5 + 4 cos θ
dθ.

Solution. First observe that the denominator, 5 + 4 cos θ , is never zero, so the
integrand is finite over [0, 2π]. Performing the substitutions (2) and (3) for cos θ , sin θ ,
and dθ , we obtain

I =
∫

C

[
1

2i

(
z − 1

z

)]2

5 + 4

[
1

2

(
z + 1

z

)] dz

i z
,

which after some algebra reduces to

I = − 1

4i

∫
C

(
z2 − 1

)2
z2
(
2z2 + 5z + 2

) dz.

Clearly the integrand

g(z) :=
(
z2 − 1

)2
z2
(
2z2 + 5z + 2

) =
(
z2 − 1

)2
2z2
(

z + 1
2

)
(z + 2)

has simple poles at z = − 1
2 and z = −2 and has a pole of order 2 at the origin.

However, only − 1
2 and 0 lie inside the unit circle C , so that

I = − 1

4i
· 2π i

[
Res

(
g; −1

2

)
+ Res(g; 0)

]
.
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316 Residue Theory

Utilizing the formulas of the preceding section we find

Res

(
g; −1

2

)
= lim

z→−1/2

(
z + 1

2

)
g(z) = lim

z→−1/2

(
z2 − 1

)2
2z2(z + 2)

= 3

4
,

and

Res(g; 0) = lim
z→0

1

1!
d

dz

[
z2g(z)

]
= lim

z→0

d

dz

[ (
z2 − 1

)2
2z2 + 5z + 2

]

=
(
2z2 + 5z + 2

) · 2
(
z2 − 1

)
2z − (z2 − 1

)2
(4z + 5)(

2z2 + 5z + 2
)2

∣∣∣∣∣
z=0

= −5

4
.

Hence

I = −1

4i
2π i

[
3

4
− 5

4

]
= π

4
. �

As a rough check on our calculations we observe that the integrand of Example 1
is real and nonnegative, so I must be a positive real number, which is consistent with
our answer of π/4.

Example 2
Evaluate

I =
∫ π

0

dθ

2 − cos θ
.

Solution. The catch here is that the integral is taken over [0, π] instead of [0, 2π].
However it is easy to see that, since cos θ = cos(2π − θ),∫ π

0

dθ

2 − cos θ
=
∫ 2π

π

dθ

2 − cos θ
,

and, therefore, ∫ 2π

0

dθ

2 − cos θ
= 2I.

Substituting for cos θ and dθ we have

2I =
∫

C

1

2 − 1

2

(
z + 1

z

) · dz

i z
= −2

i

∫
C

dz

z2 − 4z + 1
. (5)

By the quadratic formula the zeros of the denominator are

z1 := 2 − √
3 and z2 := 2 + √

3,
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6.2 Trigonometric Integrals over [0, 2π] 317

and so the integrand

g(z) := 1

z2 − 4z + 1
= 1

(z − z1) (z − z2)

has simple poles at these points. But only z1 lies inside C , and the residue there is
given by

Res (g; z1) = lim
z→z1

(z − z1) g(z) = lim
z→z1

1

(z − z2)

= 1

z1 − z2
= − 1

2
√

3
.

Hence from Eq. (5)

2I = −2

i
· 2π i

(
− 1

2
√

3

)
= 2π√

3
,

or
I = π√

3
. �

EXERCISES 6.2

Using the method of residues, verify each of the following.

1.
∫ 2π

0

dθ

2 + sin θ
= 2π√

3

2.
∫ π

0

8 dθ

5 + 2 cos θ
= 8π√

21

3.
∫ π

0

dθ

(3 + 2 cos θ)2
= 3π

√
5

25

4.
∫ π

−π
dθ

1 + sin2 θ
= π

√
2

5.
∫ 2π

0

dθ

1 + a cos θ
= 2π√

1 − a2
, a2 < 1

6.
∫ 2π

0

sin2 θ

a + b cos θ
dθ = 2π

b2

(
a −

√
a2 − b2

)
, a > |b| > 0

7.
∫ π

0

dθ(
a + sin2 θ

)2 = π(2a + 1)

2
√(

a2 + a
)3 , a > 0

8.
∫ 2π

0

dθ

a2 sin2 θ + b2 cos2 θ
= 2π

ab
, a, b > 0
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318 Residue Theory

9.
∫ 2π

0
(cos θ)2n dθ = π · (2n)!

22n−1(n!)2 , n = 1, 2, . . .

10.
∫ 2π

0
ecos θ cos(nθ − sin θ) dθ = 2π

n! , n = 1, 2, . . .

11.
∫ π

0
tan(θ + ia) dθ = π i · sign a, a real and nonzero

6.3 Improper Integrals of Certain Functions
over (−∞,∞)

If f (x) is a function continuous on the nonnegative real axis 0 ≤ x < ∞, then the
improper integral of f over [0,∞) is defined by∫ ∞

0
f (x) dx := lim

b→∞

∫ b

0
f (x) dx, (1)

provided that this limit exists.† For example,∫ ∞

0
e−2x dx = lim

b→∞

∫ b

0
e−2x dx = lim

b→∞
−e−2x

2

∣∣∣∣∣
b

0

= lim
b→∞

[
−e−2b

2
+ 1

2

]
= 1

2
.

Similarly, when f (x) is continuous on (−∞, 0], we set∫ 0

−∞
f (x) dx := lim

c→−∞

∫ 0

c
f (x) dx . (2)

If it turns out that both of the limits (1) and (2) exist for a function f continuous on
the whole real line, then we say that the improper integral of f over (−∞,∞) exists
and we write ∫ ∞

−∞
f (x) dx : = lim

c→−∞

∫ 0

c
f (x) dx + lim

b→∞

∫ b

0
f (x) dx

=
∫ 0

−∞
f (x) dx +

∫ ∞

0
f (x) dx .

In such a case the value of the improper integral over (−∞,∞) can be computed by
taking a single limit, namely,∫ ∞

−∞
f (x) dx = lim

ρ→∞

∫ ρ

−ρ
f (x) dx .

†More generally,
∫∞

a f (x) dx := lim
b→∞

∫ b
a f (x) dx if this limit exists.
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6.3 Improper Integrals of Certain Functions over (−∞,∞) 319

However, we caution the reader that this last limit may exist for certain functions f
even though its improper integral over (−∞,∞) does not. Indeed, consider f (x) = x .
Its improper integral over (−∞,∞) does not exist because the limit

lim
b→∞

∫ b

0
x dx = lim

b→∞
x2

2

∣∣∣∣∣
b

0

= lim
b→∞

b2

2

does not exist (as a finite number). However,

lim
ρ→∞

∫ ρ

−ρ
x dx = lim

ρ→∞
x2

2

∣∣∣∣∣
ρ

−ρ
= lim
ρ→∞ 0 = 0.

For this reason we introduce the following terminology: Given any function f contin-
uous on (−∞,∞) the limit

lim
ρ→∞

∫ ρ

−ρ
f (x) dx

(if it exists) is called the Cauchy principal value of the integral of f over (−∞,∞),
and we write

p.v.
∫ ∞

−∞
f (x) dx := lim

ρ→∞

∫ ρ

−ρ
f (x) dx .

For example,

p.v.
∫ ∞

−∞
x dx = 0.

We reiterate that whenever the improper integral
∫∞
−∞ f (x) dx exists, it must equal its

principal value (p.v.).
We shall now show how the theory of residues can be used to compute p.v. inte-

grals for certain functions f .

Example 1
Evaluate

I = p.v.
∫ ∞

−∞
dx

x4 + 4

(
= lim
ρ→∞

∫ ρ

−ρ
dx

x4 + 4

)
.

Solution. As a first step, we recognize that the integral Iρ defined by

Iρ :=
∫ ρ

−ρ
dx

x4 + 4

can be interpreted as a contour integral of an analytic function; in fact

Iρ =
∫
γρ

dz

z4 + 4
,

where γρ is the directed segment of the real axis from −ρ to +ρ. Now the key to using
residue theory to find I lies in constructing (for each sufficiently large value of ρ) a
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320 Residue Theory

simple closed contour �ρ such that γρ is one of its components, that is, �ρ = (γρ, γ ′
ρ

)
,

and such that the integral of 1
/(

z4 + 4
)

along the other component γ ′
ρ is somehow

known. For then we will have∫
�ρ

dz

z4 + 4
= Iρ +

∫
γ ′
ρ

dz

z4 + 4
,

and if �ρ is positively oriented, the residue theorem yields

2π i ·
∑(

residues inside �ρ
) = Iρ +

∫
γ ′
ρ

dz

z4 + 4
.

Consequently, the integral I is evaluated by

I = lim
ρ→∞ Iρ = lim

ρ→∞ 2π i
∑(

residues inside �ρ
)− lim

ρ→∞

∫
γ ′
ρ

dz

z4 + 4
, (3)

provided the limits on the right exist. Actually, we see from Eq. (3) that it is only the
limiting value of the integrals over γ ′

ρ that must be known in order to apply the residue
theory.

Now among the many curves that “close the contour γρ ,” that is, that start at z = ρ

and terminate at z = −ρ, how are we to find a suitable curve γ ′
ρ? Observe that the

integrand, 1
/(

z4 + 4
)

, is quite small in modulus when |z| is large. This suggests that
if we choose our curves γ ′

ρ far enough away from the origin, the integrals over them
might well be negligible, that is, approach zero as ρ → ∞. Thus an obvious thing to
try for γ ′

ρ is the half-circle C+
ρ parametrized by

C+
ρ : z = ρeit (0 ≤ t ≤ π) (4)

(see Fig. 6.4). To see if this works, we note that |z| = ρ on C+
ρ , so that by the triangle

inequality ∣∣∣∣ 1

z4 + 4

∣∣∣∣ ≤ 1

|z|4 − 4
= 1

ρ4 − 4

(
for ρ4 > 4

)
,

and hence ∣∣∣∣∣
∫

C+
ρ

dz

z4 + 4

∣∣∣∣∣ ≤ 1

ρ4 − 4
· πρ,

which certainly does go to zero as ρ → ∞.
So now all we have to do in Eq. (3) is to evaluate the appropriate residues. First

we locate the singularities of 1
/(

z4 + 4
)

. These occur at the zeros of z4 + 4, that is,
at

z1 = 1 + i, z2 = −1 + i, z3 = −1 − i, z4 = 1 − i,

and the function

1

z4 + 4
= 1

(z − z1) (z − z2) (z − z3) (z − z4)
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6.3 Improper Integrals of Certain Functions over (−∞,∞) 321

Figure 6.4 Closing the contour.

has simple poles at these points. Since z3 and z4 lie in the lower half-plane, they are
always excluded from the interior of the semicircular contour �ρ of Fig. 6.4, but z1

and z2 lie inside �ρ for every ρ >
√

2. Thus, for such ρ,∫
�ρ

dz

z4 + 4
= 2π i [Res (z1)+ Res (z2)]

= 2π i

(
lim

z→z1

z − z1

z4 + 4
+ lim

z→z2

z − z2

z4 + 4

)
= 2π i

[
1

(z1 − z2)(z1 − z3)(z1 − z4)
+ 1

(z2 − z1)(z2 − z3)(z2 − z4)

]
= 2π i

[
1

2(2 + 2i)2i
+ 1

(−2)(2i)(−2 + 2i)

]
= 2π i

[−1 − i

16
+ 1 − i

16

]
= π

4
.

Putting this all together in Eq. (3) (with γ ′
ρ = C+

ρ ) we have

I = lim
ρ→∞

π

4
− lim
ρ→∞

∫
C+
ρ

dz

z4 + 4
= π

4
− 0 = π

4
. �

The technique of using expanding semicircular contours �ρ can readily be applied
to a general class of integrands f . Indeed, the success of the procedure illustrated in
Example 1 depends only on the following two conditions:

(i) f is analytic on and above the real axis except for a finite number of isolated
singularities in the open upper half-plane Im z > 0 (this ensures that for ρ
sufficiently large, all the singularities in the upper half-plane will lie inside the
contour �ρ of Fig. 6.4), and

(ii) lim
ρ→∞

∫
C+
ρ

f (z) dz = 0.
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322 Residue Theory

Whenever these conditions are satisfied, the value of the integral

p.v.
∫ ∞

−∞
f (x) dx

is given by 2π i times the sum of the residues of f at the singularities in the upper half-
plane. (Of course, the lower half-plane can be used whenever analogous conditions
hold there; see Prob. 8.)

A class of rational functions having property (ii) is given in the next lemma.

Lemma 1. If f (z) = P(z)/Q(z) is the quotient of two polynomials such that

degree Q ≥ 2 + degree P, (5)

then

lim
ρ→∞

∫
C+
ρ

f (z) dz = 0, (6)

where C+
ρ is the upper half-circle of radius ρ defined in Eq. (4).

Proof. Estimate f (z) by writing

| f (z)| = |P(z)|
|Q(z)| =|a0 + a1z + a2z2 + · · · + am zm |

|b0 + b1z + b2z2 + · · · + bnzn|
= |a0/zm + a1/zm−1 + a2/zm−2 + · · · + am |

|b0/zn + b1/zn−1 + b2/zn−2 + · · · + bn|
|zm |
|zn| .

As |z| → ∞ the first term approaches |am |/|bn|, so for sufficiently large |z| it will
certainly be less than, say, |am |/|bn| + 1. Consequently when n ≥ 2 + m and ρ is
sufficiently large,∣∣∣∣∣

∫
C+
ρ

f (z) dz

∣∣∣∣∣ ≤
( |am |

|bn| + 1

)
ρm−n · πρ =

( |am |
|bn| + 1

)
πρ1+m−n → 0

as ρ → ∞. �

We emphasize that the same proof shows that Eq. (6) remains valid if integra-
tion along C+

ρ is replaced by integration along the lower half-circle C−
ρ : z = ρe−i t

(0 ≤ t ≤ π).

Example 2
Compute

p.v.
∫ ∞

−∞
x2(

x2 + 1
)2 dx .
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Figure 6.5 Closed contour for Example 2.

Solution. Since the integrand has no singularities on the real axis and has numer-
ator degree 2 and denominator degree 4, the expanding semicircular contour method
is justified thanks to Lemma 1. On writing

f (z) := z2(
z2 + 1

)2 = z2

(z − i)2(z + i)2
,

we see that poles occur at z = ±i . Thus, for any ρ > 1, the integral along the closed
contour �ρ in Fig. 6.5 is given by∫

�ρ

f (z) dz = 2π i Res( f ; +i).

Since +i is a second-order pole, we have from the residue formula (Theorem 1)

Res( f ; +i) = lim
z→i

1

1!
d

dz

[
(z − i)2 f (z)

]
= lim

z→i

d

dz

[
z2

(z + i)2

]

= lim
z→i

[
(z + i)2z − 2z2

(z + i)3

]
= 1

4i
.

Therefore, ∫
�ρ

f (z) dz = 2π i · 1

4i
= π

2
(for all ρ > 1). (7)

On the other hand, ∫
�ρ

f (z) dz =
∫ ρ

−ρ
f (x) dx +

∫
C+
ρ

f (z) dz,

and so on taking the limit as ρ → ∞ in this last equation we deduce from Eq. (7) and
Lemma 1 that

π

2
= lim
ρ→∞

∫ ρ

−ρ
f (x) dx + 0.
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Hence
π

2
= p.v.

∫ ∞

−∞
x2(

x2 + 1
)2 dx . �

As we shall see in the next section, semicircular contours are also useful in eval-
uating certain integrals involving trigonometric functions. The following example is
atypical of the integrals that arise in many applications, because the closing contour is
not semicircular.

Example 3
Compute

p.v.
∫ ∞

−∞
eax

1 + ex
dx, for 0 < a < 1.

Solution. Observe that the function eax
/
(1 + ex ) has an infinite number of sin-

gularities in both the upper and lower half-planes; these occur at the points

z = (2n + 1)π i (n = 0,±1,±2, . . .).

Hence if we employ expanding semicircles, the contribution due to the residues will
result in an infinite series, which is undesirable. Moreover, there is no obvious way to
estimate the contribution due to the semicircles themselves!

A better “return path” is revealed through careful examination of the integrand.
The denominator of the function eax/ (1 + ex ) is unchanged if z is shifted by 2π i ,
whereas the numerator changes by a factor of e2πai . Thus if we consider the rectan-
gular contour �ρ in Fig. 6.6, the contribution from γ3 is easy to assess; it’s merely
−e2πai times the contribution from γ1 (negative because the path runs from right to
left). Therefore ∫

γ3

eaz

1 + ez
dz = −e2πai

∫
γ1

eaz

1 + ez
dz.

For γ2 : z = ρ + i t , 0 ≤ t ≤ 2π , we have∣∣∣∣∫
γ2

eaz

1 + ez
dz

∣∣∣∣ =
∣∣∣∣∣
∫ 2π

0

ea(ρ+i t)

1 + eρ+i t
i dt

∣∣∣∣∣
≤ eaρ

eρ − 1
· 2π,

which goes to zero as ρ → ∞ since a < 1.
Similarly, on γ4 : z = −ρ + i(2π − t), 0 ≤ t ≤ 2π , we have∣∣∣∣∫

γ4

eaz

1 + ez
dz

∣∣∣∣ =
∣∣∣∣∣
∫ 2π

0

ea[−ρ+i(2π−t)]

1 + e−ρ+i(2π−t)
(−i) dt

∣∣∣∣∣
≤ e−aρ

1 − e−ρ · 2π,
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Figure 6.6 Closed contour for Example 3.

again approaching zero as ρ → ∞ since a > 0.
As a result, on taking the limit as ρ → ∞ we have

lim
ρ→∞

∫
�ρ

eaz

1 + ez
dz =

(
1 − ea2π i

)
p.v.

∫ ∞

−∞
eax

1 + ex
dx . (8)

Now we use residue theory to evaluate the contour integral in Eq. (8). For each
ρ > 0, the function eaz/(1 + ez) is analytic inside and on �ρ except for a simple pole
at z = π i , the residue there being given by

Res(π i) = eaz

d

dz
(1 + ez)

∣∣∣∣∣∣∣
z=π i

= eaπ i

eπ i
= −eaπ i (9)

(recall Example 2, Sec. 6.1). Consequently, putting Eqs. (8) and (9) together we obtain

p.v.
∫ ∞

−∞
eax

1 + ex
dx = 1

1 − ea2π i
· (2π i)

(
−eaπ i

)
= −2π i

e−aπ i − eaπ i

= π

sin aπ
. �

EXERCISES 6.3

Verify the integral formulas in Problems 1–7 with the aid of residues.

1. p.v.
∫ ∞

−∞
dx

x2 + 2x + 2
= π

2. p.v.
∫ ∞

−∞
x2(

x2 + 9
)2 dx = π

6

325



326 Residue Theory

3.
∫ ∞

0

x2 + 1

x4 + 1
dx = π√

2

4. p.v.
∫ ∞

−∞
dx(

x2 + 1
) (

x2 + 4
) = π

6

5. p.v.
∫ ∞

−∞
x(

x2 + 4x + 13
)2 dx = − π

27

6.
∫ ∞

0

x2(
x2 + 1

) (
x2 + 4

) dx = π

6

7.
∫ ∞

0

x6(
x4 + 1

)2 dx = 3π
√

2

16

8. Show that if f (z) = P(z)/Q(z) is the quotient of two polynomials such that
deg Q ≥ 2 + deg P , where Q has no real zeros, then p.v.

∫∞
−∞ f (x) dx equals

−2π i ·
∑

[residues of f (z) at the poles in the lower half-plane].

9. Show that

p.v.
∫ ∞

−∞
e2x

cosh(πx)
dx = sec 1

by integrating e2z
/

cosh(π z) around rectangles with vertices at z = ±ρ, ρ + i ,
−ρ + i .

10. Given that ∫ ∞

0
e−x2

dx =
√
π

2
,

integrate e−z2
around a rectangle with vertices at z = 0, ρ, ρ + λi , and λi (with

λ > 0) and let ρ → ∞ to derive

(a)
∫ ∞

0
e−x2

cos(2λx) dx =
√
π

2
e−λ2

(b)
∫ ∞

0
e−x2

sin(2λx) dx = e−λ2
∫ λ

0
ey2

dy

(The right-hand side of (b), as a function of λ, is known as the Dawson integral and
is tabulated by Abramowitz and Stegun in Ref. [5].)

11. Show that ∫ ∞

0

dx

x3 + 1
= 2π

√
3

9

by integrating 1/(z3 + 1) around the boundary of the circular sector
Sρ : {z = reiθ : 0 ≤ θ ≤ 2π/3, 0 ≤ r ≤ ρ

}
and letting ρ → ∞.

12. Confirm the values of the integrals discussed in Prob. 18, Exercises 4.7.
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6.3 Improper Integrals of Certain Functions over (−∞,∞) 327

13. Show that ∫ ∞

−∞
1(

1 + x2
)n+1

dx = π(2n)!
22n(n!)2 , for n = 0, 1, 2, . . . .

Summation of Series

14. Let f (z) be a rational function of the form P(z)/Q(z), where deg Q ≥ 2 + deg P .
Assume that no poles of f (z) occur at the integer points z = 0,±1,±2, . . .. Com-
plete each of the following steps to establish the summation formula

lim
N→+∞

N∑
k=−N

f (k) = −{sum of the residues of π f (z) cot(π z) at the poles of f (z)}.
(10)

(a) Show that for the function g(z) := π f (z) cot(π z), we have

Res(g; k) = f (k), k = 0,±1,±2, . . . .

(b) Let �N be the boundary of the square with vertices at (N + 1
2 )(1 + i),

(N + 1
2 )(−1 + i), (N + 1

2 )(−1 − i), (N + 1
2 )(1 − i), taken in that order,

where N is a positive integer. Show that there is a constant M independent of
N such that |π cot(π z)| ≤ M for all z on �N .

(c) Prove that

lim
N→+∞

∫
�N

π f (z) cot(π z) dz = 0,

where �N is defined previously.

(d) Use the residue theorem and parts (a) and (c) to derive (10).

15. Using the summation formula in Prob. 14 verify that

(a)
∞∑

k=−∞
1

k2 + 1
= π coth(π) [HINT: Take f (z) = 1/(z2 + 1).]

(b)
∞∑

k=−∞
1(

k − 1
2

)2
= π2

(c)
∞∑

k=1

1

k2
= π2

6
[HINT: The formula in Prob. 14 needs to be modified to com-

pensate for the pole of f (z) = 1
/

z2 at z = 0.]

16. Show that for n a positive integer,

∞∑
k=1

1

k2n
= (−1)n−1π2n 22n−1

(2n)! B2n,
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where the constants B2n are the Bernoulli numbers, which are defined by the power
series expansion

z

ez − 1
=

∞∑
k=0

Bk

k! zk .

[Compare Prob. 15(c).] [HINT: To determine the required residue at z = 0 when
f (z) = 1

/
z2n , show that

π z cot(π z) =
∞∑

k=0

(−1)k
B2k

(2k)! (2π z)2k .]

17. Show that if a is real and noninteger and 0 < r < 1,

(a)
∞∑

k=−∞
1

(k + a)2
= π2 csc2 πa

(b)
∞∑

k=−∞
1

k2 + a2
= π

a
cothπa

(c)
∞∑

k=−∞
k2 − a2(
k2 + a2

)2 = −π2csch2πa

(d)
∞∑

k=−∞
1

(k − r)2 + a2
= π

2a

sinh 2aπ

sin2 πr + sinh2 πa

(e)
∞∑

k=−∞
(k − r)2 − a2[
(k − r)2 + a2

]2 = π2

2

1 − cos 2πr cosh 2πa(
sin2 πr + sinh2 πa

)2
(f) For which complex values of a are the preceding identities valid?

18. To evaluate sums of the form
∑∞

k=−∞(−1)k f (k) involving a sign alternation, we
modify the approach of Prob. 14 by replacing π f (z) cot(π z) by π f (z) csc(π z).
Again assuming that f (z) is a rational function of the form P/Q, with deg Q ≥
2 + deg P and that f has no poles at the integer points, derive the formula

∞∑
k=−∞

(−1)k f (k) = −{sum of residues of π f (z) csc(π z) at the poles of f }.

19. Use the formula of Prob. 18 to verify that
∞∑

k=1

(−1)k

k2
= −π

2

12
.

6.4 Improper Integrals Involving
Trigonometric Functions

Our purpose in this section is to use residue theory to evaluate integrals of the general
forms

p.v.
∫ ∞

−∞
P(x)

Q(x)
cos mx dx, p.v.

∫ ∞

−∞
P(x)

Q(x)
sin mx dx,
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6.4 Improper Integrals Involving Trigonometric Functions 329

where m is real and P(x)/Q(x) denotes a certain rational function continuous on
(−∞,∞). As we shall show in the following example, the semicircular contour tech-
nique of the previous section can be applied, but some modifications are necessary.

Example 1
Compute

I = p.v.
∫ ∞

−∞
cos 3x

x2 + 4
dx .

Solution. In utilizing semicircular contours our first inclination is to deal with
the complex function

cos 3z

z2 + 4
. (1)

However, with this choice for f (z) we are doomed to failure because the modulus of
(1) does not go to zero in either the upper or lower half-plane. Indeed, when z = ±ρi
we have ∣∣∣∣ cos 3z

z2 + 4

∣∣∣∣ =
∣∣∣∣∣ei3z + e−i3z

2(z2 + 4)

∣∣∣∣∣ = e−3ρ + e3ρ

2
∣∣−ρ2 + 4

∣∣ , (2)

which becomes infinite as ρ → ∞.
Nonetheless, (2) contains a clue as to how to circumvent this difficulty. The term

ei3z = ei3x e−3y is bounded in the upper half-plane, and e−i3z = e−i3x e3y is bounded
in the lower half-plane. So we write

I = I1 + I2 = p.v.
∫ ∞

−∞
ei3x

2(x2 + 4)
dx + p.v.

∫ ∞

−∞
e−i3x

2(x2 + 4)
dx (3)

and close the contour for I1 with semicircles in the upper half-plane, but use semicir-
cles in the lower half-plane for I2. Specifically, for I1 we deal with the function

f1(z) := e3i z

2(z2 + 4)
.

We encounter singularities at z = ±2i , and because

| f1(z)| = | f1(x + iy)| =
∣∣e3i x · e−3y

∣∣
2
∣∣z2 + 4

∣∣ = e−3y

2
∣∣z2 + 4

∣∣ ,
we have in the upper half-plane (y ≥ 0)

| f1(z)| ≤ 1

2
∣∣z2 + 4

∣∣ .
Thus for any ρ > 2, the integral over the upper half-circle C+

ρ in Fig. 6.7 is
bounded by ∣∣∣∣∣

∫
C+
ρ

f1(z) dz

∣∣∣∣∣ ≤ πρ

2(ρ2 − 4)
,
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Figure 6.7 Contours for Example 1.

and so it goes to zero as ρ → ∞. Furthermore, since +2i is the only singularity in the
upper half-plane, we have for ρ > 2∫ ρ

−ρ
f1(x) dx +

∫
C+
ρ

f (z) dz = 2π i Res( f1; 2i).

Hence on taking the limit as ρ → ∞ we get

p.v.
∫ ∞

−∞
e3i x

2(x2 + 4)
dx + 0 = 2π i Res( f1; 2i).

But

Res( f1; 2i) = lim
z→2i

(z − 2i) f1(z) = lim
z→2i

e3i z

2(z + 2i)
= e−6

8i
.

Thus

I1 = 2π i · e−6

8i
= π

4e6
.

The integral I2 is very similar: we employ the function

f2(z) := e−3i z

2(z2 + 4)
,

whose singularities coincide with those of f1, and whose integral over the lower half-
circle C−

ρ in Fig. 6.7 also satisfies∣∣∣∣∣
∫

C−
ρ

f2(z) dz

∣∣∣∣∣ ≤ πρ

2(ρ2 − 4)
.
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However, the combination ∫ ρ

−ρ
f2(x) dx +

∫
C−
ρ

f2(z) dz

equals minus 2π i Res( f2; −2i), because the contour enclosing the singularity −2i is
counterclockwise in this case! Consequently, taking the limit as ρ → ∞ we find

p.v.
∫ ∞

−∞
e−3i x

2(x2 + 4)
dx + 0 = −2π i lim

z→−2i
(z + 2i) f2(z)

= −2π i lim
z→−2i

e−3i z

2(z − 2i)
= π

4e6
.

Thus I = I1 + I2 = π/(2e6).† �

The technique of Example 1 can be used to evaluate any integral of the form

p.v.
∫ ∞

−∞
eimx P(x)

Q(x)
dx (m > 0), (4)

where P and Q are polynomials, Q has no real zeros, and the degree of Q exceeds
that of P by at least 2. Indeed, the function eimz P(z)/Q(z) has only a finite number
of singularities and, for large ρ, its integral over C+

ρ is bounded by 1 · (K/ρ2) · πρ,
which goes to zero as ρ → ∞. Of course, if m < 0 we simply use C−

ρ . However,
in applications it is sometimes necessary to evaluate integrals such as (4) where the
degree of Q is just one higher than that of P . For example, consider

p.v.
∫ ∞

−∞
eix x

1 + x2
dx . (5)

If we estimate the integral of eizz/(1+z2) over C+
ρ as before, we find that it is bounded

by 1 · (K/ρ) · πρ = Kπ , for some constant K . Since this does not go to zero, it is by
no means obvious that the semicircular contour method will work in evaluating (5).

Surprisingly, it turns out that the integrals of such a function over C+
ρ do go to zero

as ρ → ∞; however, a much finer integral estimate is needed to show this. Jordan’s
lemma fills this need. First, we establish a rather obvious inequality.

Lemma 2. Suppose that f (t) and M(t) are continuous functions on the real
interval a ≤ t ≤ b, with f complex and M real-valued. If | f (t)| ≤ M(t) on this
interval then ∣∣∣∣∫ b

a
f (t) dt

∣∣∣∣ ≤ ∫ b

a
M(t) dt. (6)

†See remark at end of this section for an alternative approach to computing I .
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Proof. For a careful proof of (6) we must revert to the integration theory pre-
sented in Chapter 4. Choose an arbitrary subdivision of the interval [a, b], say,

a = τ0 < τ1 < · · · < τn = b,

and form a Riemann sum for f :

n∑
k=1

f (ck)�τk .

Since | f (t)| ≤ M(t) for all t , we have by the triangle inequality∣∣∣∣∣
n∑

k=1

f (ck)�τk

∣∣∣∣∣ ≤
n∑

k=1

M(ck)�τk,

and we note that the right-hand side is a Riemann sum for M(t) over [a, b]. Because
the inequality holds for every partition of [a, b], inequality (6) follows by letting the
mesh tend to zero. �

As an immediate consequence of this lemma, we deduce that for any complex-
valued continuous function f (t),∣∣∣∣∫ b

a
f (t) dt

∣∣∣∣ ≤ ∫ b

a
| f (t)| dt. (7)

Lemma 3 (Jordan’s Lemma). If m > 0 and P/Q is the quotient of two poly-
nomials such that

degree Q ≥ 1 + degree P, (8)

then

lim
ρ→+∞

∫
C+
ρ

eimz P(z)

Q(z)
dz = 0, (9)

where C+
ρ is the upper half-circle of radius ρ.

Proof. Parametrizing C+
ρ we have∫

C+
ρ

eimz P(z)

Q(z)
dz =

∫ π

0
g(t) dt,

where

g(t) := eim
(
ρeit

) P
(
ρeit

)
Q
(
ρeit

) ρieit .

Now ∣∣∣eim
(
ρeit

)∣∣∣ = ∣∣∣eimρ cos t−mρ sin t
∣∣∣ = e−mρ sin t .

332



6.4 Improper Integrals Involving Trigonometric Functions 333

Furthermore, from (8) we know that there is some constant K such that∣∣∣∣∣ P
(
ρeit

)
Q
(
ρeit

) ∣∣∣∣∣ ≤ K

ρ
(for ρ large).

Thus

|g(t)| ≤ e−mρ sin t · K

ρ
· ρ = K e−mρ sin t ,

and so, by Lemma 2,∣∣∣∣∣
∫

C+
ρ

eimz P(z)

Q(z)
dz

∣∣∣∣∣ =
∣∣∣∣∫ π

0
g(t) dt

∣∣∣∣ ≤ K
∫ π

0
e−mρ sin t dt. (10)

To estimate the right-hand integral we first note that the function e−mρ sin t on [0, π] is
symmetric about t = π/2. Consequently,∫ π

0
e−mρ sin t dt = 2

∫ π/2

0
e−mρ sin t dt.

Figure 6.8 Graph of sin t .

Furthermore, if we consider the graph of sin t , we notice that it is concave down-
ward on [0, π/2]; thus it lies above the dashed line in Fig. 6.8. In other words,

sin t ≥ 2

π
t, for 0 ≤ t ≤ π

2
.

When mρ > 0, this last inequality implies that

e−mρ sin t ≤ e−mρ2t/π on [0, π/2],
and so ∫ π

0
e−mρ sin t dt = 2

∫ π/2

0
e−mρ sin t dt ≤ 2

∫ π/2

0
e−mρ2t/π dt

= 2

( −π
mρ2

) [
e−mρ − 1

]
<

π

mρ
.
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Hence from (10) we see that∣∣∣∣∣
∫

C+
ρ

eimz P(z)

Q(z)
dz

∣∣∣∣∣ ≤ K · π
mρ

;

consequently, the integral goes to zero as ρ → ∞. �

Clearly when m is negative the function eimz P(z)/Q(z) is not bounded in the
upper half-plane, but under assumption (8),

lim
ρ→∞

∫
C−
ρ

eimz P(z)

Q(z)
dz = 0 (m < 0),

where C−
ρ is the lower half-circle of radius ρ. To prove this result we need only make

the change of variable w = −z in (9).

Example 2
Evaluate

p.v.
∫ ∞

−∞
x sin x

1 + x2
dx .

Solution. Since sin x = (eix − e−i x )/(2i), we first compute the integral

I1 := p.v.
1

2i

∫ ∞

−∞
xeix

1 + x2
dx .

Because the hypotheses of Jordan’s lemma are satisfied when m = 1 and P/Q =
x/(1+x2), the integral I1 equals 2π i times the sum of the residues of zeiz/[2i(1+z2)]
in the upper half-plane. Writing

zeiz

2i(1 + z2)
= zeiz

2i(z + i)(z − i)
,

we find for the residue at z = +i the value

lim
z→i

zeiz

2i(z + i)
= iei2

2i(i + i)
= −ie−1

4
.

Consequently,

I1 = 2π i · −ie−1

4
= πe−1

2
.

By similar reasoning we compute

I2 := −p.v.
1

2i

∫ ∞

−∞
xe−i x

1 + x2
dx,

closing the contour in the lower half-plane. We have

I2 = (−2π i)Res

( −ze−i z

2i(z + i)(z − i)
; −i

)
= −2π i

ie(−i)2

2i(−i − i)
= πe−1

2
.

Consequently, I = I1 + I2 = π/e. �
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Example 3
Evaluate

I = p.v.
∫ ∞

−∞
cos x

x + i
dx .

Solution. The substitution

cos x = eix + e−i x

2

leads to the representation

I = p.v.
1

2

∫ ∞

−∞
eix

x + i
dx + p.v.

1

2

∫ ∞

−∞
e−i x

x + i
dx, (11)

and we deal with each integral separately.
For

I1 := p.v.
1

2

∫ ∞

−∞
eix

x + i
dx

we close the contour [−ρ, ρ] with the half-circle C+
ρ in the upper half-plane. Then,

by Jordan’s lemma,

lim
ρ→∞

1

2

∫
C+
ρ

eiz

z + i
dz = 0,

and since the only singularity of the integrand is in the lower half-plane at z = −i , we
deduce that I1 = 0.

The second integral

I2 := p.v.
1

2

∫ ∞

−∞
e−i x

x + i
dx

requires us to close the contour [−ρ, ρ] in the lower half-plane with the semicircle
C−
ρ , enclosing the singularity at −i . We obtain

I2 = −2π i Res

(
e−i z

2(z + i)
; −i

)
= −2π i

2
lim

z→−i
e−i z = −iπe−1.

Consequently, I = I1 + I2 = −iπ/e. �

An alternate, slightly quicker, procedure for Examples 1 and 2 is based on recog-
nizing that the integrals therein are expressible as

p.v.
∫ ∞

−∞
cos 3x

x2 + 4
dx = Re p.v.

∫ ∞

−∞
ei3x

x2 + 4
dx

and

p.v.
∫ ∞

−∞
x sin x

1 + x2
dx = Im p.v.

∫ ∞

−∞
xeix

1 + x2
dx,
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respectively. Then we only have to perform one evaluation of residues, in the upper
half-plane, and take the real or imaginary parts at the end. However, this shortcut is
not valid for Example 3 since

p.v.
∫ ∞

−∞
cos x

x + i
dx �= Re p.v.

∫ ∞

−∞
eix

x + i
dx .

In fact the left-hand member is pure imaginary, as we have seen.

EXERCISES 6.4

Using the method of residues, verify the integral formulas in Problems 1–3.

1. p.v.
∫ ∞

−∞
cos(2x)

x2 + 1
dx = π

e2

2. p.v.
∫ ∞

−∞
x sin x

x2 − 2x + 10
dx = π

3e3
(3 cos 1 + sin 1)

3.
∫ ∞

0

cos x(
x2 + 1

)2 dx = π

2e

Compute each of the integrals in Problems 4–9.

4. p.v.
∫ ∞

−∞
e3i x

x − 2i
dx

5. p.v.
∫ ∞

−∞
x sin(3x)

x4 + 4
dx

6. p.v.
∫ ∞

−∞
e−2i x

x2 + 4
dx

7. p.v.
∫ ∞

−∞
cos x(

x2 + 1
) (

x2 + 4
) dx

8.
∫ ∞

0

x3 sin(2x)(
x2 + 1

)2 dx

9. p.v.
∫ ∞

−∞
cos(2x)

x − 3i
dx

10. Derive the formula

p.v.
∫ ∞

−∞
cos x

x − w
dx =

{
π ieiw if Imw > 0,

−π ie−iw if Imw < 0.

336



6.5 Indented Contours 337

11. Give conditions under which the following formula is valid:

p.v.
∫ ∞

−∞
eimx P(x)

Q(x)
dx

= 2π i ·
∑[

residues of eimz P(z)/Q(z) at poles in the upper half-plane
]
.

12. Given that
∫∞

0 e−x2
dx = √

π/2, integrate eiz2
around the boundary of the circular

sector Sρ : {z = reiθ : 0 ≤ θ ≤ π/4, 0 ≤ r ≤ ρ
}
, and let ρ → +∞ to prove that∫ ∞

0
eix2

dx =
√

2π

4
(1 + i).

6.5 Indented Contours

In the preceding sections the integrands f were assumed to be defined and continuous
over the whole interval of integration. We turn now to the problem of evaluating special
integrals where | f (x)| → ∞ as x approaches certain finite points. Our first step is to
give precise meaning to the integrals of f .

Let f (x) be continuous on [a, b] except at the point c, a < c < b. Then the
improper integrals of f over the intervals [a, c], [c, b], and [a, b] are defined by∫ c

a
f (x) dx := lim

r→0+

∫ c−r

a
f (x) dx,∫ b

c
f (x) dx := lim

s→0+

∫ b

c+s
f (x) dx,

and ∫ b

a
f (x) dx := lim

r→0+

∫ c−r

a
f (x) dx + lim

s→0+

∫ b

c+s
f (x) dx, (1)

provided the appropriate limit(s) exists. For example,∫ 1

0

1√
x

dx = lim
s→0+

∫ 1

s

1√
x

= lim
s→0+ 2

√
x

∣∣∣∣1
s

= lim
s→0+

[
2 − 2

√
s
] = 2,

and therefore one can say that the area under the graph in Fig. 6.9 is finite, despite the
vertical asymptote.

On the other hand, the areas on either side of the vertical asymptote in the graph
of f (x) = 1/(x − 2), depicted in Fig. 6.10, are both infinite, because∫ 4

2+s

dx

x − 2
= Log |x − 2|

∣∣∣∣∣
x=4

x=2+s

= Log 2 − Log s → ∞ as s → 0+,
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Figure 6.9 Graph of 1/
√

x .

Figure 6.10 Graph of 1/(x − 2).

and ∫ 2−r

1

dx

x − 2
= Log |x − 2|

∣∣∣x=2−r

x=1
= Log r − Log 1 → −∞ as r → 0+.

However if we close in on the asymptote from either side symmetrically, with r = s,
the infinities “cancel each other” in the sense that∫ 2−r

1

dx

x − 2
+
∫ 4

2+r

dx

x − 2
= Log |x − 2|

∣∣∣x=2−r

x=1
+ Log |x − 2|

∣∣∣x=4

x=2+r

= Log r − Log 1 + Log 2 − Log r

= Log 2.
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To take advantage of this again we adopt the principal value notation for improper
integrals when the limits in (1) are taken symmetrically:

p.v.
∫ b

a
f (x) dx := lim

r→0+

{∫ c−r

a
f (x) dx +

∫ b

c+r
f (x) dx

}
.

The improper integral
∫ 4

1 dx/(x − 2) does not exist, but its principal value is Log 2.
When the function f (x) is continuous on the whole real line except at c, the prin-

cipal value of its integral over (−∞,∞) is defined by

p.v.
∫ ∞

−∞
f (x) dx := lim

ρ→∞
r→0+

[∫ c−r

−ρ
f (x) dx +

∫ ρ

c+r
f (x) dx

]
, (2)

provided the limit exists as ρ → ∞ and r → 0+ independently.† In the case of
several discontinuities occurring at points x = ci we extend the definition of the p.v.
integral over (−∞,∞) in a natural way; namely, we remove a small symmetric inter-
val (ci − ri , ci + ri ) about each ci and then take the limit of the integral as the variables
ri → 0+ and ρ → ∞ independently. (See Fig. 6.11.)

Figure 6.11 Contour for p.v. integrals.

Residue theory is useful in evaluating certain integrals of the form (2) when the
integrand, considered as a function of z, has a simple pole at the exceptional point c.
Assuming this to be the case, we must consider the integrals of f along [−ρ, c − r ]
and [c + r, ρ], and to utilize residue theory we must form some closed contour that
contains these segments. In the last two sections we discussed suitable ways to join
+ρ to −ρ. But now we also need to join c − r to c + r . In so doing we cannot proceed
along the real axis, for such a segment would pass through the singularity at c. Instead,
we detour around c by forming, for example, the half-circle Sr indicated in Fig. 6.12.
Eventually we will let r tend to zero, and so it will be necessary to determine the limit

lim
r→0+

∫
Sr

f (z) dz.

This is handled by the following lemma, which deals not only with half-circles, but
with arbitrary circular arcs.

†More precisely, we say that the limit in (2) exists and equals L if for every ε > 0 there exist
positive constants M and δ such that for ρ > M and 0 < r < δ the bracketed expression in (2) is
within ε of L .
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Figure 6.12 Contour with detour.

Lemma 4. If f has a simple pole at z = c and Tr is the circular arc of Fig. 6.13
defined by

Tr : z = c + reiθ (θ1 ≤ θ ≤ θ2) , (3)

then

lim
r→0+

∫
Tr

f (z) dz = i (θ2 − θ1)Res( f ; c). (4)

Consequently, for the clockwise oriented half-circle Sr of Fig. 6.12 we have

lim
r→0+

∫
Sr

f (z) dz = −iπ Res( f ; c). (5)

Proof. Since f has a simple pole at c, its Laurent expansion has the form

f (z) = a−1

z − c
+

∞∑
k=0

ak(z − c)k,

valid in some punctured neighborhood of c, say 0 < |z − c| < R. Thus if 0 < r < R,
we can write ∫

Tr

f (z) dz = a−1

∫
Tr

dz

z − c
+
∫

Tr

g(z) dz, (6)

where

g(z) :=
∞∑

k=0

ak(z − c)k .

Figure 6.13 Circular arc of Lemma 4.
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Now g is analytic at c (why?) and hence is bounded in some neighborhood of this
point; that is,

|g(z)| ≤ M, for |z − c| < R1.

Consequently, for 0 < r < R1, we have∣∣∣∣∫
Tr

g(z) dz

∣∣∣∣ ≤ M� (Tr ) = M (θ2 − θ1) r,

and the last term goes to zero as r → 0+. Therefore,

lim
r→0+

∫
Tr

g(z) dz = 0.

To deal with the integral of 1/(z − c) we use the parametrization (3) to derive∫
Tr

dz

z − c
=
∫ θ2

θ1

1

reiθ
rieiθ dθ = i

∫ θ2

θ1

dθ = i (θ2 − θ1) ,

the value being independent of r . Hence from (6) we obtain

lim
r→0+

∫
Tr

f (z) dz = a−1i (θ2 − θ1)+ 0 = Res( f ; c) i (θ2 − θ1) ,

which is the desired limit (4).
In particular, when the Tr are counterclockwise-oriented half -circles, we get the

limiting value iπ Res( f ; c), and thus for the oppositely oriented half-circles Sr in
Fig. 6.12 we get minus this value. �

Example 1
Evaluate

I = p.v.
∫ ∞

−∞
eix

x
dx .

Solution. First notice that the integrand is continuous except at x = 0. Hence

I = lim
ρ→∞
r→0+

(∫ −r

−ρ
eix

x
dx +

∫ ρ

r

eix

x
dx

)
.

Now we introduce the complex function

f (z) := eiz

z
,

which has a simple pole at the origin but is analytic elsewhere. Next we must form a
closed contour containing the segments [−ρ,−r ] and [r, ρ]. Observing that Jordan’s
lemma applies to f (z)we join +ρ to −ρ by the half-circle C+

ρ in the upper half-plane.
In joining −r to r we indent around the origin by using a half-circle Sr . This yields
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Figure 6.14 Contour for Example 1.

the closed contour of Fig. 6.14. Now since eizz has no singularities inside the closed
contour, we have (∫ −r

−ρ
+
∫

Sr

+
∫ ρ

r
+
∫

C+
ρ

)
eiz

z
dz = 0;

that is, ∫ −r

−ρ
eix

x
dx +

∫ ρ

r

eix

x
dx = −

∫
Sr

eiz

z
dz −

∫
C+
ρ

eiz

z
dz. (7)

By Jordan’s lemma,

lim
ρ→∞

∫
C+
ρ

eiz

z
dz = 0,

and by Eq. (5) of Lemma 4

lim
r→0+

∫
Sr

eiz

z
dz = −iπ Res(0)

= −iπ lim
z→0

z · eiz

z
= −iπ.

Thus from Eq. (7) we obtain

p.v.
∫ ∞

−∞
eix

x
dx = −(−iπ)− 0 = iπ. � (8)

Example 2
Find ∫ ∞

0

sin x

x
dx = lim

ρ→∞
r→0+

∫ ρ

r

sin x

x
dx .

Solution. Observe that the integrand g(x) := (sin x)/x is an even function of x ;
that is, g(−x) = g(x) for all x . Hence

2
∫ ∞

0

sin x

x
dx = p.v.

∫ ∞

−∞
sin x

x
dx .
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Furthermore, the right-hand integral is the imaginary part of the integral of eix/x over
(−∞,∞) and so, by Example 1, it equals Im(iπ) = π . Thus∫ ∞

0

sin x

x
dx = π

2
. �

We remark that as another consequence of Example 1 we have

p.v.
∫ ∞

−∞
cos x

x
dx = Re(iπ) = 0,

but this is scarcely surprising because the integrand h(x) := (cos x)/x is an odd func-
tion of x ; that is, h(−x) = −h(x) for all x .

Example 3

Compute

p.v.
∫ ∞

−∞
xe2i x

x2 − 1
dx .

Figure 6.15 Contour for Example 3.

Solution. Here the integrand is discontinuous at two real points, x = ±1. Thus
we need to find

lim
ρ→∞

r1,r2→0+

(∫ −1−r1

−ρ
+
∫ 1−r2

−1+r1

+
∫ ρ

1+r2

)
xe2i x

x2 − 1
dx .

For this purpose we work with

f (z) := ze2i z

z2 − 1
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and indent around each of its simple poles, as indicated in Fig. 6.15. Then since f (z)
is analytic inside the closed contour, we obtain(∫ −1−r1

−ρ
+
∫ 1−r2

−1+r1

+
∫ ρ

1+r2

)
xe2i x

x2 − 1
dx + Jr1 + Jr2 + Jρ = 0, (9)

where Jr1 , Jr2 , Jρ are the integrals of f (z) over Sr1 , Sr2 , C+
ρ , respectively. Now by

Jordan’s lemma we have
lim
ρ→∞ Jρ = 0,

and from Eq. (5) of Lemma 4,

lim
r1→0+ Jr1 = −iπ Res(−1) = −iπ lim

z→−1
(z + 1) f (z)

= −iπ lim
z→−1

ze2i z

z − 1
= −iπe−2i

2
,

and

lim
r2→0+ Jr2 = −iπ Res(1) = −iπ lim

z→1
(z − 1) f (z)

= −iπ lim
z→1

ze2i z

z + 1
= −iπe2i

2
.

Hence on taking the limits in Eq. (9) we get

p.v.
∫ ∞

−∞
xe2i x

x2 − 1
dx = iπe−2i

2
+ iπe2i

2
− 0 = iπ cos 2. �

EXERCISES 6.5

1. Compute each of the following limits along the given circular arcs.

(a) limr→0+
∫

Tr

2z2 + 1

z
dz, where Tr : z = reiθ , 0 ≤ θ ≤ π

2

(b) limr→0+
∫
�r

e3i z

z2 − 1
dz, where �r : z = 1 + reiθ ,

π

4
≤ θ ≤ π

(c) limr→0+
∫
γr

Log z

z − 1
dz, where γr : z = 1 + re−iθ , π ≤ θ ≤ 2π

(d) limr→0+
∫

Sr

ez − 1

z2
dz, where Sr : z = re−iθ , π ≤ θ ≤ 2π

Using the technique of residues, verify each of the integral formulas in Problems 2–8.

2. p.v.
∫ ∞

−∞
e2i x

x + 1
dx = π ie−2i
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3. p.v.
∫ ∞

−∞
eix

(x − 1)(x − 2)
dx = π i

(
e2i − ei

)
4.
∫ ∞

0

sin(2x)

x
(
x2 + 1

)2 dx = π

(
1

2
− 1

e2

)

5.
∫ ∞

0

cos x − 1

x2
dx = −π

2

6. p.v.
∫ ∞

−∞
sin x(

x2 + 4
)
(x − 1)

dx = π

5

[
cos(1)− e−2

]
7. p.v.

∫ ∞

−∞
x cos x

x2 − 3x + 2
dx = π [sin(1)− 2 sin(2)]

8. p.v.
∫ ∞

−∞
cos(2x)

x3 + 1
dx = π

3
e−√

3
[
sin(1)+ √

3 cos(1)
]

+ π sin(2)

3

9. Compute p.v.
∫ ∞

−∞
sin3 x

x3
dx .

[
HINT: sin3 x = Im

(
3eix

4
− e3i x

4
− 1

2

)
.

]
10. Verify that ∫ ∞

0

sin2 x

x2
dx = π

2
.

[HINT: sin2 x = 1
2 (1 − cos 2x) = 1

2 Re
(
1 − e2i x

)
.]

11. Compute p.v.
∫ ∞

−∞
eax

ex − 1
dx for 0 < a < 1. [HINT: Indent the contour of Fig. 6.6

around the points z = 0 and z = 2π i .]

12. Verify that for a > 0 and b > 0∫ ∞

0

sin(ax)

x
(
x2 + b2

) dx = π

2b2

(
1 − e−ab

)
.

6.6 Integrals Involving
Multiple-Valued Functions

In attempting to apply residue theory to compute an integral of f (x), it may turn out
that the complex function f (z) is multiple-valued. If this happens, we need to modify
our procedure by taking into account not only isolated singularities but also branch
points and branch cuts. In fact we may find it necessary to integrate along a branch
cut, so we turn first to a discussion of this technique.

To be specific, let α denote a real number, but not an integer, and let f (z) be the
branch of zα obtained by restricting the argument of z to lie between 0 and 2π ; that is,

f (z) = eα(Log r+iθ), where z = reiθ , 0 < θ < 2π. (1)
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346 Residue Theory

Figure 6.16 Branch cut for zα .

As shown in Chapter 3 this function is analytic in the plane except along its branch
cut, the nonnegative real axis. (See Fig. 6.16.) In fact, as z approaches a point x (> 0)
on the cut from the upper half-plane, θ goes to zero, and

f (z) → eα Log x = xα (2)

(xα being the principal value as in calculus); while if z approaches x from the lower
half-plane, θ tends to 2π , and so

f (z) → eα(Log x+i2π) = xα · e2π iα. (3)

In this sense we visualize f as being equal to xα on the “upper side” of the cut and
being equal to xα · e2π iα on the “lower side.”

Now if we are to integrate f (z) along the cut, we avoid ambiguity by placing a
direction arrow either above or below the cut to indicate which values of f are to be
used. For example, the integrals of f along the segments γ1 and γ2 of Fig. 6.17 are
given by ∫

γ1

f (z) dz =
∫ ρ

ε

xα dx,∫
γ2

f (z) dz = −
∫ ρ

ε

xα · e2π iα dx = −e2π iα
∫
γ1

f (z) dz.
(4)

These same remarks apply to arbitrary functions with branch cuts—the values of
the functions on each side of the cut being determined by continuity from that side.
We shall now illustrate how the residue theorem applies to such functions.
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Figure 6.17 Integration along a branch cut.

Example 1

Let α be a real number (not an integer) and let R(z) be a rational function having no
poles on the closed contour � of Fig. 6.18. Prove that if f (z) is the branch of zαR(z)
obtained by restricting the argument of z to be between 0 and 2π , that is,

f (z) =


eα(Log r+iθ) · R

(
reiθ

)
, for z = reiθ , 0 < θ < 2π,

xαR(x), for z = x when integrating on γ1,

xαe2π iαR(x), for z = x when integrating on γ2,

then ∫
�

f (z) dz = 2π i ·
∑

[residues of f (z) at the poles inside �].† (5)

Solution. Notice that the residue theorem cannot be directly applied here be-
cause the integrand is multiple-valued on the portion [ε, ρ] of the branch cut. (Notice
also that the integrals along γ1 and γ2 do not cancel here.) To circumvent this difficulty
we introduce a segment, indicated by the dashed line in Fig. 6.19, which joins the inner
circle to the outer one and does not pass through any poles of R(z). This creates two
positively oriented closed contours �1 and �2 (as shown in Fig. 6.19) such that∫

�

f (z) dz =
∫
�1

f (z) dz +
∫
�2

f (z) dz (6)

(the integrals along the dashed segment cancel). Now on �1 we can apply the residue
theorem because f (z) agrees with a function analytic on this contour; indeed, for z on
or inside �1

f (z) = eα Log z R(z)

†To be precise, by the inside of � we mean the set of those points between the two circles but not
lying on the segment [ε, ρ].
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Figure 6.18 Contour for Example 1.

Figure 6.19 Modification of Fig. 6.18.

(the principal branch Log z having its branch cut along the negative real axis). Hence∫
�1

f (z) dz = 2π i ·
∑

(residues of f at poles inside �1) . (7)

Similarly, on �2 the function f (z) again agrees with an analytic function; for
instance, for z = reiθ on �2

f (z) = eα(Log r+iθ)R
(

reiθ
)
,

π

2
< θ <

5π

2

(with cut along the positive imaginary axis). Consequently∫
�2

f (z) dz = 2π i ·
∑

(residues of f at poles inside �2) . (8)

Therefore, since every pole inside � lies either inside �1 or inside �2, adding Eqs. (7)
and (8) gives the desired equation (5). �
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Armed with this extension of the residue theorem we now can tackle problems of
integrating certain functions involving fractional powers of x .

Example 2
Compute

I :=
∫ ∞

0

dx√
x(x + 4)

,

where
√

x denotes the principal value for x > 0.

Solution. Observe that we are required here to find

I = lim
ρ→∞
ε→0+

∫ ρ

ε

dx√
x(x + 4)

,

and for this purpose we take the branch of z1/2 defined by
√

z = e(Log r+iθ)/2 for z = reiθ , 0 < θ < 2π,

which has the nonnegative real axis as its branch cut. With this choice of
√

z we set

f (z) := 1√
z(z + 4)

.

Then, according to our convention, for x > 0 on the upper side of the cut we have

f (x) = 1√
x(x + 4)

,

and, for x > 0 on the lower side,

f (x) = 1√
xei2π/2(x + 4)

= −1√
x(x + 4)

.

Now we need to form a closed contour containing the segment [ε, ρ], and in so doing
we must take into account the branch point at the origin as well as the pole at z = −4.
Consider then the closed contour of Fig. 6.20, where ε is small enough and ρ is large
enough so that the pole at −4 lies inside the contour. Then for such ε and ρ we have,
by Example 1, (∫

�ε

+
∫

Cρ
+
∫
γ1

+
∫
γ2

)
f (z) dz = 2π i Res( f ; −4). (9)

As discussed previously,∫
γ1

f (z) dz +
∫
γ2

f (z) dz =
∫ ρ

ε

1√
x(x + 4)

dx −
∫ ρ

ε

−1√
x(x + 4)

dx

= 2
∫ ρ

ε

1√
x(x + 4)

dx,
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Figure 6.20 Contour for Example 2.

and so we can identify

lim
ρ→∞
ε→0+

(∫
γ1

f (z) dz +
∫
γ2

f (z) dz

)
= 2I.

Furthermore, on the circle of radius ρ we have

| f (z)| = 1∣∣√z
∣∣ |z + 4| ≤ 1√

ρ(ρ − 4)
(ρ > 4),

which yields the estimate ∣∣∣∣∣
∫

Cρ
f (z) dz

∣∣∣∣∣ ≤ 2πρ√
ρ(ρ − 4)

.

Consequently, the integral over Cρ tends to zero as ρ → ∞. Similarly, on the inner
circle of radius ε we have

| f (z)| ≤ 1√
ε(4 − ε)

(ε < 4),

which implies that ∣∣∣∣∫
�ε

f (z) dz

∣∣∣∣ ≤ 2πε√
ε(4 − ε)

= 2π
√
ε

4 − ε
.

As ε → 0+ this also goes to zero.
Hence on taking the limit as ρ → ∞ and ε → 0+ in Eq. (9), we obtain

0 + 0 + 2I = 2π i Res( f ; −4). (10)

Finally, since z = −4 is a simple pole of f ,

Res( f ; −4) = lim
z→−4

(z + 4) f (z) = lim
r→4
θ→π

1√
z

= lim
r→4
θ→π

1

e(Log r+iθ)/2

= e−(Log 4)/2e−iπ/2 = 1√
4
(−i) = −i

2
.
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Therefore from Eq. (10) we get

I = 2π i

2

(−i

2

)
= π

2
. �

A somewhat more complicated situation arises in the following example.

Example 3

Compute

I = p.v.
∫ ∞

0

dx

xλ(x − 4)
, where 0 < λ < 1.

Solution. There is a significant difference between this and the preceding exam-
ple; here we have a singularity at x = +4 that lies on the interval of integration. Also
notice that we have generalized the exponent of x in the denominator. Thus we must
compute

I = lim
ρ→∞
ε,δ→0+

(∫ 4−δ

ε

+
∫ ρ

4+δ

)
dx

xλ(x − 4)
.

To do this we modify the approach of the preceding problem by indenting around the
singularity. Choosing the branch

f (z) = 1

eλ(Log r+iθ)
(
reiθ − 4

) , for z = reiθ , 0 < θ < 2π,

we form the contour of Fig. 6.21.

Figure 6.21 Contour for Example 3.
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Since f (x) has no singularities “inside” the closed contour, the integral over the
latter must be zero. Utilizing different definitions for f on the upper and lower sides
of the branch cut, we can write this as

(
1 − e−2π iλ

)(∫ 4−δ

ε

+
∫ ρ

4+δ

)
dx

xλ(x − 4)

+
(∫

�ε

+
∫

S+
δ

+
∫

S−
δ

+
∫

Cρ

)
f (z) dz = 0, (11)

where the contours are as indicated in Fig. 6.21.
Now for 0 < λ < 1, it is easy to extend the estimates used in Example 2 to show

that

lim
ε→0+

∫
�ε

f (z) dz = 0 and lim
ρ→∞

∫
Cρ

f (z) dz = 0. (12)

To compute the limits as δ → 0+ of the integrals over S+
δ and S−

δ , we apply the results
of the preceding section concerning the behavior of integrals near simple poles. On
the upper half-circles around z = 4, the function f agrees with the principal branch

f1(z) := 1

eλLog z(z − 4)
,

which is analytic on the positive real axis except for its simple pole at z = 4. Hence
by Lemma 4 of Sec. 6.5,

lim
δ→0+

∫
S+
δ

f (z) dz = −iπ Res ( f1; 4) = −iπ lim
z→4

e−λLog z = −iπ4−λ. (13)

However, on the lower half-circles f (z) equals e−2π iλ times f1(z), and so

lim
δ→0+

∫
S−
δ

f (z) dz = −iπ4−λe−2π iλ. (14)

Finally, on taking the limit as ρ → ∞, ε → 0+, and δ → 0+ in Eq. (11), we
deduce from (12), (13), and (14) that(

1 − e−2π iλ
)

I + 0 − iπ4−λ − iπ4−λe−2π iλ + 0 = 0,

or, equivalently,

I = iπ4−λ
(
1 + e−2π iλ

)(
1 − e−2π iλ

) = iπ4−λ eiπλ + e−iπλ

eiπλ − e−iπλ
= π4−λ cot(πλ). �
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Example 4
Compute

I =
∫ ∞

0

dx

(x + 1)(x2 + 2x + 2)
.

Solution. Note that the integrand here is not an even function of x , so there is
no way to relate I to an integral over the whole real line. Motivated by the preceding
examples, we shall exploit the features of the log function to attain a suitable closure of
the contour. Once again choosing the branch of log z that is cut along the nonnegative
x-axis, or L0(z) := Log |z| + i arg0 z in the notation of Sec. 3.3, we consider the
integral

Iε,ρ =
∫ L0(z) dz

(z + 1)(z2 + 2z + 2)
,

along the same contour that we used for Example 2 (Fig. 6.20). On the upper side of
the cut we have L0(z) = Log x + i arg0 x = Log x , and on the lower side we have
L0(z) = Log x + i2π . Integrating back and forth along the cut, then, we observe the
cancellation of the real parts containing the unwanted Log x factors, and we obtain∫ ρ

ε

Log x dx

(x + 1)(x2 + 2x + 2)
+
∫ ε

ρ

(Log x + i2π) dx

(x + 1)(x2 + 2x + 2)

= −2π i
∫ ρ

ε

dx

(x + 1)(x2 + 2x + 2)
.

We estimate the integrals along the circles �ε and Cρ of Fig. 6.20 as usual. For
sufficiently small ε,∣∣∣∣∫

�ε

L0(z) dz

(z + 1)(z2 + 2z + 2)

∣∣∣∣ ≤
√
(Log ε)2 + (2π)2 2πε

(1 − ε)(2 − 2ε − ε2)
,

which goes to zero as ε → 0+. And for sufficiently large ρ∣∣∣∣∣
∫

Cρ

L0(z) dz

(z + 1)(z2 + 2z + 2)

∣∣∣∣∣ ≤
√
(Log ρ)2 + (2π)2 2πρ

(ρ − 1)(ρ2 − 2ρ − 2)

=
√
(Log ρ)2 + (2π)2 2πρ

ρ3(1 − 1/ρ)(1 − 2/ρ − 2/ρ2)
,

which goes to zero as ρ → ∞ (since (Log ρ)/ρ2 → 0). Consequently, in the limit the
contour integral Iε,ρ approaches

−2π i
∫ ∞

0

dx

(x + 1)(x2 + 2x + 2)
= −2π i I.

But, by the residue theorem, Iε,ρ equals 2π i times the sum of the residues inside
the contour. Writing the integrand in Iε,ρ as

L0(z)

[z + 1][z − (−1 + i)][z − (−1 − i)] ,
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we find the sum of the residues to be (for small ε and large ρ)

L0(−1)

(−i)i
+ L0(−1 + i)

(+i)(2i)
+ L0(−1 − i)

(−i)(−2i)

= π i

+1
+ Log(

√
2)+ 3π i/4

−2
+ Log(

√
2)+ 5π i/4

−2

= − Log(
√

2) .

Therefore the desired integral I = 2π i(− Log(
√

2)/(−2π)i = Log(
√

2). �

EXERCISES 6.6

Use residue theory to verify each of the integral formulas in Problems 1–7.

1.
∫ ∞

0

√
x

x2 + 1
dx = π√

2

2.
∫ ∞

0

xα−1

x + 1
dx = π

sin(πα)
, 0 < α < 1

3.
∫ ∞

0

xα

(x + 9)2
dx = 9α−1πα

sin(πα)
, −1 < α < 1, α �= 0

4.
∫ ∞

0

xα(
x2 + 1

)2 dx = π(1 − α)

4 cos(απ/2)
, −1 < α < 3, α �= 1

5.
∫ ∞

0

xα−1

x2 + x + 1
dx = 2π√

3
cos

(
2απ + π

6

)
csc(απ), 0 < α < 2, α �= 1

6. p.v.
∫ ∞

0

xα

x2 − 1
dx = π

2 sin(πα)
[1 − cos(πα)], −1 < α < 1, α �= 0

7.
∫ ∞

0

xα

1 + 2x cosφ + x2
dx = π

sin(πα)

sin(φα)

sinφ
, −1 < α < 1,

α �= 0, −π < φ < π, φ �= 0

8. Verify that

p.v.
∫ ∞

−∞
Log |x |
x2 + 4

dx = π

2
Log 2.

[HINT: Integrate (Log z)/(z2 + 4) around a semicircular contour indented at the
origin (see Fig. 6.12) and note that

(ρ Log ρ)/(ρ2 − 4) → 0 as ρ → +∞ or as ρ → 0+ ]
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6.7 The Argument Principle and Rouché’s Theorem 355

9. Using the method of Example 4, compute the following integrals:

(a)
∫ ∞

0

x

(x + 1)(x2 + 2x + 2)
dx (b)

∫ ∞

0

1

x3 + 1
dx

10. Verify that ∫ ∞

0

Log x

x2 + 1
dx = 0.

[HINT: See Prob. 9.]

11. Verify that ∫ ∞

0

Log x(
x2 + 1

)2 dx = −π
4
.

[HINT: See Prob. 9.]

12. Verify that ∫ ∞

0
xα−1 sin x dx = sin

(πα
2

)
· �(α) (0 < α < 1),

where �(α) := ∫∞
0 e−x xα−1dx is the Gamma function. [HINT: Integrate e−z zα−1

around a quarter-circle indented at the origin.]

13. Evaluate the integral ∫ 1

0
(x2 − x3)−1/3 dx

by using a barbell-shaped contour with shrinking ends surrounding 0 and 1, together
with a large circle containing the barbell. [HINT: Write (z2 −z3)1/3 = z(z−1 −1)1/3

and select a suitable branch of (z−1 − 1)1/3.]

6.7 The Argument Principle and Rouché’s Theorem

In this section we shall use Cauchy’s residue theorem to derive two theoretical results
that have important practical applications. These results pertain to functions all of
whose singularities are poles. Such functions are given a special name in the next
definition.

Definition 2. A function f is said to be meromorphic in a domain D if at every
point of D it is either analytic or has a pole.
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356 Residue Theory

In particular, we regard the analytic functions on D as being special cases of mero-
morphic functions. The rational functions are examples of functions that are meromor-
phic in the whole plane.

Suppose now that we are given a function f that is analytic and nonzero at each
point of a simple closed contour C and is meromorphic inside C . Under these con-
ditions it can be shown that f has at most a finite number of poles inside C . The
proof of this depends on two facts: first, that the only singularities of f are isolated
singularities (poles), and, second, that every infinite sequence of points inside C has a
subsequence that converges to some point on or inside C . (The last fact is proved in
advanced calculus texts under the name Bolzano-Weierstrass theorem.) Hence if f had
an infinite number of poles inside C , some subsequence of them would converge to a
point that must be a singularity, but not an isolated singularity, of f . By contradiction,
then, the number of poles must be finite.

By the same token, if f had an infinite number of zeros inside C , a subsequence
would converge to some point z0. But if f were analytic at z0, then by Corollary 3,
Sec. 5.6, the function f would have to be identically zero in a neighborhood of z0—
and thus also on C , by analytic continuation; and if f were not analytic at z0, the
deliberations of Sec. 5.6 would require that z0 be an essential singularity. Both situa-
tions contradict our hypotheses; thus the number of zeros inside C is also finite.

In counting the number of zeros or poles of a function it is common practice to
include the multiplicity. For example, let C : |z| = 4 and take

f (z) = (z − 8)2z3

(z − 5)4(z + 2)2(z − 1)5
. (1)

Then the number Np( f ) of poles of f inside C is to be interpreted as

Np( f ) : =
∑

poles inside C

(order of each pole)

= (order of pole at z = −2)+ (order of pole at z = 1)

= 2 + 5 = 7,

while the number N0( f ) of its zeros inside C is

N0( f ) := (order of the zero at z = 0) = 3.

Example 1
For the function in Eq. (1), evaluate

∫
C f ′(z)/ f (z) dz, where C : |z| = 4 is positively

oriented (Fig. 6.22).

Solution. To introduce a new concept we are going to attack this problem via a
nonstandard approach. Observe that, formally speaking,

f ′(z)
f (z)

= d

dz
log f (z) = d

dz
{Log | f (z)| + i arg f (z)}.
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6.7 The Argument Principle and Rouché’s Theorem 357

Figure 6.22 Contour for Example 1.

Now let γ be a subarc of C , sufficiently short so that (some branch of) arg f (z) varies
by less than 2π along γ . Then there is a branch of log f (z) that is analytic on γ . It
follows from Theorem 6, Sec. 4.3, that∫

γ

f ′(z)
f (z)

dz = {Log | f (z)| + i arg f (z)}
∣∣∣∣z2

z1

(2)

for this branch, where z1 and z2 are the endpoints of γ (see Fig. 6.22). If we break C
into such subarcs and piece together the contributions (2), we can write the result as∫

C

f ′(z)
f (z)

dz = �C Log | f (z)| + i�C arg f (z) = i�C arg f (z), (3)

where we interpret�C arg f (z) to be the net excursion in arg f (z) as we go around C .
(Since Log | f (z)| is single-valued, its net excursion on a closed contour is zero.)

From (1) we see that

arg f (z) = 2 arg(z − 8)+ 3 arg z − 4 arg(z − 5)− 2 arg(z + 2)− 5 arg(z − 1).

The net excursion in arg z, as we go around C , is 2π , since C encircles the origin.
Similarly, the net excursion in arg(z + 2) and arg(z − 1) is 2π , since C encircles −2
and +1. But the excursion in arg(z − 8) and arg(z − 5) is zero; 8 and 5 lie outside C .
Thus ∫

C

f ′(z)
f (z)

dz = i2π(3 − 2 − 5) = −4(2π i) = −8π i. �

In the preceding example, every zero of f (z) inside C contributed 2π i times its
multiplicity, and every pole contributed −2π i times its multiplicity, to the integral.
The Argument Principle generalizes this result for all meromorphic functions.
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358 Residue Theory

Theorem 3 (Argument Principle). If f is analytic and nonzero at each point
of a simple closed positively oriented contour C and is meromorphic inside C ,
then

1

2π i

∫
C

f ′(z)
f (z)

dz = N0( f )− Np( f ), (4)

where N0( f ) and Np( f ) are, respectively, the number of zeros and poles of f
inside C (multiplicity included).

Proof. The strategy is quite straightforward; we locate the singularities and
compute the residues of the integrand

G(z) := f ′(z)
f (z)

.

Notice that this function is analytic at each point on C because f is analytic and
nonzero there. Inside C the singularities of G occur at those points where f has a
zero or a pole.

Consider first a point z0 inside C that is a zero of f of order m. Then we know
that f can be written in the form

f (z) = (z − z0)
m · h(z),

where h(z) is analytic and not zero at z = z0 (recall Theorem 16, Sec. 5.6). Hence in
some punctured neighborhood of z0 we compute that

G(z) = f ′(z)
f (z)

= m

z − z0
+ h′(z)

h(z)
.

Since the function h′/h is analytic at z0, this representation shows that G has a simple
pole at z0 with residue equal to m.

On the other hand, if f has a pole of order k at z p, then

f (z) = H(z)(
z − z p

)k ,
where H(z) is analytic at z p and H

(
z p
) �= 0 (recall Lemma 7, Sec. 5.6). This time

we derive that in a punctured neighborhood of z p

G(z) = f ′(z)
f (z)

= −k

z − z p
+ H ′(z)

H(z)
,

and since H ′/H is analytic at z p, we find that G has a simple pole at z p with residue
equal to minus k.
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Finally, by the residue theorem, the integral of G around C must equal 2π i times
the sum of the residues at the singularities inside C . This, from the preceding deliber-
ations, equals 2π i times the sum of the orders of the zeros of f inside C plus the sum
of the negatives of the orders of the poles of f inside C ; that is,∫

C
G(z) dz =

∫
C

f ′(z)
f (z)

dz = 2π i
[
N0( f )− Np( f )

]
,

which is the same as Eq. (4). �

Of course, if the function f of Theorem 3 has no poles inside C , then Np( f ) = 0,
and we have the following.

Corollary 1. If f is analytic inside and on a simple closed positively oriented
contour C and if f is nonzero on C , then

1

2π i

∫
C

f ′(z)
f (z)

dz = N0( f ),

where N0( f ) is the number of zeros of f inside C (multiplicity included).

As we have discussed, the conclusion of the argument principle can be written in
the form

1

2π
�C arg f (z) = N0( f )− Np( f ). (5)

There is yet another way to express the variation in the argument of f along C ; it
involves the image curve f (C). This is simply the image (in the w-plane) of the
curve C under the mapping w = f (z); that is, if C is parametrized by z = z(t),
a ≤ t ≤ b, then f (C) is the curve parametrized by

w = f (z(t)) (a ≤ t ≤ b). (6)

Obviously the image curve is closed, but unlike C it need not be simple or positively
oriented.

Now if we sketch the image curve as in Fig. 6.23, it is easy to follow the net
change in the argument of f (z). Every time f (z(t)) encircles the origin w = 0 in the
positive (counterclockwise) direction, arg f increases by 2π , while it decreases by 2π
for a negative circuit. Hence, since f (C) is closed, �C arg f (z) equals 2π multiplied
by the net number of times f (C) winds around w = 0 in the positive sense, that is,
counterclockwise minus clockwise.†

As a specific illustration, consider

f (z) = z3 and C : z = eit (0 ≤ t ≤ 2π).

Notice that the image of this circle under w = f (z) winds around the origin three
times in the positive sense (see Fig. 6.24). Hence the net change in the argument of f
is 6π , and Eq. (5) correctly predicts N0( f )− Np( f ) = 6π/2π = 3.

†Some authors call this the winding number of f (C) about the origin.
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Figure 6.23 Visualization of �C arg f (z).

Figure 6.24 �C arg(z3).

Next, suppose we have a function f (z) analytic on C and meromorphic inside, and
we know how many times f (C)winds around the originw = 0. Now we are interested
in perturbing f (z) by some analytic function h(z) to form g(z) := f (z) + h(z). We
would like to know how small the perturbation h must be to guarantee that g(C) winds
around w = 0 the same number of times as f (C).

The problem is a familiar one to anyone who has tried to walk a dog on a leash
in a big city. If the pair encounters a lamppost and the leash is long, the canine will
inevitably tangle the leash around the post. But if the human continually adjusts the
length of the leash as they walk so it never quite extends to the post, then both dog and
human will wind around the post an equal number of times and avoid entanglement.

Let us interpret the origin in the w-plane as the lamppost, the contour f (C) as
the path of the human, and g(C) as the dog’s path. (See Fig. 6.25.) Then h(z) =
g(z) − f (z) becomes the leash, and the condition that the leash never extends from
the human to the lamppost—and thus that f (C) and g(C) wind around the origin the
same number of times—is expressed as

|h(z)| < | f (z)|, z on C.

Rouché’s theorem results when we combine these deliberations with the argument
principle, for functions f with no poles inside C .
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6.7 The Argument Principle and Rouché’s Theorem 361

Figure 6.25 M. Rouché and Truffles.

Theorem 4 (Rouché’s Theorem). If f and h are each functions that are ana-
lytic inside and on a simple closed contour C and if the strict inequality

|h(z)| < | f (z)| (7)

holds at each point on C , then f and f + h must have the same total number of
zeros (counting multiplicities) inside C .

Observe that the inequality (7) need only hold on C , not inside, and that (7) pre-
vents f (as well as g = f + h) from being zero on C . See Prob. 15 for an extension
to the case when f is meromorphic inside C .

One typically uses Rouché’s theorem to deduce some information about the lo-
cation of zeros of a complicated analytic function g by comparing it with an analytic
function f whose zeros are known.

Example 2

Prove that all five zeros of the polynomial

g(z) = z5 + 3z + 1

lie in the disk |z| < 2.

Solution. We take C as the circle |z| = 2, and we regard g as a perturbation of
the function f (z) = z5, which clearly has five zeros inside C . To test condition (7) we
estimate the perturbation h(z) = 3z + 1 on C by

|h(z)| = |3z + 1| ≤ 3|z| + 1 = 3 · 2 + 1 = 7,

which sure enough, is strictly less than | f (z)| = ∣∣z5
∣∣ = 25 = 32. Therefore, g also

has five zeros inside |z| < 2. �

361



362 Residue Theory

Figure 6.26 Contour for Example 3.

Example 3

Prove that the equation
z + 3 + 2ez = 0

has precisely one root in the left half-plane.

Solution. Since Rouché’s theorem refers to domains bounded by contours, we
cannot apply it directly to an unbounded set such as a half-plane. But by this time the
reader will probably be able to anticipate our strategy; we choose Cρ as in Fig. 6.26
and regard the function

g(z) = z + 3 + 2ez

as a perturbation of
f (z) = z + 3,

which has exactly one zero in the left half-plane. Then for z on Cρ we have

|h(z)| = |g(z)− f (z)| = ∣∣2ez
∣∣ = 2eRe z ≤ 2e0 = 2,

while f (z) is bounded from below on Cρ by (see Fig. 6.26)

| f (z)| = |z + 3| ≥
{

3, for z = iy,

|z| − 3 = ρ − 3, for |z| = ρ.

Thus when ρ > 5 we have |h(z)| < | f (z)| for all z on Cρ . This implies that g
also has precisely one (simple) zero inside Cρ , and hence (letting ρ → ∞) in the left
half-plane. �

Rouché’s theorem can also be used to give an alternative proof of the Fundamental
Theorem of Algebra.
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Example 4
Prove that every polynomial of degree n has n zeros.

Solution. Consider the polynomial g(z) of degree n

g(z) = anzn + an−1zn−1 + · · · + a1z + a0 (an �= 0) ,

as a perturbation of
f (z) = anzn,

which has n zeros (at the origin). The difference

h(z) = g(z)− f (z) = an−1zn−1 + · · · + a1z + a0

is then a polynomial of degree at most n − 1 and hence does not grow as rapidly as the
polynomial f of degree n. In more precise terms, on the circle C : |z| = R we have

| f (z)| = |an| Rn,

and
|h(z)| ≤ |an−1| Rn−1 + · · · + |a1| R + |a0| .

Therefore if we choose R (> 1) so large that

|an−1|
|an| + · · · + |a1|

|an| + |a0|
|an| < R,

then the inequality |h(z)| < | f (z)| will be valid on C . Therefore, g(z) also has n
zeros. �

Now suppose f (z) is analytic in some open neighborhood of a point z0 and
f (z0) = 0. Then from Sec. 5.6 we know that unless f is identically zero, there is some
circle C , centered at z0 and lying in the neighborhood, such that f is nonzero on C .
Let σ be the minimum value of | f (z)| for z on C , and perturb f by h(z) = −c, where
c is any complex number smaller in magnitude than σ (continuity implies σ > 0). It
follows from Rouché’s theorem that f (z) − c also achieves the value 0, and hence f
achieves the value c, inside the circle.

In other words, the values taken on by w = f (z) in this neighborhood of z0
completely cover the open disk |w| < σ in the w-plane. So the image of every open
neighborhood of z0 contains an open neighborhood of w0 = f (z0) = 0, unless f is
identically zero.

If f (z0) = w0 is not zero, we can apply this same argument to the function f (z0)−
w0 and conclude that the image of every open neighborhood of z0 contains an open
neighborhood of f (z0), unless f is constant. This is the open mapping property of
analytic functions, which we state as follows.

Theorem 5. If f is nonconstant and analytic in a domain D, then its range

f (D) := {w | w = f (z) for some z in D}
is an open set.
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EXERCISES 6.7

1. Which of the following functions are meromorphic in the whole plane?

(a) 2z + z3 (b) Log z (c)
sin z

z3 + 1

(d) e1/z (e) tan z (f)
2i

(z − 3)2
+ cos z

2. Let P(z) = anzn + an−1zn−1 + · · · + a1z + a0, where an �= 0. Explain why for
each sufficiently large value of R

�
∫

|z|=R

P ′(z)
P(z)

dz = 2nπ i.

3. Evaluate
1

2π i
�
∫

|z|=3

f ′(z)
f (z)

dz,

where f (z) = z2(z − i)3ez

3(z + 2)4(3z − 18)5
.

4. Let f (z) be analytic on the closed disk |z| ≤ ρ, and suppose that f (z) �= w0 for all
z on the circle |z| = ρ. Explain why the value of the integral

1

2π i
�
∫

|z|=ρ
f ′(z)

f (z)− w0
dz

equals the number of solutions of f (z) = w0 inside the disk.

5. Prove that if f (z) is analytic inside and on a simple closed contour C and is one-
to-one on C , then f (z) is one-to-one inside C . [HINT: Consider the image curve
f (C).]

6. Use Rouché’s theorem to show that the polynomial z6 + 4z2 − 1 has exactly two
zeros in the disk |z| < 1.

7. Prove that the equation z3 + 9z + 27 = 0 has no roots in the disk |z| < 2.

8. Prove that all the roots of the equation z6 − 5z2 + 10 = 0 lie in the annulus 1 <
|z| < 2.

9. Find the number of roots of the equation 6z4 + z3 − 2z2 + z − 1 = 0 in the disk
|z| < 1.

10. Prove that the equation z = 2 − e−z has exactly one root in the right half-plane.
Why must this root be real?

11. Prove that the polynomial P(z) = z4 + 2z3 + 3z2 + z + 2 has exactly two zeros in
the right half-plane. [HINT: Write P(iy) = (y2 − 2)(y2 − 1) + iy(1 − 2y2), and
show that

lim
R→∞ arg P(iy)

∣∣∣∣R−R
= 0.]
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12. Suppose that f (z) is analytic on |z| ≤ 1 and satisfies | f (z)| < 1 for |z| = 1.

(a) Prove that the equation f (z) = z has exactly one root (counting multiplicity)
in |z| < 1. (This root is called a fixed point of f ; see also Sec. 2.7.)

(b) Prove that if |z0| ≤ 1, then the sequence zn defined recursively by zn =
f (zn−1), n = 1, 2, . . ., converges to the fixed point of f . (See Prob. 17,
Sec. 5.6.)

13. Give an example to show that the conclusion of Rouché’s theorem may be false if
the strict inequality |h(z)| < | f (z)| is replaced by |h(z)| ≤ | f (z)| for z on C .

14. State and prove a generalization of Rouché’s theorem for meromorphic functions f
and h, which concludes that N0( f )− Np( f ) = N0( f + h)− Np( f + h).

15. Prove: If f is analytic and nonzero at each point of a simple closed contour C
and is meromorphic inside C and if h is analytic inside and on C and satisfies
|h(z)| < | f (z)| on C , then f and f + h have the same number of zeros inside C
(counting multiplicity).

16. Let λ > 0 be fixed, and let g(z) = tan z−λz. The zeros of g are important in certain
problems related to heat flow and transmission line theory. By completing each of
the following steps, show that for n large, g(z) has exactly 2n + 1 zeros inside the
square �n with vertices at nπ(1 ± i), nπ(−1 ± i).

(a) Show that

tan(x + iy) =
[

sin(2x)

cosh(2y)+ cos(2x)

]
+ i

[
sinh(2y)

cosh(2y)+ cos(2x)

]
.

(b) Prove that for all large integers n, the inequality | tan z| ≤ 2 holds on the
boundary of �n . [HINT: Use the formula in part (a) for the horizontal seg-
ments.]

(c) Show that for all large integers n, the inequality |g(z) + λz| < λ|z| holds on
the boundary of �n .

(d) Show that g(z) has exactly 2n poles inside �n , n = 1, 2, . . ..

(e) Conclude from the general form of Rouché’s theorem (Prob. 14) that g(z) has
2n + 1 zeros inside �n for large integers n.

17. Let f (z) be analytic in a domain D, and suppose that f (z) − f (z0) has a zero of
order n at z0 in D. Prove that for ε > 0 sufficiently small, there exists a δ > 0 such
that for all w in |w − f (z0)| < δ the equation f (z)− w = 0 has exactly n roots in
|z − z0| < ε.

18. Use the open mapping property (Theorem 5) to give a quick proof of the following
familiar facts: If f is analytic in a domain D, then f is identically constant in D if
any of the following conditions hold.

(a) Re f (z) is constant in D.

(b) Im f (z) is constant in D.
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(c) | f (z)| is constant in D.

19. Let fn(z), n = 1, 2, . . ., be a sequence of functions analytic in the disk D : |z| < R
which converges uniformly to the analytic function f (z) on each closed subset of
D. Prove that if f (z) �= 0 on |z| = δ, 0 < δ < R, then for each n sufficiently large
fn(z) has the same number of zeros in |z| < δ as does f (z).

20. Let P(z) = anzn + · · · + a1z + a0 and let

P∗(z) = zn P
(
1
/

z̄
) = ā0zn + ā1zn−1 + · · · + ān .

Prove that if
∣∣a0
/

an
∣∣ > 1, then P(z) has the same number of zeros in |z| < 1 as

does the polynomial ā0 P(z)− an P∗(z). [HINT: |P(z)| = |P∗(z)| for |z| = 1.]

21. To establish the stability of feedback control systems one often has to ensure that a
certain meromorphic function of the form F(z) = 1 + P(z) has all its zeros in the
left half-plane. The Nyquist stability criterion proceeds as follows: First consider
the contour �r , shown in Fig. 6.27, and let m equal the net number of times that the
image contour P (�r ) encircles the point w0 = −1 in a counterclockwise direction.
Then let n equal the number of poles of P(z) with positive real parts. Argue that
if m equals n for all sufficiently large r , then all the zeros of F(z) lie in the left
half-plane (and thus the system is stable). [If for r large, P (�r ) passes through the
point w0 = −1, then of course F(z) has a zero on the imaginary axis; in such a case
stability cannot be guaranteed.]

Figure 6.27 Contour for Prob. 21.

22. A stronger version (in that the hypothesis is weaker) of Rouché’s theorem was dis-
covered by Glicksberg. With reference to the dog-and-human situation in Fig. 6.25,
let τ denote the ray extending from the lamppost in the direction away from the
human, as in Fig. 6.28. (Obviously τ turns as the human traverses the path f (C).)
Now, if the dog is restricted to stay on one side or the other of τ—and never to cross
it—then the leash will not tangle around the lamppost and both dog and human will
encircle the post the same number of times.
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6.7 The Argument Principle and Rouché’s Theorem 367

Figure 6.28 M. Glicksberg and Fritz.

(a) From this consideration argue that condition (7) in Rouché’s theorem can be
replaced by

|h(z)| < | f (z)| + | f (z)+ h(z)|. (8)

[HINT: Inequality (8) is a strict triangle inequality, and as such it ensures
that the points h(z), f (z), and f (z) + h(z) do not align unfavorably; recall
Sec. 1.3.]

(b) Give an alternative derivation based on the observation that (8) implies f/( f +
h) is never negative or zero, and thus∫

C

[
f ′

f
− ( f + h)′

( f + h)

]
dz =

∫
C

[
Log

f

f + h

]′
dz = 0;

now apply Corollary 1.

SUMMARY

A useful way to evaluate certain contour integrals is by means of residues. The residue
of a function f (z) at an isolated singularity z0 is the coefficient a−1 of 1

/
(z − z0)

in the Laurent expansion for f (z) about z0. Simple formulas exist for computing the
residues at the poles of f (z). When all the singularities of f (z) are isolated, its integral
along a simple closed positively oriented contour is equal to 2π i times the sum of the
residues at the singularities inside the contour.

Residue theory can be employed to evaluate certain integrals that arise in the cal-
culus of functions of a real variable. For example, definite integrals over [0, 2π] that
involve sin θ and cos θ can be rewritten as contour integrals around the unit circle
C : |z| = 1 after making the identification

cos θ = 1

2

(
z + 1

z

)
, sin θ = 1

2i

(
z − 1

z

) (
for z = eiθ

)
.
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368 Residue Theory

In addition, certain improper integrals over infinite intervals, say over the real axis
(−∞,+∞), can be computed with the aid of expanding closed contours (such as
semicircles or rectangles) that have a segment of the real axis as a component. For this
approach to be successful the contours must be selected so that the sum of residues
inside is easily computed, and so that the limiting values of the integral over the nonreal
portions of the contours are known. Some specific results such as Jordan’s lemma are
useful in this regard.

Sometimes these contours must be modified by indention to compensate for sin-
gularities on the original interval of integration. In the case when the complex version
of an integrand is multiple-valued, it might be necessary to integrate along a branch
cut. For this purpose the cut is regarded as having two distinct sides, with the integrand
being defined differently on each side.

When the only singularities of f (z) are poles, the variation in the argument of
f (z) along a simple closed contour is related to the difference in the number of its
zeros and poles inside the contour. A consequence of this fact is Rouché’s theorem,
which provides a comparison technique for counting the number of zeros of an analytic
function in a certain domain.
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Chapter 7

Conformal Mapping

In this chapter we shift our point of view somewhat; rather than dealing with the alge-
braic properties of an analytic function f (z), we are going to regard f as a mapping
from its domain to its range and consider its geometric properties. The ability to map
one region onto another via an analytic function proves invaluable in applied mathe-
matics, as we shall see in Sec. 7.1.

7.1 Invariance of Laplace’s Equation

One of the most valuable aspects of mappings generated by analytic functions is the
persistence of Laplace’s equation; roughly, this means that if φ(x, y) is harmonic in a
certain domain D of the xy-plane (so that φ satisfies Laplace’s equation

∂2φ

∂x2
+ ∂2φ

∂y2
= 0

in D), and if
w = f (z) (1)

is an analytic function mapping D onto a domain D′ in the uv-plane, then φ is “carried
over” by the mapping to a function that is harmonic in D′.

To express this fact precisely we must elaborate somewhat on the nature of the
mapping. We assume that relation (1) provides a one-to-one correspondence between
the points of D and those of D′.† Recall that this means f (z1) = f (z2) only if
z1 = z2. We also assume that the derivative d f/dz is never zero in D; actually the
latter is a consequence of the one-to-one assumption, but we won’t prove it here.

Now since the mapping is one-to-one, it has an inverse; that is, with each point of
D′ there can be associated a point of D, namely, its preimage under f . This relation-
ship, which is the inverse of w = f (z), is suggestively written

z = f −1(w). (2)

†Such a mapping is sometimes called univalent, or schlicht.

From Chapter 7 of Fundamentals of Complex Analysis with Applications to Engineering, Science, and Mathematics,
 © 2003 by Pearson Education, Inc. All rights reserved.Third Edition. Edward B. Saff, Arthur David Snider. Copyright
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370 Conformal Mapping

Figure 7.1 Inverse mapping.

Figure 7.1 depicts both the relationships. Observe that f −1 is a single-valued function
(since only one z is mapped to a particular w). The reader will probably not be sur-
prised to learn that it is, in fact, an analytic function, and that its derivative is given
by

d f −1

dw
(w) = 1

d f

dz
(z)

[where w = f (z)]. (3)

This equation can also be written in the form

dz

dw
= 1

dw

dz

, (4)

keeping in mind the functional relationships. We have already proved a special case
of Eq. (3) for the function w = ez and its inverse z = Logw, taking D to be the strip
| Im z| < π and D′ to be the entire plane slit along the negative real axis (cf. Sec. 3.3).
We shall invite the reader to prove Eq. (3) in general at the end of the next section.

It is sometimes helpful to indicate the mappings (1) and (2) in terms of real vari-
ables; thus Eq. (1) becomes

u = u(x, y), v = v(x, y) (5)

and its inverse, Eq. (2), becomes

x = x(u, v), y = y(u, v). (6)

Now we are prepared to demonstrate the property stated before about the per-
sistence of Laplace’s equation. Observe that if φ(x, y) is a function defined on D,
then the domain D′ “inherits” φ through the one-to-one mapping; that is, the function
ψ(u, v) defined by

ψ(u, v) := φ(x(u, v), y(u, v)),
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7.1 Invariance of Laplace’s Equation 371

Figure 7.2 Mappings of neighborhoods.

or, equivalently,

ψ(w) := φ
(

f −1(w)
)
,

agrees with φ(x, y) at corresponding points. Our claim is that if φ is harmonic in D,
then ψ is harmonic in D′.

The proof is quite simple. Consider any point w0 in D′, say w0 = f (z0). Now D
is an open set, so there exists an open disk N centered at z0 and lying entirely in D.
Since f −1(w) is an analytic function, and thus continuous, there must be a sufficiently
small neighborhood N′ around w0 whose image under f −1 lies entirely inside N (this
is depicted in Fig. 7.2). To see that ψ(u, v) is harmonic in the neighborhood N′, recall
that in Sec. 2.5 we proved that any harmonic function can be taken as the real part
of an analytic function in “nice enough” domains—in particular, this is true for disks.
Hence φ(x, y) is the real part of an analytic function g(z) on N. But then ψ(u, v) is
the real part of the composite function g

(
f −1(w)

)
on N′, and since the composition

of analytic functions is again analytic, ψ must be harmonic in the neighborhood N′ of
w0. Consequently, as w0 is an arbitrary point of D′, the function ψ must be harmonic
everywhere on D′.

Another proof of this fact can be based upon the direct verification of Laplace’s
equation in the w-plane, using the Cauchy-Riemann equations (see Prob. 2).

One can readily see why the preceding result is so useful in applications. Consider
the Dirichlet problem, which requires us to find a function harmonic in a domain and
taking specified values on its boundary (cf. Sec. 4.7). Once we have solved this
problem on a particular domain, we immediately have solutions on all the domains
that we can map onto the original one via a one-to-one analytic function, as long as
the boundary values correspond. So we select whichever domain renders the problem
simplest: usually a washer, wedge, or wall (where the methods of Sec. 3.4 apply), or a
disk or upper half-plane (where we can apply Poisson’s integral formulas, Sec. 4.7).
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372 Conformal Mapping

The following problem can, in fact, be solved by Poisson’s formulas, but the map-
ping procedure is easier to apply.

Example 1
Find a function φ(x, y) harmonic inside the unit disk |z| < 1 and satisfying the bound-
ary conditions

φ(x, y) → +1 on the upper half-circle,

φ(x, y) → −1 on the lower half-circle

(see Fig. 7.3). (This function gives the temperature profile inside an infinitely long
right circular cylinder whose outer wall is partitioned into sections maintained at dif-
ferent temperatures. Thermal insulation, of course, must be provided at the points of
discontinuity z = ±1, and the temperature is not specified there.)

Figure 7.3 Dirichlet problem for Example 1.

Solution. This complicated-looking problem will be solved by means of a map-
ping that carries the disk onto a 180◦ wedge — the right half-plane. In Sec. 7.3 the
reader will be instructed on how to construct such mappings, but for now we sim-
ply want to illustrate the power of the technique. So we state without proof that the
function

w = f (z) = 1 + z

1 − z
(7)

maps the unit circle onto the imaginary axis and its interior onto the right half-plane.
(The exterior maps to the left half-plane.) The correspondences are illustrated in
Fig. 7.4. Observe that |w| increases without bound as z → 1, whereas z = −1
maps to w = 0. Moreover, the mapping (7) is one-to-one. In fact, the inverse is easily
computed by solving for z in terms of w:

z = w − 1

w + 1
. (8)

The pair of functions (7) and (8) are employed in microwave engineering to con-
struct the Smith chart, which is discussed in Exercises 7.3. Figure 7.5, from the paper
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7.1 Invariance of Laplace’s Equation 373

Figure 7.4 Mapping for Example 1.

Figure 7.5 Correspondences for mapping Eqs. (7) and (8). (From C. Frederick and E.L.
Schwartz, “Conformal Image Warping,” IEEE Computer Graphics and Applications, March
1990, p. 26. Copyright 1990 IEEE.)
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374 Conformal Mapping

“Conformal Image Warping” by Frederick and Schwartz (see Ref. [9]), offers a some-
what whimsical depiction of the mapping.

Notice that the upper half-circle, where the unknown function φ equals 1, is
mapped to the positive imaginary axis, whereas the lower half-circle (where φ = −1)
corresponds to the negative imaginary axis. Consequently, by the methods of Sec. 3.4
we find the solution in the w-plane to be

ψ(u, v) = 2

π
Arg(w).

Hence the solution to the original problem is derived from ψ by the mapping (7):

φ(x, y) = ψ(u(x, y), v(x, y)) = 2

π
Arg( f (z)) = 2

π
Arg

(
1 + z

1 − z

)
.

A little algebra results in the expression

φ(x, y) = 2

π
tan−1 2y

1 − x2 − y2
,

where the value of the arctangent is taken to be between −π/2 and π/2. Note that
φ(x, 0) = 0, as we would expect from symmetry. �

With this example as motivation we devote the next few sections to a study of
mappings given by analytic functions. The final two sections of the chapter will return
us to applications, illustrating the power of this technique in handling many different
situations. A table of some of the more useful mappings appears as Appendix II, for
the reader’s future convenience.

The MATLAB toolbox mentioned in the preface provides an excellent tool for
visualizing most of the mappings studied in the chapter.

EXERCISES 7.1

1. Show that the function w = ez maps the half-strip x > 0, −π/2 < y < π/2 onto
the portion of the right half w-plane that lies outside the unit circle (see Fig. 7.6).
What harmonic function ψ(w) does the w-plane “inherit,” via this mapping, from
the harmonic function φ(z) = x + y? What harmonic function φ(z) is inherited
from ψ(w) = u + v?

2. Suppose that Eqs. (5) and (6) describe a one-to-one analytic mapping. Let φ(x, y)
be a real-valued twice-continuously differentiable function that is carried over in the
w-plane to the function

ψ(u, v) := φ(x(u, v), y(u, v)).

(a) The gradient of φ(x, y) is the vector (∂φ/∂x, ∂φ/∂y); it corresponds to the
complex number (recall Sec. 1.3) ∂φ/∂x + i(∂φ/∂y). Similarly, the gradient
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7.1 Invariance of Laplace’s Equation 375

Figure 7.6 Exponential mapping of half-strip.

of ψ corresponds to ∂ψ/∂u + i(∂ψ/∂v). Use the chain rule and the Cauchy-
Riemann equations to show that these gradients are related by

∂ψ

∂u
+ i

∂ψ

∂v
=
(
∂φ

∂x
+ i

∂φ

∂y

)(
dz

dw

)
.

(b) Show that the Laplacians of ψ and φ are related by{
∂2ψ

∂u2
+ ∂2ψ

∂v2

}
=
{
∂2φ

∂x2
+ ∂2φ

∂y2

} ∣∣∣∣ dz

dw

∣∣∣∣2 .
(c) Show that if φ(x, y) satisfies Laplace’s equation in the z-plane, then ψ satis-

fies Laplace’s equation in the w-plane.

(d) Show that if φ satisfies Helmholtz’s equation,

∂2φ

∂x2
+ ∂2φ

∂y2
= �φ

(� is a constant), in the z-plane, then ψ satisfies

∂2ψ

∂u2
+ ∂2ψ

∂v2
= �

∣∣∣∣ dz

dw

∣∣∣∣2 ψ
in the w-plane. (Helmholtz’s equation arises in transient thermal analysis.)

3. Find a function φ harmonic in the upper half-plane and taking boundary values as
indicated in Fig. 7.7. [HINT: Reread Sec. 3.4.]

4. Consider the problem of finding a function φ that is harmonic in the right half-plane
and takes the values φ(0, y) = y

/(
1 + y2

)
on the imaginary axis. Observe that the

obvious first guess

φ(z) = Im
z

1 − z2
,
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Figure 7.7 Dirichlet problem in Prob. 3.

fails because z
/(

1 − z2
)

is not analytic at z = 1. However, the following strategy
can be used.

(a) According to the text, the mappings (7) and (8) provide a correspondence
between the right half-plane and the unit disk. (Of course, one should inter-
change the roles of z and w in the formulas.) Thus the w-plane inherits from
φ(z) a functionψ(w) harmonic in the unit disk. Show that the values ofψ(w)
on the unit circle w = eiθ must be given by

ψ(eiθ ) = sin θ

2
.

(b) Argue that the harmonic function ψ(w) must be given by

ψ(w) = 1

2
Imw

throughout the unit disk.

(c) Use the mappings to carry ψ(w) back to the z-plane, producing the function

φ(z) = y

y2 + (x + 1)2

as a solution of the problem.

5. Use the strategy of Prob. 4 to find a function φ harmonic in the right half-plane such
that φ(0, y) = 1/(y2 + 1).

6. Suppose that the harmonic function φ(x, y) in the domain D is carried over to the
harmonic function ψ(u, v) in the domain D′ via the one-to-one analytic mapping
w = f (z). Prove that if the normal derivative ∂φ/∂n is zero on a curve � in
D, then the normal derivative ∂ψ/∂n is zero on the image curve of � under f .
(The boundary condition ∂φ/∂n = 0 is known as a Neumann condition.) [HINT:
∂φ/∂n is the projection of the gradient (∂φ/∂x) + i(∂φ/∂y) onto the normal, and
the gradient is orthogonal to the level curves φ(x, y) = constant.]
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7. Suppose that f (z) is analytic and one-to-one. Then, according to the text, you may
presume that f −1 is also analytic. If x , y, u, v are as in Eqs. (5) and (6), explain the
identities

∂x

∂u
= ∂y

∂v
,

∂x

∂v
= −∂y

∂u
.

7.2 Geometric Considerations

The geometric aspects of analytic mappings split rather naturally into two categories:
local properties and global properties. Local properties need only hold in sufficiently
small neighborhoods, while global properties hold throughout a domain. For example,
consider the function ez . It is one-to-one in any disk of diameter less than 2π , and
hence it is locally one-to-one, but since ez1 = ez2 when z1 − z2 = 2π i , the function
is not globally one-to-one. On the other hand, sometimes local properties can be ex-
tended to global properties; in fact, this is the essence of analytic continuation (see
Sec. 5.8).

Figure 7.8 Locally one-to-one mapping.

Let us begin our study of local properties by considering “one-to-oneness.” As
the example ez shows, a function may be locally one-to-one without being globally
one-to-one. (Of course, the opposite situation is impossible.) Furthermore, an analytic
function may be locally one-to-one at some points but not at others. Indeed, consider

f (z) = z2.

In any open set that contains the origin there will be distinct points z1 and z2 such
that z2 = −z1, and hence (since z2

2 = z2
1) the function f will not be one-to-one.

However, around any point other than the origin, we can find a neighborhood in which
z2 is one-to-one (any disk that excludes the origin will do; see Fig. 7.8). Thus f (z) =
z2 is locally one-to-one at every point other than the origin. An explanation of the
exceptional nature of z = 0 in this example is provided by the following.
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Theorem 1. If f is analytic at z0 and f ′ (z0) �= 0, then there is an open disk D
centered at z0 such that f is one-to-one on D.

Proof. Since f ′ is also analytic at z0 and | f ′(z0)| > 0, there is an open disk D
centered at z0 such that | f ′(z) − f ′(z0)| ≤ | f ′(z0)|/2 for all z in D. We shall show
that, in fact, | f (z1)− f (z2)| ≥ |z1 − z2| | f ′(z0)/2| for z1, z2 inside this disk; so f is
certainly one-to-one in D.

Let � be the segment joining z1 and z2. Then we have

| f (z1)− f (z2)| =
∣∣∣∣∫
�

f ′(z) dz

∣∣∣∣
=
∣∣∣∣∫
�

f ′(z0) dz −
∫
�

[ f ′(z0)− f ′(z)] dz

∣∣∣∣
≥ | f ′(z0) (z2 − z1)| −

∣∣∣∣ f ′(z0)

2

∣∣∣∣ |z2 − z1|

=
∣∣∣∣ f ′(z0)

2

∣∣∣∣ |z2 − z1| . �

Theorem 1 says that an analytic function is locally one-to-one at points where its
derivative does not vanish. In advanced texts it is shown more generally that if z0 is
a zero of order m for f ′, then f is locally “(m + 1)-to-one” around (but excluding)
z0; in other words, each value of f is taken on m + 1 times. This is reinforced by the
observation that f (z) = z2 is two-to-one in any punctured neighborhood of the origin.

The next local property we shall discuss is conformality. Consider the following
situation: f (z) is analytic and one-to-one in a neighborhood of the point z0, and γ1
and γ2 are two directed smooth curves (in this neighborhood) intersecting at z0. Under
the mapping f the images of these curves, γ ′

1 and γ ′
2, are also directed smooth curves,

and they will intersect at w0 = f (z0). At the point z0 we construct vectors v1 and
v2 tangent to γ1 and γ2, respectively, and pointing in the directions consistent with the
orientations of the curves (see Fig. 7.9). Then the angle from γ1 to γ2 is the angle θ
through which v1 must be rotated counterclockwise in order to lie along v2. The angle
θ ′ from γ ′

1 to γ ′
2 is defined similarly.

Now the mapping f is said to be conformal at z0 if these angles are preserved;
that is, θ = θ ′ for every pair of directed smooth curves that intersect at z0. For analytic
mappings we have the following theorem.

Theorem 2. An analytic function f is conformal at every point z0 for which
f ′ (z0) �= 0.

Proof. By Theorem 1 we know that there is some open disk containing z0 in
which f is one-to-one. We will argue that every directed smooth curve through z0
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Figure 7.9 Conformality.

has its tangent (at z0) turned through the same angle, under the mapping w = f (z).
Consequently, the angle between any two curves intersecting at z0 will be preserved.

So let γ be any directed smooth curve through z0 parametrized, say, by z = z(t)
with z (t0) = z0. The vector z′ (t0) is then tangent to γ at z0. Under the mapping the
image, γ ′, of γ has the parametrization

w = w(t) = f (z(t))

with
w0 := f (z0) = f (z (t0)) ,

and the vectorw′ (t0) (if it is nonzero) is tangent to γ ′ atw0. But the chain rule implies

w′ (t0) = f ′ (z0) z′ (t0) , (1)

so w′ (t0) is nonzero since f ′ (z0) �= 0. Furthermore, we see from Eq. (1) that the
angles which the tangent vectors z′ (t0), w′ (t0)make with the horizontal are related by

argw′ (t0) = arg f ′ (z0)+ arg z′ (t0) .
Hence every curve through z0 is rotated through the same angle arg f ′ (z0) which, of
course, is a constant independent of the particular curve. �

The condition that f ′ (z0) not vanish in Theorem 2 is crucial; the function f (z) =
z2, for which f ′(0) = 0, does not preserve angles at the origin—it doubles them. How-
ever, it is common practice to call any mapping generated by a nonconstant analytic
function a “conformal map,” overlooking the violations occurring at the points where
f ′ is zero. (Incidentally, these exceptional points will be reexamined in Sec. 7.5; they
turn out to be quite important.)

Moving now to the global aspects of conformal mapping, we begin with a property
that has both local and global ramifications: the open mapping property. A function is
said to be an open mapping if the image of every open set in its domain is, itself, open;
that is, the function maps open sets to open sets. For analytic functions we have the
following theorem.
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Theorem 3. Any analytic function that is nonconstant on domains is an open
mapping.

A proof of this theorem was given in Sec. 6.7. Note that the theorem prohibits, for
instance, a nonconstant analytic mapping of a disk onto a portion of a line.

It is very useful in investigating conformal maps to exploit the concept of con-
nectivity. For example, one can show that any nonconstant analytic function takes
domains, that is, open connected sets, to domains. Openness is preserved because of
Theorem 3, and as for connectivity, we argue as follows. Let us say f maps the do-
main D onto the open set O. To join w1 = f (z1) to w2 = f (z2) by a polygon path
in O, first join z1 to z2 in D. Then the image of this path is a path joining w1 to w2 in
O. Of course, the image path need not be polygonal, but any competent topologist can
prove that such a path, lying inside an open set, can be deformed into a polygonal path
without leaving the set. Hence O is connected. (See Fig. 7.10.)

Figure 7.10 Conformal maps preserve connectivity.

The remaining topic from the global theory of analytic functions that we shall
consider here is the Riemann mapping theorem. Because it is primarily an existence
theorem, its usefulness in applied mathematics is somewhat limited.

Theorem 4 (Riemann Mapping Theorem). Let D be any simply connected
domain in the plane other than the entire plane itself. Then there is a one-to-one
analytic function that maps D onto the open unit disk. Moreover, one can
prescribe an arbitrary point of D and a direction through that point which are to
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be mapped to the origin and the direction of the positive real axis, respectively.
Under such restrictions the mapping is unique.

A direction through a point z0 is specified, of course, by an angle φ, as in Fig. 7.11.
The Riemann mapping theorem allows us to specify z0 and φ so that all curves through
z0 with tangent in the direction φ are mapped to curves through the origin with tangent
along the positive real axis. This yields three “degrees of freedom,” or three choices
to be made, in fixing the map: the real and the imaginary parts of the point that goes
to 0, and the direction.

Again, we appeal to the references for a complete treatment of this theorem. (As
an ominous note, we tantalize the reader by pointing out that the theorem makes no
predictions about the boundary values of the function.)

From the Riemann mapping theorem we can conclude that any simply connected
domain D1 can be analytically mapped one-to-one onto any other simply connected
domain D2, assuming that neither D1 nor D2 is the whole plane. Indeed, let f map D1
onto the unit disk, and let g map D2 onto this disk, in accordance with the theorem.
Then g−1( f (z)) maps D1 onto D2 and is one-to-one and analytic. (See Fig. 7.12.)

Figure 7.11 Three degrees of freedom.

Figure 7.12 Mapping of simply connected domains.

381



382 Conformal Mapping

The remainder of this chapter will deal with constructing and applying specific
conformal mappings.

EXERCISES 7.2

1. For each of the following functions, determine the order m of the zero of the deriva-
tive f ′ at z0 and show explicitly that the function is not one-to-one in any neighbor-
hood of z0.

(a) f (z) = z2 + 2z + 1, z0 = −1

(b) f (z) = cos z, z0 = 0,±π,±2π, . . .

(c) f (z) = ez3
, z0 = 0

2. Prove that if w = f (z) is analytic at z0 and f ′ (z0) �= 0, then z = f −1(w) is
analytic at w0 = f (z0), and

d f −1

dw
(w) = 1

d f

dz
(z)

for w = w0, z = z0. [HINT: Theorem 1 guarantees that f −1(w) exists near w0
and Theorem 3 implies that f −1(w) is continuous. Now generalize the proof in
Sec. 3.2.]

3. What happens to angles at the origin under the mapping f (z) = zα for α > 1? For
0 < α < 1?

4. Use the open mapping theorem to prove the maximum-modulus principle.

5. Find all functions f (z) analytic in D : |z| < 1 that assume only pure imaginary
values in D.

6. If f is analytic at z0 and f ′ (z0) �= 0, show that the function g(z) = f (z) preserves
the magnitude, but reverses the orientation, of angles at z0.

7. Show that the mapping w = z + 1/z maps circles |z| = ρ (ρ �= 1) onto ellipses

u2(
ρ + 1

ρ

)2
+ v2(

ρ − 1

ρ

)2
= 1.

8. Let f be analytic at z0 with f ′ (z0) �= 0. By considering the difference quotient,
argue that “infinitesimal” lengths of segments drawn from z0 are magnified by the
factor

∣∣ f ′ (z0)
∣∣ under the mapping w = f (z).

9. Let w = f (z) be a one-to-one analytic mapping of the domain D onto the domain
D′, and let A′ = area

(
D′). Using Prob. 8, argue the plausibility of the formula

A′ =
∫∫

D

∣∣ f ′(z)
∣∣2 dx dy.
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10. Why is it impossible for D to be the whole plane in the Riemann mapping theorem?
[HINT: Appeal to Liouville’s theorem.]

11. Describe the image of each of the following domains under the mapping w = ez .

(a) the strip 0 < Im z < π

(b) the slanted strip between the two lines y = x and y = x + 2π

(c) the half-strip Re z < 0, 0 < Im z < π

(d) the half-strip Re z > 0, 0 < Im z < π

(e) the rectangle 1 < Re z < 2, 0 < Im z < π

(f) the half-planes Re z > 0 and Re z < 0

12. Let P(z) = (z − α)(z − β), and let L be any straight line through (α+ β)/2. Prove
that P is one-to-one on each of the open half-planes determined by L .

13. Describe the image of each of the following domains under the mapping w =
cos z = cos x cosh y − i sin x sinh y. [HINT: Consider the image of the boundary in
each case.]

(a) the half-strip 0 < Re z < π , Im z < 0

(b) the half-strip 0 < Re z <
π

2
, Im z > 0

(c) the strip 0 < Re z < π

(d) the rectangle 0 < Re z < π , −1 < Im z < 1

14. Prove that if f has a simple pole at z0, then there exists a punctured neighborhood
of z0 on which f is one-to- one.

15. A domain D is said to be convex if for any two points z1, z2 in D, the line segment
joining z1 and z2 lies entirely in D. Prove the Noshiro-Warschawski theorem: Let
f be analytic in a convex domain D. If Re f ′(z) > 0 for all z in D, then f is
one-to-one in D. [HINT: Write f (z2)− f (z1) as an integral of f ′.]

16. (For students who have read Sec. 4.4a) Argue that a one-to-one analytic function
will map simply connected domains to simply connected domains.

7.3 Möbius Transformations

The problem of finding a one-to-one analytic function that maps one domain onto
another can be quite perplexing, so it is worthwhile to investigate a few elementary
mappings in order to compile some rules of thumb that we can draw upon. The basic
properties of Möbius transformations,† which we shall investigate in this section, con-
stitute an essential portion of every analyst’s bag of tricks. (Some of these mappings
were previewed in Exercises 2.1.)

†In 1865 August Möbius (1790-1860) described the Möbius strip, a piece of paper that has only
one side and one edge.
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384 Conformal Mapping

Figure 7.13 Translation.

Figure 7.14 Rotation.

First, let’s consider the simplest mapping of all, the translation defined by the
function

w = f (z) = z + c, (1)

where c is a fixed complex number. Under this mapping every point is shifted by
the vector corresponding to c. Its properties are quite apparent: The entire complex
plane is mapped one-to-one onto itself, and every geometric object is mapped onto a
congruent object. (See Fig. 7.13.)

Rotations are quite simple also. Observe that under the transformation

w = f (z) = eiφz, (2)

with φ real, every point is rotated about the origin through the angle φ. Such trans-
formations are also one-to-one mappings of the complex plane onto itself and map
geometric objects onto congruent objects. (See Fig. 7.14.)

The mapping defined by
w = f (z) = ρz, (3)

where ρ is a positive real constant, simply enlarges (or contracts) the distance of every
point from the origin by the factor ρ; hence such a transformation is called a magni-
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7.3 Möbius Transformations 385

Figure 7.15 Magnification.

fication. Observe that the distance between any two points is multiplied by this same
constant, since

|w1 − w2| = | f (z1)− f (z2)| = |ρz1 − ρz2| = ρ |z1 − z2| .
Magnifications thus rescale distances and (since they are conformal) preserve angles;
consequently any geometric object is mapped onto an object that is similar to the orig-
inal. And again, the complex plane is mapped one-to-one onto itself. (See Fig. 7.15.)

A linear transformation† is any mapping of the form

w = f (z) = az + b, (4)

where a and b are complex constants with a �= 0. Such a transformation can be
considered as the composition of a rotation, a magnification, and a translation (each
of which is, of course, a special case of the linear transformation): Writing a in polar
form as a = ρeiφ , we express the linear transformation (4) by the composition of

w1 = eiφz,

w2 = ρw1,

and, finally,

w = w2 + b.

Hence the linear transformation is, once again, one-to-one in the complex plane, and
the image of any object is geometrically similar to the original. (See Fig. 7.16.)

Example 1
Find the linear transformation that rotates the entire complex plane through an angle θ
about a given point z0.

†This is, unfortunately, bad terminology, because in other branches of mathematics a “linear
transformation” has the property f (z1 + z2) = f (z1) + f (z2), while this is true of Eq. (4) only
when b = 0. Worse yet, Möbius transformations are called linear transformations by some authors.

385



386 Conformal Mapping

F
ig

ur
e

7.
16

L
in

ea
r

tr
an

sf
or

m
at

io
n
w

=
2i

z
+

1
+

i.

386



7.3 Möbius Transformations 387

Solution. We know that the mapping

w1 = eiθ z

rotates the plane through the angle θ about the origin. In particular, the point z0 is
mapped to the point eiθ z0. If we now shift the whole plane so that the latter point is
carried back to z0, the net result will be a rotation of the plane about z0. (Think about
this; every straight line gets rotated through the angle θ , and z0 is left fixed.) Thus the
required answer is

w = w1 + (z0 − eiθ z0) = eiθ z + (1 − eiθ )z0. �

Example 2
Find a linear transformation that maps the circle C1 : |z − 1| = 1 onto the circle
C2 : |w − 3i/2| = 2.

Figure 7.17 Mappings for Example 2.

Solution. Refer to Fig. 7.17. First we translate by −1 so that C1 becomes a unit
circle centered at the origin. Then we magnify by the factor 2. Finally we translate
3/2 units up the imaginary axis, bringing us to C2. The mappings are

w1 = z − 1,

w2 = 2w1 = 2z − 2,

and, last,

w = w2 + 3i/2 = 2z − 2 + 3i/2.

Moreover, any subsequent rotation about the point 3i/2 can be permitted. �
Now we consider the inversion transformation defined by

w = f (z) = 1

z
. (5)
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Figure 7.18 Inversion of line through origin.

It is easy to see that the inversion is a one-to-one mapping of the extended complex
plane onto itself.† It “turns the unit circle inside out,” mapping the interior to the
exterior and vice versa.

Note that the point z = ρeiθ is mapped to

w = 1

ρeiθ
= 1

ρ
e−iθ . (6)

If we interpret (6) with the real number ρ varying from −∞ to +∞ while θ is fixed,
we see that the line through the origin making an angle θ with the real axis is mapped
onto the line through the origin making the angle −θ with the real axis; the point at ∞
goes to the origin and vice versa. (See Fig. 7.18.) On the other hand, if we interpret
(6) with θ varying from 0 to 2π while ρ is fixed, we see that the circle of radius ρ
centered at the origin is mapped onto the circle of radius 1/ρ centered at the origin
(traced backward, we might say).

However it is wrong to jump to the conclusion that inversion always maps lines
to lines, and circles to circles. But it does the next best thing: the image of a line is
always either a line or a circle, and so is the image of a circle! So as long as we’re
treating ∞ as a point, we could regard a line as a “generalized circle” with an infinite
radius and say that inversion maps generalized circles to generalized circles.

A direct verification of this statement is lengthy, involving the verification of the
appropriate equations from analytic geometry. so we relegate it to problems 15–17.

(Note, however, than one can readily derive this statement by considering the stere-
ographic projection interpretation described in Sec. 1.7. First observe that the stereo-
graphic projection of generalized circles in the plane are circles on the Riemann sphere
(Example 2, Sec. 1.7) and conversely, every circle on the sphere is the image of a gen-
eralized circle. Second recall the fact that inversion corresponds to a 180o rotation of
the Riemann sphere about a diameter (Example 4, Sec. 2.1). Since such a rotation
preserves circles on the sphere, the mapping 1/z preserves generalized circles in the
plane.)

†Think about this statement: “The inversion is its own inverse.”
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7.3 Möbius Transformations 389

Figure 7.19 Lines and circles.

At any rate, it is always easy to tell whether the image will be a line or circle; if
the original line or circle passes through the origin, its image will contain the point at
infinity, so it must be a line; if the original line or circle misses the origin, its image
will be bounded and, hence, a circle. See Fig. 7.19.

To recap, the inversion mapping is one-to-one and carries the class of straight
lines and circles into itself, a property shared with translations, rotations, and magnifi-
cations.

Now we are ready to define the Möbius transformations.

Definition 1. A Möbius (or Moebius) transformation (sometimes known as a
fractional linear transformation or bilinear transformation) is any function
of the form

w = f (z) = az + b

cz + d
(7)

with the restriction that ad �= bc (so that w is not a constant function).

Notice that since

f ′(z) = ad − bc

(cz + d)2

does not vanish, the Möbius transformation f (z) is conformal at every point except its
pole z = −d/c.

It is easy to see that the Möbius transformations include the previous elemen-
tary transformations of this section as special cases. More important is the fact that
any Möbius transformation can be decomposed into a succession of these elementary
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transformations. If c = 0, we have the linear transformation that was treated earlier.
For c �= 0, the decomposition can be seen by writing

az + b

cz + d
=

a

c
(cz + d)− ad

c
+ b

cz + d
= a

c
+

b − ad

c
cz + d

,

which shows that the Möbius transformation can be expressed as a linear transforma-
tion (rotation + magnification + translation)

w1 = cz + d, (8)

followed by an inversion

w2 = 1

w1
, (9)

and then another linear transformation

w =
(

b − ad

c

)
w2 + a

c
. (10)

As a result of this decomposition and of our previous deliberations, we can sum-
marize some properties of Möbius transformations.

Theorem 5. Let f be any Möbius transformation. Then

(i) f can be expressed as the composition of a finite sequence of translations,
magnifications, rotations, and inversions.

(ii) f maps the extended complex plane one-to-one onto itself.

(iii) f maps the class of circles and lines to itself.

(iv) f is conformal at every point except its pole.

The possibilities in property (iii) are distinguished as follows. If a line or circle
passes through the pole (z = −d/c) of the Möbius transformation, it gets mapped to
an unbounded figure. Hence its image is a straight line. A line or circle that avoids the
pole, then, is mapped to a circle.

Example 3
Find the image of the interior of the circle C : |z − 2| = 2 under the Möbius transfor-
mation

w = f (z) = z

2z − 8
.

Solution. First we find the image of the circle C . Since f has a pole at z = 4
and this point lies on C , the image has to be a straight line. To specify this line all we

390



7.3 Möbius Transformations 391

need is to determine two of its finite points. The points z = 0 and z = 2 + 2i which
lie on C have, as their images,

w = f (0) = 0 and w = f (2 + 2i) = 2 + 2i

2(2 + 2i)− 8
= − i

2
.

Thus the image of C is the imaginary axis in the w-plane. From our discussion on
connectivity in Sec. 7.2, we know that the interior of C is, therefore, mapped either
onto the right half-plane Rew > 0 or onto the left half-plane Rew < 0. Since z = 2
lies inside C and

w = f (2) = 2

4 − 8
= −1

2

lies in the left half-plane, we conclude that the image of the interior of C is the left
half-plane. �

Now we shall present an example showing how to construct a conformal map of
one region onto another.

Example 4

Find a conformal map of the unit disk |z| < 1 onto the right half-plane Rew > 0.

Figure 7.20 Mapping for Example 4.

Solution. We are naturally led to look for a Möbius transformation that maps the
circle |z| = 1 onto the imaginary axis (Fig. 7.20). The transformation must therefore
have a pole on the circle, according to our earlier remarks. Moreover, the originw = 0
must also lie on the image of the circle. As a first step, let’s look at

w = f1(z) = z + 1

z − 1
, (11)

which maps 1 to ∞ and −1 to 0.
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From the geometric properties of Möbius transformations that we have learned,
we can conclude that (11) maps |z| = 1 onto some straight line through the origin. To
see which straight line, we plug in z = i and find that the point

w = i + 1

i − 1
= −i

also lies on the line. Hence the image of the circle under f1 must be the imaginary
axis.

To see which half-plane is the image of the interior of the circle, we check the
point z = 0. It is mapped by (11) to the point w = −1 in the left half-plane. This is
not what we want, but it can be corrected by a final rotation of π , yielding

w = f (z) = − z + 1

z − 1
= 1 + z

1 − z
(12)

as an answer to the problem. (Of course, any subsequent vertical translation or magni-
fication can be permitted.) Observe that (12) is precisely the mapping that was intro-
duced in Example 1, Sec. 7.1, to solve a thermal problem, and we have thus verified
the claims made there. �

EXERCISES 7.3

1. Find a linear transformation mapping the circle |z| = 1 onto the circle |w − 5| = 3
and taking the point z = i to w = 2.

2. What is the image of the strip 0 < Im z < 1 under the mapping w = (z − i)/z?

3. Discuss the image of the circle |z − 2| = 1 and its interior under the following
transformations.

(a) w = z − 2i (b) w = 3i z (c) w = z − 2

z − 1

(d) w = z − 4

z − 3
(e) w = 1

z

4. Find a Möbius transformation mapping the lower half-plane to the disk |w+1| < 1.
[HINT: Do it in steps.]

5. Find a Möbius transformation mapping the unit disk |z| < 1 onto the right half-
plane and taking z = −i to the origin.

6. A fixed point of a function f (z) is a point z0 satisfying f (z0) = z0. Show that a
Möbius transformation f (z) can have at most two fixed points in the complex plane
unless f (z) ≡ z.

7. Find the Möbius transformation that maps 0, 1, ∞ to the following respective points.

(a) 0, i,∞ (b) 0, 1, 2 (c) −i,∞, 1 (d) −1,∞, 1

8. What is the image, under the mapping w = (z + i)/(z − i), of the third quadrant?
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9. What is the image of the sector −π/4 < Arg z < π/4 under the mapping w =
z/(z − 1)?

10. Find a conformal map of the semidisk |z| < 1, Im z > 0, onto the upper half-plane.
[HINT: Combine a Möbius transformation with the mapping w = z2. Make sure
you cover the entire upper half-plane.]

11. Map the shaded region in Fig. 7.21 conformally onto the upper half-plane. [HINT:
Use a Möbius transformation to map the point 2 to ∞. Argue that the image region
will be a strip. Then use the exponential map.]

Figure 7.21 Region for Prob. 11.

12. Find a Möbius transformation that takes the half-plane depicted in Fig. 7.22 onto
the unit disk |w| < 1.

Figure 7.22 Region for Prob. 12.

13. (Smith Chart) The impedance Z of an electrical circuit oscillating at a frequency ω
is a complex number, denoted Z = R + i B, which characterizes the voltage-current
relationship of the circuit; recall Sec. 3.6. In practice R can take any value from 0
to ∞ and B can take any value from −∞ to ∞. Thus the usual representation of
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Figure 7.23 Smith chart.

Z as a point in the complex plane becomes unwieldy (inasmuch as the entire right
half-plane comes into play). The Smith chart provides a more compact graphical
description, displaying the entire range of impedances within the unit circle. The
impedance Z is depicted as the point

W = Z − 1

Z + 1
.

This mapping (its inverse, actually) is portrayed in Figs. 7.4 and 7.5. W is also
known as the reflection coefficient corresponding to Z .

(a) Show that the circles in the Smith chart depicting the lines Re Z = R =
constant, indicating constant-resistance contours, have the equations(

u − R

1 + R

)2

+ v2 = 1

(1 + R)2
.

(b) Show that the circles in the Smith chart depicting the lines Im Z = B =
constant, indicating constant-reactance contours, have the equations

(u − 1)2 +
(
v − 1

B

)2

= 1

B2
.

(See Fig. 7.23.)

14. If a circuit with impedance Z is connected to a length � of transmission line with
“phase constant” β and a “characteristic impedance” of unity, then the new config-
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uration has a transformed impedance Z ′ given by

Z ′ = Z cosβ�+ i sinβ�

cosβ�+ i Z sinβ�
.

Show that the Smith chart point depicting Z ′ can be obtained from the Smith chart
point depicting Z by a clockwise rotation of 2β� radians about the origin.†

15. Show that the transformation (5) maps lines not passing through the origin onto
circles passing through the origin. [HINT: The equation of such a line is Ax + By =
C , with C �= 0. Solve

z = x + iy = 1/w = 1/(u + iv) (13)

for x and y in terms of u and v and substitute. Show that the result can be expressed
in the form

u2 + v2 − A

C
u + B

C
v = 0 .] (14)

16. Show that the transformation (5) maps circles passing through the origin onto lines
not passing through the origin. [HINT: Use the preceding problem.]

17. Show that the transformation (5) maps circles not passing through the origin onto
circles not passing through the origin. [HINT: The equation of such circles is

x2 + y2 + Ax + By = C, with C �= 0.

Substitute the expressions for x and y derived from (13) to obtain

u2 + v2 − A

C
u + B

C
v = 1

C
.]

7.4 Möbius Transformations, Continued

We shall now explore some additional properties of Möbius transformations that en-
hance their usefulness as conformal mappings. These are the group properties, the
cross-ratio formula, and the symmetry property.

Given any Möbius transformation

w = f (z) = az + b

cz + d
(ad �= bc), (1)

its inverse f −1(w) can be found by simply solving Eq. (1) for z in terms of w. This
computation yields

z = f −1(w) = dw − b

−cw + a
,

†P. H. Smith patented the Smith chart in the late 1930s. It is the only known conformal mapping
to be protected by copyright!
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and we see that the inverse of any Möbius transformation is again a Möbius trans-
formation. Furthermore, if we take the composition of two Möbius transformations,
say

w = f1(z) = a1z + b1

c1z + d1
and ζ = f2(w) = a2w + b2

c2w + d2
,

it can be readily shown that

ζ = f2 ( f1(z)) = (a2a1 + b2c1) z + (a2b1 + b2d1)

(c2a1 + d2c1) z + (c2b1 + d2d1)
.

Hence the composition of any two Möbius transformations is also a Möbius transfor-
mation. [Rigorously speaking, we should make this claim only after verifying that
f2 ( f1) cannot reduce to a constant, but this is obviously true because the one-to-
oneness of f1 and f2 implies that f2 ( f1) is one-to-one.] Of course when we take
f −1
1 ( f1) we get the identity function I (z) ≡ z, which is certainly a Möbius transfor-

mation. These facts are known as the group properties of the Möbius transformations
(see Prob. 21).

We have already seen that Möbius transformations map the class of circles and
lines to itself. Now we turn to the problem of finding a specific transformation that
maps a given circle (or line) Cz in the z-plane to a given circle (or line) Cw in the
w-plane. Recall from geometry that any three distinct noncollinear points uniquely
determine a circle; if these points are collinear, then, of course, they uniquely deter-
mine a line (in particular this will be the case when one of them is ∞). Hence if we
choose three points z1, z2, z3 on Cz and three points w1, w2, w3 on Cw and find a
Möbius transformation f satisfying

f (z1) = w1, f (z2) = w2, f (z3) = w3, (2)

then f must map Cz onto Cw.
It is not difficult to write down a Möbius transformation that satisfies Eqs. (2) in

the case when w1 = 0, w2 = 1, and w3 = ∞; this corresponds to the problem of
mapping Cz onto the real axis. If all the points z1, z2, z3 are finite, it is easy to check
that

T (z) = (z − z1) (z2 − z3)

(z − z3) (z2 − z1)
(3)

satisfies
T (z1) = 0, T (z2) = 1, T (z3) = ∞, (4)

while if one of the zi is ∞, the conditions (4) will be satisfied by

T (z) = z2 − z3

z − z3
(z1 = ∞) , T (z) = z − z1

z − z3
(z2 = ∞) ,

(5)

or T (z) = z − z1

z2 − z1
(z3 = ∞) .†

†Note that the Möbius transformations in (5) can be obtained immediately from (3) by simply
deleting the factors involving ∞.
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We remark that the right-hand side of Eq. (3) [or Eqs. (5)] is called the cross-ratio
of the four points z, z1, z2, z3 and is abbreviated by writing (z, z1, z2, z3); that is,

(z, z1, z2, z3) := (z − z1) (z2 − z3)

(z − z3) (z2 − z1)
(6)

in the case of finite points. Notice that the order in which the points are listed is crucial
in this notation. For example,

(z, 3, 0, i) = (z − 3)(0 − i)

(z − i)(0 − 3)
= −i z + 3i

−3z + 3i
,

but

(z, i, 3, 0) = (z − i)(3 − 0)

(z − 0)(3 − i)
= 3z − 3i

(3 − i)z
.

Now if we wish to solve the general problem of finding a Möbius transformation
f that maps

z1 to w1, z2 to w2, z3 to w3,

where w1, w2, w3 are any three distinct points, we can proceed as follows: Let T (z)
be the Möbius transformation just discussed, taking

z1 to 0, z2 to 1, z3 to ∞,

and let S(w) be the analogous transformation that maps

w1 to 0, w2 to 1, w3 to ∞.

Then the desired Möbius transformation f is given by the composition

w = f (z) = S−1(T (z)), (7)

because

f (z1) = S−1 (T (z1)) = S−1(0) = w1,

f (z2) = S−1 (T (z2)) = S−1(1) = w2,

f (z3) = S−1 (T (z3)) = S−1(∞) = w3.

Notice that Eq. (7) is equivalent to the equation

S(w) = T (z);
in other words, to map z1, z2, z3 to the respective points w1, w2, w3, we need merely
equate the two cross-ratios

(w,w1, w2, w3) = (z, z1, z2, z3) (8)

and solve for w in terms of z.
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Example 1
Find a Möbius transformation that maps 0 to i , 1 to 2, and −1 to 4.

Solution. The appropriate cross-ratios are given by

(z, 0, 1,−1) = (z − 0)[1 − (−1)]
[z − (−1)](1 − 0)

= 2z

z + 1

and

(w, i, 2, 4) = (w − i)(2 − 4)

(w − 4)(2 − i)
= −2(w − i)

(w − 4)(2 − i)
.

Hence, solving the equation

−2(w − i)

(w − 4)(2 − i)
= 2z

z + 1

for w yields the desired transformation

w = (16 − 6i)z + 2i

(6 − 2i)z + 2
. �

It is important to note that the circle or line � determined by the three points z1,
z2, z3 is also oriented by the order of these points. That is, � acquires the direction
obtained by proceeding through the points z1, z2, z3 in succession. [Notice that lines
are regarded as “closed” at ∞ in the present context. Hence they, like circles, require a
sequence of three points to determine a direction. See Fig. 7.24(d).] This orientation,
in turn, uniquely specifies the “left region,” the region that lies to the left of an observer
traversing � (Fig. 7.24). Since Möbius transformations are conformal, it can be shown
that a Möbius transformation that takes z1, z2, z3 to the respective points w1, w2, w3
must map the left region of the circle (or line) oriented by z1, z2, z3 onto the left region
of the circle (or line) oriented by w1, w2, w3. To see this in the special case depicted
in Fig. 7.25 imagine a short directed segment drawn from a point on the circle in the
z-plane into the left region. The image of this segment is, by conformality, a curve

Figure 7.24 Left regions determined by three-point sequence.

398



7.4 Möbius Transformations, Continued 399

Figure 7.25 Correspondence of left regions.

from the image line into its left region. By connectivity, then, we conclude that the left
region is mapped to the left region. The other situations of mapping a circle to a circle,
a line to a circle, and a line to a line can be treated in a similar manner.

Thus by judiciously selecting ordered points we can quickly write down an alge-
braic formula for a mapping of one “circular” region onto another.

Example 2
Find a Möbius transformation that maps the region D1 : |z| > 1 onto the region
D2 : Rew < 0.

Solution. We shall take both D1 and D2 to be left regions. This is accomplished
for D1 by choosing any three points on the circle |z| = 1 that give it a negative (clock-
wise) orientation, say

z1 = 1, z2 = −i, z3 = −1.

Similarly the three points

w1 = 0, w2 = i, w3 = ∞
on the imaginary axis make D2 its left region. Hence a solution to the problem is given
by the transformation that takes

1 to 0, −i to i, −1 to ∞.

This we obtain by setting

(w, 0, i,∞) = (z, 1,−i,−1),

that is,
w − 0

i − 0
= (z − 1)(−i + 1)

(z + 1)(−i − 1)
,
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400 Conformal Mapping

Figure 7.26 z1, z2 symmetric with respect to line L .

which yields

w = (z − 1)(1 + i)

(z + 1)(−i − 1)
= 1 − z

1 + z
. �

Another important aspect of Möbius transformations is their symmetry-preserving
property. First recall that two points z1 and z2 are symmetric with respect to a straight
line L if L is the perpendicular bisector of the line segment joining z1 and z2 [see
Fig. 7.26(a)]. From elementary geometry this is equivalent to saying that every line
or circle through z1 and z2 intersects L orthogonally, that is, at right angles. See
Fig. 7.26(b). (Remember that a circle is orthogonal to L if and only if its center lies
on L.)

These considerations suggest the following definition of symmetry with respect to
a circle C .

Definition 2. Two points z1 and z2 are said to be symmetric with respect to
a circle C if every straight line or circle passing through z1 and z2 intersects C
orthogonally (Fig. 7.27).

In particular the center a of the circle C , and the point ∞, are symmetric with
respect to C ; there are no circles through these two points, and any line containing a
(and necessarily ∞) is orthogonal to C , so the condition in Definition 2 holds.

Now we are in a position to state the symmetry-preserving property of Möbius
transformations.

Theorem 6 (Symmetry Principle). Let Cz be a line or circle in the z-plane, and
let w = f (z) be any Möbius transformation. Then two points z1 and z2 are
symmetric with respect to Cz if and only if their images w1 = f (z1), w2 =
f (z2) are symmetric with respect to the image of Cz under f .
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7.4 Möbius Transformations, Continued 401

Figure 7.27 z1, z2 symmetric with respect to circle C .

Figure 7.28 Symmetry Principle.

The theorem is illustrated in Fig. 7.28 for the special case when Cz is a circle that
maps to a straight line.

Proof. This is easy; think about it. Two points are symmetric with respect to a
circle (line) if every circle or line containing the points intersects the given circle (line)
orthogonally. But Möbius transformations preserve the class of circles and lines, and
they also preserve the orthogonality; hence they preserve the symmetry condition. �

Now given a circle C with center a and radius R, and given a point α, it would be
convenient to have a formula for the point α∗ symmetric to α with respect to C . For
this purpose observe that the transformation

T (z) = (z, a − R, a + Ri, a + R)

= [z − (a − R)](Ri − R)

[z − (a + R)](Ri + R)
= i

z − (a − R)

z − (a + R)

(9)

maps three points of C , and hence all of C , onto the real axis. Thus, by the symmetry
principle α∗ is symmetric to α with respect to C if and only if T (α∗) is symmetric
to T (α) with respect to the real axis. But the latter condition is clearly equivalent to
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402 Conformal Mapping

saying that T (α∗) and T (α) must be conjugate points; that is,

T
(
α∗) = T (α),

or, using Eq. (9),

i
α∗ − (a − R)

α∗ − (a + R)
=
[

i
α − (a − R)

α − (a + R)

]
= −i

ᾱ − (ā − R)

ᾱ − (ā + R)
. (10)

Solving Eq. (10) for α∗ yields the formula

α∗ = R2

ᾱ − ā
+ a. (11)

(Notice that this also shows that the point symmetric to α with respect to C is unique.)
From representation (11) we see that

arg
(
α∗ − a

) = arg

(
R2

ᾱ − ā

)
= arg

[
R2(α − a)

|α − a|2
]

= arg(α − a),

and ∣∣α∗ − a
∣∣ = R2

|ᾱ − ā| = R2

|α − a| ,

implying that symmetric points α∗ and α lie on the same ray from the center a and that
the product of their distances from the center (|α∗ − a| · |α − a|) is equal to the radius
squared. Figure 7.29 suggests a construction of symmetric points.

Figure 7.29 Similar triangles give R/|α − a| = |α∗ − a|/R.

Example 3
Find all Möbius transformations that map |z| < 1 onto |w| < 1.

Solution. Let f (z) be any such Möbius transformation. Then f maps the circle
Cz : |z| = 1 onto Cw : |w| = 1. Furthermore, there must be some point α, |α| < 1,
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that is mapped to the origin; that is, f (α) = 0. According to formula (11) (with a = 0,
R = 1) the point

α∗ = 12

ᾱ − 0̄
+ 0 = 1

ᾱ

is symmetric to α with respect to Cz . Hence f
(
1
/
ᾱ
)

must be symmetric to f (α) = 0
with respect to Cw. But since the origin is the center of Cw, its symmetric point is ∞;
that is,

f

(
1

ᾱ

)
= ∞.

Consequently, f has a zero at α and a pole at 1
/
ᾱ , so f is of the form

f (z) = k · z − α

z − 1

ᾱ

= kᾱ
z − α

ᾱz − 1

for some constant k. Moreover, since f (1) lies on Cw, we have

1 = | f (1)| = |kᾱ| ·
∣∣∣∣1 − α

ᾱ − 1

∣∣∣∣ = |kᾱ| .

Thus kᾱ = eiθ for some real θ , and we find

f (z) = eiθ · z − α

ᾱz − 1
(|α| < 1). (12)

Conversely, the reader can easily show (Prob. 15) that any transformation of the
form (12) maps |z| < 1 onto |w| < 1. �

More generally, it can be shown that the functions in Eq. (12) are the only one-to-
one analytic mappings of the unit disk onto itself.

EXERCISES 7.4

1. Let f1(z) = (z + 2)/(z + 3), f2(z) = z/(z + 1). Find f −1
1 ( f2(z)).

2. Argue why the Möbius transformation defined by

(w,−i, 1, i) = (z,−i, i, 1)

maps the unit circle onto itself but maps the interior onto the exterior. [HINT: Con-
sider orientation.]

3. Find the point symmetric to 4 − 3i with respect to each of the following circles.

(a) |z| = 1 (b) |z − 1| = 1 (c) |z − 1| = 2

403



404 Conformal Mapping

4. Prove that if z2, z3, and z4 are distinct points in the extended complex plane and T
is any Möbius transformation, then

(z1, z2, z3, z4) = (T (z1), T (z2), T (z3), T (z4))

for any point z1 in the extended plane. That is, the cross-ratio is invariant under
Möbius transformations.

5. Let w = f (z) be the Möbius transformation mapping the points 0, λ, ∞ to −i , 1,
i , respectively, where λ is real. For what values of λ is the upper half-plane mapped
onto |w| < 1?

6. Using the cross-ratio notation, write an equation defining a Möbius transformation
that maps the half-plane below the line y = 2x − 3 onto the interior of the circle
|w − 4| = 2. Repeat for the exterior of this circle.

7. Does there exist a Möbius transformation f that maps the real axis onto the unit
circle |w| = 1 and satisfies f (i) = 2, f (−i) = − 1

2 ?

8. Prove that if z1, z2, z3 are distinct points and w1, w2, w3 are distinct points, then
the Möbius transformation T satisfying T (z1) = w1, T (z2) = w2, T (z3) = w3 is
unique. [HINT: Suppose that S is another such Möbius transformation and consider
the fixed points of the composition T −1 ◦ S (see Prob. 6, Exercises 7.3).]

9. Let f be a Möbius transformation such that f (1) = ∞ and f maps the imaginary
axis onto the unit circle |w| = 1. What is the value of f (−1)?

10. By completing the following steps, prove that given a line L and a circle C with no
points in common, there always exist two distinct points z1 and z2 that are symmet-
ric with respect to L and C simultaneously.

(a) Argue that there exists a Möbius transformation that both maps L onto the
real axis and maps C onto a circle of the form |w − λi | = R with λ real and
R < |λ| (see Fig. 7.30).

(b) Then show that w1 and w2 are symmetric with respect to both the real axis
and the circle |w − λi | = R if and only if

w2 = w1 and w2 = R2

w1 + λi
+ λi.

Solve this pair of equations to obtain

w1 = i
√
λ2 − R2, w2 = −i

√
λ2 − R2

as the simultaneously symmetric points.

(c) Use the results of parts (a) and (b) and the symmetry principle to conclude
that there are points z1 and z2 symmetric in both L and C .

11. Prove that given any two nonintersecting circles C1 and C2, there always exist two
distinct points z1 and z2 that are symmetric with respect to C1 and C2 simultane-
ously. [HINT: Argue that there exists a Möbius transformation that maps C1 onto a
line and C2 onto another circle. Then use the result of the preceding problem.]
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7.4 Möbius Transformations, Continued 405

Figure 7.30 w1, w2 symmetric in R and C .

12. Use the result of Prob. 11 to show that for any two nonintersecting circles C1 and C2
there always exists a Möbius transformation that maps C1 and C2 onto concentric
circles. [HINT: Map z1 to the origin and z2 to infinity, where z1, z2 are points
symmetric with respect to both circles.]

13. Let z1, z2, and z3 be three distinct points that lie on a circle (or line) C . Prove
that z and z∗ are symmetric with respect to C if and only if (z∗, z1, z2, z3) =
(z, z1, z2, z3).

14. Show that the distinct points w1, w2, w3, and w4 all lie on the same circle or line
if and only if the cross-ratio (w1, w2, w3, w4) is real. [HINT: Consider the Möbius
transformation defined by

(w,w2, w3, w4) = (z, 0, 1,∞)

and observe that (z, 0, 1,∞) ≡ z.]

15. Verify that any transformation of the form (12) maps |z| < 1 onto |w| < 1.

16. Prove that every Möbius transformation mapping the interior of the unit disk to its
exterior takes the form (12) with |α| > 1.

17. Find a conformal map of the unit disk onto itself, taking the point i/2 to the origin.

18. Show that the Möbius transformation taking zi to wi (i = 1, 2, 3) can be expressed
in determinant form as ∣∣∣∣∣∣∣∣

1 z w zw
1 z1 w1 z1w1
1 z2 w2 z2w2
1 z3 w3 z3w3

∣∣∣∣∣∣∣∣ = 0.

405
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19. Find all Möbius transformations that map the upper half-plane onto itself.

20. Show that every Möbius transformation that maps the upper half-plane onto the
open unit disk must be of the form

f (z) = eiθ z − z0

z − z̄0
, where Im (z0) > 0.

21. A set G of mathematical objects (such as numbers or mappings) together with an
operation ∗ defined on ordered pairs of objects in G is called a group if it satisfies
the following conditions:

i. a ∗ b is a unique element of G for every ordered pair (a, b) of elements of G.

ii. The operation ∗ is associative; that is, for any three elements a, b, c of G,

(a ∗ b) ∗ c = a ∗ (b ∗ c).

iii. There exists an element e in G (called the identity element) with the property
that

e ∗ a = a ∗ e = a for all a in G.

iv. For each a in G there exists an element a−1 in G (called the inverse of a) such
that

a−1 ∗ a = a ∗ a−1 = e.

(a) Prove that the set M of Möbius transformations forms a group under the
operation of composition ◦ of mappings.

(b) Is the group of Möbius transformations commutative? (That is, is T ◦S = S◦T
for all S, T ∈ M?)

22. Let L be the set of all two-by-two (complex number) matrices having determinant 1:(
a b
c d

)
, ad − bc = 1.

(a) Prove that L forms a group under ordinary multiplication of matrices (see
Prob. 21 for the definition of group).

(b) Show that on multiplying numerator and denominator by a suitable number,
any Möbius transformation T can be written in the form

T (z) = αz + β

γ z + δ

with αδ − βγ = 1. Thus T can be associated with the element(
α β

γ δ

)
of L.
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7.5 The Schwarz-Christoffel Transformation 407

(c) Show that if the Möbius transformations T1 and T2 are associated as in part
(b) with the elements

S1 =
(
α1 β1
γ1 δ1

)
and S2 =

(
α2 β2
γ2 δ2

)
of L, then the composition T1 ◦ T2 is associated with the product matrix S1S2.

23. Let z be fixed with Re z ≥ 0, and let

T0(w) = a0

z + a0 + b1 + w
, Tk(w) = ak

z + bk+1 + w
(k = 1, 2, . . . , n − 1)

be a sequence of Möbius transformations such that each ak is real and positive and
each bk is pure imaginary or zero. Prove, by induction, that the composition

ζ = S(w) := T0 ◦ T1 ◦ · · · ◦ Tn−2 ◦ Tn−1(w)

maps the half-plane Rew > 0 onto a region contained in the disk |ζ − 1
2 | < 1

2 .

24. Let P(z) = zn + c1zn−1 + c2zn−2 + · · · + cn be a polynomial of degree n > 0
with complex coefficients ck = pk + iqk , k = 1, 2, . . . , n. Set Q(z) := p1zn−1 +
iq2zn−2 + p3zn−3 + iq4zn−4 + · · · . Prove Wall’s criterion that if Q(z)/P(z) can
be written in the form

Q(z)

P(z)
= a0

z + a0 + b1 + a1

z + b2 + a2

z + b3 + . . . + an−1

z + bn

,

where each ak is real and positive and each bk is pure imaginary or zero, then all the
zeros of P(z) have negative real parts. [HINT: Write Q(z)/P(z) = T0 ◦ T1 ◦ · · · ◦
Tn−1(0), where the transformations Tk are defined as in Prob. 23.]

25. Prove that P(z) = z3+3z2+6z+6 has all its zeros in the left half-plane by applying
the result of Prob. 24. [HINT: Use ordinary long division to obtain the representation
for Q(z)/P(z).]

7.5 The Schwarz-Christoffel Transformation

We have seen that a function f (z) is conformal at every point at which it is analytic and
its derivative is nonzero. It is instructive to analyze what happens at certain isolated
points where these conditions are not met. For concreteness, let x1 be a fixed point on
the real axis and let f (z) be a function whose derivative f ′(z) is given by (z − x1)

α

for some real α satisfying −1 < α < 1. [To be precise, we shall take the argument of
z − x1 to lie between −π/2 and 3π/2, introducing a branch cut vertically downward
from x1; see Fig. 7.31(a).] We are going to use the equation

f ′(z) = (z − x1)
α (1)
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Figure 7.31 Geometry for Eq. (1).

Figure 7.32 Mapping of x-axis.

to determine certain features of the image of the real axis under the mapping f .
If z lies on the x-axis to the left of x1, as in Fig. 7.31(a), then two observations

follow from Eq. (1); namely, f is conformal at z (since f ′ exists and is nonzero), and
the argument of f ′(z) is constant for all such z:

arg f ′(z) = arg (z − x1)
α = α arg (z − x1) = απ

(we ignore multiples of 2π in this derivation). From this we can conclude that f maps
the interval (−∞, x1) onto a portion of a straight line terminating at f (x1); after all,
if we view (−∞, x1) as a curve whose tangents are all parallel to the real axis, then
according to the discussion of Sec. 7.2, its image must be a curve, all of whose tangents
make an angle απ with the real axis—that is, a straight line. See Fig. 7.31(b).

For z on the real axis to the right of x1, we have

arg f ′(z) = α arg (z − x1) = α · 0 = 0.

Hence, by similar reasoning, the interval (x1,∞) is mapped to a horizontal straight
line, and the whole picture looks like Fig. 7.32(b).

For the special case where f (z) = 2
3 z3/2, which has f ′(z) = z1/2, the mapping

(for the branch described earlier) is sketched in Fig. 7.33.
Now we start to generalize this model. If, instead of Eq. (1) we have

f ′(z) = A (z − x1)
α (2)
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Figure 7.33 Mapping of x-axis by f (z) = 2
3 z3/2.

Figure 7.34 Mapping for Eq. (2).

for some complex constant A ( �= 0), then

arg f ′(z) = arg A + α arg (z − x1) ,

and the mapping can be visualized by rotating Fig. 7.32(b) by an amount arg A; see
Fig. 7.34. In particular, the angle made by the image of the interval (x1,∞) is now
arg A, but the angle of the turn at f (x1) is unchanged.

The next generalization is to consider a mapping given by a function f with a
derivative of the form

f ′(z) = A (z − x1)
α1 (z − x2)

α2 · · · (z − xn)
αn ; (3)

here A ( �= 0) is a complex constant, each αi lies between −1 and +1, and the (real) xi
satisfy

x1 < x2 < · · · < xn.

(As before we take the argument of each z − xi to be between −π/2 and 3π/2.) What
does this mapping f do to the real axis?

From the equation

arg f ′(z) = arg A + α1 arg (z − x1)+ α2 arg (z − x2)+ · · · + αn arg (z − xn)
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and the previous discussion we see that the images of the intervals (−∞, x1), (x1, x2),
. . . , (xn,∞) are each portions of straight lines, making angles measured counterclock-
wise from the horizontal in accordance with the following prescription:

Interval Angle of image
(−∞, x1) arg A + α1π + α2π + · · · + αnπ

(x1, x2) arg A + α2π + · · · + αnπ
...

...

(xn−1, xn) arg A + αnπ

(xn,∞) arg A.

Hence as z traverses the real axis from left to right f (z) generates a polygonal path
whose tangent at the point f (xi ) makes a right turn through the angle αiπ ; see
Fig. 7.35.

Figure 7.35 Mapping for Eq. (3).

Now if the function f (z) satisfies Eq. (3) it is, a priori, differentiable and hence
analytic on the complex plane with the exception of the (downward) branch cuts from
the points xi . So for any z in the upper half-plane we can set

g(z) :=
∫
�

f ′(ζ ) dζ, (4)

where � is, for definiteness, the straight line segment from 0 to z, and conclude then
that f (z) = g(z)+ B for some constant B. In particular, we can write

f (z) = A
∫ z

0
(ζ − x1)

α1 (ζ − x2)
α2 · · · (ζ − xn)

αn dζ + B. (5)

Functions of the form (5) are known as Schwarz-Christoffel transformations.† We
have seen that such transformations map the real axis onto a polygonal path. Now one
of the most important problems in conformal mapping applications is the construction

†Hermann Amandus Schwarz (1842-1921), Elwin Bruno Christoffel (1829-1900).
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Figure 7.36 Positively oriented polygon (θ2, θ3, θ4, θ5 are negative).

of a one-to-one analytic function carrying the upper half-plane to the interior of a given
polygon. We thus turn to the task of tailoring a Schwarz-Christoffel transformation to
accomplish this.

To be specific, let the polygon P have vertices at the consecutive points w1, w2,
. . . ,wn taken in counterclockwise order, giving P a positive orientation, as in Fig. 7.36.
In traversing the polygon we make a right turn at vertex wi through the angle θi . Thus
each angle lies between −π and π and a negative value of θi indicates a left turn. The
net rotation for a counterclockwise tour must be 2π radians to the left:

θ1 + θ2 + · · · + θn = −2π. (6)

To map the x-axis onto P with a Schwarz-Christoffel transformation w = g(z)
we begin by picking real points x1, x2, . . . , xn−1 as the preimages of the vertices
w1, w2, . . . , wn−1, and presume that both x = −∞ and x = ∞ are the preimages
of wn; see Fig. 7.37. From the discussion of Eq. (5) it follows that the function

g(z) :=
∫ z

0
(ζ − x1)

θ1/π (ζ − x2)
θ2/π · · · (ζ − xn−1)

θn−1/π dζ (7)

maps the real axis onto some polygon P ′. Although P ′ may not be the desired polygon
P , it does have the proper right-turn angles αiπ = θi at the corners g (xi ) for i =
1, 2, . . . , n − 1; and since the initial and final segments intersect at g(±∞), the right
turn at this final vertex must match the angle θn (because both are given by −2π −
θ1 − θ2 − · · · − θn−1).

Now because P ′ has the same angles as P , by adjusting the lengths of the sides of
P ′ we can make it geometrically similar to P . And it seems quite plausible that we
could accomplish this by adjusting the points x1, x2, . . . , xn−1; after all, they deter-
mine where the corners of P ′ lie. Then, with the use of a rotation, a magnification, and
a translation—in other words, a linear transformation—we could make these similar
polygons coincide.
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Figure 7.37 Mapping for Eq. (7).

Summarizing, we are led to speculate that with an appropriate choice of the con-
stants we can construct a function

f (z) = Ag(z)+ B

= A
∫ z

0
(ζ − x1)

θ1/π (ζ − x2)
θ2/π · · · (ζ − xn−1)

θn−1/π dζ + B,
(8)

that is, a Schwarz-Christoffel transformation, which maps the real axis onto the perime-
ter of a given polygon P , with the correspondences

f (x1) = w1, f (x2) = w2, . . . , f (xn−1) = wn−1, f (∞) = wn. (9)

Moreover, if our speculations are valid, we can use conformality and connectiv-
ity arguments to show that f maps the upper half-plane to the interior of P , as was
requested; for observe that if γ is a segment as indicated in Fig. 7.38, conformal-
ity requires that its image, γ ′, have a tangent that initially points inward as shown,
and connectivity completes the argument (assuming one-to-oneness). The whole story
about Schwarz-Christoffel transformations is given in Theorem 7, whose proof can be
found in the references.

Theorem 7. Let P be a positively oriented polygon having consecutive corners
at w1, w2, . . . , wn with corresponding right-turn angles θi (i = 1, 2, . . . , n).
Then there exists a function of the form (8) that is a one-to-one conformal map
from the upper half-plane onto the interior of P . Furthermore, the correspon-
dences (9) hold.
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Figure 7.38 The upper half-plane is mapped to the interior of P .

Before we illustrate the technique, we must make two remarks. First, recall that
in constructing the map we have three “degrees of freedom” at our disposal (from the
Riemann mapping theorem). Thus we can specify three points on the real axis to be
the preimages of three of the wi . However, formula (9) already designates ∞ as the
preimage of wn , so we are free to choose only, say, x1 and x2, and the other xi are then
determined.

Second, to get a closed-form expression for the mapping we must be able to com-
pute the integral in Eq. (8). A glance through a standard table of integrals shows that
this is hopeless for n > 4 and not always possible even for smaller n. Numerical in-
tegration, however, is always feasible. In Appendix I, L. N. Trefethen and T. Driscoll
discuss how to implement these computations, and provide reference to their readily
accessible software package.

Example 1
Derive a Schwarz-Christoffel transformation mapping the upper half-plane onto the
triangle in Fig. 7.39.

Solution. The right turns are through angles θ1 = θ2 = −3π/4, θ3 = −π/2.
Hence, choosing x1 = −1 and x2 = 1 we have

f (z) = A
∫ z

0
(ζ + 1)−3/4(ζ − 1)−3/4 dζ + B

= A
∫ z

0

(
ζ 2 − 1

)−3/4
dζ + B.

The integration must be performed numerically. To evaluate the constants we compute

f (x1) = f (−1) = A
∫ −1

0

(
ζ 2 − 1

)−3/4
dζ + B = Aη + B,
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Figure 7.39 Mapping onto a triangle.

where

η :=
∫ −1

0

(
ζ 2 − 1

)−3/4
dζ ≈ 1.85(1 + i)

and

f (x2) = f (1) = A
∫ 1

0

(
ζ 2 − 1

)−3/4
dζ + B = −Aη + B.

Setting these equal to w1 and w2, respectively, we find

Aη + B = 1,

−Aη + B = i.

Consequently,

A = 1 − i

2η
, B = 1 + i

2
. �

Example 2
Determine a Schwarz-Christoffel transformation that maps the upper half-plane onto
the semi-infinite strip | Rew| < 1, Imw > 0 (Fig. 7.40).

Solution. We return to the analysis surrounding Eq. (3) for mapping the real
axis onto a polygonal path. To have the upper half-plane map onto the interior of the
strip we choose the orientation indicated by the arrows in Fig. 7.40. Left turns of π/2
radians at w1 and w2 can be accommodated by a mapping whose derivative is of the
form

f ′(z) = A (z − x1)
−1/2 (z − x2)

−1/2 .

Choosing x1 = −1 and x2 = 1 again, we compute

f (z) = A
∫ z

0
(ζ + 1)−1/2(ζ − 1)−1/2 dζ + B = A

i

∫ z

0

dζ√
1 − ζ 2

+ B

= A

i
sin−1 z + B.
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Figure 7.40 Semi-infinite strip for Example 2.

Setting f (−1) = w1 = −1 and f (1) = w2 = 1, we have

−i A sin−1(−1)+ B = −1,

−i A sin−1(1)+ B = 1,

which implies that B = 0 and A = 2i/π . Hence

f (z) = 2

π
sin−1 z. �

Example 3
Map the upper half-plane onto the domain consisting of the fourth quadrant plus the
strip 0 < v < 1. (This is a crude model of the continental shelf.)

Solution. The boundary of this domain consists of the line v = 1, the negative u-
axis, and the negative v-axis. We shall regard this as the limiting form of the polygonal

Figure 7.41 Domain for Example 3.
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path indicated in Fig. 7.41, again choosing the orientation so that the specified domain
lies to the left. A left turn of π radians is called for at the corner “near w = −∞” and
a right turn of π/2 radians occurs at w = 0. Selecting x1 = −1 and x2 = 1 as the
respective preimages of these points we write, in accordance with Eq. (3),

f ′(z) = A(z + 1)−1(z − 1)1/2.

Using integral tables, with some labor we arrive at

f (z) = Ai

{
2
√

1 − z + √
2 log

√
1 − z − √

2√
1 − z + √

2

}
+ B.

The selection of branches is quite involved in this case, so we shall leave it to the
industrious reader (Prob. 6) to verify that with the choice

log ζ = Log |ζ | + i arg ζ, −3

2
π < arg ζ ≤ π

2
,√

ζ = e(log ζ )/2, log ζ as above,

we find that

f (z) =
√

2

π

√
1 − z + 1

π
log

√
1 − z − √

2√
1 − z + √

2
+ i

satisfies the required conditions

Re f (x) → +∞, Im f (x) → 1 as x → −∞,

Re f (x) → −∞, Im f (x) → 1 as x → (−1)−,
Re f (x) → −∞, Im f (x) → 0 as x → (−1)+,
f (1) = 0
Re f (x) → 0, Im f (x) → −∞ as x → +∞. �

EXERCISES 7.5

1. Use the techniques in this section to find a conformal map of the upper half-plane
onto the whole plane slit along the negative real axis up to the point −1. [HINT:
Consider the slit as the limiting form of the wedge indicated in Fig. 7.42.]

2. Use the Schwarz-Christoffel formula to derive the mapping w = √
z of the upper

half-plane onto the first quadrant.

3. Map the upper half-plane onto the semi-infinite strip u > 0, 0 < v < 1, indicated
in Fig. 7.43.

4. Show that the transformation

w =
∫ z

0

dζ(
1 − ζ 2

)2/3
maps the upper half-plane onto the interior of an equilateral triangle.
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7.5 The Schwarz-Christoffel Transformation 417

Figure 7.42 Region for Prob. 1.

Figure 7.43 Region for Prob. 3.

5. Map the upper half-plane onto the exterior of the semi-infinite strip in Fig. 7.40.

6. Verify that the choice of branches indicated in Example 3 yields the appropriate
correspondences for f (−∞), f (−1), f (1), and f (+∞). [HINT: Argue that if z
stays in the upper half-plane, 1 − z stays in the lower half-plane,

√
1 − z stays in

the fourth quadrant, and √
1 − z − √

2√
1 − z + √

2

stays in the lower half-plane.]

7. Map the upper half-plane onto the shaded region in Fig. 7.44.

8. Derive the expression

w = f (z) =
∫ z

0

dζ√
(1 − ζ 2)(k2 − ζ 2)

for a conformal map of the upper half-plane onto a rectangle, as indicated in Fig.
7.45. Show that the rectangular dimensions b and c must be related, through k, by
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Figure 7.44 Region for Prob. 7.

Figure 7.45 Mapping onto a rectangle.

the equations

b = 1

k

∫ 1

0

dx√
(1 − x2)(1 − x2/k2)

,

c = 1

k

∫ k

1

dx√
(x2 − 1)(1 − x2/k2)

.

(These are so-called elliptic integrals; see Ref. [2].)

9. Map the upper half-plane onto the strip 0 < v < 1, considered as the limiting form
of Fig. 7.46.

10. Argue that a conformal mapping of the unit disk |z| < 1 onto the interior of a
positively oriented polygon with consecutive corners atw1, w2, . . . , wn should have
the form

w = A
∫ z

0
(ζ − z1)

θ1/π (ζ − z2)
θ2/π · · · (ζ − zn)

θn/π dζ + B,

418
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Figure 7.46 Region for Prob. 9.

where the θi are the corresponding right-turn angles and the points zi on the unit
circle are the preimages of the corresponding wi .

11. What does the Schwarz reflection principle (Probs. 13 and 14 in Exercises 5.8) say
about the image of the lower half-plane under the Schwarz-Christoffel transforma-
tions? (Consider, in turn, Example 2, then Example 1, and then the general case of
Fig. 7.38.)

7.6 Applications in Electrostatics, Heat Flow, and Fluid
Mechanics

The next two sections in this chapter are devoted to the solution of certain physical
problems involving Laplace’s equation

∂2φ

∂x2
+ ∂2φ

∂y2
= 0, (1)

using conformal mapping techniques.
We remind the reader that Eq. (1) governs the temperature distribution in two-

dimensional steady-state heat flow (Sec. 2.6). The function φ(x, y) is the temperature,
and the curves φ = constant are the isotherms. Usually one assumes that idealized heat
sources or heat sinks are used to maintain fixed (specified) values of φ on certain parts
of the boundary of a domain and that the rest of the boundary is thermally insulated.
The latter condition is expressed mathematically by saying that the normal derivative
of φ is zero; that is, ∂φ/∂n = 0, where n is a coordinate measured perpendicular to
the boundary. The problem, of course, is to find φ inside the domain.

Eq. (1) also arises in electrical applications. In electrostatics φ(x, y) is interpreted
as the electric potential, or voltage, at the point (x, y), and its partial derivatives ∂φ/∂x
and ∂φ/∂y are the components of the electric field intensity. Typically one specifies
either the potential or the normal component of the intensity vector on the boundary of
a domain and asks for the values of the potential inside (or outside) the domain. The
curves defined by the equation φ = constant are called equipotentials.
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Flow patterns of fluids can also be analyzed through Eq. (1). The fluid mechanical
interpretation of φ that we shall adopt is the following: The curves given by

φ(x, y) = constant

are the paths that the fluid particles follow. In other words, they are streamlines. Thus
in studying flow around a nonporous obstacle, the perimeter of that obstacle must con-
stitute part of a streamline, and we specify φ = constant there. Sometimes φ(x, y) is
known as the stream function. For details of these physical interpretations of solutions
of Eq. (1), the reader is directed to the references at the end of this chapter.

As we indicated in Sec. 7.1, the basic strategy in solving these problems is to
map the given domain conformally onto a simpler domain, to determine the harmonic
function that satisfies the “transplanted” boundary conditions, and to carry this func-
tion back via the conformal map.

Example 1
Find the function φ that is harmonic in the lens-shaped domain of Fig. 7.47(a) and
takes the values 0 and 1 on the bounding circular arcs, as illustrated. Here φ can be
interpreted as the steady-state temperature inside an infinitely long strip of material
having this lens-shaped region as its cross section, with its sides maintained at the
given temperatures.

Figure 7.47 Lens region and its image.

Solution. Because the domain is bounded by circular arcs, we are naturally
inclined to see what we can do with Möbius transformations. If we choose the pole
of the transformation to be at z = 1 + i , both circles will become straight lines—
orthogonal lines, in fact, because conformality will preserve the right angle at z = 0.
So let’s consider

w = f (z) = z

z − (1 + i)
, (2)
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which takes z = 0 to w = 0 and z = 1 + i to w = ∞. To determine the image of
the lens, we observe that since z = 2 goes to w = 2/(1 − i) = 1 + i and z = 2i
goes to w = 2i/(−1 + i) = 1 − i , the lens is mapped onto the shaded wedge in
Fig. 7.47(b), bounded by the rays Argw = 3π/4 (the image of the arc where φ = 1)
and Argw = −3π/4 (the image of the arc where φ = 0). The corresponding harmonic
function ψ(w) in the w-plane is easily seen by the methods of Sec. 3.4 to be

ψ(w) = − 2

π
argw + 5

2
,

taking the branch 0 < argw < 2π . Carrying this back to the z-plane via Eq. (2), we
find

φ(x, y) = 2

π

(
5π

4
− arg

z

z − (1 + i)

)
,

which can be expressed as

φ(x, y) = 2

π

(
π

4
− tan−1 x − y

x(x − 1)+ y(y − 1)

)
;

here −π/2 < tan−1 θ < π/2. �

Example 2
Find the function φ that is harmonic in the shaded domain depicted in Fig. 7.48(a) and
takes the value 0 on the inner circle and 1 on the outer circle. One might interpret
φ as the electrostatic potential inside a capacitor formed by two nested parallel (but
nonconcentric) cylindrical conductors.

Figure 7.48 Cylindrical capacitor.
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Solution. This problem would be trivial if the inner circle were concentric with
the outer circle; it would fall into the “washer” category of Sec. 3.4, and the solution
would take the form A Log |z| + B. Thus it seems we should try to map the given
region onto a washer, as in Fig. 7.48(b).

The key to constructing such a map is to exploit the fact (demonstrated in Prob-
lem 11 in Exercises 7.5) that one can find a pair of (real) points z = x1 and z = x2 that
are symmetric with respect to both circles simultaneously. To find them, note that the
condition that x1 and x2 are symmetric with respect to the outer circle reads [Sec. 7.4,
Eq. (11)]

x2 = 1

x1
,

while symmetry with respect to the inner circle is expressed by

x2 − 0.3 = (0.3)2

x1 − 0.3
.

The solution to these equations is easily seen to be

x1 = 1

3
, x2 = 3.

Now what happens if we perform a Möbius transformation sending x1 to 0 and x2
to ∞ via

w = f (z) = z − 1
3

3 − z
? (3)

Since Möbius mappings preserve symmetries of this nature, we end up with a pair of
circles for which 0 and ∞ are symmetric points. But the point at infinity is symmetric
to the center of a circle [see Sec. 7.4, Eq. (11)]. Therefore, the centers of the image
circles coincide and the circles are concentric, as depicted in Fig. 7.48(b)!

The radius of the image of the inner circle can be calculated from

|w| = | f (0)| = 1

9
,

and for the image of the outer circle

|w| = | f (1)| = 1

3
.

The solution to the problem in the w-plane is seen to be

ψ(w) = Log |w|
Log 3

+ 2 = Log |9w|
Log 3

.

Transforming back, we find

φ(z) = ψ

(
z − 1

3

z − 3

)
=

Log

∣∣∣∣9z − 3

z − 3

∣∣∣∣
Log 3

= 1

Log 3

{
Log 3 + 1

2
Log

[
(3x − 1)2 + 9y2

]
− 1

2
Log

[
(x − 3)2 + y2

]}
.
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Example 3
Find a function φ(x, y) that is harmonic in the portion of the upper half-plane exterior
to the circle C : |z − 5i | = 4 and that takes the value +1 on the circle and 0 on the
real axis (Fig. 7.49). The solution can be interpreted as the electric potential due to a
charged conducting cylinder lying above a conducting plane.

Figure 7.49 Charged cylinder over conducting plane.

Solution. Actually, this configuration is similar to that of Example 2, if we
interpret a straight line to be a circle with a center at infinity. Thus once again we look
for a pair of points that are simultaneously symmetric with respect to both the line and
the circle.

If z p denotes a point in the upper half-plane, its symmetric point with respect to
the x-axis is obviously z p. Now z p and z p will also be symmetric with respect to the
circle if (recall Eq. (11), Sec. 7.4)

z p = 42(
z p + 5i

) + 5i.

Solving, we find z p = 3i .
Reasoning as in Example 2, we argue that the Möbius transformation

w = f (z) = z − 3i

z + 3i
,

which carries 3i to the origin and −3i to infinity, will map the two conductors onto
concentric circles centered at the origin. The radius of the image of the real axis is

r1 = | f (0)| = 1,

and the radius of the image of C is

r2 = | f (i)| = 1

2
.
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Figure 7.50 Equipotentials for Example 3.

The function that is harmonic in the annulus r2 < |w| < r1 and takes the proper
boundary values is

ψ(w) = Log |w|
Log 1

2

= − Log |w|
Log 2

,

so the solution to the problem is

φ(x, y) = −1

Log 2
Log

∣∣∣∣ z − 3i

z + 3i

∣∣∣∣ .
Note that the equipotentials are circles in the z-plane (Fig. 7.50). �

Example 4

Find a nonconstant function φ harmonic inside the infinite domain depicted in Fig.
7.51 and taking the value 0 on the indicated polygonal path. As the sketched lines
indicate, the curves φ = constant will be streamlines for the flow of a deep river over
a discontinuous streambed.

Solution. The Schwarz-Christoffel transformation is the tool for this geometry.
Using the analysis surrounding Eq. (3) of Sec. 7.5, we map the x-axis onto the discon-
tinuous streambed in thew-plane. (Notice that the Schwarz-Christoffel transformation
maps the simple region onto the complicated one.) We assume that the corners w1 = i
and w2 = 0 are the images of z = −1 and z = 1, respectively. Since the streambed
has a right-turn angle of π/2 at i and a left-turn angle of π/2 at 0, we must have

dw

dz
= f ′(z) = A(z + 1)+1/2(z − 1)−1/2;

thus with the aid of an integral table we find

w = f (z) = A

{(
z2 − 1

)1/2 + log

[
z +

(
z2 − 1

)1/2
]}

+ B. (4)
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Figure 7.51 Discontinuous streambed.

We take branches of these functions that are real and positive for large real z and that
are analytic in the upper half-plane.† Then the correspondences f (−1) = i , f (1) = 0
require

A log(−1)+ B = Aiπ + B = i,

A log(1)+ B = B = 0,

with solution A = 1/π and B = 0. Hence the mapping from the z-plane to the flow
region is

w = f (z) = 1

π

{(
z2 − 1

)1/2 + log

[
z +

(
z2 − 1

)1/2
]}
. (5)

Now we must find a nonconstant harmonic function of z in the upper half-plane
that vanishes on the real axis. One answer is obvious:

ψ(x, y) = y = Im(z). (6)

(This is similar to the “wall” geometry of Sec. 3.4.) To complete the problem we must
carry ψ(x, y) back to the flow region in the w-plane. But since we have constructed
the map from the simple domain to the complicated domain, we need the inverse of
the function (5) to complete the problem. Rather than going through the details of
solving Eq. (5) for z in terms of w, let’s simply abbreviate the answer by stating that
the harmonic function φ(u, v) is given by

φ(u, v) = Im
(

f −1(w)
)
.

†We are omitting many important details here. Branching is often a very subtle business when
Schwarz-Christoffel transformations are used. A painstaking analysis would reveal that here (z2 −
1)1/2 is positive for large positive z and negative for large negative z and that the log function is
handled by the restriction −π/2 < arg ζ < 3π/2.
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Actually, this is not a serious “cop-out.” We have an explicit expression for the stream-
lines φ = constant simply by holding y constant and regarding x as a parameter in
Eq. (5). �

One of the classic problems in elementary physics involves the parallel-plate ca-
pacitor. Here we have two oppositely charged flat conducting sheets separated by a
fixed distance, and we must determine the electrostatic potential in the region between
them. In the simple case of infinite (square) plates, φ is proportional to y and the
equipotentials are as in Fig. 7.52. This is a good approximation to the more realistic
problem of two large plates separated by a relatively small distance; however, near the
edges of the plates the potential behaves in a more complicated manner, and this can
be computed by conformal mapping. Example 5 should thus be interpreted as finding
the potential in the region around two semi-infinite conducting plates holding opposite
charges.

Figure 7.52 Infinite charged plates.

Example 5

Find a function φ that is harmonic in the doubly slit plane and takes the values −1 and
+1 on the two slits indicated in Fig. 7.53.

Solution. We shall use the Schwarz-Christoffel transformation again, regarding
the domain as the limiting form of the region sketched in Fig. 7.54, with the point w0
going to −∞. The limiting right-turn angles are π at w = i , −π at w = w0, and π at
w = −i . If we select the preimages of w = i and w = w0 to be z = −1 and z = 0,
respectively, the symmetry of the configuration clearly dictates that z = +1 will be
the preimage of w = −i . Thus employing Eq. (3), Sec. 7.5 again, we have

dw

dz
= A(z + 1)z−1(z − 1) = A

(
z − 1

z

)
.

Consequently,

w = f (z) = A

(
z2

2
− log z

)
+ B.
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Figure 7.53 Semi-infinite charged plates.

Figure 7.54 Approximate geometry for semi-infinite charged plates.
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Enforcing f (−1) = i , f (1) = −i and choosing a branch of log z that is positive
for large positive z, we get

A

(
1

2
− iπ

)
+ B = i,

A

(
1

2
− 0

)
+ B = −i,

yielding A = −2/π , B = 1/π − i . Hence the mapping is

w = f (z) = − 2

π

(
z2

2
− log z

)
+ 1

π
− i. (7)

Notice that we have not checked the condition at z = 0. This is unnecessary because
of the symmetry of the situation. At any rate, it is easy to see that |w| → ∞ as z → 0.

The transformed problem is depicted in Fig. 7.55. The obvious solution is

ψ(z) = 2

π
Arg z − 1.

Again the labor involved in inverting Eq. (7) is prohibitive, but the curvesψ = constant
are given parametrically by writing Eq. (7) as

w = − 2

π

(
r2

2
e2iθ − Log r − iθ

)
+ 1

π
− i

and holding θ constant while r varies from 0 to ∞. �

Figure 7.55 Transformed problem for semi-infinite charged plates.

Example 6
Find a nonconstant function φ that is harmonic in the slit upper half-plane of Fig.
7.56(a), taking the value φ = 0 on the slit and the real axis. The lines φ = constant
can be interpreted as the streamlines for fluid flow past a simple obstacle.
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Figure 7.56 Flow past a simple obstacle.

Solution. Regarding the boundary as the limiting form of the polygonal path in
Fig. 7.56(b), we construct a Schwarz-Christoffel transformation that maps −1 to w1,
0 to i , and +1 to w2, with limiting right-turn angles −π/2, π , and −π/2, respectively,
as w1 and w2 approach 0. Hence

dw

dz
= A(z + 1)−1/2z(z − 1)−1/2 = Az(

z2 − 1
)1/2 ,

and

w = f (z) = A
(

z2 − 1
)1/2 + B. (8)

Taking a branch that is positive for large positive z, we make the correspondences

f (−1) = B = 0,

f (1) = B = 0,

f (0) = Ai + B = i.

Hence A = 1, B = 0. (Again we are able to satisfy three conditions with only two
constants in this case because of the symmetry of the region.)

In the z-plane the problem becomes, just as in Example 4, that of finding a noncon-
stant harmonic function vanishing on the real axis, so again we have ψ(z) = Im z = y.
In this case we can invert the map (8) to find

z =
(
w2 + 1

)1/2
,

so that the required function is

φ(u, v) = Im

{(
w2 + 1

)1/2
}
,

taking a branch that is positive for large positive w. �
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EXERCISES 7.6

1. Find the electrostatic potential φ in the semidisk with the boundary values as shown
in Fig. 7.57.

Figure 7.57 Region for Prob. 1.

2. Find the electrostatic potential in the upper half-plane exterior to the unit circle
under the conditions shown in Fig. 7.58.

Figure 7.58 Region for Prob. 2.

3. Find the temperature distribution in Fig. 7.59.

Figure 7.59 Region for Prob. 3.
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4. Find the temperature distribution in the unit disk with boundary values as shown in
Fig. 7.60. [HINT: Map to the upper half-plane; then use Prob. 3 of Exercises 7.1.]

Figure 7.60 Region for Prob. 4.

5. Find the electrostatic potential in the slit upper half-plane with the boundary values
as depicted in Fig. 7.61.

Figure 7.61 Region for Prob. 5.

6. Find the electrostatic potential φ in the region between two conducting cylinders
under the conditions shown in Fig. 7.62.

Figure 7.62 Region for Prob. 6.
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7. Find the temperature inside the infinite regions depicted in Fig. 7.63.

Figure 7.63 Region for Prob. 7.

8. Find the potential in the region exterior to two conducting cylinders charged as
shown in Fig. 7.64. (This solution is used to predict the electromagnetic fields
generated by transmission power lines.) [HINT: A Möbius transformation can be
used to reduce this problem to the situation in Example 2.]

Figure 7.64 Region for Prob. 8.

9. Find the potential between two nested nonconcentric conducting cylinders charged
as shown in Fig. 7.65.

10. Find the temperature distribution in the crescent-shaped region given in Fig. 7.66.

11. Find the streamlines for fluid flow in the region indicated in Prob. 7 in Exercises 7.5.

7.7 Further Physical Applications of Conformal Mapping

The examples in the previous section were rather straightforward. We were assigned
the task of solving a boundary value problem in an irregular region, and we constructed
a mapping to a simpler region by techniques that we had learned earlier. In the present
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Figure 7.65 Region for Prob. 9.

Figure 7.66 Region for Prob. 10.

section we shall study some problems wherein the mappings are not found by straight-
forward methods but rather by techniques that may seem to arise from divine inspira-
tion, dumb luck, or simply “experience.”

The situation might be described as follows. When one is dealing with an area of
mathematics that is so complicated that the direct solution of problems is not feasible,
it is useful to try to gain some “feel” for the area by postulating a solution and then
finding out what problem it solves. The mathematical community calls such proce-
dures inverse methods, as opposed to the direct methods illustrated in Sec. 7.6. As our
first experiment with an inverse method, let us consider what situations can be ana-
lyzed with the mapping w = sin z and its inverse z = sin−1w. This transformation
turns out to be quite a versatile tool, and we shall utilize it to solve four very different
physical problems.

We saw in Sec. 7.5 that z = sin−1w maps the upper half-plane onto the semi-
infinite strip depicted in Fig. 7.67, with the real axis mapping to the sides and bottom
of the strip. We can thus use the harmonic function ψ1(u, v) = v = Imw, which is
zero on the real axis, to find the streamlines for flow in a blocked channel, as illustrated
in the figure. They are given by the level curves

φ1(x, y) = Im(sin z) = constant.
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Figure 7.67 Blocked channel flow.

Figure 7.68 Charged conducting strip.

On the other hand, the harmonic function φ2(x, y) = y = Im z in the z-plane is
zero on the bottom of the strip, and the lines φ2 = constant are perpendicular to the
sides of the strip. Therefore, their images, the curves

ψ2(u, v) = Im
(

sin−1w
)

= constant, (1)

intersect the u-axis orthogonally for |u| > 1, while ψ2 = 0 on the segment −1 ≤
u ≤ 1; see Fig. 7.68. Hence Eq. (1) can be interpreted as the equipotentials around an
infinitely long charged conducting strip of width 2.

The harmonic function that is conjugate to this ψ2(u, v) is, obviously,

η(u, v) = Re
(

sin−1w
)

(2)

(to be accurate, we should say that η is one of the harmonic conjugates of ψ2; recall
Sec. 2.5). The level curves of η(u, v) intersect those of ψ2(u, v) orthogonally, so they
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Figure 7.69 Coplaner charged plates.

look like the dashed curves in Fig. 7.69. In particular, η(u, v) = −π/2 on the u-axis
to the left of −1, and η(u, v) = π/2 on the u-axis to the right of +1. Thus (2) can
be interpreted as the potential due to two oppositely charged semi-infinite conducting
plates lying side by side.

Finally, it is easy to verify that the mapping w = sin z as depicted in Fig. 7.67
is symmetric about the y-axis, so that we can restrict it to determine a one-to-one
map of the strip in Fig. 7.70 onto the first quadrant. Consider the harmonic function
φ3(x, y) = 2x/π = (2 Re z)/π . It is zero on the y-axis and +1 on the line x = π/2,
and its level curves intersect the x-axis orthogonally. Hence the “inherited” function

ψ3(u, v) = 2

π
Re
(

sin−1w
)

is zero on the v-axis and +1 on the u-axis for u > 1, while the curves ψ3 = constant
intersect the segment 0 < u < 1 orthogonally. The latter condition implies that the
normal derivative of ψ3 is zero on the segment. As a result, we can interpret ψ3 as
the steady-state temperature in the first quadrant when the v-axis is held at 0 degrees,
the u-axis is held at 1 degree for u > 1, and the portion 0 < u < 1 of the u-axis is
thermally insulated.

Continuing in this vein, observe that we can solve an interesting variety of prob-
lems with the function f (z) = zα . For α > 0, we have seen that a suitable branch
of f maps the wedge 0 < arg z < π/α onto the upper half-plane, and thus Im zα is
the stream function for fluid flow in a wedge. But, of course. any of the streamlines
Im zα = constant could be considered as the perimeter of an obstacle placed in the
flow. For example, if α = 2,

Im z2 = 2xy,

and we have a stream function for flow inside, say, the rectilinear hyperbola xy = 1
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Figure 7.70 Thermal configuration with insulation.

Figure 7.71 Dipole equipotentials.

Figure 7.72 Vortex streamlines.
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7.7 Further Physical Applications of Conformal Mapping 437

[cf. Fig. 2.6(b)]. For α = −1, the level curves (see Figure 7.71)

Im z−1 = −y

x2 + y2
= constant

are all circles through the origin. One can visualize these curves as equipotentials for
a (two-dimensional) dipole at z = 0.

The level curves for the harmonic function Log |z| have an interesting interpreta-
tion. Recall that they are concentric circles (Fig. 7.72). Considered as streamlines, they
represent the flow due to a vortex, or whirlpool, at the origin. On the other hand, if they
are interpreted as isotherms or equipotentials, we infer the existence of a heat source
or point charge† at x = y = 0. As we shall illustrate shortly, it is often instructive to
study the effect of superimposing vortices or sources on a given pattern.

A very important application of the inverse method, which we shall describe pre-
sently, springs from considerations involving the following simple example.

Example 1
Find the streamlines for flow around a cylindrical obstacle as depicted in Fig. 7.73.

Figure 7.73 Flow around a cylinder.

Solution. We assume for the moment that the flow is symmetric with respect to
the x-axis. (We shall see later that other interpretations are possible.) Then we only
have to deal with y ≥ 0.

To map the flow region onto the upper-half w-plane we need a (nonconstant) an-
alytic function f (z) that is real on the x-axis (at least for |x | > R) and on the circle
|z| = R. The first condition is satisfied by a large class of functions, for example,
rational functions with real coefficients. To handle the second condition, we observe

†Remember that a point charge in two dimensions corresponds to a line charge in three dimen-
sions.
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438 Conformal Mapping

that since the circle can be described by zz̄ = R2, we have z̄ = R2
/

z there; hence the
rational function z + R2

/
z is equal to z + z̄ = 2 Re z on the circle. Consequently we

are led to the mapping

w = f (z) = z + R2

z
. (3)

It is easily verified that (3) produces a one-to-one map of the flow region (for
y > 0) onto the upper half-plane. Thus the appropriate stream function corresponds to
ψ(u, v) = v = Imw, yielding the streamlines

φ(x, y) = Im

(
z + R2

z

)
= constant. �

If we drop the symmetry assumption, we require only that the circle itself be a
streamline. Hence we can add any constant multiple of Log |z| (since it has |z| = R
as a streamline) to the stream function and obtain “circulating” flow patterns as in
Fig. 7.74.

Figure 7.74 Circulating flows around a cylinder.

In 1908 the mathematician N. Joukowski had the inspiration to see what the map-
ping (3) would do, not to the circle |z| = R, but to an off-center circle such as C in
Fig. 7.75(a). The result was an airfoil, as indicated in Fig. 7.75(b). By starting with
different circles C we can generate a variety of these so-called Joukowski airfoils. Fur-
thermore, since we have already found a wide class of flows around cylinders (Figs.
7.73 and 7.74), we can use the “Joukowski transformation” (3) to carry them over and
compute flows around these airfoils! For instance, we can shape the airfoil to meet cer-
tain engineering specifications by suitably choosing C and introducing modifications
into the mapping such as

w = f (z) = z + R2

z
+ a

z2
+ b

z3
+ · · · .

See Fig. 7.76.
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Figure 7.75 Joukowski airfoil.

Figure 7.76 Point of attachment.

This technique has been extremely useful in aircraft design, and we direct the
interested reader to the specialized literature for further study.

EXERCISES 7.7

1. Analyze the temperature distribution in the plate depicted in Fig. 7.77. [HINT: Use
the solution to Prob. 7, Exercises 7.5, and the sine function.]

Figure 7.77 Region for Prob. 1.

2. Consider the problem of fluid flow around a straight obstacle inclined at an angle
α, as in Fig. 7.78. The stream function ψ must be constant on the obstacle, and the
streamlines (ψ = constant) must tend to horizontal straight lines at large distances
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Figure 7.78 Region for Prob. 2.

from the origin. Show that

ψ(x, y) = Im

e−iαz

cosα + i sinα

√
1 − e2iα

z2


satisfies these conditions.

3. Find the temperature distribution in the first quadrant under the boundary conditions
indicated in Fig. 7.79.

Figure 7.79 Region for Prob. 3.

4. Another feasible approach to Example 1 is to map the shaded region in Fig. 7.80
to the upper half-plane as follows: First use a Möbius transformation to map R
to ∞ and −R to 0. Argue that the shaded region then maps onto a 90◦ wedge,
which can be rotated if necessary to coincide with the first quadrant. Squaring
them maps onto the upper half-plane, and taking the imaginary part of the whole
transformation should solve the problem of finding the stream function. Show that
the implementation of this scheme leads to the mapping

w = −
(

z + R

z − R

)2
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7.7 Further Physical Applications of Conformal Mapping 441

Figure 7.80 Region for Prob. 4.

and the stream function

ψ(z) = Imw = 4y R
(
x2 + y2 − R2

)[
(x − R)2 + y2

]2 .

Although this function is harmonic in the shaded region and zero on the boundary,
we reject it on the physical basis that the flow we seek must have nearly horizontal
streamlines for large y. That is, the curves ψ(x, y) = constant must approximate
y = constant far away from the obstacle. This is obviously not the case for the fore-
going solution. (This problem illustrates an additional complication that we have
ignored in our elementary treatment, namely, consideration of boundary conditions
“at infinity” for unbounded domains.)

5. Analyze the temperature distribution in the slab 0 < y < 1 under the conditions
shown in Fig. 7.81.

Figure 7.81 Region for Prob. 5.

6. Show that the mapping (3) takes two concentric circles, |z| = R and |z| = R′ > R,
onto a line segment and an ellipse shown in Fig. 7.82. Use this to find the elec-
trostatic potential between a conducting elliptic cylinder surrounding a conducting
strip.

7. Using the mapping (3), find the streamlines for the flow indicated in Fig. 7.83.
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Figure 7.82 Region for Prob. 6.

Figure 7.83 Region for Prob. 7.

8. In this problem we will verify a statement made in optional Sec. 2.7, that the orbit
formed by iterating the function f (z) = z2 − 2, starting from any point not lying in
the interval [−2,2], is unbounded.

(a) Show that the Joukowski transformation z = w+ 1/w produces a one-to-one
mapping between the exterior of the unit disk |w| > 1 and the complement
of the interval [−2,2] in the complex z-plane. Furthermore, if the sequence
{wn}∞n=1 approaches infinity in the w-plane, then the corresponding sequence
{zn = wn + 1/wn}∞n=1 approaches infinity in the z-plane.

(b) Show that if |w1| > 1 and w2 = w2
1, then the corresponding points z1 =

w1 + 1/w1 and z2 = w2 + 1/w2 satisfy z2 = z2
1 − 2.

(c) Argue that any orbit z0, z1 = z2
0 − 2, z2 = z2

1 − 2, . . . launched from a seed
z0 not in the interval [−2,2] corresponds to an “orbit of squares” w0, w1 =
w2

0, w2 = w2
1, . . . launched from a seedw0 outside the unit disk, and conclude

that both orbits approach infinity in their respective planes.
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SUMMARY

One of the most important aspects of mappings generated by analytic functions is the
persistence of solutions of Laplace’s equation. That is, if w = f (z) is a one-to-one
analytic function mapping one domain onto another [which implies that z = f −1(w)

is analytic also] and if φ(z) is harmonic in the first domain, then ψ(w) := φ
(

f −1(w)
)

is harmonic in the second domain. This leads to a useful technique for solving bound-
ary value problems for Laplace’s equation; one performs a preliminary mapping to a
domain such as a quadrant, half-plane, or annulus, where the corresponding problem
is easy to solve, and then one carries the solution function back via the mapping.

An analytic mapping is conformal, that is, it preserves angles, at all points where
the derivative is nonzero. Using this property and connectivity considerations, one can
often determine the mapped image of a domain from the image of its boundary.

One important category of conformal mappings is the Möbius transformations.
They are functions of the form (az + b)/(cz + d), with ad �= bc, and they can be ex-
pressed as compositions of translations, rotations, magnifications, and inversions. Be-
cause they preserve the class of straight lines and circles and their associated symme-
tries, they are usually the method of choice for solving problems in domains bounded
by such figures.

On the other hand, Schwarz-Christoffel transformations map half-planes to poly-
gons, and thus they are the appropriate tool for such geometries. These mappings are
computed by determining the conditions imposed on the derivative f ′ at the corners of
the polygon.

With these devices one can solve many two-dimensional problems in electrostat-
ics, heat flow, and fluid dynamics. Sometimes insight into the nature of more com-
plicated situations is provided by experimenting with inverse methods, where one first
postulates solutions and then analyzes what problems they solve.

Suggested Reading
Most of the references listed previously treat conformal mapping, but the following
are particularly useful:

Riemann Mapping Theorem and Geometric Considerations

[1] Goluzin, G. M. Geometric Theory of Functions of a Complex Variable. American
Mathematical Society, 1969.

[2] Nehari, Z. Conformal Mapping. Dover Publications, Inc., New York, 1975.

Schwarz-Christoffel Transformation

[3] Levinson, N., and Redheffer, R. Complex Variables. Holden-Day, Inc., San Fran-
cisco, 1970.
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[4] Henrici, P. Applied and Computational Complex Analysis, Vol. I. John Wiley &
Sons, Inc., New York, 1974.

Compendium of Conformal Maps

[5] Kober, H. Dictionary of Conformal Representations, 2nd ed. Dover Publications,
Inc., New York, 1957.

Applications

[6] Courant, R. Dirichlet’s Principle, Conformal Mapping, and Minimal Surfaces.
John Wiley & Sons, Inc. (Interscience Division), New York, 1950.

[7] Dettman, J. W. Applied Complex Variables. Dover Publications, Inc., New York,
1984.

[8] England, A. H. Complex Variable Methods in Elasticity. John Wiley & Sons, Inc.
(Interscience Division), New York, 1971.

[9] Frederick, C., and Schwartz, E. L. “Conformal Image Warping,” IEEE Computer
Graphics and Applications, March 1990, pp. 54–61.

[10] Kyrala, A. Applied Functions of a Complex Variable. John Wiley & Sons, Inc.,
New York, 1972.

[11] Marsden, J. E., and Hoffman, M. J. Basic Complex Analysis, 2nd ed. W. H.
Freeman and Company, Publishers, New York, 1987.

[12] Milne-Thomson, L. M. Theoretical Hydrodynamics, 2nd ed. The Macmillan
Company, New York, 1968.

[13] Rothe, R., Ollendorff, F., and Pohlhausen, K. Theory of Functions. Dover Publi-
cations, Inc., New York, 1961.

[14] Smythe, W. R. Static and Dynamic Electricity, 3rd ed. Hemisphere Publications
Corporation, New York, 1989.
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Chapter 8

The Transforms of Applied
Mathematics

In Sec. 3.6 we gave some indication of why, when analyzing linear time-invariant
systems, it is particularly advantageous to deal with sinusoidal functions as inputs.
Briefly, the virtues of employing an input of the form Aeiωt are as follows:

1. Compactness of notation—a real expression such as α cos(ωt +φ)+β sin(ωt +
ψ) can be represented simply by Re

(
Aeiωt

)
.

2. The fact that differentiation amounts to multiplication by iω—thus, in a sense,
replacing calculus by algebra.

3. The fact that the steady-state response of the system to this input will have the
same form, a complex constant times eiωt .

For these reasons it would be very helpful if a general input function F(t) could
be expressed as a sum of these sinusoids. One could then determine the output by find-
ing the response to each sinusoidal component (which is an easier problem) and then
adding these responses together (recall that superposition of solutions is permissible
in a linear system).

Fourier analysis, as implemented through the Fourier series and the Fourier trans-
form, is devoted to the decomposition of a function into these sinusoids. Other trans-
forms—notably, the Mellin, the Laplace, and the z transforms—have been developed
with the same objective: the decomposition of arbitrary functions into superpositions
of elementary forms that are convenient for a particular analytical task at hand. An-
other transform, named for Hilbert, is intimately related to the others both theoretically
and in applications, although it does not address the specific objective of functional de-
composition.

The range of validity and applicability of these mathematical operations extends
well beyond the domain of analytic functions, but the derivations of the key properties
are much more transparent if we restrict ourselves. Thus we devote the final chapter of

From Chapter 8 of Fundamentals of Complex Analysis with Applications to Engineering, Science, and Mathematics,
 © 2003 by Pearson Education, Inc. All rights reserved.Third Edition. Edward B. Saff, Arthur David Snider. Copyright
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this book to a survey of the analytic-functional aspects of these transforms, and some
proofs will have to be omitted because they go beyond these limitations.

8.1 Fourier Series (The Finite Fourier Transform)

As indicated in the introduction, the main goal of this chapter is to establish the pos-
sibility of expressing a (possibly complex-valued) function of a real variable, F(t), as
a sum of sinusoidal functions of the form eiωt . The present section is devoted to the
special case when F(t) is periodic with period L; that is, F(t) = F(t + L) for all t .

Naturally, we are inclined to seek a decomposition of F into sinusoids with the
same period; that is, only those values of ω should occur such that eiω(t+L) = eiωt .
This implies that eiωL = 1, so that ω must be one of the numbers

ωn = 2πn

L
(n = 0,±1,±2, . . .).

To be specific, we assume that L = 2π (one can always rescale to achieve this condi-
tion). Our problem is thus to find (complex) numbers cn such that

F(t) =
∞∑

n=−∞
cneint . (1)

Suppose, for the moment, that the series in Eq. (1) converges uniformly to F(t) for
−π ≤ t ≤ π (and hence for all t). For any fixed integer m we can multiply by e−imt

to obtain

F(t)e−imt =
∞∑

n=−∞
cnei(n−m)t , (2)

again converging uniformly, from which it follows that F(t)e−imt is a continuous func-
tion and that termwise integration of the series is valid [recall Theorem 8 of Sec. 5.3].
Integrating (2) over the interval [−π, π] yields∫ π

−π
F(t)e−imt dt =

∞∑
n=−∞

cn

∫ π

−π
ei(n−m)t dt; (3)

however, ∫ π

−π
ei(n−m)t dt =


ei(n−m)t

i(n − m)

∣∣∣∣∣
π

−π
= 0 if n 
= m,

t
∣∣π−π = 2π if n = m.

Hence only the term 2πcm survives on the right-hand side of Eq. (3). As a result
we have the following formula for the coefficient cm :

cm = 1

2π

∫ π

−π
F(t)e−imt dt, (4)

valid whenever the series in Eq. (1) is uniformly convergent.
Whether or not the series is convergent, we use the following terminology.
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8.1 Fourier Series (The Finite Fourier Transform) 447

Definition 1. If F has period 2π and is integrable over [−π, π], the (formal)
series

∑∞
n=−∞ cneint with coefficients given by Eq. (4) is called the Fourier

series for F ; the numbers cn are called the Fourier coefficients of F .

More generally, if F(t) has period L , the Fourier† series looks like

∞∑
n=−∞

cnein2π t/L ,

and the Fourier coefficients become

cn = 1

L

∫ L/2

−L/2
F(t)e−in2π t/L dt.

What we have shown is that under the assumption that F(t) has a representation
of the form (1) which is known to be uniformly convergent, then the series in ques-
tion must be the Fourier series. Now we must investigate this assumption and try to
determine under what conditions the Fourier series will converge to F .

1

Figure 8.1 Annulus of analyticity.

A partial answer to this question can be derived from analytic function theory.
Consider a function f (z) analytic in some annulus, such as D in Fig. 8.1, which con-
tains the unit circle. Then, of course, f can be represented by a Laurent series:

f (z) =
∞∑

n=−∞
anzn (z in D). (5)

†Baron Jean Baptiste Joseph Fourier (1768–1830) was led to the discovery of this series while
analyzing the manufacturing of cannons for Napoleon.
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We shall be particularly concerned with the values of f on the unit circle where the
series converges uniformly. Parametrizing this circle by z = eit , −π ≤ t ≤ π , we
introduce the notation F(t) := f (eit ) and rewrite Eq. (5) as

F(t) =
∞∑

n=−∞
aneint . (6)

Observe our good fortune; the function F(t) has period 2π , and Eq. (6) is a de-
composition of F into a series of sinusoids, converging uniformly! Thus Eq. (6) must
be the Fourier series for F(t).

In fact, we can even present an independent derivation of formula (4) for the
Fourier coefficients in this case. According to Theorem 14 of Sec. 5.5 the coefficients
in (5) are given by

an = 1

2π i
�
∫

|z|=1

f (ζ )

ζ n+1
dζ,

and inserting the parametrization we find

an = 1

2π i

∫ π

−π
f (eit )e−i t (n+1)ieit dt

= 1

2π

∫ π

−π
F(t)e−int dt,

in agreement with Eq. (4).
Of course, we have not proved a great deal; we have only shown that the Fourier

series of a function F converges uniformly to F in those cases when the values of F(t)
coincide with the values of an analytic function f (z) for z = eit . Furthermore, this
technique of finding a Fourier series by way of a Laurent expansion is usually of more
theoretical than practical value.

Example 1

Find the Fourier series for the periodic function

F(t) = e2 cos t

using the preceding technique.

Solution. First we must find an analytic function f (z) that matches the values
of F(t) for z on the unit circle. This is easy; since

cos t = eit + e−i t

2
,

we see that
F(t) = e(z+1/z) =: f (z)
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8.1 Fourier Series (The Finite Fourier Transform) 449

when z = eit . Hence the Fourier series for F can be obtained from the Laurent series
for f . We have

e(z+1/z) = eze1/z

=
( ∞∑

m=0

zm

m!

)( ∞∑
=0

z−

!

)
,

and we can multiply these series termwise. (Termwise multiplication of Laurent series
is valid, although we have not proved it in this text.) The term involving zn in the
result comes from the sum of products of terms zm/m! times z−/! with m −  = n;
collecting these we have

e(z+1/z) =
∞∑

n=−∞
zn

 ∞∑
m=|n|

1

m! · 1

(m − |n|)!

 .
Hence the Fourier series for F is

F(t) =
∞∑

n=−∞
cneint

with

cn =
∞∑

m=|n|

1

m!(m − |n|)! . �

Example 2
Show that when F(t) = f (eit )with f analytic, termwise differentiation of the Fourier
series for F is valid.

Solution. We know that the Laurent series (5) can be differentiated termwise:

d f (z)

dz
=

∞∑
n=−∞

nanzn−1. (7)

For z = eit , the chain rule yields

d f

dt
= d f

dz

dz

dt
= d f

dz
ieit .

Inserting Eq. (7) for d f/dz and identifying f (eit ) as F(t), we find

d

dt
f (eit ) = d F(t)

dt
=

∞∑
n=−∞

nanei(n−1)t iei t ,

or
d F(t)

dt
=

∞∑
n=−∞

inaneint ,

which agrees with termwise differentiation of Eq. (6). �

449



450 The Transforms of Applied Mathematics

As another illustration of the fertility of this approach, we shall present a heuristic
derivation of Poisson’s formula for harmonic functions on the unit disk. Since the
validity of the formula has been stated in Sec. 4.7, we shall proceed formally and not
worry about the rigorous justification of each detail.

We are given a continuous real-valued function U (θ) having period 2π , and we
want to find a function u(z) that is harmonic for |z| < 1 and approaches the value
U (θ) as z → eiθ ; in other words, we want to solve the Dirichlet problem for the unit
disk (see Sec. 4.7). First we assume that U (θ) has a Fourier expansion

U (θ) =
∞∑

n=−∞
cneinθ =

∞∑
n=−∞

[
1

2π

∫ π

−π
U (φ)e−inφ dφ

]
einθ ,

where we have inserted the coefficient formula (4). If we combine the terms for n and
−n, we derive (observe that n = 0 is exceptional)

U (θ) = 1

2π

∫ π

−π
U (φ) dφ +

∞∑
n=1

1

2π

∫ π

−π
U (φ)

(
ein(θ−φ) + e−in(θ−φ)) dφ

= 1

2π

∫ π

−π
U (φ) dφ + 2

∞∑
n=1

1

2π

∫ π

−π
U (φ) cos n(θ − φ) dφ.

Now we use a device known to mathematicians as Abel-Poisson summation to sum the
series. First we artificially introduce the variable r to obtain a function g(r, θ):

g(r, θ) := 1

2π

∫ π

−π
U (φ) dφ + 2

2π

∞∑
n=1

∫ π

−π
U (φ)rn cos n(θ − φ) dφ. (8)

This yields three dividends; first, observe that the series

1 + 2
∞∑

n=1

rn cos n(θ − φ) (9)

converges uniformly in φ, if 0 ≤ r < 1. Hence it can be multiplied by U (φ) and
integrated termwise. But this results in 2π times the right-hand side of Eq. (8). Thus
we can rewrite Eq. (8) as

g(r, θ) = 1

2π

∫ π

−π
U (φ)

{
1 + 2

∞∑
n=1

rn cos n(θ − φ)

}
dφ. (10)

Second, observe that the series (9) is, in fact, the real part of the series

1 + 2
∞∑

n=1

rneinθe−inφ = 1 + 2
∞∑

n=1

zne−inφ, (11)

a power series in z = reiθ . Since the latter series converges for |z| < 1, it defines an
analytic function inside the unit disk, and consequently its real part, (9), is harmonic!
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As a result, g(r, θ) is the real part of an analytic function [since U (φ) is real], and
hence g is a harmonic function of z = reiθ for r < 1. The formal substitution r = 1
in Eq. (10) yields the Fourier series for U (θ), so we are led to postulate that Eq. (10)
solves the Dirichlet problem; that is, u(z) = u

(
reiθ

) = g(r, θ) is a function which is
harmonic for |z| < 1 and approaches U (θ) as |z| → 1.

Finally, the third dividend of our labors follows from the equality

1 + 2
∞∑

n=1

rn cos n(θ − φ) = 1 − r2

1 − 2r cos(θ − φ)+ r2
, (12)

which we invite the reader to prove as Prob. 4. Using this in Eq. (10), we arrive at the
Poisson formula

u
(

reiθ
)

= 1 − r2

2π

∫ π

−π
U (φ)

1 − 2r cos(θ − φ)+ r2
dφ,

expressing a harmonic function inside the unit disk in terms of its “boundary values.”
As we indicated earlier, we refer the reader to Sec. 4.7 for a more precise statement of
the validity of Poisson’s formula.

At this point our achievements can be summarized as follows: Subject to some
fairly restrictive analyticity assumptions, the equation

F(t) =
∞∑

n=−∞
cneint (13)

is valid when

cn = 1

2π

∫ π

−π
F(t)e−int dt (for all n). (14)

Now notice that there is nothing in Eqs. (13) or (14) that would indicate the necessity
of any analytic properties of F . Indeed, the coefficients (14) can be evaluated for any
integrable F . So, we speculate, why should the validity of Eq. (13) hinge on analytic-
ity? Shouldn’t we expect that the Fourier series converges under weaker conditions?
The answer is yes, but the proofs of the more general convergence theorems lie outside
analytic function theory. We shall simply quote some of these results without proof.

The first theorem is more or less in line with our speculations. It postulates only the
integrability of |F |2, but it pays the price in that a much weaker type of convergence
occurs.

Theorem 1. If the integral
∫ π
−π |F(t)|2 dt exists, then the Fourier series defined

by Eqs. (13) and (14) exists and converges to F in the mean square sense; that
is,

lim
N→∞

∫ π

−π

∣∣∣∣∣F(t)−
N∑

n=−N

cneint

∣∣∣∣∣
2

dt = 0.
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Example 3
Prove Parseval’s identity for the Fourier coefficients:∫ π

−π
|F(t)|2 dt = lim

N→∞ 2π
N∑

n=−N

|cn|2 , (15)

if |F |2 is integrable over [−π, π].
Solution. We have

∫ π

−π

∣∣∣∣∣F(t)−
N∑

n=−N

cneint

∣∣∣∣∣
2

dt

=
∫ π

−π

[
F(t)−

N∑
n=−N

cneint

] [
F(t)−

N∑
n=−N

cne−int

]
dt.

Since the conjugate of F(t) ·
N∑

n=−N
cne−int is F(t) ·

N∑
n=−N

cneint , the right-hand side

becomes∫ π

−π
|F(t)|2 dt − 2 Re

N∑
n=−N

cn

∫ π

−π
F(t)e−int dt

+
∫ π

−π

(
N∑

n=−N

cneint

)(
N∑

n=−N

cne−int

)
dt. (16)

Recognizing the expression for the Fourier coefficient [Eq. (14)] in the preceding, we
can write the second term as −2(2π)

∑N
n=−N |cn|2. The third term can be expanded,

but we must change one of the summation indices to avoid confusion; this term then
becomes

N∑
n=−N

cn

N∑
m=−N

cm

∫ π

−π
ei(n−m)t dt.

Recalling our previous evaluation of this integral, we see that this reduces to

2π
N∑

n=−N

cncn.

Thus we have shown∫ π

−π

∣∣∣∣∣F(t)−
N∑

n=−N

cneint

∣∣∣∣∣
2

dt =
∫ π

−π
|F(t)|2 dt − 2π

N∑
n=−N

|cn|2 .
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According to Theorem 1, the left-hand side approaches zero as N → ∞. Hence

∫ π

−π
|F(t)|2 dt − lim

N→∞ 2π
N∑

n=−N

|cn|2 = 0,

and Eq. (15) results. �

The next Fourier convergence theorem is valuable in engineering applications,
where switching circuits may produce (theoretically) discontinuous input functions,
such as the periodic step function illustrated in Fig. 8.2.

Figure 8.2 Periodic step function.

We restrict ourselves to periodic function F with a finite number of discontinuities
in any period. Specifically, we assume that F has period 2π and that there is a finite
subdivision of the interval [−π, π] given by

−π = τ0 < τ1 < τ2 < · · · < τn−1 < τn = π

such that

1. F(t) is continuously differentiable on each open subinterval
(
τ j , τ j+1

)
for j =

0, 1, 2, . . . , n − 1,

2. as t approaches any subdivision point τ j from the left, F(t) and F ′(t) approach
limiting values denoted by F

(
τ j−

)
and F ′ (τ j−

)
, respectively, and

3. as t approaches any τ j from the right, F(t) and F ′(t) again approach limiting
values denoted F

(
τ j+

)
and F ′ (τ j+

)
, respectively.

Such a function is said to be piecewise smooth.
Of course, if F is continuous at τ j , then F

(
τ j−

) = F
(
τ j+

) = F
(
τ j
)
. For the

step function in Fig. 8.2, F(0−) = F(π+) = −1, and F(0+) = F(π−) = +1 =
F(0) = F(π). Moreover, F ′(0−) = F ′(0+) = 0, but F ′(0) does not exist.
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Theorem 2. Suppose that F is periodic and piecewise smooth. Then the Fourier
series for F converges to F(t) at all points t where F is continuous and converges
to 1

2

[
F
(
τ j+

) + F
(
τ j−

)]
at the points of discontinuity.

Example 4
Compute the Fourier series for the step function in Fig. 8.2, and state its convergence
properties.

Solution. The Fourier coefficients are given by

cn = 1

2π

∫ π

−π
F(t)e−int dt = 1

2π

∫ 0

−π
(−1)e−int dt + 1

2π

∫ π

0
(1)e−int dt

=
0 if n = 0,

i {(−1)n − 1}
πn

otherwise.

Hence the Fourier series is

i

π

∞∑
n=−∞
(n 
=0)

[
(−1)n − 1

n

]
eint . (17)

According to Theorem 2, it converges to +1 for 0 < t < π , to −1 for −π < t < 0,
and to the average, 0, for t = 0 and t = π . �

When Fourier analysis (or frequency analysis, as it is sometimes called) is used to
solve linear systems governed by differential equations, the question naturally arises as
to whether or not a Fourier series can legitimately be differentiated termwise. (Obvi-
ously, the result of Example 2 is much too restrictive.) The following argument seems
to cover a great many cases of interest to engineers: Suppose that F has a convergent
Fourier series expansion

F(t) =
∞∑

n=−∞
cneint , (18)

and suppose furthermore that the termwise-differentiated series

∞∑
n=−∞

incneint (19)

can be shown (by, say, the M-test) to be uniformly convergent on [−π, π]. Under such
circumstances we know the “derived series” (19) can be legitimately integrated from
−π to t , termwise. But the result of this integration is the original series (18), up to a
constant. Hence the sum function of (19) must be the derivative of F(t), and we have
proved the following.
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Theorem 3. Suppose that the Fourier expansion (18) is valid and that the derived
series (19) converges uniformly on [−π, π]. Then

∞∑
n=−∞

incneint = d

dt

∞∑
n=−∞

cneint .

Example 5
Find the Fourier series for the periodic function

F(t) =
∣∣∣∣sin

t

2

∣∣∣∣5 ,
and state the convergence properties for the derived series.

Solution. (Observe that F has period 2π .) The Fourier coefficients are given
by

cn = 1

2π

∫ π

−π

∣∣∣∣sin
t

2

∣∣∣∣5 e−int dt.

These integrals can be evaluated by standard techniques after application of the identity

sin5 θ = 5

8
sin θ − 5

16
sin 3θ + 1

16
sin 5θ.

With some labor one finds that the Fourier series for F(t) is given by
∞∑

n=−∞

240/π

225 − 1036n2 + 560n4 − 64n6
eint , (20)

and, according to Theorem 2, it converges to F(t). Differentiating termwise we derive
∞∑

n=−∞

in(240/π)

225 − 1036n2 + 560n4 − 64n6
eint . (21)

This series converges uniformly, as can be seen by comparing its increasing and de-
creasing parts with the (convergent) series

∑∞
n=1 2 · 240

/
π64n5 [the factor 2 ensures

that the terms of this series dominate those of (21) for large n]. Hence (21) represents
F ′(t). Moreover, termwise differentiation of (21) can be justified by comparing the
result with

∑∞
n=1 2 · 240

/
π64n4 ; thus

F ′′(t) =
∞∑

n=−∞

−n2(240/π)

225 − 1036n2 + 560n4 − 64n6
eint .

Clearly two more termwise differentiations are justified, leading to Fourier series for
F (3)(t) and F (4)(t). In fact, the student should verify that the original function F(t) is
continuously differentiable exactly four times! (The fifth derivative jumps from − 15

4
to + 15

4 as t increases through 0, ±2π , ±4π , etc.) �
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The next example illustrates how Fourier series are used in practice to solve linear
problems.

Example 6
Find a function f that satisfies the differential equation

d2 f (t)

dt2
+ 2

d f (t)

dt
+ 2 f (t) = F(t), (22)

where F is the periodic “sawtooth” function prescribed by

F(t) :=


−1 − 2t

π
, −π ≤ t ≤ 0,

−1 + 2t

π
, 0 ≤ t ≤ π

(see Fig. 8.3).

Figure 8.3 Sawtooth function.

Solution. First we show how a solution can be found to the simpler equation

d2g(t)

dt2
+ 2

dg(t)

dt
+ 2g(t) = eiωt , (23)

where the “forcing function” on the right-hand side has been replaced by a simple
sinusoid. The considerations outlined in the introduction to this chapter indicate that
Eq. (23) has a solution of the form g(t) = Aeiωt . To find A, we insert this expression
into Eq. (23) and obtain

−ω2 Aeiωt + 2iωAeiωt + 2Aeiωt = eiωt ,

or (dividing by eiωt ) (
−ω2 + 2iω + 2

)
A = 1.
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Solving for A, we deduce that

g(t) = eiωt

−ω2 + 2iω + 2
(24)

solves Eq. (23).
Next we expand the given function F(t) into a Fourier series. Using formula (14)

for the coefficients, we find

cn = 1

2π

∫ π

−π
F(t)e−int dt

= 1

2π

∫ 0

−π

(
−1 − 2t

π

)
e−int dt + 1

2π

∫ π

0

(
−1 + 2t

π

)
e−int dt

=
0 if n = 0,

2

π2n2
{(−1)n − 1} if n 
= 0.

Hence

F(t) =
∞∑

n=−∞
n 
=0

2 {(−1)n − 1}
π2n2

eint , (25)

which is valid by Theorem 2. Now we argue as follows: We have Eq. (25) expressing
F(t) as a linear combination, albeit infinite, of sinusoids, and we have Eq. (24) ex-
pressing a solution for a single sinusoid. By linearity, then, we are led to postulate that
the same linear combination of these solutions ought to solve the given equation; that
is,

f (t) =
∞∑

n=−∞
n 
=0

2 {(−1)n − 1}
π2n2

eint

−n2 + 2in + 2
(26)

should be valid. To complete the argument, we first make the observation that Eq. (26)
certainly solves Eq. (22) termwise. Furthermore, by comparing the series in Eq. (26)
with the convergent series

∑
(8

/
π2n4 ) (having the same limits), we conclude that the

former converges and that it can be legitimately differentiated termwise twice. Since
Eq. (22) involves no derivatives higher than the second, we are done. �

[The reader should observe that termwise differentiation of the sawtooth series
(25) yields 2/π times the step function series (17), which is consistent with the fact
that the derivative of the sawtooth is 2/π times the step function, except at the “break
points” 0,±π,±2π, . . .. This phenomenon, which is not predicted by Theorem 3,
reflects the fact that there are more powerful convergence results for Fourier series.
Some of these can be found in the references.]

Formula (14) for the coefficients in the Fourier series is sometimes known as the
finite Fourier transform (the “infinite” Fourier transform is covered in Sec. 8.2). The
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efficient computation of this transform is of crucial importance in engineering appli-
cations. But practically speaking one usually has to evaluate the integral numerically,
for the following reasons:

1. F(t) may be known only through measured data—no formula is available.

2. Even if an analytic formula for F(t) is given, there may be no closed-form
expression for the indefinite integral.

Now, for n fixed, a Riemann sum approximating the integral∫ π

−π
F(t)

2π
e−int dt

takes the form (Sec. 4.2)

Sn,N = F(τ1)e
−inτ1

t1 − t0
2π

+ F(τ2)e
−inτ2

t2 − t1
2π

+ · · · + F(τN )e
−inτN

tN − tN−1

2π
,

where −π = t0 < t1 < t2 < · · · < tN = π and t j−1 ≤ τ j ≤ t j . Let us choose
the partition so that there are N equal intervals, giving t j = −π + 2π j/N ; and let
us choose the “sample” points τ j to be the left endpoints of each respective interval,
τ j = t j−1. Then the sum can be abbreviated

Sn,N =
N−1∑
j=0

F(−π + 2π j

N
)
e−in(−π+2π j/N )

N
=

N−1∑
j=0

A j e
−i2πnj/N , (27)

where A j := F(−π + 2π j/N )einπ
/

N . As N is increased, the sum Sn,N converges
to the coefficient cn; thus error is controlled by choosing N large.

Of course, larger values of N also imply more computational effort. To estimate
a single coefficient cn by Eq. (27) requires N multiplications, and typically one eval-
uates the finite Fourier transform for N such coefficients—calling for a total of N 2

(complex) multiplications. In applications it is often desirable to take N to be several
thousand, and the algorithm in this form is too computation-intensive. However, by
judicious grouping of the terms in (27), the work can be reduced considerably.

Suppose, for instance, that N = 16, so that the computation of, say, S1,16 takes the
symbolic form

S1,16 =
15∑
j=0

A j e
−i2π j/16 =

15∑
j=0

A j e
−iπ j/8.

The numerical values of
{
e−i jπ/8 : j = 0, 1, 2, . . . , 15

}
are quite redundant (see Ta-

ble 8.1).
So the computation of S1,16 can, in fact, be carried out with only three complex

multiplications:

S1,16 = A0 − A8 − i (A4 − A12)

+ .924 [A1 − A7 − A9 + A15 − i (A3 + A5 − A11 − A13)]

+ .707 [A2 − A6 − A10 + A14 − i (A2 + A6 − A10 − A14)]

+ .383 [A3 − A5 − A11 + A13 − i (A1 + A7 − A9 − A15)] .
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j e−i jπ/8

0 1.000
1 .924 − .383i
2 .707 − .707i
3 .383 − .924i
4 −1.000i
5 −.383 − .924i
6 −.707 − .707i
7 −.924 − .383i
8 −1.000
9 −.924 + .383i

10 −.707 + .707i
11 −.383 + .924i
12 +1.000i
13 .383 + .924i
14 .707 + .707i
15 .924 + .383i

Table 8.1: The numerical values of
{
e−i jπ/8 : j = 0, 1, 2, . . . , 15

}
If we could achieve the same savings for 16 values of Sn,16, the number of multiplica-
tions would be reduced from 162 = 256 to 16 × 3 = 48.

The fast Fourier transform (FFT) is an algorithm that systematically exploits these
rearrangements of terms in the evaluation of (27). The emergence of the FFT in the
late 1960s was a major milestone in modern system analysis and signal processing. For
values of N of the form 2m , the total number of multiplications required for N values
of Sn,N is reduced to roughly Nm/2 = (N/2) log2 N . Codes are readily available,
and small computers can perform a 4096-point transform in seconds. An outline of
the basic strategy of the FFT is given in Problem 12; applications and error analyses
are discussed in the references.

EXERCISES 8.1

1. Compute the Fourier series for the following functions.

(a) F(t) = sin3 t

(b) F(t) =
∣∣∣∣cos3 t

3

∣∣∣∣
(c) F(t) = t2 (−π < t < π)

(d) F(t) = t |t | (−π < t < π)

2. Verify the Fourier representation of the indicated function and state the convergence
properties on the interval [−π, π ].
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(a)
∑

n=−∞
n even

−2

π
(
n2 − 1

) eint = | sin t |

(b)
∞∑

n=−∞

(−1)n sinhπ

(1 − in)π
eint = et

(c)
1

π
+ 1

2
sin t − 2

π

∞∑
n=1

cos 2nt

4n2 − 1
=

{
0, −π ≤ t ≤ 0,

sin t, 0 ≤ t ≤ π

(d)
π

4
+

∞∑
n=1

(−1)n − 1

πn2
cos nt −

∞∑
n=1

(−1)n

n
sin nt =

{
0, −π ≤ t ≤ 0,

t, 0 ≤ t < π

3. Which of the series in Prob. 2 can be differentiated termwise?

4. Prove Eq. (12). [HINT: Use Eq. (11).]

5. Rewrite the series ∞∑
n=−∞

cneint

as a trigonometric series of the form

∞∑
n=0

αn cos nt +
∞∑

n=1

βn sin nt,

deriving the relations

α0 = c0,

αn = cn + c−n (n ≥ 1),

βn = i (cn − c−n) (n ≥ 1).

What are the conditions on the coefficients cn such that the sum of the series is a
real function?

6. (a) If F(t) is defined only for 0 ≤ t ≤ π , show that by defining F(−t) := −F(t),
0 < t ≤ π , and constructing the Fourier series for this function over the
interval [−π, π ], one arrives at a Fourier sine series

∞∑
n=1

βn sin nt

for F , with coefficients given by

βn = 2

π

∫ π

0
F(t) sin nt dt.

State conditions for the Fourier sine series to converge to F(t) for 0 ≤ t ≤ π .
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(b) As in part (a), show that the definition F(−t) := F(t), 0 < t ≤ π , produces
a Fourier cosine series ∞∑

n=0

αn cos nt

with coefficients

α0 = 1

π

∫ π

0
F(t) dt, αn = 2

π

∫ π

0
F(t) cos nt dt (n ≥ 1).

State the conditions for convergence on [0, π ].
7. Find the Fourier representation for the periodic solutions of the following equations.

(a)
d2 f

dt2
+ 3 f = sin4 t

(b)
d2 f

dt2
+ d f

dt
+ f = t2, −π ≤ t ≤ π , continued with period 2π

(c)
d2 f

dt2
+ 4

d f

dt
+ 2 f = (the step function in Fig. 8.2)

8. Show that the Fourier sine and cosine series for the function F(t) = t , 0 ≤ t ≤ π ,
are given by

∞∑
n=1

2(−1)n+1

n
sin nt

and
π

2
− 4

π

∞∑
n=1

n odd

cos nt

n2
,

respectively. (See Prob. 6.)

9. Suppose that we wish to solve the Dirichlet problem for the unit disk and that the
boundary values of the desired harmonic function for z = eiθ are represented by the
series

U (θ) =
∞∑

n=0

αn cos nθ +
∞∑

n=1

βn sin nθ.

Argue that the solution to the problem is given by

u
(

reiθ
)

=
∞∑

n=0

αnrn cos nθ +
∞∑

n=1

βnrn sin nθ.

10. As an illustration of the power of Fourier methods in solving partial differential
equations, consider the nonstatic problem of heat flow along a uniform rod of length
π , whose ends are maintained at zero degrees temperature. The temperature T is
now a function of position x along the rod (0 ≤ x ≤ π) and time t . If the initial
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(t = 0) temperature distribution is specified to be f (x), the equations that T must
satisfy are

∂T (x, t)

∂t
= ∂2T (x, t)

∂x2

T (0, t) = T (π, t) = 0

T (x, 0) = f (x)

for 0 < x < π , t > 0. Assuming the validity of termwise differentiation of Fourier
expansions, show that

T (x, t) =
∞∑

n=1

an sin nx e−n2t

solves the equations, where an is defined by

an = 2

π

∫ π

0
f (ξ) sin nξ dξ.

[HINT: You will need the Fourier sine series, Prob. 6.] What is the limiting value of
T (x, t) as t → ∞? Interpret this.

11. Another illustration of the power of Fourier methods is provided by the vibrating
string problem. A taut string fastened at x = 0 and x = π is initially distorted into
the shape u = f (x), where u is the displacement of the string at the point x , and
then the string is released. The equations governing the displacement u(x, t) of the
string are

∂2u(x, t)

∂x2
= ∂2u(x, t)

∂t2

u(0, t) = u(π, t) = 0

u(x, 0) = f (x)

∂u(x, 0)

∂t
= 0

for 0 < x < π , t > 0. Again assuming the validity of termwise differentiations of
Fourier expansions, show that

u(x, t) =
∞∑

n=1

bn sin nx cos nt

solves the equations, where bn is defined by

bn = 2

π

∫ π

0
f (ξ) sin nξ dξ.

[HINT: Use the Fourier sine series again.] How would you modify this representa-
tion if the “initial conditions” were interchanged to read

u(x, 0) = 0

∂u(x, 0)

∂t
= f (x)?
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Combine these formulas to satisfy the more general set of initial conditions

u(x, 0) = f1(x)

∂u(x, 0)

∂t
= f2(x).

12. (Fast Fourier Transform) Consider the evaluation of (27). As mentioned in the text,
the computation of N values of Sn,N apparently entails N 2 complex multiplications.

(a) Suppose that N is even: N = 2N1. Show that the formula for Sn,N can be
rewritten as

Sn,N =
N1−1∑
j=0

A j e
−i2πnj/N +

N1−1∑
j=0

A j+N1e −i2πn( j+N1)/N

=
N1−1∑
j=0

{
A j + (−1)n A j+N1

}
e−i2πnj/N =

N1−1∑
j=0

B j e
−i2πnj/N .

(b) Now how many complex multiplications will it take to compute N values
of Sn,N ? [ANSWER: N coefficients times N1 = N/2 multiplications per
coefficient = N 2

/
2; the multiplications by (−1), of course, are not counted.]

We seek to iterate this process, halving the number of multiplications again
(assuming N1 is even). However the sum in (a) does not have the same form as
that in (27)—the N in the exponent does not match the N1 in the summation
limits. So we have to back up.

(c) Show that if n is even, n = 2n1, then the sum formula in (a) takes the form

Sn,N =
N1−1∑
j=0

B j e
−i2πnj/N =

N1−1∑
j=0

B j e
−i2πn1 j/N1 ,

whereas if n is odd, n = 2n1 + 1, the formula can be written

Sn,N =
N1−1∑
j=0

{
B j e

−i2π j/N
}

e −i2πn1 j/N1

=
N1−1∑
j=0

C j e
−i2πn1 j/N1 .

(d) Noting that in (c) the computation of the coefficients C j requires a one-time
“overhead” of N1 = N/2 multiplications, how much work does it take to
compute N values of Sn,N ? [ANSWER: N/2 multiplications plus N coeffi-
cients times N/2 multiplications per coefficient = N/2 + N 2/2.]

(e) At this point the sums in (c) have exactly the same form as the sum in (27),
with N replaced by N1 = N/2. If each of the two new sums is manipulated as
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before, it will be replaced by a sum of N2 = N1/2 = N/4 terms, with an over-
head of N2 multiplications per sum to form the new coefficients. Now how
much work is required to compute N values Sn,N ? [ANSWER: N1 multiplica-
tions overhead to form the coefficients for (c) plus 2 times N2 multiplications
to perform the same overhead for each sum in (c) plus N coefficients times N2
multiplications per coefficient = N/2 + 2(N/4)+ n2/4 = 2(N/2)+ N 2/4.]

(f) If the trick in (c) is implemented yet again for the sums therein, how much
work will be required to compute N values of Sn,N ? [ANSWER: 3(N/2) +
N 2/8.]

(g) If N is a power of 2 and the trick in (c) is implemented to reduce the sums
down to one term each, what is the net computational load to compute N
Fourier coefficients? [ANSWER: (log2 N )(N/2)+ N multiplications.]

8.2 The Fourier Transform

We move on to the next stage in our program of decomposing arbitrary functions into
sinusoids. We have seen how a periodic function can be expressed as a Fourier series,
so now we seek a similar representation for nonperiodic functions.

To begin with, let’s assume we are given a nonperiodic function F(t), −∞ < t <
∞, which is, say, continuously differentiable. Then if we pick an interval of the form
(−L/2, L/2) we can represent F(t) by a Fourier series for t in this interval:

F(t) =
∞∑

n=−∞
cnein2π t/L ,

−L

2
< t <

L

2
, (1)

with coefficients given by

cn = 1

L

∫ L/2

−L/2
F(t)e−in2π t/L dt (n = 0,±1,±2, . . .). (2)

Actually the series in Eq. (1) defines a periodic function FL(t), −∞ < t < ∞,
which coincides with F(t) on (−L/2, L/2); see Fig. 8.4. [Notice that FL(t) may be
discontinuous even though F(t) is smooth.]

Thus we have a sinusoidal representation of F(t) over an interval of length L . If
we now let L → ∞, it seems reasonable to conjecture that this might evolve into a
sinusoidal representation of F(t) valid for all t . Let’s explore this possibility.

We are going to rewrite these equations in what will seem at first like a rather
bizarre form, but it will aid in interpreting them as L → ∞. We define gn to be
cn L/2π , and introduce the factor [(n + 1)− n] ≡ 1 into the series in Eq. (1). Then we
have

FL(t) =
∞∑

n=−∞
gnein2π t/L [(n + 1)− n]2π

L
(3)
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8.2 The Fourier Transform 465

Figure 8.4 Periodic replica of F(t).

and

gn = 1

2π

∫ L/2

−L/2
F(t)e−in2π t/L dt. (4)

Now write ωn = n2π/L , producing

FL(t) =
∞∑

n=−∞
GL (ωn) eiωnt (ωn+1 − ωn) , (5)

where the function GL(ω) is defined for any real ω by

GL(ω) := 1

2π

∫ L/2

−L/2
F(t)e−iωt dt. (6)

As L goes to infinity, GL(ω) evolves rather naturally into a function G(ω) which
is known as the Fourier transform of F :

G(ω) := 1

2π

∫ ∞

−∞
F(t)e−iωt dt. (7)

Moreover, since�ωn := ωn+1 −ωn goes to zero as L → ∞ and since ωn ranges from
−∞ to +∞, Eq. (5) begins to look very much like a Riemann sum for the integral∫ ∞

−∞
G(ω)eiωt dω.

Thus we are led to propose the equality

F(t) =
∫ ∞

−∞
G(ω)eiωt dω (8)
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for nonperiodic F , when G is defined by Eq. (7). Equation (8) is called the Fourier
inversion formula.

Equations (7) and (8) are the essence of Fourier transform theory. As is suggested
by this discussion, it is often profitable to indulge one’s whimsy and think of the in-
tegral in Eq. (8) as a generalized “sum” of sinusoids, summed over a continuum of
frequencies ω. Equation (7) then dictates the “coefficients,” G(ω)dω, in the sum.

Example 1
Find the Fourier transform and verify the inversion formula for the function

F(t) = 1

t2 + 4
.

Solution. Observe that

F(t) = 1

t2 + 4
= 1

(t − 2i)(t + 2i)

is analytic except for simple poles at t = ±2i . We shall use residue theory to evaluate
the Fourier transform, interpreting the integral as a principal value:

G(ω) = 1

2π
p.v.

∫ ∞

−∞
e−iωt

t2 + 4
dt.

If ω ≥ 0, we close the contour with expanding semicircles in the lower half-plane;
by the techniques of Chapter 6 we find

G(ω) = 1

2π
(−2π i)Res

(
e−iωt

t2 + 4
; −2i

)
= −i · lim

t→−2i

e−iωt

t − 2i
= e−2ω

4
(ω ≥ 0).

Similarly, for ω < 0 we close in the upper half-plane and find

G(ω) = 1

2π
(2π i)Res

(
e−iωt

t2 + 4
; 2i

)
= e2ω

4
(ω < 0).

In short,

G(ω) = e−2|ω|

4
.

To verify the Fourier inversion formula we compute∫ ∞

−∞
G(ω)eiωt dω =

∫ ∞

−∞
e−2|ω|

4
· eiωt dω.

By symmetry, the imaginary part vanishes, and this integral equals

Re
∫ ∞

−∞
e−2|ω|

4
eiωt dω = 2 · Re

∫ ∞

0

e−2ω

4
eiωt dω

= 1

2
Re

e(−2+i t)ω

−2 + i t

∣∣∣∣∣
∞

ω=0

= 1

t2 + 4
.
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8.2 The Fourier Transform 467

Hence
1

t2 + 4
=

∫ ∞

−∞
e−2|ω|

4
· eiωt dω. � (9)

As is the case of Fourier series, a wealth of theorems has been discovered stating
conditions under which the Fourier integral representations (7) and (8) are valid. A
very useful one for applications deals with piecewise smooth functions F(t) like those
in Theorem 2 of the previous section; that is, on every bounded interval F(t) is con-
tinuously differentiable for all but the finite number of values t = τ1, τ2, . . . , τn , and
at each τ j the “one-sided limits” of F(t) and F ′(t) exist. Note the principal value
interpretation of the integral is called for in the theorem; this ensures that the inverse
transform converges at the points of discontinuity.

Theorem 4. Suppose that F(t) is piecewise smooth on every bounded interval
and that

∫ ∞
−∞ |F(t)| dt exists. Then the Fourier transform, G(ω), of F exists and

p.v.
∫ ∞

−∞
G(ω)eiωt dω =

F(t) where F is continuous,
F(t+)+ F(t−)

2
otherwise.

Example 2
Find the Fourier transform of the function

F(t) =
{

1, −π ≤ t ≤ π,

0, otherwise

(Fig. 8.5), and confirm the inversion formula.

Figure 8.5 “Boxcar” function.

Solution. We have

G(ω) = 1

2π

∫ π

−π
(1)e−iωt dt = sinωπ

ωπ
.
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Hence Theorem 4 tells us that

p.v.
∫ ∞

−∞
sinωπ

ωπ
eiωt dω =


1, |t | < π,

0, |t | > π,
1

2
, t = ±π.

(10)

To confirm this, rewrite the left-hand side of (10) as

p.v.
1

2π i

∫ ∞

−∞
eiω(π+t) − eiω(−π+t)

ω
dω. (11)

Now recall from Example 1, Sec. 6.5 that

p.v.
∫ ∞

−∞
eix

x
dx = iπ

which, with the changes of variables x = Cω, generalizes to

p.v.
∫ ∞

−∞
eiCω

ω
dω =

{
iπ if C > 0,

−iπ if C < 0.

Of course,

p.v.
∫ ∞

−∞
1

x
dx = 0.

Therefore we derive

if t < −π, then (11) becomes
1

2π i
[−iπ − (−iπ)] = 0;

if t = −π, then (11) becomes
1

2π i
[0 − (−iπ)] = 1

2
;

if − π < t < π, then (11) becomes
1

2π i
[iπ − (−iπ)] = 1;

if t = π, then (11) becomes
1

2π i
[iπ − 0] = 1

2
;

if π < t, then (11) becomes
1

2π i
[iπ − iπ] = 0. �

Example 3
Find the Fourier transform of the function

F(t) =
{

sin t, |t | ≤ 6π,

0, otherwise

(Fig. 8.6), and confirm the inversion formula. (Physicists call this function a finite
wave train.)
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Figure 8.6 Finite wave train.

Solution. We have

G(ω) = 1

2π

∫ 6π

−6π
(sin t)e−iωt dt = i sin 6πω

π
(
1 − ω2

) .
Since F(t) is continuous everywhere, the inversion formula implies∫ ∞

−∞
i sin 6πω

π
(
1 − ω2

) eiωt dω = F(t). (12)

To confirm this rewrite the left-hand side as

i

2iπ

∫ ∞

−∞
eiω(6π+t) − eiω(−6π+t)(

1 − ω2
) dω = p.v.

−1

2π

∫ ∞

−∞
eiω(6π+t) − eiω(−6π+t)

(ω − 1)(ω + 1)
dω

(because of the removable singularities at ω = ±1).
Now the integral

p.v.
−1

2π

∫ ∞

−∞
eiω(6π+t)

(ω − 1)(ω + 1)
dω

can be evaluated using the indented-contour techniques of Sec. 6.5. For t ≥ −6π we
employ the contour shown in Fig. 8.7(a) and invoke Lemmas 3 and 4 of Chapter 6 to
obtain

p.v.
−1

2π

∫ ∞

−∞
eiω(6π+t)

(ω − 1)(ω + 1)
dω = −1

2π
(π i){Res(−1)+ Res(1)}

= −i

2

[
e−i(6π+t)

−2
+ ei(6π+t)

2

]

= sin(6π + t)

2
= sin t

2
.

Similarly, for t ≤ −6π we use the contour of Fig. 8.7(b) and find

p.v.
−1

2π

∫ ∞

−∞
eiω(6π+t)

(ω − 1)(ω + 1)
dω = −1

2π
(−π i){Res(−1)+ Res(1)}

= −sin t

2
.
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Figure 8.7 Contours for Example 3.

By the same reasoning one obtains

p.v.
−1

2π

∫ ∞

−∞
eiω(−6π+t)

(ω − 1)(ω + 1)
dω =


sin t

2
if t ≥ 6π,

−sin t

2
if t ≤ 6π.

Piecing this together we validate (12). �
The Fourier transform equations are used just like Fourier series in solving linear

systems; as an illustration, consider the following.

Example 4
Find a function that satisfies the differential equation

d2 f (t)

dt2
+ 2

d f (t)

dt
+ 2 f (t) =

{
sin t, |t | ≤ 6π,

0, otherwise.
(13)

Solution. In Example 6, Sec. 8.1, we learned that a solution to f ′′+2 f ′+2 f =
eiωt is

eiωt

−ω2 + 2iω + 2
.

Now the right-hand side of Eq. (13) is the function F(t) in the previous example, and
Eq. (12) can be interpreted as expressing F as a “superposition” of sinusoids of the
form eiωt . Hence we propose that the corresponding superposition of solutions

f (t) =
∫ ∞

−∞
i sin 6πω

π
(
1 − ω2

) ( eiωt

−ω2 + 2iω + 2

)
dω (14)
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8.2 The Fourier Transform 471

solves the given equation. As before, we should establish that this expression con-
verges and can be differentiated twice under the integral sign, but, instead, we invite
the student to verify that residue theory yields the expression (see Prob. 2)

f (t) =


0, t ≤ −6π,
2
5

(
e−6π−t − 1

)
cos t + 1

5

(
e−6π−t + 1

)
sin t, −6π ≤ t ≤ 6π,

− (
e6π − e−6π

)
e−t

(
2
5 cos t + 1

5 sin t
)
, t ≥ 6π,

which, as direct computation shows, solves the differential equation (13). �
As an amusing exercise in the manipulation of contour integrals we now present

an informal derivation of an identity that can be considered as a Fourier expansion
theorem, if we are lenient in interpreting relations (7) and (8) between the function
and its transform.

Example 5
Suppose that the function F(t) is analytic and bounded by a constant M in an open
strip | Im t | < δ, and define GL(ω) as in Eq. (6). Argue that, as L → ∞,

p.v.
∫ ∞

−∞
GL(ω)e

iωt dω → F(t) (15)

for each real t .

Solution. Notice, first of all, that if F(t) has a Fourier transform, it will be
given by the limit of GL(ω) as L → ∞. Hence (15) looks very much like a Fourier
inversion formula. In fact, we shall argue that the members of (15) are equal whenever
L > 2|t |.

For this purpose we define Ir via

p.v.
∫ ∞

−∞
GL(ω)e

iωt dω

= lim
r→∞

1

2π

∫ r

−r

[∫ L/2

−L/2
F(τ )e−iωτ dτ

]
eiωt dω =: lim

r→∞ Ir . (16)

We state without proof that the order of integration can legitimately be reversed under
these circumstances, producing

Ir = 1

2π

∫ r

−r

[∫ L/2

−L/2
F(τ )e−iωτ dτ

]
eiωt dω

= 1

2π

∫ L/2

−L/2
F(τ )

[∫ r

−r
eiω(t−τ) dω

]
dτ

= 1

2π

∫ L/2

−L/2

F(τ )

i(t − τ)

(
eir(t−τ) − e−ir(t−τ)) dτ.
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Figure 8.8 Contour for Example 5.

We write this as

Ir = 1

2π i

∫ L/2

−L/2

F(τ )

t − τ

(
eir(t−τ) − 1

)
dτ

+ 1

2π i

∫ L/2

−L/2

F(τ )

t − τ

(
1 − e−ir(t−τ)) dτ,

(17)

for reasons that will become apparent shortly. Observe that each integrand is analytic
in τ as long as we stay in the strip | Im τ | < δ, because the singularity at τ = t is
removable. Hence the integrals are independent of path. We choose to evaluate the
first integral in Eq. (17) along the contour �− in Fig. 8.8 and the second along �+:

Ir = 1

2π i

∫
�−

F(τ )

t − τ

(
eir(t−τ) − 1

)
dτ + 1

2π i

∫
�+

F(τ )

t − τ

(
1 − e−ir(t−τ)) dτ.

If we rewrite this as

Ir = 1

2π i

∫
�−

F(τ )

τ − t
dτ − 1

2π i

∫
�+

F(τ )

τ − t
dτ

+ 1

2π i

∫
�−

F(τ )

t − τ
eir(t−τ) dτ − 1

2π i

∫
�+

F(τ )

t − τ
e−ir(t−τ) dτ, (18)

we recognize that the first two integrals combine to give the integral of F(τ )/2π i(τ−t)
around the simple closed positively oriented contour

(
�−,−�+), and according to

Cauchy’s integral formula, this is precisely F(t). Thus (15) will follow if we show
that the last two integrals go to zero as r → ∞. This is most encouraging, since
exp[ir(t − τ)] → 0 for τ in the lower half-plane and exp[−ir(t − τ)] → 0 for τ in
the upper half-plane.

To fill in the details, consider first the part of the integration along γ1 : τ =
−L/2 − iy, 0 ≤ y ≤ ε (see Fig. 8.8). We have∣∣∣∣ 1

2π i

∫
γ1

F(τ )

t − τ
eir(t−τ)dτ

∣∣∣∣ ≤ 1

2π

∫ ε

0

M

L/2 − |t |
∣∣∣eirt eir L/2e−r y

∣∣∣ dy

= 1

π

M

L − 2|t |
∫ ε

0
e−r y dy = 1

π

M

L − 2|t |
1 − e−rε

r
,
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8.2 The Fourier Transform 473

where M is the bound for |F |. This certainly approaches zero as r → ∞. For the
integration along γ2 : τ = x − iε, −L/2 ≤ x ≤ L/2 (Fig. 8.8 again),∣∣∣∣ 1

2π i

∫
γ2

F(τ )

t − τ
eir(t−τ) dτ

∣∣∣∣ ≤ 1

2π

∫ L/2

−L/2

M

ε

∣∣∣eir(t−x+iε)
∣∣∣ dx

= 1

2π

Me−rε

ε
L ,

again vanishing as r → ∞. The integrals over γ3, γ4, and γ6 are similar to that over
γ1, and the integral over γ5 is handled like that over γ2. �

EXERCISES 8.2

1. Find the Fourier transform of the following functions and express the inversion for-
mula.

(a) F(t) = e−|t |

(b) F(t) = e−t2
[HINT: Complete the square and use the fact that

∫ ∞
−∞ e−x2

dx =√
π .]

(c) F(t) = te−t2
[HINT: Integrate by parts and use part (b).]

(d) F(t) = sin t

t
[HINT: Use Eq. (10).]

(e) F(t) = sinπ t

1 − t2
[HINT: Exploit Example 3.]

2. Use residue theory to evaluate the integral in Eq. (14).

3. Find the Fourier transform and confirm the inversion formula (by residue theory or
some other method) for the following functions.

(a) F(t) = 1

t4 + 1
(b) F(t) = t

t4 + 1

(c) F(t) = e−t2
[HINT: See Prob. 1(b).]

4. Show that if F(t) is a real function, then the real part of its Fourier transform is
even, and the imaginary part of its Fourier transform is odd.

5. Show that if G(ω) is the Fourier transform of F(t), then G(ω − �) is the Fourier
transform of F(t)ei�t , for any real constant �.

6. Find the Fourier integral representations for solutions to the following differential
equations.

(a)
d2 f

dt2
+ d f

dt
+ f = e−t2
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(b)
d2 f

dt2
+ 4

d f

dt
+ f =

{
0, t < 0

e−t , t ≥ 0

(c)
d2 f

dt2
+ 2

d f

dt
+ 3 f =

{
1, |t | < 1

0, otherwise

7. If f (x) is a given function whose Fourier transform is G(ω), show that the function

T (x, t) =
∫ ∞

−∞
G(ω)eiωx e−ω2t dω

solves the partial differential equation

∂T (x, t)

∂t
= ∂2T (x, t)

∂x2

for t > 0 and −∞ < x < ∞, and the initial condition

T (x, 0) = f (x).

[These equations describe the flow of heat in an infinite rod heated initially to the
temperature T = f (x). Recall Prob. 10 in Exercises 8.1.] Assume the validity of
the Fourier representations and differentiation under the integral sign.

Insert the expression for the transform G(ω), interchange the order of integration,
and use the hint accompanying Prob. 1(b) to derive the formula

T (x, t) = 1

2
√
π t

∫ ∞

−∞
f (ξ)e −(x−ξ)2/4t dξ.

8. If f (x) is a given function whose Fourier transform is G(ω), show that the function

u(x, t) =
∫ ∞

−∞
G(ω)eiωx cosωt dω

solves the partial differential equation

∂2u(x, t)

∂x2
= ∂2u(x, t)

∂t2

and the initial conditions

u(x, 0) = f (x)

∂u

∂t
(x, 0) = 0

for t > 0 and −∞ < x < ∞. [These equations govern the motion of an infinite
taut string initially displaced to the configuration u = f (x) and released at t = 0.
Recall Prob. 11 in Exercises 8.1.] Assume the validity of the Fourier representations
and of differentiation under the integral sign.
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How would you modify this representation if the initial conditions were

u(x, 0) = 0

∂u(x, 0)

∂t
= f (x)?

Combine these results to handle the general set of initial conditions

u(x, 0) = f1(x)

∂u

∂t
(x, 0) = f2(x).

9. The Mellin transform† can be obtained from the Fourier transform by a change of
variables. Suppose f (r) is defined for 0 < r < ∞. Let x = − Log r (so r = e−x )
and set F(x) := f (e−x ); then x runs from ∞ down to −∞.

(a) Write the Fourier transform equations for F(x) and recast them in terms of r
and f to obtain

f (r) =
∫ ∞

−∞
g(ω)e−iω Log r dω, g(ω) = 1

2π

∫ ∞

0
f (r)eiω Log r r−1 dr.

(b) The Mellin transform of f is formally defined by

M[s; f ] :=
∫ ∞

0
f (r)rs−1 dr.

Show that the inverse transform can be expressed as

f (r) = 1

2π

∫ ∞

−∞
M[iω; f ]r−iω dω.

10. The two-dimensional Laplace equation for a harmonic function φ, expressed in po-
lar coordinates as φ = φ(r, θ), is given

1

r

∂

∂r

(
r
∂φ

∂r

)
+ 1

r2

∂2φ

∂θ2
= 0.

(a) Presuming that the order of differentiation and integration can be interchanged
freely, use the Mellin transform to show that

φ(r, θ) = 1

2π

∫ ∞

−∞
M[iω; f ]
sinhωθ0

r−iω sinhωθ dω

solves Laplace’s equation in the wedge 0 < θ < θ0 and takes the boundary
values φ(r, 0) = 0, φ (r, θ0) = f (r).

(b) Construct a solution to Laplace’s equation in the wedge, taking the boundary
values φ(r, 0) = f (r), φ (r, θ0) = 0.

†Hjalmar Mellin (1854-1933) was one of the founders of the Finnish Academy of Sciences.
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(c) Construct a solution to Laplace’s equation in the wedge, taking the boundary
values φ(r, 0) = f1(r), φ (r, θ0) = f2(r).

(d) Construct a solution to Laplace’s equation in the wedge satisfying the bound-
ary conditions ∂φ(r, 0)/∂θ = 0, φ (r, θ0) = f (r).

8.3 The Laplace Transform

In the two previous sections we were motivated by the desire to solve linear systems
by means of frequency analysis. The strategy we were employing can be stated as
follows: If a linear system is forced by a sinusoidal input function, eiωt , then we
expect that there ought to be a solution that is a sinusoid having the same frequency.

Now this is probably not the only solution; for example, consider the problem of
finding a function f (t) that satisfies the differential equation

d2 f (t)

dt2
+ 2

d f (t)

dt
+ f (t) = ei2t . (1)

It has a solution of the form Aei2t with A = 1/(4i − 3). But if g(t) is a solution of the
so-called associated homogeneous equation

d2g(t)

dt2
+ 2

dg(t)

dt
+ g(t) = 0,

then the function g may be added to a solution f of Eq. (1) to produce another solution
of Eq. (1). For example, the function

1

4i − 3
ei2t + 7e−t (2)

also solves Eq. (1), since 7e−t is a “homogeneous solution.” The reader should verify
the solution (2) by direct computation to see exactly what’s going on.

Now for most physical systems, these homogeneous solutions are transient in na-
ture; that is, they die out as time increases [like e−t in (2)]. This is evidenced by the
fact that most physical systems, if not forced, eventually come to rest due to dissipative
phenomena such as resistance, damping, radiation loss, etc. Such systems are called
asymptotically stable. In these cases, we argue that the analysis of the preceding sec-
tions provides the unique solutions for the types of problems formulated there, because
for both the periodic functions and the functions integrable over the whole real line the
inputs have been driving the system “since t = −∞” and hence the transients must
have died out by any (finite) time.

Now it is time to become more flexible and to develop some mathematical ma-
chinery that will handle the transients. That is, we must take into account two consid-
erations. The input is “turned on” at t = 0 and has not been driving the system for all
time, and the system starts in some “initial configuration” at t = 0 that probably does
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8.3 The Laplace Transform 477

not coincide with the steady-state solution. The Laplace transform, as we shall see,
handles both these effects. It also accommodates nondissipative systems.

Let us begin by dealing with the input function. We have F(t) defined for all
t ≥ 0. For this discussion it is convenient to extend the domain to the whole line, so
we set F(t) = 0 for t < 0 (such a function is commonly called “causal”) and then
consider the Fourier transform of F :

G(ω) = 1

2π

∫ ∞

−∞
F(t)e−iωt dt.

In our case,

G(ω) = 1

2π

∫ ∞

0
F(t)e−iωt dt. (3)

Now if F is sufficiently well behaved near infinity (we shall not be precise here), one
can show that Eq. (3) defines a function of ω that is analytic in the lower half-plane
Imω < 0. Indeed, the derivative is given, as expected, by

dG(ω)

dω
= −i

2π

∫ ∞

0
t F(t)e−iωt dt;

the lower half-plane is appropriate because∣∣∣e−iωt
∣∣∣ = e(Imω)t

is bounded there. If we let ω be pure imaginary, say ω = −is with s nonnegative, we
create

g(s) := 2πG(−is), (4)

a function called the Laplace transform of F(t):

g(s) =
∫ ∞

0
F(t)e−st dt. (5)

It is often useful to indicate the relation between g(s) and F(t) by employing the
notation

g(s) = L{F}(s).
As an example, consider F(t) = e−t ; its Laplace transform is

g(s) = L
{
e−t} (s) =

∫ ∞

0
e−t e−st dt = −e−(s+1)t

s + 1

∣∣∣∣∣
∞

0

= 1

s + 1
.

We remark that the integral in Eq. (5) may converge even if F does not approach
zero as t → ∞, provided s is sufficiently large. Indeed, for the function F(t) = e7t ,
which might characterize a nondissipative “runaway” physical system, we have∫ b

0
e7t e−st dt = e(7−s)b − 1

7 − s
,
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and if s > 7, this approaches (s − 7)−1 as b → ∞. In fact, whenever there exist two
positive numbers M and α such that

|F(t)| ≤ Meαt , for all t ≥ 0,

one can show that the integral in Eq. (5) converges for any complex s satisfying
Re(s) > α. Accordingly, we shall say that Eq. (5) defines the Laplace transform
L{F}(s) for any (complex) value of s for which the integral converges. In essence the
Laplace transform is able to encompass more functions than the Fourier transform, by
allowing the frequency variable ω to be complex.

As a simple extension of the preceding computation shows, the Laplace transform
of the function eat is 1/(s − a) for Re(s) > Re(a). By interpreting this statement
with various choices of the constant a, we are able to derive the first eight entries in
the Laplace transform table. Entry (ix) is obtained by integration by parts, and it leads
immediately to entries (x), (xi), and (xii).

The derivation of (xiii) proceeds as follows:

L
{

F(t)e−at} (s) =
∫ ∞

0
F(t)e−at e−st dt

=
∫ ∞

0
F(t)e−(s+a)t dt = L{F}(s + a).

Entry (xiv) says, of course, that the Laplace transform is linear.
By looking at the transform of the derivative F ′(t), we can see how the Laplace

transform takes initial configurations into account; we have

L
{

F ′} (s) =
∫ ∞

0
e−st F ′(t) dt.

Now if F ′ is sufficiently well behaved so that integration by parts is permitted, this
becomes

L
{

F ′} (s) = −
∫ ∞

0
(−s)e−st F(t) dt + e−st F(t)

∣∣∣∣∞
0
,

and assuming that e−st F(t) → 0 as t → ∞, we find

L
{

F ′} (s) = sL{F}(s)− F(0). (6)

Iterating this equation results in

L
{

F ′′} (s) = sL
{

F ′} (s)− F ′(0)
= s2L{F}(s)− s F(0)− F ′(0),

(7)

and, in general,

L
{

F (k)
}
(s) = skL{F}(s)− sk−1 F(0)− sk−2 F ′(0)− · · · − F (k−1)(0). (8)

Sufficient conditions for the validity of these equations are given in the following the-
orem.
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8.3 The Laplace Transform 479

TABLE OF LAPLACE TRANSFORMS

(i) L
{
eat

} = 1

s − a
[Re(s) > Re(a)]

(ii) L{1} = L
{
e0t

} = 1

s
[Re(s) > 0]

(iii) L{cosωt} = Re L
{
eiωt

} = s

s2 + ω2
[ω real, Re(s) > 0]

(iv) L{sinωt} = Im L
{
eiωt

} = ω

s2 + ω2
[ω real, Re(s) > 0]

(v) L{coshωt} = L{cos iωt} = s

s2 − ω2
[ω real, Re(s) > |ω|]

(vi) L{sinhωt} = L{−i sin iωt} = ω

s2 − ω2
[ω real, Re(s) > |ω|]

(vii) L
{
e−λt cosωt

} = Re L
{
e(−λ+iω)t

} = s + λ

(s + λ)2 + ω2

[ω, λ real, Re(s) > −λ]
(viii) L

{
e−λt sinωt

} = Im L
{
e(−λ+iω)t

} = ω

(s + λ)2 + ω2

[ω, λ, real, Re(s) > −λ]

(ix) L
{
tneat

} = n!
(s − a)n+1

[Re(s) > Re(a)]

(x) L {tn} = n!
sn+1

[Re(s) > 0]

(xi) L{t cosωt} = Re L
{
teiωt

} = s2 − ω2(
s2 + ω2

)2
[ω real, Re(s) > 0]

(xii) L{t sinωt} = Im L
{
teiωt

} = 2sω(
s2 + ω2

)2
[ω real, Re(s) > 0]

(xiii) L
{

F(t)e−at
}
(s) = L{F}(s + a)

(xiv) L{aF(t)+ bH(t)} = aL{F(t)} + bL{H(t)}
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Theorem 5. Suppose that the function F(t) and its first n − 1 derivatives are
continuous for t ≥ 0 and that F (n)(t) is piecewise smooth on every finite interval
[0, b]. Also, suppose that there are positive constants M , α such that for k =
0, 1, . . . , n − 1 ∣∣∣F (k)(t)∣∣∣ ≤ Meαt (t ≥ 0).

Then the Laplace transforms of F, F ′, F ′′, . . . , F (n) exist for Re(s) > α, and
Eq. (8) is valid for k = 1, 2, . . . , n.

The reader is invited to prove this theorem in Prob. 2.
To illustrate how the Laplace transform is used in solving the so-called initial-value

problems, we consider an example.

Example 1
Find the function f (t) that satisfies

d2 f (t)

dt2
+ 2

d f (t)

dt
+ f (t) = sin t (9)

for t ≥ 0 and which at t = 0 has the properties

f (0) = 1, f ′(0) = 0. (10)

Solution. We begin by taking the transform of the Eq. (9). Thanks to the linear-
ity property (xiv) we have

L
{

f ′′(t)
} + 2L

{
f ′(t)

} + L{ f (t)} = L{sin t}.
Using Eq. (8) and the initial conditions (10) we find

L
{

f ′(t)
} = sL{ f (t)} − 1, (11)

L
{

f ′′(t)
} = s2L{ f (t)} − s · 1 − 0. (12)

Thus our equation is transformed to(
s2 + 2s + 1

)
L{ f (t)} − s − 2 = L{sin t},

or, from entry (iv) of the table,

L{ f (t)} = s + 2

s2 + 2s + 1
+ 1(

s2 + 2s + 1
) (

s2 + 1
) .

Writing the first term on the right as

s + 2

s2 + 2s + 1
= s + 1

(s + 1)2
+ 1

(s + 1)2
= 1

s + 1
+ 1

(s + 1)2
,
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8.3 The Laplace Transform 481

we find that, according to entries (i) and (ix), it is the Laplace transform of the function

e−t + te−t .

To analyze the second term, we use partial fractions to express

1(
s2 + 2s + 1

) (
s2 + 1

) = 1

2

1

s + 1
+ 1

2

1

(s + 1)2
− 1

2

s

s2 + 1
,

which is the Laplace transform of

1

2
e−t + 1

2
te−t − 1

2
cos t

[see entries (i), (ix), and (iii)].
Hence the solution is

f (t) = e−t + te−t + 1

2
e−t + 1

2
te−t − 1

2
cos t

= 3

2
e−t + 3

2
te−t − 1

2
cos t,

which can be directly verified. �
In the example we found it fairly easy to solve for the Laplace transform of the

solution; to find the solution itself we had to invert the transform. Often, as illustrated,
this can be done by referring to a table of Laplace transforms. However, since this
transform was derived from the Fourier transform, which has an inversion formula, we
suspect that a formula also exists for the inverse Laplace transform. To see this, we re-
call that by Theorem 4, the Fourier inversion formula for a continuously differentiable,
integrable F is

F(t) =
∫ ∞

−∞
G(ω)eiωt dω.

Recall, also, that the Laplace transform L{F} was expressed in terms of the Fourier
transform by formula (4), or, equivalently,

G(ω) = 1

2π
L{F}(iω).

Hence we have immediately

F(t) = 1

2π

∫ ∞

−∞
L{F}(iω)eiωt dω

for such functions. This formula is often written (substituting −is for ω) as

F(t) = 1

2π i

∫ i∞

−i∞
L{F}(s)est ds, (13)

with the obvious interpretation of these imaginary limits of integration.
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We would like to generalize formula (13) to cover nonintegrable functions whose
Laplace transforms are defined only for Re(s) sufficiently large. This is easy to achieve
if we can find a positive number a sufficiently large so that F(t)e−at is integrable.
Then we write the inversion formula (13) for the function F(t)e−at :

F(t)e−at = 1

2π i

∫ i∞

−i∞
L
{

F(t)e−at}(s)est ds. (14)

Inserting entry (xiii) of the table in Eq. (14) we multiply by eat to derive

F(t) = 1

2π i

∫ i∞

−i∞
L{F}(s + a)e(s+a)t ds, (15)

which we interpret as the so-called Bromwich integral†

F(t) = 1

2π i

∫ a+i∞

a−i∞
L{F}(s)est ds.

A rigorous analysis produces the following generalization:

Theorem 6. Suppose that F(t) is piecewise smooth on every finite interval
[0, b] and that |F(t)| is bounded by Meαt for t ≥ 0. Then L{F}(s) exists for
Re(s) > α, and for all t > 0 and any a > α,

F(t+)+ F(t−)
2

= 1

2π i
p.v.

∫ a+i∞

a−i∞
L{F}(s)est ds.

Example 2
Find the piecewise smooth function with Laplace transform 1/(s4 − 1) .

Solution. It is possible to employ partial fractions and the transform table to
solve this problem, but we shall illustrate the use of the inversion formula. Observe
that this function is certainly analytic for Re(s) > 1. To get the inverse transform, let
us evaluate the integral

I := p.v.
∫ a+i∞

a−i∞
1

s4 − 1
est ds (t ≥ 0)

with, say, a = 2. This can be done by residue theory. I is the limit, as ρ → ∞, of the
contour integral

Iρ :=
∫
γρ

ezt

z4 − 1
dz,

†Thomas John l’Anson Bromwich (1875-1929).
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8.3 The Laplace Transform 483

Figure 8.9 Contours for Example 2.

where γρ is the vertical segment from 2 − iρ to 2 + iρ. For t ≥ 0 we close the contour
with the half-circle Cρ : z = 2 + ρeiθ , π/2 ≤ θ ≤ 3π/2; see Fig. 8.9(a). The integral
over Cρ is bounded by

max
π/2≤θ≤3π/2

∣∣e(2+ρ cos θ)t eiρt sin θ
∣∣

(ρ − 2)4 − 1
πρ = e2tπρ

(ρ − 2)4 − 1
,

which goes to zero as ρ → ∞.
Now the integrand has four simple poles at ±1, ±i , all of which eventually lie

inside the semicircular contour of Fig. 8.9(a); in fact,

ezt

z4 − 1
= ezt

(z − 1)(z + 1)(z − i)(z + i)
.

Hence

I = lim
ρ→∞ Iρ = 2π i[Res(1)+ Res(−1)+ Res(i)+ Res(−i)]

= 2π i

[
et

2(1 − i)(1 + i)
+ e−t

(−2)(−1 − i)(−1 + i)

+ eit

(i − 1)(i + 1)(2i)
+ e−i t

(−i − 1)(−i + 1)(−2i)

]
= π i sinh t − π i sin t.

So the inverse transform is

F(t) = 1

2π i
I = sinh t − sin t

2
, t ≥ 0.

For t < 0 we close the contour as in Fig. 8.9(b); the integral over C ′
ρ is characterized

by −π/2 ≤ θ ≤ π/2, and for negative t it goes to zero. Since this contour encloses
no singularities, we confirm F(t) = 0 for t < 0. �
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EXERCISES 8.3

1. Compute the Laplace transforms of the following functions.

(a) F(t) = 3 cos 2t − 8e−2t (b) F(t) = 2 − e4t sinπ t

(c) F(t) =
{

1, t < 1

0, t ≥ 1
(d) F(t) =


0, t < 1

1, 1 ≤ t ≤ 2

0, t > 2
(e) F(t) = sin2 t (f) F(t) = 1/

√
t

[HINT: In (f) let χ = √
st and use the fact that

∫ ∞
0 e−χ2

dχ = 1
2

√
π .]

2. Prove Theorem 5.

3. Find the inverse transform of the following functions.

(a)
1

s2 + 4
(b)

4

(s − 1)2
(c)

s + 1

s2 + 4s + 4

(d)
1

s3 + 3s2 + 2s
(e)

s + 3

s2 + 4s + 7

4. The effect of a time delay in a physical system is described mathematically by re-
placing a function f (t) by the delayed function

fτ (t) :=
{

0, 0 ≤ t < τ,

f (t − τ), τ ≤ t < ∞.

Show that L { fτ (t)} = e−τ sL{ f (t)}. [Compare Prob. 1(c) and (d).]

5. Use the Laplace transform to solve the following initial-value problems.

(a)
d f

dt
− f = e3t , f (0) = 3

(b)
d2 f

dt2
− 5

d f

dt
+ 6 f = 0, f (0) = 1, f ′(0) = −1

(c)
d2 f

dt2
− d f

dt
− 2 f = e−t sin 2t , f (0) = 0, f ′(0) = 2

(d)
d2 f

dt2
− 3

d f

dt
+ 2 f =


0, 0 ≤ t < 3
1, 3 ≤ t ≤ 6
0, t > 6

, f (0) = 0, f ′(0) = 0

[HINT: See Prob. 4.]

6. Verify the inversion formula for the following functions.

(a) F(t) = e−t (b) F(t) ≡ 1
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8.3 The Laplace Transform 485

7. In control theory the differential equation

an
dn f

dtn
+ an−1

dn−1 f

dtn−1
+ · · · + a1

d f

dt
+ a0 f = u

is interpreted as a relation between the (known) input u(t) and the (unknown) output
f (t).

(a) Show that the Laplace transforms U (s) and F(s) of the input and output are
related by

F(s) = U (s)

ansn + · · · + a1s + a0
+ P(s)

ansn + · · · + a1s + a0
,

where P(s) is a polynomial in s whose coefficients depend on the ai and the
initial values of f (t) and its derivatives. The fraction multiplying U (s) in this
expression is called the Laplace domain transfer function of the system.

(b) Show that every solution of the equation with u(t) ≡ 0 will go to zero as
t → +∞ if all the poles of the transfer function are simple and lie in the left
half-plane. (In other words, the system is stable.)

8. Identify the transfer functions (Prob. 7) and determine the stability of the differential
equations in Prob. 5.

9. Consider the mass-spring system shown in Fig. 8.10. Each spring has the same
natural (unstretched) length L , but when it is compressed or elongated it exerts a
force proportional to the amount of compression or elongation (Hooke’s law); the
constant of proportionality is denoted by K . If we let x and y be the respective
displacements of the masses m1 and m2 from equilibrium, we have the situation
depicted in Fig. 8.11 (for x and y both positive).

Figure 8.10 Mass-spring system unstretched.

(a) By writing Newton’s law (force equals mass times acceleration) for each
mass, derive the equations of motion

m1
d2x

dt2
= −K x − K (x − y),

m2
d2 y

dt2
= −K y + K (x − y).
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Figure 8.11 Mass-spring system stretched.

(b) Setting K = 1, m1 = m2 = 1, use Laplace transforms to find the solutions
x(t), y(t) of these equations if the masses are released from rest (zero veloc-
ity) with each of the following initial displacements:

i. x(0) = 1, y(0) = −1.

ii. x(0) = 1, y(0) = 1.

iii. x(0) = 1, y(0) = 0.

(c) For which initial conditions in part (b) is the system’s response periodic [note
that this requires both x(t + T ) = x(t) and y(t + T ) = y(t)]? Can you
visualize these responses? (They are called normal modes for the system.)

8.4 The z-Transform

As we have seen, the application of transforms to various families of functions can
often bring about certain computational advantages—for example, the replacement
of differentiation by multiplication. For continuous functions on a finite interval, or
periodic functions, we use the Fourier series; if the interval is semi-infinite, we use the
Laplace transform; and the Fourier transform is employed when the interval comprises
the whole real line.

Often in practice we encounter “functions” that are discrete data structures. For
example, when a continuous function f (t) is measured in a laboratory it is sampled
at a discrete set of points

{
t j
}
. The transform tool that facilitates the mathematical

manipulation of such discrete data streams is known as the z-transform.
Let us denote a discrete sequence of numbers by a(n); we assume n to take integer

values from −∞ to ∞, and we allow the possibility that a(n) is complex. As examples
consider

a(0)
↓

. . . , 1
16 ,

1
8 ,

1
4 ,

1
2 , 1, 1

2 ,
1
4 ,

1
8 ,

1
16 , . . .

(1)

(sampled values of f (x) = 2−|x | at integers x = n);
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8.4 The z-Transform 487

a(0)
↓

. . . ,−1, 1,−1, 1,−1, 1,−1, 1, . . .
(2)

(sampled values of cosπx);

a(0)
↓

. . . , 0, 0, 0, 3, 1, 4, 1, 5, 9, . . .
(3)

(digits in decimal representation of π);

a(2000)a(1990)
↓↓

. . . , 0, 0, 0, 2, 20K, 30M, 20M, 2M, 1K, 1, 0, 0, 0, 0, . . .
(4)

(number of requests for “the Macarena” at wedding receptions).

The z-transform of the sequence a(n) is defined as the sum of the series

A(z) : =
∞∑

n=−∞
a(n)z−n

= · · · + a(−2)z2 + a(−1)z + a(0)+ a(1)z−1 + a(2)z−2 + · · ·
(5)

at all points where (5) converges. Note the exponent for z is minus n.
For the sequence a(n) = 2−|n| in (1) the z-transform can be reorganized as follows:

∞∑
n=−∞

2−|n|z−n =
0∑

n=−∞
2nz−n +

∞∑
n=1

2−nz−n

=
∞∑

n=0

( z

2

)n +
∞∑

n=1

(
1

2z

)n

.

(6)

Both “sums” are geometric series. The first converges to 1/(1 − z/2) for |z| < 2,
whereas the second converges to

∞∑
n=1

(
1

2z

)n

=
(

1

2z

) ∞∑
n=0

(
1

2z

)n

=
1
2z

1 − 1
2z

= 1

2z − 1

for |z| > 1
2 . Thus, in the common annulus of convergence

1

2
< |z| < 2, the z-

transform of the sequence 2−|n| is the analytic function

A(z) = 1

1 − z/2
+ 1

2z − 1
= −3z

2(z − 2)
(

z − 1
2

) . (7)
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Clearly the z-transform is the Laurent series of A(z) in this annulus.
The z-transform for the oscillating sequence (2) has the form

∑∞
n=−∞(−1)nz−n;

the sum for n ≥ 0 converges for |z| > 1, whereas the sum for n < 0 converges only
for |z| < 1. These regions are disjoint, so the z-transform converges nowhere.

Since the negatively indexed elements of the “pi” sequence (3) are all zero, the
corresponding portion of the series converges for all z. The terms of the positively
indexed portion of the series are bounded by 9|z|−n and thus by the M-test (Theorem
13, Sec. 5.4) this subseries converges for |z| > 1, which is then the common region of
convergence and the domain of definition of the z-transform.

The sequence (4) has only a finite number of nonzero terms, so its z-transform is
simply a polynomial in 1/z converging for all values of z 
= 0.

From these examples we can see the general nature of the z-transform of a se-
quence; it is an analytic function defined by the Laurent series whose coefficients are
the terms of the sequence taken in reverse order (since a(n) multiplies z−n). From the
convergence theory surveyed in Sec. 5.4 we deduce that the positively indexed portion
of the series converges for

|z| > lim sup n
√|a(n)|,

and the negatively indexed portion converges for

|z| < 1

lim sup n
√|a(−n)| .

The z-transform is thus well defined for z in the annulus

lim sup n
√|a(n)| < |z| < 1

lim sup n
√|a(−n)| , (8)

if this set is nonempty. The transform is analytic in this annulus, and the Laurent series
enjoys the usual properties of termwise differentiation, integration, and multiplication.

If a(n) = 0 for n < 0 [as in (3)], the sequence is said to be causal. From (8) we
see that the z-transform of a causal sequence converges outside a circle (that is, the
outer radius of the annulus is infinite).

A given analytic function can be the z-transform of more than one sequence, since
its Laurent series representation is not unique (it depends on the region of conver-
gence). The computations in Example 2 of Sec. 5.5 show that the function 1/[(z −
1)(z − 2)] is the transform of each of the following sequences:

a(n) =
{

1 − 2n−1, n ≤ 0

0, n > 0
for |z| < 1;

a(n) =
{

−2n−1, n ≤ 0

−1, n > 0
for 1 < |z| < 2;

a(n) =
{

0, n < 1

2n−1 − 1, n ≥ 1
for |z| > 2.
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The third of these sequences is causal; in general any Laurent series converging in the
exterior of a circle is the z-transform of a causal sequence.

When the z-transform of a sequence can be written in closed form, it provides a
very compact representation of the sequence. Also, as we shall see, it facilitates the
solution of recursion relations, or “difference equations,” involving sequences. The
tools for recovering a sequence from its z-transform are precisely the tools for con-
structing Laurent series, which we explored in Sec. 5.5; one employs Maclaurin series
such as the geometric series, partial fractions, etc. In this regard, the following version
of Theorem 14 of that section can be interpreted as an inverse z-transform formula:

Theorem 7. Let A(z) be the z-transform of the sequence {a(n) : −∞ < n <
∞} in the annulus a < |z| < b. Then

a(n) = 1

2π i
�
∫
�

A(ζ )ζ n−1 dζ (n = 0,±1,±2, . . .)

where � is any positively oriented simple closed contour lying in the annulus and
encircling the origin.

The key to most applications of the z-transform is the following property.

Theorem 8. Let A(z) be the z-transform of the sequence {a(n) : −∞ < n <
∞} in the annulus a < |z| < b. Then the corresponding z-transform of the
shifted sequence {b(n) = a(n + 1) : −∞ < n < ∞} is given by z A(z). More
generally, the z-transform of the sequence {c(n) = a(n + N ) : −∞ < n < ∞}
equals zN A(z) for any N (positive or negative).

The proof is transparent: the z-transform of b(n) is

∞∑
n=−∞

b(n)z−n =
∞∑

n=−∞
a(n + 1)z−n = z

∞∑
n=−∞

a(n + 1)z−(n+1) = z A(z),

and the generalization follows easily.
This property is most commonly used to express the transform of the delayed

sequence c(n) = a(n − 1) as z−1 A(z). Some examples will demonstrate how the
z-transform enables the solution of difference equations.

Example 1
Let a(n) represent the balance in a savings account at the end of month n. Starting
from month 1 a monthly deposit of t dollars is made and compound interest is paid on
the previous month’s principal at the rate of r · 100 percent (per month). If the account
holds P dollars at the beginning of month 0 and no monies are withdrawn, develop the
formula for a(n).
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Solution. The balance in the account on successive months has the pattern

...

a(−2) = 0

a(−1) = 0

a(0) = P

a(1) = a(0)+ ra(0)+ t

a(2) = a(1)+ ra(1)+ t

...

From this display we can formulate the difference equation relating the balance on
successive months:

a(n) = a(n − 1)+ ra(n − 1)+ D(n), (9)

where

D(n) :=


0, n < 0

P, n = 0

t, n ≥ 1.

Clearly a(n) = 0 for n < 0, so a(n) is causal. Thus we assume that a(n) has a z-
transform A(z) for z sufficiently large. Taking the z-transform of both sides of Eq. (9),
we use Theorem 8 and the fact that

∞∑
n=1

z−n = z−1
∞∑

n=0

z−n = z−1 1

1 − 1/z
= 1

z − 1
for |z| > 1

to obtain
A(z) = [1 + r ]z−1 A(z)+ P + t

z − 1
,

or

A(z) = Pz2 + (t − P)z

(z − 1)(z − 1 − r)
= z

Pz + (t − P)

(z − 1)(z − 1 − r)
(|z| “large”).

With a partial fraction decomposition this becomes

A(z) = z

(
P + t/r

z − 1 − r
− t/r

z − 1

)
,

which has the following Laurent series expansion for large |z| (for |z| > 1+r , in fact):

A(z) =
(

P + t

r

)
1

1 − (1 + r)/z
− t

r

1

1 − 1/z

=
(

P + t

r

) ∞∑
n=0

(1 + r)nz−n − t

r

∞∑
n=0

z−n.
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The corresponding sequence is therefore given by

a(n) =

(

P + t

r

)
(1 + r)n − t

r
, n ≥ 0,

0, n < 0.
�

Consider the linear constant-coefficient difference equation given by

y(n) = β(1)y(n − 1)+ β(2)y(n − 2)+ β(3)y(n − 3)

+ b(0)x(n)+ b(1)x(n − 1)+ b(2)x(n − 2) .

In statistics such an equation is called an autoregressive-moving-average relation-
ship between the input x(n) and the output y(n), of order (3,2). More generally, the
“ARMA(p,q)” equation, characterized by

y(n) =
p∑

j=1

β( j)y(n − j)+
q∑

k=0

b(k)x(n − k) , (10)

is frequently used to model random sequences y(n) driven by “white noise” x(n). (The
first sum in (10) is the autoregression and the second is the moving average.)

Example 2
For the ARMA(1,1) model express the z-transform of the output in terms of the z-
transform of the input and the constants β(0), b(0), and b(1).

Solution. Taking the z-transform of the equation

y(n) = β(1)y(n − 1)+ b(0)x(n)+ b(1)x(n − 1) (11)

we find

Y (z) = β(1)z−1Y (z)+ b(0)X (z)+ b(1)z−1 X (z)

or

Y (z) = b(0)+ b(1)z−1

1 − β(1)z−1
X (z) = b(0)z + b(1)

z − β(1)
X (z) . � (12)

We have discussed how engineers often characterize a system by its frequency
response. For discrete systems modeled by difference equations like (10), this means
using samples of the complex sinusoid eiωt as the input

x(n) = {eiωt }t=n = eiωn , (13)

solving for outputs having the same form

y(n) = H(ω)x(n) = H(ω)eiωn , (14)
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and observing the dependence of the frequency domain transfer function H(ω) on the
frequency ω in the interval [−π, π].† One says that H(ω) filters the input.

Example 3
Find necessary and sufficient conditions on the coefficients β(1), b(0), and b(1) in the
ARMA(1,1) model for the modulus of the transfer function H(ω) to be unity for all
frequencies ω. Such a transfer function is known as an all-pass filter.

Solution. Rigorously speaking, it would be incorrect to take the z-transform of
x(n), since the series

∑∞
n=−∞ eiωnz−n converges nowhere. So we directly substitute

the forms (13) and (14) into (11)

H(ω)eiωn = β(1)H(ω)eiω(n−1) + b(0)eiωn + b(1)eiω(n−1)

and solve:

H(ω) = b(0)+ b(1)e−iω

1 − β(1)e−iω
= b(0)eiω + b(1)

eiω − β(1)
. (15)

This has the same form as the factor occurring in Eq. (12), with the substitution z =
eiω. In other words, H(ω) coincides with the Möbius transformation

H̃(z) = b(0)z + b(1)

z − β(1)
≡ z + b(1)/b(0)

z/b(0)− β(1)/b(0)
(16)

for z on the unit circle. The all-pass requirement |H(ω)| = 1, then, is the requirement
that this Möbius transformation maps the unit circle to the unit circle. From what we
know about Möbius transformations, H̃(z) will also map the interior of the circle to
itself, or to the exterior.

In Example 3 of Sec. 7.4 and Prob. 16 of Exercises 7.4, we proved that all Möbius
transformations mapping the unit circle to itself have the form

H̃(z) = eiθ z − α

ᾱz − 1
.

Matching this with Eq. (16) we conclude

β(1) = b(0) = 1

ᾱ
, b(1) = −α

ᾱ
, |α| 
= 1 . �

The solution of difference equations with initial conditions is most conveniently
accomplished with the unilateral z-transform A+(z), which omits the negatively in-
dexed terms in the series (5):

A+(z) :=
∞∑

n=0

a(n)z−n. (17)

†Since ei(ω+2π)n ≡ eiωn , only the frequencies in (−π, π ] need to be considered in the present
context.
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8.4 The z-Transform 493

Clearly if a(n) is causal, then A+(z) = A(z), and the region of convergence of A+(z)
is the exterior of a circle (|z| > lim sup n

√|a(n)|). The shifting property for the unilat-
eral z-transform is similar to that described in Theorem 8, modified along the lines of
the Laplace transform formula for derivatives [Eq. (8), Sec. 8.3].

Theorem 9. Let A+(z) be the unilateral z-transform of the sequence {a(n) :
−∞ < n < ∞} in the region a < |z|. Then the corresponding unilateral z-
transform of the shifted sequence {b(n) = a(n + 1) : −∞ < n < ∞} is given
by z

[
A+(z)− a(0)

]
. More generally, the unilateral z-transform of the sequence

{c(n) = a(n + N ) : −∞ < n < ∞} equals

zN
[

A+(z)− a(0)− a(1)z−1 − a(2)z−2 − · · · − a(N − 1)z−(N−1)
]

for any positive N .

Again the proof is easy. The unilateral z-transform of b(n) is
∞∑

n=0

b(n)z−n =
∞∑

n=0

a(n + 1)z−n = z
∞∑

n=0

a(n + 1)z−(n+1)

= z
∞∑

m=0

a(m)z−m − za(0)

= z
[
A+(z)− a(0)

]
.

The generalization is left to the reader.

Example 4
Suppose the sequence a(n) satisfies the difference equation

a(n + 2)− 3a(n + 1)+ 2a(n) = 0 (18)

for n ≥ 0 and that a(0) = 1 and a(1) = −1. Find a formula for a(n) for n ≥ 0.

Solution. Since (18) holds for all n ≥ 0 we are justified in applying the unilateral
z-transform. Employing Theorem 9 we derive

z2
[

A+(z)− 1 − (−1)z−1
]

− 3z
[
A+(z)− 1

] + 2A+(z) = 0

or

A+(z) = z2 − 4z

z2 − 3z + 2
= z

z − 4

(z − 1)(z − 2)
= z

(
3

z − 1
+ −2

z − 2

)
= 3

1

1 − 1/z
− 2

1

1 − 2/z

= 3
∞∑

n=0

z−n − 2
∞∑

n=0

2nz−n.
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Thus
a(n) = 3 − 2n+1, for n ≥ 0. �

Further properties of the z-transform and its engineering applications are devel-
oped in the references.

EXERCISES 8.4

1. Show that the z-transform is a linear operator; that is, if A(z) and B(z) denote the z-
transforms of {a(n)} and {b(n)}, respectively, then the transform of {αa(n)+βb(n)}
is αA(z)+ βB(z), in the common region of convergence.

2. If A(z) is the z-transform of {a(n)}, show that the z-transform of the “linearly
weighted” sequence {na(n)} is −z A′(z). Show that the annulus of convergence
is unchanged. [HINT: limn→∞ n

√
n = 1.]

3. If A(z) is the z-transform of {a(n)}, show that the z-transform of the “exponentially
weighted” sequence {αna(n)} is A(z/α). How is the new annulus of convergence
related to the old?

4. Verify the entries in the following table of causal z-transforms: for n ≥ 0,

(a) a(n) =
{

1, n = 0

0, n > 0
A(z) = 1

(b) a(n) = 1 A(z) = z

z − 1

(c) a(n) = n A(z) = z

(z − 1)2

(d) a(n) = αn A(z) = z

z − α

(e) a(n) = sin nω A(z) = z sinω

z2 − 2z cosω + 1

(f) a(n) = cos nω A(z) = z(z − cosω)

z2 − 2z cosω + 1

5. Find inverse z-transforms for the following functions in the indicated annuli:

(a) A(z) = 1

1 + 1/(3z)
, |z| < 1

3

(b) A(z) = 1

1 + 1/(3z)
, |z| > 1

3

(c) A(z) = z4

z + 2
, |z| < 2

(d) A(z) = z4

z + 2
, |z| > 2
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8.5 Cauchy Integrals and the Hilbert Transform 495

(e) A(z) = z + 2

2z2 − 7z + 3
,

1

2
< |z| < 3

(f) A(z) = 1 − 1/(2z)

1 + 3/(4z)+ 1/
(
8z2

) , |z| > 1

2

(g) A(z) = z

(z − 1
2 )(z − 1)2

, |z| > 1

(h) A(z) = 1 − α/z

α − 1/z
, |z| > 1

|α|
6. If A(z) is the z-transform of a causal sequence {a(n)}, show that a(0) = limz→∞ A(z).

7. Use unilateral z-transforms to solve the following difference equations.

(a) a(n + 1) = (0.5)a(n), a(0) = 2

(b) a(n + 1)+ 2a(n) = 1, a(0) = 1

(c) a(n + 2)− 5a(n + 1)+ 6a(n) = 1, a(0) = 2, a(1) = 3

8. Derive the formula for the unilateral z-transform of the backward-shifted sequence
a(n − N ), N > 0.

8.5 Cauchy Integrals and the Hilbert Transform

An integral of the form ∫
�

f (ζ )

ζ − z
dζ

is known as a Cauchy integral. The study of Cauchy integrals is quite provocative and
rewarding, and in this section we shall explore some of the theoretical and practical
aspects of such forms.

Figure 8.12 Contour for Cauchy integral.

If � is a simple smooth closed curve as in Fig. 8.12, and f is analytic inside and
on �, then Cauchy’s formula and theorem tell us that

�
∫
�

f (ζ )

ζ − z
dζ =

{
2π i f (z) if z lies inside �,

0 if z lies outside �.
(1)
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Figure 8.13 Indented contour.

The question naturally arises as to how the values of the integral evolve as the point z
crosses �. To explore this, consider the indented contour �′

ε in Fig. 8.13. The point
z0 lies on the original contour �, but since it falls inside �′

ε, Cauchy’s formula tells us
that

�
∫
�′
ε

f (ζ )

ζ − z0
dζ = 2π i f (z0). (2)

Here we have presumed that the radius ε of the semicircular indentation S′
ε is suffi-

ciently small that �′
ε remains within the domain of analyticity for f . Now as ε goes

to zero, the contribution from the semicircle S′
ε to the integral along �′

ε approaches
π i f (z0) (Lemma 4, Sec. 6.5). This is half the value shown in Eq. (2); therefore, the
remaining π i f (z0) must come from the rest of the contour, which is a facsimile of
� snipped “symmetrically” around z0 in a manner generalizing the principal value
concept (Sec. 6.5). To summarize: On the basis of Fig. 8.13 we express

�
∫
�′
ε

f (ζ )

ζ − z0
dζ = p.v.

∫
�

f (ζ )

ζ − z0
dζ + lim

ε→0

∫
S′
ε

f (ζ )

ζ − z0
dζ,

‖ ‖
2π i f (z0) π i f (z0)

(Cauchy’s formula) (Lemma 4)

(3)

from which we conclude

p.v.
∫
�

f (ζ )

ζ − z0
dζ = π i f (z0). (4)

Of course, our Fig. 8.13 benignly sidesteps any topological complications; see Prob. 3,
for example. We direct the reader to the references for a more rigorous statement and
derivation of (4).

Example 1
Confirm Eq. (4) for the case when � is the positively oriented unit circle centered
around z = 1, f (z) ≡ 1, and z0 = 0.

Solution. Obviously
∫
�

1/(ζ − z) dζ equals 2π i for |z − 1| < 1 and zero for
|z − 1| > 1. For z = z0 = 0 we refer to Fig. 8.14 to derive

p.v.
∫
�

1

ζ − 0
dζ = lim

z1,z2→0

[
Log z1 − Log z2

]
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Figure 8.14 Contour for Example 1.

Figure 8.15 Interior indentation.

with |z1| = |z2| as shown. Thus we have

p.v.
∫
�

1

ζ − 0
dζ = lim

z1,z2→0

[
i Arg z1 − i Arg z2

] = i
π

2
+ i

π

2
= π i. �

What happens if we construct an indentation penetrating the interior of �, as in
Fig. 8.15? Then the (clockwise-oriented) semicircle S′′

ε contributes minus π i f (z0)

(Lemma 4, Sec. 6.5) and the decomposition of the integral (3) takes the form

�
∫
�′′
ε

f (ζ )

ζ − z0
dζ = p.v.

∫
�

f (ζ )

ζ − z0
dζ + lim

ε→0

∫
S′′
ε

f (ζ )

ζ − z0
dζ.

‖ ‖ ‖
0 π i f (z0) − π i f (z0)

(Cauchy’s theorem) [Eq. (4)] (Lemma 4)

(5)

From these considerations we can visualize what happens to the Cauchy integral
(1) as the point z crosses the contour �. In Fig. 8.16 the points

{
z+

n : n = 1, 2, 3, . . .
}

approach z0 from the inside, and the Cauchy integrals equal 2π i f (z+
n ). Furthermore, if

the contour is indented as in Fig. 8.13, these integrals are unchanged (by the deforma-
tion invariance theorem, Sec. 4.4a). They approach the limit 2π i f (z0), and invoking
Eqs. (3) and (4) we can attribute half of this limit to the principle value and the other
half to the exterior indentation S′

ε.
Now for the sequence

{
z−

n

}
approaching z0 from outside � (Fig. 8.17), we use the

interior indentation S′′
ε to argue that the contributions to the limit (zero) of the Cauchy
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Figure 8.16 Approaching z0 from in-
side �.

Figure 8.17 Approaching z0 from out-
side �.

integrals are π i f (z0) from the principal value and −π i f (z0) from the semicircle S′′
ε .

Thus as the point z crosses the contour �, we can ascribe the jump in the Cauchy
integral to the substitution of one indentation for the other; S′

ε “opens the gate” and
lets z through; then S′′

ε closes the gate behind it. The difference between the interior
and exterior limits is due to the opposing contributions of the semicircles:

lim
z+

n →z0

�
∫
�

f (ζ )

ζ − z+
n

dζ − lim
z−

n →z0

�
∫
�

f (ζ )

ζ − z−
n

dζ = lim
ε→0

∫
S′
ε

f (ζ )

ζ − z0
dζ − lim

ε→0

∫
S′′
ε

f (ζ )

ζ − z0
dζ

= π i f (z0)− [−π i f (z0)]

= 2π i f (z0). (6)

Note that by similar accounting the average of the interior and exterior limits
yields the principal value of the integral:

lim
z+

n →z0

�
∫
�

f (ζ )

ζ − z+
n

dζ + lim
z−

n →z0

�
∫
�

f (ζ )

ζ − z−
n

dζ

= 2

(
p.v.

∫
�

f (ζ )

ζ − z0
dζ

)
+ lim
ε→0

∫
S′
ε

f (ζ )

ζ − z0
dζ + lim

ε→0

∫
S′′
ε

f (ζ )

ζ − z0
dζ

= 2

(
p.v.

∫
�

f (ζ )

ζ − z0
dζ

)
. (7)

If the contour � is not closed we have no general theorem to tell us the values
of

∫
�

f (ζ )/(ζ − z) dζ , but the argumentation motivated by Figs. 8.13 through 8.17
still validates Eqs. (6) and (7) as long as we interpret the sequence

{
z+

n

}
as approach-

ing z0 from the left of � (as determined by its orientation) and
{
z−

n

}
as approaching

from the right. The Sokhotskyi-Plemelj formulas (proved in the references) extend
these considerations to more general (not necessarily analytic) functions and con-
tours; they state that the difference between the limiting values of the Cauchy integral∫
�

f (ζ )/(ζ−z) dζ as z approaches z0 (on �) from the left and from the right is always
equal to 2π i f (z0), whereas their average equals the principal value.

A particularly useful identity results when� “encloses” a half-plane, as in Fig. 8.18.
If f (z) is analytic in, say, the upper half-plane and goes to zero at infinity so rapidly
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Figure 8.18 Contour enclosing half-plane (as R → ∞).

that the contribution of the semicircle SR vanishes as R → ∞, then Eq. (4) takes the
form

p.v.
∫ ∞

−∞
f (ξ)

ξ − x
dξ = π i f (x). (8)

The integral over SR will disappear, for instance, if | f (z)| ≤ K/|z| (by the usual
estimates) or if | f (z)| ≤ K |eimz| for positive m (by Jordan’s lemma).

Expressing f (x + iy) = u(x, y) + iv(x, y) and separating (8) into its real and
imaginary parts, we obtain

v(x, 0) = − 1

π
p.v.

∫ ∞

−∞
u(ξ, 0)

ξ − x
dξ, u(x, 0) = 1

π
p.v.

∫ ∞

−∞
v(ξ, 0)

ξ − x
dξ. (9)

The first of these formulas motivates the following definition.

Definition 2. The Hilbert transform of an arbitrary real-valued function φ(x)
(−∞ < x < ∞) is defined by

ψ(x) := − 1

π
p.v.

∫ ∞

−∞
φ(ξ)

ξ − x
dξ (10)

(when the integral exists).

Our derivation shows that whenever φ(x) and ψ(x) are a pair of functions such
that the combination φ + iψ can be extended as an analytic function in the upper
half-plane, suitably “dying off” at infinity therein, then ψ is the Hilbert† transform of

†David Hilbert (1862-1943) proposed the “23 Paris problems,” many of which still challenge and
guide mathematics research today.

499



500 The Transforms of Applied Mathematics

φ. Thus the Hilbert transform of cos x is sin x , since cos x + i sin x = eiz for z = x
and Jordan’s lemma implies eiz dies off suitably. Note that the transform of sin x is
minus cos x (because sin x − i cos x = −ieiz for z = x). This is consistent with
the appearance of the signs in Eqs. (9), the second of which may be regarded as the
formula for the inverse Hilbert transform:

φ(x) := 1

π
p.v.

∫ ∞

−∞
ψ(ξ)

ξ − x
dξ (11)

Clearly, a collection of Hilbert transforms can be generated by writing down ana-
lytic functions with the requisite properties in the upper half-plane and separating their
real and imaginary parts on the x-axis. In this manner one derives (see Prob. 1) the
accompanying table.

TABLE OF HILBERT TRANSFORMS

Function φ(x) Hilbert transform ψ(x)

cosωx (ω > 0) sinωx

cosωx (ω < 0) − sinωx

sinωx (ω > 0) − cosωx

sinωx (ω < 0) cosωx

a

a2 + x2
(a > 0)

x

a2 + x2

sin ax

x
(a > 0)

1 − cos ax

x

Example 2
Verify Eq. (10) for the first entry in the transform table.

Solution. We break up the Cauchy integral into two parts:

p.v.
∫ ∞

−∞
cosωξ

ξ − x
dξ = p.v.

∫ ∞

−∞
eiωξ

2(ξ − x)
dξ + p.v.

∫ ∞

−∞
e−iωξ

2(ξ − x)
dξ.

To evaluate the first integral we close the contour with a semicircle and an indentation
in the upper half ξ -plane, as shown in Fig. 8.19(a). Using Jordan’s lemma, (Lemma 3
from Sec. 6.4) and Cauchy’s theorem, we obtain

p.v.
∫ ∞

−∞
eiωξ

2(ξ − x)
dξ = π i Res(ξ = x) = π ieiωx

2
.
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Figure 8.19 Contours for Example 2.

The contour for the second integral is closed as in Fig. 8.19(b), and we have

p.v.
∫ ∞

−∞
e−iωξ

2(ξ − x)
dξ = −π i Res(ξ = x) = −π ie−iωx

2
.

The sum of these equals

p.v.
∫ ∞

−∞
cosωξ

ξ − x
dξ = π i

eiωx − e−iωx

2
= −π sinωx

and dividing by −π , we confirm the entry. �
The reader may have observed that a methodology for calculating the Hilbert trans-

form is already at hand: starting from the function φ(x), one could use Poisson’s for-
mula for the half-plane (Prob. 14, Exercises 4.7) to extend it as a suitable harmonic
function u(x, y) in the upper half-plane; then Theorem 25 of that section establishes
the harmonic conjugate v(x, y) whose restriction to the x-axis becomes the transform
ψ(x). Eq. (10), then, accomplishes all this directly. It also affords the extension of
the transform to a wider class of functions. These generalizations can be found in the
references.

Many applications of the Hilbert transform are based upon the way it interacts with
the Fourier transform. Let us write the latter and its inversion formula as

�(ω) = 1

2π

∫ ∞

−∞
φ(x)e−iωx dx, (12)

φ(x) =
∫ ∞

−∞
�(ω)eiωx dω. (13)

Now the Hilbert transform is a linear operation whose effect on cosines and sines has
been determined. Therefore, if we adopt the point of view (espoused in Sec. 8.2) that
Eq. (13) expresses φ as a superposition of sinusoids, then we rewrite (13) as

φ(x) =
∫ 0

−∞
�(ω)[cosωx + i sinωx] dω

+
∫ ∞

0
�(ω)[cosωx + i sinωx] dω

(14)
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and take its Hilbert transform as follows:

ψ(x) =
∫ 0

−∞
�(ω)[− sinωx + i cosωx] dω +

∫ ∞

0
�(ω)[sinωx − i cosωx] dω

= i
∫ 0

−∞
�(ω)eiωx dω + (−i)

∫ ∞

0
�(ω)eiωx dω

=
∫ 0

−∞
�(ω)ei(ωx+π/2) dω +

∫ ∞

0
�(ω)ei(ωx−π/2) dω. (15)

Comparing (15) with (14) we observe that the Hilbert transform multiplies the
positive-frequency portion of �(ω) by e−iπ/2 = −i , and the negative-frequency por-
tion by eiπ/2 = i ; positive frequencies are “phase-delayed” by π/2 radians, and neg-
ative frequencies are phase-advanced by the same amount. The Hilbert transform is
thus a 90◦ phase-shift operation.

This suggests an efficient numerical algorithm for the implementation of the Hil-
bert transform. First we use the fast Fourier transform algorithm to approximate�(ω).
Then we reverse the real and imaginary parts and change the sign of the former for
ω < 0 and the latter for ω > 0. Finally, we take the inverse Fourier transform, again
employing the FFT. This procedure is commonly used in signal-processing applica-
tions.

The following example shows how the Hilbert transform arises in radio communi-
cations.

Example 3

The human ear can detect sound waves with frequencies up to a certain level�0; higher
frequencies go unheard. (The frequency �0 is about 25, 000 radians per second, or 4
kiloHertz.) Thus in practice when we perform a Fourier transform on a sound message
φ(t), we need to retain only the contributions for |ω| below �0:

φ(t) =
∫ ∞

−∞
�(ω)eiωt dω ≈

∫ �0

−�0

�(ω)eiωt dω.

Effectively, then, the real and imaginary parts of�(ω) can be visualized as in Fig. 8.20.
(Recall the symmetry properties of � for a real φ(t), Prob. 4 of Exercises 8.2.)

Figure 8.20 Original signal (Fourier transform).
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In radio broadcasting it is difficult to transmit at such low frequencies, so often the
amplitude-modulation scheme is employed. The signal is electronically multiplied by
a carrier wave cos�1t = [ei�1t + e−i�1t ]/2 at a high frequency �1 (in the megahertz
range); according to Prob. 5, Exercises 8.2, this shifts the transform to the left and
right as indicated in Fig. 8.21, resulting in a high-frequency signal φ(t) cos�1t that is
easily transmitted and received.

Figure 8.21 Lower Single Sideband.

Because of the symmetries in �, one can save power by first zeroing (filtering)
out the shaded portion of �(ω ± �1) in Fig. 8.21, without loss of information. The
receiver then extracts (“detects”) the original message by multiplying the “Lower Sin-
gle SideBand” signal (LSS) by cos�1t (again), resulting in the transform indicated in
Fig. 8.22, filtering out the high-frequency portions, and multiplying by 4 (to account
for the filtering losses). This procedure is known as synchronous detection.

Figure 8.22 Original signal recovered.

It is important for detection that the LSS is multiplied by cos�1t , and not by an
unsynchronized version

cos(�1t − β) = cos�1t cosβ + sin�1t sinβ.

Indeed, unsynchronized detection would result in a superposition of the original mes-
sage plus a distorted message, resulting from multiplying by sin�1t .

Show that the distorted message is the Hilbert transform of the original message
(times .25).

Solution. Of course, sin�1t = [ei�1t − e−i�1t ]/2i , so multiplication by this
sinusoid not only shifts the transform, but it also mixes the real and imaginary parts.

503



504 The Transforms of Applied Mathematics

Figure 8.23 Hilbert transform recovered.

A little thought reveals that the resulting transform looks like Fig. 8.23. After drop-
ping the high-frequency portions, comparison with Fig. 8.20 shows that the positive-
frequency portion of �(ω) has been multiplied by (−i) and the negative-frequency
portion by i . “Synchronous detection” using the sine, rather than the cosine, has pro-
duced the Hilbert transform ψ(t) of the message. �

In communications applications such as this the combination φ(t)+ iψ(t), where
φ is the original signal and ψ is its Hilbert transform, is called the “analytic signal”
associated with φ(t) (resulting in untold headaches for mathematicians who consult in
the industrial sector!).

The Hilbert transform is also useful in other areas. Recall that in Sec. 3.6 we
argued that RLC (resistor-inductor-capacitor) electrical circuits, when subjected to a
sinusoidal external voltage, will eventually reach a steady state wherein all the internal
voltages and currents oscillate sinusoidally at the same frequency as the driving volt-
age. In particular, we showed that for the circuit of Fig. 3.20, the (complex) current Is
resulting from the voltage Vs(t) = eiωt was given by

Is = eiωt

Reff
,

where

Reff = R/ iωC

R + 1/ iωC
+ iωL . (16)

This “synchronous” behavior is characteristic of most closed (autonomous) physical
systems, in that the steady-state response y(t) to an input eiωt takes the form k(ω)eiωt ;
the frequency domain transfer function k(ω) (in this case 1/Reff) almost always de-
pends on the applied frequency.

An alternative description of the driver-response relationship for such physical
systems is available from differential equation theory (see the references). Using a
technique known traditionally as the variation of parameters, one can express the re-
sponse y(t) of the system as a weighted sum of the functional values of the input u(t).
The identity takes the form

y(t) =
∫ ∞

−∞
G(t − τ)u(τ ) dτ. (17)
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G(t − τ), the Green’s function for the system, thus measures the extent to which the
values of u at time τ affect the output at time t . G is also called the impulse response.

Let’s put these two observations together. If the input u(t) is a sinusoid eiωt , the
transfer function description and the Green’s function description of the output must
agree. Therefore,

k(ω)eiωt =
∫ ∞

−∞
G(t − τ)eiωτ dτ,

or

k(ω) =
∫ ∞

−∞
G(t − τ)e−iω(t−τ) dτ =

∫ ∞

−∞
G(T )e−iωT dT, (18)

where T = t − τ . Equation (18) has the form of a Fourier transform, except for a
factor of 2π . Thus we can invert it and express the Green’s function in terms of the
transfer function:

G(T ) = 1

2π

∫ ∞

−∞
k(ω)eiωT dω. (19)

If the system is a true physical model (such as the RLC circuit), it must obey the
causality principle: the value of the response y at a given time t cannot depend on
the values of the input u at later times τ . Thus from Eq. (17) we see that for causal
systems the Green’s function G(t − τ) equals zero for τ > t , and as a result Eq. (19)
yields the equality ∫ ∞

−∞
k(ω)eiωT dω = 0 for all T < 0. (20)

As a criterion for causality, condition (20) is intriguing. For T < 0 the exponential
factor, as a function of the complex variable ω, decays in the lower half-plane. Thus
Jordan’s lemma (Sec. 6.4) would guarantee (20) if the analytic continuation of k(ω)
into the lower half-plane turned out to be analytic there and bounded by (constant/|ω|).
In practice k(ω) is often a rational function (as in the case of the RLC circuit), and
subject to a few assumptions about the nature of the physical system, condition (20)
can be shown to be necessary, as well as sufficient, for causality.

Example 4
Verify the causality condition (20) for the transfer function of the circuit in Fig. 3.20.

Solution. From Eq. (16) we find, with some algebra,

k(ω) = 1

Reff
= iωC R + 1

−ω2C RL + iωL + R
,

whose poles are

ω± =
i ±

√
−1 + 4C R2

/
L

2C R
. (21)

If 4C R2
/

L > 1, the radical is real and both poles lie in the upper half-plane. Other-
wise, we have 0 < 4C R2

/
L < 1 and the radical is an imaginary number between 0

and i ; thus the poles still stay in the upper half-plane. Therefore, k(ω) is analytic in
the lower half-plane, and since it falls off like |ω|−1, the system is causal. �
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How does the Hilbert transform come into play in this context? The causal trans-
fer function k(ω) has all the properties that are necessary to validate identity (8); it
goes to zero at infinity like |ω|−1 and it is analytic in a half-plane, albeit the wrong
one. But if we modify the derivation of (8) by using a lower half-plane contour in-
stead of Fig. 8.18, we conclude that the real and imaginary parts of k(ω) are related
by the Hilbert transform equations, with a sign change to account for the clockwise
orientation of the contour. Thus we have the Kramers-Kronig relations

Im k(ω) = 1

π
p.v.

∫ ∞

−∞
Re k(η)

η − ω
dη,

Re k(ω) = − 1

π
p.v.

∫ ∞

−∞
Im k(η)

η − ω
dη.

(22)

The first identity is very useful in circuit theory and atomic and electromagnetic scat-
tering applications, because the real part of the transfer function can often be deter-
mined efficiently and accurately using power-loss measurements. Then (22) enables
the calculation of the experimentally more elusive imaginary part. In optical applica-
tions the dielectric constant plays the role of the transfer function k, and Eqs. (22) are
known as dispersion relations in this context.

Example 5
Verify the relations (22) for the transfer function of the circuit shown in Fig. 8.24.

Figure 8.24 Circuit for Example 5.

Solution. The effective impedance is seen by the methods of Sec. 3.6 to be
Reff = R + iωL . Therefore,

Is = Vs

Reff
= Vs

R + iωL

and k(ω) = 1/[R + iωL]. This function is analytic in the lower half-plane and goes
to zero like |ω|−1. We have

Re k(ω) = R

R2 + ω2L2
, Im k(ω) = −ωL

R2 + ω2L2
.
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Figure 8.25 Contour for Example 5.

From the contour � in Fig. 8.25 we derive

p.v.
∫ ∞

−∞
Re k(η)

η − ω
dη = p.v.

∫ ∞

−∞
R

R2 + η2L2

1

η − ω
dη

= −2π i Res(−i R/L)− π i Res(ω)

and some algebra reveals this to be

−πωL

R2 + ω2L2
= π Im k(ω),

in accordance with the first of Eqs. (22). The verification of the second equation is left
as an exercise. �

EXERCISES 8.5

1. Verify the entries in the Hilbert transform table. [HINT: For the last two entries
consider the analytic functions i/(z + ai) and (eiaz − 1)/ i z.]

2. Confirm Eq. (10) for some of the entries in the Hilbert transform table.

3. Argue that for the contour shown in Fig. 8.26, the contributions of the semicircles
S′
ε and S′′

ε to the integrals in Eqs. (3) and (5) will be 3π i f (z0)/2 and −π i f (z0)/2,
respectively. (Note that the Sokhotskyi-Plemelj prediction remains valid, however.)

4. Use Euler’s formula and the Hilbert transform table to show directly that if |ω| <
�1, the Hilbert transform of cosωx cos�1x is given by cosωx sin�1x .

5. Suppose f (z) is analytic in a domain that encloses the unit disk |z| ≤ 1. Give
an argument that the Hilbert transform of g(x) = f (eiωx ) + f (e−iωx ) is given by
−i[ f (eiωx )− f (e−iωx )], for any constant ω. [HINT: Examine the Maclaurin series.]

6. Verify the second dispersion relation (22) for the circuit in Fig. 8.24.
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Figure 8.26 Contour for Prob. 3.

7. Verify that the value of the jump in the following integrals, as z crosses the contour
at any point z0, is 2π i f (z0), in accordance with the Sokhotskyi-Plemelj formula:

(a) �
∫

|ζ |=1

1/ζ

ζ − z
dζ (b)

∫ ∞

−∞
1

ξ − z
dξ

(c)
∫ ∞

−∞
cos ξ

ξ − z
dξ [HINT: Consult Prob. 10, Exercises 6.4.]

(d)
∫ ∞

−∞
ξ/(ξ2 + 1)

ξ − z
dξ [HINT: Consult Prob. 18, Exercises 4.7.]

8. The identity

lim
ε↓0

1

x − x0 − iε
= p.v.

1

x − x0
+ iπδ(x − x0) (23)

is frequently used by theoretical physicists. Here δ(x − x0) is the Dirac delta func-
tion, an “idealized function” postulated to have the property that∫ ∞

−∞
f (x)δ(x − x0) dx = f (x0)

for any continuous function f (x). Equation (23) is, strictly speaking, a crude abbre-
viation for the identity resulting when it is multiplied by f (x) and integrated over
(−∞,∞), with the limits reversed:

lim
ε↓0

∫ ∞

−∞
f (x)

x − x0 − iε
dx = p.v.

∫ ∞

−∞
f (x)

x − x0
dx + iπ f (x0). (24)

(a) Derive Eq. (24), assuming that f (z) is analytic for Im z ≥ 0 and approaches
zero at infinity sufficiently rapidly that one can close the contour with a semi-
circle C+

ρ over which the integral goes to zero. [HINT: Let your analysis be
guided by the sketches in Fig. 8.27.]

(b) What is lim
ε↓0

1

x − x0 + iε
[in the spirit of (23)]?
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Figure 8.27 Contours for Prob. 8.

SUMMARY

The chief value of sinusoidal analysis in applied mathematics lies in the fact that when
a linear system is driven by a function Aeiωt its response takes the same form, under
the proper circumstances. To take advantage of this we have to be able to express a
given function of a real variable as a superposition of sinusoids.

When the function F is periodic, say of period L , and satisfies certain continuity
conditions, the appropriate decomposition is given by the Fourier series

F(t) =
∞∑

n=−∞
cnein2π t/L ,

with coefficients defined by

cn = 1

L

∫ L/2

−L/2
F(t)e−in2π t/L dt.

The Fast Fourier Transform is an efficient algorithm for approximating these coeffi-
cients.

If F is not periodic but |F | is integrable (and the continuity conditions still hold),
then the decomposition takes the form

F(t) =
∫ ∞

−∞
G(ω)eiωt dω,

where G is the Fourier transform of F , defined by

G(ω) = 1

2π

∫ ∞

−∞
F(t)e−iωt dt.
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“Direct” differentiation (that is, termwise or under the integral sign) of both rep-
resentations can be justified in many circumstances, and since this operation merely
amounts to multiplication by iω, the solution of differential equations can often be
greatly simplified by employing Fourier analysis.

To handle initial conditions and transients it is convenient to use the Laplace trans-
form of F ,

L{F}(s) =
∫ ∞

0
F(t)e−st dt.

The Laplace transform can be identified as the Fourier transform of a function that is
“turned on” at t = 0 [that is, F(t) = 0 for t < 0], with iω replaced by s. The effect of
the initial conditions is displayed in the formulas for the derivatives F (n)(t):

L
{

F (n)
}
(s) = snL{F}(s)− sn−1 F(0)− sn−2 F ′(0)− · · · − F (n−1)(0).

Hence the Laplace transform is the appropriate tool for solving initial-value problems.
Another advantage of the Laplace transform is its ability to handle certain nonin-

tegrable functions. There is an inversion formula for recovering F(t) from L{F}(s),
but the use of tables is frequently more convenient.

The tool that plays the role of the Fourier/Laplace transform in the cases where the
data set is discrete is the z-transform. It can be related to the theory of Laurent series,
from which many of its properties are derived.

The behavior of Cauchy integrals as their singularities cross the contours is discon-
tinuous, with jumps predicted by the Sokhotskyi-Plemelj formulas. When the contour
is the real axis the integrals yield the Hilbert transform formulas, which relate the real
and imaginary parts of the integrand. This transform finds applications in the analysis
of causal autonomous systems such as modulation schemes and electrical networks. It
is the theoretical underpinning of the dispersion and Kramers-Kroenig relations.
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rational functions, 69
relations, 78

Dot product, 24

E
Ellipse, 57, 160, 188, 195, 200-201, 212, 441

defined, 57, 188, 195
Endpoints, 150, 152, 156, 173-175, 196, 357, 458
Equality, 108, 118, 221, 294, 297, 451, 465, 505
Equations, 2, 4, 6, 9, 16-18, 20, 25, 27, 37, 46, 53,

73-80, 83, 86, 96, 102, 105, 107, 111-112,
118-119, 123, 139-140, 147, 193, 210, 221,
228, 242, 260, 290, 303, 305, 371, 375, 388,
394, 404, 418, 422, 454, 461-462, 464, 466,
470, 473-475, 478, 485-486, 489, 491-492,
495, 506, 510-511

exponential, 27, 76, 111, 118, 139-140, 375
logarithmic, 118-119, 123
polynomial, 102, 105, 107, 221, 228, 242, 290, 485
rational, 2, 6, 105, 107

Equilateral triangle, 12, 416
Equivalence, 120, 177, 284, 304

defined, 177, 284
Error, 93, 123, 165, 239, 251-252, 458-459
Estimate, 102, 171, 179, 208, 213-214, 252, 322, 324,

331, 333, 350, 353, 361, 458
Euler Leonhard, 27, 118
Euler, Leonhard, 27, 118
Expectation, 88
Experiment, 88, 133, 245, 433
Experimentation, 38, 93
Explicit formula, 251
Exponential functions, 146

inverse of, 146
Exponents, 210, 304

integral, 210, 304
zero, 304

F
Factoring, 38, 100

factoring out, 100
Factors, 1, 100-102, 118, 145-146, 353, 396

common factors, 1, 146
defined, 146

Fibonacci sequence, 268
Fifth derivative, 455
Finite sequence, 154, 390
First derivative, 278
First quadrant, 56, 85, 172, 182, 225, 416, 435, 440
Fixed points, 95, 392, 404
Formulas, 33, 47-49, 51, 55, 67, 88, 96, 112-113, 115,

123, 136-137, 139, 146-147, 210, 214, 316,
325, 336, 344, 354, 367-368, 371-372, 376,
463, 498-499, 510

Fourth quadrant, 415, 417
Fractals, 93, 97
Fractions, 105, 107, 146, 191, 199, 203, 213-214, 231,

274, 481-482, 489
comparing, 105
equivalent, 107
like, 482
powers of, 146, 274
unit, 213-214

Frequency, 138, 140-143, 145, 268, 291-292, 393,
454, 476, 478, 491-492, 502-504

Functions, 28-29, 39-41, 53-58, 60-62, 64-72, 74,
76-88, 90, 92-96, 99-118, 120, 122-126, 128,
130-138, 140-142, 144-146, 156, 163,
186-187, 192, 201, 210, 214-215, 217,
219-223, 225-229, 231-232, 235-238,
240-242, 244, 246-248, 250-252, 254-256,
258, 260, 262, 264, 266-268, 270, 272, 274,
276-282, 284-286, 288-292, 294, 296-300,
302-305, 307, 309-310, 313, 318-319,
321-325, 327-329, 331, 333, 335, 345-347,
349, 351, 353, 355-357, 360-361, 363-368,
369, 371-372, 374, 379-380, 382, 403, 410,
425, 437, 443-444, 445-446, 450, 453, 459,
464, 467, 473, 476, 478, 481-482, 484-486,
494, 498-501, 507, 510

algebraic, 53, 369
compositions of, 443
constant, 28, 40-41, 54, 57, 61, 69, 76-78, 80-81,

84-88, 93, 95, 99-101, 104, 112, 117,
124-126, 132, 137, 141, 145-146, 156,

163, 187, 214-215, 217, 219-220, 222,
226-228, 231, 247, 254, 258, 264, 279,
289, 291, 303, 327, 331, 333, 363,
365-366, 379, 403, 410, 437, 445, 473,
478, 485, 507

cube, 65, 92
defined, 39-40, 53-57, 61-62, 64, 67, 70, 74, 76,

78, 84, 86, 92-93, 96, 107, 114, 122, 134,
146, 235-236, 247, 254, 264, 268, 279,
284, 289, 294, 298, 300, 302-303,
318-319, 322, 327-328, 349, 365, 368,
403, 482, 499

difference, 67-68, 74, 77, 88, 107-108, 120, 142,
240, 296, 351, 363, 368, 382, 498

evaluating, 105, 163, 246, 307, 324, 331
even, 53, 67, 141, 251, 266, 277, 289, 319, 353,

464, 473
exponential, 28-29, 56, 76, 110-111, 113, 115,

117-118, 120, 135, 140-142, 146, 222
family of, 81, 90, 93
identity, 28-29, 112, 115-116, 131, 137, 140, 227,

229, 244, 251, 498
inverse, 118, 131, 133-138, 146, 369, 372, 425,

437, 443, 467, 481-482, 484, 494, 500
linear, 57, 71, 101, 105, 110, 140-141, 445, 476,

478, 494, 501
logarithmic, 72, 110, 118, 123, 131, 146
maximum value, 217
minimum value, 220, 222, 363
notation, 192, 280, 284, 353, 445
odd, 266, 277, 473
one-to-one, 55, 111-112, 116, 118, 124, 364, 369,

371-372, 374, 380, 382, 443
piecewise, 41, 232, 453, 467, 482
polynomial, 61, 69-70, 84, 92, 99-105, 107-110,

145-146, 215, 219-221, 228, 231, 242,
251, 268, 281, 290, 292, 361, 363-364,
366, 485

product, 83, 85, 101, 109-110, 137, 247-248, 251,
286

quadratic, 100-102, 135
quotient, 29, 61, 67-68, 74, 77, 100-101, 120, 322,

382
rational, 62, 69-70, 99, 101, 103-110, 132, 145-146,

281, 291-292, 302, 310, 322, 327-329,
347, 356, 437

square, 65-66, 87-88, 100, 135-136, 327, 365, 473
sum, 85, 107, 110, 115, 146, 235-236, 242, 244,

252, 294, 299, 313, 322, 327-328, 353,
367-368, 445-446, 450, 464, 501

transcendental, 252
translations, 443
trigonometric, 28-29, 93, 110-115, 117, 131, 133,

135, 137, 146, 324, 328-329, 331, 333,
335

Fundamental theorem of algebra, 101, 216, 231, 362

G
Gamma function, 302, 355
Geometric interpretation, 9, 18, 20, 71
Geometric series, 236-237, 243, 245, 252, 254, 265,

273, 304, 487, 489
defined, 236, 254, 487
infinite, 252, 265

Geometry, 28, 51, 180, 218, 295, 388, 396, 400, 408,
424-425, 427

Graphs, 10, 286, 368
Greater than, 4, 15, 32, 46, 133, 169, 263, 267

H
Half-open interval, 18, 151, 158, 238
Hemisphere, 45, 444
Homogeneous differential equation, 257
Horizontal line, 13, 40, 56, 151

graph of, 151
Hyperbola, 58, 435

I
Identity, 5, 20, 25, 27-29, 33, 37-38, 112, 115-116, 121,

131, 137, 140, 227, 229, 244, 249, 251, 293,
396, 406, 452, 455, 471, 498, 504, 506, 508

defined, 27, 293, 406
property, 27, 29, 112, 406, 508

Image, 50, 53, 56-57, 116, 359, 363-364, 366, 371,
373-374, 376, 379-380, 383, 385, 388-393,
398-400, 408-410, 412, 419-423, 443-444

Imaginary axis, 8, 14, 48, 58, 137, 292, 348, 366, 372,
374-375, 387, 391-392, 399, 404

Imaginary numbers, 8, 14
Imaginary part, 4, 96, 110, 119, 122, 126, 130, 192,

224, 226, 229, 343, 440, 466, 473, 506
Improper integrals, 318-319, 321, 323, 325, 327-329,

331, 333, 335, 337, 339, 368
Increasing function, 161, 222
Indefinite integral, 458
Independence, 173, 175-177, 179
Independent variable, 150
Inequalities, 39, 42

defined, 39
Infinite, 38, 56, 58, 85, 112, 116, 118, 143, 149, 151,

231, 235, 252, 264-265, 279, 297, 305, 324,
329, 337, 356, 368, 388, 414-417, 424,
426-428, 432, 435, 457, 474, 486, 488

geometric series, 252, 265
sequences, 235, 264, 305, 488
series, 235, 252, 264-265, 279, 297, 305, 324, 457,

486, 488
Infinite sequence, 58, 264, 297, 356
Infinity, 48, 62, 65, 104, 235, 242, 254, 266, 284,

286-289, 291-292, 389, 405, 422-423,
441-442, 465, 477, 498-499, 506, 508

limits involving, 62, 65
Initial condition, 474
Initial point, 152-154, 157, 161-162, 170, 172-173,

176, 301
Inputs, 38, 445, 476
Integers, 1, 6, 32-33, 37-38, 71, 132, 236, 262-263,

267, 280, 302, 365, 486
comparing, 236
multiplying, 37
square roots of, 38

Integral sign, 186, 207, 209-210, 471, 474, 510
Integrals, 32, 105, 149, 161-171, 173, 175-176, 178,

186-188, 190, 192-195, 198, 200, 204-205,
210, 212, 229-232, 255, 270, 272, 307, 311,
313-315, 317-321, 323-329, 331, 333,
335-337, 339, 344-347, 349, 351-353, 355,
367-368, 413, 418, 455, 471-473, 495,
497-499, 501, 503, 505, 507-511

convergent, 272, 455
definite, 161-163, 170, 230, 367
evaluating, 105, 162-163, 175, 190, 198, 230, 307,

315, 324, 331, 337, 339
improper, 318-319, 321, 323, 325, 327-329, 331,

333, 335, 337, 339, 368
Integrand, 30, 173, 186-190, 194-198, 204, 206, 212,

215, 230, 243-244, 270, 312, 315-317, 320,
323-324, 335, 339, 341-343, 347, 353, 358,
368, 472, 483, 510

Integration, 101, 145, 149-150, 152, 154, 156, 158,
160, 162, 164, 166, 168-170, 172, 174,
176-180, 182, 184, 186, 188-190, 192,
194-196, 198, 200, 202, 204, 206, 208,
210-212, 214, 216, 218, 220, 222, 224, 226,
228, 230, 232, 256, 271, 273, 303, 307-308,
312, 315, 322, 332, 337, 347, 351, 368, 413,
446, 454, 471-475, 478, 481, 488

constant of, 145
factor, 101, 184
formulas for, 210
limits of, 481
numerical, 413
region of, 488

Integration by parts, 478
Integration-by-Parts Formula, 179
Interest, 126, 140, 292, 454, 489

compound, 489
simple, 292, 489

Intervals, 69, 156, 337, 368, 410, 458
Inverse, 5, 20, 118, 121, 131, 133-138, 146, 369-370,

372, 388, 394-396, 406, 425, 433, 437, 443,
467, 475, 481-484, 489, 494, 500, 502

functions, 118, 131, 133-138, 146, 369, 372, 425,
437, 443, 467, 481-482, 484, 494, 500

Irrational number, 95

L
Leading coefficient, 108
Length, 14-15, 18, 20, 158-162, 169-170, 208, 215,

232, 244, 255, 360, 394, 461, 464, 485
Limiting value, 61, 229, 284, 320, 341, 462
Limits, 58-59, 61-65, 73, 120, 152, 214, 288, 318, 320,

339, 344, 352, 457, 463, 467, 481, 498, 508
at infinity, 62, 288, 498, 508
of integration, 481
properties of, 58, 288

Line, 9, 12-15, 18, 21, 23, 38-40, 44-48, 50-52, 54, 56,

514



58, 69, 72, 74, 76-78, 85, 99, 110, 149,
151-152, 159, 161, 163-164, 168, 171-172,
177-178, 180, 182, 190-193, 197, 199-200,
268, 270, 286, 302-303, 318, 333, 339, 347,
353, 365, 380, 383, 387-390, 392, 394-396,
398-401, 404-405, 408, 410, 415, 423, 435,
437, 441, 451, 476-477, 486

horizontal, 13, 40, 56, 74, 151, 365, 408, 410, 441
of symmetry, 400
tangent, 151, 410

Line segments, 39, 149, 151, 168, 171, 197, 270
Linear combination, 110, 457
Linear equations, 105

system of, 105
Linear systems, 140, 147, 454, 470, 476
Lines, 21, 42, 46-47, 56-57, 81, 127, 156, 383,

388-390, 394-396, 398, 401, 410, 420, 424,
428, 432, 434, 439, 443, 493

defined, 56-57
parallel, 21
perpendicular, 21, 434

Location, 25, 121, 242, 361
Logarithms, 118, 135, 146

defined, 146
Long division, 105, 407
Loops, 175, 181-182, 184-186

M
Maclaurin series, 242, 246-249, 252, 257, 262, 268,

489, 507
Magnitude, 16, 104, 169, 272, 363, 382
Mandelbrot set, 93-94
Mass, 8, 12, 36, 485-486, 511
Mathematical induction, 24, 251
Matrices, 13, 406

identity, 406
multiplying, 406

Matrix, 13-14, 407
Maximum, 50, 88, 90, 162, 208, 216-218, 220,

222-223, 225, 231, 287, 303, 382
Maximum-Minimum Principle, 222, 225
Mean, 70, 72, 75, 118-119, 154, 217, 226, 347, 451

defined, 70, 75, 451
finding, 70
harmonic, 226, 451

Mean square, 451
Means, 3, 40, 59, 62, 132, 146, 151, 193, 260, 280,

287, 313, 331, 367, 369, 372, 476, 491
Measures, 505
Midpoint, 12
Minimum, 220, 222-223, 225, 363
Mode, 152
Models, 79, 138
Modulus, 8-9, 12, 16, 20, 24, 48, 66, 91, 217-218, 220,

222, 231, 253-254, 265, 286-287, 320, 329,
382, 492

Multiples, 101, 278, 408
Multiplication, 1-3, 5-7, 11, 18, 20, 51, 141, 143, 146,

258, 406, 445, 449, 486, 488, 503, 510
of integers, 1

Multiplicity, 34, 101, 104, 145-146, 220, 356-359, 365

N
Negative exponents, 304
Networks, 510
Notation, 4, 8, 10, 18, 24, 143, 189, 192, 195, 280,

284, 339, 353, 397, 404, 445, 448, 477
interval, 18, 339
limit, 143, 284, 339, 353
set, 4, 477

nth partial sum, 235, 244
nth power, 33
Numbers, 1-16, 18, 20, 22, 24, 26, 28-34, 36-38, 40,

42, 44, 46, 48-52, 53, 58, 60, 62-64, 91, 93,
101, 115-118, 142, 144, 235, 254, 258, 262,
264, 267, 285, 288, 292, 328, 406, 446-447,
478, 486

composite, 64, 288
irrational, 3, 262
positive, 6-7, 9, 16, 18, 24, 32-33, 37-38, 42, 46,

60, 62, 267, 288, 292, 478
prime, 46
rational, 1-2, 6, 62, 101, 292, 328
real, 2-4, 6-16, 18, 24, 26, 31, 37-38, 40, 42, 44,

48, 51-52, 53, 63-64, 91, 101, 117-118,
254, 258, 262, 264, 267, 288, 292, 328,
446, 486

signed, 7

whole, 62, 64, 115, 486
Numerators, 104

O
Open interval, 18, 39, 151, 158, 238, 260
Open intervals, 69
Ordered pair, 7, 406
Ordered pairs, 7, 406
Origin, 8, 11-12, 14, 16, 25, 36, 38, 42, 45-48, 50-51,

121-123, 125-126, 152, 185, 188, 195, 246,
250, 257-260, 284, 288, 290, 294, 299-301,
315, 320, 341, 349, 354-355, 357, 359-360,
363, 377-379, 381-382, 384, 387-389,
391-392, 395, 403, 405, 423, 437, 440, 489

coordinate system, 8, 25
symmetry, 36, 395

Outputs, 491

P
Parabola, 9, 58, 124, 160

equation of, 9
Parallelogram law, 15, 22
Parameters, 7, 16, 138, 142, 504
Parametric equations, 46
Partial derivatives, 40, 73-76, 78-80, 85-86, 96, 186,

210, 221-222, 419
Partial fractions, 105, 107, 191, 199, 203, 213-214,

231, 274, 481-482, 489
decomposition, 105
defined, 107, 191, 213, 482

Paths, 177, 420
Patterns, 93, 128, 420, 438
Perimeter, 160, 171, 412, 420, 435
Periodic function, 448, 453, 455, 464
Plane, 7-9, 12-14, 24, 26, 38-40, 44-52, 54-55, 58,

61-65, 69-70, 73, 76, 78, 80-81, 83, 86-87,
91, 110-112, 115, 120-122, 124, 127, 135,
137, 143, 146, 149-151, 158, 162, 175,
178-182, 184-185, 188-189, 191, 195, 199,
201, 215-216, 219, 223, 226, 228-230, 285,
288-292, 297, 299-300, 302, 321-322, 326,
329-330, 334-337, 341, 346, 356, 359-360,
362-364, 366, 369-372, 374-376, 380-381,
383-385, 387-388, 390-394, 396, 398, 400,
404, 406-407, 410-419, 421-426, 428-431,
433-435, 437-438, 440, 442-443, 466, 472,
477, 485, 498-501, 505-506

Point, 3, 7-16, 23-24, 36, 38-43, 45-48, 51-52, 53, 55,
58-59, 61-64, 68-74, 76-77, 79, 83, 88,
91-93, 95, 99, 110, 117, 121-122, 133, 140,
146, 149-154, 156-163, 167, 169-170,
172-173, 175-179, 181-189, 191, 194,
196-197, 199-201, 204-207, 209, 211, 214,
217-218, 220, 222, 224-225, 229, 242,
247-249, 253-258, 269, 275, 277, 279, 284,
287-289, 291-293, 295-301, 303-304, 308,
314, 337, 339, 341, 346, 349, 355-356, 358,
361, 363, 365-366, 369, 371, 377-378,
380-381, 384-385, 387-390, 392-395, 398,
400-405, 407, 410, 416, 419, 422-423, 426,
437, 439, 442, 451, 453, 459, 462-463,
496-498, 501, 508

equilibrium, 38, 79, 88
of discontinuity, 224

Points, 7-9, 11-13, 15-17, 21, 23, 32, 38-40, 42-46,
48-52, 55, 64, 69-71, 74, 88, 91-92, 95, 101,
108-110, 114, 120-121, 124, 136, 146,
150-154, 156-158, 162, 171-173, 175-176,
178, 180, 182, 191, 195, 197, 199-201, 206,
210, 214, 217, 222, 224, 231, 238, 267, 269,
278, 283-284, 286-288, 295-297, 299-301,
304, 310-312, 317, 321, 324, 327-328, 337,
339, 343, 345, 347, 356, 358, 367, 369,
371-372, 377-379, 383, 385, 391-392,
396-402, 404-405, 407, 410-413, 416, 419,
422-423, 442-443, 454, 457-458, 467,
486-487, 497

Polygons, 35, 184, 411, 443
regular, 35, 184
sides of, 411

Polynomial, 13, 38, 61, 69-70, 84, 92, 99-105,
107-110, 145-146, 178, 203, 215-216,
219-221, 228, 231, 242, 251, 268, 281, 290,
292, 301, 361, 363-364, 366, 407, 485, 488

Polynomial factoring, 38
Polynomial functions, 61, 70, 99
Polynomials, 62, 99, 101-105, 107-110, 145-146,

215-216, 241, 255, 259, 268, 281, 291-292,

304, 322, 326, 331-332
defined, 62, 107, 146, 268, 322
degree of, 99, 105, 110, 331
quadratic, 101-102
ratio of, 281, 291

Positive integers, 38, 302
Positive numbers, 478
Power, 33, 137-138, 140, 142-143, 252-261, 264,

267-268, 285, 293-294, 297-301, 304-305,
328, 372, 374, 432, 450, 461-462, 464, 503,
506

defined, 254, 261, 264, 268, 293-294, 298, 300,
328, 462

Power series, 252-261, 264, 267-268, 293-294,
297-301, 304-305, 328, 450

Powers, 33-35, 37, 52, 66, 68, 102-103, 131, 133,
135, 137, 146, 216, 238, 243, 247, 251, 260,
270, 272, 274, 280, 284, 309, 349

Prediction, 507
Price, 451
Principal, 18, 24, 119-120, 123, 132-133, 135-138,

146, 175, 178, 276, 300, 304, 313, 319, 339,
346, 348-349, 352, 466-467, 489, 496, 498

Product, 7, 11-12, 20, 23-24, 38, 83, 85, 101, 109-110,
137, 247-249, 251, 286, 402, 407

Proportionality, 88, 485
constant of, 88, 485

Pythagorean theorem, 8

Q
Quadrants, 17
Quadratic, 2, 13, 36, 38, 100-102, 135, 316
Quadratic equations, 2

defined, 2
Quadratic formula, 36, 100, 102, 135, 316

using, 135
Quotient, 2-4, 20-21, 29, 61, 67-68, 74-75, 77,

100-101, 120, 322, 326, 332, 382
functions, 29, 61, 67-68, 74, 77, 100-101, 120, 322,

382
real numbers, 2-3, 101

Quotients, 7, 62, 66, 68, 101

R
Radicals, 2, 51

defined, 2
rationalizing the denominator, 2

Range, 17, 53-54, 56, 135, 137, 149-152, 157, 160,
363, 369, 394, 445, 503

defined, 53-54, 56, 150
Ratio, 2, 6, 12, 237, 239-241, 244, 254, 258, 266, 281,

291, 395, 397, 404-405
common, 6, 404

Ratio test, 237, 239-241, 254, 258
Rational functions, 62, 69, 99, 101, 103-105, 107, 109,

145, 281, 310, 322, 356, 437
defined, 62, 107, 322
domain, 69

Rational numbers, 1-2
Rationalizing the denominator, 2, 12
Ratios, 1, 99, 104, 237, 397-398
Ray, 56, 77, 119, 121-122, 366, 402

defined, 56, 122
Rays, 124, 126, 421
Real axis, 8, 10, 13-14, 16, 18, 21, 39, 42, 48, 63, 77,

85-86, 111, 119-120, 122, 124, 146, 173,
198, 229-230, 288, 297-299, 301-303,
318-319, 321, 323, 339, 346, 348-349, 352,
368, 370, 381, 388, 396, 401, 404, 407-414,
416, 423, 425, 428-429, 433, 510

Real numbers, 2-3, 6-7, 12, 24, 37, 101, 254, 264, 267
complex, 2-3, 6-7, 12, 24, 101
defined, 2-3, 254, 264
imaginary, 6-7
integers, 6, 37, 267
irrational, 3
ordered pair, 7
properties of, 264
rational, 2, 6, 101
real, 2-3, 6-7, 12, 24, 37, 101, 254, 264, 267

Real part, 4, 38, 80, 83, 96, 119, 125-127, 141, 143,
145, 192, 223-224, 226-228, 371, 450-451,
473, 506

Rectangle, 116-117, 326, 383, 417-418
Rectangles, 326, 368
Reflection, 10, 13, 21, 51, 300, 302-303, 305, 394, 419

defined, 300, 302-303, 419
Regular polygons, 35, 184
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Relations, 66, 78, 115, 142, 268, 460, 471, 489, 506,
510

functions as, 66
Remainder, 53, 100, 236, 239, 244, 251-252, 382
Riemann sums, 161-162, 169, 172, 232
Right angles, 46, 83, 400
Rise, 93
Roots, 13, 33-38, 46, 49, 52, 66, 102, 132, 266,

364-365
of the equation, 33, 36-37, 364
of unity, 34-36, 38, 102

Rotations, 384, 389-390, 443
Run, 100

S
Sample, 458
Savings, 459, 489
Second quadrant, 160
Second-order partial derivatives, 79, 96, 186, 210
Seconds, 459
Self-similarity, 93
Semicircle, 152, 171, 335, 496-500, 508
Sequences, 61-64, 235, 237, 239, 241, 264, 266, 305,

488-489, 491
converging, 61, 64, 488-489
defined, 61-62, 64, 235, 264, 488
finite, 64, 264, 488
geometric, 237, 489
infinite, 235, 264, 305, 488

Series, 28, 52, 140, 233, 235-282, 284, 286-290,
292-294, 296-302, 304-305, 307, 324,
327-328, 445-451, 453-457, 459-464, 467,
470, 486-490, 492, 507, 509-510

arithmetic, 28
defined, 52, 235-236, 247, 254, 261, 264, 268, 275,

279, 284, 289, 293-294, 298, 300, 302,
327-328, 451, 460, 462, 487-488, 509

geometric, 236-237, 243, 245, 252, 254, 265, 273,
304, 487, 489

mean, 451
Sets, 34, 39-44, 50, 52, 70, 91-95, 97, 220, 379-380

intersection, 43
solution, 39, 41, 91
union, 43-44

Sides, 15, 22, 85, 118, 126, 133, 181, 352, 368, 411,
420, 433-434, 490

Signal, 144-145, 147, 459, 502-504, 511
Signs, 246, 500
Simplification, 139
Simplify, 24, 138, 246, 248
Sine, 17-18, 134, 146, 439, 460-462, 504

inverse, 134, 146
Sines, 501
Sinusoidal functions, 445-446
Solution set, 39, 137

defined, 39
Solutions, 2, 4, 6, 36-38, 79, 96, 128, 135, 137, 147,

221, 305, 364, 371, 420, 443, 445, 457, 461,
470, 473, 476, 486, 511

Square, 2, 12, 33, 38, 49, 65-66, 87-88, 100, 135-136,
160, 171, 182, 327, 365, 426, 451, 473

Square roots, 33, 38, 49
Squares, 22, 91, 442
Squaring, 440
Standard form, 2, 103, 118

complex numbers, 2, 118
Statements, 23, 72, 119, 175, 240, 250, 265
Statistics, 491
Subset, 7, 43, 93, 366
Substitution, 46, 70, 99, 142, 335, 451, 492, 498
Substitution method, 70
Subtraction, 1-3, 5, 16, 18, 51

of integers, 1
Sum, 6, 10-11, 15, 20, 22, 38, 85, 107, 110, 115, 146,

159, 162, 165, 169, 174, 190, 198, 204, 212,
230, 235-236, 239, 242, 244, 252, 269, 271,
273, 294, 299, 313, 315, 322, 327-328, 332,
334, 353-354, 359, 367-368, 445-446,
449-450, 454, 458, 460, 463-466, 487-488,
491, 501, 504

antiderivative of, 174
Sums, 7, 66, 68, 161-162, 169, 172, 232, 235,

238-240, 255-256, 263, 304, 328, 463-464,
487

Survey, 99, 446
Symmetry, 36, 374, 395, 400-401, 404, 422, 426,

428-429, 438, 466, 502

T
Tables, 146-147, 368, 416, 510
Tangent, 135, 151, 378-379, 381, 410, 412

defined, 378
Taylor series, 28, 242-252, 256, 269-271, 277-278,

281, 284, 287, 293-294, 297, 300, 304-305
Temperature, 79, 81, 87-90, 96, 125-126, 128, 223,

225-227, 229, 372, 419-420, 430-432, 435,
439-441, 461-462, 474

Terminal, 15, 150, 153-154, 157-158, 161-162,
169-170, 172-173, 176, 180, 231, 299-300

Third quadrant, 392
Transformations, 383-385, 387, 389-393, 395-407,

410, 412, 419-420, 425, 443, 492
horizontal, 410
reflection, 419
translations, 389-390, 443
vertical, 392

Transitions, 93
Translations, 389-390, 443
Triangles, 51, 402
Trigonometric functions, 28-29, 93, 112, 114, 131, 133,

135, 137, 324, 328-329, 331, 333, 335
evaluating, 324, 331
tangent, 135

Trigonometric identities, 29, 31, 115, 146
Trigonometry, 297

functions, 297

U
Unit circle, 32, 45, 57, 86, 91-92, 108, 133, 135, 137,

152, 185, 188, 195, 200, 206, 213, 300, 302,
314-315, 367, 372, 374, 376, 387-388, 394,
403-404, 419, 430, 447-448, 492, 496

defined, 57, 86, 92, 188, 195, 213, 300, 302, 387,
403, 419

Upper bound, 169-170, 219, 239, 254

V
Variables, 10, 25-26, 40, 44, 53-54, 78, 95, 118,

138-139, 142, 146, 233, 305, 339, 370,
443-444, 468, 475

functions, 40, 53-54, 78, 95, 118, 138, 142, 146,
305, 443-444

Variation, 270, 359, 368, 504
Vectors, 14-17, 19-25, 51, 71, 83, 110, 378-379

addition, 15, 51
defined, 378
dot product, 24
linear combination of, 110
orthogonal, 24
parallel, 14, 16, 21, 23-24
perpendicular, 21, 83
zero, 14, 110, 378-379

Velocity, 25, 145, 150, 223, 486
angular, 25, 145
linear, 25

Vertex, 411
Vertical, 40-41, 56, 68, 74, 85, 87, 127, 151, 172, 268,

337, 392, 483
Vertical line, 40, 56, 151, 172, 268

graph of, 151
Vertical lines, 127

X
x-axis, 7, 51, 85, 127, 133, 149, 175, 201, 226,

228-229, 292, 353, 408-409, 411, 423-424,
435, 437, 500-501

xy-plane, 7-8, 24, 65, 78, 81, 87, 149, 369

Y
y-axis, 7-8, 46, 133, 195, 288, 435
Years, 103, 180

Z
Zero, 4, 9, 14, 31, 38, 67-69, 73, 75, 85-86, 88, 92, 95,

99-104, 107-111, 118, 121, 130, 143,
145-146, 149, 165, 177, 180, 187-189, 191,
193-196, 204-205, 208, 214, 216, 220, 229,
231, 236-238, 240, 242, 251, 255, 266-267,
270, 277-278, 281-282, 284-286, 288,
290-292, 295-296, 301, 304, 307, 309,
314-315, 320, 324-325, 329-332, 334, 339,
341, 346, 350, 352-353, 356-358, 361-363,
365-367, 369, 376, 378-379, 382, 403, 407,
419, 433-435, 441, 453, 461, 465, 472-473,

477, 483, 485-486, 488, 496-498, 505-506,
508

matrix, 14, 407

516
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